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Highlights:   

● Breeding bees for Varroa tolerance has largely ignored potential mite adaptation  

● Varroa genetic diversity is greater than previously envisioned and they adapt 

rapidly 15 

● We suggest that tolerance is best viewed as a ‘shared trait’ of hosts and parasites 

● Focusing on the interaction between partners can inform research and breeding 

Abstract 

While ectoparasitic Varroa mites cause minimal damage to their co-evolved ancestral 

host, the eastern honey bee (Apis cerana), they devastate their novel host, the western 20 

honey bee (Apis mellifera). The host switch caused worldwide population collapses, 

threatening global food security. Varroa management strategies have focused on 

breeding for bees for tolerance. But, can Varroa overcome these counter-adaptations in a 

classic coevolutionary arms race? Despite increasing evidence for Varroa genetic diversity 

and evolvability, this eventuality has largely been neglected. We therefore suggest a 25 

more holistic paradigm for studying this host-parasite interaction, in which ‘Varroa-

tolerant’ bee traits should be viewed as a shared phenotype resulting from Varroa and 

honey bee interaction.  
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Introduction 30 

Honey bee populations decline in many countries worldwide. This phenomenon has both 

ecological and economical impacts, as honeybees are the main pollinators in most 

agricultural systems, as well as in natural habitats (Paudel et al. 2015; Potts et al. 2010; 

Hung et al. 2018). It is now well established that the reasons for this decline are 

multifactorial, but primarily driven by Varroa mites and viruses that they vector 35 

(Steinhauer et al. 2018). In the colony of its original host, the eastern honey bee (Apis 

cerana), Varroa mites are tolerated while causing minimal damage (Rosenkranz et al. 

2010). However, due to the globalization of beekeeping, eastern honey bees and their 

mites have come into contact with the western honey bee (Apis mellifera). This caused 

exceptionally rapid switches by two mites (Varroa destructor and Varroa jacobsoni) to 40 

this new host, causing colony collapse and damage estimated in billions of dollars (Gallai 

et al. 2009). As the use of chemical pesticides has been severely reduced in many 

countries, one of the notable control approaches is to breed for “Varroa tolerant” bees 

(Carreck 2011). This review aims to highlight the mites’ role as actively adapting 

members of the coevolutionary interaction with honey bees, an observation that has 45 

significant pest control implications. 

‘Varroa-tolerant’ bees and their genetic basis 

Honey bees have experienced diverse selective pressures, but domestication by humans 

led to a major turning point in their evolution. From the first record of honey bees 

domestication in Egypt 2600 BCE, bee colonies were selected for traits beneficial to 50 

humans. At first probably this may have been an incidental consequence of beekeeping, 

but later as a result of sophisticated breeding programs. The main desired traits were 

high honey yield and gentle temperament, but also tolerance of diseases and pathogens 

(vanEngelsdorp & Meixner 2010). While bee diseases have been a continuing problem 

for centuries, the emergence of the Varroa mite as a particularly devastating pest in A. 55 
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mellifera colonies has caused particular concern. Beekeepers as well as bee researchers 

have bred for traits that may help the bee colony to cope and survive mite infestation, 

particularly as a long-term and sustainable alternative to pesticides. This approach has 

solid theoretical justification, given that millions of years of coevolution have allowed the 

ancestral host, the eastern honey bee (Apis cerana) to tolerate the mite, and some 60 

subspecies of A. mellifera, such as the African and Africanized varieties are naturally 

resistant (Mondragón et al. 2006). In addition, several previously susceptible populations 

have evolved to tolerate Varroa (Seeley 2017; Brettell & Martin 2017; Locke 2016; De 

Jong & Soares 1997; Mikheyev et al. 2015). In that spirit, some breeding programs have 

been selecting bee colonies using “live and let die” strategy, in which the colonies remain 65 

untreated and only a small portion of the surviving colonies will allow to contribute 

queens and drones for the next generations (Kefuss et al. 2004). For a few of the ‘Varroa-

tolerant’ lines the mechanism of Varroa tolerance was investigated, and, increasingly, the 

genetic basis underlying the tolerance is becoming understood, potentially improving the 

efficiency of these programs. 70 

The bee breeding programs have resulted in a number of widely known and 

commercially used lines. In the US the three ‘Varroa-tolerant’ lines: the Varroa Sensitive 

Hygiene (VSH), the Russian honey bees, and the Minnesota Hygienic lines (Spivak et al. 

2009; Rinderer et al. 2010). In Europe, several tolerant lines were bred by natural 

selecting from local lines, such as in France (Kefuss et al. 2015), and in Norweig 75 

(Swenson et al. 2018). In addition, Varroa-targeted breeding programs have been 

concentrated by the COLOSS initiative, that leads several pan-European experiments to 

assess the Varroa tolerance capacity of local bees (http://coloss.org). 

Over the past decade, as molecular methods have improved and became less costly, our 

knowledge of bee genetics increased with the growing understanding of the bee genome 80 

(reviewed by (Grozinger & Robinson 2015; Niño & Cameron Jasper 2015)). Altogether, 

these advances enabled the identification of genetic markers, those are aimed to improve 

breeding for healthier bees, and shorten this years-long process. An obvious great 
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attention was given for the search of markers for ‘Varroa-tolerant’ bees, by trying to 

correlate specific markers to specific useful traits (Zakar et al. 2014) (Figure 1). More 85 

recently, a few studies exploited the approach of genome-wide association study (GWAS) 

to detect specific markers, those include SNPs for bees’ hygienic behavior (Spötter et al. 

2016), mitochondrial DNA SNPs that discriminate between Varroa susceptible and 

tolerant bee colonies (Kim et al. 2019), and ecdysone-induced gene in bee pupa that was 

found to affect Varroa reproduction (Conlon et al. 2019).  90 

Varroa genetic variance 

While bee genetic architecture is well investigated, little is known about how Varroa 

have evolved in the last 60 years since its shift to A. mellifera. Varroa were generally 

believed to be clonal populations with low genetic variability according to surveys using 

randomly amplified polymorphic DNA (RAPD) markers (Kraus & Hunt 1995), 95 

mitochondrial DNA, and microsatellites (Solignac et al. 2005). Varroa colonies regularly 

sib-mate and have correspondingly high inbreeding coefficients (Broeckx et al. 2019).  

However, more recent studies using different sampling regimes (Dietemann et al. 2019; 

Gajić et al. 2019), and whole-genome data (Techer et al. 2019), show Varroa genetic is 

much more diverse than thought before. Regardless of underlying genetic diversity, 100 

extensive evidence exists that Varroa experience high selective pressures and rapidly 

evolve in response to pesticides treatments. Pyrethroids resistant mites were reported 

across Europe (Martin 2004), the UK (Thompson et al. 2003), and the middle east 

(Israel) (Mozes-Koch et al. 2000). Interestingly, this resistance can be reversed, when 

stop exposing for a few years, suggesting a potential cost (Milani & Della Vedova 2002). 105 

In addition, mites evolved rapid resistance for other chemical families such as 

organophosphorus (Elzen et al. 2002; Spreafico et al. 2001), and Formamide 

(Rodríguez-Dehaibes et al. 2005; Maggi et al. 2010). And in some cases, mites showed 

resistance to multiple active chemicals, which makes impossible to rotate between 

available pesticides (Sammataro et al. 2005). Consequently, Varroa mites do have a 110 

potential for rapid evolution, at least vs. chemicals, and deserves further consideration.  
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“Varroa tolerant” traits as host-parasite shared traits  

A key property of coevolutionary systems highlighted in the host-parasite literature is the 

“shared control” of some traits, namely those that emerge from the joint action of the 

interacting genotypes (Restif & Koella 2003). Classically, antagonistic coevolution can 115 

result in arms races centered around key traits such as host resistance/tolerance, and 

pathogen virulence.  However, while this is well-established in other agricultural systems 

such as plant diseases (Lambrechts et al. 2006; Sacristán & García-Arenal 2008), it has 

received less attention in the study of invertebrate parasites such as Varroa mites.  

Although all bee tolerance traits involve direct interaction with Varroa, until recently the 120 

possible contribution of Varroa genetics to these phenotypes was generally overlooked 

(Figure 1). However, this has been changing recently. Beaurepaire et al. (2019) have 

noted the ability by Varroa to adapt as a possible factor in a host-parasite arms race, as 

changes in the genetic structure of mite population in ‘Varroa-tolerant’ colonies were 

higher compared to mites in susceptible colonies, a realization that has led to recent 125 

integrative work examining the effect of host genetics on the shared phenotype . For 

example, Broeckx et al (2019) compared reproducing and non-reproducing mites using 

DNA microsatellites but found no difference.  Recent work has also tried to disassociate 

the bee-Varroa-virus complex by examining the virus effect only (Remnant et al. 2019; 

Thaduri et al. 2019). While this work provides illuminating insights into bee-virus 130 

interactions, we would like to caution that an artificial uncoupling between the Varroa 

and bee genomes ignores the possibility that they actually interact, with important 

consequences for the course of infection. This may lead to failure in detecting important 

loci that facilitate the Varroa and bee adaptation, and misinterpretation of results for 

breeding programs and research of ‘Varroa-tolerant’ bees. This idea can be extended 135 

further, since social immunity requires the interaction between bee brood, adult bees 

and Varroa, requiring careful consideration of the contribution of each.  

In general, coevolution favors a stable equilibrium between host and parasite (Restif & 

Koella 2003). The equilibrium point depends on diverse genetic and environmental 
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factors and cannot be predicted or generalized (Read 1994; Thompson 2005; Techer et 140 

al. 2019). However, in the original association between Varroa and A. cerana, Varroa 

virulence is fairly attenuated (Rath 1999; Lin et al. 2018). It is therefore reasonable to 

hypothesize that this will be the ultimate equilibrium state also for A. mellifera. In fact, 

mathematical modeling suggests that a benign Varroa haplotype will outcompete the 

virulent one (Vetharaniam & Barlow 2006). As a result, it could be that in some cases of 145 

reported ‘Varroa-tolerant’ A. mellifera colonies in the wild, the survival of the bees can be 

also explained by less virulent mite population.  Varroa may be evolving to reduce honey 

bee colony mortality to provide itself with a longer-lasting resource. Therefore, observed 

naturally occuring resistance may result from bee or Varroa evolution.  

Incorporation of Varroa genetics may broaden our understanding of traits that were so 150 

far explained by mechanisms and genetics of the bee only. For example, a few studies 

showed that ‘Varroa-tolerant’ bees have better ability to recognize mite-infested cells 

compared to control bees (Martin et al. 2002; Mondet et al. 2016). However, this could 

also be explained by the variance in Varroa camouflage abilities, or variance in Varroa 

cuticular profile between colonies (Kather et al. 2015; Le Conte et al. 2015), in addition 155 

to differences in bee sensitivity to Varroa presence. Varroa genetic variance can also 

explain inconsistency in ‘Varroa-tolerant’ traits in bee lines, and “unsuccessful” breeding 

programs (Odemer 2019), or failures to import ‘Varroa-tolerant’ lines, as often 

experienced in breeding programs (Meixner et al. 2015). However, as these cases are 

likely underreported, they are harder to interpret. In one natural population, Seeley 160 

(2007) found that there was no difference in Varroa growth rates in apparently resistant 

feral colonies and sensitive commercial strains. While the population in question has 

undergone a strong selective event after arrival of Varroa (Mikheyev et al. 2015), 

whether this or milder mite strains result in its apparent persistence remains unclear. 

Recovery of natural bee-swarms a few years after Varroa introduction were recorded in a 165 

few instances, and were suggested to be partially due to variance in Varroa virulence 

(Fries et al. 2006; Villa et al. 2008).  
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Implications and conclusions 

In conclusion, we suggest that the design of bee breeding programs for desired ‘Varroa-

tolerant’ traits should be addressed from a broader perspective that include both host 170 

and parasite genetics, and treated as a shared traits. Varroa genetic variance should 

studied and included as one of the factors influencing the capacity of bees to tolerate 

Varroa mite, in addition to environmental conditions (Le Conte et al. 2007; Currie & 

Tahmasbi 2008) and bee nutrition (Alaux et al. 2011; Huang 2012). Understanding 

Varroa genetic architecture and quantifying its possible contribution to ‘Varroa-tolerant’ 175 

traits should enable improved breeding programs that will account for possible 

coevolutionary interactions in the future. Given that Varroa is a fact of life for A. 

mellifera, evolution of less virulent strains of Varroa over time, as suggested by 

mathematical modeling (Vetharaniam & Barlow 2006) may decrease the severity of their 

impact. When studying bee-Varroa interactions regular genetic monitoring of both 180 

players should be conducted before and during breeding programs. Such temporal 

surveys will give us a clue about Varroa population genetic dynamics in response to 

changes in selective pressures, either through pesticide treatment or ‘Varroa-tolerant’ 

phenotypes. These data can help improve our Varroa management, for example by 

rational pesticide rotation, and directed selection of bee lines according to the current 185 

Varroa population. In the long term, such genetic monitoring of the mite-bee population 

will enable us to predict eruptions of mite infestation, or resistance events for novel 

pesticides before they occur, by modeling. However, all the available genetic tools to 

study Varroa are low-resolution and new methods are urgently needed. 
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Figure 1. Mechanisms of Varroa tolerance by bees: much known about the bee, 

little about the mite. Typically a ‘Varroa-tolerant’ colony will possess a few of the 

following desired traits: (1) hygienic behavior (removal of dead and diseased brood), (2) 

grooming behavior, (3) suppression of Varroa reproduction and (4) short post-capping 

stage duration. The bee-genetic basis of these traits is well studied (reviewed by 395 

(Grozinger & Robinson 2015; Niño & Cameron Jasper 2015; Zakar et al. 2014)). 

However, although Varroa participates in all these interactions, the role of its genetics 

has been neglected. 

 


