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divergences Dγ(ρ||σ) = trργσ1−γ and related quantities without using replica trick as well

as analytic continuation. We explicitly determine the form of the perturbative term at any

order by an integral along the modular flow of the unperturbed state. By applying the

prescription to a class of reduced density matrices in conformal field theory, we find that

the second order term of certain linear combination of the divergences has a holographic

expression in terms of bulk symplectic form, which is a one parameter generalization of the

statement “Fisher information = Bulk canonical energy”.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence, Holography and

condensed matter physics (AdS/CMT)

ArXiv ePrint: 1812.01135

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP06(2020)053

mailto:tomonori.ugajin@yukawa.kyoto-u.ac.jp
https://arxiv.org/abs/1812.01135
https://doi.org/10.1007/JHEP06(2020)053


J
H
E
P
0
6
(
2
0
2
0
)
0
5
3

Contents

1 Introduction 1

2 New expansion formula using the resolvent trick 3

3 Some explicit checks 4

3.1 First order term T
(1)
γ (δρ) 5

3.2 Second order term T
(2)
γ (δρ) 5

3.2.1 Checks 5

4 Expressions of perturbative terms in terms of the vacuum modular flow 6

4.1 Doing the Fourier transformation 7

4.2 Choice of the integration contour: the quadratic n = 2 term 8

4.3 Contour choice: n ≥ 3 terms 9

5 Applications to conformal field theory 10

5.1 Set up 10

5.2 The perturbative expression of Tγ(ρ) 11

5.3 Bring n = 2 term to the standard form 12

6 Expansion of Petz’s quasi entropy Dγ(ρ||σ) 12

6.1 Expressing Xγ(δρ) and Yγ(δρ) by modular flow integrals 13

6.2 Holographic expressions of Xγ(δρ) and Yγ(δρ) 14

6.2.1 Set up 14

6.2.2 Holographic rewritings 15

7 Conclusions 17

A The calculation of K(n)
γ (s1, · · · sn−1) 17

B Fixing the contour of n = 2 term 19

C Simplifying T (2)
γ (δρ) 20

D Direct Fourier transformation 22

E Details of the holographic rewriting 22

– i –



J
H
E
P
0
6
(
2
0
2
0
)
0
5
3

1 Introduction

The concept of entanglement is one of the keys to understand how holography works. This

idea is supported by the Ryu Takayanagi formula [1, 2] and its covariant generalization [3],

which relate the area of particular extremal surfaces in the bulk, to the entanglement

entropies in the dual conformal field theory (CFT). As a concrete and quantitative ap-

plication of this entanglement vs gravity program, recently it has been shown that bulk

gravitational dynamics can be read off from the entanglement structure of states in the

dual CFT.

In this line of developments, it was initially observed that so called first law of entangle-

ment [4] is related to the linearized Einstein equations in the bulk [5, 6]. Consider starting

from the vacuum reduced density matrix ρ0 and making it excited slightly ρ0 → ρ0 + δρ

in a CFT. The change of the entanglement entropy δS obeys first law of entanglement,

δS = tr [Kδ0], where K = − log ρ0 is called modular Hamiltonian of ρ0. For the subsys-

tems of special type, the vacuum modular Hamiltonian has a local expression given by an

integral of energy density over the subsystem. There is a natural bulk counterpart of the

vacuum modular Hamiltonian, namely, the generator of time translation of a topological

black hole with hyperbolic horizon, whose Bekenstein Hawking entropy gives the CFT vac-

uum entanglement entropy [7]. The first law of entanglement is related to the first law of

thermodynamics applied to the topological black hole, and this enabled us to read off the

linearized equations of motion.

Recently this nice story at the first order in the perturbation δρ has been general-

ized to the quadratic order. It was noticed that, in CFT the second order change of the

entanglement entropy can be concisely summarized as an integral of correlation functions

along the flow generated by the vacuum modular Hamiltonian K = − log ρ0 on the sub-

system [8–10]. This was further extended to arbitrarily order in δρ and some technical

issue was pointed out [11]. It was also recognized that by rewriting the CFT answer in

terms of bulk variables, we naturally identify it with bulk canonical energy [12], which was

first found holographically in [13]. This makes it possible to read off the bulk equations of

motion beyond the linearized level.

Given these developments, it is now natural to generalize this story to other quan-

tum information theoretic quantities. In particular we would like to find such a quantity

which admits a nice perturbative expansion in CFT and has a dual holographic expression.

Natural candidates having these properties are those involving powers of reduced density

matrices, for example tr ργ which is related to Rényi entropy.

Conventionally, a Rényi type quantity, like tr ργ has been computed by replica trick.

In this trick, we first regard the Rényi index to be a positive integer γ = n, and represent

the quantity as a path integral on a branched space Σn which is prepared by gluing n copies

of the original space with cuts along the subsystems. After the computation of the path

integral, we then analytically continue the integer n to arbitrarily number γ. However,

this trick has several disadvantages, even when we compute the quantity perturbatively.

First of all, the analytic continuation is usually difficult to perform. For example, when we
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perturbatively expand tr ρn for ρ = ρ0 +δρ, at quadratic order we encounter following sum∑
k,m

tr
[
ρk−1

0 δρρm−k−1
0 δρρn−m0

]
. (1.1)

In order to analytically continue it in n we first need to perform this sum to get a closed

expression. Although for special cases we can do this, in general it is difficult. In addition

to this, we do not know how to do analogous sums for the cubic term and higher. Second,

there are ambiguities in the analytic continuations. According to the Carson’s theorem,

we need to correctly specify the behavior of tr ρn on certain region of the complex n plane,

in order to fix the ambiguities.

In order to overcome these difficulties, in this paper we would like to develop a new way

to perturbatively calculate Rényi type quantities without using replica trick, and analytic

continuation. The idea we employ is simple, namely writing tr ργ by a contour integral,

tr ργ =

∫
C

dz

2πi
zγ tr

1

z − ρ
, (1.2)

where the contour C is chosen so that it includes all the poles of the integrand, but avoid

the contribution of the branch cut coming from zγ . We refer to [14, 15] for discussions on

the representation. By expanding the denominator of the integrand for perturbative states

ρ = ρ0 + δρ, we can systematically write each term of the perturbative expansion by an

integral along the modular flow of the reference state ρ0. If we apply this expansion for a

class of perturbative excited states from vacuum in a d dimensional CFT, we can write each

term as an integral of a correlation function 〈· · ·〉Σγon the branched space Σγ = S1
γ ×Hd−1

along the modular flow generated by ρ0. Here, S1
γ denotes the Euclidean time circle with

2πγ periodicity, and Hd−1 is d − 1 dimensional hyperbolic space. Of course, the CFT

correlation functions on Σγ are difficult to calculate when d > 2, as the branched space

Σγ is not conformally related to d dimensional flat space, and even two point functions are

highly theory dependent ones.

However, by the same trick, we can similarly expand the Petz’s quasi entropy [16]

defined by,

Dγ(ρ||σ) = tr ργσ1−γ . (1.3)

This quantity can be regarded as a one parameter generalization of relative entropy,

d

dγ
Dγ(ρ||σ)

∣∣
γ=1

= S(ρ||σ) = trρ log ρ− trρ log σ. (1.4)

We also refer to recent studies on Rényi generalizations of relative entropy [17–22] as

well as perturbative calculations of relative entropy [11, 23–29]. One notable feature of

this Rényi relative divergence is that, each term of its perturbative expansion involves a

correlator on the regular space Σ1 which is conformally related to flat space. This implies

that the first few terms of the expansion are almost fixed by conformal symmetry, and

independent of the CFT we consider. In particular, this property enables us to holograph-

ically write the quadratic terms of certain linear combinations of Dγ(ρ||σ) which we will

denote by Xγ(δρ), Yγ(δρ), in terms of bulk symplectic form, without the details of the bulk
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to boundary dictionary. This generalizes the statement “ quantum fisher information =

bulk canonical energy”. See also [30, 31] for recent discussions on bulk symplectic form.

This paper is organized as follows. In section 2, we explain how to expand Tγ(ρ) = trργ

using the formula (1.2). We first derive expressions of the perturbative terms as integrals

with respect to the entanglement spectrum of the unperturbed state. In section 3, we

check these expressions against known results. In section 4 we express each term of the

perturbative expansion as an integral along the modular flow of the unperturbed state

by Fourier transforming the spectral representation of the kernel derived in section 2. In

section 5 we apply the formalism to reduced density matrices in conformal field theory, and

write these perturbative terms in terms of correlation functions in CFT. In section 6, we

discuss a similar expansion of Petz’s quasi entropy and derive a holographic expression of

the second order term.

2 New expansion formula using the resolvent trick

In the first few sections we focus on the Rényi type quantity

Tγ(ρ) = tr ργ . (2.1)

In the discussions we do not assume the index γ to be an positive integer γ ∈ Z+,

where one can use the replica trick. Although we will apply the prescription developing

here to conformal field theory, the discussions in this section and the next few ones are

applicable for any density matrix of any theory.

When the density matrix ρ is sufficiently close to the reference state ρ0, ie ρ = ρ0 + δρ,

we can expand Tγ(ρ) by a power series of δρ,

Tγ(ρ) = Tγ(ρ0) +

∞∑
n=0

T (n)
γ (δρ), (2.2)

and decompose each term in the perturbative expansion by the spectra of the reference

state ρ0. Let us first do this.

We begin the discussion by first writing Tγ(ρ) using the resolvent of ρ,

tr ργ =

∫
C

dz

2πi
zγ tr

1

z − ρ
, (2.3)

where the contour C is encircling the interval [ρmin, 1] in the z plane, but not z = 0, so

that it picks up all contributions of eigenvalues of ρ. ρmin is the smallest eigenvalue of

the density matrix ρ. (See figure 1.) When ρ is a reduced density matrix of a quantum

field theory, we need to put a UV cut off ε so that the density matrix ρ has a minimum

eigenvalue, then after the calculation we send ε → 0. We will explicitly see that only the

unperturbed term Tγ(ρ0) depends on the UV cutoff and rests do not. Therefore we can

uniquely fix the form of T
(n)
γ (δρ), n ≥ 1.

When ρ = ρ0 + δρ the resolvent can be easily expanded,

1

z − ρ
=
∞∑
n=0

Rn(δρ) Rn(δρ) =

(
1

(z − ρ0)
δρ

)n 1

(z − ρ0)
. (2.4)
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Figure 1. The contour C of the integral (2.3)(blue line). Red dots are the poles of the meromorphic

function f(z) = tr 1
z−ρ . These poles are in the segment 0 < Rez < 1.

By inserting the complete set of eigenstates |ωi〉 of the reference state ρ0,∫
dωi|ωi〉〈ωi| = 1, ρ0|ωi〉 = e−2πωi |ωi〉, (2.5)

to the left of i-th term, taking trace, and evaluating 1/(z − ρ0) from the left, we have,

tr [Rn(δρ)] =

∫ n∏
i=1

dωi

n−1∏
i=1

1

z − e−2πωi

n−1∏
k=1

〈ωk|δρ|ωk+1〉〈ωn|
1

(z − ρ0)
δρ

1

(z − ρ0)
|ω1〉

=

∫ n∏
i=1

dωi
1

(z − e−2πω1)2

n∏
i=2

1

z − e−2πωi

n∏
k=1

〈ωk|δρ|ωk+1〉, (2.6)

in the last term, ωn+1 ≡ ω1 is understood.

In summary, here we expanded Tγ(ρ) with respect to δρ, as in (2.2), and saw that the

n th order term of the expansion T
(n)
γ (δρ) is given by

T (n)
γ (δρ) =

∫ n∏
i=1

dωi

[∫
C

dz

2πi
zγ

1

(z − e−2πω1)2

n∏
i=2

1

z − e−2πωi

]
n∏
k=1

〈ωk|δρ|ωk+1〉. (2.7)

By defining the kernel function,

K(n)(ω1, · · ·ωn) ≡
∫
C

dz

2πi

zγ

(z − e−2πω1)2

n∏
i=2

1

z − e−2πωi
, (2.8)

we write,

T (n)
γ (δρ) =

∫ n∏
i=1

dωiK
(n)(ω1, · · ·ωn)

n∏
k=1

〈ωk|δρ|ωk+1〉. (2.9)

3 Some explicit checks

We have obtained the perturbative expansion using the spectrum of the reference state

ρ0. To get some insights, in this section we explicitly write down first few terms of the

expansion and check them against known results.
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3.1 First order term T (1)
γ (δρ)

The first order term of the series is given by

T (1)
γ (δρ) =

∫
dω 〈ω|δρ|ω〉

∫
C

dz

2πi

zγ

(z − e−2πω)2

= γtr
[
ργ−1

0 δρ
]
, (3.1)

as it should be.

3.2 Second order term T (2)
γ (δρ)

Let us move on to the second order term T
(2)
γ (δρ). It is given by

T (2)
γ (δρ) =

∫
dωdω′〈ω|δρ|ω′〉〈ω′|δρ|ω〉 K(ω, ω′). (3.2)

Precise form of K(ω, ω′) can be derived by the contour integral,

K(ω, ω′) =

∫
C

dz

2πi

zγ

(z − e−2πω)2(z − e−2πω′)

=
1

(e−2πω′ − e−2πω)2

[
(γ − 1)e−2πγω + e−2πγω′ − γe−2π(γ−1)ωe−2πω′

]
. (3.3)

3.2.1 Checks

γ = n ∈ Z+. When the index γ is a positive integer, the kernel Kγ(ω, ω′) is decomposed

into the sum,

K(ω, ω′) =

[
γ−2∑
l=0

((γ − 1)− l)
(
e−2πω

)γ−l (
e−2πω′

)l]
. (3.4)

Plugging this into (3.2) and undoing the spectral decomposition, we recover the obvious

expansion (1.1) which we frequently encounter in replica calculations. The kernel avoids

the difficulties of replica trick, by automatically doing the summation as well as analytic

continuation in n.

The von Neumann entropy limit. Tγ(ρ) is related to the von Neumann entropy

S(ρ) by

S(ρ) = −trρ log ρ =
∂

∂γ
Tγ(ρ)

∣∣
γ=1

. (3.5)

From (3.3) we derive the kernel for the quadratic part of the von Neumann entropy,

∂Kγ

∂γ

∣∣
γ=1

=
e2πω

(1− e2π(ω−ω′))

[
(e−2πω − e−2πω′) + 2π(ω − ω′)e−2πω′

]
. (3.6)

In [8], a perturbative expansion of the von Neumann entropy S(ρ0 +δρ) was discussed,

by expanding the modular Hamiltonian Kρ = −ρ0 + δρ using the identity,

log ρ =

∫ ∞
0

dβ

(
1

ρ+ β
− 1

β + 1

)
, (3.7)

the result of the quadratic order kernel in [8] agrees with (3.6).

– 5 –
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4 Expressions of perturbative terms in terms of the vacuum modular

flow

The ω integrals in the right hand side of (2.9) are of course hard to perform, as we do not

know precise form of the eigenvalue distribution of ρ0. To proceed, we now express each

term of the perturbative series T
(n)
γ (δρ) as an integral along the modular flow of ρ0, by

Fourier transforming the kernel K(n)
γ (ω1, · · ·ωn).

This process is very analogous to the case of the von Neumann entropy perturbation

done in [8] for quadratic order term and generalized to higher order terms in [11]. It is

convenient to introduce the rescaled kernel, defined by

K(n)
γ (ω1, · · ·ωn) ≡ e2πγω1−2π

∑n
k=1 ωkK(n)(ω1, · · ·ωn), (4.1)

=

∫
C

dz

2πi
zγ

e2π(γ−1)ω1

(z − e−2πω1)2

n∏
i=2

e−2πωi

z − e−2πωi
. (4.2)

Using this function, we get

T (n)
γ (δρ) =

∫ n∏
i=1

dωiK
(n)(ω1, · · ·ωn)

n∏
k=1

〈ωk|δρ|ωk+1〉

=

∫ n∏
i=1

dωi e
−2πγω1+2π

∑n
k=1 ωk K(n)

γ (ω1, · · ·ωn)

n∏
k=1

〈ωk|δρ|ωk+1〉

=

∫ n∏
i=1

dωi Kγn(ω1, · · ·ωn) 〈ω1|e−2πγKδρ̃|ω2〉
n∏
k=1

〈ωk|δ̃ρ|ωk+1〉, (4.3)

where 2πK = − log ρ0 is the modular Hamiltonian of ρ0, and δ̃ρ = eπKδρ eπK . It can be

easily shown that the new kernel K(n)
γ (ω1, · · ·ωn) is invariant under the shifts ωi → ωi +α,

K(n)
γ (ω1 + α, · · ·ωn + α) = K(n)

γ (ω1, · · ·ωn). (4.4)

So if we change the variables to {ai, b},

ai = ωi − ωi+1, i = 1 · · ·n− 1 b =
n∑
i=1

ωi, (4.5)

K(n)
γ (ω1, · · ·ωn) only depends on n− 1 variables {ai}i=1···n−1,

K(n)
γ (ω1, · · ·ωn) = K(n)

γ (a1, a2, · · · an−1). (4.6)

Thanks to this property K(n)
γ (ω1, · · ·ωn) has a nice Fourier transformation,

K(n)
γ (ω1, · · ·ωn) =

∫
C
ds1 · · · dsn−1e

i
∑n−1
k=1 skak K(n)

γ (s1, · · · sn−1), (4.7)

{si}i=1···n−1 are variables dual to the spectrum of ρ0, therefore they have a geometric

interpretation, ie, they are parameterizing the modular flow of ρ0. Also, as we will see
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later, we need to properly choose the integration contours C in order for the Fourier

transformation (4.7) to correctly reproduce the kernel K(n)
γ (ω1, · · ·ωn).

Using this and undoing the spectral decompositions (2.5), we can write T
(n)
γ (δρ) as an

integral of real time {si} variables,

T (n)
γ (δρ) =

∫ n∏
i=1

dωi K(n)
γ (ω1, · · ·ωn) 〈ω1|e−2πγKδρ̃|ω2〉

n∏
k=1

〈ωk|δ̃ρ|ωk+1〉

=

∫
C
ds1 · · · dsn−1 K(n)

γ (s1, · · · sn−1) tr

[
e−2πγK

n−1∏
k=1

eiKsk δ̃ρ e−iKsk δ̃ρ

]
. (4.8)

In the actual CFT computations, this undoing is a bit tricky, and needed special cares.

We will discuss on this in the latter sections.

4.1 Doing the Fourier transformation

Let us first specify the form of the real time kernel K(n)
γ (s1, · · · sn−1).The task is doing the

inverse Fourier transformation,

K(n)
γ (s1, · · · sn−1) =

∫
da1 · · · dan−1

(2π)n−1
e−i

∑n−1
k=1 skakK(n)

γ (a1, · · · an−1). (4.9)

The trick we use is very similar to the one developed in our previous paper [11]. By

inserting a delta function,

δ(q) =
1

2π

∫
dbe−iqb, (4.10)

we can disentangle the multiple integral to a product of integrals of single variables {ωi},

δ(q) K(n)
γ (s1, · · · sn−1) =

1

(2π)n

∫
dbe−iqb

∫
da1 · · · dan−1 e

−i
∑n−1
k=1 skak K(n)

γ (a1, · · · an−1)

=
n

(2π)n

∫
dω1 · · · dωn e−iqbe−i

∑n−1
k=1 skak K(n)

γ (ω1, · · ·ωn), (4.11)

in the second line we used the relations (4.5).

Now the integral is

δ(q) K(n)
γ (s1, · · · sn−1) =

n

(2π)n

∫
dω1 · · · dωn e−iqbe−i

∑n−1
k=1 skak K(n)

γ (ω1, · · ·ωn)

=
n

(2π)n

∫
C

dz

2πi
zγ
∫
dω1

e−ω1[−2π(γ−1)+i(s1+q)]

(z − e−2πω1)2

×
n−1∏
i=2

∫
dωi

e−ωi[2π+(sk−sk−1+q)i]

z − e−2πωi

×
∫
dωn

e−ωn[2π−(sn−1−q)i]

z − e−2πωn

≡ n

(2π)n

∫
C

dz

2πi
J(z). (4.12)

– 7 –
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The strategy to compute this complicated integral is first compute each ωi integral,

and express J(z) as a function of modular times {si}i=1···n−1. We then perform the z

integral by choosing the contour along the real axis,

δ(q) K(n)
γ (s1, · · · sn−1) =

n

(2π)n

∫ ∞
0

dβ

2πi
(J(β − iε)− J(β + iε)) , ε→ 0+. (4.13)

The details of the calculation can be found in appendix A and here we only present

the final result for the kernel K(n)
γ (s1, · · · sn−1),

K(n)
γ (s1, · · · sn−1) =

i

8π2

(
−i
4π

)n−2 (s1 + 2πiγ) sinπγ

sinh
(
s1+2πiγ

2

)∏n−1
k=2 sinh

(
sk−sk−1

2

)
sinh

( sn−1

2

) (4.14)

4.2 Choice of the integration contour: the quadratic n = 2 term

In the previous subsection we derived the expression (4.14) of the real time kernel

K(n)
γ (s1, · · · sn−1). In order to complete the discussion we need to properly fix the contour

of the real time integrals C in (4.8). We can do so by demanding the Fourier transformation

can be correctly reversed,

K(n)
γ (ω1, · · · , ωn) =

∫
Ck

n−1∏
k=1

dsk e
i
∑n−1
k=1 skak K(n)

γ (s1, · · · sn−1). (4.15)

We first consider the contour of quadratic n = 2 term,∫
Cs

ds K(2)
γ (s) eias =

i sinπγ

8π2

∫
Cs

ds
s+ 2πiγ

sinh s
2 sinh s+2πiγ

2

eias, (4.16)

which is a bit tricky compared to higher order terms. When a > 0 we close the contour on

the upper half plane.

The real time kernel K(2)
γ (s) has two types of poles.

sn1 = 2πin, sk2 = 2πi(k − γ), n, k ∈ Z, k 6= 0. (4.17)

We can easily see that if one choose the contour Cs which contains sn1 , n ≥ 0, and

sk2, k ≥ 1 (as in figure 2), then the Fourier transformation is correctly reversed,

K(n)
γ (a) =

∫
Cs

ds K(2)
γ (s) eias. (4.18)

Again we explicitly check this in appendix B.

It is useful to write the integral as follows. Since we can write the integrand,

(s+ 2πiγ) sinπγ

sinh s
2 sinh s+2πiγ

2

=
s+ 2πiγ

1− e−s
− s+ 2πiγ

1− e−(s+2πiγ)
(4.19)

then, the contour integral is naturally split into two parts,∫
Cs

ds
(s+ 2πiγ) sinπγ

sinh s
2 sinh s+2πiγ

2

G(s) =

∫ ∞−iε
−∞−iε

ds

[
s+ 2πiγ

1− e−s

]
G(s)

−
∫ ∞−2πi(γ−ε)

−∞−2πi(γ−ε)
ds

[
s+ 2πiγ

1− e−(s+2πiγ)

]
G(s)

(4.20)

for any function G(s) which is holomorphic on the strip −2πγ < Ims < 0, when γ > 0.
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Figure 2. The contour Cs of the integral (4.16)(blue line). Orange dots are the poles sk2 = 2πi(k−γ)

of the kernel K(2)
γ (s).

It is also worth emphasizing that when −1 < γ < 1, the contour gets simplified,

∫
Cs

ds K(2)
γ (s) G(s) =

∫ ∞−iε
−∞−iε

ds K(2)
γ (s) G(s) (4.21)

4.3 Contour choice: n ≥ 3 terms

Now we fix all the contours Ck in the integral (4.15).

In the above derivation we have used following formula,

I1(ξ, β + iε) =

∫ ∞
−∞

dω
e−ωξ

(β + iε)− e−2πω
= β( ξ

2π
−1)

(
ei
ξ
2

2 sin ξ
2

)
. (4.22)

Notice that ξ = p+it, and p was a real number. In order for the integral to have an inverse,

we need to make sure the choice of the contour Ct

∫
Ct

dt I(p+ it, β)eiωt =
e−ωp

β − e−2πω
. (4.23)

The integrand has poles at sn = ip+ 2πn. By an explicit calculation, we recognize that we

need pick up poles with n ≥ 1, thus

∫
C
dt ≡

∫ ∞+i(p+ε)

−∞+i(p+ε)
dt. (4.24)
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This in particular means that

Kγn(ω1, · · ·ωn) =

∫
C

dz

2πi
zγ

e2π(γ−1)ω1

(z − e−2πω1)2

n∏
i=2

e−2πωi

z − e−2πωi

=
n∏
k=1

∫ ∞+i(pk+ε)

−∞+i(pk+ε)
dtke

iωktk

∫
C

dz

2πi
zγ

n∏
k=1

I(itk + pk, z)

=

n−1∏
k=1

∫
Ck

dsk e
i
∑n−1
k=1 skakKγn(s1, · · · sn−1) (4.25)

Therefore we need to choose the following contours,

Ims1 = −2π(γ − ε), Imsk − Imsk−1 = ε, Imsn−1 = −ε (4.26)

In particular when γ < 0 there is no consistent contour choice for n ≥ 3 terms.

5 Applications to conformal field theory

The discussion so far is quite general, applicable to any density matrices of any theories.

From now on, we would like to apply the formula to a special type of reduced density

matrices in conformal field theory(CFT). For this purpose, we first briefly summarize the

construction of the reduced density matrices. For detailed discussions we refer to [11].

5.1 Set up

We start from a CFT on d dimensional cylinder R× Sd−1,

ds2 = dt2 + dθ2 + sin2 θdΩ2
d−2. (5.1)

We consider a ball shaped subsystem A, which is given by

A : [0, θ0]× Sd−2, t = 0, (5.2)

and a reduced density matrix ρV of a globally excited state |V 〉 on the region A,

ρV = trAc |V 〉〈V |. (5.3)

The reduced density matrix has a path integral representation on the cylinder with a branch

cut on A. The branched cylinder is mapped to S1 ×Hd−1 with the metric [7],

ds2 = dτ2 + du2 + sinh2 udΩ2
d−2, τ ∼ τ + 2π. (5.4)

We find that in this frame ρV has following expression [11],

ρV =
e−πKV (θ0)V (−θ0)e−πK

〈V (θ0)V (−θ0)〉
(5.5)

where K is the generator of the translation along τ direction, which can be identified

with the modular Hamiltonian of ρ0 and V (±θ0) are local operators corresponding to the
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excited states through state operator correspondence, located at τ = ±θ0, u = 0. In the

small subsystem limit θ0 → 0, V (θ0)→ V (−θ0).

In this limit we can split the density matrix into the vacuum one ρ0 = e−2πK and the

rest, ρV = ρ0 + δρ. We do so by taking operator product expansion (OPE) of the two

local operators,

ρV = ρ0 + e−πK

 ∑
O:primaries

COV VBO(θ0,−θ0)

 e−πK (5.6)

where the index O labels non identity primaries, and COV V , BO(θ0,−θ0) are the OPE

coefficient and the OPE block of O respectively.

5.2 The perturbative expression of Tγ(ρ)

Now we determine the perturbative expression of Tγ(δρ) in CFT from (4.8). We write,

trργ = trργ0 +
∑

T (n)
γ (δρ), (5.7)

and for convenience we reproduce the expression of T
(n)
γ explicitly.

T (n)
γ (δρ) =

∫
ds1 · · · dsn−1K(n)

γ (s1, · · · sn−1)tr

[
e−2πγK

n∏
k=1

eiKsk δ̃ρe−iKsk

]
. (5.8)

Since δ̃ρ = eπKδρeπK , in our case we have

eiKsδρ̃e−iKs =
∑

O:primaries

COV V BO(is+ θ0, is− θ0). (5.9)

For our δρ, the trace in (5.8) can be regarded as a correlation function of the OPE

blocks on the covering space Σγ = S1
γ ×Hd−1, with the metric (5.4) but the periodicity of

the Euclidean time direction is changed τ ∼ τ + 2πγ,

〈· · ·〉Σγ ≡
1

Zγ
tr
[
e−2πγK · · ·

]
, (5.10)

where Zγ is the CFT partition function on this space.

Combining these we can write each term of Tγ(δρ) by an integral of correlation func-

tions of OPE blocks on Σγ along modular flow of vacuum ρ0.

1

Zγ
T (n)
γ (δρ) =

∑
{Ol}

n∏
l=1

COlV V

∫
ds1 · · · dsn−1K(n)

γ (s1, · · · sn−1)

× 〈
n−1∏
k

BOk(isk + θ0, isk − θ0)BO(θ0,−θ0)〉Σγ

(5.11)
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5.3 Bring n = 2 term to the standard form

We have seen n = 2 term is given by

1

Zγ
T (2)
γ (δρ) =

∑
O:primaries

∫
C
ds K(2)

γ (s)〈BO(is+ θ0, is− θ0)BO(θ0,−θ0)〉Σγ (5.12)

We can simplify this expression when 0 < γ < 1, and compare it with known results.

In order to do so, let us focus on the contribution T
(2)
γ,O(δρ) of a particular primary O to

the n = 2 term. Since the OPE block BO is summing up descendants of the primary O,we

can write it as

BO(θ0,−θ0) = C(θ0, ∂a)O(τa)
∣∣
τa=0

(5.13)

where C(θ0, ∂a) is a differential operator, and τa is the coordinate of Euclidean timelike

direction. In the above we did not manifest the dependence of O on the coordinates of

hyperbolic space. The main ingredient of the formula is the integral of two point function,

Iab =
i

8π2

∫ ∞−iε
−∞−iε

ds
s+ 2πiγ

sinh s
2 sinh s+2πiγ

2

Gab(s), Gab(s) = 〈O(is+ τa)O(τb)〉Σγ , (5.14)

and we can write,

T
(2)
γ,O(δρ) = C(θ0, ∂a)C(θ0, ∂b)Iab (5.15)

As we explain in appendix C, we can obtain a simpler expression of T
(2)
γ,O(δρ),

T
(2)
γ,O(δρ) =

γ sinπγ

4π
C(θ0, ∂a)C(θ0, ∂b)

∫ ∞
−∞

ds

sinh s−πiγ
2 sinh s+πiγ

2

Gab(s− πiγ) (5.16)

Notice that in the γ → 1 limit, its derivative recovers the contribution of O to the

second order term S(2)(δρ) of entanglement entropy [8],

S
(2)
O (δρ) = C(θ0, ∂a)C(θ0, ∂b)

∫ ∞
−∞

ds
−1

4 sinh2
(
s−iε

2

)〈O(is+ τa)O(τb)〉Σ1 . (5.17)

6 Expansion of Petz’s quasi entropy Dγ(ρ||σ)

In this section, we consider a similar perturbative expansion for Petz’s quasi entropy [16],

defined by

Dγ(ρ||σ) = tr ργσ1−γ . (6.1)

In this section we consider the case where the one of the reduced density matrices is

vacuum σ = ρ0. We then write ρ = ρ0 + δρ,

Dγ(ρ||ρ0) =
∞∑
n=2

D(n)
γ (δρ). (6.2)

The derivation of the perturbative series is very similar to the one of Tγ(ρ). We

first write

Dγ(ρ||ρ0) =

∫
C

dz

2πi
zγ tr

ρ1−γ
0

z − ρ
, (6.3)
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then by expanding the denominator we obtain a similar perturbative series. One notable

difference is that in the power series of Dγ(ρ||ρ0), the ργ0 factor appears in the expan-

sion (5.8) is canceled with the ρ1−γ
0 factor which appear in the definition (6.1). The explicit

expression of D
(n)
γ (δρ) is given by

D(n)
γ (δρ) =

∑
{Ok}

n∏
k=1

COkV V

n−1∏
k=1

dsk

∫
dskK(n)

γ (s1, · · · sn−1)

× 〈
n−1∏
k

BOk(isk + θ0, isk − θ0)BOn(θ0,−θ0)〉Σ1

(6.4)

with the kernel K(n)
γ (s1, · · · sn−1) defined in (4.14).

One advantage of this quantity is that we can expand it in terms of correlation functions

on the space without branch cut, Σ1, on the contrary to Rényi entropy itself, which is

expanded by correlators 〈· · ·〉Σγ on the space Σγ with branch cuts, and they are highly

theory dependent quantities. This implies that first few terms of Dγ(ρ||σ) are theory

independent, and allows us to write them holographically.

We also emphasize that the expressions (6.4) are only valid in some range of γ. In

particular higher order terms D
(n)
γ (δρ), n ≥ 3, has an expression in terms of a modular

flow integral only in the range 0 < γ < 1. The limitation is again coming from the fact that

there is a consistent contour choice of the modular flow integrals (4.26) only in the range.

However n = 2 term is still computable by the modular flow integral for any value of γ.

Below, we will be focusing on following quantity,

Zγ(ρ||σ) ≡ D−γ(ρ||σ)−Dγ(ρ||σ), (6.5)

and its quadratic part,

Yγ(δρ) ≡ d2

dt2
Zγ(σ + tδρ ||ρ0)

∣∣
t=0

, , (6.6)

as well as its derivative with respect to the index γ,

Xγ(δρ) =
d

dγ
Yγ(δρ). (6.7)

Notice that when γ = 0 ∂γZγ(ρ||σ) reduces to the relative entropy

∂γZγ(ρ||σ)
∣∣
γ=0

= 2S(σ||ρ), (6.8)

in which the order of two density matrices is flipped ρ ↔ σ, and Xγ(δρ) reduces to the

Fisher information, which is symmetric under the exchange.

Xγ(δρ)
∣∣
γ=0

= F (ρ||σ). (6.9)

6.1 Expressing Xγ(δρ) and Yγ(δρ) by modular flow integrals

Below we will focus on the range of the Rényi index −1 < γ < 1 for D
(2)
γ (δρ), or equivalently

0 < γ < 1 for Xγ(δρ) and Yγ(δρ).
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When the Rényi index is in the window, Yγ(δρ) has following simple modular flow

integral representation,

Yγ(δρ) =

∫ ∞−iε
−∞−iε

[
K(2)
−γ(s)−K(2)

γ (s)
]

tr
[
e−2πK δ̃ρ(s) δ̃ρ

]
ds. (6.10)

K(2)
γ (s) is given by

K(2)
γ (s) =

i sinπγ

8π2

(s+ 2πiγ)

sinh s
2 sinh s+2πiγ

2

. (6.11)

For the class of δρ we are interested in, we have

Yγ(δρ) = C(θ0, ∂a)C(θ0, ∂b)

∫ ∞−iε
−∞−iε

[
K(2)
−γ(s)−K(2)

γ (−s− 2πi)
]
〈O(is+ τa)O(τb)〉Σ1ds

= C(θ0, ∂a)C(θ0, ∂b)

∫ ∞
−∞

ds

 −(sinπγ)/4π

sinh
(
s−iε

2

)
sinh

(
s−2πiγ

2

)
 〈O(is+ τa)O(τb)〉Σ1 .

(6.12)

In the second term of the first line, we used another expression of D2
γ(δρ)

D2
γ(δρ) = C(θ0, ∂a)C(θ0, ∂b)Iba,

Iba =

∫ ∞+iε

−∞+iε
dsK(2)

γ (s− 2πi)〈O(is+ τb)O(τa)〉Σ1 , τa > τb,
(6.13)

and flipped the sign of the integration variable s→ −s. The derivation of this expression

is the same with that of (C.12) in appendix C.

By taking derivative of (6.12) with respect to γ, we have an expression of Xγ(δρ),

Xγ(δρ) = C(θ0, ∂a)C(θ0, ∂b)

∫ ∞
−∞

ds
−1

4 sinh2
(
s−2πiγ

2

)〈O(is+ τa)O(τb)〉Σ1 . (6.14)

6.2 Holographic expressions of Xγ(δρ) and Yγ(δρ)

So far we have obtained quadratic term Yγ(δρ) which is particular linear combination of

the Rényi relative divergence Zγ(δ||ρ0), and its derivative Xγ(δρ) in terms of modular flow

integral (6.12), (6.14).

As we will see below, through AdS/CFT correspondence, they have simple bulk ex-

pressions. The derivations are parallel to the argument of [10], where they obtained the

holographic expression of quadratic term of the entanglement entropy S(2)(δρ).

6.2.1 Set up

To explain this let us first recall the corresponding bulk set up. Our reference state is the

vacuum reduced density matrix ρ0, and since we take the subsystem A to be a ball shape
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region, corresponding Ryu Takayanagi surface can be regarded as the bifurcation surface

rB = 1 of the topological black hole,

ds2 = −(r2
B − 1)ds2

B +
dr2
B

(r2
B − 1)

+ r2
BdH

2
d−1 (6.15)

where dH2
d−1 denotes the metric of d− 1 dimensional hyperbolic space,

dH2
d−1 = du2 + sinh2 u dΩ2

d−2. (6.16)

In [10] it was shown that the CFT two point function in (6.12), (6.14) can be written

in terms of the bulk symplectic form ωφ of the bulk field φ dual to the CFT primary O,

〈O(is+ τa)O(τb)〉Σ1 = −
∫
dXB ωφ (KE(XB|τba),KR(XB|s)) . (6.17)

We evaluate the integral on fixed rB = r0 surface of the topological black hole (6.15),

and collectively denote the coordinates of the surface by XB. The bulk symplectic form is

given by

ωφ(δφ1, δφ2) = nM (δφ1∂Mδφ2 − δφ2∂Mδφ1) , (6.18)

where nM is the normal vector of the rB = r0 surface. KE(XB|τba), KR(XB|s) are the

Euclidean and Retarded bulk to boundary propagator of the bulk field φ, respectively. The

primary operators in the CFT two point function are located at the origin of the hyperbolic

space u = 0. We omit this information in the bulk to boundary propagators.

6.2.2 Holographic rewritings

By plugging (6.17) into (6.12), and evaluating the remaining s integral by picking up poles

of the kernel, we get1

Yγ(δρ) = i C(θ0, ∂a)C(θ0, ∂b)

∫
dXB ωφ (KE(XB|τba), KE(XB| − 2πγ)−KE(XB|0))

(6.19)

By shifting the time coordinate sB → sB + iτa, and using the relation between the

Euclidean bulk to boundary propagator and the expectation value of the bulk scalar field

operator φ(XB),

C(θ0, ∂a)KE(XB|τa) = 〈V |φ(XB)|V 〉 ≡ 〈φ(XB)〉V , (6.20)

we get,

Yγ(δρ) = i

∫
dXB ωφ (〈φ(0)〉V , 〈φ(2πγ)〉V − 〈φ(0)〉V ) , (6.21)

where 〈φ(2πγ)〉V is the expectation value of the bulk field rotated by 2πγ along the Eu-

clidean timelike direction,

〈φ(2πγ)〉V ≡ tr
[
ρV e−2πγK φ e2πγK

]
(6.22)

1The argument here is very similar to the one in [10]. See appendix E for the details.
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In the argument of the bulk local field φ, we only manifested the Euclidean time like

coordinate,

φ(τ) ≡ φ(rB, τ + isB, u,Ωd−2). (6.23)

We can obtain a similar expression for Xγ(δρ) just by taking a derivative of Yγ(δρ),

Xγ(δρ) = −2π

∫
dXB ωφ (〈φ(0)〉V , ∂s〈φ(2πγ)〉V ) , (6.24)

here we used the relation ∂γ = −i∂s. This integral is invariant under the deformation of

the surface on which we are evaluating the integral. In particular we can choose the fixed

time slice sB = 0, then the integral can be written as,

Xγ(δρ) = −2π

∫
Σ
dΣa ξb Tab(〈φ(0)〉V , 〈φ(2πγ)〉V ), (6.25)

where Σ is the bulk region on the time slice sB = 0, which is enclosed by the boundary

subsystem A and the bifurcation surface of the topological black hole (ie, RT surface). Also

dΣa is the volume element of Σ, and ξb is the timelike Killing vector of the black hole. Tab
is a quadratic form of φ related to the stress energy tensor of the bulk field,

Tab(φ1, φ2) = ∂aφ1∂bφ2 −m2gabφ1φ2 (6.26)

There is another way to derive this result. Let us come back to the CFT formula,

Xγ(δρ) = C(θ0, ∂a)C(θ0, ∂b)

∫ ∞
−∞

ds
−1

4 sinh2
(
s−2πiγ

2

)〈O(is+ τa)O(τb)〉Σ1 (6.27)

by changing the integration variable to t = s− 2πiγ and shifting the contour we get,

Xγ(δρ) = C(θ0, ∂a)C(θ0, ∂b)

∫ ∞
−∞

dt
−1

4 sinh2
(
t−2πiε

2

)〈O(i(t+ 2πiγ) + τa)O(τb)〉Σ1

=

∫ ∞
−∞

ds
−1

4 sinh2
(
s−2πiε

2

)tr
[
δ̃ρ(s) e2πγ δ̃ρ e−2πγ

]
(6.28)

In [11] it was shown that the excited state modular Hamiltonian Kρ of ρ, when ex-

panded by δρ, the leading order correction to the vacuum modular Hamiltonian K is

given by

Kρ = K +

∫ ∞
−∞

ds

sinh2 s
2

δ̃ρ(s) ≡ K + δK. (6.29)

It was also shown that contribution of a primary operator O to the correction δK has

a bulk expression

δK = 2π

∫
Σ
dΣa ξb Tab(〈φ(0)〉V , φ̂), (6.30)

where φ̂ is the bulk field operator dual to O. By plugging this into (6.28), we recover

the result.
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7 Conclusions

In this paper we developed a novel way to perturbatively expand Rényi tpe quantities

involving powers of reduced density matrices. We then obtained a holographic expression of

the quadratic parts of Rényi relative divergences Xγ(δρ), Yγ(δρ) in terms of bulk symplectic

form starting from the CFT calculations.

It is interesting find a bulk derivation of this result. One difficulty in doing so is coming

form the fact that in general there is no nice path integral representation of Rényi relative

divergence. This is because even if reduced density matrices ρ, σ can be written by path

integrals, ργ and σ1−γ can not. If we could find such a representation, then we can map the

CFT path integral calculationss to the bulk on shell action calculations. Indeed, in a special

case where Rényi relative divergence can be represented by a path integral, corresponding

holographic calcuation is known [21]. However in order to derive a bulk formula for Rényi

relative divergence between two generic bulk configurations, we need to take a different

approach. A possible approach would be first going back to replica trick [32], compute

trρnσm for positive integers n,m then analytically continue the result n→ γ,m→ 1− γ.

Furthermore it would be nice if we could read off finer information of bulk geometries

using Rényi relative divergence. It has been shown that using relative entropy, we can

read off first non linear part of Einstein equations [8, 10] in particular. Since Rényi relative

divergence is a one parameter generalization of relative entropy, and knows about details of

eigenvalue distribution of excited state reduced density matrices, it is natural to expect this.

Another interesting direction would be to calculate correlation functions with insertions

of modular flows of excited states, by using the technique developed in this paper. For

example [33–35], two point function with an insertion of a modular flow 〈O(x)∆itO(y)〉
was considered. There, it was also argued that this is useful to extract information of

corresponding bulk geometry. Naively speaking we can perturbatively compute them by

Wick rotating the Rényi index γ to the imaginary value γ → it in our result. The task

would be to check that there is no obstacle to do this.
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A The calculation of K(n)
γ (s1, · · · sn−1)

In this appendix, we explain the details of the calculation of the kernel K(n)
γ (s1, · · · sn−1),

starting from (4.12).

In order to do this, we first decompose J(z) in (4.12)

J(z) = zγI2(ξ1, z)

n−1∏
k=2

I1(ξk, z)I1(ξn, z), (A.1)
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where

ξ1 = −2π(γ − 1) + i(s1 + q), ξn = 2π − (sn−1 − q)i, (A.2)

ξk = 2π + (sk − sk−1 + q)i, 2 ≤ k ≤ n− 1, (A.3)

and

I1(ξ, z) =

∫ ∞
−∞

dω
e−ωξ

z − e−2πω
, I2(ξ, z) =

∫ ∞
−∞

dω
e−ωξ

(z − e−2πω)2
. (A.4)

For I1(ξ, z), by carefully picking up the contributions of the relevant poles we have,

I1(ξ, β + iε) = β( ξ
2π
−1)

(
e−i

ξ
2

2 sin ξ
2

)
, I1(ξ, β − iε) = β( ξ

2π
−1)

(
ei
ξ
2

2 sin ξ
2

)
. (A.5)

One way to check these is using

1

z + iε
− 1

z − iε
= −2πiδ(z). (A.6)

Then,

Disc I = lim
ε→0+

[I(z + iε)− I(z − iε)]

= −2πi

∫ ∞
−∞

dωe−ξω δ(β − e−2πω) = −iβ( ξ
2π
−1). (A.7)

This is consistent with (A.5).

We can evaluate I2(ξ, z) just by taking derivative of I1(ξ, z) with respect to β,

I2(ξ, β + iε) = −
(
ξ

2π
− 1

)
β( ξ

2π
−2)

(
e−i

ξ
2

2 sin ξ
2

)
,

I2(ξ, β − iε) = −
(
ξ

2π
− 1

)
β( ξ

2π
−2)

(
ei
ξ
2

2 sin ξ
2

)
.

(A.8)

Combining these, we obtain the relevant expressions of J(z)

J(β + iε) = −β
(
γ+
∑n
k=1

ξk
2π
−(n+1)

) (
ξ1
2π − 1

)
∏n
k=1 2 sin ξk

2

e−
i
2

∑n
k=1 ξk , (A.9)

and

J(β − iε) = −β
(
γ+
∑n
k=1

ξk
2π
−(n+1)

) (
ξ1
2π − 1

)
∏n
k=1 2 sin ξk

2

e
i
2

∑n
k=1 ξk . (A.10)

Since

γ +

n∑
k=1

ξk
2π
− (n+ 1) = −1 +

iqn

2π
, (A.11)
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the β integral produces the delta function,∫ ∞
−∞

dβ

2πi
β−1+ iqn

2π =
2π

ni
δ(q). (A.12)

By picking up the discontinuity across the real line, we get

δ(q)K(n)
γ (s1, · · ·sn−1) =

n

(2π)n

∫ ∞
0

dβ

2πi
(J(β−iε)−J(β+iε)) , ε→ 0+,

=− n

(2π)n

(
2π

ni
δ(q)

) (
ξ1
2π−1

)
∏n
k=1 2sin ξk

2

(
e
i
2

∑n
k=1 ξk−e−

i
2

∑n
k=1 ξk

)
(A.13)

Notice that

e−
i
2

∑n
k=1 ξk − e+ i

2

∑n
k=1 ξk = eiπ(γ−n) − e−iπ(γ−n) (A.14)

= 2i(−1)n sinπγ (A.15)

and (
ξ1
2π − 1

)
∏n
k=1 sin ξk

2

=
−in+1

2π

(s1 + 2πiγ)

sinh
(
s1+2πiγ

2

)∏n−1
k=2 sinh

(
sk−sk−1

2

)
sinh

( sn−1

2

) (A.16)

From this we finally arrive at the expression of the kernel,

K(n)
γ (s1, · · · sn−1) =

i

8π2

(
−i
4π

)n−2 (s1 + 2πiγ) sinπγ

sinh
(
s1+2πiγ

2

)∏n−1
k=2 sinh

(
sk−sk−1

2

)
sinh

( sn−1

2

)
(A.17)

B Fixing the contour of n = 2 term

In this appendix, we fix the correct contour Cs of n = 2 real time integral∫
Cs

ds K(2)
γ (s) eias =

i sinπγ

8π2

∫
Cs

ds
s+ 2πiγ

sinh s
2 sinh s+2πiγ

2

eias, (B.1)

which reproduces the kernel in the frequency representation, (3.3)

K(2)
γ (ω1,ω2) = e2πγω1e−2πω1−2πω2K(ω1,ω2)

=
e2πγω1e−2πω1−2πω2

(e−2πω1−e−2πω2)2

[
(γ−1)e−2πγω1 +e−2πγω2−γe−2π(γ−1)ω1e−2πω2

]
. (B.2)

Using a ≡ ω1 − ω2, we have,

K(2)
γ (a) =

e2πa

(1− e2πa)2

[
(γ − 1) + e2πaγ − γe2πa

]
. (B.3)

Let’s do the integral (B.1). There are two types of poles.

sn1 = 2πin, sk2 = 2πi(k − γ). (B.4)
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We choose a contour which contains sn1 , n ≥ 0, and sk2, k ≥ 1. One way to manifest the

contour prescription is introducing an additional parameter x > 0,

K(2)
γ (s, x) =

(
i sinπγ

8π2

)
s+ 2πiγ

sinh s+x
2 sinh s+2πiγ

2

, (B.5)

and finally send x→ 0 to get the desired result.

We have

Res[s1
n] =

i(n+ γ)

2π
e−2πan, Res[s2

n] = − ik
2π
e2πa(γ−k). (B.6)

By combining them,∫
Cs

ds K(2)
γ (s) eias = 2πi

(∑
n

Res[s1
n] +

∑
k

Res[s2
k]

)

= −

[
(1− e−2πaγ)

∑
k

ke−2πak + γ
∑
n

e−2πaγn

]

= − e2πa

(e2πa − 1)2

(
1− γ) + γe2πa − e2πaγ

]
= K(2)

γ (a). (B.7)

This is what we want. In the sum, we included n = 0 contribution.

C Simplifying T (2)
γ (δρ)

In this section we simplify n = 2 term of T
(2)
γ (δρ). In section 5.3 we saw that the contri-

bution of particular primary O to T
(2)
γ (δρ) can be written

T
(2)
γ,O(δρ) = C(θ0, ∂a)C(θ0, ∂b)Iab (C.1)

where

Iab =
i

8π2

∫ ∞−iε
−∞−iε

ds
s+ 2πiγ

sinh s
2 sinh s+2πiγ

2

Gab(s), Gab(s) = 〈O(is+ τa)O(τb)〉Σγ , (C.2)

and C(θ0, ∂a) is a differential operator summing up all descendants.

This expression only holds when τa > τb. This is because we started from the spectral

representation,

Iab =

∫
dω1dω2 Kγ(a) e−2πγω1〈ω1|O(τa)|ω2〉〈ω2|O(τb)|ω1〉, (C.3)

rewrote it in terms of the modular flow integral by

Kγ(a) =

∫ ∞−iε
−∞−iε

Kγ(s)eias, a = ω1 − ω2, (C.4)
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and then undoing the spectral decomposition of the two point function Gab(s),∫
dω1dω2 e

−2πγω1+ias〈ω1|O(τa)|ω2〉〈ω2|O(τb)|ω1〉 = 〈O(is+ τa)O(τb)〉Σγ . (C.5)

The spectral integral only converges when τa > τb.

When τb > τa, we instead write

Iab =

∫
dω1dω2

[
Kγ(a)e−2πγa

]
e−2πγω2〈ω1|O(τa)|ω2〉〈ω2|O(τb)|ω1〉, (C.6)

Kγ(a)e−2πγa =

∫ ∞−iε
−∞−iε

ds Kγ(s) eia(s+2πiγ)

=

∫ ∞+2πi(γ−ε)

−∞+2πi(γ−ε)
dt Kγ(t− 2πiγ) eiat. (C.7)

Since

Kγ(t− 2πiγ) =
i sinπγ

8π2

t

sinh t
2 sinh t−2πiγ

2

(C.8)

is regular on the strip 2π(γ − ε) > Imt > 0 when 0 < γ < 1, we deform the contour to

Im t = ε

Kγ(a)e−2πγa =

∫ ∞+iε

−∞+iε
dt Kγ(t− 2πiγ) eiat (C.9)

Therefore for τb > τa we have

Iab =

∫ ∞+iε

−∞+iε
Kγ(s− 2πiγ)〈O(τb)O(τa + is)〉Σγ , τb > τa. (C.10)

We have similar formule for Iba, just by flipping τa ↔ τb.

Finally we combine these expressions to get a simpler form of T
(2)
γ (δρ). The two point

function in (C.2) is analytic in the strip region −2πγ < Ims < τba. Since when 0 < γ < 1

there is no pole coming from the kernel in the strip, and we are allowed to deform the

contour s→ s− πiγ. Then the integral for τa > τb becomes

Iab =
i sinπγ

8π2

∫ ∞−iε
−∞−iε

ds
s+ πiγ

sinh s−πiγ
2 sinh s+πiγ

2

Gab(s− πiγ), τa > τb (C.11)

Now we do a similar thing for Iba,

Iba =

∫ ∞+iε

−∞+iε
Kγ(s− 2πiγ)〈O(τa)O(τb + is)〉Σγ , τa > τb. (C.12)

By shifting the contour s→ s+ πiγ, and then flipping the sign s→ −s we get

Iba =
i sinπγ

8π2

∫ ∞+iε

−∞+iε
ds

−s+ πiγ

sinh s−πiγ
2 sinh s+πiγ

2

Gab(s− πiγ) (C.13)

In the expressions (C.11) (C.13), we can take ε→ 0. Finally we obtain

Iab + Iba =
γ sinπγ

4π

∫ ∞
−∞

ds

sinh s−πiγ
2 sinh s+πiγ

2

Gab(s− πiγ) (C.14)
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T
(2)
γ,O(δρ) is obtained by applying the differential operator,

T
(2)
γ,O(δρ) = C(θ0, ∂a)C(θ0, ∂b)(Iab + Iba) (C.15)

Notice that in the γ → 1 limit, its derivative recovers the second order term S(2)(δρ)

entanglement entropy,

S
(2)
O (δρ) = C(θ0, ∂a)C(θ0, ∂b)

∫ ∞
−∞

ds
−1

4 sinh2
(
s−iε

2

)〈O(is+ τa)O(τb)〉Σ1 . (C.16)

D Direct Fourier transformation

Here we would like to directly show that

Kγn(s) =

∫ ∞+iε

−∞+iε

da

2π
Kγn(ω)e−ias

=

∫ ∞+iε

−∞+iε

da

2π

e−ias

sinh2 πa

[
(γ − 1)− γe2πa + e2πγa

]
(D.1)

The first piece is

I1 =

∫ ∞+iε

−∞+iε

da

2π

e−ias

sinh2 πa
=

s

4π2

(
1

1− e−s

)
(D.2)

The second order term can be obtained by the shift s→ s+ 2πi, therefore

I2 =

∫ ∞+iε

−∞+iε

da

2π

e−ia(s+2πi)

sinh2 πa
=

(s+ 2πi)

4π2

(
1

1− e−s

)
(D.3)

Similarly,

I3 =

∫ ∞+iε

−∞+iε

da

2π

e−ia(s+2πiγ)

sinh2 πa
=

(s+ 2πiγ)

4π2

(
1

1− e−(s+2πiγ)

)
(D.4)

Then the total integral is

(γ − 1)I1 + γI2 + I3 =
i

8π2

[
(s+ 2πiγ) sinπγ

sinh s
2 sinh s+2πiγ

2

]
(D.5)

therefore we recover the first non trivial part.

E Details of the holographic rewriting

In section 6.2.2, we used the result,

Yγ(δρ) =

∫
dXB ωφ

(
KE(XB|τab,

∫ ∞
−∞

dsY(s− iε)KR(XB|s)
)

= i

∫
dXB ωφ (KE(X,B|τba), KE(XB| − 2πγ)−KE(XB|0)) (E.1)
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with

Y(s− iε) =
−(sinπγ)/4π

sinh
(
s−2iε

2

)
sinh

(
s−2πiγ

2

) . (E.2)

In this appendix, we prove this. The derivation is very similar to the one in [10].

The retarded bulk to boundary propagator is given by

KR(XB|s) = iθ(sB − s) lim
ε→0

[KE(XB|is− ε)−KE(XB|is+ ε)] . (E.3)

In particular, as a function of s, the retarded propagator is non vanishing only in the

window −∞ < s < s∗. The value of s∗ is fixed by demanding that the boundary point is

null separated from the bulk point XB. Then∫ ∞
−∞

dsY(s− iε)KR(XB|s) =

∫ s∗

−∞
Y(is− ε) [KE(XB|s+ iε)−KE(XB|is+ ε)]

=

∫
C
dsY(s− iε)KE(XB|s), (E.4)

where C is the closed contour starting from −∞+ iε to s∗ + iε, then to s∗ + 2(π − ε)i and

ending at −∞+2(π−ε)i. We also used the KMS condition KE(XB|is+2π) = KE(XB|is),
Y(s + 2πi) = Y(s) to fix the contour. By picking up poles of Y(s − iε) at s = iε and

s = 2πiγ, we obtain the result.
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[31] A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time

story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].

[32] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[33] T. Faulkner, M. Li and H. Wang, A modular toolkit for bulk reconstruction, JHEP 04 (2019)

119 [arXiv:1806.10560] [INSPIRE].

[34] T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151

[arXiv:1704.05464] [INSPIRE].

[35] Y. Chen, X. Dong, A. Lewkowycz and X.-L. Qi, Modular Flow as a Disentangler, JHEP 12

(2018) 083 [arXiv:1806.09622] [INSPIRE].

– 25 –

https://doi.org/10.1007/JHEP10(2018)166
https://arxiv.org/abs/1807.09448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.09448
https://arxiv.org/abs/1811.05052
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.05052
https://doi.org/10.1016/j.physletb.2018.10.071
https://doi.org/10.1016/j.physletb.2018.10.071
https://arxiv.org/abs/1806.10144
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.10144
https://doi.org/10.1007/JHEP03(2019)044
https://arxiv.org/abs/1811.03097
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.03097
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
https://doi.org/10.1007/JHEP04(2019)119
https://doi.org/10.1007/JHEP04(2019)119
https://arxiv.org/abs/1806.10560
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.10560
https://doi.org/10.1007/JHEP07(2017)151
https://arxiv.org/abs/1704.05464
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05464
https://doi.org/10.1007/JHEP12(2018)083
https://doi.org/10.1007/JHEP12(2018)083
https://arxiv.org/abs/1806.09622
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.09622

	Introduction
	New expansion formula using the resolvent trick
	Some explicit checks
	First order term T**((1))(gamma)(delta rho)
	Second order term T**((2))(gamma)(delta rho)
	Checks


	Expressions of perturbative terms in terms of the vacuum modular flow
	Doing the Fourier transformation
	Choice of the integration contour: the quadratic n = 2 term
	Contour choice: n >= 3 terms

	Applications to conformal field theory
	Set up
	The perturbative expression of T(gamma)(rho)
	Bring n = 2 term to the standard form

	Expansion of Petz's quasi entropy D(gamma) (rho||sigma)
	Expressing X(gamma)(delta rho) and Y(gamma)(delta rho) by modular flow integrals
	Holographic expressions of X(gamma)(delta rho) and Y(gamma)(delta rho)
	Set up
	Holographic rewritings


	Conclusions
	The calculation of K**((n))(gamma) (s(1), cdots s(n - 1))
	Fixing the contour of n = 2 term
	Simplifying T**((2))(gamma) (delta rho)
	Direct Fourier transformation
	Details of the holographic rewriting

