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Note 1. Tight-binding model and group theoretical analysis of the kagome lattice

In this Note, we discuss the effects of the breathing and spin-orbit coupling (SOC) on

the kagome lattice. First, we calculate the band dispersions of the kagome lattice using the

tight-binding model in Ref. [24]. After the Fourier transformation of eq. (4) in Ref. [24], we

obtain the following 6× 6 matrix Hamiltonian:

H(k) = −


0 t̂†1e

ik·a1/2 + t̂′†1 e
−ik·a1/2 t̂3e

−ik·a3/2 + t̂′3e
ik·a3/2

t̂1e
−ik·a1/2 + t̂′1e

ik·a1/2 0 t̂†2e
ik·a2/2 + t̂′†2 e

−ik·a2/2

t̂†3e
ik·a3 + t̂′†3 e

−ik·a3/2 t̂2e
−ik·a2/2 + t̂′2e

ik·a2/2 0

 (1)

where the vectors aj and the hopping operators t̂j and t̂′j are defined in the reference (j =

1, 2, 3). We introduce new parameters β = δ/t0 and ttotal =
√
t20 + λ20,i + λ20,R to simplify

the equations, then the hopping operators t̂j and t̂
′
j can be represented as follows:

t̂j = (1 + β)ttotal exp(iφd̂j · σ), t̂′j = (1− β)ttotal exp(iφd̂j · σ)

β and φ correspond to the strengths of the breathing and SOC, respectively. The band

dispersions of several types of kagome lattices are summarized in Fig. S1.
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FIG. S1. Calculated band dispersions using the tight-binding model of (a) ideal kagome lattice

without SOC, (b) ideal kagome lattice with SOC, (c) breathing kagome lattice without SOC, and

(d) breathing kagome lattice with SOC. The breathing parameter β is equal to 0.2 in (c), 0.05 in

(d), and 0 otherwise. The SOC parameter φ is equal to −0.3 when SOC is on, and 0 otherwise.

The SOC angle parameter α is π/2 (intrinsic SOC) in the whole cases.
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TABLE SI. Irreducible representations of the ideal kagome lattice

Point Spin Neglected Spin Included

Γ (6mm) A1 + E2 E1/2 + E3/2 + E5/2

K (3m) A1 + E 2E1/2 + E3/2

M (2mm) A1 +B1 +B2 3E1/2

TABLE SII. Irreducible representations of the breathing kagome lattice

Point Spin Neglected Spin Included

Γ (3m) A1 + E 2E1/2 + E3/2

K (3) A+ E 2E1/2 + 2B3/2

M (m) 2A′ +A′′ 3E1/2

Tables SI and SII show how the degenerations appear and disappear at highly symmetric

Γ, K, and M points in the kagome lattice. In the following argument based on Refs. [17, 26-

28], we consider two-dimensional point groups. In two dimensions, the ideal kagome lattice

has 6-fold rotational symmetry and six mirror planes (6mm) and the breathing lattice has

3-fold rotational symmetry and three mirror planes (3m). Figures S1(a) and (c) correspond

to the spin neglected cases (three eigenstates) and S1(b) and (d) correspond to the spin

included cases (six eigenstates). We note that in Fig. S1(b) double degenerations occur

anywhere nonetheless with the inclusion of SOC.

We use, as basis functions, wave functions centered at each atom in the kagome unit cell.

In the first columns of the tables, the parentheses on the right of each point label enclose the

symbol of the point group of the operations which keep the point invariant in the reciprocal

space. The characters of the representation of our basis functions are calculated and then

the representation is reduced to several irreducible representations as shown in Tables SI

and SII.

An irreducible representation E (sometimes with subscripts) is two-dimensional, which

generally means a double degeneration. The exception of the degeneration is the case where

E can be reduced to two one-dimensional irreducible representations in the range of complex

numbers and the Kramers degeneration does not occur. Since external field is not applied,

time-reversal symmetry (TRS) allows the Kramers degeneration. However, for the additional
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degeneration originating from the TRS to occur in band dispersions, the lattice needs to

have the space inversion symmetry or the high-symmetric point needs to be one of the time-

reversal invariant momenta (TRIM). Since the ideal kagome lattice has the space inversion

symmetry and the Γ and M points are TRIM, physically irreducible two-dimensional repre-

sentations cause degenerations in these situations. The K points in the breathing kagome

lattice do not satisfy the above two conditions, and therefore the degeneration does not

occur. With these considerations, the appearance and disappearance of the degenerations

represented in Fig. S1 can be explained.

Note 2. Berry curvature of the TRS-breaking kagome lattice

To calculate the Berry curvature, we now break the TRS by some external magnetic field.

As a result, only one direction of spin (up spin is used here) is considered. We compose the

3 × 3 Hamiltonian from eq. (1) by extracting the odd lines and the odd columns. In the

cases where either one of SOC and the breathing is included, the band dispersions of the

3× 3 Hamiltonian is the same as Figs. S1(b) or (c). When both are included, the gap sizes

at the K and K′ points become different [Fig. S2(a)], where the K′ point is the symmetric

position of the K point with respect to the Γ point.
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FIG. S2. Berry curvature of the kagome lattice. (a) Band dispersions of the 3 × 3 Hamiltonian

with the inclusion of the breathing and SOC. (b) Berry curvature (in arbitrary units) of the ideal

kagome lattice with SOC, (c) that of the breathing kagome lattice without SOC, and (d) that of

the breathing kagome lattice with SOC. Local maxima or minima are at the K or K′ points. β is

set to 0.2 in (c) and 0.05 in (d) and φ is set to −0.3 in (b) and (d).

The Berry curvature of the lowest band is calculated according to the definition Ω(k) =
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i(∇kψ
∗(k))× (∇kψ(k)) [2], where ψ(k) is the eigenstate of the lowest band. Figures S2(b),

(c), and (d) show the z components of the Berry curvatures. The Berry curvature caused

by SOC is an even function with Chern number 1, while that caused by the breathing is

odd with Chern number 0. When both are included, the difference of the gap sizes appears

in the magnitude of the Berry curvature.

Note 3. Group theoretical analysis of the breathing kagome bilayer

We obtain degeneration properties of the breathing kagome bilayer based on group theory.

In this Note, we neglect the spin and SOC and calculate the representations with six basis

functions of the bilayer lattice, similarly to the previous research about ferromagnetic kagome

bilayer [20].
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FIG. S3. (a) Distribution of the K points. 2-fold rotational operation along the axis Li keeps the

Ki and K′
i invariant (i = 1, 2, 3).

First, we use the primitive rhombohedral unit cell in the real space and the hexagonal

column unit cell in the reciprocal space, which corresponds to the periodicity of ARPES

spectra. Because of the unusual stacking of the hexagonal column unit cells discussed in the

main text, all K points are treated as different (but equivalent) points [Fig. S3]. For example,(
4π
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, 0, 0

)
,
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,
2π√
3a
,
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c

)
, and
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−2π

3a
,− 2π√

3a
,−2π

c

)
are the same points labeled by

K1. Therefore, the K points are not invariant under 3-fold rotations. In the space group

R3̄m, only a 2-fold rotational operation along an axis on the kxky plane keeps the K points
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TABLE SIII. Irreducible representations of the breathing kagome monolayer and bilayer. Paren-

theses in the first column encloses the symbols of the space groups of the bilayer.

Point Monolayer Bilayer

Γ (3̄m) A1 + E (A1g +A2u) + (Eg + Eu)

K (32) A+ E (A1 +A2) + 2E

M (2/m) 2A′ +A′′ 2(Ag +Bu) + (Bg +Au)

(a) No interlayer interaction
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FIG. S4. Schematics of band dispersions of the breathing kagome bilayer when the conventional

unit cell is used. (a) Schematic of band dispersions of breathing kagome bilayer with no interlayer

interaction and (b) that with weak interaction, keeping degeneration properties obtained from

group theoretical analysis. The band crossing between the Γ and K points is not systematic and

thus may not exist.

invariant [Fig. S3], then the representation is reduced to 3A+ 3B (no degeneration).

If we use the conventional unit cell, the reciprocal unit cell is folded to a hexagonal column

with a height of 2π/c. The three-dimensional space group of a high-symmetry point includes

the two-dimensional space group, so we can extend two-dimensional irreducible representa-

tions [Table SII] to three-dimensional ones. Table SIII shows degeneration properties at the

Γ, K, and M points. Actually two degenerations occur at the K points, but if we assume

weak interlayer interaction, the degenerated bands will be parabolic [Fig. S4(b)]. Therefore,

these degenerations do not necessarily mean the vanishment of the breathing effect.
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Note 4. Sample growth and X-ray diffraction

The samples were grown by chemical vapor transport. Figure S5(a) shows a typical image

of an obtained crystal, showing clear plate-like morphology with a hexagonal shape.

The crystals were characterized by X-ray diffraction (XRD) using a Bruker D8 Venture

(single crystal) and a Bruker D8 Discover (out of plane). The lattice constants a = b =

5.35 Å and c = 19.82 Å were determined based on single crystal XRD data. Figure S5(b)

shows the out of plane diffraction (00l). There are no secondary crystal phases and all peaks

are indexed in accordance with the expected Fe3Sn2 crystal.

(a) (b)

1 mm

FIG. S5. Growth and characterization of Fe3Sn2 single crystals. (a) Picture of a typical crystal

with a clear hexagonal shape. (b) Out of plane X-ray diffraction pattern with clear (00l) peaks.

Note 5. Bulk states observed by VUV-ARPES

Figure S6 shows bulk bands observed by VUV-ARPES. In the constant-energy mapping

[Fig. S6(a)], dispersions show a long periodicity of the three-dimensional states. Additionally,

the triangular-shaped pocket centered at the Γ̄1 point [Fig. S6(b)] reflects 3-fold rotational

symmetry and mirror planes originating from the three-dimensionality. The graph of the

MDCs with different rotational angles [Fig. S6(c)] shows three cycles of the change of the

peak positions in 2π rotation, which supports the triangular shape of the pocket.
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FIG. S6. Bulk states measured by VUV light. (a) Constant-energy mapping measured by 112 eV

VUV light. The solid lines are the periodicity of the three-dimensional states and the dashed lines

are that of the two-dimensional states. (b) Triangular-shaped pocket centered at the Γ̄1 point.

The pink arrow arcs and lines in the bottom right corner represent 3-fold rotational symmetry and

three mirror planes of the bulk states. (c) MDCs with different rotational angles θ. The schematic

in the top right corner shows the definition of θ.
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Note 6. Negligible kz dispersion measured by VUV-ARPES

Figure S7(b) shows momentum distribution curves corresponding to the ky-kz mapping

taken by VUV-ARPES [Fig. S7(a)]. Although the matrix element effects weakened the

intensity of several peaks, one can see negligible kz dispersion along overlaid blue lines.

(a) (b)

VUV

FIG. S7. Negligible kz dispersion measured by VUV-ARPES. (a) ky-kz mapping at the Fermi

energy measured by VUV light [same as Fig. 3(a)]. (b) Momentum distribution curves of (a), with

overlaid vertical blue lines.
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Note 7. Curvature plot of SX-ARPES mapping

We used curvature plot [38], which can enhance several band dispersions, to the SX-

ARPES mapping shown in Fig. S8(a). Figure S8(b) shows the enhanced bulk band disper-

sions.

(a)

(b)

FIG. S8. Enhanced band dispersions by curvature plot. (a) Original SX-ARPES mapping along

the ky direction [same as Fig. 4(a)]. (b) Curvature plot of (a), with overlaid DFT band dispersions.
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Note 8. DFT band dispersions near K̄ point

Figure S9 shows DFT band dispersions near the K̄ point from kz = 0 (the Γ point is on

the plane) to kz = 3π/c (the Z point is on the plane). The horizontal axes are the same as

that of Fig. 4(g) in the main text.

(a)

E
-E

F (
eV

)

0

0.2

-0.2

-0.4

-0.6

-0.8

E
-E

F (
eV

)

0

0.2

-0.2

-0.4

-0.6

-0.8

E
-E

F (
eV

)

0

0.2

-0.2

-0.4

-0.6

-0.8

Up Spin
Down Spin

FIG. S9. DFT band dispersions near the K̄ point with the difference of the kz coordinate.
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