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 13 

Abstract: A large number of derivative phases in inorganic perovskites have been 14 

reported with special structures and shown extraordinary performances in 15 

photoelectronic device applications. The reverse phase transition between derivative 16 

phases and perovskites usually induces recrystallization or forms mixed components. 17 

In this work, we report derivative phase induced growth of the CsPbBr3 micro-nanowire 18 

(MW) array by utilizing phase transition of the two-dimensional CsPb2Br5 phase. 19 

Owning to its layered structure and phase transition, annealing of CsPb2Br5 at a 20 

temperature of 550 oC combined with solvent quenching led to a templating effect to 21 

form a high-quality CsBr MW array. Subsequent PbBr2 deposition and the second 22 

annealing were employed to form the aligned CsPbBr3 MW arrays. Based on this 23 

method, a CsPbBr3 MW array based photodetector was fabricated. The large grain size, 24 

less grain boundaries (GBs) and lower surface potential of the CsPbBr3 MW array led 25 

to high device performance with a responsivity of 7.66 A W-1, a detectivity of ~1012 26 

Jones and long-term operational stability over 1900 min.  27 

 28 

Introduction 29 

Inorganic halide perovskite materials CsPbX3 (X=Cl, Br and I) have attracted great 30 

attention because of their applications in solar cells, light emitting diodes (LEDs), lasers 31 

and photodetectors (PDs).[1-4] Their unique properties such as tunable bandgap, high 32 

carrier mobility, long carrier diffusion length and high absorption coefficient make them  33 

strong candidates for optoelectrical device applications.[5-8] To date, the development 34 

of perovskites has evolved from initially three/two-dimensional (3D/2D) bulk films[9, 35 
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10] to low dimensional nano-structures, for example, one-dimensional (1D) 1 

nanowires/microwires (NWs/MWs)[11, 12] and zero-dimensional (0D) quantum dots[13, 2 

14].   3 

   In comparison with bulk films and quantum dots with many small grains and long-4 

chain ligands, the 1D NWs/MWs exhibit well-aligned structures, lower lateral 5 

dimension, less GBs and confined carrier transport in 1D channels/structures, which 6 

leads to high crystallinity, less recombination and superior electronic transport 7 

behaviors.[15] Additionally, multiple synthesis methods making use of forward growth 8 

have been developed such as the solution method[11, 16] (hot-injection,[17] anion 9 

exchange[18] etc.) and chemical vapor deposition (CVD).[19, 20] The solution process is 10 

a facile, low-cost technique, and has been employed in fabrication of MAPbI3 11 

perovskite nanowires, because of the low synthesis temperature and a precise ratio of 12 

precursor materials.[2, 21] However, the existence of residue organic solvents such as 13 

DMF, DMSO will affect the quality of perovskites and accelerate the 14 

decomposition/degradation of perovskite materials.[22-24] In contrast, the vapor 15 

deposition enables high purity of the materials and easy controllability without the 16 

adverse effects of residue solvents to ensures long-term stability.[2, 25, 26] In addition, 17 

low solubility of all-inorganic perovskites is difficult due to the lower solubility of 18 

inorganic perovskites and more complex Cs-Pb-X phase diagram.[21, 23] In parallel, the 19 

vapor deposition technique (e.g., all vacuum deposition, CVD) provides a non-solvent 20 

environment and high temperature/vacuum system, which allows preparation of highly 21 

crystalline NWs without the impurity phase.[21, 27] These strategies have shown showing 22 

great advantages in light sources and photodetectors. For example, Wang, Pan and 23 

coworkers developed wavelength-tunable in-plane aligned CsPbX3 perovskite NWs 24 

lasers with a low pumping threshold of 4 μJ cm-2.[28] Moreover, Meng and coworkers 25 

reported a vapor-liquid-solid growth technique to grow high quality CsPbX3 NWs and 26 

realized PDs in the visible light regime with an impressive responsivity of 4489 A W-1 27 

and detectivity over 7.9 × 1012 Jones.[29] Although perovskite NWs have shown 28 

promising performance in optoelectronic devices, random dispersion and short length 29 

make it difficult to integrate them into optoelectronic devices. Recently, NW arrays 30 



 

 3 

were proposed to solve this issue because of their controlled alignment and high 1 

uniformity in large area. Feng and coworkers reported a 1D CsPbBr3 perovskite NW 2 

array based photodetector with a high responsivity exceeding 1000 A W-1 by using a 3 

micropillar-structured template with asymmetric wettability via the solution method.[11] 4 

In addition, Waleed and coworkers reported a vertical CsPbI3 NW array based 5 

photodetector with a responsivity of 6.7 mA W-1 by combining chemical vapor 6 

deposition (CVD) with anodic alumina membrane (AAM) templates.[30] It is worth 7 

noting that the formation of NW arrays usually depends on the templates such as 8 

AAO/AAM templates[30, 31], CD/DVD disks[32, 33] and photoetching[34] or special 9 

substrates like M-template substrates[21, 28] and asymmetric wettability substrates[11, 35]. 10 

Use of these templates not only leads to increased cost but also makes it difficult to 11 

upscale. A facile and template-free method is desirable for upscaling of NW arrays. 12 

Herein, we propose a two-step method of facile phase induced growth of CsPbBr3 13 

MW arrays by using CsBr as the intermediate product and controlling the 14 

decomposition of the CsPb2Br5 perovskite derivative phase. In the first step, a height of 15 

1.1 μm CsBr MW arrays is obtained by controlling the decomposition from CsPb2Br5 16 

film (CsPb2Br5→CsBr+2PbBr2↑). Then, the CsBr MW arrays are post-treated with 17 

extra PbBr2, leading to CsPbBr3 MW arrays with large grain sizes (over 5 μm) and a 18 

larger height of 1.72 μm (CsBr+PbBr2→CsPbBr3). By investigating the growth 19 

mechanism of CsBr MW and CsPbBr3 MW arrays, we find that the layered structure of 20 

CsPb2Br5
[36] serves as a nominal template, which makes the intermediate product of 21 

CsBr MWs possible to grow along the CsPb2Br5 template to form arrays. Finally, a 22 

high-performance photodetector is achieved with an impressive responsivity of 7.66 A 23 

W-1, high detectivity of ~1012 Jones and long-term operational stability over 1900 min  24 
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 1 

Figure 1. a) Schematic illustration of formation of CsBr MW arrays and CsPbBr3 MW arrays. 2 

b) Scanning electron microscope (SEM) image, c) Atomic force microscopy (AFM) 3 

morphology image, d) X-ray diffraction pattern (XRD) and e) energy-dispersive X-ray 4 

spectroscopy (EDS) mapping of CsBr MW arrays. 5 

 6 

Result and discussion 7 

Figure 1a illustrates the growth process of CsBr MW arrays and CsPbBr3 MW arrays. 8 

The CsPb2Br5 precursor layer with a thickness of 1 μm is first deposited on the Si/SiO2 9 

substrate by a sequential vapor deposition method (more details can be found in 10 

Experiment Section). Then the CsPb2Br5 films are moved to a hotplate (400 oC) rapidly 11 

and annealed at a high temperature of 550 oC for 20 min. Solvent quenching is carried 12 

out by immersing the samples into an isopropanol (IPA) solution to cool down the 13 

samples to room temperature quickly in order to maintain the structure of long MWs. 14 

The well-aligned CsBr MW arrays with an average length of ~175 μm can be obtained 15 

(Figure 1b, S1) as follows: CsPb2Br5→CsBr+2PbBr2↑. Notably, energy-dispersive X-16 

ray spectroscopy (EDS) mapping in Figure 1e, S2 shows that Cs and Br are uniformly 17 

distributed in the MW arrays. The absence of Pb indicates that PbBr2 has evaporated 18 

completely. The Cs:Br composition ratio of 1:1 as seen in the corresponding EDS line 19 

scan in Figure S3, S4 agree well with the stoichiometric ratio of CsBr. The high 20 



 

 5 

crystallinity of the CsBr MW arrays is further confirmed by surface investigation. 1 

Atomic force microscopy (AFM) topography images of the CsBr MW arrays and 2 

individual MW are shown in Figure 1c, S5, S6. The smooth surface with an average 3 

height of 1.1 μm and uniform width of 1~2 μm suggest high crystallinity of the CsBr 4 

MWs and MW growth of the CsBr MW array according to Ostwald ripening 5 

mechanism during the formation, which will be discussed later. The X-ray diffraction 6 

(XRD) pattern in Figure 1d, S7, S8 indicates that fabricated CsBr MW arrays exhibit 7 

preferred orientation along (211).  8 

 9 

 10 

Figure 2. a) SEM image, b) EDS mapping, c) XRD pattern of the CsPbBr3 MW arrays. d) 11 

Scanning transmission electron microscopy (STEM) image and e) simulated lattice pattern of 12 

the single CsPbBr3 MW. The inset shows the corresponding Fourier transform pattern. f) AFM 13 

topography image and g) surface potential distribution of the single CsPbBr3 MW. h) Time 14 

resolved photoluminescence (TRPL) decay curve of the CsPbBr3 MW arrays. 15 

 16 

Based on the as-synthesized CsBr MW arrays, the CsPbBr3 MW arrays were  17 
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obtained (Figure 2a) after the post-treatment with an extra PbBr2 film (Figure S9) 1 

followed by annealing (CsBr+PbBr2→CsPbBr3), which show uniform distribution and 2 

silkworm-like grains. The average grain size is over 5 μm with the maximal size up to 3 

11 μm (Figure S10). The EDS element map (Figure 2b, S11) shows that the MW arrays 4 

are composed mainly of the Cs, Pb and Br elements. To extract the precise element ratio, 5 

the EDS line scan was performed (Figure S12, S13) and the corresponding element 6 

ratio of Cs, Pb and Br is close to 1:1:3, which agrees well with the stoichiometric ratio 7 

of the CsPbBr3 phase. In addition, the absence of Pb and Br in the gap between the 8 

MWs (Figure S14) indicates that the complete evaporation of extra PbBr2. Furthermore, 9 

crystal structure characterization of MW arrays was conducted by XRD. The peaks at 10 

15.19o, 21.55o, 26.48o, 30.64o, 34.37o, 37.77o, 43.89o, 46.69o, 49.38o and 54.51o in 11 

Figure 2c can be assigned as (100), (110), (111), (200), (210), (211), (220), (300), (310) 12 

and (222) diffraction peaks, which indicate that the cubic CsPbBr3 perovskite (Figure 13 

S8) is formed after the post-treatment by extra PbBr2. Note that CsPbBr3 MW arrays 14 

exhibit a polycrystalline structure without oriented growth. To gain more insight into 15 

the component and structure of the CsPbBr3 MWs, scanning transmission electron 16 

microscopy (STEM) measurements were conducted. The STEM characterization and 17 

corresponding simulation images in Figure 2d, 2e further demonstrate the crystalline 18 

character of CsPbBr3, which is indexed to be the [111] crystal zone of the cubic CsPbBr3 19 

phase. AFM topography images in Figure 2f, S15 illustrate that the CsPbBr3 MW has 20 

a height of 1.72 μm and width of MWs is close to 6 μm. Large grain size and high 21 

crystallinity of CsPbBr3 grains can effectively reduce recombination at the grain 22 

boundaries (GBs). To get a clear comparison with our CsPbBr3 MW arrays, a CsPbBr3 23 

film with a thickness of 1.79 μm was fabricated on the Si/SiO2 substrates (Figure S16). 24 

Kelvin probe force microscopy (KPFM) measurements were carried out (Figure 2g, 25 

S17). In comparison with a conventional CsPbBr3 film that shows an uneven surface 26 

potential distribution in the film (Figure S18) under light illumination, the CsPbBr3 27 

MW shows a uniform surface potential distribution. This difference can be ascribed to 28 

the large and uniform perovskite grain in the MWs, which shows a reduced potential 29 

barrier at the GBs and thus is expected to promote carrier transport at GBs as seen in 30 
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Figure S17b. In contrast, the uneven grain size distribution indicates that overgrown 1 

grains exist in the perovskite film (Figure S18c), which can result in carrier 2 

accumulation at the GBs because of existence of the potential barrier. Carrier 3 

accumulation at GBs would significantly lower the valence and conduction band of the 4 

perovskite films as illustrated in Figure S19, which induces carrier recombination at 5 

the GBs.[37, 38] Furthermore, the steady-state photoluminescence (PL) measurements 6 

were carried out for CsPbBr3 MW arrays and films. As seen in Figure S20, the 7 

enhanced PL intensity of CsPbBr3 MW arrays can be attributed to high quality, less 8 

defects and reduced non-radiative recombination in the perovskite grains.[23] The 9 

lifetime of charge transport was investigated by time resolved photoluminescence 10 

(TRPL). By fitting with the following equation:[39, 40] 11 

𝜏𝑎𝑣𝑒 =
A1τ1

2 + A2τ2
2

A1τ1 + A2τ2
 12 

where A1 and A2 are the amplitudes, τ1 and τ2 represent non-radiative recombination 13 

and radiative recombination, respectively. The average lifetime is up to 84.14 ns 14 

(Figure 2h), which is much longer than the CsPbBr3 film (36.38 ns, Figure S18d), 15 

indicating that the traps in MWs is effectively suppressed by reducing the GBs and 16 

obtaining a large grain size. 17 
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 1 

Figure 3. a) XRD patterns and b) corresponding SEM images showing the conversion of the 2 

CsPb2Br5 precursor layer to the CsBr MW array at different temperatures. c) Schematic 3 

illustration of formation of the CsBr MW arrays and CsPbBr3 MW arrays. 4 

 5 

How to understand the formation of CsBr and CsPbBr3 MW arrays? We first 6 

investigated the inverse and forward reactions in CsPb2Br5. As mentioned above, CsBr 7 

reacted with PbBr2 in a molar ratio of 1:2 to form CsPb2Br5. In contrast, CsPb2Br5 8 

would easily decompose to CsPbBr3 or CsBr because of the thermal instability at the 9 

temperature above 300 oC.[41] As seen in Figure 3a, 3b, the pristine CsPb2Br5 film 10 

shows high crystallinity and full coverage (Figure 3b, Pristine). Perovskite grains would 11 

quickly melt on the hotplate at 400 oC and grow into large ones in order to reduce the 12 

surface energy (Figure 3b). Meanwhile, part of the CsPb2Br5 phase decomposed to 13 

CsPbBr3 with evaporation of PbBr2 because of the low melting point of PbBr2 (357 oC) 14 

(Figure 3a, 400 oC).[37] This procedure can be explained by the following equation: 15 

CsPb2Br5→CsPbBr3+PbBr2↑. As the annealing temperature was increased to 500 oC, 16 

the grains would grow larger according to the Ostwald ripening mechanism,[42] and 17 
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continuously decompose at such a high temperature. Due to the layered structure of 1 

CsPb2Br5, the outmost layers would decompose faster than the inner layers (Figure 3c, 2 

step 3), which results in stepped structured grains (Figure 3b, S21, 500 oC). When the 3 

treated temperature was further increased to 550 oC, the Cs4PbBr6 peaks could be 4 

detected in the XRD patterns, which suggests the continuous decomposition of CsPbBr3 5 

follows: 4CsPbBr3→Cs4PbBr6+3PbBr2↑ . In addition, the Cs4PbBr6 MW arrays 6 

(Figure S22) could be formed based on the CsPb2Br5 layer template. Prolonged 7 

annealing time (10 min and 20 min) induced the complete disappearance of Cs4PbBr6 8 

phase by further extraction of PbBr2 (Cs4PbBr6→ 4CsBr + PbBr2↑ ) and the 9 

intermediate products of CsBr MW arrays could be obtained because of the high 10 

melting point of CsBr over 660 oC and evaporation of PbBr2 (Figure 3b and 3c, step 11 

4). This decomposition procedure makes the CsBr MW possible to keep the layered 12 

structure to construct arrays after fast evaporation of the low melting point component 13 

(PbBr2). Although the MWs appeared to grow along a certain direction within a local 14 

region of the substrate, on the scale of the whole substrate the MWs grew along different 15 

directions. As seen in Figure S1, in this specific sample location, some MWs showed 16 

the same orientation along the x direction. However, one of the MWs (Figure S1) was 17 

grown along the y direction. To realize the CsPbBr3 MW arrays, extra PbBr2 was 18 

deposited on the surface of the CsBr arrays (Figure S9). Then the as-prepared samples 19 

were annealed at a temperature of 350 oC for 30 min to ensure the further reaction 20 

between CsBr and PbBr2 to form highly crystalline CsPbBr3. Finally, silkworm-like 21 

CsPbBr3 MWs were obtained with an average grain size about 5 μm. 22 
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 1 

Figure 4. a) Schematic illustration and b) responsivity spectrum of the CsPbBr3 MW arrays 2 

photodetector. c) I-V and d) I-t curves of the CsPbBr3 MW array based photodetector under 3 

dark and light illumination with different wavelengths. The inset is a photograph of the device. 4 

e) I-V and f) I-t curves of the CsPbBr3 MW array based photodetector under light illumination 5 

with a wavelength of 400 nm with different power intensities. g) Photocurrent and h) 6 

responsivity/detectivity of the device as a function of incident power intensities. i) Response 7 

time of the photodetector during one cycle. 8 

 9 

The CsPbBr3 MW array based PDs (Figure 4a) were fabricated by coating 80 nm 10 

gold as the electrode using an aperture mask of 60 μm (Figure 4c, inset). The 11 

responsivity spectrum of the device (Figure 4b) shows a high photoresponsivity in the 12 

visible region, which is consistent with the absorption spectrum of CsPbBr3 in our 13 

previous works.[7, 37] The current-voltage (I-V) curves in Figure 4c show a low dark 14 

current of -1.59×10-10 A at a bias voltage of -5 V and photocurrent at a fixed power 15 

intensity of 1.2 mW cm-2 under light illumination with different wavelengths. The high 16 

photocurrent of -113.20 nA was achieved at a bias voltage of -5 V under light 17 

illumination with a wavelength of 400 nm, which was much higher than the same 18 

thickness of CsPbBr3 film photodetector (-50.76 nA, Figure S23). In parallel, the 19 

photocurrent under illumination light of 365 nm and 450 nm are -90.14 nA and -76.06 20 

nA, respectively. The responsivity (R) and detectivity (D*) of the PDs were extracted 21 
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from the following equations:[43-45] 1 

𝑅 =
𝛥𝐼

𝑃𝜆S
              (1) 2 

𝐷∗ = R√
𝑆

2𝑞𝐼𝑑𝑎𝑟𝑘
=

R√BS

𝑖𝑛
          (2) 3 

where ΔI is photocurrent (ΔI=Ilight-Idark, Ilight and Idark are the current with light 4 

illumination and in dark, respectively). Pλ is the light illumination power intensity on 5 

the device and S is the active area of the device; q, B and in are the elementary charge, 6 

electrical bandwidth of noise measurement and noise current, respectively. The 7 

CsPbBr3 MW arrays can be regarded as a rectangular-shaped structure and the 8 

corresponding active area is estimated as follows:[29] S = n×a×b, where n is the number 9 

of MWs in the device (n=4), and a and b are the width of the MWs (6 μm) and length 10 

of the channel (60 μm), respectively. The corresponding responsivity/detectivity of the 11 

devices under light illumination of 365 nm, 400 nm and 450 nm were 6.13 A W-12 

1/3.25×1012 Jones, 7.66 A W-1/4.05×1012 Jones and 5.18 A W-1/2.74×1012 Jones, 13 

respectively. Time-dependent curves (I-t) in Figure 4d suggest that high repeatability 14 

of the devices under light illumination with different wavelengths. Moreover, the 15 

intensity dependent properties of the devices were also investigated by changing the 16 

irradiation power intensity from 1.02 to 17.46 mW cm-2. As the incident power intensity 17 

increased, the photocurrent of the device was greatly increased (Figure 4d) because 18 

more carriers were excited and separated. The corresponding I-t curves in Figure 4e 19 

also exhibited excellent reproducibility even at high power intensity. By fitting the 20 

curve in Figure 4f with the formula of I=Pθ, where I, P and θ are the photocurrent, 21 

power intensity and proportionality constant, respectively, we found that θ was 0.48 for 22 

400 nm incident light, which was not close to the ideal value of 1 because θ was related 23 

to recombination processes of photo-generated carriers.[46, 47] This suggests that some 24 

traps and recombination centers exist in the device when the devices are operated under 25 

a high incident light intensity, but the devices still exhibit a good linearity for photo-26 

detection.[46, 48] In addition, we also conducted the light power intensity investigation at 27 

365 nm and 450 nm in Figure S24, S25, which also exhibits an excellent dependence 28 

on the power intensity with a good fitting showing a linearity relationship for light 29 

http://www.youdao.com/w/rectangle/#keyfrom=E2Ctranslation


 

 12 

detection. Figure S26 depicts the response characteristic under different operational 1 

biases from -1 V to -5 V, as the corresponding photocurrent increased from 14.4 nA to 2 

367.1 nA, which indicates that the devices could work well under even low bias 3 

voltages. Beside responsivity and detectivity, the response time is also an important 4 

parameter for photodetectors, representing the photo-sensitivity of the device and can 5 

be defined as the photocurrent increase from 10% to 90% (trise) and decrease from 90% 6 

to 10% (tfall) of the maximum value.[49] We chose one cycle from Figure 4f. It is clear 7 

that the CsPbBr3 MW array based PD shows a fast response time of 275/550 ms during 8 

ON/OFF operation under 400 nm (Figure 4i).    9 

 10 

 11 

Figure 5. a) Time-dependent response of the CsPbBr3 MW array based PD after 100 cycles of 12 

operation. b) Operational stability of CsPbBr3 MW array based PDs under continuous 13 

illumination (@400 nm, -5 V, 17.46 mW cm-2). 14 

 15 

Furthermore, we also investigated the operational stability of our PD devices. 16 

Different from conventional storage stability under dark condition without bias, the 17 

operational stability was conducted under continuous light illumination and constant 18 

voltage, which reflected the more realistic performance of the PD devices during 19 
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operation. First, we switched ON/OFF by repeatedly turning light (400 nm, 17.46 mW 1 

cm-2) on and off under a bias voltage of -5 V (Figure 5a). The device exhibited excellent 2 

reproducibility and stability. After 100 cycles, the photocurrent of the device 3 

maintained the same value, which yielded a high ON/OFF ratio of ~103. In parallel, 4 

continuously light illumination was also performed under 400 nm (~17.46 mW cm−2) 5 

at a fixed bias voltage of −5 V. The photocurrent of the device dropped rapidly at the 6 

first 600 min and then maintained at a stable value (Figure 5b). The devices remained 7 

60% of the initial photocurrent even after 1900 min, which represents better operational 8 

stability than previous reports as seen in Table 1. The high stability performance can 9 

be explained by the improved grain crystallinity, larger grain size (about 5 μm), thicker 10 

layer (about 1.72 μm) and fewer grain boundaries. Decomposition/degradation of 11 

perovskite devices often starts from the grain boundaries, which serve as a pathway for 12 

moisture/oxygen penetration and gradually induce the phase transition/decomposition 13 

process toward the grain interiors because chemical binding at grain boundaries with 14 

low crystallinity is much weaker than that within the crystal domain interior.[50, 51] On 15 

the other hand, charge trapping at the GBs induced by light soaking in the moisture 16 

condition can trigger the irreversible degradation of perovskite.[52] In comparison with 17 

many GBs in the thin film, high crystallinity and fewer GBs in the CsPbBr3 MW arrays 18 

alleviate moisture attacks and charge accumulation at the GBs under long-term 19 

illumination under the moisture condition. In parallel, the outmost layer of the thicker 20 

CsPbBr3 crystallites in the MW arrays naturally protect the inner crystallites from 21 

decomposition/degradation.[50] 22 

 23 

Table 1 Comparison of inorganic perovskite nanowires from previous works and this work. 24 

Material Formation 

direction 

Method Template Length 

(μm) 

R  

(A/W) 

D* 

 (Jones) 

Operational 

Stability 

[min] 

Ref 

CsPbBr3 MW 

arrays 

Inverse Vapor No ＞200 7.66 4.05×1012 1900 This 

work 

CsPbBr3 NW 

arrays 

Forward Vapor No ＜30 — — — [53] 

CsPbBr3 NW 

arrays 

Forward Solution Yes ＞28 1377  — — [11] 
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CsPbI3 NW 

nanoarrays 

Forward Vapor Yes ~10 0.0067 1.5×1012  — [30] 

CsPbI3/CsPbBr3 

NW arrays 

Forward Solution Yes ＞750 0.125 — — [32] 

MAPbI3 MW 

arrays 

Forward Solution Yes ＞400 13.57 5.25×1012 — [15] 

MAPbI3 NW 

arrays 

Forward Solution Yes ＞130 0.012 7.3×1012 10  [33] 

MAPbI3 NW 

arrays 

Forward Solution No ＞200 4.95 2×1013 — [54] 

MAPbI3 MW 

arrays 

Forward Solution No ＞650 0.16 1.3×1012 — [48] 

MAPbI3 NW 

arrays 

Forward Solution Yes ＞180 6660 6.85×1012 — [55] 

MAPb(I1-xBrx)3 

NW arrays 

Forward Solution Yes ＞230 12500 1.73×1011 — [34] 

FAPbI3 NW 

arrays 

Forward Solution Yes ＞75 5282 1.45×1014 — [35] 

CsPbBr3 film Forward Vapor — — 0.375 2.96×1011 — [45] 

CsPbBr3 film Forward Solution — — 0.010 4.56×108 — [56] 

CsPbBr3 single 

crystal 

Forward Solution — — 2 — 360 [57] 

CsPbBr3 single 

crystal 

Forward Solution — — 0.028 — — [58] 

※Operational stability is defined as the stability when the device is under a bias voltage 1 

and continuous light illumination. 2 

 3 

Conclusion 4 

In summary, we reported a 2D derivative phase CsPb2Br5 induced growth of 3D all 5 

inorganic perovskite CsPbBr3 MW arrays. Decomposition of layered structure of 2D 6 

CsPb2Br5 induces the formation of single-crystalline CsBr MW arrays. The CsBr MW 7 

arrays are post-treated by extra PbBr2 to convert to CsPbBr3 phase. Impressively, the 8 

high performance of a high responsivity of 7.66 A W-1 and long-term operational 9 

stability over 1900 min are simultaneously realized in the CsPbBr3 MW array 10 

photodetectors because of the large grain size, fewer grain boundaries and lower surface 11 

potential barrier. 12 
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