
fninf-14-00031 July 4, 2020 Time: 17:43 # 1

METHODS
published: 07 July 2020

doi: 10.3389/fninf.2020.00031

Edited by:
Gaute T. Einevoll,

Norwegian University of Life Sciences,
Norway

Reviewed by:
Michael Wolfgang Reimann,

École Polytechnique Fédérale
de Lausanne, Switzerland

William W. Lytton,
SUNY Downstate Medical Center,

United States

*Correspondence:
Sungho Hong

shhong@oist.jp

Received: 16 March 2020
Accepted: 16 June 2020
Published: 07 July 2020

Citation:
Wichert I, Jee S, De Schutter E

and Hong S (2020) Pycabnn: Efficient
and Extensible Software to Construct

an Anatomical Basis
for a Physiologically Realistic Neural

Network Model.
Front. Neuroinform. 14:31.

doi: 10.3389/fninf.2020.00031

Pycabnn: Efficient and Extensible
Software to Construct an Anatomical
Basis for a Physiologically Realistic
Neural Network Model
Ines Wichert1,2, Sanghun Jee1,3, Erik De Schutter1,4 and Sungho Hong1*

1 Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Onna, Japan, 2 Bernstein Center
for Computational Neuroscience Berlin, Berlin, Germany, 3 Department of Life Science, Korea University, Seoul,
South Korea, 4 Theoretical Neurobiology, University of Antwerp, Antwerpen, Belgium

Physiologically detailed models of neural networks are an important tool for studying
how biophysical mechanisms impact neural information processing. An important,
fundamental step in constructing such a model is determining where neurons are
placed and how they connect to each other, based on known anatomical properties
and constraints given by experimental data. Here we present an open-source software
tool, pycabnn, that is dedicated to generating an anatomical model, which serves as
the basis of a full network model. In pycabnn, we implemented efficient algorithms
for generating physiologically realistic cell positions and for determining connectivity
based on extended geometrical structures such as axonal and dendritic morphology.
We demonstrate the capabilities and performance of pycabnn by using an example, a
network model of the cerebellar granular layer, which requires generating more than half
a million cells and computing their mutual connectivity. We show that pycabnn is efficient
enough to carry out all the required tasks on a laptop computer within reasonable
runtime, although it can also run in a parallel computing environment. Written purely
in Python with limited external dependencies, pycabnn is easy to use and extend, and
it can be a useful tool for computational neural network studies in the future.

Keywords: neural network model, anatomical basis, cell position, network connectivity, cerebellum, cerebellar
granule cell, Python

INTRODUCTION

Physiologically realistic neural network simulations are becoming increasingly important in
neurobiology studies as they allow investigating experimentally identified biophysical features of
a system (Einevoll et al., 2019). However, a large number of network models rely on random
anatomical configurations, such as a random positioning of cells in space, and/or random
connectivity between them, even when physiological realism is pursued. Those models contradict a
growing number of experimental discoveries that reveal non-random anatomical features in diverse
neural systems. For example, the locations of cells are not entirely random (Yellott, 1983; Eglen,
2012; Jiao et al., 2014; Maruoka et al., 2017; Töpperwien et al., 2018). The probability of electric
and synaptic connections between two cells depends on their mutual distance (Dugué et al., 2009;
Rieubland et al., 2014).

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2020 | Volume 14 | Article 31

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2020.00031
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2020.00031
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2020.00031&domain=pdf&date_stamp=2020-07-07
https://www.frontiersin.org/articles/10.3389/fninf.2020.00031/full
http://loop.frontiersin.org/people/956659/overview
http://loop.frontiersin.org/people/931483/overview
http://loop.frontiersin.org/people/132/overview
http://loop.frontiersin.org/people/262352/overview
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 2

Wichert et al. Pycabnn

Furthermore, recent computational studies demonstrated the
functional importance of specific connectivity. In a network,
distance limits the spreading of activity from one neuron to
others and therefore contributes to localized activity (Pyle and
Rosenbaum, 2017; Rosenbaum et al., 2017). Also, if a network
has geometric regularity in axonal morphology, patterning of
network activity in 3D can emerge (Sudhakar et al., 2017).
However, there have not been many easily usable tools that
address specifically and systematically the problem of building an
anatomical foundation of a neural network model.

In this paper, we present pycabnn, a Python tool for
Constructing an Anatomical Basis of a Neural Network model.
Pycabnn determines positions of cellular structures such as
neurons and presynaptic terminals and finds their connectivity,
based on experimental measured conditions and physiologically
plausible assumptions.

Pycabnn is originally created as a replacement of our previous
software, the Boundary Representation Language (BREP), used
for constructing a network model of the cerebellar granular
layer (Sudhakar et al., 2017). BREP was written in scheme and
compiled into a native binary executable by Chicken Scheme1 to
be deployed in large-scale, multi-cpu computing environments
such as cluster supercomputers. In contrast, in designing
pycabnn, we emphasized making it portable, expandable, and
easy to use. To this end, pycabnn is written purely in the
Python language with limited external dependencies on widely
used scientific packages, such as numpy and scikit-learn. It can
be used flexibly in diverse computing environments, ranging
from a laptop computer to a cluster supercomputer. The Python
basis of pycabnn also makes it easy to add enhancements in
algorithms and implementations, which significantly improve
the performance, compared to BREP. Furthermore, pycabnn
specifically aims making a structural basis, and can be used
independently of how the network model is finally implemented
or which simulation platform is used.

We will explain our core algorithms and how they are
implemented in detail in the Methods section. Then, in Results,
we will demonstrate a module in pycabnn for generating
positions of cells. We will explain the motivation for our core
algorithms and experimental backgrounds and show an example
of generating positions for various types of cells in a model of the
cerebellar granular layer.

We will continue to use the example of the cerebellar
granular layer network to demonstrate how another module
in pycabnn can be used to find connectivity between neurons.
Lastly, we will compare the characteristics and simulation results
of a pycabnn-generated model to a similar model that we
published in Sudhakar et al. (2017).

METHODS

Pycabnn is an open-source package available at https://github.
com/CNS-oist/pycabnn. The documentation for installation and
usage can be found in that repository. A list of external packages

1https://www.call-cc.org

that pycabnn depends on can be found in “requirements.txt” and
“optional-requirements.txt” file in the repository.

Generation of Cell Positions
For cell bodies and other quasi-spherical cellular structures,
we used a stochastic spatial sampling algorithm called Poisson
disk sampling (PDS). PDS efficiently generates points covering
a space uniformly, or based on a given distribution, with a
given minimal distance between them and simulates stochastic
dense packing of semi-hard spheres in space. In pycabnn,
we implemented a variant of the Bridson algorithm (Bridson,
2007), which uses cubic voxels whose sides are given by r/

√
D

where r is the minimal distance between points and D is the
dimensionality of the space.

Initially, we mark all the voxels “eligible.” Then, we randomly
select 20% of the eligible voxels and generate a random point
in each selected voxel as cell position candidate. We compute
mutual distances of the points and accept only the points
satisfying the minimal distance condition (>r). The voxels with
accepted points are marked “ineligible.” Then, we begin the next
round of random voxel selection with the remaining eligible
voxels and perform candidate generation. We track a rejection
rate of generated candidates to avoid voxels with histories of
many rejections. This procedure is repeated until we reach a
target number of points or run out of eligible voxels.

We also implemented the maximal PDS algorithm (Ebeida
et al., 2012), which generates points until it is impossible to add
another point without violating the minimal distance condition.
Our implementation of this maximal PDS is mostly the same as
the Bridson sampling described above, except for an additional
subdivision of voxels step: When the number of newly added
points becomes smaller than 0.06% of the target number of
points during the Bridson sampling procedure, we split all the
eligible voxels (ancestors) into subvoxels (descendants) whose
sides are a half of the parent voxel sides. We then remove all
the subvoxels that are completely within a minimal distance
from any of the previously generated points. Then, random
points are generated only within the remaining subvoxels. If
a point is accepted, an ancestor voxel containing the point is
marked ineligible, just like in the Bridson algorithm, and all
of its descendants (subvoxels) are removed. This subdivision
step can be performed multiple times, i.e., subvoxels are
divided into even smaller subvoxels whenever the number of
newly added points becomes too small. As the number of
accepted samples increases, the volume that eligible subvoxels
can occupy eventually starts to decrease, and this accelerates the
sampling procedure.

Our implementation can also generate point clouds that
represent multiple cell types mixed together. Rather than
spawning them simultaneously, we build one point cloud per cell
type sequentially. At each stage, cell positions are generated in the
same way with additional rejection rules imposed by previously
generated other types of cells.

In some cases, cellular structures are not always distributed
isotropically. For example, in the cerebellar cortex, mossy fibers
are generally oriented in a sagittal direction, which results in
an anisotropic distribution of synaptic terminals (Sultan, 2001).

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2020 | Volume 14 | Article 31

https://github.com/CNS-oist/pycabnn
https://github.com/CNS-oist/pycabnn
https://www.call-cc.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 3

Wichert et al. Pycabnn

This can be represented by applying a scaling factor to relevant
coordinates (see below).

So far, all the algorithms are for packing hard spheres,
but cellular structures are soft and allow small deformations
for more irregular packing, leading to important differences
between the generated and real cellular distribution. For
example, in the case of densely packed hard spheres, the
number of nearest neighbors would sharply drop as their
mutual distance becomes below the minimal distance, while
soft spheres would show a more continuous change, just as in
experimental data (e.g., Figure 4B). To introduce this additional
irregularity, we first subtracted a small softness margin from
the minimal distance, generated cell positions, and then added
small Gaussian noise with standard deviation equal to the
softness margin to the generated coordinates. The value of the
softness margin can be determined in a several ways. If there
is experimental data to compute a histogram of the nearest
neighbor distances (e.g., Figure 4B inset), a suitable softness
margin can be found by comparing the histograms of the
experimental and pycabnn-generated data. A softness margin
can also be estimated from cell size variability data. Specifically,
for a softness margin δ, we add a random number, drawn
from a normal distribution N(0, δ2), to each cell position
coordinate. Therefore, cell size would have a standard deviation
of 2δ, which can be compared with the experimental data. In
the worst case, without any data, a softness margin can be
set by a reasonable assumption about how well a cell body
can be compressed.

Algorithms for Generating Connectivity
Overview
Experimental data for electric and synaptic connectivity is often
given in the form of a probability density function of the cell-
to-cell distance or axon-to-dendrite distance, as described by
the so-called Peter’s rule (Rees et al., 2017). In pycabnn, finding
connections between spatially extended structures such as axons
and dendrites takes the following steps. We first generate the
locations of cell somata and then point cloud representations of
dendrites and axons by using suitable generators, provided by
users. Each point cloud is stored in a data structure, Query_point,
along with other relevant information per point such as
identifiers for the cells and compartments that they belong to.
Then, we use an efficient search for the nearest neighbors with
the point clouds to identify axodendritic or dendrodendritic
connections and also generate necessary information for building
a simulation, such as identification of pre-/post-synaptic cells,
locations of synapses, axonal propagation delays, etc. Next,
we explain how we perform the nearest neighbor search on
the point clouds.

Algorithm for the Nearest Neighbor Search
In pycabnn, the core algorithm is the K-d tree-based nearest
neighbor search, implemented in a Python machine-learning
package, scikit-learn2. In pycabnn, one point cloud representing
either the origin or the target structure is organized in the K-d

2https://scikit-learn.org

tree whereas the points of the other structure are used one by one
as query points.

Briefly, K-d trees are binary search trees that embed points
in a k-dimensional space. To construct one from a point cloud,
we first choose an arbitrary starting point and one of the spatial
dimensions. Then, we define a hyperplane that passes through the
point and is perpendicular to the chosen axis. This plane separates
all points into a left and a right subtree. Next, we choose another
axis and perpendicular hyperplane to separate the points in the
subtrees again. This step is repeated with circling around the k
axes until there is only one node left in each subtree, which is
then called a leaf node.

When searching for the nearest neighbor of a query point,
we first walk down the tree. For each node, we check which
side of the hyperplane that goes through the node contains
points that are closer to the query point. This procedure is easy
since we only have to compare the coordinate of a single axis.
The step is performed until we reach a leaf node, which we
then register as the “current best.” Then, we walk back up the
tree. This time, we check for every node that we visit whether
the other side of the hyperplane which goes through the point
contains a point that is closer to the query point than the
current best. That is the case when the hyperplane intersects
with a hypersphere around the query point with a radius of
the current best distance. If there is an intersection, we move
down to the other subtree. If the leaf node that we find in this
process is closer to the query point than the “current best,” we
register it as a new “current best.” Then, we again walk up the
tree. This iterative process terminates when we reach the root
node. In order to find all points within a certain critical radius
(ranged search), a similar search is performed, although this time
every point that lies within this radius is stored. This algorithm
enables a fast search of nearest neighbors, O(knlogn) with k being
the number of dimensions and n being the number of points
(Clarkson, 1983).

Additional Speedup Implementations
In addition to the nearest neighbor search method in 3D, we
also devised and used a 2D projection method, which takes
advantage of regularity in the geometry of axon bundles. For
example, in the cerebellar cortex, parallel fibers are densely
packed, long (a few millimeters) axons that extend along a
transverse axis. To represent the fibers in a 3D scheme, we
need to generate at least a hundred or more points per axon.
However, since they approximately only run in a transverse
direction, we can represent them as points projected to a 2D
sagittal plane (Figure 1). After projection, a two-dimensional
tree can be used to find connections, and as they are now
only represented by one point, it is sufficient to only perform
one nearest neighbor search per axon. The only additional
comparison in the projected axis is necessary to check whether
the found points lie within the axonal stretch, making true
nearest neighbors in 3D. This method dramatically increases
both speed and resource efficiency. Apart from these advantages,
this method leads to a more realistic connection density along
an axon, since connections are found in a cylindrical region
around the axon rather than on the bead-like structure from radii

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2020 | Volume 14 | Article 31

https://scikit-learn.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 4

Wichert et al. Pycabnn

FIGURE 1 | Projection method. An example neuron with an extended
morphology (blue) is innervated by multiple axons (black lines), running parallel
in 3D. Black dots are axon endpoints and dotted lines are extrapolations of
the axons. We project the morphology to a 2D plane (gray), which is
orthogonal to the axon direction. The axons are also projected as points (x
marks). The axon-cell intersection points are first found in the 2D projection
plane (red x’s) and are backtraced to determine whether they correspond to
true intersection points in 3D (red dot) or not (yellow dot).

around finite sampled points, which can lead to inaccuracies due
to discretization.

To further speed up the process and make effective use of
computing power, the search process can be parallelized and
performed in cluster supercomputers. We employed a parallel
map-and-reduce model of computation and incorporated
the package ipyparallel3, which provides an easy-to-use
implementation. In the beginning, we generated point clouds
for given cell types, which are packaged in the Query_point data
structure. Given a source and target point cloud, a K-d tree is
constructed from the bigger one at a master computing node,
and distributed to multiple worker nodes. Then, we grouped
points in the other cloud into chunks, and scattered them to the
workers for the parallel nearest neighbor searches. Finally, the
results are gathered back to the master node to be saved as files.

Program Structure
Figure 2 shows the workflow with pycabnn. We begin with a
specification of the model such as the model size, etc. Then,
the positions of cells belonging to each type are generated
sequentially, and Cell_pop objects are created based on them.
After that, for each cell type, we render a point cloud by calling
a rendering method of the Cell_pop module, which is stored in
a Query_point object with relevant information, such as the IDs
of enclosing segments. When the Query_points are ready, we use
the Connector objects to generate connectivity from one cell type
to another. The last step outputs a list of (source cell ID, target
cell ID, target segment ID, distance, etc.) and stores it in one
or multiple files.

3https://pypi.org/project/ipyparallel

Data Generation and Simulation
Procedure
For an example of cell position generation in section
“Generation of Cell Positions,” we created a position
model of the granular layer, with a size of 700 µm
(mediolateral) × 700 µm (sagittal) × 200 µm (vertical)
in the rodent cerebellum. We sequentially generated Golgi
cells (GoC), glomeruli (Glo), and granule cells (GC). We
chose this order since we considered that generating the
GC positions lastly would be better for replicating the
dense volume-filling by GCs seen in experimental data
(Töpperwien et al., 2018).

For each cell type, we first computed the target number of
cells, ncell, from experimental data of the cell densities (see section
“Results”). When the target volume is V, the predicted minimal
distance based on the complete filling assumption, dc, is

V = ncell ·
4
3
π

(
dc
2

)3
H⇒ dc =

(
6 V

π ncell

)1/3
.

Initially, we set the first minimal distance to test, d1, to a
value slightly larger than dc. Then, we iteratively searched for a
threshold value, dθ, where a slight increase causes the number of
generated cells to become smaller than ncell. We also considered
the anisotropy in the Glo distribution such that the Glo-to-
Glo distance is about three times larger in the mediolateral
than parasagittal direction (Sultan, 2001), and used a squeezed
coordinate system for Glos (see section “Generation of Cell
Positions” for details of this procedure). Since our algorithms
are stochastic, the same minimal distance parameter can lead to
cell distributions with a different density. To check this, we ran
the maximal PDS algorithm with dθ to generate as many cells
as possible and monitored whether the deviation in their density
from the target is small (<0.01%).

Furthermore, to avoid boundary effects, we generated cells in
an extended volume that is 50 µm larger in every axis than the
target volume and removed all the cells contained in 25 µm-
wide strips at boundaries. Then, all the coordinates are shifted
by 25 µm so that the lowest corner of the volume becomes (x,
y, z) = (0, 0, 0) again. All the cell positions are generated with a
MacBook Pro (2.9 GHz Intel Core i7 with 16 GB RAM; Apple
Inc., CA, United States) in single-core mode.

In section “Generation of Connectivity,” we generated the
connectivity for a published network model (Sudhakar et al.,
2017). For a better comparison of results, we used the same
cellular positions as one of the simulations in the study, instead
of the cell position generator of pycabnn. Then, we ran BREP, the
software used in Sudhakar et al. (2017), and pycabnn with the
same cell position data, in the OIST sango cluster supercomputer
with 120 cores (Intel Xeon E5-2680v3, 5 GB RAM per cpu). We
ran the performance tests of pycabnn with the same setup as
mentioned above.

Network simulations, based on the connections by BREP
or pycabnn, ran in the sango cluster computer with 200 cores
(see above). We used the exactly the same model code4 built

4https://senselab.med.yale.edu/ModelDB/ShowModel?model=232023

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2020 | Volume 14 | Article 31

https://pypi.org/project/ipyparallel
https://senselab.med.yale.edu/ModelDB/ShowModel?model=232023
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 5

Wichert et al. Pycabnn

FIGURE 2 | Overview of the structure of pycabnn. After sequentially generating cell body positions of given neuron types (blue), point clouds representing
morphological structures are generated (green) and stored in Query_point data structures with other information for simulation. Those Query_point data are then fed
into Connector’s (red) that perform the nearest neighbor search and generate connectivity data in a format that a simulator can take as an input.

on the NEURON 7.4 simulation platform and used identical
parameters to those reported in Sudhakar et al. (2017) other
than the connectivity. The simulation paradigm was the same as
for Figures 2E–H in Sudhakar et al. (2017) (with gap junctions)
where a small number of mossy fibers fired at 60 Hz, beginning
from t = 500 ms.

RESULTS

Here, we show an example of how pycabnn is used and
demonstrate its performance with a network model for the
granular layer of the rodent cerebellar cortex. Briefly, this model
is composed of two cell types, excitatory granular cells (GC)
and inhibitory Golgi cells (GoC). Both types of neurons receive
external inputs from mossy fibers (MF) that enter from the
bottom of the granular layer, and branch to form glomeruli (Glo),
distinctive intertwinings between MF presynaptic terminals, GC
dendrites, and GoC axons. Each GC emits a long axon that
initially ascends in a vertical direction, and bifurcates in another
region called the molecular layer, to travel extensively in a
transverse/mediolateral direction. GoCs receive excitatory inputs
both from the ascending segment (ascending axon; AA) and
the transversely stretched part (parallel fiber; PF), in addition
to the MF input.

Generation of Cell Positions
In many neural systems, positions of the cells are not entirely
random but often follow patterns similar to densely packed

soft granules, such as retinal cells (Yellott, 1983; Eglen, 2012;
Jiao et al., 2014; Maruoka et al., 2017; Töpperwien et al., 2018;
Yellott, 1983; Jiao et al., 2014), cortical neurons in microcolumns
(Maruoka et al., 2017), etc. Cerebellar GCs also show a large peak
in their pair correlation function, and therefore the distance to
the nearest neighbor is typically around the average diameter
of GCs, suggesting that they are densely packed (Töpperwien
et al., 2018). The cell position generator of pycabnn employs an
efficient algorithm, called the Poisson disk sampling (PDS), for
generating points in a densely packed system, with a capability to
generate heterogeneous cell populations (see section “Methods”).
In particular, we implemented the maximal PDS algorithm by
Ebeida et al. (2012) that finds a maximal filling of a volume
by balls, in which an additional ball cannot be inserted without
violating a minimal distance condition. For example, Figure 3
shows uniformly distributed points in 2D, generated by the
algorithm, as the positions of mossy fibers (MF) entering the
cerebellar granular layer, with a density ρMF = 1650 mm−2

(Sudhakar et al., 2017) and mutual spacing rMF = 20.9 µm.
By using the maximal PDS method in pycabnn, we

sequentially generated GoCs, Glos, and GCs in a volume of
700 µm (mediolateral) × 700 µm (sagittal) × 200 µm (vertical),
with densities ρGoC = 9500 mm−3 (Dugué et al., 2009) and
ρGC = 1.9 × 106 mm−3 (Billings et al., 2014). For Glos,
we used that each GC makes synapses to 4.5 glomeruli on
average and also each glomerulus receives 15 GC dendrites
on average (Palay and Chan-Palay, 1974), which leads to a
number of glomeruli per GC = 4.5/15 = 0.3. Therefore, we used
ρGlo = 0.57× 106 mm−3.

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2020 | Volume 14 | Article 31

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 6

Wichert et al. Pycabnn

FIGURE 3 | Example of generated points by the Poisson disk sampling
method. Samples are generated by the maximal PDS algorithm in 2D. The
density and mutual spacing were given by ρMF = 1650 mm-2 (Sudhakar et al.,
2017) and rMF = 20.9 µm, respectively, while each point is plotted with a
diameter of 8 µm for visual clarity. Scale bar: 100 µm.

For each cell type in this model, we determined a minimal
mutual distance between cells that can achieve maximal filling
of the volume with a given density, e.g., the filling where we
cannot add one more cell without violating the minimal mutual
distance. We found that a minimal mutual distance for GoCs was
rGoC = 45 µm, with a softness margin (see section “Methods”)
of 1 µm, which we set by the assumption that a GoC somata is
as soft as glomeruli (see below). Note that rGoC is well above the
diameter of GoCs, dGoC = 27 µm (Solinas et al., 2007).

Glomeruli are known to occupy about one-third of the
whole volume (Billings et al., 2014) and are also anisotropically
distributed as their mutual distance tends to be about three times
larger in sagittal than in mediolateral direction (Sultan, 2001). To
satisfy these two conditions, we generated glomeruli in a virtual,
squeezed volume, which is created by shrinking the sagittal axis
of the original volume by 1/3 and tuned the minimal distance rGlo
in this squeezed volume. The glomerulus density ρGlo estimated
above predicts rglo ≈ 7–9 µm, which is close to experimentally
measured sizes of glomeruli in rats [8–12 and 6–9 µm along the
longer and shorter axis, respectively (Jakab and Hámori, 1988)].
Therefore, we assumed that the minimal mutual distance between
glomeruli is given by a glomerulus diameter, dGlo = rGlo. This
diameter was also used to determine how GoCs and glomeruli
avoid each other. We estimated that a softness margin of 1 µm
approximately corresponds to the size variability of glomeruli
above (Jakab and Hámori, 1988). With this softness margin, we
found that, if rglo = dGlo = 8.39 µm, glomeruli filled the given
squeezed volume with ρGlo with approximate maximality. Lastly,
we performed a similar procedure for GCs and obtained the
minimal distance/diameter of a GC, rGC = dGC = 6.15 µm and
a softness margin of 0.2 µm, which we estimated by comparing
the nearest neighbor density histogram with that from the
experimental data (see section “Methods” and below). This is
close to but slightly smaller than an experimental measurement
dGC = 6.7 µm (Billings et al., 2014). This can be caused by
our model GCs being semi-hard spheres, while real GCs and

glomeruli are soft structures. Therefore, they can have larger
average sizes than our models but can be squeezed better to fill
the same volume.

Figure 4A shows an example of generated cell populations,
demonstrating that pycabnn produced the cell locations without
any significant overlap within given minimal distances and/or
cell body sizes. The quantitative analysis further confirmed this.
Particularly for GCs, we computed a histogram of distances
between two nearest neighboring cells (Figure 4B) and this
showed a peak at an average cell diameter dGC = 6.15 µm
that sharply declines as distance decreases. This proves that
neighboring GCs are never significantly closer to each other than
a GC diameter and are most likely touching each other, as in tight
packing. The pair correlation function, computed by averaging
the density functions around each GC, shows similar properties
(Figure 4C). Around each GC, there is no cell within 5 µm
and the density of other GCs again peaks at dGC = 6.15 µm.
Notably, there is no significant secondary or further peak beyond
that point, which would be present if GCs formed a lattice-
like structure. These two features in the generated GC positions
are qualitatively congruent with experimental data from human
cerebellum (Töpperwien et al., 2018; Figures 4B,C insets), which
proves that our algorithm indeed produces realistic cell positions.

Generation of Connectivity
Finding Connectivity by Cell-to-Cell Distance
When experimental data for connectivity is given by the
probability to connect or connection strength with respect to cell
body-to-cell body distance, generating connections based on cell
locations is comparatively easy.

Connections from glomeruli to GCs were generated by a
simple distance-based search scheme as described in Sudhakar
et al. (2017), which finds possible connections to distinct
neighboring glomeruli within a certain range from each GC,
rather than fixing the number of connections per GC. Here, we
additionally considered that GCs prefer making connections to
glomeruli in a sagittal direction and therefore their dendrites are
stretched about four times longer in a sagittal than mediolateral
direction (Houston et al., 2017). We incorporated this by
performing our ranged search in a coordinate system that is
squeezed by 1/4 in sagittal direction, similar to the coordinate
scaling that we used for generating glomeruli positions.

With this procedure and the cell positions determined
as described in the previous section, we got realistic
4.43 ± 1.37 connections per GC when the search range
in mediolateral direction was rGC−Glo = 7.85 µm. In this
case, the GC-to-Glo distance, or length of our model GC
dendrite was 13.47 ± 5.81 µm, which is close to reported
estimates from experimental data (Hámori and Somogyi, 1983;
Billings et al., 2014).

Notably, when the cell positions were purely random, we
found 4.25± 2.12 connections per GC, and therefore a variability
in GC-Glo connections increased by 56% compared to our
maximal volume-filling model. Thus, there are far less outlier
GCs in the volume-filling model. For example, in the random
position model, GCs with more than seven or less than three

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2020 | Volume 14 | Article 31

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 7

Wichert et al. Pycabnn

FIGURE 4 | Generated cell locations in the cerebellar granular layer. (A) Sequential generation of Golgi cells (Left), glomeruli (Middle), and granule cells (Right) in a
model of the granular layer in the rodent cerebellum. A small fraction of the cells is shown in a sagittal plane (x: sagittal, y: vertical direction). Scale bar: 100 µm.
Physiological diameters (Golgi: 27 µm; Glomerulus: 8.39 µm; Granule: 6.15 µm) and density parameters (Billings et al., 2014; Sudhakar et al., 2017) are used.
(B,C). Nearest neighbor distribution (B) and pair correlation function (C) of the model granule cells. Insets are based on experimental data from human cerebellum
(Töpperwien et al., 2018). Peak locations are different in insets since they are based on human data where the granule cells are smaller ([diameter: 4.00 ± 0.02 µm
(Töpperwien et al., 2018)].

connections were 7 and 21% of all GCs, respectively. On the other
hand, in the volume-filling model, those GCs were only 1 and 7%,
respectively. This shows that the volume-filling model provides a
natural uniformization mechanism for the number of GC inputs.
Similar input uniformization in densely packed neurons has also
been reported previously (Yellott, 1983; Jiao et al., 2014). Our
cell position and connectivity model suggests that dense packing
of neurons, which explains a comparatively small volume of
the cerebellum (Töpperwien et al., 2018), is related to similar
functional advantages, such as improved sampling of inputs
(Yellott, 1983) by GCs.

Finding Connectivity by Tracking Axons
Establishing connectivity becomes more complicated when we
need to consider extended axonal and dendritic geometry. In
our example of the cerebellar granular layer, GC axons have a
unique geometric feature that makes it inadequate to determine
GC-to-GoC connectivity by simple distance-based rules. GC
axons vertically rise from a cell body in the granular layer
to branching points in the molecular layer, forming ascending
axons (AA). Then, they bifurcate and elongate parallelly in a
transverse direction for a few millimeters, called parallel fibers
(PF). Both parts have presynaptic terminals and can make
excitatory synaptic connections with other types of neurons. To
fully account for this geometric configuration, it is necessary to
virtually construct GC axons and track them to find potential
synaptic connections with GoCs.

As in our previous model (Sudhakar et al., 2017), we
used a GoC model with two apical and two basal dendrites,
both oriented randomly with a preference toward the sagittal

direction. Again, as in this model, we represented them by point
clouds, each containing 25 and 12 points sampled uniformly
along each of the apical and basal dendrites, respectively
(Figure 5A). Note that each dendrite is segmented via the
lambda rule (Hines and Carnevale, 1997) and all the points
carry information about to which dendrites and segments they
belong. This information is stored in a Query_point structure
with the positions. Due to their lengths, each GC axon needs to
be represented by more than at least a few hundred points. We
took advantage of their geometric properties that AAs and PFs
run in parallel in a vertical and transverse direction, respectively,
and used a 2D projection scheme. It represents each structure as
its intersection point with the plane perpendicular to it, together
with endpoint coordinates in the projected direction (Figure 1;
see section “Methods”).

With generated point clouds for the two populations, pycabnn
correctly identified candidate synaptic connections both for AAs
and PFs (Figures 5B,C). Compared to our previously used
software BREP, pycabnn showed much superior performance.
In parallel runs on a cluster computer with 120 cores, pycabnn
ran 2.6 times faster (pycabnn: 333.31 ± 3.8 s, averaged over 5
runs; BREP: 864.24 ± 38.27 s, averaged over 17 runs), given the
same initial cell positions. The speedup in the cluster computer
could have been limited by communication cost between nodes.
Indeed, on a laptop computer in single-core mode, the runtime
of pycabnn was comparable to that of BREP in the cluster
computing environment (829.21± 37.30 s, averaged over 5 runs).

Other than performance differences, we found that BREP
and pycabnn generated similar connectivity structures for the
network model. For example, the number of synaptic connections

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2020 | Volume 14 | Article 31

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 8

Wichert et al. Pycabnn

FIGURE 5 | Example synaptic connections of GoC and GC axons. (A) Model GoCs (cyan: apical, magenta: basal dendrites) representing their extended
morphologies. Black dots are sampling points in point clouds. Only four GoCs are shown for clarity. (B) An example synaptic connection (red dot) between a GoC
and PF segment of GC axon (black line), shown in 3D (Top) and in an x-z plane (Bottom). A black dot represents a GC emitting the axon. (C) The same figure as (B)
for an AA-GoC connection example. x: mediolateral, y: parasagittal, z: vertical axis.

per GoC shows a very similar distribution, both for the AA
and PF case (Figures 6A,B). When we ran the network model
simulation in Sudhakar et al. (2017); see section “Methods”
based on the pycabnn-generated connectivity, the result was also
comparable to the BREP-based model. It showed, for example, the
characteristic oscillation of GoC firing, dependent on the mossy
fiber firing rate (Figure 6C).

In summary, this result demonstrates that the
dendritic/axonal morphology generation and connectivity
determination of pycabnn produces correct, expected
results, given the specifications of a network model, and
with high efficiency.

DISCUSSION

We introduce pycabnn, a software tool to construct an
anatomical basis for a physiological, large-scale neural network
simulation. Pycabnn is built with efficient algorithms for two
stages of building a model, generating positions of neurons
and determining their mutual connectivity. In the first part,
we implemented efficient algorithms for stochastic packing of
spheres that can be used for making a volume-filling model
of cell distribution. In the second part, pycabnn uses a fast
search algorithm for nearest neighbors using a K-d tree method,
to determine connectivity based on the distance between
cellular structures.

We tested pycabnn with a physiologically detailed model
of the cerebellar granular layer. We found that pycabnn
can generate cell positions that are congruent with recent
experimental data. As for the connectivity part, we confirmed
that pycabnn generates connectivity that is closely compatible

with an existing network model and simulation, showing very
similar activity patterns to the previous model built with our
previous software, BREP. BREP was written in scheme and
compiled to a native binary program to run on distributed
multiple CPUs. However, the connectivity generation by pycabnn
was more efficient than by BREP, though pycabnn was written
Python, an interpreted scripting language. Furthermore, the
same model can be built on a single laptop computer with a
reasonable runtime.

The cell placement algorithm of pycabnn is suited for
building a maximal volume-filling model of cell distribution.
This is inspired by the experimental findings of quasi-random
neuronal distributions in diverse neural systems. In particular,
our major target system, the cerebellar cortex, has been shown
to have such features, which were replicated by our pycabnn
model. A maximal volume-filling model predicted the sizes
of glomeruli and GCs given their densities based on an
assumption that the volume is maximally occupied. Those
sizes were close to experimental measurements, confirming that
indeed the cerebellar granular layer is a densely packed system
(Töpperwien et al., 2018). The maximal volume-filling model
had implications for synaptic connectivity, primarily reducing
the variability in GC-to-glomerulus connections formed by
a distance-based search. It has been noted that a quasi-
random cell distribution is advantageous since each neuron
can sample its inputs with enhanced uniformity (Yellott, 1983;
Jiao et al., 2014). This illustrates the importance of having
a good cell placement model for building a network model,
which was our original motivation for implementing this
step in pycabnn.

In particular, the average number of GC-to-glomerulus
connection per GC has been repeatedly related to optimal

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2020 | Volume 14 | Article 31

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 9

Wichert et al. Pycabnn

FIGURE 6 | The network model constructed by pycabnn replicates connectivity and behavior. (A) The number of synaptic connections between ascending axons
(AA) and GoCs in the Sudhakar et al. model (left, gray) and pycabnn (right, black). (B) The same figure as A, for parallel fiber axons (PF). (C) Firing of GoCs in the
Sudhakar et al. model (top, gray) and network constructed by pycabnn (bottom, black). The same data is plotted in time vs. GoC x positions (left) and also y
positions (right). x: mediolateral, y: parasagittal, z: vertical axis.

input/output information transfer by GCs (Marr, 1969;
Billings et al., 2014; Litwin-Kumar et al., 2017). However, the
variability of connection and how it impacts information
processing have been rarely studied. Our realistic position model
of both GCs and glomeruli suggests that the comparatively
small volume of the cerebellum resulting in dense packing
of the cells contributes to reducing the connection variability
and improves the information transfer by GCs, for example by
uniformizing the dimensionality expansion of the mossy fiber
inputs (Litwin-Kumar et al., 2017). However, a quantitative study
on the impact of the connection variability is much beyond the
scope of this paper, and we will leave it to future study.

When determining network connectivity, pycabnn assumes
that experimental data constraining the connections are given
by the so-called Peter’s rule (Rees et al., 2017), predicting
synapses based on the distance between cells or extended cellular
structures such as dendrites and axons. Implementing this can
sound straightforward, but several optimizations were made to
achieve sufficient efficiency in pycabnn. For example, in the
nearest neighbor search, due to the difference in complexity of
building a K-d tree and performing a single search, it is generally
faster to make a tree with a bigger point cloud if searches are
performed between two unequal-sized clouds of a source and
target. Therefore, in our implementation of the nearest neighbor
search, a K-d tree is always made from a bigger point cloud and
search results are adaptively repackaged depending on whether

the tree is built from a source or target. Also, we implemented
a 2D projection scheme (Figure 1) that takes advantage of
geometric regularity in axonal and dendritic morphology. This
is particularly useful in our main application, the cerebellar
cortex, where parallel fibers and ascending axons from GCs run
parallel to each in one direction but can be potentially useful
in other systems with similar geometrical properties. Compared
to our previous software, BREP, which also used the K-d tree
for connectivity determination, pycabnn ran much faster due to
these implementation details designed for efficiency.

By using the Peter’s rule, pycabnn inevitably shares its issues.
First, Peter’s rule just describes the proportion of synapses and
therefore it may not describe the general network structure.
Second, it is not enough to make synapses just based on distance
between axons and dendrites, since there can be several factors
affecting the formation of synapses, such as neurogeometry
(location, orientation and branch morphometrics) and other
synaptic features including spines, shafts, gap junctions, and
terminal boutons. Last, depending on at which level Peter’s
rule would be applied, different results will be obtained
(Rees et al., 2017).

Pycabnn has other limitations, and we will make
improvements in those aspects in the future. First of all,
cell position generation is limited to a model of volume filling by
hard spheres. Our approach is comparable to a recent study by
Casali et al. (2019), who used a different method, the Bounded

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2020 | Volume 14 | Article 31

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 10

Wichert et al. Pycabnn

Self-Avoiding Random Walk Algorithm (BSRW), which also
implements cell placement without overlapping between cells
within critical ranges. However, in comparisons with the
experimental data, which they did not do, the experimental data
(Figures 4B,C insets) clearly shows that the minimal distance
distribution is rather smooth without a discontinuity, which is
the feature that a model with packed hard spheres cannot achieve.
We tried to circumvent this difficulty by including random
perturbation set by a softness margin parameter. In comparison,
other studies explicitly modeled the packing of soft discs in two
dimensions and yielded very realistic cell distributions (Eglen
et al., 2000; Jiao et al., 2014). However, it is also necessary to
evaluate the cell-to-cell interactions in those schemes, which
can be computationally expensive. There are known efficient
algorithms for simulating many-body interactions, e.g., the
Barnes-Hut method (Barnes and Hut, 1986) that can be adapted
for our purpose.

Another limitation is that pycabnn can generate duplicate
connections: If cell structures are close to each other within
a critical range over a long enough distance, pycabnn will
find a cluster of multiple adjacent connections in a small
region. Although multiple, clustered connections between an
axon and dendrite have been observed in real systems (Bloss
et al., 2018), many of them can arise as artifacts in the
construction of a model. A simple, possible solution is to restrict
the number of connections made between any two structures,
which can be done in a post-processing step. Other promising
potential improvements include handling of detailed morphology
of neurons via point cloud generation from a reconstructed
morphology and a scheme to divide a volume and process
subvolumes in parallel, and merge results for further scaling-up.

Pycabnn is an open-source program written almost purely in
Python 3, with dependency only on a few widely used open-
source science packages, which makes using and extending

pycabnn easy. Pycabnn output, containing the structural basis,
can be used with most of simulation platforms. Since large-
scale imaging data of cell positions and connectivity are
increasingly available, we believe pycabnn, as a tool to model
those aspects, will be useful for computational neural network
studies in the future.

DATA AVAILABILITY STATEMENT

The datasets generated for this study, together with the codes, can
be found in https://github.com/CNS-OIST/pycabnn.

AUTHOR CONTRIBUTIONS

SH and ED conceived the research. IW and SJ wrote an initial
version of the software. IW, SJ, and SH tested and revised the
software. All authors wrote the manuscript and approved the
submitted version.

FUNDING

This work was supported by the Okinawa Institute of Science and
Technology Graduate University.

ACKNOWLEDGMENTS

We thank Marieke Töpperwien and Tim Salditt for sharing
experimental data and also for providing guides for how to
use them. We also thank Keiko Tanaka-Yamamoto, Yukio
Yamamoto, and Werner Van Geit for their helpful discussions.

REFERENCES
Barnes, J., and Hut, P. (1986). A hierarchical O(N log N) force-calculation

algorithm. Nature 324, 446–449. doi: 10.1038/324446a0
Billings, G., Piasini, E., Lörincz, A., Nusser, Z., and Silver, R. A. (2014). Network

structure within the cerebellar input layer enables lossless sparse encoding.
Neuron 83, 960–974. doi: 10.1016/j.neuron.2014.07.020

Bloss, E. B., Cembrowski, M. S., Karsh, B., Colonell, J., Fetter, R. D., and Spruston,
N. (2018). Single excitatory axons form clustered synapses onto CA1 pyramidal
cell dendrites. Nat. Neurosci. 21, 353–363. doi: 10.1038/s41593-018-0084-6

Bridson, R. (2007). “). Fast Poisson disk sampling in arbitrary dimensions,” in ACM
SIGGRAPH 2007 sketches on - SIGGRAPH ’07 (New York, NY: ACM Press).

Casali, S., Marenzi, E., Medini, C., Casellato, C., and D’Angelo, E. (2019).
Reconstruction and simulation of a scaffold model of the cerebellar network.
Front. Neuroinformatics 13:37. doi: 10.3389/fninf.2019.00037

Clarkson, K. L. (1983). “Fast algorithms for the all nearest neighbors problem,”
in 24th Annual Symposium on Foundations of Computer Science (sfcs 1983),
Piscataway, NJ: IEEE, 226–232.

Dugué, G. P., Brunel, N., Hakim, V., Schwartz, E., Chat, M., Lévesque, M., et al.
(2009). Electrical coupling mediates tunable low-frequency oscillations and
resonance in the cerebellar golgi cell network. Neuron 61, 126–139. doi: 10.
1016/j.neuron.2008.11.028

Ebeida, M. S., Mitchell, S. A., Patney, A., Davidson, A. A., and Owens, J. D. (2012).
A simple algorithm for maximal poisson-disk sampling in high dimensions.
Comput. Graphics Forum 31, 785–794. doi: 10.1111/j.1467-8659.2012.03059.x

Eglen, S. J. (2012). “Cellular spacing: analysis and modelling of retinal mosaics,”
in Computational Systems Neurobiology, ed. N. Le Novère (Dordrecht: Springer
Netherlands), 365–385. doi: 10.1007/978-94-007-3858-4_12

Eglen, S. J., van Ooyen, A., and Willshaw, D. J. (2000). Lateral cell movement driven
by dendritic interactions is sufficient to form retinal mosaics. Netw. Comput.
Neural Syst. 11, 103–118. doi: 10.1088/0954-898X_11_1_306

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M.,
et al. (2019). The scientific case for brain simulations. Neuron 102, 735–744.
doi: 10.1016/j.neuron.2019.03.027

Hámori, J., and Somogyi, J. (1983). Differentiation of cerebellar mossy fiber
synapses in the rat: a quantitative electron microscope study. J. Comp. Neurol.
220, 365–377. doi: 10.1002/cne.902200402

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Houston, C. M., Diamanti, E., Diamantaki, M., Kutsarova, E., Cook, A.,
Sultan, F., et al. (2017). Exploring the significance of morphological diversity
for cerebellar granule cell excitability. Sci. Rep. 7:46147. doi: 10.1038/srep
46147

Jakab, R. L., and Hámori, J. (1988). Quantitative morphology and synaptology
of cerebellar glomeruli in the rat. Anat. Embryol. 179, 81–88. doi: 10.1007/
BF00305102

Jiao, Y., Lau, T., Hatzikirou, H., Meyer-Hermann, M., Joseph, C. C., and Torquato,
S. (2014). Avian photoreceptor patterns represent a disordered hyperuniform
solution to a multiscale packing problem. Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 89:022721. doi: 10.1103/PhysRevE.89.022721

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2020 | Volume 14 | Article 31

https://github.com/CNS-OIST/pycabnn
https://doi.org/10.1038/324446a0
https://doi.org/10.1016/j.neuron.2014.07.020
https://doi.org/10.1038/s41593-018-0084-6
https://doi.org/10.3389/fninf.2019.00037
https://doi.org/10.1016/j.neuron.2008.11.028
https://doi.org/10.1016/j.neuron.2008.11.028
https://doi.org/10.1111/j.1467-8659.2012.03059.x
https://doi.org/10.1007/978-94-007-3858-4_12
https://doi.org/10.1088/0954-898X_11_1_306
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1002/cne.902200402
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1038/srep46147
https://doi.org/10.1038/srep46147
https://doi.org/10.1007/BF00305102
https://doi.org/10.1007/BF00305102
https://doi.org/10.1103/PhysRevE.89.022721
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

fninf-14-00031 July 4, 2020 Time: 17:43 # 11

Wichert et al. Pycabnn

Litwin-Kumar, A., Harris, K. D., Axel, R., Sompolinsky, H., and Abbott, L. F.
(2017). Optimal degree of synaptic connectivity. Neuron 93, 1153–1164. doi:
10.1016/j.neuron.2017.01.030

Marr, D. (1969). A theory of cerebellar cortex. J. Physiol. 202, 437–470. doi: 10.
1113/jphysiol.1969.sp008820

Maruoka, H., Nakagawa, N., Tsuruno, S., Sakai, S., Yoneda, T., and Hosoya, T.
(2017). Lattice system of functionally distinct cell types in the neocortex. Science
358, 610–615. doi: 10.1126/science.aam6125

Palay, S. L., and Chan-Palay, V. (1974). Cerebellar Cortex. Berlin: Springer.
Pyle, R., and Rosenbaum, R. (2017). Spatiotemporal dynamics and reliable

computations in recurrent spiking neural networks. Phys. Rev. Lett. 118:018103.
doi: 10.1103/PhysRevLett.118.018103

Rees, C. L., Moradi, K., and Ascoli, G. A. (2017). Weighing the evidence in peters’
rule: does neuronal morphology predict connectivity? Trends Neurosci. 40,
63–71. doi: 10.1016/j.tins.2016.11.007

Rieubland, S., Roth, A., and Häusser, M. (2014). Structured connectivity in
cerebellar inhibitory networks. Neuron 81, 913–929. doi: 10.1016/j.neuron.
2013.12.029

Rosenbaum, R., Smith, M. A., Kohn, A., Rubin, J. E., and Doiron, B. (2017). The
spatial structure of correlated neuronal variability. Nat. Neurosci. 20, 107–114.
doi: 10.1038/nn.4433

Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., and D’Angelo,
E. (2007). Computational reconstruction of pacemaking and intrinsic
electroresponsiveness in cerebellar Golgi cells. Front. Cell. Neurosci. 1:2. doi:
10.3389/neuro.03.002.2007

Sudhakar, S. K., Hong, S., Raikov, I., Publio, R., Lang, C., Close, T., et al. (2017).
Spatiotemporal network coding of physiological mossy fiber inputs by the
cerebellar granular layer. PLoS Comput. Biol. 13:e1005754. doi: 10.1371/journal.
pcbi.1005754

Sultan, F. (2001). Distribution of mossy fibre rosettes in the cerebellum of
cat and mice: evidence for a parasagittal organization at the single fibre
level. Eur. J. Neurosci. 13, 2123–2130. doi: 10.1046/j.0953-816x.2001.01
593.x

Töpperwien, M., van der Meer, F., Stadelmann, C., and Salditt, T. (2018). Three-
dimensional virtual histology of human cerebellum by X-ray phase-contrast
tomography. Proc. Natl. Acad. Sci. U.S.A. 115, 6940–6945. doi: 10.1073/pnas.
1801678115

Yellott, J. I. (1983). Spectral consequences of photoreceptor sampling in the rhesus
retina. Science 221, 382–385. doi: 10.1126/science.6867716

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Wichert, Jee, De Schutter and Hong. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2020 | Volume 14 | Article 31

https://doi.org/10.1016/j.neuron.2017.01.030
https://doi.org/10.1016/j.neuron.2017.01.030
https://doi.org/10.1113/jphysiol.1969.sp008820
https://doi.org/10.1113/jphysiol.1969.sp008820
https://doi.org/10.1126/science.aam6125
https://doi.org/10.1103/PhysRevLett.118.018103
https://doi.org/10.1016/j.tins.2016.11.007
https://doi.org/10.1016/j.neuron.2013.12.029
https://doi.org/10.1016/j.neuron.2013.12.029
https://doi.org/10.1038/nn.4433
https://doi.org/10.3389/neuro.03.002.2007
https://doi.org/10.3389/neuro.03.002.2007
https://doi.org/10.1371/journal.pcbi.1005754
https://doi.org/10.1371/journal.pcbi.1005754
https://doi.org/10.1046/j.0953-816x.2001.01593.x
https://doi.org/10.1046/j.0953-816x.2001.01593.x
https://doi.org/10.1073/pnas.1801678115
https://doi.org/10.1073/pnas.1801678115
https://doi.org/10.1126/science.6867716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles

	Pycabnn: Efficient and Extensible Software to Construct an Anatomical Basis for a Physiologically Realistic Neural Network Model
	Introduction
	Methods
	Generation of Cell Positions
	Algorithms for Generating Connectivity
	Overview
	Algorithm for the Nearest Neighbor Search
	Additional Speedup Implementations

	Program Structure
	Data Generation and Simulation Procedure

	Results
	Generation of Cell Positions
	Generation of Connectivity
	Finding Connectivity by Cell-to-Cell Distance
	Finding Connectivity by Tracking Axons

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

