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We have fabricated thin films of a van der Waals (vdW) ferromagnetic metal Fe5GeTe2 and characterized them by
measuring the anomalous Hall effect. While the bulk Fe5GeTe2 does not exhibit a perpendicular magnetic anisotropy
(PMA) unlike Fe3GeTe2, PMA emerges in the thin film devices. Furthermore, the PMA is enhanced with decreasing
the thickness of Fe5GeTe2. In particular, a thin film (5 unit-cell layer) device fabricated with Fe5GeTe2 quenched at
1050 K has two times larger coercive field than that prepared without quenching. Such a PMA should be useful for
future vdW spintronic devices.

Since the discovery of graphene,1) studies of two-
dimensional atomic crystals have been actively con-
ducted.2) Layered materials enable fabrication of
atomically-thin films using the mechanical exfoliation
technique, retaining the quality of bulk crystal structure.
Thus, these materials are expected to be applied to high-
purity thin film devices.3,4) In recent years, materials ex-
hibiting phase transitions such as superconductivity and
ferromagnetism have been fabricated into single-layer
or few-layer devices.6–19) Among them, few-layer ferro-
magnets, namely van der Waals (vdW) ferromagnets,
have attracted much attention in the field of spintron-
ics because of their potential device applications.13,15)

Cr2Ge2Te6
11,14,19) and CrI3

12,13) are semiconducting or
insulating vdW ferromagnets, while Fe3GeTe2

15–17) and
V5Se8

18) are metallic vdW ferromagnets. In spite of sev-
eral candidates for vdW ferromagnets, most of these can-
didates have Curie temperatures TC lower than room
temperature without gating. For spintronic device ap-
plications, vdW ferromagnets with TC higher than room
temperature are highly desirable.
Fe5GeTe2 is a recently-reported layered-ferromagnetic

metal with TC ≈ 310 K.20–23) Fe5GeTe2 has a similar
crystal structure to Fe3GeTe2 but with additional Fe
atoms as shown in Fig. 1(a). It is known that Fe3GeTe2
exhibits a strong perpendicular magnetic anisotropy
(PMA) in bulk form, and the amplitude of the magneti-
zation monotonically increases with decreasing temper-
ature.17,24–26) On the other hand, the magnetic state in
Fe5GeTe2 is much more complex than Fe3GeTe2. The
magnetization in Fe5GeTe2 increases with decreasing
temperature as in Fe3GeTe2, but it takes a maximum
at around 120 K and start to decrease as the tempera-
ture decreases.22) Unlike Fe3GeTe2, Fe5GeTe2 does not
exhibit a PMA in bulk form, while the PMA has been
reported in thin film devices.21) In addition, according
to the X-ray diffraction measurement,22) Fe5GeTe2 has
a structural phase transition at 550 K. Thus, the crystal
structure depends on how the crystal is cooled down.
When Fe5GeTe2 is immediately cooled down after its
growth in a furnace at around 1000 K, which is referred
to as “quenched” (Q) sample, the diffraction pattern is
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Fig. 1. (a) Schematic of crystal structure of Fe5GeTe2. The red

square corresponds to the unit-cell of Fe5GeTe2. (b) SEM image of

one of the Fe5GeTe2 thin film devices. The electrode configuration
for the Hall measurement is added in the image. (c) TEM image

of the 18L NQ-Fe5GeTe2 device. The blue sphere indicates the Te
atom.

shaper than that of non-quenched (NQ) sample, indi-
cating a better crystal quality. Although Fe5GeTe2 has
many interesting physical properties, details of the PMA
in thin films are still largely unclear, and further research
is vital for future vdW spintronic device applications.

In this work, we have fabricated thin film devices using
Q- and NQ-Fe5GeTe2 samples and performed electrical
transport measurements from 310 K down to 2 K. The
longitudinal resistivity ρxx of Q-Fe5GeTe2 devices has a
larger temperature dependence than that of NQ-devices.
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As the number (n) of the unit-cell layer (L) decreases,
the resistivity change becomes larger. The Hall resistivity
ρyx shows almost the same temperature dependence in
both Q- and NQ-devices when n is larger than 10. ρyx
increases with decreasing temperature from 310 K but
starts to decrease at 100 K, below which the coercivity
becomes larger. For the thinner film devices, on the other
hand, a Q-device has a much larger coercive field than
a NQ-device. This result originates from the difference
of the crystal structures between Q- and NQ-crystals,
which should yield a stronger impact in thinner films.
Single crystals of Fe5GeTe2 were synthesized in an

evacuated quartz tube with an I2 transport agent. The
tube was heated up to 1050 K and kept at this tempera-
ture for one week. NQ-samples were obtained by letting
them naturally cool down to room temperature in the
quartz tube, while Q-samples were obtained by rapidly
cooling down to room temperature (in practice, by dip-
ping the tube into water). We confirmed from the X-
ray diffraction pattern that both NQ- and Q-samples are
single crystals, and confirmed from the energy-dispersive
X-ray spectroscopy measurement that the composition
ratio of Fe, Ge, and Te is 5.3, 1, and 2.4, respectively,
both for NQ- and Q-samples, which hereafter we sim-
ply call Fe5GeTe2. The lattice constant along the a-axis
is a = 4.04 Å both for Q-Fe5GeTe2 and NQ-Fe5GeTe2,
while the lattice constant along the c-axis changes de-
pending on the cooling process: c = 29.19 Å for Q-
Fe5GeTe2 and c = 29.04 Å for NQ-Fe5GeTe2. The lattice
constants are consistent with those in Ref.21)

To obtain thin film devices, we adopted the mechani-
cal exfoliation technique using scotch tape. Since the thin
film is easily oxidized, the exfoliation process has been
performed in a globe box filled with Ar gas of purity
99.9999%. Some of the exfoliated Fe5GeTe2 flakes were
transferred from the scotch tape to a thermally-oxidized
silicon substrate. To attach electrodes to the exfoliated
Fe5GeTe2 thin films, we performed electron beam lithog-
raphy on polymethyl-methacrylate resist. After the de-
velopment of the resist inside the globe box, Ti and Au
were deposited in a chamber next to the globe box. The
thicknesses of Ti and Au were 5 and 100 nm, respec-
tively. Figure 1(b) shows a scanning electron microscopy
(SEM) image of our typical Fe5GeTe2 thin film device. In
order to check the quality of the exfoliated Fe5GeTe2 thin
film, a cross sectional transmission electron microscopy
(TEM) image was taken for 18L NQ-Fe5GeTe2 device in
Fig. 1(c). We can confirm that the obtained TEM im-
age is consistent with the crystal structure of Fe5GeTe2
shown in Fig. 1(a), although the Fe1 site is difficult to
see in the TEM image as pointed out in Ref.21)

Figure 2 shows the temperature dependence of the lon-
gitudinal resistivity ρxx for Q- and NQ-Fe5GeTe2 devices
with different numbers of L. To compare four different
data, ρxx is normalized at T = 10 K. For all the devices,
there is a large resistivity drop at around 100-120 K.
This drop would be related to the magnetic ordering at
the Fe1 site (see Fig. 1(a)), as mentioned in Ref.21) The
temperature at which the resistivity drop occurs shifts
to the lower side with decreasing n. In addition, the nor-
malized resistivities of Q-devices are larger than those of

6

5

4

3

2

1

0

 
x
x 
/

x
x
 (1

0
 K

)

300250200150100500

 T (K)

 5 L (Q)
 6 L (NQ)
 14 L (Q)
 18 L (NQ)

Fig. 2. Temperature dependence of the resistivity for Q- (solid
lines) and NQ-Fe5GeTe2 (broken lines) devices with different num-

bers of L. The resistivity ρxx(T ) is normalized at T = 10 K.
ρxx(10 K) is about 100 µΩ·cm.

NQ-devices. The result suggests that the Q-devices have
less defects than the NQ-devices. This is also consistent
with the previous X-ray result where the diffraction in-
tensity is shaper for bulk Q-samples.22)

Next, we measured the Hall resistivity ρyx for Q- and
NQ-Fe5GeTe2 devices with different numbers of L. Fig-
ures 3(a) and 3(b) show the anomalous Hall effect ob-
tained with thick (more than 10L) Q-Fe5GeTe2 and NQ-
Fe5GeTe2 devices at two typical temperatures (50 K and
200 K). A hysteresis loop can be seen for both devices
at 50 K, but the loop shape is not clearly rectangu-
lar. The coercive field Hc defined from ρyx(Hc) = 0
becomes smaller with increasing temperature, while the
anomalous Hall resistivity (ρA), obtained by extrapolat-
ing the linear fit at high magnetic fields to zero field (see
Fig. 3(a)), increases as the temperature is increased, and
takes a maximum at around 150 K. The above tendencies
can be seen more clearly in the temperature dependence
of ρA and Hc shown in Figs. 3(c) and 3(d), respectively.
TC determined from ρyx is more than 310 K for both de-
vices, although it is in general higher than TC determined
from magnetization measurements.27)

A clear difference between Q- and NQ-Fe5GeTe2 ap-
pears in thinner devices. In Figs. 4(a) and 4(b), we show
the anomalous Hall effect obtained with 5L Q-Fe5GeTe2
and 6L NQ-Fe5GeTe2 devices at two typical tempera-
tures (50 K and 200 K). The hysteresis loop is much
closer to an ideal rectangular shape, compared to thicker
films. In particular, Hc of 5L Q-Fe5GeTe2 is about six
times larger than that of the thicker Q-Fe5GeTe2. This
means that the PMA becomes stronger with decreasing
thickness of Fe5GeTe2. More importantly, Hc of 5L Q-
Fe5GeTe2 is about two times larger than that of 6L NQ-
Fe5GeTe2 at 50 K. The difference of Hc becomes smaller
with increasing temperature and disappears at around
100 K where the anomalous Hall resistivity ρA takes a
maximum, as shown in Figs. 4(c) and 4(d). As we in-
crease temperature further, Hc becomes zero at 230 K
and ρA vanishes at TC = 295 K, lower than thicker de-
vices. The reduction of TC in thinner Fe5GeTe2 is con-
sistent with that of other vdW ferromagnets.11–19)

Now we discuss ρA and Hc in the low temperature
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Fig. 3. Hall resistivity of thick (more than 10L) Q- and
NQ-Fe5GeTe2 devices measured at (a) 50 K and (b) 200 K. The

orange solid and light blue dashed lines are the results obtained
with 14L Q-Fe5GeTe2 and 18L NQ-Fe5GeTe2 devices, respectively.
ρA and Hc mean the anomalous Hall resistivity and the coercive
field, respectively. Temperature dependence of (c) ρA and (d) Hc

of 14L Q- and 18L NQ-Fe5GeTe2 devices. The orange circle and

light blue triangle indicate the results of 14L NQ-Fe5GeTe2 and

18L NQ-Fe5GeTe2, respectively.

region. In the case of general ferromagnets, ρA mono-
tonically increases with decreasing temperature, but in
the present case, ρA takes a maximum at around 100-
150 K regardless of the thickness and decreases with de-
creasing temperature below 100 K. It is also reported
in Ref.21) that the Fe1 site is magnetically ordered at a
similar temperature (∼ 120 K). From these facts, we can
deduce the possibility that Fe5GeTe2 could be a ferri-
magnet rather than a ferromagnet, unlike a simple fer-
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Fig. 4. Hall resistivity of thin (less than 10L) Q- and

NQ-Fe5GeTe2 devices measured at (a) 50 K and (b) 200 K. The

red solid and blue dashed lines are the results obtained with
5L Q-Fe5GeTe2 and 6L NQ-Fe5GeTe2 devices, respectively. Tem-
perature dependence of (c) ρA and (d) Hc of 5L Q- and 6L

NQ-Fe5GeTe2 devices. The red circle and blue triangle indicate the
results of 5L NQ-Fe5GeTe2 and 6L NQ-Fe5GeTe2, respectively.

romagnetic Fe3GeTe2.
17) As for Hc, the value becomes

larger with decreasing temperature and thickness. Such
a tendency can be expected for general ferromagnets be-
cause of shape magnetic anisotropy, but the atomically
thin Q-Fe5GeTe2 device has a much larger Hc value than
the NQ counterpart, although TC and ρA are almost the
same. According to Ref.,22) Q-Fe5GeTe2 has a higher
crystal symmetry than NQ-Fe5GeTe2. The detailed crys-
tal structure is a crucial component in the discussion of
the difference between the two results. This should be ad-
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dressed in further detail through other experiments such
as X-ray magnetic circular dichroism measurements and
by performing the first principles calculations in near fu-
ture.
In summary, we have fabricated Q- and NQ-Fe5GeTe2

thin film devices and performed electrical transport mea-
surements. The normalized ρxx takes a larger value
for Q-Fe5GeTe2 as well as thinner devices. The ob-
served anomalous Hall resistivity has a maximum at
around 100-150 K and decreases with decreasing tem-
perature. These results suggest ferrimagnetic ordering in
Fe5GeTe2, rather than a simple ferromagnetism. Thin
Fe5GeTe2 devices show a stronger PMA and the coercive
field monotonically increases with decreasing tempera-
ture. In addition, the 5L Q-Fe5GeTe2 device has coercive
field two times larger than the 6L NQ-device. These dif-
ferences are likely due to the detailed crystal structures
of Q- and NQ-Fe5GeTe2 thin film samples, and further
research is desired. Atomically thin Q-Fe5GeTe2 devices
would enable us to tune not only TC

17,28) but also the
PMA29,30) by gating, as in the case of a simple thin ferro-
magnetic film. These features should be useful in future
vdW spintronic devices.
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