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Abstract 
Over the past decade, lead halide perovskites (PVKs) have emerged as a promising new 

light absorber material for thin film solar cells. Lab-scale perovskite-based photovoltaic devices 

have made impressive gains in power conversion efficiency (PCE) and are nearing the same 

efficiency as silicon-based solar cells. However, perovskite solar cells lack stability, and this is a 

major obstacle preventing commercialization. The interfaces between the different layers in a 

device have been implicated as potential areas of charge recombination and material degradation. 

Understanding the perovskite surface is crucial because it is involved in these interfaces and also 

because it is the layer that is in first contact with extrinsic species that may cause degradation. 

Defects in the perovskite material have also been identified as a potential cause of sub-optimal 

performance. Additionally, some strategies for improving stability have included using mixed 

halide perovskites, or perovskites containing cesium instead of or mixed with organic cations such 

as methylammonium (MA). Reports at the device engineering level are plentiful, but fundamental, 

atomic-scale understanding of the perovskite surface is scarce, especially from an experimental 

perspective. This bulk of this thesis focuses on scanning tunneling microscopy (STM) studies 

examining the perovskite surfaces of CsPbBr3 and mixed halide perovskites MAPbBr3-yIy and 

MAPbBr3-zClz, the surface defects of MAPbBr3 and their dynamics, as well a device-relevant 

perovskite/hole transport material (HTM) interface comprised of MAPbX3/CuPc, where X=I or 

Br. Furthermore, X-ray photoelectron spectroscopy (XPS) is used to characterize stability of the 

material, and electronic properties are investigated by ultraviolet photoemission spectroscopy 

(UPS). Where feasible, these experimental results are corroborated by density functional theory 

(DFT) calculations performed by collaborators. The goal of this thesis is to provide fundamental 

insight regarding perovskite surfaces, their defects and their dynamics, and their interfaces with 

other materials, which may help guide applied research toward creating devices with better 

performance and stability. 
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Chapter 1: General Introduction 

1.1 Motivation 

 This thesis takes an experimental approach to examining the surfaces of organic-inorganic 

perovskite (OHP) materials at the atomic scale, and the findings are discussed in the context of 

photovoltaic applications, with additional support from theoretical work performed by 

collaborating research groups. Material surfaces, as well as interfaces between adjacent materials 

in photovoltaic devices, have been identified as key areas affecting device performance and 

stability. The passivation of surfaces and defects has been established as a useful method for 

improving device performance, and is described in Section 1.3. However, a detailed picture of the 

perovskite surface at the atomic scale is lacking, especially from an experimental perspective. 

Identifying the types of defects at the surface and how the surface reconstructs in various 

perovskite formulations provides a more accurate picture of the perovskite surface and can help 

inform future surface passivation strategies. Additionally, examining submonolayer coverages of 

charge selective layer materials on top of perovskite allows for the identification of how the two 

materials interact with each other at this interface. This can lead to better modelling of the interface 

and potentially identify fundamental reasons for better or worse charge transfer and performance 

for a given charge selective layer. Based on these motivations, this thesis provides the first atomic 

resolution images of vacancy defects cluster and the movement of individual ions in OHP materials. 

The surfaces of mixed halide and Cs-based perovskites were imaged with atomic resolution for 

the first time, and the effect of changing the X-site and A-site ions on the surface layer structure 

was revealed. Finally, the interfacial layer of CuPc on MAPbX3 was shown to have a different 

orientation than previously proposed based on theoretical work in the literature. This highlights 

the importance of verifying theoretical studies with atomic resolution experimental work, and 

could lead to a better understanding of charge transfer and performance in OHP solar cell devices 

that utilize CuPc as a hole transport layer (HTL). This work establishes a general approach that 

can be further employed to investigate interfaces between OHPs and other device-relevant charge 

transport layers. 
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1.2 Overview: organic-inorganic hybrid perovskite (OHP) solar cells 

 Solar energy from photovoltaics has the potential to decrease carbon emissions and 

contribute to a more sustainable energy industry. Silicon-based solar panels are widely deployed 

in the market, but are not suitable for all applications as they are heavy and lack flexibility. Solar 

panels utilizing organic-inorganic halide perovskites (OHPs) as the light absorbing material have 

the potential to offer a high efficiency, low-cost solution that is compatible with flexible substrates. 

It should be noted that OHPs also have applications in other optoelectronic applications, including 

LEDs1-4 and lasers,5, 6 but this thesis will mainly be framed in the context of solar cells.  

OHPs have a general molecular formula of ABX3 (Fig. 1.1), where A is an organic cation, 

B is a metal 2+ cation (Pb, Sn), and X is a halide ion (I, Br, Cl), and were first shown to be useable 

as light absorbers in solar cells in 2009.7 The B cation is coordinated with six halide ions in the X 

position to form an octahedral framework. The A cation can be organic or inorganic and has 12 

nearest neighbors, lying in a cuboctahedral site. 

 

Figure 1.1 Perovskite unit cell with general formula ABX3. 

OHPs have exhibited unique and exceptional optoelectronic properties, including high 

charge carrier mobility, high absorption coefficient, long charge carrier diffusion lengths, low 

exciton binding energy and band gaps suitable for efficient absorption of solar irradiation.8-11 

Kojima et al. utilized methylammonium lead iodide (MAPbI3) and methylammonium lead 

bromide (MAPbBr3) in a cell architecture similar to those used in dye-sensitized solar cells3 to 

achieve a power conversion efficiency (PCE) of 3.8% and 3.1%, respectively.7 This work set off 

a flurry of research into this material class, with the next breakthrough occurring when Kim et al. 
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used MAPbI3 as a light absorber in a mesoscopic all-solid-state architecture to produce cells with 

a power conversion efficiency (PCE) of 9.7%.10 In the ensuing decade, record efficiencies saw a 

meteoric rise, with the current record for PCE exceeding 25%, a value comparable to conventional 

Si single crystal solar cells.12 This rapid rise in achievable efficiency was realized through 

optimization of processing conditions and cell architectures, a better understanding of film 

morphology and charge transport properties, and experimentation with new materials for each 

layer within the cell.  

OHPs have also garnered much attention among the solar cell research community due to 

their low material cost and potential compatibility with roll to roll printing and other mass 

production techniques. Numerous fabrication methods have been explored, including both one-

step10, 13 and two-step solution processing,14 vapor assisted solution processing,15 vacuum 

deposition,16, 17 chemical vapor deposition,18 spray coating,19, 20 room temperature solvent-solvent 

extraction,21 doctor blading,22 and bar coating.23 In addition to working on improving methods for 

large area deposition,24 progress towards scalability is also being made through engineering 

perovskite solar cell modules.25, 26  

Perovskite cells are also being incorporated into tandem cells, and may serve as a cost-

effective way to boost the efficiency of conventional solar cells, considering the comparatively 

inexpensive capital investment required by companies with existing silicon-based solar cell 

manufacturing plants.27 McMeekin et al. demonstrated the viability of a perovskite-Si tandem cell, 

showing the potential for a PCE over 25% for 4-terminal tandem cells.28 Low-temperature 

processed monolithic tandem cells have been reported29 and recently a PCE of over 23% was 

achieved for a 2-terminal all-perovskite tandem cell.30 

With efficiencies reaching above 20% and approaching that of single crystal Si cells, there 

has been a change in emphasis in the literature. There is renewed effort to focus on stability and 

interface engineering, both seen as keys to further optimization and eventual commercialization of 

OHP-based solar cells. Understanding the interfaces in OHP devices requires a thorough 

understanding of the perovskite surface. This thesis consists of a fundamental surface science 

investigation of lead halide perovskites, with focuses on the nature and dynamics of defects at the 

MAPbBr3 surface, the surface atomic structure and stability of different perovskite formulations, 

and the device-relevant interface between MAPbX3 and copper phthalocyanine (CuPc).  
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1.3 OHP-based solar cell device layers 

In this section, a description of the OHP-based solar cell working principle and device 

architectures is followed by a brief overview of each layer in the perovskite solar cell (Fig. 1.2). 

Photons in the solar spectrum with energy exceeding the band gap, i.e., the energy gap between 

the valence band maximum (VBM) and conduction band minimum (CBM), of the perovskite 

material can excite electrons from the filled valence band (VB) to an unoccupied state in the 

conduction band (CB), creating an electron-hole pair. A low exciton binding energy of 16 meV 

enables electron-hole pairs to efficiently separate into free carriers.8 The perovskite layer is 

typically sandwiched between two charge selective layers, and the free electrons and holes migrate 

to the electron transport layer (ETL) and hole transport layer (HTL), respectively. In these transport 

layers, the electrons and holes are selectively conducted to their respective electrodes and finally 

to the external circuit. The standard sandwich architecture has three main variants, the planar solar 

cell, in which only a compact layer of material is used for the ETL, the mesoscopic architecture in 

which a mesoporous layer of the ETL material is deposited on top the compact layer, and the 

inverted architecture, in which the placement of the HTL and ETL are swapped. This mesoporous 

layer is employed to increase the effective contact area and thus charge transfer at the 

perovskite/ETL interface. The inverted cell structure, in which the HTL rather than the ETL must 

be transparent to the incoming sunlight, allows for experimentation with different materials not 

compatible with the conventional architectures. 
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Figure 1.2 Perovskite device architectures (top) and perovskite solar cell working principle (bottom). 

Substrate Layer 

For a majority of studies in the literature, the substrate of the device stack is glass, which 

efficiently transmits incoming light to the cell. However, the compatibility of OHPs with flexible 

substrates is one of its key benefits, and investigation of flexible perovskite solar devices is a 

crucial branch of research. Perovskite cells on flexible substrates have shown an impressive 95% 

PCE retention after 5000 bending cycles at r=5mm31 and an 85% PCE retention after 5000 cycles 

at a harsher bending of r=2mm.32 Recently, OHP-based solar cells on 2.5μm ultra-thin substrates 

have been demonstrated that can achieve over 17% efficiency and withstand harsher bending 

(r=0.5mm) and even complete crumpling.33 

Bottom Electrode Layer 

The “bottom” electrode, thus termed as it is on the bottom of the layer stack during 

fabrication, actually faces the incoming solar radiation, and thus transparency is of the utmost 

importance to let the maximum number of photons reach the perovskite absorber layer. Although 

the vast majority of reports use a transparent conducting oxide (TCO), typically fluorine-doped tin 
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oxide or indium-doped tin oxide (FTO and ITO, respectively), as the bottom electrode, there is 

also interest among the flexible solar cell community to replace these materials, as they are known 

to be mechanically brittle. Graphene has emerged as a strong candidate replacement, with reports 

of both rigid34 and flexible32 inverted structure cells using graphene as a transparent conducting 

electrode that achieve a PCE of around 17%. 

Electron Transport Layer (ETL) 

The ETL is most commonly composed of a compact layer of titanium dioxide (TiO2), 

which features a suitably large band gap, allowing visible light to transmit to the perovskite layer. 

It also has a favorable energy level alignment between with the conduction bands of OHP materials, 

which allows electrons to conduct through the layer, but blocks holes. The mesoscopic architecture 

adds a mesoporous layer of TiO2 on top of the compact layer in order to improve charge extraction 

by increasing contact area with the perovskite active material.35 Utilizing a mesoporous aluminum 

oxide (Al2O3) film on top of a compact TiO2 can cause a favorable increase in Voc.
11 Tin oxide 

(SnO2) has also received considerable attention as an ETL, as it is compatible with low-

temperature processing and has been successfully employed in large area solar cells.36-38 The 

organic molecule phenyl-C61-butyric acid methyl ester (PCBM), a member of the fullerene family 

of compounds, has also been utilized as an ETL primarily in inverted device architectures. PCBM 

features a higher electron conductivity than TiO2, is more hydrophobic, and can result in 

hysteresis-less cells.39  

OHP Absorber Layer 

Extensive work has been performed exploring different compositions of OHP light 

absorbing layer and the subsequent effect on common performance parameters such as open-

circuit voltage (Voc), short-circuit current (Jsc), fill factor (FF) and PCE, as well as material 

properties including band gap, carrier diffusion length, and carrier mobility. Much of this 

exploration has centered around substituting or mixing different elements at the A, B and X sites 

in the crystal.40 It has been shown that the band gap of the active layer can be tuned by creating 

films with different ratios of two different halides in the X position.41 For instance, the band gap 

can be tuned from 1.55 to 2.3 eV by mixing the appropriate ratio of bromine and iodine based 

precursors (PbBr2, PbI2, MAI, MABr). Tandem solar cells that utilize OHPs can take advantage of 

this tunability, as the ideal band gap for a top cell matched with a conventional Si-based bottom 
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cell is 1.8 eV. McMeekin et al. demonstrated the feasibility of a perovskite-Si tandem to achieve 

over 25% PCE by holding a semi-transparent FA.83Cs.17Pb(Br.4I.6)3 (band gap 1.75 eV) perovskite 

top cell in front of silicon solar cell and summing the PCEs.28 The bandgap tunability also provides 

the benefit of enabling the creation of semi-transparent active layer thin films of varying colors, 

an attractive aesthetic feature for building-integrated photovoltaics.41 

Highest efficiencies have been achieved with lead-based OHPs (Pb in the B site of the 

crystal structure), but tin-based OHPs have also been studied, although these are often hindered by 

lower efficiencies and poor stability.42, 43 Mixing Sn into Pb perovskites can lower the bandgap to 

the 1.2 eV range, and this strategy was recently used in an all-perovskite tandem cell.30  Mixing 

different cations in the A-site has also shown a number of benefits. Methylammonium (MA) cation 

in the A site is most common, but replacing MA with formamidinium (FA) cation increases the 

high temperature stability of the perovskite layer.44 FA-based perovskite layers can have 

complications due to their amorphous delta phase for mixed halide and pure iodide films, which 

is not suitable for photovoltaic device use.45  Recently, the inorganic Cs cation has also been used 

in the A site, and it was shown that the addition of Cs cation stabilizes the FAPb(IxBr1-x)3 

perovskite, which normally has an amorphous phase at a I:Br ratio of 6:4.28 Cesium was also shown 

to increase the stability and reproducibility of the overall device performance when mixed in a 

triple cation formulation with MA and FA.46 Cs-based all-inorganic perovskite solar cells are also 

viable, with efficiencies reaching above 10%.47 Rubidium is normally too small of a cation to form 

a stable photoactive perovskite phase, but incorporation of Rb+ into a CsFAMA mixed cation 

perovskite enabled high open-circuit voltage and PCE, with impressive stability under high stress 

testing.48 Incorporation of K+ into the perovskite was shown to reduce or eliminate hysteresis in a 

wide variety of perovskite formulations by preventing halide Frenkel defects.49 

There is also ongoing discussion regarding the role of excess precursor in the OHP film. 

Chen et al. reported evidence of reduced carrier recombination in MAPbI3 films with excess PbI2 

as seen through extended photoluminescence lifetimes. It was found that a judicious amount of 

PbI2 could passivate grain boundaries in the film and improve charge transport.50 Another study 

found that excess PbI2 yielded higher PCE, while PbI2 deficient (excess MAI) samples had higher 

Voc.
51 Excess MAI has been suggested to accumulate on the surface, reducing conuctivity,52 while 

evidence has also been found for a beneficial effect of interfacial MAI.53  
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The role of grain boundaries and grain size has also been a focus of research on perovskite 

films. Local variation of photoluminescence (PL) intensity and lifetime was found from grain to 

grain. Lower PL intensities and lifetimes were measured at grain boundaries, signifying greater 

non-radiative recombination. Treatment with pyridine improved PL intensity at grain boundaries, 

which is consistent with the theory of passivation of defects at grain boundaries.54 There is also 

evidence linking grain boundaries to increased ion migration.55 Post-annealing with methylamine 

gas increased grain size and reduced surface impurities,56 while a hot-casting technique was able 

to produce millimeter-size grains,57 and rapid crystallization via a vacuum-flash assisted solution 

processing technique enabled high-quality films over a large area.24 Numerous other fabrication 

techniques have been reported to improve OHP film quality and device performance, but will not 

be exhaustively discussed here. 

Hole Transport Layer (HTL) 

A wide variety of organic and inorganic materials have been shown to be suitable for 

creating efficient OHP-based solar cells, and a few selected materials will be highlighted here. The 

most commonly used HTL consists of 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-

spirobifluorene (Spiro-MeOTAD) doped with 4-tert-butylpyridine (tBP) and 

bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI). LiTSFI was found to be necessary for 

SpiroMeOTAD to undergo a beneficial oxygen-induced doping process,58 and it was shown that 

in OHP-based cells, tBP prevents phase segregation of the LiTSFI and SpiroMeOTAD.59 

Transition metal phthalocyanines (TMPcs) have also been explored due to their relatively lower 

cost and superior tolerance to high temperatures compared to Spiro-MeOTAD.60-65 The copper 

variant, CuPc, and its derivatives have been incorporated in perovskite solar cells reaching up to 

18.8%.66 The perovskite-CuPc interface is the subject of Chapter 5 and will be discussed in greater 

detail there. 

Poly(3,4ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is used as an 

alternative HTL in the inverted solar cell structure,39 with poly(3-hexylthiophene) (P3HT)67 or 

poly(triarlyamine) (PTAA)68 also showing promise as an HTL in high-performing perovskite solar 

cells. Inorganic HTLs have also been widely explored due to their low cost and high stability. Both 

NiOx
69, 70 and CuOx

71 have produced efficient and stable perovskite solar cells, and many other 

inorganic materials have been shown to be viable HTLs.72  
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Top Electrode Layer 

Au top electrodes are most common, with Ag,73 Al,55 and Cu74 electrodes also being 

explored. The higher cost of Au and Ag electrodes is a concern for eventual commercialization. 

Additionally, such metal electrodes can pose problems including degradation due to AgI 

formation,73 and diffusion of metal atoms into the OHP layer.75, 76 Carbon materials are a low-cost 

alternative for the top electrode. Drop casting perovskite into a porous carbon film enabled a PCE 

of nearly 13% without the use of a HTL.77 Multi-layer graphene electrodes have been used in 

combination with a thin PEDOT:PSS buffer layer78 as well as in HTL-free architectures.79 HTL-

free cells utilizing a paintable carbon top electrode have also been reported, achieving a PCE above 

14%.80 Recently, a low-temperature processed OHP solar cell using carbon electrodes modified 

with CuPc was shown to boost efficiency to nearly 15%.81 

These individual layers can have significant influence on not only the achievable PCE, but 

also on defect properties, ion migration, interfacial properties and stability, which are all focus 

areas of this thesis. An overview of these topics follows. 

1.4 Defects, ion migration, and interfaces in OHPs 

 Part of the reason perovskite have gained so much attention is their so-called defect 

tolerance. The polycrystalline perovskite films used in OHP-based solar cells have a large defect 

concentration but are still able to achieve high efficiencies.82 This tolerance arises from the fact 

that some defects only create shallow trap states, from which trapped charges can escape with 

relative ease.83 Conversely, the same study showed defects with higher formation energy cause 

deep trap states, which can lead to non-radiative recombination and subsequent reduction of 

photocurrent. However, the shallow point defects are still of great relevance, as these point defects 

can affect performance parameters indirectly by enabling migration of ion to interfaces in a device. 

Surface defects on the perovskite film are also of great interest as they are present at the interface 

with an adjacent device layer, potentially affecting charge transfer. There has been evidence that 

traps at the interface are the dominant recombination loss mechanism rather than traps at grain 

boundaries,84 which are sites of many defects and where ion migration occurs more readily.55  

Ion migration in perovskite solar cells gained attention after it was first proposed as a 

potential reason for current-voltage hysteresis.85 This hysteresis manifests itself as different current 
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output at a given voltage for the forward voltage sweep (short circuit current to open circuit 

voltage) and the reverse voltage sweep (Fig. 1.3). This makes it difficult to properly evaluate cell 

performance, and adds unpredictability that is not desirable for practical application. 

Understanding and suppressing ion migration is considered one avenue for controlling hysteresis. 

 

Figure 1.3 Current-voltage hysteresis. Forward and reverse scans are shown for a control sample with 

hysteresis (red) and a modified sample without hysteresis (blue). Reproduced from Ref. 94 with permission 

from SpringerNature. 

 Numerous theoretical and experimental studies support the existence of ion migration, 

although the exact nature of the ion migration, including the migration mechanism, is still a subject 

of debate. Halide ion migration in the perovskite absorber layer is not surprising, as oxygen 

vacancy-assisted ion migration within perovskite oxides is known to occur.86 Mesoporous TiO2/ 

MAPbI3-based cells showed evidence of two types of stored charge, one of which decays on a 

large timescale and was attributed to mobile ions.87 It was also purported that ions migrating in the 

material could create an internal electric field that screens the applied bias potential, causing 

hysteretic behavior.88  

Such ion migration was proposed to occur via vacancy defects. The hopping rate of iodide 

vacancies (Vi) has been calculated, showing they can diffuse quickly.89 A study by Azpiroz et al. 

reported an exceptionally low activation energy (Ea) of 0.08 eV for Vi migration, and an Ea of 

0.46eV for methylammonium vacancies (VMA) in MAPbI3.
90 In comparison, Pb ions have been 

ruled out as a mobile species due to their comparatively high Ea of 2.31 eV.91 However, widely 

varying activation energies have been obtained for the migration Vi and VMA, utilizing a number 

of theoretical and experimental techniques. Activation energies for Vi migration range from 0.08-
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0.58 eV and values for VMA migration range from 0.46-1.12 eV.89-96 From these studies, ion 

migration via halide vacancies seems likely. However, migration of the MA cation is also viable, 

and a photo-thermal induced resonance microscopy study showed MA cation motion.97 

Additionally, Domanski et al. attributed a slow timescale reversible performance loss to MA cation 

migration based on measurement of current transient dynamics and theoretical modeling.98 In 

another study, the mechanism of ion migration was evaluated theoretically, and it was found that 

an interstitial mechanism is preferred for MA cation migration, while for iodide migration there 

was little energetic difference between an interstitial mechanism and a vacancy-assisted 

mechanism.99 It was also proposed that methylammonium vacancies could provide a path due to 

less steric hindrance.100 

 

Figure 1.4 Ion migration in perovskite solar cells. (Top) Schematic for vacancy-assisted ion migration, 

detailing proposed different timescales for MA cation and halide migration. Reproduced from Ref. 107 with 

permission from The Royal Society of Chemistry. (Bottom) Schematics for possible mechanisms of ion 

migration in OHP materials. Reproduced from Ref. 108 with permission from The Royal Society of 

Chemistry. 
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Iodine ions were shown to move through the perovskite film via an XPS study where 

spectra were taken at different locations on a lateral OHP device both before and after biasing the 

device at 1 V for 30 min. The ratio of I/Pb near each electrode was different after biasing, showing 

an increased presence of I- ions at the positive electrode.101 Studies attempting to clarify the nature 

of ion migration tend to focus on MAPbI3, however, a study of mixed Br/I perovskite shows 

bromine substitution into MAPbI3 suppresses hysteresis, both experimentally, via transient 

photocurrent measurements performed after pre-biasing at different voltages and for different 

durations, and theoretically, via DFT calculations.102 Activation energy of Vi migration increases 

by 30% in simulation of MAPb(Br0.1I0.9)3 compared to that in MAPbI3. It was also calculated that 

iodide vacancy formation energy is 80% greater in the mixed perovskite, resulting in fewer defects. 

In addition to the negative effects detailed below, ion migration is especially important for mixed 

halide perovskites for its potential role in the phase segregation that has been observed under 

illumination.103-105  

In general, better understanding and control of ion migration is crucial as it has multiple 

implications for device performance. Accumulation of ions at interfaces in a device can cause band 

bending,90, 106 which can affect charge transfer to the HTL or ETL. Chemical interaction between 

the halide ion of the perovskite layer and the selective contacts has been proposed as a cause of 

hysteresis107 and gradual deterioration of performance.108 It has also been shown that halide species 

can cross the HTL to degrade the metal electrode.73 These interactions could be exacerbated by 

increased concentration of ions at the interface due to ion migration, thus linking ion migration to 

stability.  

A major strategy for solving the issues related to defects, ion migration, and hysteresis has 

centered around the concept of defect/surface passivation.109 Sites of unbalanced negative charge, 

such as undercoordinated halide ions or cation vacancies (e.g. VMA), can be passivated by Lewis 

acids or additive cations. PCBM can act as a Lewis acid and has been shown to reduce or eliminate 

hysteresis.39, 57, 110, 111, Another Lewis acid, iodopentafluorobenzene, was shown to passivate 

undercoordinated iodide at the OHP surface that act as hole traps at the OHP/HTL interface.112 

Incorporation of Na+ and K+ into the perovskite was suggested to passivate cation vacancies or 

undercoordinated halides at grain boundaries,113, 114 while another study attributed the performance 

improvement from K+ incorporation to its ability to occupy interstitial sites and prevent Frenkel 
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defects.49 Conversely, sites of excess positive charge, such undercoordinated Pb cations or halide 

vacancies, can be passivated by Lewis bases or additive anions. Molecules that feature a lone pair 

of electrons on nitrogen,115 sulfur,116 or oxygen117 functional groups have been successfully 

employed to passivate perovskite surfaces. Cl anions have been shown to increase charge carrier 

lifetimes118 and a theoretical study shows Cl incorporation can heal deep trap states caused by Pb 

or I vacancies.119 The success seen via surface and defect passivation underscores the importance 

of understanding the perovskite surface and its contribution to charge transfer properties at the 

interfaces of devices. 

 

Figure 1.5 Surface and defect passivation in lead halide perovskite materials. Reproduced from Ref. 

117 with permission of The Royal Society of Chemistry. 

The interfaces themselves have also been the subject of extensive investigation,120, 121 with 

the concept of energy level alignment between adjacent layers often discussed in the context of 

charge transfer efficiency. Wang et al. performed UPS measurements on various OHP-HTL 

interfaces and summarized the various types of energy level offsets that are possible, concluding 

that HTLs with a Type I interface, such as spiro-MeOTAD, are preferable as this type of interface 

blocks the opposite charge carriers.122 A study comparing MAPbI3 solar cell performance for 

different HTLs found the best performance with HTLs that had an ionization energy (IE) 

equivalent to that of the perovskite.123 However, there is evidence that, within a certain range, the 

IE of the HTL doesn’t significantly affect solar cell performance parameters.124, 125 For some OHP 



Chapter 1: General Introduction                                                                                                                           Page 14 

 

 

preparation methods, it was found using HTLs with sufficiently large IEs leads to lower Jsc due to 

the formation of a hole extraction barrier.125 Such discrepancies in the literature have been 

attributed to differences in perovskite film preparation methods,121 and it should be noted that 

discrepancies exist between studies on OHP-ETL interfaces as well.126, 127 Additionally, it has been 

shown that different precursor ratios for the OHP film can result in different energy level 

alignments for the C60-MAPbI3 interface.128 Finally, further convolution can occur when using 

organic molecules as charge transport layers, as it has been shown the orientation of an organic 

molecule can alter interfacial properties.129  

1.5 Stability of OHP materials  

The issues discussed in the last section are also related to the stability of perovskite 

materials, which constitutes a major hurdle towards commercialization of OHP-based technologies. 

OHP-based solar cells are known to be sensitive to environmental factors including moisture, 

oxygen, high temperature, and UV radiation. Zhou et al. compared devices stored in dry air or 

under nitrogen with those stored in ambient air. After 24 hours of storage, the dry or nitrogen 

stored samples retained 80% of their PCE, whereas ambient air samples only retained 20%, 

highlighting the need for more robust materials and device architectures.130  

Improvement of device stability requires a thorough understanding of what contributes to 

degradation of OHPs. Degradation mechanisms involve precursor (PbX2 and MAX) formation in 

the film, which can be triggered by a number of factors, including high temperature and moisture. 

It has been proposed that in the presence of moisture, aqueous MAI can dissociate into 

methylamine and hydrogen iodide (HI), which is made favorable by the evaporation of 

methylamine gas and the breakdown of HI upon exposure to O2 and UV radiation.131, 132 

Additionally, both monohydrate and dihydrate complexes form in the perovskite film upon 

exposure to moisture, which can lead to precursor formation and the degradation mechanism 

mentioned above. The hydrate formation is reversible for low humidity, but there exists a threshold 

humidity level beyond which the hydration becomes permanent.133, 134 

Oxygen can also cause degradation of the perovskite, and multiple pathways have been 

suggested. For instance, ambient O2 can react with oxygen vacancies in TiO2 to form a superoxide 

radical (O2
), which can cause degradation.135 Light, especially UV irradiation, has also been 
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identified as a cause of degradation, and it has been suggested that perovskite may decompose 

differently in light and dark.136 A combination of light and oxygen was shown to degrade OHP-

based solar cells quickly,  and evidence showing degradation in the absence of light but with 

applied bias implies that oxygen interacting with excited electrons to form O2
 is the initial 

degradation step.137 Additionally, oxygen infiltration into the perovskite bulk was shown to be 

enabled and enhanced by progressively stronger irradiation with light. Mixing FA/MA cations was 

able to suppress this phenomenon, providing additional insight into the superior stability reported 

for mixed cation formulations.137 Also, the UV range of the solar spectrum can provide additional 

complications, triggering the well-known oxidative photocatalytic properties of TiO2 leading to 

degradation at the ETL/OHP interface.138 

Improvements in stability have been shown by using mixed halide and mixed cations 

formulations. Incorporation of Br into the X site has been shown to improve moisture stability,139 

while FA incorporation into the A site has been shown to improve thermal stability.44  A pair  of 

studies led by Michael Saliba show stable performance from perovskites with a small fraction of 

Cs or Rb added.46, 48 However, the stability tests for these studies were done in nitrogen atmosphere. 

Other studies tested stability in humid atmosphere and found that perovskite formulations 

containing Rb are not as moisture stable as those utilizing Cs or K cations.140, 141 A recent study 

utilizing a sodium fluoride (NaF) additive shows significant improvements over reference 

CsMAFA triple cation perovskite, retaining 90% of its original PCE after 1000h.142 Another 

strategy for improving stability consists of the introduction of much larger organic cations to form 

mixed-dimensional 2D/3D perovskite materials. The increased hydrophobicity of the long carbon 

chain of these cations confers improved device stability, as evidenced by an impressive stability 

test maintaining 12% PCE for over 10,000h under illumination and ambient conditions.143 Use of 

tetraammonium zinc phthalocyanine to form 2D perovskite at grain boundaries significantly 

improved moisture and heat stability.144 Judicious choice of HTL/ETL can also improve stability. 

For instance, utilizing more thermally resilient HTLs can increase stability,145 as can engineering 

increased hydrophobicity146 or lower UV photocatalytic activity147  in the ETL.  

Overall, such efforts have led to multiple groups reporting devices exceeding 1000h of 

stability under constant illumination for high efficiency (>20% PCE) devices.142, 147-149 Although 
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OHP cells can now last on the order of thousands of hours, much work is still needed to approach 

the stability of Si-based cells currently on the market.  

1.6 Scanning Tunneling Microscopy (STM) on OHPs 

 The device-related background discussed in the previous sections provides important 

context for the work in this thesis, but a detailed summary of initial scanning tunneling microscopy 

(STM) studies on perovskite is also important for understanding the results discussed in later 

chapters. Ohmann et al. published the first real-space, atomic resolution images of a OHP surface, 

employing STM imaging on in situ cleaved single crystal MAPbBr3.
150 This was followed quickly 

by an STM study from She et al. detailing the surface of MAPbI3 thin films.151 Both studies found 

similar results, with the surface reconstructions observed on MAPbBr3 closely resembling those 

observed on MAPbI3. Both surfaces are terminated with an MA-X containing layer, rather than a 

Pb-X containing layer. The two different reconstructions were found to originate from the relative 

orientation of the MA cations in the perovskite lattice. The “zig-zag” reconstruction occurs when 

the MA cations are oriented perpendicular to one another (Fig. 1.6a and b), while the “paired” 

reconstruction occurs when the MA cations are oriented anti-parallel to each other (Fig. 1.6c and 

d). The pairing of the halide ions occurs due to electrostatic attraction to the partial positive charge 

at the nitrogen end of the MA cation’s dipole. Conversely, there is a larger spacing between 

adjacent pairs of Br anions due to interaction with the partial negative charge on the carbon end of 

the MA cation. Density functional theory (DFT) calculations found that the “paired” reconstruction 

was 0.51 eV lower in energy per unit cell than the “zig-zag” domain.150 It is important to note that 

even though MA+ is present in the surface layer, it is rarely resolved in STM images because the 

density of states (DOS) of the MA cation does not extend into the vacuum as much as the DOS of 

the halide ions.150  
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Figure 1.6 Surface reconstructions of MAPbBr3. STM images of the “zig-zag” (a) and “paired” (c) 

reconstructions of the MAPbBr3 surface and their corresponding simulated STM images calculated by DFT 

(b,d respectively). Br anions appear as bright protrusions. Color code for overlay in (b,d): N (blue), C (gray), 

H (white), Br (brown). Reprinted in part with permission from Ref. 2 under the ACS AuthorChoice Usage 

Agreement. Copyright 2015, American Chemical Society. 

Other STM studies have looked at precursor depositions and the MAPbI3 growth 

process,152 and complex patterns were observed for a possible monolayer of MAPbI3 on 

Au(111).153 A particularly interesting study by Hsu et al. observed a drastically different MAPbBr3 

surface structure when the sample was illuminated.154 This was attributed to a photodriven 

rearrangement of the dipoles of the MA cations, and resulted in the creation of one-dimensional 

potential wells that could help explain the long carrier lifetimes in OHPs. This study also reports 

imaging a Pb-Br terminated surface, whereas previous studies have only observed MA-Br 

terminated surfaces. The number of STM studies is still severely limited, but this technique can 
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provide rich information about perovskite surfaces, which, as discussed in Sections 2.3 and 2.4, 

play a key role in device performance and stability.  

1.7 Overview of Copper Pththalocyanine (CuPc) 

 Chapter 5 will discuss the device relevant interface between MAPbX3 perovskites and 

CuPc, so here a brief description of the CuPc molecule, its appearance in STM, and its polymorphic 

nature is provided. CuPc is widely used as a pigmentation molecule in industry, and is also of 

fundamental interest for probing unique spin properties.155 In the context of OHP-based solar cells, 

CuPc and its derivatives are utilized as HTLs.60, 63, 66, 156 The CuPc molecule itself consists of a Cu 

atom sitting at the middle of an organic phthalocyanine ring, which constitutes a conjugated π-

orbital system enabling facile charge transport. This conjugated system is made up of four 

isoindole groups (i.e. a fused benzo-pyrrole group) connected by nitrogen atoms. CuPc has been 

widely studied by STM, including studies on metal-molecule contacts155 and organic-organic 

heterojunctions.157 This makes CuPc a suitable choice as an entry point for studying a perovskite-

HTL interface via STM. The appearance of CuPc can vary significantly depending on the 

underlying substrate and the imaging parameters chosen. CuPc often appears as four-lobed cross 

shape (Figs. 1.7b,d) resembling its geometric shape, but it is also possible to image molecular 

orbitals with the right imaging parameters and a relatively weak interaction between CuPc and the 

substrate (Figs. 1.7a,c). For higher coverages, self-assembled (SA) layers form, with a variety of 

patterns and dimensions observed in the literature,158-160 two of which are depicted below (Figs. 

1.7d,e). 
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Figure 1.7 STM images of CuPc molecules and self-assembled (SA) layers. a-c) STM images of an 

individual CuPc molecule in its HOMO state, in-gap state, and LUMO state, respectively. Adapted with 

permission from Ref. 163. Copyright 2013 American Chemical Society. d) First layer of CuPc on Bi(111), 

showing a flat-lying orientation. e) Second layer of CuPc on Bi(111), showing an upright orientation. Figs. 

d and e adapted from Ref. 166 under a Creative Commons Attribution 4.0 license. 

 The polymorphic nature of CuPc is also worth covering as a primer for some of the 

discussion in Chapter 5. The exact number of distinct polymorphs is somewhat unclear, with 

differing accounts in the literature.161, 162 However, there are only intermolecular stacking models 

in the literature for two polymorphs (Fig. 1.8),163 the metastable alpha phase (α-CuPc) and the 

thermodynamically stable beta phase (β-CuPc). Each polymorph has a distinct “stacking angle”, 

which is depicted below as the angle between the normal of the molecular plane of the CuPc 

molecule and the macroscopic direction of one row of CuPc molecules (b-axis, Fig. 1.8). However, 

for easier analysis and discussion of STM images in Chapter 5, I will be redefining the stacking 

angle as angle between the b-axis and the CuPc molecular plane (rather than its normal). Using 

this definition and the values in Figure 1.8, stacking angles of 63.5° and 44.2° are obtained for α-

CuPc and β-CuPc, respectively. It is also important to note there are different intermolecular 

spacings along the b-axis for these two polymorphs. Finally, β-CuPc is shown with alternating 

molecular orientation, while for α-CuPc the CuPc molecules are shown as all parallel. 
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Figure 1.8 Stacking arrangements of α-CuPc and β-CuPc. Schematics showing the intermolecular 

stacking of CuPc molecules in the α-CuPc (a) and β-CuPc (b) polymorphs. Reproduced from Ref. 169. 

Copyright 1978 Oil & Colour Chemists Association. 
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Chapter 2: Instrumentation and Methods 
2.1 Ultra-high vacuum (UHV) system 

 In this thesis, unless otherwise stated, an ultra-high vacuum (UHV) system was utilized for 

sample preparation and analysis in order to obtain atomic resolution images of the pristine lead 

halide perovskite surface. A combination of turbo molecular pumps, ion pumps, and titanium 

sublimation pumps were used to achieve a base pressure in the range of 10-10 to 10-9 torr. A turbo 

molecular pump (backed by a roughing pump) was used to pump down the chambers from 

atmospheric pressure. In order to obtain a UHV environment, the chamber was heated to 100-

120°C for at least 48 hours while the pump ran. After this bake out procedure, UHV pressures 

were achieved. In order to reduce vibrations during STM image acquisition, pumping was switched 

from the turbo pump to an ionic pump. Titanium sublimation pumps were used as needed to 

recover a low base pressure, especially after deposition trials, which unavoidably increased 

pressure in the system by a nominal amount. Maintaining a UHV environment was important 

because exposure of a sample to atmospheric pressure (760 torr) results in adsorption of 

contaminants from ambient air that can cover the surface of interest and complicate the acquisition 

of atomic resolution images. The experimental setup used in this thesis has sample preparation 

chambers, a scanning tunneling microscope (STM), and a photoelectron spectroscope (PES) 

connected in the same UHV system (Fig. 2.1). This allowed for samples to be prepared and 

subsequently characterized by multiple techniques without exposing the sample to contamination 

at higher pressures.  
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Figure 2.1 UHV System Overview. a) Photograph of the UHV system used in this thesis. b) Diagram 

showing the layout of the various sample preparation and analysis chambers. All chambers are connected 

in the same UHV system. 

2.2 Perovskite Sample Preparation  

Two different methods were used for preparing perovskite samples for STM imaging. One 

method utilized single crystals, while the other involved creating thin-films. Single crystal samples 

were grown using a solvent exchange method previously reported in the literature.164 A vial 

containing an equimolar solution of lead bromide (PbBr2) and methylammonium bromide (MABr) 

in dimethylformamide was placed inside a larger vial filled ⅓ to ½ full with isopropyl alcohol and 

sealed with paraffin film. After 2-3 days of storage at ambient temperature, methylammonium lead 

bromide (MAPbBr3) crystals of a few mm in dimension were formed. The grown crystal was 

carefully carved into an L-shape or T-shape, loaded onto an STM sample plate, and fixed in place 

with a metal top plate that had a hole cut into it to allow part of the crystal sample to protrude. The 

sample was loaded into the UHV system and the protruding crystal was physically cleaved with a 

scalpel in situ, producing a pristine surface for characterization.150  

For ultra-thin film deposition, Knudsen cell (K-cell) evaporators attached to the UHV 

sample preparation chamber were used. Before attachment, these are loaded with a crucible 

containing perovskite precursor materials, such as PbX2 or MAX, where X= Br, I or Cl. A 
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thermocouple near the crucible was used to monitor the temperature and a water cooling 

feedthrough in the K-cell was used to prevent overheating. Precursor materials were degassed by 

heating them to their respective evaporation temperatures prior to use in any perovskite film 

depositions. Perovskite thin films were deposited onto Au(111) single crystal substrates, which 

were cleaned in UHV by 3-4 cycles of either Ar+ or Ne+ ion sputtering followed by annealing at 

773 K for 5-10 min. The effectiveness of this cleaning protocol was checked via XPS survey scan 

showing no contamination peaks and STM imaging showing the typical herringbone 

reconstruction of the clean Au(111) surface. The cleaned Au(111) substrate was stored in an 

intersection chamber in the UHV system while the precursor materials were heating. 

Approximately 30 min before deposition, the sample stage was cooled to 130 K, using a feed-

through tube and N2 gas that had been cooled by running it through a copper coil submerged in 

liquid nitrogen. Once the stage was cooled and the precursor molecules had thermalized at the 

desired deposition temperature for at least 5min, the clean Au(111) substrate was transferred from 

the intersection chamber to the cooled stage. Cooling the stage was important for increasing the 

sticking coefficient of the MAX molecule. After the sample was in the correct position, the shutters 

on the precursor molecule K-cells were opened simultaneously, starting the co-deposition. After 

the desired deposition time, typically 3-10 minutes, the K-cell shutters were closed and the sample 

was transferred back to the intersection chamber. The sample was allowed to anneal at room 

temperature for at least 3h before transferring it to the cooled STM stage for imaging. Allowing 

the film to warm up to room temperature was found to enable the two precursor molecules to move 

around and react thoroughly, aiding in perovskite film formation. During the deposition, conditions 

were monitored via quartz crystal microbalance (QCM). Due to the non-directional evaporation of 

the MAX precursor compounds16 and resultant cross-talk in QCM signals, absolute flux during the 

deposition and absolute thickness values for the resultant perovskite films were not obtainable. 

Nonetheless, these values were used to monitor consistency of the deposition protocol. QCM 

readings were also utilized during initial determination of appropriate heating parameters, typically 

targeting a low flux of 0.01-0.02Å/s for PbX2 precursors.  

The UHV system used was not equipped with conventional bulk characterization 

techniques such as x-ray diffraction (XRD). The ultrathin nature of the film samples not only 

complicates measuring an appreciable signal with XRD, but also leads to quick degradation once 

removed from the UHV chamber. In lieu of measuring the ultrathin film samples, XRD was 
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performed on an MAPbBr3 crystal sample ground into a fine powder. The obtained XRD spectrum 

(Fig. 2.2) shows peak positions consistent with reports in the literature.165, 166 STM images show 

the same surfaces reconstructions for the MAPbBr3 crystal samples and for the ultrathin films,150, 

167, 168 leading to the conclusion that the ultrathin films are also indeed MAPbBr3. 

 

Figure 2.2 Powder XRD spectrum of the MAPbBr3 crystal sample. All peaks present in the spectrum 

can be assigned to crystal directions in MAPbBr3. Only select peaks have been labeled to maintain figure 

clarity. 

For Chapter 3, a combination of single crystal and thin-film samples were used. For 

Chapters 4-6, only thin-film samples were used. Thin-films proved to be more reliable to image, 

as the underlying Au(111) substrate allowed for better conduction of tunneling electrons. Also, the 

tip was easier to recover after a tip crash on the thin film as opposed to the single crystal sample. 

2.3 Scanning Tunneling Microscopy (STM) 

STM was first developed in 1982 by Binnig and Rohrer.169 For this technique, a bias 

voltage is applied between an atomically sharp metallic tip and the sample. When the tip is brought 

within a few angstroms of the sample, electrons are able to tunnel through the vacuum barrier (Fig. 

2.3). The tunneling current is exponentially dependent on the tip-sample distance (i.e. the barrier 

width), and this current is used to obtain topographical and electronic information with subatomic 

resolution. Such a resolution is made possible because (1) the tip is atomically sharp and (2) the 

tunneling current is exponentially dependent on the tip-sample distance. This enables the 
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visualization in real space of atomic resolution details regarding intrinsic defects and structural 

changes at the interface.  

 

Figure 2.3 Diagram of STM measurement of a perovskite film. 

The STM setup used was manufactured by Omicron, utilizing the MATRIX software 

package for image acquisition. Cut Pt/Ir tips purchased from Bruker were pinched into a 

proprietary tip holder, which could then be mounted onto the piezoelectric scanner of the STM. 

Piezoelectric materials expand or contract when a voltage is applied to them. Multiple electrodes 

attached to the piezoelectric scanner allow for sub-nanometer movement in three dimensions. 

Imaging for this thesis was done in constant current mode, in which a feedback loop controls the 

voltage applied to piezoelectric scanner in the z-direction. This adjusts the position of the tip to 

maintain a constant tunneling current. The tip position is recorded and creates an image where 

changes in contrast correspond to changes in charge density. Control of the piezoelectric scanner 

in the x and y directions is done through the MATRIX software. The STM was operated under 

UHV (10-10 torr) conditions. Imaging was typically performed at low temperatures, using either 

liquid helium (4.5 K) or liquid nitrogen (77 K) for cooling. In Chapter 3 a Lakeshore 335 

Temperature Controller connected to the STM stage was used for counter heating to achieve 

temperatures ranging from 4.5 K to 290 K.  
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2.4 Photoelectron Spectroscopy (PES) 

PES is a characterization technique based on the photoelectric effect, first observed by 

Heinrich Hertz in 1887 and later explained theoretically by Albert Einstein in 1905. In this 

technique, the sample is bombarded with photons of a given energy. Electrons in the sample 

material absorb an incident photon’s energy and a fraction of them escape the surface of the 

material with some amount of kinetic energy (Fig. 2.4). Electrons that escape the material are 

collected by a detector after passing through a hemispherical analyzer which is able to select for 

electrons of a given kinetic energy via electrostatic input lenses and by applying a given voltage 

between two hemispherical surfaces in the analyzer. Electrons that escape the sample material 

without any collisions make up the main photoemission peaks. Other electrons experience inelastic 

collisions with other atoms in the material before they escape. These so-called secondary electrons 

lose a significant portion of their initial kinetic energy and appear as a background signal in PES 

spectra.  

In this thesis, both X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS, 

respectively) are utilized. PES techniques are surface sensitive and the exact probing depth 

depends on the radiation source used and the material being measured. Probing depth can be 

estimated according to a universal curve of the inelastic mean free path (λIMFP) vs. electron energy, 

where probing depth is taken to be 3λIMFP.  For XPS, the probing depth can reach up to 

approximately 10 nm, while UPS is even more surface sensitive, with a typical probing depth of 

1-2 nm. 

Depending on the energy of the incident radiation, different energy levels of the material 

can be investigated. XPS can probe the core levels of a material, providing information about the 

identities, relative ratios, and chemical states of different elements present in a sample. An 

Omicron system producing magnesium Kα X-rays (1253 eV) was used for all XPS measurements. 

In this thesis, changes in the chemical states seen in XPS over time were used as an indicator of 

material degradation, and thus a measure of stability. Additionally, during optimization of co-

evaporation parameters, chemical ratios from XPS were used as an initial check of sample quality. 

In the literature, XPS has been utilized to examine chemical composition and electronic structure 

of OHP materials. MAPbI3 film formation,170 the dependence of the OHP electronic structure on 
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the halide ion,171 ion migration,101 and the electronic structure of perovskite-ETL interfaces172 have 

all been investigated with XPS. 

 

 

Figure 2.4 Operating principle of PES. X-ray (UV) radiation extracts an electron from the core level 

(valence band) of the material. The kinetic energy of the ejected electron is measured by a detector and 

can be used to calculate the electron’s binding energy. 

UPS was primarily used for valence band analysis, and also for determination of the 

material work function by analyzing the cutoff of the secondary electron background signal. A 

helium discharge lamp providing radiation of 21.21 eV was used for all UPS measurements. 

Understanding changes in the valence band and work function are important for energy level 

matching at the interfaces within the solar cell, which determines charge transfer efficiency to the 

external circuit.  

2.5 Note on theoretical support from collaborators 

Theoretical support was provided by collaborating theory groups that utilize density 

functional theory (DFT) calculations to predict crystal structures and simulate STM images. DFT 
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is a computational method widely used in the fields of materials science, physics and chemistry to 

calculate the electronic structure of many-body systems. As suggested by the name, DFT utilizes 

functionals of the electron density of the system to identify the system’s ground state. DFT 

approaches many-body problems by treating the system as many one-body problems. For example, 

DFT treats a system with x electrons as x different systems with one electron each. Various 

approaches exist for approximating the interaction (i.e., the exchange and correlation) of these one-

electron systems, and improving these approximations is a topic of current research. Common 

approximation methods include the local density approximation and the generalized gradient 

approximation. DFT calculations have been used previously to provide theoretical support that 

aids in the interpretation of results from STM studies on perovskite,150, 151 and are utilized in a 

similar fashion in this thesis. Details of the theoretical methods used by the collaborating groups 

will not be discussed here. However, details can be found in the respective publications. 
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Chapter 3: Defects at the MAPbBr3 

surface and their dynamics168
 

3.1 Introduction 

 Based on the literature reviewed in sections 2.3 and 2.4, the importance of defects, ionic 

dynamics within the perovskite film, and interfacial properties is clear. Defects are often discussed 

in the context of bulk defect densities, which have been shown to have important relevance to 

device performance 111, 173, 174 and stability.175 However, taking into account their role in interfacial 

properties, studies focusing specifically on surface defects are also of great importance. This can 

be seen by the surge of research into defect and surface passivation engineering as a strategy for 

improving performance.176-180 Different types of defects have been proposed to co-exist in OHPs, 

such as (i) cation-vacancies (e.g., Cs+, MA+, FA+, etc.),179 (ii) halide-vacancies (e.g., I and Br) 

leading to exposure of under-coordinated Pb2+ ions,177-180 (iii) metallic lead (Pb0),176 (iv) halide-

excess (e.g., I2)
181, 182 and (v) anti-site PbI3

 defects.110 

Traps can be caused by defects in the crystal lattice, at the perovskite grain boundaries, 

and/or at the interface between the perovskite layer and adjacent layers,183 thus understanding the 

nature of these defects is of great importance for further device optimization and stability 

improvement.83, 175 Understanding the behavior and effect of surface defects is especially 

important because the perovskite surface comprises half of the interface in a device. Additionally, 

density functional theory (DFT) results have shown that Frenkel defects (e.g., Pb2+, I, Br, MA+) 

lead to both deep and shallow trap states in OHPs,92, 184-186 while Schottky pair defects (e.g., PbX2 

vacancies and MAX vacancies) do not generate trap states within the band gap.187 Intrinsic vacancy 

defects have also been suggested to provide pathways for both cations and anions to move within 

OHPs.91, 97, 98, 188 This ion migration phenomenon has been implicated as a possible cause for 

material degradation and current-voltage hysteresis.85, 189 Although evidence supporting ion 

migration in perovskite films and devices has been reported,101, 190-192 the exact chemical nature of 

the defects, the mechanism of ion migration, and how this motion affects the local structure, are 

still unclear.  
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Surface defects are of particular interest since they may have a direct impact on charge 

transfer properties at the interface between the perovskite film and adjacent layers in a device, 

typically a charge selective layer or an electrode. Interfaces are thought to be a major site of charge 

recombination,193 and understanding how their structure affects charge transfer is essential for 

establishing rational interface engineering strategies. As described in Section 2.5, STM has been 

demonstrated to be an ideal tool to study the atomic structure and stability of the surface of 

OHPs,150, 151, 154 and it is also a suitable tool for studying dynamics at the atomic scale.194 STM 

studies have resolved defects in the perovskite crystal lattice for both MAPbBr3 and MAPbI3,
150, 

151 and theoretical studies have been performed to address the migration of the intrinsic defects90 

and to simulate their appearance in STM.90, 195 In particular, a theoretical study showed that for 

MAPbBr3 the defects visualized by STM are likely MABr or Br vacancies, and that the electronic 

states associated with them are highly localized around the defect sites.195 However, defect 

dynamics in OHPs has yet to be explored with STM. Experimental support for ion migration has 

been shown at the device level, but atomic scale verification of this phenomenon and confirmation 

of the mechanism at the origin of it is lacking. In this chapter, the nature and dynamics of surface 

defects in the perovskite crystal lattice, as well as their impact on local electronic properties, are 

explored via STM experiments and DFT calculations. Several defect species at the atomic scale 

are observed, and the first atomic scale observation of ionic motion in OHPs is presented. 

3.2 Methods 

 Both single crystal and thin-film perovskite samples were used for this study, and similar 

results were obtained for both sample types. As described in detail in Section 2.2, the single 

crystals samples were grown by the solvent-exchange method and cleaved in situ whereas thin 

film samples were prepared by precursor co-deposition onto an Au(111) single crystal. MAPbBr3 

thin films were obtained by co-evaporation of MABr and PbBr2 species at evaporation 

temperatures of 361 K and 498 K, respectively, for 10 min. The STM measurements were 

performed at a range of temperatures (4.6 − 180 K), which were achieved by cooling with either 

liquid nitrogen or liquid helium followed by counter heating of the STM sample stage controlled 

by a Lakeshore 335 Temperature Controller. Cut Pt/Ir tips were used to acquire the STM images. 

The bias voltage was applied to the sample. It has been reported that high-energy electrons from 

the tip can induce surface degradation under UHV conditions in single crystal MAPbBr3 during 
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conductive atomic force microscopy imaging.196 In order to confirm STM imaging did not induce 

generation and diffusion of atomic defects and surface degradation during the imaging process, we 

scanned the same area consecutively for 117 times, and no surface degradation or defect generation 

was observed. Additionally, the effect of the tip on diffusion events has been previously shown to 

be negligible when using the “movie” technique of taking consecutive images of the same area.197 

 DFT calculations were performed using the Vienna ab initio simulation package code.198, 

199 The projector augmented wave pseudopotential200, 201 was used to describe the core electrons, 

and a plane wave basis set with a kinetic energy cutoff of 400 eV was used to expand the wave 

functions. Electronic exchange and correlation was described within the framework of generalized 

gradient approximation of Perdew, Burke, and Ernzernhof functionals.202 The MAPbBr3 (010) 

surface was represented using a periodic slab based on the space group Pnma containing four 

atomic layers and a vacuum thickness of 14 Å. Specifically, two supercells were used; one is a 2 

× 2 supercell used for the vacancy calculations, while the other is a 3 × 1 supercell for the Br pair 

orientation shift calculations. Respectively, Brillouin zone sampling was done using 3 × 1 × 3 and 

6 × 1 × 2 Monkhorst−Pack203 grids. The bottom layer of atoms was kept fixed, while the other 

atoms were allowed to relax. All structures were fully relaxed until the force on each atom was 

<0.01 eV/Å. Transition states for MABr migration along the surface were located by climbing 

image nudged elastic band method204 using three images with a convergence of 0.05 eV/Å for the 

force components both along and perpendicular to the tangent of the reaction path. 

3.3 Defects at the MAPbBr3 surface 

 The work by Ohmann et al. first showed the surface reconstruction of MAPbBr3 originating 

from the relative position and orientations of the dipole of neighboring MA cations.150 Here, 

similar STM images of the pristine surface (Fig. 3.1a) are obtained on MAPbBr3 samples prepared 

by both the single crystal cleavage method and the co-evaporation method. Reiterating from 

Section 2.5, Br ions are seen as bright protrusions in STM images, and the electrostatic interaction 

of the partially positive nitrogen atoms (blue atoms, Fig. 3.1a) with two neighboring Br anions 

causes “pairing” of the Br. The Br pairs have two possible orientations at the (010) surface, 

which are orthogonal to each other. 
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Defects can occur on the paired reconstruction surface, and our STM investigation revealed 

multiple types of intrinsic defects at the atomic scale. The first defect type is an unpaired Br anion 

(gray dot in Fig. 3.1b), which occurs when there is a pair orientation mismatch in the same row 

(blue and green rectangles in Fig. 3.1b). The orientation mismatch results in a single Br- that has 

bromide neighbors in each adjacent lattice position, but is paired with none of them. In most cases, 

the unpaired Br defects are isolated from one another. However, it was also observed that two 

adjacent unpaired Br defects can occur when there is a vacancy nearby (Fig. 3.1c). These 

vacancies constitute the second type of defect observed, and they appear as a dark depression in 

STM images (Fig. 3.1d). Here, multiple types of vacancies, including single, double, and triple 

defects (Fig. 3.1d-f, respectively) were observed. A recent DFT study provided theoretical 

evidence showing that these depressions in STM images are likely either a charged Br vacancy 

or a neutral MABr vacancy.195  
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Figure 3.1 Intrinsic defects on the surface of MAPbBr3. STM images of (a) the pristine MAPbBr3 surface, 

(b) an unpaired Br- (gray dot) at the point where two Br pair orientations (green and blue rectangles) meet, 

(c) two adjacent unpaired Br- (two gray dots), located near a vacancy. d-f) STM images of single, double 

and triple vacancy defects, respectively. g-i) Top view of the model slab used for DFT defect formation 

energy calculations for the single, double, and triple vacancy defect cases, respectively. Solid green and 

red circles denote Br- and MA+ vacancies, respectively. Dashed black circle in (g) highlights a rotated MA+ 

molecule. Image sizes: a) 1.61.6 nm2 b) 2.02.0 nm2 c) 1.81.8 nm2 d) 1.81.8 nm2 e)1.71.7 nm2 

f)1.61.6 nm2. Imaging parameters: sample bias a-c,e,f) V = -9.0 V d) V = -3.0V ; tunneling current a-c,e,f) 

I = 20 pA d) I = 100pA. Sample Type: a-c,e,f) single crystal d) thin film. Color code: N (blue), C (gray), H 

(white), Br (brown). All scale bars are 5.0Å.  
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To further characterize the above observed defects, energies of formation were calculated 

by DFT calculations. The formation energies for MABr and Br vacancies are, respectively, 

calculated by 

Eform(VMABr) = EMABr + EVMABr
 − EMAPbBr3

  

and  

Eform(VBr) = EBr + EVBr
 − EMAPbBr3

  

where Eform is the formation energy, EMABr and EBr are the electronic energies of MABr and Br 

species, respectively, EVMABr
 and EVBr

 are the electronic energies of the defective MAPbBr3 

surface with MABr and Br vacancies, respectively, and EMAPbBr3
 is the electronic energy of the 

pristine MAPbBr3 surface. A formation energy of 1.94 eV was obtained for a single MABr vacancy, 

compared to 2.48 eV for a Br vacancy, suggesting a preference for the formation of MABr 

vacancies. This trend is consistent with previous calculations in the literature.195 Comparison 

calculations were performed with and without van der Waals forces taken into account, and the 

same trend was obtained. Thus, subsequent calculations were performed without van der Waals 

corrections to conserve computational resources. Additionally, hereafter vacancies are treated as 

MABr vacancies since those had a lower energy of formation (1.94eV). We do not, however, use 

this as a basis to rule out the possibility of charged vacancies in perovskite films. Rather, we focus 

on the neutral defect due to computational concerns related to the influence of image charge in the 

case of a charged vacancy. For a single MABr vacancy, calculations show that there is a 90º 

rotation of the MA cation adjacent to the defect (Fig. 1g, dotted black circle), with the positive 

nitrogen end of the dipole near the unpaired Br. The formation energies for double and triple 

MABr vacancies were also calculated and found to be 3.49 eV and 5.26 eV, respectively.  

As mentioned earlier, the MA cation is typically not resolved in STM images, making an 

experimental distinction between MABr and Br vacancies challenging. However, with fortuitous 

tip conditions, it is possible to resolve the MA cation on rare occasion, as previously reported.150 

During this study, there was one instance of such favorable tip conditions. Figure 3.2a shows a 

larger area image in which MA cations can be seen as smaller protrusions that occur just above 

and just below the middle of a Br pair (red dots, Fig 3.2a), which agrees well with reported 

simulated STM images (Fig 3.2b).150 As a guide for the eye, one repeating motif has an overlay 

where the Br and MA+ protrusions are marked with black and green circles, respectively. A zoom-
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in on a vacancy defect is shown in Figure 3.2c. This vacancy defect differs from the circular 

depressions seen in other STM images. Here the vacancy seems to be a large and small depression 

conjoined, taking a “light bulb” shape. The circles on Figure 3.2c highlight that the repeated motif 

near the vacancy is missing one of its smaller MA+ protrusions. This “light-bulb” shaped 

depression matches well with previously reported simulated STM images for an MABr vacancy 

(Fig. 3.2d).195 While this image does not allow for a definitive assignment of the vacancy identity, 

it does provide some measure of experimental support for the DFT-based assignment of an MABr 

vacancy. 

 

Figure 3.2 MA-resolved STM images. STM image (a) and DFT simulated STM image (b) of MAPbBr3 

surface with MA+ resolved. Fig. b adapted with permission from Ref. 2 under the ACS AuthorChoice 

Usage Agreement. Copyright 2015, American Chemical Society. Zoomed-in STM image (c) and DFT 

simulated STM image (d) of an MABr vacancy. Fig. d adapted with permission from Ref. 193. Copyright 

2017, American Chemical Society. Br and MA+ labeled with black and green circles, respectively. White 

dashed lines denote shape of MABr vacancy depression. Imaging parameters: (a,c) V=8.3 V; I=600 pA. 

Image size: (a) 3.83.8 nm2; (c) 2.52.5 nm2. 
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3.4 Reorientation of Br pairs 

Having characterized the surface defects observed on the MAPbBr3 surface in the previous 

section, the next two sections will focus on dynamic events involving surface defects. The first 

manifestation of dynamics at the perovskite surface consists of Br pair re-orientation, which was 

observed in consecutive STM images of the same area. In the (010) surface reconstruction, Br 

pairs are oriented along either the [101] or [10-1] axes, which are orthogonal to each other (green 

and blue rectangles in Figs. 3.3a and b). Strikingly, Br pairs could dissociate and re-associate with 

neighboring Br ions, thus forming pairs rotated 90 (blue rectangles in Fig. 3.3b) compared to 

their original orientation (green rectangles in Fig. 3.3b). In the case shown in Fig. 3.3, the re-

orientation occurs within a single “orientation domain” (i.e., all rows start with the same 

orientation). Br pair reorientation can also occur at the edge of two orientation domains.  

A DFT simulation of the Br pair reorientation process shows that a rotation of the MA 

molecules is accompanied by a separation of Br- pairs (Fig. 3.3d). Further rotation in the same 

direction then results in those separated Br creating a pair with their other neighbor. The initial 

and final states were found to have the same energy, indicating that there is no preferred orientation 

for the Br pairs at the perovskite surface. This result is consistent with our experimental 

observation where the same row may re-orient but then later return to its original orientation. In 

addition to a rotation within an orientation domain as shown in Fig. 3.3, re-orientation events were 

observed occurring along an orientation domain boundary (i.e., one of the rows adjacent to the re-

orienting row is of the opposite orientation). DFT simulations found Br pair re-orientation has a 

lower transition state energy barrier of 0.13 eV when it occurs at an orientation domain boundary, 

compared to 0.31 eV when it occurs within a single orientation domain. The lower energy barrier 

means that re-orientation is more likely to occur at the boundary of two orientation domains.  
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Figure 3.3 Br pair orientation shift. a,b) Consecutive STM images of single crystal MAPbBr3 showing a 

Br pair orientation shift. The three rows start in the same orientation (a, green rectangles), but the middle 

row undergoes an orientation shift to form pairs rotated 90 (b, blue rectangles) from the original orientation. 

Image size: a-b) 2.3  2.3 nm2. Imaging parameters: a-b) sample bias voltage = –9.0 V; tunneling current 

= 20 pA. c-e) DFT simulations of Br dimer re-orientation showing the initial (c), transition (d) and final states 

(e). The transition state energy is 0.31eV higher than the initial and final states, which were found to have 

the same energy. Color code: N (blue), C (gray), H (white), Br (brown). 

Additionally, from experimental observation, re-orientation cascades tend to start and 

terminate more often near defects. DFT calculations compared the energy of separation of a Br 

pair on a pristine surface versus a surface with a vacancy defect. A lower energy of separation was 

found when the Br pair is near an MABr vacancy, suggesting that the proximity of a vacancy 

facilitates the Br pair separation  (Fig. 3.4).  
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Figure 3.4 Vacancies promote Br- pair separation. Initial and final states for separation of Br- pairs in 

pristine MAPbBr3 surface (top) and when the Br- pair is near an MABr vacancy (bottom). The presence of 

a vacancy lowers the energy of separation by approximately 0.1 eV. 

This calculation result can explain the two adjacent unpaired Br ions close to an MABr 

vacancy in Fig. 3.1c. The calculation shows that the separation of the Br ions is also accompanied 

by a rotation of the MA cation on the defective surface. The MA rotation and Br pair separation 

are also necessary for allowing the Br pair re-orientation event. This suggests that a re-orientation 

event is more energetically favorable when occurring near a vacancy defect. It is worth noting that 

these re-orientations were observed occurring in cascades covering distances on the order of tens 

of nanometers (Fig. 3.5). Thus, it could be possible that defect movement in one area of the 

perovskite surface could cause an orientation shift that then affects a remote area of the film. 
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Figure 3.5 Long-range reorientation cascade of Br- pairs. Consecutive STM images taken at 30K 

showing a reorientation cascade spanning over 10 nm. Imaging parameters: sample bias voltage = -9.0 V, 

tunneling current = 20 pA. Scale bars are 2.0 nm. 

3.5 Vacancy-assisted ion transport 

In addition to Br pair re-orientation, MABr vacancy-assisted ion transport along the 

surface was also imaged. Consecutive STM images (Figs. 3.6a and b) show mobility of the 

vacancies along the perovskite surface. Multiple ion transport paths were identified and DFT 

simulations were performed. Importantly, a substantial difference in energy barrier was found 

depending on the mechanism. To simulate the ion transport process, a sequential mechanism in 

which Br moves first, followed later by MA+, was envisaged by DFT. In the first step, when Br 

moves alone, there is a higher transition energy of 0.91eV and an increase in system energy of 

0.14 eV (Fig. 3.6c-f). This energy increase is likely due to an increase in electrostatic potential 

energy from the creation of isolated charges. In contrast, when a simultaneous transport 

mechanism is considered, where MA+ and Br migrate together, the transition energy barrier is 

lowered to 0.46 eV and there is no increase in the system energy (Fig. 3.6g-j). This finding is 

significant as it suggests that once an MABr vacancy exists at the surface, the MA+ and Br tend 

to diffuse together when moving along the (010) surface layer. This result unambiguously shows 
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that defects migrate not just at the grain boundaries, but also along the perovskite interface with 

other layers in a device. This implies that there is temporal change of local interfaces properties. 

 

Figure 3.6 MABr vacancy-assisted ion transport along the surface of MAPbBr3. (a,b) Consecutive 

STM images showing vacancy defect movement along the surface of an ultrathin film of MAPbBr3 at 180 

K. Models and energy diagrams calculated via DFT of a sequential migration (c−f) and simultaneous 

migration (g−j) of MABr. The sequential migration is simulated by a Br− migration as the first step. Image 

sizes: (a,b) 1.7 × 1.7 nm2. Imaging parameters: (a,b) sample bias voltage = 1.4 V; tunneling current = 50 

pA. Color code: N (blue), C (gray), H (white), Br (brown). Scale bars in (a) and (b) are 5.0 Å. 

Aside from ion transport along the perovskite surface, it was also observed that vacancies 

and ions can move in the z-direction, through the perovskite film. This is significant since such 

ion migration has been suggested as a potential cause of hysteresis and material degradation in the 

device,85, 189 although the mechanism has been unclear. Here, in consecutively recorded STM 

images (Fig. 3.7a and b), a single vacancy defect appears at the surface (i.e., the vacancy assists 

ion transport from the surface to the bulk).  
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Figure 3.7 MABr vacancy-assisted ion transport in the z-direction. Consecutive STM images acquired 

at 77 K on thin film MAPbBr3 showing an MABr vacancy-assisted ion transport from the surface layer (a) to 

the bulk (b). Image sizes: (a,b) 1.8 × 1.8 nm2. Imaging parameters: (a,b) sample bias voltage = −3.0 V, 

tunneling current = 100 pA. 

This observation strongly supports the hypothesis that these vacancies provide a pathway 

for ion migration in perovskite materials. The opposite event was observed as well, wherein a 

single vacancy assists ion transport from the bulk to the surface, which is consistent with device 

level measurement indicating ion migration to be reversible.190,205 Importantly, the fact that the 

surface layer structure changes means that the interface in a device can change as defects appear 

and disappear. Although it is challenging to perform a rigorous determination of ion transport 

event frequency via STM, a rough range of one event per 101-103 seconds can be estimated based 

on the STM image acquisition time and line scan speed. More importantly, these events can occur 

at a much higher frequency at the fabrication and operation temperatures of a device, which are 

significantly higher than the STM imaging temperatures in this work. It should be noted that 

attempts were made to gauge the effect of temperature on these dynamic events. However, imaging 

conditions became progressively more unstable at higher and higher temperatures, and obtaining 

enough images to make a comment on temperature dependence was not feasible. It is worth 

pointing out that the paired reconstruction was seen at temperatures up to 290K (Fig. 3.8), which 

suggests that the perovskite’s surface reconstruction is qualitatively similar in the cubic phase as 

in the low-temperature orthorhombic phase. This is important because MAPbBr3 exists in the cubic 

phase during operation of a solar cell. The similar nature of the surface reconstruction in both 
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orthorhombic and cubic phases means that the phenomena seen in the low temperature 

orthorhombic phase likely also occur in the device relevant cubic phase. 

 

Figure 3.8 MAPbBr3 surface in the cubic phase temperature range. STM image of the surface of an 

MAPbBr3 ultrathin film taken at 290K. The surface exhibits a surface reconstruction qualitatively similar to 

that seen in the low-temperature orthorhombic phase. Imaging parameters: V = 0.69V; I = 700pA. 

Of the dynamic events observed, the surface to bulk movement is of special interest 

because it more closely corresponds to the widely studied but not well understood phenomenon of 

ion migration in perovskite solar cells. One question that remains is the mechanism by which ion 

migration occurs. DFT calculations were performed to identify the possible mechanism of the ion 

transport observed via STM. The calculation considers a cell in which a single MABr vacancy 

defect exists in the bulk layer. Thereafter, a simulation of the transport of the MABr vacancy was 

performed. It was found that it is energetically more favorable by 0.75 eV for the MABr vacancy 

to be in the surface layer than in a bulk layer. Simulations of multiple migration mechanisms were 

tested, and it was found that a sequential mechanism is energetically favored (Figure 3.9a and b). 

In this sequential process, a Br ion moves from the subsurface layer to the bulk layer. This is 

followed by an MA molecule crossing from the surface layer to the bulk layer via the Br vacancy 

left in the subsurface layer. Finally, in the last step of the process, a Br ion travels from the surface 

layer to the subsurface layer. The energy barrier for a multistep process is determined by the 

highest barrier for an individual step. An energy diagram showing the barrier for each step (Fig. 

3.9c) reveals that the highest barrier is 0.55 eV and occurs during the second step, as the MA+ 

crosses through the subsurface layer. For the reversed sequential mechanism that describes the 

MABr vacancy migrating from surface to bulk, 1.09 eV is the overall energy barrier. Simulation 
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of a simultaneous transport mechanism in which MA+ and Br migrate together resulted in an 

energy barrier above 2.3 eV, over quadruple that of the sequential mechanism. The preference for 

the sequential mechanism can be explained by a decrease in steric hindrance. During the first step 

of the sequential mechanism, the Br vacancy formed in the subsurface layer provides a larger gap 

 

Figure 3.9 Sequential migration mechanism. (a) Schematic drawing showing MA+ and Br− movement 

for each step of the mechanism. Empty circles represent vacancies. (b) Crystal structures from DFT 

simulation of the sequential mechanism. Empty circles represent vacancies. (c) Illustration of the energy 

profile for the sequential mechanism showing the energy barrier for each step. The highest energy barrier, 

and thus the barrier for the entire mechanism, is highlighted in red. 

through which the MA+ can cross the atomic layer. Additionally, this mechanism is sterically 

favorable because only the MA+ is crossing the subsurface layer, rather than the larger MABr 

passing through the layer as one unit.  

It bears mentioning that there was no external stimulus (e.g., external bias, light, 

temperature, or chemical gradient) considered in our calculations. Many factors are at play 
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contributing to ion transport in an operating device, and multiple pathways for transport have been 

suggested.206 The sequential mechanism examined here provides one answer to the question of 

how ion transport occurs in perovskite films. Ion migration induced by the built-in electric field of 

devices has been shown to be reversible, and the transport seen here can provide clues about how 

the ions re-establish their original equilibrium distribution after a device is turned off.98, 207 

Specifically, we contrast the z-direction ion transport case, where MA+ and Br move sequentially, 

with the case of along the surface transport, where the MA+ and Br ions were found to move 

simultaneously. Transport along the surface does not require the MA+ ion to pass through the 

sterically constrained PbBr2 subsurface layer, which allows simultaneous movement of MA+ and 

Br to be energetically favorable (Figs. 3.6c−j). Although our calculation describes cases of ion 

transport that involve surface layers, some information regarding transport in the bulk can be 

extracted. The energy profile in Figure 3.9c shows that the highest energy transition state occurs 

when the MA+ crosses through the defective PbBr2 subsurface layer. If we consider a similar model 

but in the bulk of the material, we can also expect a high transition state barrier for ion migration 

along the z-direction, that is, the [010] direction. Although the magnitude of the difference in 

energy barriers between ion migration along the [10 ± 1] and [010] directions may be different for 

the bulk case, it is reasonable to expect migration along the [010] direction will have a higher 

energy barrier, as the hurdle of crossing the PbBr2 layer still exists when we consider the bulk 

scenario. That energy barrier is expected to increase in the case where an MA+ alone is migrating 

and there is no Br vacancy nearby to facilitate the crossing of the PbBr2 layer, making ion migration 

along the [010] direction even less favorable.  

It should be noted that both the thin film and single crystal samples are terminated with the 

(010) plane at the surface.150, 167 In contrast, polycrystalline films used in devices may have 

crystalline grains with orientations that vary from grain to grain,208, 209 which could result in 

different migration energies. The dependence of the migration energy on the direction of migration 

has important consequences for perovskite devices, which are made from polycrystalline films 

with grains of varying orientation.  
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Figure 3.10 Effect of crystal orientation on ion migration. Schematic drawing showing the impact of 

crystal orientation alignment with the built-in electric field in devices. The change in ion migration energy 

barrier could lead to variation in the time needed to achieve steady-state operation and to re-establish dark 

condition equilibrium. 

Specifically, the orientation of the individual grains with respect to the vertical axis of the 

device, along which the photo-induced built-in electric field occurs, will affect paths along which 

ions migrate under illumination and subsequently diffuse back to equilibrium during dark 

conditions (i.e., at night). The paths along different crystal directions will have different migration 

energies, and thus different time constants for achieving steady-state operation and for returning 

back to dark condition equilibrium (Figure 3.10). It has been reported that perovskite solar cells 

have reversible losses under illumination due to cation migration and that a certain recovery time 

in the dark is needed to return to original efficiency.98 This recovery time depends on the energy 

barrier for ions to diffuse back to equilibrium, which would be affected by the distribution of grain 

orientations. Identifying a specific orientation that enables quick device recovery could provide a 

valuable research avenue for creating perovskite solar cells that have an overall higher 

performance and better stability and are well suited to locations with rapidly changing sun 

irradiance.  

3.6 Effect of vacancy defects on interfacial properties 

In addition to the dynamics of intrinsic defect species and the mechanisms of defect-

assisted ion migration, it is also of interest to understand how the surface defects observed in STM 

affect the surface properties of the perovskite, which would in turn affect the interface of the 

perovskite with an adjacent layer in a device. Such interfaces are seen as a key to optimizing device 

performance, as they play an important role in charge transport and recombination. To better 
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understand the effect of these vacancies on the interface, the electronic potential was calculated as 

a function of position along the [010] direction (Fig. 3.11). Significant separation of the potential 

curves occurs around 0 Å, which corresponds to the perovskite surface. This may be due to defect 

energy levels introduced by dangling bonds. The inset of Figure 3.11 shows in detail the area used 

for identifying the vacuum level. A linear fit was used, and the value of this fit at 7.5 Å (middle of 

the vacuum slab) was taken to be the vacuum level. This also determines the work function, which 

is the difference in energy between the Fermi level and the vacuum level. Importantly, a trend was 

identified in which an increasing number of vacancies raised the work function from 5.29 eV (the 

pristine surface case) to 5.45 eV (the triple MABr vacancy case). 

 

Figure 3.11 Surface defect-induced work function modification. Electric potential plotted as a function 

of position relative to the surface. Position of −10 Å corresponds to the bottom of the slab. (Inset) Zoom in 

on the vacuum region to highlight differences in the work function. After linear fitting, the work function was 

taken to be the potential value (relative to the Fermi energy) at a distance of 7.5 Å (gray dashed line). 

It is important to note that the size of the super cell used for the calculation is limited. For 

the pristine surface there are 8 Br ions and 8 MA+ cations in the surface layer of the supercell 

used for DFT. Thus, the single, double, and triple MABr vacancy defect surfaces have 1/8, 2/8, 

and 3/8 of the atoms missing and correspond to an overall MABr surface vacancy defect 

concentration of 12.5%, 25%, and 37.5%, respectively. It has been suggested that ion migration 

leaves one end of the perovskite film deficient in the migrating halide species (i.e., rich in halide 

vacancies).101 Thus, such high defect concentrations may occur at the interface during device 
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operation. Additionally, the variation of the local work function could potentially alter charge 

transfer to adjacent layers (i.e., electron or hole transport layers, top electrode) in a solar cell or 

light emitting device. It is important to take this effect into account when evaluating efficiency 

loss mechanisms. Understanding interfaces in perovskite devices and engineering energy level 

alignment between layers have been identified as one of the keys to unlocking higher efficiencies 

and better stability.210 As further work on energy level alignment between layers is conducted, it 

should be kept in mind that this work function variation at the interface exists due to surface defects. 

This variation may limit the accuracy of energy level alignment attainable if the issue of reducing 

or controlling the number of defects in the perovskite film is not addressed. As seen in the 

migration mechanisms investigated, there could be spatial variation in work function not only due 

to the presence of defects but also spatial and temporal variation as vacancies migrate to and from 

the surface as well as along the surface. Such variation of the electronic properties of perovskite 

in space and in time could in turn affect the charge transfer at the interface. 

The increase of the work function as the surface contains more defects can be attributed to 

one or a combination of the following three fundamental mechanisms: 1) The surface dipole that 

occurs with vacancy defect presence. A recent theoretical study by Jacobs et al. examining 20 

different perovskite oxides found that the BO2 surface terminations had higher work functions than 

the AO surface terminations.211 This was attributed to a work function lowering surface dipole 

caused by the AO layer. Albeit a different material system, it is reasonable to consider that a similar 

trend may exist in halide perovskites, where termination at a BX2 layer would have a higher work 

function than an AX termination. This type of trend is consistent with the result found in this work, 

that an increasing number of surface vacancy defects (i.e. an increasing exposure of the BX2 layer) 

leads to an increase in work function. A systematic theoretical study on OHP work function trends, 

similar to the one Jacobs et al. reported for perovskite oxides, is needed for further clarification of 

the fundamental principle behind the trend seen here; 2) This local fluctuation in charge can also 

be considered to effect the work function via a change in the screening effect due to the 

introduction of the vacancy defect. A theoretical study shows that MA cations can reorient 

themselves to screen vacancy defects, and that this rearrangement results in non-zero polarization 

values at the surface. This uncompensated dipole near the vacancy defect could also be 

contributing to the work function change reported in this thesis;212 3) Vacancy defects may also 

result in a change in the polaron binding energy due to local lattice distortions. According to 
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Coropceanu et al.,213  lattice distortions can lead to an increased polaron binding energy for a 

charge carrier over a given lattice site. Vacancy defects could cause lattice distortions that increase 

the polaron binding energy at nearby lattice sites. Thus, the energy required for an electron 

localized over the vacancy defect site to escape to the vacuum level would increase, resulting in 

an increased work function. 

3.7 Summary 

In this chapter, an atomic-scale investigation of surface defect dynamics in 

organic−inorganic hybrid perovskite was carried out by combining experimental techniques 

(STM) with theoretical calculations (DFT) performed by collaborators. Numerous defect types 

were observed by STM at the surface of MAPbBr3 perovskite, including vacancy clusters, as well 

as unpaired Br defects caused by the orientation mismatch of Br pairs in a single row. Vacancy 

defects were shown to enable Br pair separation, thus potentially facilitating Br pair reorientation 

events and long-range surface dynamics. From energy of formation calculations and experimental 

images, vacancy defects were identified as MABr vacancies. STM measurements visualized the 

vacancy-assisted motion of single ions in real space, both in the z-direction as well as along the 

perovskite surface, strongly supporting the hypothesis of a vacancy-assisted ion migration pathway 

in perovskite materials. Based on these STM observations, DFT calculations were performed to 

identify favorable ions migration mechanisms. It was demonstrated that in the z-direction it is 

energetically favorable for MABr migration to occur via a sequential mechanism. The transition 

energy barrier found is small enough for ion migration to occur via this mechanism in an operating 

perovskite solar cell. Furthermore, the impact of vacancy defects on the local work function at the 

surface of the perovskite was revealed. The modification of local work function induced by clusters 

of vacancies observed here is expected to strongly affect charge transport and recombination at the 

interface of a device. The results in this chapter provide a fundamental understanding of the 

interfacial effects of surface vacancy defects, and also atomic scale insight into the ion migration 

mechanism. Equally important, this work reveals useful information for device improvement from 

the perspective of defects and interface engineering. 

However, defects are only part of the picture. As discussed in Section 2.3, passivation of 

surfaces is also a topic of importance for optimizing devices. One such strategy is to add chlorine 

to the perovskite material, but exact function of chlorine, and in what fashion and to what extent 



Chapter 3: Defects at the MAPbBr3 surface and their dynamics                                                                         Page 49 

 

Adapted and reproduced with permission from Ref. 170. Copyright 2019, American Chemical Society. DFT 
calculations performed by collaborators in Prof. Guofeng Wang’s group at The University of Pittsburgh. 

it is incorporated into the perovskite lattice, is unclear. In this context, the effects of modifying the 

perovskite surface with chlorine and iodine will be discussed in the next chapter. 
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Chapter 4: The Surface of Mixed halide 

Methylammonium Lead Perovskites167 

4.1 Introduction 

In the previous chapter, modifications to the MAPbBr3 surface caused by defects were 

explored. However, perovskite films used in devices often employ more complex formulations 

involving a mixture of halides in the X site of the perovskite structure, therefore understanding the 

surface of these systems is also of prime importance. Having a mixture of halide species in the 

perovskite material can provide multiple benefits, including band gap tuning, improved stability, 

and improved film morphology. By changing the relative ratio of iodine and bromine, the band 

gap can be modified from 1.55 eV to 2.3 eV,139 with this tunability being particularly useful in 

tandem solar cells.28 Fine control of the bandgap is also advantageous for color tuning214 in 

emissive applications such as LEDs215 and lasers.5 Additionally, addressing perovskite instability 

is a major issue, and mixing in a small percentage of bromine1,216, 217 or chlorine11 can improve 

device stability over those based on MAPbI3.  

Incorporation of Cl has been shown to advantageously affect the crystallization process,164, 

218 improve open-circuit voltage219, 220 and reduce carrier recombination.221 However, there is still 

an open debate regarding whether or not Cl actually incorporates into the perovskite lattice, and if 

yes, to what extent.40, 222-227  

In this chapter, the effect of mixing I or Cl into an already fabricated MAPbBr3 film is 

explored at the atomic scale, utilizing STM imaging to clarify the incorporation behavior of these 

two halides at the perovskite surface. DFT calculations based on the STM results demonstrate the 

effect of halide mixing on the surface stability of the perovskite and identify an optimal ratio of Cl 

incorporation that provides an increase in stability without sacrificing performance due to band-

gap widening. XPS and UPS techniques are also employed to investigate the effect of halide 

mixing on the stability and interfacial electronic properties of the material on a larger scale. 
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4.2 Methods 

MAPbBr3 thin films were fabricated by dual-source physical vapor deposition inside a 

UHV chamber. PbBr2 and MABr were co-evaporated at 361K and 498K, respectively, for 10min 

onto a cleaned and cooled Au(111) substrate (see section 2.2 for details). For MAPbBr3-yIy 

(MAPbBr3-zClz) perovskite films, PbI2 (PbCl2) was heated via Knudsen cell to 525 K (560 K) and 

deposited on top of the as-prepared MAPbBr3 film. For this step, the substrate was not cooled, but 

left at ambient temperature. For STM measurements, the sample was cooled to 5K and at cut Pt/Ir 

tip was used. Bias voltage was applied to the sample. The XPS and UPS instrumentation is 

connecting to the same UHV system as the STM, and the sample was transferred between the 

instruments without exposure to ambient air. 

4.3 Substitution and distribution of mixed halides 

 MAPbBr3 thin films created using the above co-deposition method were atomically flat, 

with a thickness of 4±1 nm. The surface exhibited a reconstruction featuring a Br pair pattern (Fig. 

4.1a), consistent with results previously reported for cleaved single crystal MAPbBr3.
150 As 

described in Section 2.5, the protrusions in the STM images are Br ions. It is important to note 

that for MAPbBr3 all the Br anions have the same apparent height and width. 

 Upon subsequent sublimation of PbI2 onto the MAPbBr3 thin film, STM images showed a 

perovskite surface that maintained the basic pair motif, but had brighter protrusions with a larger 

width and an apparent height that is 40±10 pm higher than the surrounding Br ions (Fig. 4.1b). 

Conversely, after sublimation of PbCl2 onto an MAPbBr3 film, there are dimmer protrusions, with 

smaller widths and an apparent height that is 20±10 pm lower than the surrounding Br ions (Fig. 

4.1c). These protrusions of different heights and widths could originate from a wide variety of 

scenarios, including adsorption or substitution of an entire lead halide molecule, or of an individual 

ion (Pb+2, I, or Cl) after dissociation of the lead halide. DFT calculations were performed to 

determine which scenario is most plausible, and it was found that dissociation of the lead halide 

followed by halide substitution best matched experimental data. Simulated STM images of I and 

Cl substitution are shown in Figures 4.1e and f and agree well with the experimental STM images 

(Figs. 4.1b and c). A simulated STM image of the MAPbBr3 surface is also shown for comparison 
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(Fig. 4.1d). Interestingly, the halide mixing did not result in a significant modification of unit cell 

dimensions. Figure 4.1g provides a schematic for the scenario of PbI2 dissociation followed by 

iodide substitution. Based on these results, the brighter and darker protrusions in Figures 4.1b and 

c are assigned to I and Cl substitution, respectively, of Br at the MAPbBr3 surface. 

 

Figure 4.1 Halide substitution at the MAPbBr3 surface. a) Experimental STM images (a-c) and DFT 

simulated STM images (d-f) of pure MAPbBr3 (a, d), iodine-substituted MAPbBr3 (b, e), and chlorine-

substituted MAPbBr3 (c, f). In upper-right corners of (d-f) the crystal structure is overlaid and the unit cell is 

denoted by a solid square. Unit cell size is unchanged after substitution. The Br, Cl and I sizes were 

enlarged by a factor of 4.5 to emphasize the halide pair pattern. g) A schematic drawing of PbI2 dissociation 

at the MAPbBr3 surface followed by iodide substitution. An analogous process occurs for PbCl2. Imaging 

parameters: a) V=1.3 V, I=80 pA; b) V=2.0 V, I=120 pA; c) V= -1.9 V, I=19 pA. Image size: a-c) 2.32.3 

nm
2
. 
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 In order to examine the distribution and arrangement of substituted halides, larger area 

STM images were also acquired (Figs. 4.2a-c). For the mixed halide samples, many protrusions 

which are brighter (Fig. 4.2b) and darker (Fig. 4.2c) were seen to be randomly distributed across 

the perovskite surface. This random nature of the I and Cl substitution was confirmed via fast 

Fourier transform analysis of the images (inset, Figs 4.2a-c). The lack any additional bright spots 

in the low-k region for the MAPbBr3-yIy and MAPbBr3-zClz samples in comparison to the pure 

MAPbBr3 sample indicates there was no low-frequency, long-range order of the substituted halide 

species. 

 The larger area images also enabled a statistical analysis of the apparent height distribution. 

Histograms of the apparent height distribution in each image (Figs. 4.2d-f) show that there was 

only one peak for MAPbBr3, but that a clear second peak appeared for MAPbBr3-yIy and a 

pronounced shoulder was evident in the distribution for MAPbBr3-zClz, which arises from a Cl 

peak. Although the lateral position of the halide was not changed by substitution, DFT calculations 

did confirm the experimental observation of a change in the substituted halide’s vertical position 

compared to the Br plane of MAPbBr3 (Figs. 4.2g-i). It should be noted that in addition to the 

vertical position shift, the differing ionic radii of the substituted halides also contributes to the 

observed change in apparent height in the STM images.  
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Figure 4.2 Position and height distribution of substituted halides in MAPbBr3-yIy and MAPbBr3-zClz. 

a-c) Large area STM images of (a) MAPBr3, (b) MAPbBr3-yIy and (c) MAPbBr3-zClz showing random 

distribution of substituted halides. Inset: FFT of each image confirming the lack of long-range order in the 

images. d-f) Histograms of height distributions for each perovskite sample. (Inset) Representative line 

profile for each sample showing apparent height difference between the substituted halide and the Br plane. 

g-i) Side view of crystal structure from DFT simulations showing the calculated difference in vertical position 

of the substituted halides. Imaging parameters: a) V=1.3 V, I=80 pA; b) V=2.0 V, I=120 pA; c) V= -2.0 V, 

I=100 pA. Image size: a-c) 10.010.0 nm
2
. 

 The overall arrangement of substituted halides was found to be random over a large area. 

Within this random arrangement there were a few different phenomena involving multiple halide 

substitutions in adjacent lattice positions. For both MAPbBr3-yIy and MAPbBr3-zClz, double 

substitution in the same halide pair (Figs. 4.3a and e), double substitution in adjacent halide pairs 



Chapter 4: The Surface of Mixed Halide Methylammonium Lead Perovskites                                                  Page 55 

 

Adapted and reproduced with permission from Ref. 199. Copyright 2019, American Chemical Society. The thesis 
author was a co-author and contributed to sample preparation, STM and XPS data acquisition and overall data 
interpretation and analysis. Figures provided by and modified with permission from Dr. Jeremy Hieulle. 

along both the [-101] direction (Figs. 4.3 b and f) and [101] direction (Figs. 4.3c and g), and 

clustered triple substitution (Figs. 4.3d and h) were observed. DFT calculations comparing the 

single substitution and the double substitution in a single halide pair scenarios found that the 

energy of formation for two separate Cl-Br (I-Br) halide pairs is less than that for a Cl-Cl (I-I) pair. 

This energetic preference for separated substitution sites explains why large halide-substituted 

domain are not formed and is consistent with the disordered distribution seen in the large area 

images. 

 

Figure 4.3 Adjacent halide substitutions. Double halide substitution in the same pair (a, e), in adjacent 

pairs along the [-101] (b, f) and [101] (c, g) directions, and triple substitution clusters for iodide and chloride 

substitution cases, respectively. Imaging Parameters: a-d) V= 2.0 V, I= 120 pA; (e-h) V= -2.0 V, I= 100 pA. 

Image size: a-h) 2.22.2 nm
2
. 

4.4 UPS measurements of mixed halide perovskites 

 The changes in electronic properties caused by halide substitution were invested with UPS. 

Work functions were determined from the secondary electron cutoff of the UPS spectra (Fig. 4.4a). 

Substitution of Cl resulted in a work function of 4.57 eV for MAPbBr3-zClz, lowered by 0.2 eV 

compared to MAPbBr3. In contrast, substitution of iodine yielded a work function of 4.79 eV, 

nearly the same as the 4.77 eV pure MAPbBr3. DFT calculation determined the work function 

change is a result of a shift in the vacuum level (not shown) caused by surface dipole modification 

after halide substitution. The potential to modify both the work function and the vacuum level 
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through halide substitution provides engineers with an interesting avenue for controlling energy 

level alignment between adjacent layers in a device. 

Six different peaks can be identified in the valence band region of the UPS spectra for the 

different perovskite samples (Fig. 4.4b). A significant change in the valence band line-shape 

occurs both the MAPbBr3-yIy and MAPbBr3-zClz, samples compared to pure MAPbBr3. DFT 

calculations for pure bromide perovskite revealed that the VB is dominated by Br 4p states (Fig. 

4.4c). For the mixed halide perovskites, calculations were performed for the cases where the 

surface layer is completely substituted by either I or Cl. Contributions to the VB from iodine for 

MAPbBr3-yIy were at binding energies comparable to or slightly lower than bromine, depending 

on the individual Br 4p orbital, whereas contributions from chlorine for MAPbBr3-zClz were at 

higher binding energies than bromine (Fig. 4.4c). This is consistent with the higher stability found 

for Cl-substituted perovskite, which will be further discussed in Section 4.5.  
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Figure 4.4 Analysis of work function and valence band by UPS and DFT. Secondary electron cutoff 

region (a) and valence band region (b) of UPS spectra for MAPbBr3 (orange), MAPbBr3-yIy (purple) and 

MAPbBr3-zClz (green), showing changes in work function and valence band. (c) Valence band PDOS 

calculated via DFT. The thicker curves represent the total contribution of all component orbitals shown. 

PDOS was calculated for a complete substitution of the surface layer of the perovskite. 
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4.5 Stability of mixed halide perovskite surfaces 

 In order to correlate the effects of halide mixing on both the electronic properties and the 

stability of MAPbBr3, the decomposition energy and the band gap was calculated by DFT as a 

function of % halide substitution of the surface layer (see Ref. 199 for calculation details). For 

MAPbBr3-yIy, increasing iodide substitution results in a sharp, monotonic decrease in 

decomposition energy (i.e. a decrease in stability) accompanied by a slight decrease in the band 

gap (purple and orange curves, respectively, Fig. 4.5a). However, MAPbBr3-zClz, exhibits a 

different trend. An increase in decomposition energy (i.e. an increase in stability) occurs for low 

Cl substitution below 25%. Importantly, there is no significant widening of the band gap in this 

low Cl substitution range, which would negatively affect photovoltaic device performance. Given 

the initial increase in the decomposition energy, it is expected that judicious Cl incorporation 

should result in higher stability against temperature, X-ray beam damage, and other external 

factors.  

The level of Cl substitution is critical, as the decomposition energy decreases sharply when 

exceeding 25% Cl-substitution. This complex behavior can be attributed to the balance of two 

competing factors. On the one hand, the initial increase in stability can be related to relative bond 

strengths, where the Pb-Cl bond is stronger compared to that of Pb-Br and Pb-I.228 On the other 

hand, excessive incorporation of the smaller Cl ion introduces a level of strain in the lattice that 

outweighs the positive effect of the superior Pb-Cl bond strength. This results in a net decrease in 

decomposition energy (i.e., material stability). This is proposed to be trend that holds in general 

when a smaller halide with stronger Pb-X bond strength is substituted into a perovskite, with the 

exact optimal substitution ratio changing depending on the balance of the gain in bond strength 

and the severity of lattice strain (i.e., the difference in ion size). Although the cases presented here 

focus on the surface layer, both of these factors, bond strength and lattice strain, should have a 

similar counterbalancing influence even in the bulk of the material. Considering this, the results 

presented here support the idea that there also exists an ideal bulk Cl-substitution ratio that imbues 

higher stability without a detrimental widening of the perovskite’s band gap. 
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Figure 4.5 Decomposition energy and band gap of mixed halide perovskites. Decomposition energy 

(purple and green curves, respectively) and band gap (orange curves) as a function of surface halide 

substitution ratio for (a) MAPbBr3-yIy and (b) MAPbBr3-zClz. Bottom panels show the near-surface structure 

of the 0%, 50% and 100% substituted scenarios. Color code: Same as Figure 4.1. 

 To test the relationship between Cl substitution and stability, XPS spectra of                     

MAPbBr3-zClz films in a half solar cell architecture (PVK/TiO2/FTO/Glass) were monitored over 

time. After fabrication of a half-cell with a 300nm MAPbBr3 film (see Ref. 199 for details), the 

half-cell was introduced to the UHV system. PbCl2 was then evaporated onto the half-cell to create 

the MAPbBr3-zClz mixed halide perovskite films. The Pb 4f signal of samples with a 0%, 12% and 

18% Cl substitution ratio at the surface was monitored over time (Figs. 4.6a-c, respectively). These 

ratios were calculated from the ASF-corrected Cl:Br peak area ratio in the t=0 XPS spectra. The 

appearance of Pb(0) oxidation state peaks was used here as a measure of perovskite degradation, 

as it has been previously associated with perovskite decomposition.229  

The Pb 4f signal initially consists of two peaks originating from the spin orbit split 4f7/2 

and 4f5/2 peaks, seen centered at 137.9 eV and 142.8 eV, respectively, in the top curve of Figure 

4.6a. These peaks are assigned to the Pb2+ oxidation state expected from lead in perovskite. In the 

curve immediately below, measured after the MAPbBr3 half-cell had been stored in UHV for 4h, 

small peaks attributable to the Pb(0) oxidation state appear at slightly lower binding energies than 

the Pb2+ peaks, consistent with literature.229 The intensity of the Pb(0) peak increases steadily over 

time, indicating further deterioration of MAPbBr3. After Cl incorporation, the onset of the 
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degradation was delayed and the severity of the degradation lessened. For 12 % Cl substitution at 

the surface, Pb(0) peaks appeared after 28h (Fig. 4.6b and d). A more pronounced delay was seen 

for the 18% Cl substitution sample, which developed Pb(0) peaks only after 116h (Fig. 4.6c and 

d). In Figure 4.6e, the area of the Pb2+ peaks is used as a measure of the remaining, not degraded 

perovskite. This analysis shows that not only was the degradation onset delayed, but the extent of 

degradation after a given amount of time was suppressed. A similar phenomenon is expected for 

Cl incorporation into MAPbI3, possibly with a narrower peak than Fig. 4.6b since a steeper slope 

would be expected both for the stability increase and subsequent decrease considering the larger 

magnitude of the difference in Pb-X bond strength and halide ion size, respectively. Overall, these 

findings shed light on the effect of chlorine mixing on stability and provided some guidance on 

the how to best utilize chlorine to optimize perovskite-based devices. 
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Figure 4.6 Effect of Cl substitution on perovskite half-cell stability. The Pb 4f XPS spectra of MAPbBr3-

based half-cell devices with (a) 0%, (b) 12% and (c) 18% Cl substitution at the surface monitored over time. 

d) Appearance time of Pb(0) peak as a function of Cl substitution raito. e) Percentage of initial Pb2+ peak 

intensity remaining as a function of time for different Cl substitution ratios. 

4.6 Summary 

 In this chapter, the atomic structure of the surface of the mixed halide perovskites 

MAPbBr3-yIy and MAPbBr3-zClz was determined in real space by STM imaging and was 

corroborated by DFT simulations. Both iodine and chlorine were found to substitute at bromine 
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lattice locations after sublimation of the corresponding lead halide onto the MAPbBr3 surface. 

Many adsorption and substitution scenarios were tested via DFT and individual halide substitution 

best reproduced the experimental STM images. The substituted halides did not form large 

substituted domains, but rather had a disorder distribution which was confirmed by FFT analysis 

of large area STM images. This finding was further supported by comparison of DFT calculated 

formation energies for single substitutions and for substitution pairs. 

 UPS measurements revealed that halide mixing is a viable strategy for modifying the work 

function of the perovskite, and DFT calculations revealed that this stems from a shift in the vacuum 

level. Fine control of these two parameters is of key interest to device engineers optimizing the 

energy level alignment between adjacent layers in a device. Modification of the valence band was 

also observed via UPS, and DFT calculations showed that the valence band is dominated by 

contributions from the Br 4p orbitals.  

 The effect of halide substitution on stability was investigated by DFT and then confirmed 

experimentally by XPS. DFT calculations showed that low levels (below 25%) of Cl substitution 

induce an increase in the perovskite’s stability without causing a detrimental widening of the 

bandgap. This finding was confirmed experimentally via monitoring the appearance and evolution 

of Pb(0) peaks in the  Pb 4f XPS spectra as a function of time for various Cl substitution ratios. 

Both 12% and 18% Cl substitution at the surface was found to provide an increase in stability 

compared to the pure MAPbBr3 perovskite. DFT calculations showed that this stability increase at 

low Cl substitution ratios is due to the higher Pb-X bond strength of chlorine. However, Cl 

substitution higher than 25% caused a decrease in stability due to lattice strain induced by 

incorporation of the smaller sized ion. The counterbalance of these two factors results in the 

existence of an optimal Cl substitution ratio for stability improvement. A similar trend can be 

expected for Cl substitution in MAPbI3, although a narrower peak is expected around the optimal 

ratio due to the higher difference in Pb-X bond strength and ion size. The identification of an 

optimal Cl substitution ratio and its origin provides device engineers with useful fundamental 

insight and an interesting avenue for optimization of perovskite-based solar cells and other devices. 
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Chapter 5: The MAPbX3/CuPc interface 

5.1 Introduction 

In previous chapters, the surfaces of methylammonium-based lead halide perovskites were 

explored. Although understanding the surface properties of these systems is important, the 

perovskite surface only constitutes half of an interface that would occur in a photovoltaic device. 

Solar cells typically have the OHP absorber layer sandwiched between two CSLs, an ETL and an 

HTL. The interfaces between the perovskite layer and these CSLs are potential areas of higher 

charge recombination.121, 193 Interfacial engineering via passivation of the perovskite surface has 

proven a viable strategy for improving device performance. Additionally, studies have found that 

non-stoichiometric precursor ratios, achieved during the perovskite film preparation230 or via post-

annealing treatment,50 can significantly affect performance. Such non-stoichiometric ratios in the 

perovskite material are expected to strongly impact the interfacial properties. Using thin interlayers 

of MAI precursor at the perovskite interface was also shown to be a useful method for tuning 

energy level alignment at the interface between the OHP layer and the HTL.53 Proper engineering 

of these interfaces can also result in increased stability.145 Obtaining a clear understanding of the 

perovskite/CSL interface is crucial for rational interface engineering and further device 

improvement.  

Transition metal phthalocyanines (TMPcs) have been identified as viable hole transport 

layers (HTLs) that feature a higher thermal stability than spiro-MeOTAD.60-63, 65 TMPcs have also 

been utilized as additives in HTLs.231 Undoped copper phthalocyanine (CuPc) derivatives have 

been shown to enable PCEs up to 18.8% in OHP-based solar cells.66 CuPc itself has shown 

excellent compatibility with low-cost carbon electrodes as well, both as a distinct HTL232 and as 

an additive in the carbon electrode,81 resulting in performance increases. Furthermore, the 

relatively hydrophobic nature of CuPc enables it to act as a blocking layer from moisture in the 

environment, delivering impressive stability for unencapsulated devices.60, 61, 232 Thus, CuPc was 

chosen for this investigation as an HTL with the potential to increase the thermal and moisture 

stability of OHP solar cell devices. 
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Here, utilizing two materials well-suited for STM study, we investigate an OHP/HTL 

interface by examining sub-monolayer CuPc sub-monolayers deposited on perovskite thin films. 

In contrast to previous chapters, the bulk of the data and discussion for this chapter are regarding 

the iodide perovskite, MAPbI3, although a qualitatively similar interface was found for MAPbBr3 

as well. We reveal that CuPc forms a self-assembled layer on MAPbI3 and that it behaves very 

differently on domains of precursor that may exist in non-stoichiometric perovskite films. This 

differing behavior has important consequences for interfacial properties and charge transfer in 

devices.  

5.2 Methods 

MAPbI3 films were prepared in UHV by co-evaporation of PbI2 and MAI at 513K and 

378K, respectively, for 5 minutes onto a cleaned Au(111) substrate held at 130K (see Section 2.2 

for details). Samples were annealed at room temperature for at least 3 hours before being 

transferred into the STM setup. After the success of the perovskite deposition was confirmed via 

STM imaging, the sample was transferred in UHV to a preparation chamber where CuPc was 

deposited onto the perovskite sample. The commercial CuPc powder (Sigma Aldrich, triple 

sublimated grade) was further purified by vacuum sublimation in situ before performing any 

deposition. CuPc was deposited via vacuum sublimation using a K-cell at 638K for varying 

durations to achieve different coverages. The perovskite/Au(111) substrate was held at room 

temperature during this deposition, and the sample was transferred to the STM chamber without 

any further treatment. During CuPc deposition, the chamber pressure was 610-8 torr. Narrow-

mouthed crucibles were used, and a shutter was used to prevent unintended deposition onto the 

sample during transfer within the preparation chamber.  

Some issues occurred during initial trials of CuPc deposition that are worth mentioning. 

When the crucible was filled with only a small amount of CuPc (approximately ¼ of the total 

volume of the crucible), a blocking layer of CuPc would form near the top of the crucible. This 

was due to the shape of the filament wrapping around the crucible, which resulted in a temperature 

gradient where the top of the crucible was cooler than the bottom, allowing the sublimated CuPc 

to re-condense on the top of the crucible, eventually forming a blocking layer. This phenomenon 

was also exacerbated by having the shutter of the K-cell closed over the crucible during 

temperature ramping. To remedy these issues, CuPc was filled almost to the top of the crucible, so 
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that sublimation would not start until the entire crucible had reached the sublimation temperature. 

Additionally, the K-cell shutter was left open during temperature ramping so that any material 

sublimated during the ramping would not collect near the mouth of the crucible. The shutter was 

only closed for the 2-3 minutes immediately before deposition, while the sample was being 

transferred into the deposition chamber. 

5.3 Adsorption of Single CuPc on MAPbI3 

An initial deposition of 30 sec of CuPc was performed on an MAPbI3/Au(111) sample. 

First, we will examine the behavior of a single, isolated CuPc adsorbed on the MAPbI3 surface 

(Fig. 5.1a). A zoomed-in image of the CuPc (Fig. 5.1b) shows eight round outer orbitals, which 

surround eight smaller, inner orbitals, which are somewhat tapered in shape. This intramolecular 

contrast is indicative of the highest occupied molecular orbital (HOMO) of CuPc.157 This image 

also shows the face-on CuPc adsorbed so that its pairs of outer orbitals are aligned along the same 

[10±1] directions as the I– pairs of the MAPbI3 substrate (solid white and yellow lines). The 

molecular dimensions are such that perfect overlap between the CuPc orbitals and the I– lattice 

sites is difficult. For example, in Figure 5.1b, the CuPc outer orbital pair highlighted by the solid 

yellow line matches well the underlying substrate lattice, but the orbital pair highlighted by the 

solid white line is offset from the underlying I– pair. It was also observed that the CuPc molecule 

can adsorb 45° rotated relative to the halide pairs (Fig. 5.1c), along the high symmetry [100] and 

[001] directions. The molecular width was measured along two axes (Fig. 5.1d), and values of 

1.65nm and 1.59nm were obtained, which are consistent with the range of values found in literature. 

The widths of these two axes are mentioned because they correspond to the expected heights for a 

vertically adsorbed CuPc molecule for the cases of single and double isoindole group adsorption 

(dashed white and yellow lines, respectively). 
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Figure 5.1 An individual CuPc molecule adsorbed on the MAPbI
3
 surface. a) Overview image of a 

single, isolated CuPc molecule adsorbed on the (010) MAPbI
3
 surface. b) Close up image showing the 

HOMO state of the CuPc and its face-on adsorption. The adsorption orientation relative to the substrate is 

denoted by solid white and yellow lines. c) Alternate adsorption orientation of CuPc where outer orbital pairs 

align with [100] and [001] directions. d) Measurements of the CuPc width along different axes. Image Sizes: 

a) 15.215.2 nm
2
 b) 4.84.8 nm

2
 c) 3.73.7 nm

2
 d) 2.02.0 nm

2
. Imaging parameters: a,b,d) V = -2.7 V, I = 

300 pA; c) V = -2.5 V, I = 200 pA. 

Additionally, it was found that the face-on adsorbed CuPc molecule was easily moved by 

the STM tip. In Figure 5.2, the STM tip is scanning from the top of the image to the bottom, and 

the CuPc molecule is gradually dragged toward the bottom by the tip. The ease with which the 

molecule is moved by the tip suggests a relatively weak molecule-substrate interaction between 

CuPc and MAPbI3. Although of fundamental interest, the single molecule, face-on adsorption 
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scenario is extremely rare on MAPbI3. The more common adsorption behavior of CuPc will be 

discussed in the next section. 

 

Figure 5.2 Mobility of a face-on adsorbed CuPc molecule on MAPbI
3
. a) Upward scan of a CuPc 

molecule face-on adsorbed on MAPbI
3
. Misshapen molecular orbitals are an artifact due to a non-ideal tip 

shape. b) Downward scan of the same molecule as in (a). The molecule is dragged by the STM tip in the 

direction of the scan. Image Size: 3.63.6 nm
2
. Imaging parameters: V = -2.6 V, I = 150 pA. 

5.4 Self-assembled (SA) layer of CuPc on MAPbI3 

After the initial 30 s deposition, sub-monolayer CuPc coverage was achieved. It was found 

that CuPc preferentially forms a self-assembled (SA) layer on MAPbI3. In Figure 5.3a there are 

multiple MAPbI3 grains exhibiting the previously reported paired surface reconstruction.151 In the 

middle of the image there is a brighter, striped domain, which is attributed to an SA layer of CuPc 

molecules.  
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Figure 5.3: CuPc self-assembled (SA) layer on MAPbI
3
 surface. a) Overview image showing a CuPc 

SA layer on top of MAPbI
3
. b) Close-up view of a CuPc SA layer showing the alternating rows of bright and 

dark protrusions. Colored lines show directions of interest, with corresponding colored brackets denoting 

distances. Angles relative to the b-direction are noted. Image Sizes: a) 16.429.7 nm
2
 b) 4.54.5 nm

2
. 

Imaging parameters: a) V = -2.7 V, I = 100 pA; b) V = -2.6 V, I = 150 pA. 

A zoomed-in image on one of these domains (Figure 5.3b) reveals there is an alternation 

between rows of brighter protrusions and rows of darker protrusions when going across an SA 

layer. The direction perpendicular to these rows will be referred to as the a-axis of the SA layer. 

The direction parallel to the bright and dark rows will be referred to as the b-axis. Finally, the 

normal to the perovskite substrate will be referred to as the c-axis. To further characterize the SA 

layer, the periodicities along directions of interest were measured, as shown in Fig. 5.3b. An 

average of 17 measurements of distinct instances of the SA layer yield periodicities of 4.4 ± 0.2 Å 

along the b-axis and 1.14 ± 0.04 nm along the a-axis. Additionally, a survey of images showed 

that there is no preferred direction of the MAPbI3 film along which the CuPc SA layer aligns itself, 

once again indicating a relatively weak molecule-substrate interaction.  

To provide context to the analysis and discussion of the experimental results, it is important 

to note that CuPc is polymorphic in nature. As mentioned in Section 2.6, multiple distinct 
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polymorphs have been reported.161, 233 A reasonable starting point is to assume that the CuPc SA 

layer that forms on top of MAPbI3 is one of these crystalline polymorphs. Initially, the β-phase 

and the α-phase of CuPc are considered, as they are the only two polymorphs for which detailed 

information on the stacking pattern of CuPc molecules is known. The β-phase is 

thermodynamically stable, and features b-axis periodicity of 4.8Å and a stacking angle relative to 

the b-axis of approximately 45°. The α-phase of CuPc has been known to form when films of CuPc 

are vapor deposited, and features b-axis periodicity of 3.8Å and a stacking angle of approximately 

63°. Comparing these stacking angles to the CuPc layers formed on MAPbI3, it was found there is 

no periodic topographic pattern along a 45° stacking angle, eliminating the β-phase as a candidate. 

However, there is periodicity along an angle of 61 ± 2° (red line, Fig. 5.3b), which is consistent 

with α-phase CuPc. By measuring the periodicity along this 61° stacking angle, a value of 1.30 ± 

0.05 nm is obtained. Because stacking in α-phase CuPc does not show any intermolecular overlap 

in the a-direction (Fig. 2.8), the entire width of the CuPc would need to fit in this 1.30 nm periodic 

length. Although this value is a bit lower than the approximately 1.6 nm CuPc width measured 

here, it is nearly consistent with a 1.37nm width reported from LEED data.234  

Comparing other SA layer dimensions, reported STM values of the a-axis periodicity for 

similar CuPc SA layers vary widely in the range of 1.18nm-1.69nm.158-160 The 11.4Å a-axis 

periodicity (green line, Fig. 5.3b) measured in this study is relatively consistent with the lower end 

of this range, and slightly lower than the 1.20-1.31nm158, 162 range found reported for a-axis 

periodicity of α-CuPc.  The 4.4 Å b-axis periodicity (blue line, Fig. 5.3b) that was measured is 

larger than the reported 3.8 Å for α-CuPc,158, 162 but matches extremely well with the 4.5 Å value 

reported by Sun et al.160 Although there are characteristics of the CuPc SA layer on MAPbI3 that 

are similar to α-CuPc, discrepancies exist that give reason to consider the possibility that this SA 

layer is a polymorph other than the α or β phase.  

Another dimension to take into account is the c-axis, i.e., the height of the layer. An average 

height in the c-axis of 9.0 ± 0.7 Å was obtained over measurements of 13 different CuPc SA layers, 

with an example measurement shown in Figure 5.4. It should be noted that it is difficult to get 

accurate height measurements with STM because the measured apparent heights in STM are a 

convolution of geometric position and local density of states. Thus, the measured height values 

can vary depending on the gap voltage used during imaging. Slightly different voltages were used 
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for some of the images included in the above average, which may contribute to the variance. For 

comparison, when averaging height measurements of 6 SA layers all imaged at the same sample 

bias voltage of -2.7 V, a value of 8.6 ± 0.5 Å is obtained.  

 

Figure 5.4: CuPc SA layer height a) STM image showing a typical CuPC SA layer on MAPbI3. b) Height 

profile along the dashed blue line in (a). Image Size: a) 6.413.0 nm2. Imaging parameters: a) V = -2.5 V, 

I= 200 pA.  

Most models proposed in STM literature for similar CuPc films all consider edge-on 

adsorption of CuPc, although theoretical evidence to corroborate these models was not reported. 

For an edge-on adsorption model to be correct, an SA layer height close to the width of the face-

on adsorbed CuPc would be expected. The expected height varies slightly depending on if one or 

two isoindole groups of the CuPc molecule are adsorbed on the surface (white and yellow dashed 

lines, Fig. 5.1c).  Interestingly, the average SA layer height measurements of 8.6 Å and 9.0 Å are 

significantly less than the expected 1.4-1.7 nm height of an edge-on adsorbed CuPc. There are two 

possible explanations for this. The first is that the CuPc actually are stacking normal to the MAPbI3 

surface, but the measured apparent height value is strongly affected by some electronic effect. 

Because the apparent height measured by STM is a convolution of geometric position and local 

density of states, an electronic effect could be altering the apparent height to a value that does not 

represent the true physical height of the layer.  

The second explanation is that the measured apparent height does represent the true 

physical height of the SA layer but that the CuPc molecules are adsorbed at some tilt angle, θ, 

relative to the MAPbI3 film. Such a tilt angle can be estimated using the measured apparent heights 
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and basic trigonometric relations. Here, θ is approximated by θ=arcsin((h-f)/w), where h is the 

apparent height of the CuPc SA layer, f is the apparent height of a flatly adsorbed CuPc, and w is 

the width of the flatly adsorbed CuPc molecule. A range of 19°<θ<30° is obtained when using 

maximum and minimum measured values are used to create absolute upper and lower bounds. 

Using the average CuPc SA layer height value of 8.6Å, the 1.65nm CuPc width value from Figure 

5.3b, and a range of values obtained for face-on CuPc height dimensions, a smaller tilt angle range 

of 24°<θ<25° is obtained. Interestingly, these ranges are consistent with the experimental and 

theoretical results that Wang et al. obtained for SnPc on NaCl. In that study, molecular mechanics 

calculations were used to propose a model where SnPc molecules are adsorbed with a 25° angle 

relative to the substrate, which matches well their experimental value of 23° obtained via STM. 

Although that study uses a different TMPc than this work, it is feasible that the preferred tilt angle 

may be predominantly determined by the organic framework.  

5.5 Defects in the CuPc SA layer 

Analyzing the dimensions of the CuPc SA layer has given some insight about its structure, 

but further clues about the molecular stacking pattern can be gained by examining defects that 

occur in the layer. While the standard topographic pattern for the SA layer involves alternating 

bright and dark rows, there are some instances where there are differences in the brightness of the 

protrusions within a single row. This modulation within single row appears to have no discernable 

long-range order to its occurrence (Figure 5.5a). However, a high resolution image of defects 

shows a noticeable local pattern. In Fig 5.5b, it can be seen that every depression in the bright row 

(dashed yellow circles) is accompanied by a corresponding depression in the neighboring darker 

row (dashed green circles). Drawing a line through this pair of depressions, we find a stacking 

angle of 62° with respect to the b-direction of the SA layer (dashed black lines). This suggests that 

the two depressions in adjacent rows are part of one unit (i.e. belong to the same molecule). The 

fact that these paired depressions occur at an angle close to that of α-CuPc provides additional 

support to the hypothesis that the SA layer is actually α-CuPc. 
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Figure 5.5 Defects in the CuPc SA layer on MAPbI
3
. a) Image of the CuPc SA layer showing many 

defects in the rows of brighter protrusions. Note that there is no pattern to the frequency of defect 

occurrence. b) This image reveals that defects in the brighter rows (dashed yellow circles) are accompanied 

by defects in the darker rows (dashed green circles). The angle between the b-axis and the axis of the 

paired defects is denoted by dashed black lines. Image Size: a ) 5.6  14.7 nm
2
  b) 6.8  6.8 nm

2
. Imaging 

parameters: a) V = -2.7 V, I = 100 pA b) V = -2.5 V, I = 71 pA. 

Another peculiar irregularity of the CuPc SA layer is the zig-zag shape of the 

macrostructure, which features bends of 121 ± 2° (Fig. 5.6a). There is no apparent SA layer 

threshold width or length at which these bends occur. Similar bends have been previously reported 

for CuPc on Bi(111),158 but it is not clear what triggers these bends to occur. However, the fact 

that the angle of the bend is approximately twice the stacking angle of α-phase CuPc gives a 

potential clue regarding the molecular arrangement at the bend. This suggests that the bend occurs 

due to the border of two domains of α-phase CuPc. Some evidence of this type of boundary 

arrangement can be gleaned by again looking at defects in the SA layer that occur near one of these 

bends.  
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Figure 5.6 Molecular arrangement at a bend in the CuPc SA layer. a) Image of a macroscopic bend in 

the CuPc SA layer. Dashed black lines denote the angle of the bend. Note that the bright and dark rows 

are offset at the bend. b) Image of paired defects occurring near a bend in the CuPc SA layer. Depressions 

in the bright and dark rows are denoted by dashed green and yellow circles, respectively. The two-tone 

rectangles denote one CuPc molecule, and are shown at the bend to highlight that the two domains are 

offset by half of a molecule. Note that the bright and dark rows line up at the bend. Image Size: a) 6.6  

10.3 nm2  b) 6.1  4.8 nm2. Imaging parameters: a) V = -2.5 V, I = 60 pA b) V = -2.6 V, I = 52 pA. 

In Figure 5.6b, a zoom-in on a bend shows defects on both sides of the bend. The defects 

occur as pairs of depressions, with one depression in a bright row (dashed yellow circles) and an 

accompanying depression in the adjacent darker row (dashed green circles), just as in Figure 5.5. 

However, the orientation of these pairs is different on each side of the bend. On the right side of 

the bend, the accompanying depressions in the darker row are positioned above and to the left of 

the depressions in the bright row. In contrast, on the left side of the bend the accompanying 

depressions in the darker row are positioned below and to the right of the depressions in the bright 

row. This shows that the relative orientations of the paired defects, which are being tentatively 

interpreted as individual, depressed CuPc molecules, are rotated by 180°. This enables molecules 

to tightly pack in an offset arrangement at the bend itself (tan and brown rectangles, Fig 5.6b). 

Additionally, if the two bends shown in Figures 5.6a and 5.6b are compared closely, it is evident 

that there is a different arrangement occurring at each bend. In Figure 5.6b the bright and dark 
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rows on each side of the bend line up with each other, whereas Figure 5.6a they are offset from 

each other. For that offset row arrangement the model is similar as Figure 5.6b, except the 

molecules on each side of the bend line up with each other. 

Having examined a few instances of defects in the CuPc SA layer, it is worth noting the 

possibility of Pb/Cu cation exchange between the perovskite layer and the SA layer, such that part 

of the CuPc SA layer may be composed of PbPc molecules. This could be an alternate explanation 

for some of the defects seen. Cu/Pb cation exchange has been reported for CuS/PbS tetrapod 

semiconductors under certain reaction conditions.235 On the other hand, a study using CuI as an 

HTL in OHP solar cell devices showed evidence suggesting that there is no Cu/Pb cation exchange 

occurring, or that it is minimal in nature.236 Nonetheless, this is a possibility that must be 

considered when analyzing the SA layer structure.  

5.6 Behavior of additional CuPc on the 1st CuPc SA layer 

Additional CuPc depositions were performed on the sample to increase coverage and 

examine the behavior of a 2nd layer of CuPc. After the initial 30 s deposition, subsequent 

depositions were performed up to a cumulative deposition time of 195 s. Two important results 

were obtained. First, the CuPc SA layers exhibit Volmer-Weber growth, also known as “island” 

growth. In this scheme, the second layer of a crystal forms before the 1st layer is completed. This 

can be seen in Fig. 5.7a, where a 2nd layer of CuPc is seen in the same image as bare MAPbI3 

substrate.  
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Figure 5.7 2nd layer CuPc SA layer a) Image showing Volmer-Weber or “island” type growth. The 2nd layer 

of CuPc has started growing while there is still a bare MAPbI3 domain. b) Zoom-in on the 2nd layer of CuPc 

showing the same alternating bright-dark row structure. Image Size: a) 14.4  14.4 nm2, b) 1.6  6.0 nm2. 

Imaging parameters: a,b) V = -2.5 V, I = 100 pA. 

The other notable finding is that the structure of the 2nd layer of CuPc is the same as the 

first one. Figure 5.7b shows the same bright-dark alternating rows as seen in the first layer. This 

means that there is no special orientation of the 1st layer that interfaces directly with the perovskite. 

This is consistent with the idea that the CuPc-MAPbI3 interaction is weak in comparison to the 

intermolecular CuPc-CuPc forces. However, this is in contrast to a previous report that proposes 

the 1st interfacial layer of CuPc to be flat-lying on perovskite.66 This was based on DFT 

calculations that showed a higher binding energy for flat-lying CuPc compared to edge-on CuPc. 

These calculations were done for the model case of a single CuPc adsorbing on the surface. 

Consistent with that result, it was observed that a single CuPc molecule on the MAPbI3 surface 

adopts a flat-lying orientation (Fig. 5.1), rather than an edge-on orientation. It should be noted that 

on MAPbI3, this flat-lying orientation was only observed for a lone, isolated CuPc molecule. When 

many CuPc molecules are present, however, a much different picture results, in which 

intermolecular CuPc forces dominate over molecule-substrate interactions. This explains the 
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discrepancy between the reported calculation and the experimental findings in this study. This 

distinction is important as it provides a more accurate picture of the CuPc-perovskite interface by 

showing the collective behavior of CuPc molecules at the atomic scale. This enables better 

simulation and prediction of perovskite-CuPc interfacial properties.  

 

Figure 5.8 Unique CuPc stacking pattern at the SA layer junction. a) STM image showing unique CuPc 

stacking structure where two CuPc domains meet. Dashed black and yellow lines highlight the b-direction 

of each SA layer domain, which have an abnormal relative angle of 33°.  b) Zoomed-in image of the CuPc 

stacking pattern. Different colored circles (lower left) indicate the position of the outer orbitals of different 

CuPc molecules. Not all eight outer orbitals are visible, indicating intermolecular overlap between adjacent 

molecules. Colored circles (upper right) show similar stacking in a lower layer of CuPc.  Image Size: a) 27.7 

 27.7 nm2, b) 10.1  10.1 nm2. Imaging parameters: a,b) V = -2.5 V, I = 100 pA. 

Although the 2nd layer predominantly forms the same structure as the 1st layer, additional 

behavior was observed. Just as on MAPbI3, it was found that face-on adsorption is possible for a 

single, isolated CuPc molecule on the CuPc SA layer. More intriguingly, there was one observation 

of an alternate, ordered stacking pattern of CuPc on top of a CuPc SA layer. In Figure 5.8a, there 

are multiple rows of CuPc for which only a few of their outer orbitals are well resolved. The pattern 

is particularly notable because there is clearly resolved overlap of adjacent CuPc molecules, which 

is in contrast to the known stacking patterns of α-CuPc and β-CuPc. One possible cause for the 

formation of the unique stacking structure could be the discontinuous nature of the underlying 

CuPc SA layer. In Figure 5.8a, there are actually two different CuPc SA layers that have grown 

into each other at an angle of 33°, much smaller than the typical 121° bending angle. This makes 
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the normal bending pattern not possible, and likely results in a unique boundary topography 

between the two, which may cause the unique 2nd layer growth on top. This is important as it shows 

the viability of stacking schemes that involve intermolecular overlap, and thus a non-zero, non-

normal tilt angle relative to the substrate. In the next section, an alternate CuPc stacking pattern 

for the SA layer potentially involving molecular overlap is considered. 

5.7 Alternate CuPc stacking patterns 

So far the discussion has centered around CuPc SA layers featuring the repeating pattern 

of two rows of protrusions, one darker and one brighter. However, it is worth noting that another, 

less common three-protrusion chevron-shaped motif was observed (dashed black lines, Fig. 5.9). 

The dimensions are roughly the same as for the two-row pattern discussed in previous sections, 

with values of 1.17 nm (a-direction) and 4.7 Å (b-direction). However, a stacking angle of 73° is 

observed (dashed blue line, Fig. 5.9a), in contrast to the 61° stacking of the two-row pattern 

domains.  
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Figure 5.9 Three-protrusion motif and tilted CuPc molecules. a) STM image showing a CuPc SA layer 

exhibiting a three protrusion repeating pattern (dashed black line). Dashed blue lines denote stacking angle. 

b) Zoom-in on orbital pattern exhibited by an individual CuPc molecule at the SA layer edge (red circles). 

Green and black circles denote the upper-right most orbital for other CuPc molecules. Not all eight outer 

orbitals are visible, suggesting a tilted geometry with respect to MAPbI3. c) Zoom-in on the middle of a CuPc 

SA layer where individual CuPc molecules are partially distinguishable. Blue and black circles denote 

orbitals from two different CuPc molecules. The black dashed line shows the chevron pattern created by 

orbitals from two different molecules. Arrows indicate similar CuPc molecules in the adjacent row. Image 

Size: a) 9.0  9.0 nm2, b) 6.0  4.7 nm2, c) 5.9  2.6 nm2. Imaging parameters: a-c) V = -2.5 V, I = 100 pA.  
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An interesting phenomenon was observed in this domain where individual CuPc molecules 

are partially visible at the SA layer surface. Strikingly, the orbital lobes of the partially 

distinguishable CuPc molecules line up well with the macroscopic row structure of the SA layer. 

In Figure 5.9b, individual CuPc molecules are seen at the edge of the CuPc layer. Only four outer 

orbital lobes and four inner orbital lobes are clearly resolved (red circles), while the other lobes 

are blurred and have an apparent height comparable to the lower SA layer. This suggests that these 

molecules at the edge are tilted with respect to the substrate in both the a and b directions. SA 

layers are typically formed by molecules aligned at the same orientation, therefore it may be 

possible that CuPc molecules throughout the SA layer have a similar tilt as seen for the molecules 

on the edge.  

Partially resolved individual CuPc molecules were resolved not just at the edge, but also in 

the middle of the SA layer (blue and grey circles, Fig. 5.9c). Interestingly, these molecules show 

how the repeating, 3-protrusion chevron pattern could actually be composed of orbitals from two 

different overlapping CuPc molecules (dashed black line, Fig. 5.9c). It is important to note that for 

these molecules, 3 of the teardrop-shaped inner orbital lobes are resolved, whereas this is not 

normally the case for a regular chevron pattern. This suggests that the exact tilt and overlap of 

these individually distinguishable molecules may differ slightly from the CuPc molecules 

producing the 3-protrusion chevron pattern. The CuPc molecules highlighted in Figure 5.9c by 

blue and gray circles are offset from each other by ½ molecule in the b-direction. This allows the 

inner orbital lobes to be resolved. These lobes are not normally seen for the chevron pattern; thus 

it is proposed that a smaller ¼ molecule offset in the b-direction may produce the repeating chevron 

pattern. The fact that the molecule appears to be tilted in both the b- and a-directions suggests that 

there is intermolecular overlap in the a-direction as well. However, overlap in both directions 

would require a complex intercalation of the CuPc molecules that is not understood at this time.  

It should also be noted that evidence was observed on a chevron pattern domain that 

potentially supports a stacking model without intermolecular overlap in either the a- or b-directions. 

In figure 5.10 there are a number of defects in the SA layer, manifested as darker protrusions 

(yellow arrow). These do not occur as a single darker protrusion, but rather an entire 3-protrusion 

chevron pattern appears darker. Assuming the defect is due to geometric position of a single CuPc 

molecule, this would mean a chevron pattern is actually only composed of orbitals from a single 
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CuPc molecule. If the chevron pattern was composed of orbital lobes from 2 different CuPc 

molecule, as proposed based on Figure 5.9, the origin of this depression pattern would have to at 

least be partially electronic in nature. 

 

Figure 5.10 Defects in a chevron pattern domain. STM image of a chevron pattern domain with many 

defects. The defects appear as darker depressions and occur as a 3-depression chevron motif. Image Size: 

12.4  3.3 nm2. Imaging parameters: V = -2.64 V, I = 50 pA.  

5.8 CuPc on non-MAPbI3 domains 

Understanding the behavior of CuPc on MAPbI3 is essential for characterizing the interface 

in a device, but it does not provide the whole picture. The absorber layer in actual devices often 

does not have a perfectly stoichiometric ratio of elements, meaning that there are domains of non-

perovskite material in the film. This can be incidental, due to side-effects of the fabrication 

process.50 The non-stoichiometric ratio can also be by design, as there is evidence suggesting 

excess precursor material can improve performance.53 The samples created here in UHV 

environment also have domains of non-perovskite material, and this section will focus on these 

domains.  

Figure 5.11a shows an image of the MAPbI3 surface that shows the expected perovskite surface 

reconstruction except for a small area in the bottom center of the image (blue square). This small 

area looks smooth when zoomed-out, but a closer look in Figure 5.11b reveals atomic corrugation 

with a hexagonal pattern and a lattice constant of 4.3 Å. The right side of Figure 5.11c shows how 

CuPc interacts with the unknown, non-MAPbI3 surface. In stark contrast to the MAPbI3 case, on 

the non-perovskite domains there are numerous CuPc molecules face-on adsorbed in a disordered 

fashion, and in close proximity to each other. A zoomed-in image shows the HOMO of an 

individual CuPc on this unknown material, as evidenced by the eight outer and eight inner orbital 
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lobes visible (Fig. 5.11d). The fact that CuPc molecules in close proximity are generally able to 

maintain a flat-lying orientation, rather than forming a SA layer, indicates that the molecule-

substrate interaction with the non-perovskite material is stronger than with MAPbI3 and can 

compete with SA layer formation. This behavior is particularly striking considering that there is 

an SA layer extremely close to the individual CuPc molecules. It is also worth noting that the 

MAPbI3 surface is completely devoid of individual, face-on CuPc molecules. This difference in 

behavior has important implications for the perovskite-HTL interface in devices that have a non-

stoichiometric perovskite film. Different adsorption geometries would have a dramatic effect on 

the orbital overlap between adjacent layers, which can be expected to significantly alter charge 

transfer at the absorber layer-HTL interface in devices. 
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Figure 5.11 CuPc adsorption on non-MAPbI3 surface. a) Overview image showing an MAPbI3 film before 

CuPc deposition. The bottom of the image features a smooth, featureless area.  b) Zoom-in of the blue box 

area from Fig. (a) revealing atomic corrugation with a hexagonal pattern and a lattice constant of 

approximately 4.3 Å. c) A similar area featuring MAPbI3 and non-MAPbI3 domains after CuPc deposition. 

Very different behavior of CuPc molecules is seen depending on the domain where it is adsorbed (i.e 

perovskite or not). d) Zoom-in of face-on adsorbed CuPc on the non-MAPbI3 domain. Image Sizes: a) 17.6 

 17.6 nm2 b) 1.6  1.6 nm2; c) 26.4  26.4 nm2; d) 3.3  3.3 nm2. Imaging parameters: a,c-d) V = -2.5 V, I 

= 100 pA; b) V = -2.2 V, I = 100 pA. 
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5.9 Evaluation of non-MAPbI3 domain identity 

To provide a more detailed picture, it is important to understand the identity of this 

unknown domain. Five candidate materials are considered here: PbI2, MAI, an iodine adlayer, Pb, 

and bare Au(111). To examine the possibilities of PbI2 and MAI, precursor-only depositions were 

performed on cleaned Au(111) using the same deposition temperatures and times as for the co-

deposition trials.  

 

Figure 5.12 Non-MAPbI3 domain candidate material characterization. a) PbI2 deposited on Au(111). b) 

MAI deposited on Au(111). In both figures, the hexagonal lattice is denoted by dashed black lines. Image 

Sizes: a) 3.5  3.5 nm2 b) 3.6  3.6 nm2. Imaging parameters: a-b) V = -2.7 V, I = 300 pA. 

First, only PbI2 was deposited, resulting in a hexagonal atomic pattern (Fig. 5.12a). The 

average nearest neighbor distance between atoms is between 4.4 Å, with some variation depending 

on the direction in which the line profile is taken. This average value is comparable with literature 

values for PbI2 films ranging from 4.5-4.6 Å.152, 237-239 Importantly, this lattice constant is 

consistent with that of the hexagonal pattern seen on the non-MAPbI3 domain. Therefore, PbI2 is 

considered to be a viable candidate for the non-perovskite domain.  

Next, an MAI-only deposition was performed on cleaned Au(111). Although a tetragonal 

unit cell is expected from MAI,240 the resultant film exhibits a hexagonal pattern with a lattice 

constant of 4.6Å (Fig. 5.12b). This is slightly smaller than the hexagonal lattice constant of 4.9Å 
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reported by She et al.,152 who proposed that this hexagonal pattern is formed by iodine atoms 

leftover after MAI dissociates upon reacting with the metal Au(111) surface. This explanation is 

also feasible for the result obtained in this study. Based on this interpretation, MAI is eliminated 

as a candidate for the non-MAPbI3 domains observed. However, the possibility of an iodine 

network formed after MAI dissociation must now be considered.  

Evidence supporting the hypothesis of an iodine layer was found in STM images of a non-

optimized MAPbI3 deposition trial, in which only approximately 30% of the sample surface was 

perovskite. In Figure 5.13a, a region of this sample with both MAPbI3 and non-perovskite domains 

is shown. Even in this overview image, some faint long-range corrugation is evident in the non-

MAPbI3 domain. Smaller area images of such a non-perovskite domain reveal a hexagonal 

superstructure with a spacing of 2.61 nm (Fig. 5.13b) and a hexagonal atomic pattern with a lattice 

constant of 4.3 Å (Fig. 5.13c). The superstructure is found to be rotated by 9° relative to the atomic 

hexagonal lattice (black and yellow lines, Fig. 5.13b).  
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Figure 5.13 Hexagonal superstructure on unoptimized MAPbI3 co-deposition. a) Overview image of 

unoptimized MAPbI3 showing MAPbI3 and non-MAPbI3 domains. b) Image on non-MAPbI3 domain showing 

a hexagonal atomic lattice as well as a hexagonal superstructure. The black and yellow lines follow the 

periodicity of the superstructure and atomic lattice, respectively, showing the relative rotation of the two 

features. c) Zoom-in of atomic lattice from (b). Dashed black lines show the hexagonal superstructure and 

atomic lattice in (b) and (c). Image Sizes: a) 13.4  19.7 nm2; b) 10.3  10.3 nm2; c) 2.7  2.7 nm2. Imaging 

Parameters: a-c) V = -2.7 V, I = 300 pA. 

Notably, there are reports in the literature of hexagonal superstructures forming when an 

iodine adlayer is formed on Au(111).241-243 The reported superlattice constants (19-22 Å) are 

somewhat smaller than that measured in this work, but the relative angle of rotation between the 

atomic and superstructure lattices observed in these studies (7-10°) matches extremely well. 

Literature values for the nearest neighbor spacing of iodine adlayers on Au(111) vary depending 

on coverage. Lower coverages can yield a spacing of 5Å, the expected value for an iodine adlayer 

with a (√3  √3)R30° symmetry with respect to the Au(111) substrate.241-243 With higher coverages, 

compression of nearest neighbor spacing can occur, and I-I distances of 4.3-4.5Å have been 
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reported,242, 243 which is more consistent with the lattice constant of 4.3 Å measured in this study. 

Polyiodide chains and multilayer iodine can be ruled out as they exhibit different patterns than 

what is seen here.243 Finally, a survey XPS scan taken before STM imaging showed excess iodine, 

further supporting the hypothesis of the non-MAPbI3 domain being an iodine adlayer. Based on 

these results and comparison with existing literature, it is determined that an iodine adlayer is a 

viable candidate for the identity of the non-MAPbI3 domain observed in the 

CuPc/MAPbI3/Au(111) samples. 

Next, Pb is evaluated as a possible candidate for the non-MAPbI3 domain. Comparison 

with literature shows that a Pb monolayer on Au(111) exhibits a hexagonal pattern with the a 

nearest neighbor distance of 3.5Å,244 which is somewhat smaller than the periodicity measured 

here on the unknown hexagonal structure. A hexagonal moiré pattern was also reported for Pb on 

Au(111), but this pattern is rotated 26.5° relative to the atomic lattice of Pb, which is much larger 

than the relative angle of 9° measured between the atomic lattice and super lattice on the non-

MAPbI3 domains. Due to these inconsistencies, Pb is deemed to not be a suitable candidate for the 

identity of the non-perovskite domain.   

Finally, bare Au(111) can be quickly eliminated as a possibility for the non-MAPbI3 

domain. The spacing between neighboring atoms in the non-MAPbI3 domain is 4.3 Å, while the 

nearest neighbor distance in the Au(111) surface measured by STM is known to be 2.8 Å.245 

Additionally, based on literature and in-lab reproduction, CuPc appears as a cross shape on 

Au(111), rather than in the 16-lobed HOMO state seen on the non-MAPbI3 domains.  

It should also be noted that a number of defects were observed in the unknown hexagonal 

pattern. Representative images of defects found on various sample types are shown in Figure 5.14. 

Two different types of single depression defects were found in the hexagonal pattern from the 

MAI/Au(111) deposition trial. In one type the depression is surrounded by a perimeter of higher 

DOS (Fig. 5.14a), whereas in the other type, no modulation of the surrounding area DOS is seen 

(Fig. 5.14b). Interestingly, these two cases were imaged at the exact same imaging parameters, 

suggesting these are distinct defect types, rather than just an electronic effect due to different gap 

voltage. On the non-optimized 30% MAPbI3 sample, a triple bright protrusion defect can occur 

(Fig. 5.14c) as well as triple and single dark depression defects (Fig. 5.14d, top and bottom, 

respectively).  
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Lastly, on the optimized MAPbI3 sample on which the CuPc depositions were performed, 

two types of triple depression defects were imaged.  In Figure 5.14e the depressions are separated 

from the other depressions by a single atom in each direction, while in Figure 5.14f the three 

depressions are nearest neighbors. A survey of the literature did not yield any STM reports on 

defects that occur in PbI2 or in an iodine adlayer with which to compare the images obtained here. 

Notably, a separated triple depression defect similar to Figure 5.14e was reported for Gd-

substituted Bi2Te3 and attributed to sub-surface layer substitutional defects.246 At this time, the 

defect patterns seen in this study do not enable any strong conclusions regarding the identity of the 

non-MAPbI3 domain. However, they may provide important clues, especially in conjunction with 

future theoretical studies. 
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Figure 5.14 Defects in non-MAPbI3 domains. a-b) Single depression defects in the hexagonal pattern on 

an MAI/Au(111) sample. Image (a) shows increased DOS around depression, whereas (b) does not. c-d) 

Defects in the hexagonal pattern on an approximately 30% MAPbI3 sample. Image (c) shows a cluster of 

three bright protrusions. Image (d) shows both triple depression (top) and single depression (bottom) defect 

types. e-f) Separated (e) and clustered (f) triple depression defects in the hexagonal pattern on a 

CuPc/MAPbI3/Au(111) sample. Image Sizes: a-c) 2.4  2.4 nm2; d) 6.3  6.3 nm2; e) 3.3  3.3 nm2; f) 4.2  

4.2 nm2. Imaging parameters: a-d) V = -2.7 V, I = 300 pA; e-f) V = -2.5 V, I = 155 pA. 

5.10 CuPc on MAPbBr3 

To check whether the behavior of CuPc is dependent on the identity of the halide in the 

perovskite, CuPc was also deposited onto bromine-based perovskite. MAPbBr3 thin films were 

prepared using a similar protocol as for MAPbI3. PbBr2 and MABr were co-evaporated at 533K 

and 376K, respectively, for 4 minutes onto a cooled Au(111) substrate. CuPc deposition was 

performed by the same protocol described in Section 5.2. Similar results were obtained as on 

MAPbI3, with the CuPc forming a zig-zag SA layer exhibiting a repeating pattern of alternating 
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bright and dark rows of protrusions (Fig. 5.15a). These SA layers exhibited 121° bends and 

periodicity along a 60° stacking angle, consistent with the SA layers formed on MAPbI3. Thus, the 

formation of such a CuPc SA layer does not seem to be sensitive to the halide used in the perovskite 

film. Consequently, the OHP-CuPc interface structure shown in this work is representative for a 

wider variety of perovskite-based solar cell devices. 

 

Figure 5.15 CuPc SA layer on MAPbBr3. a) Overview STM image showing a CuPc SA layer on MAPbBr3. 

Note there is a shadowing effect on the CuPc SA layer caused by a multi-tip. b) Close-up image of the 

CuPc SA layer on MAPbBr3. The black and blue dashed lines show the bend angle and stacking angle of 

the CuPc SA layer, respectively. Both are consistent with the CuPc SA layer on MAPbI3. Image Size: a) 

30.0  30.0 nm2, b) 16.5  7.7 nm2. Imaging parameters: a) V = 5.3 V, I = 400 pA; b) V = 6.7 V, I = 600 pA.  

5.11 Summary 

The results of this chapter show that the CuPc HTL forms a SA layer on top of the light 

absorber layer MAPbX3 (X=I, Br). It was found there is no unique, face-on adsorption of the 1st 

interfacial layer of CuPc with perovskite, contrary to a previous report.66 After a thorough analysis 

of the collected data, there are two main hypotheses regarding the stacking structure of the CuPc 

SA layer observed on MAPbI3. The first hypothesis is that the SA layer is a modified version of 

α-CuPc. Support for this hypothesis comes from the observed periodicity at a 61° stacking angle 

and from the 11.4Å spacing between the rows of bright protrusions (i.e. along the a-axis), which 

match reasonably well with literature values for α-CuPc. The tendency for defects in the SA layer 

to occur in pairs along a stacking angle consistent with α-CuPc also support this proposal. However, 

there is some mismatch with literature for the b-axis periodicity. Additionally, the SA layer height 
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measured here suggests a tilted adsorption geometry, which would require a departure from the 

reported α-CuPc stacking schemes.  

An additional parameter to consider is that the CuPc molecule could adsorb such that either 

one or two isoindole groups are contacting the underlying MAPbI3. A study by Gardener et al. 

observed CuPc SA layer formation on silicon and concluded that double isoindole group 

adsorption was occurring because the rows were all the same apparent height.158 The alternating 

bright and dark rows seen in this chapter suggest a situation closer to single isoindole group 

adsorption is occurring. However, the relative width of the dark and bright rows doesn’t match 

what would be expected from single isoindole adsorption, so a definitive assignment is still 

premature. Future calculations from a theoretical collaborator will hopefully shed more light on 

this question. 

The second hypothesis involves a stacking scheme where there is intermolecular overlap 

in the SA layer in both the a and b axes. This is supported by STM images showing partially 

resolved individual CuPc molecules in an SA layer with a repeating 3-protrusion chevron pattern. 

These partially resolved CuPc molecules line up well with the macroscopic rows of the SA layer 

and can form the chevron pattern via orbitals from two different molecules, necessitating overlap 

of neighboring molecules. Additionally, the unique stacking pattern seen in Figure 5.8a shows that 

an overlapped stacking pattern is possible. 

It should be stressed that the chevron pattern was a rare observation, and it is not clear yet 

if this pattern constitutes a distinct polymorph from the usual bright-dark alternating row pattern. 

It has been shown that more than one polymorph can exist in the same sample preparation for 

TMPcs,247 therefore this possibility must be considered. The difference in observed stacking angle 

between the two-row pattern (61°) and the chevron pattern (73°) supports the idea that these are 

distinct polymorphs. However, despite the difference in appearance, the periodicity along both the 

a and b axes is similar for both the bright-dark two row pattern and the chevron pattern domains, 

suggesting they may actually be the same polymorph. The topography measured via STM can 

change dramatically depending on the shape and composition of the tip apex. Although a well-

resolved image involving a change in tip-shape showing direct correlation of the two-row and 

chevron patterns was not obtained, this remains a possible explanation for the two domains being 

the same polymorph even though they have different repeating motifs. 
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Irrespective of the stacking scheme of the CuPc molecules, observations suggest a 

relatively weak interaction between the CuPc SA layer and the underlying perovskite. The CuPc 

SA layer was found to exist at many different angles relative to the high symmetry directions of 

MAPbI3, indicating no preferred relative orientation and thus a weak coupling of the SA layer and 

MAPbI3. CuPc SA layers were observed to pass over MAPbI3 grain boundaries of the perovskite 

without being perturbed, further indicating weak interaction between the two layers. This idea is 

also supported by the rarity of individual face-on adsorbed CuPc molecules and by the mobility of 

such molecules. A similar CuPc SA layer has been observed forming as the 2nd layer of CuPc after 

an initial 1st layer of face-on CuPc was formed on Bi(111), suggesting that this striped SA layer 

forms when the CuPc is sufficiently decoupled from a substrate.160 This corroborates the idea that 

the interaction between MAPbI3 and CuPc is relatively weak. 

Conversely, CuPc exhibited a much different behavior on non-MAPbI3 domains present in 

the film. On these domains, CuPc exhibited a comparatively stronger interaction with the substrate, 

as evidenced by face-on adsorption geometry and the fact that multiple CuPc molecules could exist 

in close proximity without forming an SA layer. CuPc molecules on the non-MAPbI3 domain could 

also stay in their disordered arrangement without attaching to nearby a CuPc SA layer.  

Multiple candidates for the identity of the non-MAPbI3 domain were evaluated and 

compared with the observed hexagonal atomic packing and nearest neighbor spacing of 4.3 Å. A 

PbI2 only deposition yielded a hexagonal atomic lattice with 4.4Å. This is consistent with the non-

MAPbI3 domain and with literature values for PbI2, thus PbI2 is considered a viable candidate. An 

MAI only deposition resulted in a hexagonal pattern with a lattice constant of 4.6Å. The hexagonal 

pattern is not consistent with literature for MAI, thus it was eliminated as a candidate. The 

hexagonal pattern could potentially be from dissociated MAI creating an iodine adlayer. 

Supporting this hypothesis, non-MAPbI3 domains on MAPbI3 deposition samples showed a 

hexagonal superlattice rotated 9° from the hexagonal atomic lattice, consistent with literature for 

an iodine adlayer on Au(111). Thus an iodine adlayer is also considered a viable candidate for the 

non-MAPbI3 domain. Pb was eliminated as a possibility since the reported relative rotation angle 

of the superlattice and atomic lattice (26°) is much larger than that measured on the non-MAPbI3 

domain (9°). Au(111) was eliminated since its nearest neighbor spacing of 2.8Å is smaller than 
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that of the non-MAPbI3 domain. In summary, both PbI2 and an iodine adlayer were determined to 

be possible candidates for the non-MAPbI3 domain.  

The strikingly different behavior of the CuPc on the MAPbI3 and non-MAPbI3 domains 

has important consequences for perovskite solar cells with a non-stoichiometric perovskite film.  

This change in adsorption geometry can be expected to alter interfacial properties,129 including 

energy level alignment and charge transfer between the absorber layer and the CuPc HTM. The 

different CuPc orientations also lead to a less ordered HTM layer near the interface, which may 

negatively affect device performance. This study shows that the adsorption orientation and 

uniformity of the HTM (CuPc) at the molecular level depends strongly on the uniformity of the 

active absorber layer (i.e., MAPbI3). 

Currently, there is not enough evidence to conclusively determine whether PbI2 or an 

iodine adlayer is the more appropriate assignment for the non-MAPbI3 domain. Defects observed 

in the non-perovskite domain may provide clues for clarifying the identity of this domain with the 

help of theoretical support. In either case, there is merit in theoretical characterization of PbI2-

CuPc and iodine adlayer-CuPc interfacial properties, as both PbI2 and I2 can exist in non-ideal 

perovskite films. Such theoretical investigations are planned and will provide further insight into 

the complex interface observed here and clarify the implications for charge transfer and energy 

level alignment at the device interface. 
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Chapter 6: Atomic structure of the 

CsPbBr3 surface248 

6.1 Introduction 

 The previous chapters have focused on surfaces and interfaces that involve perovskites 

with the methylammonium cation in the A site. The methylammonium lead halide perovskites 

have shown high PCE in photovoltaic devices, but the organic nature of the methylammonium 

cation has contributed to material instability issues that hinder commercialization.131, 132, 249 

Incorporation of fractional amounts of cesium into the A site has improved phase stability of mixed 

halide perovskites28 and has also led to higher overall device stability.46 Understanding the surface 

structure of mixed cation perovskites will enable better modeling of device-relevant interfaces and 

their effect on key performance indicators. As an initial step toward this, it is prudent to first 

understand the surface of the simpler systems, MAPbBr3 and CsPbBr3, before attempting to 

understand the composite system, MAxCs1-xPbBr3.  

This chapter details our work on exploring the CsPbBr3 surface with STM and PES 

techniques. The CsPbBr3 surface is of high interest on its own, as this material has shown promise 

in a wide-range of applications. CsPbBr3-based solar cells have gained attention thanks to excellent 

stability and improved performance.47, 250, 251 CsPbBr3 has also shown strong promise being used 

to create LEDs,2-4 and perovskite interfaces in such LEDs have been shown to be crucial to device 

performance. Additionally, applications in nanowire-based laser cavities5, 6 and in x-ray and γ-ray 

detectors252 make CsPbBr3 a material of general fundamental interest to a broad spectrum of fields. 

Understanding the surface structure can lead to more accurate band structure calculations and 

enable more targeted interface engineering in devices.  

Some progress on understanding the CsPbBr3 surface was recently made in a scanning 

transmission electron microscopy (STEM) study showing that manipulating grain boundaries of 

nanocrystals could enable improved control of charge transfer between perovskite and neighboring 

layers in a device.253 Although atomic resolution was achieved with this study, the high annular 

dark field (HAADF) imaging technique used measures a signal based on the atomic number of an 
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element. This means that some Br at the surface are not observable due to the much stronger signal 

from the underlying Pb cations. Thus, an accurate picture of the CsPbBr3 surface remains 

unreported. In this chapter, STM is used to determine the surface structure of CsPbBr3 and reveals 

two different surface reconstructions, and the stability of CsPbBr3 in UHV was monitored via XPS. 

DFT calculations were performed by a collaborating theory group at Jilin University.  

6.2 Methods 

 The perovskite film was created via the co-deposition method in UHV onto a cleaned Au 

(111) substrate, using methods analogous to those described in earlier chapters. CsBr and PbBr2 

were co-evaporated at 670K and 515K, respectively, for 5 minutes onto an Au(111) substrate 

cooled to 132K. Low temperature STM was used to characterize the atomic-scale structures of the 

perovskite thin films at 4 K. The bias voltage was applied to the sample. XPS measurements were 

performed on half-cell architectures (Glass/FTO/TiO2/CsPbBr3) prepared according to the method 

described in reference 236. 

6.3 Overview of the CsPbBr3 surface  

 CsPbBr3 films produced using the methods described above were atomically flat and 

showed layer-by-layer growth (Fig. 6.1a). Connected grains, approximately 10nm in diameter, 

form a network that constitutes the uppermost layer of the film (light blue color, Fig. 6.1a). The 

inset in Figure 6.1a shows a step height of 5.3±0.3 Å, which will later be shown to be attributable 

to a single CsPbBr3 layer. A smaller area image shows atomic resolution of the CsPbBr3 top layer 

and underlying layer (orange and blue color, respectively, Fig. 6.1b). From this image, bright 

protrusions are distinguishable, which in a later section will be shown to be Br ions in the (010) 

surface of CsPbBr3. These anions form pairs similar to the Br pairs found on the surface of 

MAPbBr3. However, the Br pairs in CsPbBr3 form two different arrangements, both of which are 

distinct from the surface reconstructions found on MAPbBr3. Both the “stripe” and “armchair” 

domains are shown in Figure 6.1b, where their long-range pattern is highlighted in white. These 

two domains typically occur rotated by an angle of ±45° or ±90° relative to each other. A boundary 

between these two domains is also visible (Fig. 6.1b), nearby which multiple defects occur. In 

contrast, defects are rare within a single domain. 



Chapter 6: Atomic structure of the CsPbBr3 surface                                                                                          Page 95 

 

Adapted and reproduced with permission from Ref. 236. Copyright, 2020. American Chemical Society. The thesis 
author was a co-author and contributed to sample preparation, STM and XPS data acquisition and overall data 
interpretation and analysis. Figures provided by and modified with permission from Dr. Jeremy Hieulle. 

 

Figure 6.1 Overview of CsPbBr3 surface. a) Large area STM image showing island growth of CsPbBr3. 

Inset: Profile of the red line in (a), measuring the step height of the topmost layer. b) Atomic resolution 

image of the surface revealing two different “stripe” and “armchair” domains. White lines are guides for the 

eye showing the pattern of protrusions in each domain. Imaging parameters: (a) V = 3.0 V; I = 22 pA (b) V= 

2.0 V; I = 30 pA. Image size: (a) 96  96 nm2  (b) 20  14.5 nm2. 
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6.4 The “stripe” and “armchair” surface reconstructions 

 In this section, a closer look will be taken at the stripe and armchair domains. Combined 

with support from DFT calculations, models were proposed for these two atomic arrangements. It 

was found that the (010) surface, based on an orthorhombic CsPbBr3 crystal structure in the Pnma 

space group,254, 255 best matched the experimental STM images. From this calculation, it was 

possible to assign the bright protrusions in the STM images to be Br anions. Although Cs cations 

also are present in the (010) surface layer, they have not been resolved in experiment due to their 

density of states being lower than that of Br. A similar phenomenon was observed for MAPbBr3, 

in which MA cations, despite being present in the (010) surface layer, were not visualized via STM 

except on very rare occasions. With the (010) surface layer assignment for CsPbBr3, it is possible 

to characterize the stripe and armchair domains as two different surface reconstructions of this 

surface. 

First, the stripe domain of the CsPbBr3 surface is examined. From the STM images (Figs. 

6.1b and 6.2a), it was seen that the protrusions in this domain are all of the same apparent height, 

and that each stripe comprises two columns of Br pairs. These two columns ran along the same 

macroscopic stripe direction (i.e. the A-axis of the unit cell denoted by the white rectangle in Fig 

6.2a), but the Br pairs appeared rotated by approximately 76° with respect to the Br pairs in the 

other row in the same stripe (red and black lines, Fig. 6.2a). DFT calculations were consistent with 

this, showing pairing due to two different Br-Br distances, 5.2Å and 5.4Å, in the same row, and a 

relative angle of 77° with Br pairs in the adjacent row within the same stripe. Although well 

resolved in Figure 6.2a, the orientation of the Br pairing is not always obvious from STM imaging 

since the difference in nearest neighbor distances within a single row was near the instrumental 

resolution limit. 
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Figure 6.2 Stripe reconstruction of CsPbBr3 surface. a) Experimental STM image of the “stripe” surface 

reconstruction (top) and corresponding simulated STM image determined by DFT (bottom). Each stripe 

consists of two rows of Br pairs with a relative orientation of 76° denoted by red and black lines. The white 

rectangle shows the unit cell. b) Line profile along the “B” axis of the unit cell. c) Surface structure of stripe 

reconstruction as calculated by DFT. The Br have been artificially enlarged in the model to help visualize 

the Br pairing. Alternating short and long distances between rows along the “B” axis result in the stripe 

motif. The unit cell is denoted by a black rectangle. Color code: Br (brown), Cs+ (green). Imaging 

parameters: V = 2.3 V; I = 50 pA. Image size: 3.9  2.8 nm2. 

In the direction perpendicular to the stripe (B-axis of unit cell, Fig. 6.2a), there is an 

alternating short and long spacing between Br pairs (Fig. 6.2b-c). A distance of 6.2 Å was 

measured between Br pairs in the same stripe, and a longer 7.8 Å spacing was measured between 

Br pairs in neighboring stripes. The surface unit cell of this reconstruction (white box, Fig. 6.2a) 

is rectangular, with lattice parameters of A=7.3Å and B=14Å. Each unit cell contains 4Br and Cs+ 

ions (black square, Fig. 6.2c) Calculations show that the Br pairs are caused Coulomb interaction 
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between the Br and the two Cs+ cations in close proximity. Calculations also confirm that the 

alternation in Br pairs’ spacing is what causes the striped appearance of the surface reconstruction.  

Next, a closer look is taken at the armchair domain. In contrast to the stripe domain where 

all protrusions had the same apparent height, STM images of the armchair domain show an 

alternating pattern with rows of Br pairs that have differing apparent heights (Fig 6.3a, top). These 

rows of brighter and darker Br pairs occur along the [-101] direction of CsPbBr3, and are offset 

from each other along this direction. The other main feature of the armchair domain is the 

asymmetric spacing between the Br pairs along the [101] direction, which alternates between 

5.6Å and 6.0Å (Figs. 6.3a-b). This difference in spacing, combined with the offset of the bright 

and dark rows, creates the armchair motif.  
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Figure 6.3 Armchair reconstruction of CsPbBr3 surface. a) Experimental (top) and simulated (bottom) 

STM images of the armchair surface reconstruction of CsPbBr3. The surface layer crystal structure is 

overlaid on the simulated image at the bottom, showing the arrangement of differently positioned Cs cations. 

The Br have been enlarged to emphasize Br pairing. The white square denotes the unit cell of the armchair 

reconstruction. b-c) Side view of the crystal structure for the armchair reconstruction of CsPbBr3. Along the 

[101] direction (b), Br and Cs+ ions occupy different vertical positions, while along the [-101] direction (c), 

only Cs+ ions differ in height. d) Summary of the different vertical positions of Br and Cs+ ions. Imaging 

parameters: V = 2.0 V; I = 100 pA. Image size: 5.2  4.2 nm2. 

DFT calculations that match well experimental images confirm the asymmetric spacing, 

and also reveal the bright and dark rows to be caused by a difference in the vertical position of the 

surface layer ions (Fig 6.3a-b). The calculated surface reconstruction shows Br anions in two 

different positions, with one position 23pm lower than the other (Figs. 6.3b and d), which is in 

agreement with the bright and dark protrusions seen in the experimental images (Fig. 6.3a). The 
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Cs+ ions show an even greater variety, occupying three different vertical positions, referred to as 

up (U), middle (M), and down (D) in Figures 6.3c-d. The relative arrangement of these differently 

positioned Cs cations is overlaid on the DFT simulated image at the bottom of Figure 6.3a, where 

the unit cell is also marked by a white rectangle. Bright Br pairs result when the two closest Cs+ 

ions are both in the up position, while the darker Br pairs occur when the two nearest Cs+ ions are 

in a middle and down position, respectively.  The unit cell contains one bright Br pair with two 

Cs+ ions in the up position and one dark Br pair with a Cs+ in the middle position and another Cs+ 

in the down position. The total number of ions in the armchair domain’s surface unit cell (4 Br 

and 4 Cs+) is the same as in the stripe domain’s unit cell. At the top of Figure 6.3a, the unit cell is 

also marked (white rectangle) in the experimental STM image, from which lattice constants of 

c=11.8 Å and d=11.6 Å were obtained. In experimental images, the armchair reconstruction was 

less common than the stripe reconstruction, and this observation is supported by DFT calculations 

showing the stripe domain to be lower in energy than the less compact armchair domain. Finally, 

the calculated height of a single CsPbBr3 layer is 5.69 Å, which matches well with the measured 

island height of 5.3±0.3 Å (Fig. 6.1a). Therefore, these islands are assigned to be a single layer of 

CsPbBr3. 

6.5 Comparison with MAPbBr3 surface reconstructions 

 Now that the surface reconstructions of CsPbBr3 have been clarified, it is useful to provide 

some comparison with its previously studied organic-inorganic counterpart, MAPbBr3. In low 

temperature STM studies, both perovskites were found to have an orthorhombic crystal structure 

with the (010) plane exposed at the surface. Both MAPbBr3 and CsPbBr3 feature two surface 

reconstructions as well. MAPbBr3 features the “zig-zag” and “paired” reconstructions, while 

CsPbBr3 has “stripe” and “armchair” reconstructions. For MAPBr3, the occurrence of two 

reconstructions is explained by two different relative orientations of the asymmetric, dipolar MA 

cations relative to each other and to the Br anions. These two different rotated positions of the 

MA+ only affect the relative x-y positions of the Br anions, with their relative vertical positions 

remaining the same. Considering the origin of the two reconstructions lies in the dipolar nature of 

the MA cation, it would be logical to expect only one surface reconstruction for CsPbBr3, given 

the spherically symmetric nature of the Cs cation. However, two different reconstructions have 

been unambiguously resolved in this study, with differences in the vertical positions of the Cs 
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cations resulting in differences in the vertical position of the Br anions. Such a difference in the 

apparent height of the halides was not seen for the reconstructions of either MAPbBr3 or MAPbI3. 

Considering the similar nature of the reconstructions for both MA-based perovskites, it is 

reasonable to hypothesize that reconstructions similar to what was imaged here on CsPbBr3 will 

also occur on CsPbI3.  

It is also worth mentioning mixed halide systems. As discussed in Chapter 4, different 

halides substituted into the MAPbBr3 perovskite lattice showed a random distribution and 

exhibited a difference in apparent height in STM images. It would be especially interesting to 

perform a similar study on mixed halide Cs-based perovskites, as the greater asymmetry in the 

surface reconstructions of CsPbBr3, especially the apparent height alternation in the armchair 

domain, may lead to interesting non-random halide substitution behavior. further supporting that 

the Cs cations are causing the new reconstructions seen in CsPbBr3. 

Lastly, a previous STM report on MAPbI3 showed that the surface could be interconverted 

between the two different surface reconstructions via imaging at different conditions STM tip.151 

Such a behavior was not observed for CsPbBr3, suggesting a higher stability of the surface layer. 

The relative stability of the Cs- and MA-based perovskite will be explored further in the next 

section. 

6.6 Stability of the CsPbBr3 surface 

 In order to better understand the origin of the high stability of Cs-based perovskites, the 

chemical state evolution over time of a CsPbBr3 half-cell sample was monitored by XPS. After 

fabrication, the samples were stored and measured in a UHV environment. This essentially 

eliminates environmental factors like humidity, oxygen, or degradation due to interaction with a 

hole transport layer. The Cs 3d, Br 3d and Pb 4f XPS peaks were measured at various time intervals 

over a period of 224h and no change was seen in any of the three chemical states over this time 

period (Fig. 6.4). This is in stark contrast to the results described in Chapter 4 for MAPbBr3 using 

a similar approach (Fig. 4.6), in which a Pb(0) peak appeared after 4h of storage in UHV. Pb(0) is 

an indicator of perovskite degradation, and the lack of a Pb(0) peak in the CsPbBr3 experiment 

clearly shows the higher stability of the Cs-based perovskite compared to those with MA+ in the 

A site. The fact that such a stark difference in stability is seen even when many environmental 
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factors are suppressed in UHV suggests that the lower volatility of the Cs+ compared to MA+ plays 

an important role in the excellent stability shown by devices that use Cs-containing perovskite. 

The superior intrinsic stability may also arise in part from the higher stability of the two surface 

reconstructions, as mentioned in the previous section. 

 

Figure 6.4 Stability test of CsPbBr3 half-cells. Time evolution of the Pb 4f (a), Br 3d (b), and Cs 3d (c) 

XPS spectra of CsPbBr3 in a half-cell architecture (Glass/FTO/TiO2/CsPbBr3). The XPS spectra remain 

unchanged after 224h storage in UHV conditions. Notably, a Pb(0) peak, which is a typical indicator of 

perovskite degradation, does not appear. 

Section 6.7 Summary 

 In this chapter, the atomic structure of the surface of CsPbBr3 was determined in real space 

by STM imaging and corroborated by DFT simulations. Two different domains were observed via 

STM, the stripe domain and the armchair domain, both of which featured asymmetric spacing 

between Br- pairs. The armchair domain also exhibited alternating rows of Br- pairs that had 

different apparent heights. DFT calculations showed that the different domains occur due to 

different positioning of the Cs cations and the resulting interactions with the neighboring Br anions 

in the surface layer. The armchair domain shows a particularly interesting behavior, where the Cs 

cations occupy three unique vertical positions. The Br anions form pairs with differing apparent 

heights, depending on whether the neighboring Cs cations are in up positions (bright Br- pairs) or 

in middle and down positions (dark Br- pairs). Conversely, in the stripe phase, all the Cs cations 
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occupy the same vertical position. Additionally, the stripe phase was more common in STM 

images and determined by DFT to be the more stable domain of the two. 

 Both the surface reconstructions and the overall material stability of CsPbBr3 was 

compared with MAPbBr3. The material stability was evaluated by monitoring the chemical states 

of the perovskite over time via XPS. CsPbBr3 showed no sign of degradation, in the form of a 

Pb(0) peak, after 224h, whereas MAPbBr3 showed signs of degradation after just 4h. This 

difference in UHV, where environment-induced degradation is minimal, suggests that the lower 

volatility of the Cs cation compared to the MA cation may be a significant contributor to the 

material stability, and subsequently Cs containing perovskite-based device stability.  

The surface reconstructions of the Cs- and MA-perovskites were found to differ in 

important ways. While the two reconstructions in MAPbBr3 are due to different relative 

orientations of the asymmetric MA cation, the same mechanism cannot be at work for CsPbBr3, 

where the Cs cation is spherically symmetric. For CsPbBr3, it is the differing vertical positions of 

the Cs cations that lead to two surface reconstructions, both of which are distinct from the 

reconstructions seen on MAPbBr3. This suggests that the identity of the cations plays a strong role 

determining the surface structure of perovskites. This hypothesis is strengthened by the fact that 

MAPbBr3 and MAPbI3 exhibit near identical surface reconstructions, despite the differing halide. 

Thus, it is also anticipated that CsPbI3 likely has surface reconstructions very similar to those 

imaged here for CsPbBr3.  

The original motivation for this work was not only to understand the surface of CsPbBr3, 

but to use the results as a building block for studies on mixed cation perovskite materials. The 

work in this chapter highlights the strong influence the cation has on the surface. Surfaces of mixed 

cation perovskites likely have an even more complex surface reconstruction behavior that depends 

sensitively on the relative ratio of the cations as well as their distribution in the film. This provides 

an exciting avenue for future surface science research into a sub-class of perovskites that is 

especially relevant to the goal of producing perovskite devices with higher stability. 

 

 



Conclusion                                                                                                                                                          Page 104 

 

 

Conclusion 

 In this thesis, perovskite surfaces and the device-relevant MAPbX3-CuPc interface were 

characterized in an ultra-high vacuum environment at the atomic scale via scanning tunneling 

microscopy (STM), and the electronic properties and stability of the perovskite surfaces were 

explored via ultraviolet and X-ray photoelectron spectroscopy (XPS and UPS), respectively. 

Where appropriate, density functional theory (DFT) calculations performed by collaborators were 

utilized to corroborate and interpret experimental results. As described in Section 1.4, surface 

passivation and interfacial properties are key factors in the further optimization of OHP-based 

photovoltaic devices, and this thesis provides fundamental characterization of the atomic structure 

at the perovskite surface. 

 Aside from surface passivation, defect passivation is also a major strategy for device 

improvement. In Chapter 3, intrinsic defects that occur at the perovskite surface are characterized. 

It was observed that vacancy defects clusters, not just single point vacancies, can occur at the 

MAPbBr3 surface. It was determined that these vacancy clusters alter the local work function, thus 

potentially affecting energy level alignment and charge transfer at interfaces in a device. These 

vacancy defects were assigned to be neutral MABr vacancies, based on energy of formation 

calculations, with corroborating experimental data. Numerous dynamic events were imaged via 

STM, including vacancy-assisted ion transport, both along the perovskite surface, as well as to and 

from the bulk. DFT simulations identified favorable ion migration mechanisms, and found a 

difference in migration activation energy depending on crystal direction. This underscores how 

crystal orientation distribution in the polycrystalline films used in devices can affect device 

stabilization and performance. Br pair reorientation was also observed, enabling long-range 

dynamics. This phenomenon was found to potentially be aided by the presence of vacancies. 

Visualization of these dynamic events provides a unique perspective on the processes occurring at 

the perovskite surface.  

 Chlorine incorporation into perovskite materials has been employed as a method to 

improve performance, and it was suggested that chlorine may passivate defect induced traps. 

Halide mixing is also a general method for modifying the optoelectronic properties of perovskite 

materials. In Chapter 4 the effect of halide mixing on the surface of MAPbBr3 was explored. Upon 
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sublimation of the corresponding lead halide onto the MAPbBr3 surface, it was found that I and 

Cl could substitute Br at the surface. STM images, corroborated by DFT calculations, showed 

that these halides are incorporated into the lattice with a random distribution. DFT calculations of 

the decomposition energy of the perovskite found there is an increase in stability with low Cl-

substitution ratios. The existence of an optimal ratio of Cl-substitution was found to result from 

the balance between a beneficial Pb-X bond strength increase and a detrimental lattice strain 

increase. This increased stability at low Cl-substitution ratios was verified experimentally by XPS 

measurements on half-cell architectures stored in UHV. The appearance of a Pb(0) peak in the Pb 

4f spectrum was used as an indicator of surface material degradation. While a Pb(0) peak appeared 

after only 4h for pure MAPbBr3, a Pb(0) peak only appeared after 116h for the 18% Cl-substituted 

sample, showing a much greater stability.  

 Although it important to understand and characterize perovskite surfaces, these ultimately 

only constitute half of the interface in a device, therefore in Chapter 5 the interface between 

MAPbI3 and CuPc was explored. It was found that CuPc has a relatively weak interaction with the 

underlying perovskite, as evidenced by the extreme rarity of individual CuPc molecules. Instead, 

CuPc molecules formed SA layers, even at sub-monolayer coverages. This signifies that the CuPc 

intermolecular forces are greater than the molecule-substrate binding forces. This is in 

disagreement with a previous report that proposed a flat-lying layer of CuPc exists at the interface, 

based on DFT binding energy calculations that only considered a single CuPc molecule. The 

results in this chapter show the importance of considering an ensemble of molecules. Knowing the 

CuPc orientation is important because the orientation of organic molecules can alter interfacial 

properties. It should be noted that the exact orientation and tilt angle of the CuPc molecules in the 

SA layers observed is not yet known. Some experimental evidence is consistent with an α-CuPc 

stacking structure, but some discrepancies prevent a definitive assignment at this time. 

Non-perovskite domains were also observed on the MAPbI3 films, and the CuPc was found 

to have a comparatively stronger interaction with these domains. In contrast to MAPbI3, individual, 

flat-lying CuPc molecules were found in close proximity to each other on the non-perovskite 

domain. This shows a molecule-substrate interaction that is stronger than the CuPc intermolecular 

force. The identity of the non-perovskite domain is still not clear, although tentative candidates are 

PbI2 or an iodine monolayer. The difference in molecular adsorption behavior has important 
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implications for the interface of devices that utilize non-stoichiometric perovskite films with 

organic HTLs. Altering the perovskite stoichiometry can have unintended effects on interfacial 

properties as it may also alter the other half of the interface by changing the adsorption orientation 

of organic molecule HTLs. 

The previous chapters dealt with MA-based perovskites, but many high performing and 

highly stable perovskite formulations now involve incorporation of Cs cations into the A site. As 

an initial step towards understanding Cs-containing mixed cation perovskites, and also to 

understand the surface properties of all-inorganic perovskites, the atomic structure and stability of 

the CsPbBr3 surface was characterized in Chapter 6. STM measurements revealed that two 

different surface reconstructions exist at the CsPbBr3 surface, the “stripe” reconstruction and the 

“armchair” reconstruction. These two surface reconstructions are both distinct from the 

reconstructions seen on the surface of MA-based perovskites. The stripe reconstruction was found 

to be formed by an alternating long and short spacing between Br pairs, and each stripe was 

composed of two rows of Br pairs with a relative orientation of around 77°. The armchair 

reconstruction featured alternating rows of brighter and darker Br pairs. DFT calculations showed 

the difference in apparent height of the two rows was caused by the fact that Cs cations in the 

surface layer can occupy 3 different vertical positions. The vertical position of the two nearest Cs 

cations determined the brightness of the Br pairs in the STM images. The stability of CsPbBr3 

was also checked via XPS. Even after 224h of storage in UHV, there was no appearance of a Pb(0) 

peak, indicating vastly superior stability in comparison to MAPbBr3, which showed signs of 

degradation after only 4h. This stability study was performed in UHV, where environmental 

factors such as oxygen or moisture are at a minimum. Therefore, the superior stability in UHV is 

tentatively assigned to the lower volatility of Cs+ in comparison with MA+. 

Overall, this thesis investigated perovskite surfaces and device-relevant interfaces at the 

atomic scale using STM and evaluated stability by observing changes in XPS spectra as a function 

of time. This thesis provides valuable fundamental understanding and direct visualization of 

perovskite surfaces and interfaces that can aid applied research in the quest to optimize interfaces 

for superior OHP-based solar cell performance and stability.  
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