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1. Introduction

The main result of this paper is

Theorem 1.1. Let d ≥ 2 and α ∈ (0, d). There exists a constant C = C(α, d) > 0 such 
that

‖IαF‖Ld/(d−α),1(Rd;Rd) ≤ C‖F‖L1(Rd;Rd) (1.1)

for all fields F ∈ L1(Rd; Rd) such that curlF = 0 in the sense of distributions.

Here Ld/(d−α),1(Rd; Rd) denotes the space of vector-valued functions whose Euclidean 
norm is in the Lorentz space Ld/(d−α),1(Rd) (see below in Section 2 for a precise definition 
of this space) and Iα is the Riesz potential, defined for measurable functions in the scalar 
setting by the formula

Iαf(x) = 1
γ(α)

ˆ

Rd

f(y)
|x− y|d−α

dy,

with an analogous definition in the vector setting by operating on components (see 
Section 2 for the definition of the constant γ(α)).

As it may be of interest, let us also record two equivalent formulations of the in-
equality (1.1) before discussing the literature, our proof, some extensions, and a dual 
result. In particular, taking into account the curl-free condition, the inequality (1.1) can 
alternatively be expressed as

‖Iα∇u‖Ld/(d−α),1(Rd;Rd) ≤ C‖∇u‖L1(Rd;Rd) (1.2)

for all u ∈ Ẇ 1,1(Rd). Such an estimate then extends to ˙BV (Rd) by density in the strict 
topology (and in turn one can also assert an analogue of (1.1) for measures). Meanwhile 
the boundedness of the Riesz transforms on the Lorentz spaces and a density argument 
imply that both (1.1) and (1.2) are equivalent to

‖Iαf‖Ld/(d−α),1(Rd) ≤ C ′‖Rf‖L1(Rd;Rd) (1.3)

for all f ∈ C∞
c (Rd) with Rf := ∇I1f ∈ L1(Rd; Rd).

Theorem 1.1 completes the picture concerning the study of the mapping properties 
of the Riesz potential on Lp(Rd) into Lorentz spaces for 1 ≤ p < d

α . We recall that it 
was S. Sobolev who had initiated the study on the scale of Lebesgue spaces in [38] (see 
also [21,35] for related results in one dimension), where he demonstrated that one has 
the existence of a constant C̃ = C̃(α, d) > 0 such that

‖Iαf‖Lq(Rd) ≤ C̃‖f‖Lp(Rd) (1.4)
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for all f ∈ Lp(Rd), provided 1 < p < d/α and where

1
q

= 1
p
− α

d
.

Subsequent work by R. O’Neil [33] then showed that for the same range of p and corre-
sponding definition of q one has an improvement to this inequality on the Lorentz scale, 
the inequality

‖Iαf‖Lq,p(Rd) ≤ C̃ ′‖f‖Lp(Rd) (1.5)

for some C̃ ′ > 0 and for all f ∈ Lp(Rd). Recall that Lq(Rd) = Lq,q(Rd), while spaces 
Lq,r(Rd) are nested increasing with respect to the second parameter. The fact that p < q

thus implies that inequality (1.5) improves (1.4), while simple examples show that it is 
the best possible result on this scale.

It is well-known that (1.4) (and hence (1.5)) cannot hold for p = 1, though one has 
various possible replacements. A classical result to this effect is the weak-type estimate 
of A. Zygmund [44]: There exists C̃ ′′ > 0 such that

|{x : |Iαf(x)| > t}|(d−α)/d ≤ C̃ ′′

t
‖f‖L1(Rd)

for all t > 0 and all f ∈ L1(Rd). Here while the standard counterexample (cf. [40], 
p. 119) shows that one cannot obtain a strong-type inequality with only the assumption 
f ∈ L1(Rd), E. Stein and G. Weiss [41] have shown that for f in the Hardy space H1(Rd), 
one can obtain such a bound: There exists C̃ ′′′ > 0 such that

‖Iαf‖Ld/(d−α)(Rd;Rd) ≤ C̃ ′′′
ˆ

Rd

|(f(x), Rf(x))| dx

for all f ∈ H1(Rd). Observe here that we take as our definition of the Hardy space

H1(Rd) := {f ∈ L1(Rd) : Rf = ∇I1f ∈ L1(Rd;Rd)},

though one has other possible definitions, for example, in terms of maximal functions 
[18] or via an atomic decomposition [14,26]. As L. Tartar has shown in [42] that the Riesz 
potential maps atoms into the Lorentz space Ld/(d−α),1(Rd), one can thus improve2 the 
preceding inequality to the optimal target on the Lorentz scale.

Yet while the assumption that both f ∈ L1(Rd) and Rf ∈ L1(Rd; Rd) is sufficient to 
obtain a bound on the potential of f in the suitably scaling Lebesgue space, it is not 

2 Commenting on an earlier version of this manuscript, Mario Milman communicated to us a simple proof 
of this fact using the interpolation theory of Hardy spaces developed in [17]. The author subsequently found 
this argument explicitly made in [15] (see p. 1032).
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necessary, as been shown in recent work by the author, Armin Schikorra and Jean Van 
Schaftingen in [36], where the following inequality was proven: There exists a constant 
C ′′ = C ′′(α, d) > 0 such that

‖Iαf‖Ld/(d−α)(Rd) ≤ C ′′‖Rf‖L1(Rd;Rd) (1.6)

for all f ∈ C∞
c (Rd) such that Rf ∈ L1(Rd; Rd). A comparison with the result of L. 

Tartar [42] prompts one to wonder whether the inequality (1.6) can be strengthened on 
the Lorentz scale. Indeed it can, as one sees from the formulation of Theorem 1.1 as the 
inequality (1.3) that one has precisely such an improvement.

As was remarked in [36], one could already have deduced the inequality (1.6) from 
various embeddings in the literature which have been known for some time, e.g. [8, 
Lemma D.2], [13, Theorem 1.4], [24, Theorem 4], [28], [39, Theorem 2], [43, Theorem 8.3]). 
In fact, as was shown in [36], one can even replace the norm of Iαf in Ld/(d−α)(Rd) on 
the left-hand-side with its norm in Ld/(d−α),r(Rd) for any r > 1. However, the constant 
in the theorem then depends upon r and is not stable as r → 1+, and so one cannot 
obtain the optimal Lorentz space embedding with this argument. Thus we can highlight 
the main achievements of Theorem 1.1: to obtain the second parameter r = 1 in the 
Lorentz space, to do so without the assumption f ∈ H1(Rd), and to accomplish these 
two feats for α ∈ (0, 1). Let us comment on these several facts here. First, let us notice 
that to retain r = 1 is significant, since only for r = 1 does one have the embedding

Iα : Ld/α,r(Rd) → L∞(Rd),

(and even the space of continuous functions) as for any r > 1 one obtains an embedding 
into the space of functions of bounded mean oscillation. Second, the assumptions on F in 
our Theorem 1.1 do not imply the underlying function f = div I1F ∈ H1(Rd). A simple 
way to observe this fact is the lack of validity of the inequality

‖f‖L1(Rd) ≤ C‖Rf‖L1(Rd;Rd)

even for smooth functions f ∈ L1(Rd) such that Rf ∈ L1(Rd; Rd). It is easy to construct 
a counterexample to such an inequality, for example, the sequence Rfn = ∇un, where 
un = ρn ∗ χB(0,1) for ρn a sequence of standard mollifiers. Then the right-hand-side 
remains bounded while

ˆ

Rd

|fn(x)| dx =
ˆ

Rd

|(−Δ)1/2un(x)| dx → ∞

as n → ∞. Finally regarding α ∈ (0, 1): Once one has established the validity of such an 
inequality for some α > 0, the result follows for all α′ > α from a vector-valued analogue 
of (1.5). As the case α = 1 can be deduced as a consequence of the result of A. Alvino [1], 
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the range α ≥ 1 follows from the existing literature. In the sequel we therefore restrict 
our attention to the case α ∈ (0, 1).

The idea of the proof is that while standard potential estimates are not sufficient 
to obtain an optimal exponent in the second parameter, the coarea formula allows for a 
sort of self-improvement through the estimate for characteristic functions. The use of the 
coarea formula and isoperimetric inequalities in the proof of Sobolev inequalities in this 
spirit is classical [16,27], while we here argue along the lines of a more recent work of V. 
Maz’ya [28] (see also [30] for the question of best constant in this related inequality). To 
understand what is gained by such a reduction, let us suppose that we try to prove (1.2)
directly by our method, without assuming that one operates on characteristic functions.

First, by a pointwise interpolation inequality of V. Maz’ya and T. Shaposhnikova [31]
one has the following estimate: For α ∈ (0, 1), there exists a constant C = C(α, d) > 0
such that for each u ∈ C∞(Rd) ∩W 1,1(Rd)

|Iα∇u(x)| ≤ C (M(|∇u|)(x))1−α (M(u)(x))α . (1.7)

Next, by R. O’Neil’s extension of Hölder’s inequality in the Lorentz spaces [33], and 
moving to an equivalent quasi-norm in the Lorentz spaces (defined in terms of the dis-
tribution function, see below in Section 2), we can show one has the bound

‖Iα∇u‖Ld/(d−α),1(Rd;Rd) ≤ C ′|||M(|∇u|)|||1−α
L1,∞(Rd)|||M(u)|||αLd/(d−1),α(Rd).

Finally, by various weak and strong-type bounds of the Hardy-Littlewood maximal func-
tion on the Lorentz spaces one deduces

‖Iα∇u‖Ld/(d−α),1(Rd;Rd) ≤ C ′′‖∇u‖1−α
L1(Rd;Rd)|||u|||

α
Ld/(d−1),α(Rd). (1.8)

But as α < 1, the term |||u|||α
Ld/(d−1),α(Rd) is too large to be absorbed into ‖∇u‖L1(Rd;Rd)

for general u (the fact that this is possible when α = 1 is A. Alvino’s result [1]).
By passing to a limit in a suitable manner, however, we can obtain an analogue of (1.8)

for the characteristic function of a set of finite perimeter E ⊂ Rd. Here one finds that 
the equivalence of |||χE |||αLd/(d−1),r(Rd) with respect to 0 < r ≤ +∞, up to a constant 
that depends on r, allows one to regain the appropriate control of this term. In fact, 
introducing the nonlinear fractional differential operator

D1−α(u) :=
ˆ

Rd

|u(x) − u(y)|
|x− y|d+1−α

dy, (1.9)

defined for u ∈ BV (Rd), we can actually prove a stronger result (and easier to argue, 
due to positivity of the operator), the following

Lemma 1.2. Let d ≥ 2 and α ∈ (0, 1). There exists a constant C = C(α, d) > 0 such that

‖D1−α(χE)‖Ld/(d−α),1(Rd) ≤ CPer(E)1−α|E|α(1−1/d)
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for all sets E ⊂ Rd of finite perimeter.

As discussed in [36], Theorem 1.1 does not hold in the case d = 1, and let us take 
this occasion to note where the assumption d > 1 arises in the proof of Lemma 1.2. It is 
in the step where we use Hölder’s inequality in the Lorentz spaces, where the exponents 
are p = 1/(1 − α) and q = d/α(d − 1):

1
d/(d− α) = 1

1/(1 − α) + 1
d/α(d− 1) .

In particular, in the case d = 1 one has q = +∞ and so one cannot pass to a weak-type 
estimate for the Hardy-Littlewood maximal function, instead requiring a strong-type 
estimate on L1(Rd), which is, of course, false.

Actually, by not invoking the isoperimetric inequality, our Lemma 1.2 enables one to 
obtain a more general result than the equivalence of isoperimetric and Sobolev inequal-
ities discussed in [28]. In particular, it implies the general interpolation inequality given 
in our

Theorem 1.3. Let d ≥ 2 and α ∈ (0, 1). There exists a constant C = C(α, d) > 0 such 
that

‖IαDu‖Ld/(d−α),1(Rd;Rd) ≤ C|Du|(Rd)1−α‖u‖αLd/(d−1),1(Rd)

for all u ∈ BV (Rd).

Here we write Du for the distributional derivative of u ∈ BV (Rd) and |Du|(Rd) to 
denote the total variation of this Radon measure.

Of course, one can then deduce further results by making other variations on this 
theme, possibly also employing known interpolation inequalities. For example, as it an-
swers a question raised in a previous work of the author and Tien-Tsan Shieh [37], we 
here use our result to extend the Hardy inequality proven in [37] for u ≥ 0 to u with 
arbitrary sign in

Theorem 1.4. Let d ≥ 2 and α ∈ (0, 1). There exists a constant C = C(α, d) > 0 such 
that

ˆ

Rd

|u(x)|
|x|α dx ≤ C

ˆ

Rd

|Dαu| dx,

for all u ∈ Lq(Rd) for some 1 ≤ q < d such that Dαu = ∇I1−αu ∈ L1(Rd; Rd).
1−α
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Here Dαu is defined in the distributional sense,

< Dαu,Φ >:=< I1−αu,− div Φ >= −
ˆ

Rd

I1−αu(x) div Φ(x) dx,

for all Φ ∈ C∞
c (Rd; Rd), the last equality following from the assumption u ∈ Lq(Rd) for 

some 1 ≤ q < d
1−α , and hence I1−αu ∈ L1

loc(Rd). As the result in [37] obtained the sharp 
constant for u ≥ 0, it would be interesting to understand whether one can show that the 
same constant appearing there holds for unsigned u (as in the case α = 1).

Let us make two further remarks here before moving to discuss dual results. First, our 
proof obtains a slightly stronger result (see Theorem 4.1 in Section 4): If u ∈ W 1,1(Rd) (or 
even BV (Rd)) then in fact D1−α(u) ∈ Ld/(d−α),1(Rd). One sees this is an improvement 
thanks to the easy inequality

∣∣∣∣∣∣
ˆ

Rd

u(x) − u(y)
|x− y|d+1−α

x− y

|x− y| dy

∣∣∣∣∣∣
≤
ˆ

Rd

|u(x) − u(y)|
|x− y|d+1−α

dy,

the left-hand-side being equal to |IαDu|, up to a multiplicative constant, in an appropri-
ate sense. Second, when one views Theorem 1.1 as the inequality (1.2), then an interesting 
fact (which could already be deduced from known embeddings) is made apparent: While 
for u ∈ L1(Rd) one has that

Idu(x) := 2
πd/22dΓ(d/2)

ˆ

Rd

u(y) log 1
|x− y| dy

is a function of bounded mean oscillation (see p. 417 in [23]), the assumption ∇u ∈
L1(Rd; Rd) implies

Id∇u(x) = 2
πd/22dΓ(d/2)

ˆ

Rd

∇u(y) log 1
|x− y| dy

is a bounded function. J. Van Schaftingen has shown such an estimate in two dimensions 
in [43], as well as a related estimate in several dimensions, which relies on the work of 
P. Mironescu [32]. This has been further explored for operators more general than the 
gradient by P. Bousquet and J. Van Schaftingen in [11] and B. Raiţă in [34].

Finally we discuss a dual result concerning the mapping properties of the Riesz po-
tentials which follows from Theorems 1.1 and 1.3. In general, one has

Iα : Ld/α,∞(Rd) → BMO(Rd),

for BMO(Rd) the space of functions of bounded mean oscillation. Thus, the duality of 
the Hardy space H1(Rd) and BMO(Rd) implies that for any g ∈ Ld/α,∞(Rd), there 
exists functions {Yj}dj=0 ⊂ L∞(Rd) such that
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Iαg = Y0 +
d∑

j=1
RjYj .

For the canonical example of a reasonably smooth element of Ld/α,∞(Rd), the Riesz 
kernel Id−α, one has, in a suitable sense,

IαId−α(x) = 2
πd/22dΓ(d/2)

log |x| =
d∑

j=1
RjYj

for Yj = 1
(d−1)γ(d−1)

xj

|x| (see, for example, [19]). One might suppose this is because of 
some benefit gained by the smoothness. In fact, such a decomposition holds in general 
for elements in this space, that one does not need the Y0:

Corollary 1.5. Let d ≥ 2 and α ∈ (0, 1). There exists a constant C = C(α, d) > 0 such 
that for every g ∈ Ld/α,∞(Rd), there exists functions {Yj}dj=1 ∈ L∞(Rd) such that

Iαg =
d∑

j=1
RjYj

with

‖Y ‖L∞(Rd;Rd) ≤ C‖g‖Ld/α,∞(Rd).

Results of this type have been pioneered by J. Bourgain and H. Brezis [4–7], and then 
subsequently studied by a number of authors (see, for example [25], [9], [12], [10]) in a 
far greater generality than we represent here.

The plan of the paper is as follows. In Section 2 we recall some background mate-
rial on functions of bounded variation and on the Lorentz spaces. For the former we 
recall some definitions, as well as the coarea formula. For the latter we record useful 
versions of Hölder’s and Young’s inequalities one has on this scale. In Section 3 we give 
proofs of several lemmas that are useful in obtaining our result. In Section 4 we prove 
Lemma 1.2 and another intermediate result given in Theorem 4.1 before proceeding to 
prove Theorems 1.1, 1.3, 1.4, and Corollary 1.5.

2. Preliminaries

In the introduction we have defined the Riesz potential with a normalization constant 
γ. We here recall that its value (see, e.g. [40]):

γ(α) :=
πd/22αΓ

(
α
2
)

Γ
(
d−α

2
) .
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Let us now recall some results concerning the Lorentz spaces Lq,r(Rd). We follow 
the convention of R. O’Neil in [33]. We begin with some definitions related to the non-
increasing rearrangement of a function.

Definition 2.1. For f a measurable function on Rd, we define

m(f, y) := |{|f | > y}|.

As this is a non-increasing function of y, it admits a left-continuous inverse, called the 
non-negative rearrangement of f , and which we denote f∗(x). Further, for x > 0 we 
define

f∗∗(x) := 1
x

xˆ

0

f∗(t) dt.

With these basic results, we can now give a definition of the Lorentz spaces Lq,r(Rd).

Definition 2.2. Let 1 < q < +∞ and 1 ≤ r < +∞. We define

‖f‖Lq,r(Rd) :=

⎛
⎝

∞̂

0

[
t1/qf∗∗(t)

]r dt

t

⎞
⎠

1/r

,

and for 1 ≤ q ≤ +∞ and r = +∞

‖f‖Lq,∞(Rd) := sup
t>0

t1/qf∗∗(t).

For these Banach spaces, one has a duality between Lq,r(Rd) and Lq′,r′(Rd) for 1 <
q < +∞ and 1 ≤ r < +∞ (see, for example, Theorem 1.4.17 on p. 52 of [20]). In 
particular, the Hahn-Banach theorem implies that

‖f‖Lq,r(Rd) = sup

⎧⎨
⎩

∣∣∣∣∣∣
ˆ

Rd

fg dx

∣∣∣∣∣∣
: g ∈ Lq′,r′(Rd) ‖g‖Lq′,r′ (Rd) ≤ 1

⎫⎬
⎭ .

Let us observe that with this definition

‖f‖L1,∞(Rd) = ‖f‖L1(Rd)

‖f‖L∞,∞(Rd) = ‖f‖L∞(Rd),

where the spaces L1(Rd) and L∞(Rd) are intended in the usual sense. The former equa-
tion is not standard, as L1,∞(Rd) has another possible definition, which is only possible 
through the introduction of a different object. In particular, for 1 < q < +∞, one has 
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a quasi-norm on the Lorentz spaces Lq,r(Rd) that is equivalent to the norm we have 
defined. What is more, this quasi-norm can be used to define the Lorentz spaces without 
such restrictions on q and r. Therefore let us introduce the following definition.

Definition 2.3. Let 1 ≤ q < +∞. If 0 < r < +∞ we define

|||f |||L̃q,r(Rd) :=

⎛
⎝

∞̂

0

(
t1/qf∗(t)

)r dt

t

⎞
⎠

1/r

,

while if r = +∞ we define

|||f |||L̃q,∞(Rd) := sup
t>0

t1/qf∗(t).

Then one has the following result on the equivalence of the quasi-norm on L̃q,r(Rd)
and the norm on Lq,r(Rd) (and so in the sequel we drop the tilde):

Proposition 2.4. Let 1 < q < +∞ and 1 ≤ r ≤ +∞. Then

|||f |||L̃q,r(Rd) ≤ ‖f‖Lq,r(Rd) ≤ q′|||f |||L̃q,r(Rd).

The proof for 1 ≤ r < +∞ can be seen by an application of Lemma 2.2 in [33], while 
the case r = +∞ is an exercise in calculus (see also [22], equation (2.2) on p. 258).

It will be useful for our purposes to observe an alternative formulation of this equiva-
lent quasi-norm in terms of the distribution function. In particular, Proposition 1.4.9 in 
[20] implies the following.

Proposition 2.5. Let 1 ≤ q < +∞. If 0 < r < +∞, then

|||f |||Lq,r(Rd) ≡ q1/r

⎛
⎝

∞̂

0

(
t|{|f | > t}|1/q

)r dt

t

⎞
⎠

1/r

,

while if r = +∞

|||f |||Lq,∞(Rd) ≡ sup
t>0

t|{|f | > t}|1/q.

With either definition one can check the following scaling property that will be useful 
for our purposes (cf. Remark 1.4.7 in [20]):

||| |f |γ |||Lq,r(Rd) = |||f |||γ
Lγq,γr(Rd).

With these definitions, we are now prepared to state Hölder’s and Young’s inequality 
on the Lorentz scale. In particular on this scale one has a version of Hölder’s inequality 
(Theorem 3.4 in [33]):
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Theorem 2.6. Let f ∈ Lq1,r1(Rd) and g ∈ Lq2,r2(Rd), where

1
q1

+ 1
q2

= 1
q
< 1

1
r1

+ 1
r2

≥ 1
r
,

for some r ≥ 1. Then

‖fg‖Lq,r(Rd) ≤ q′‖f‖Lq1,r1 (Rd)‖g‖Lq2,r2 (Rd)

We also have the following very useful generalization of Young’s inequality (Theo-
rem 3.1 in [33]):

Theorem 2.7. Let f ∈ Lq1,r1(Rd) and g ∈ Lq2,r2(Rd), and suppose 1 < q < +∞ and 
1 ≤ r ≤ +∞ satisfy

1
q1

+ 1
q2

− 1 = 1
q

1
r1

+ 1
r2

≥ 1
r
.

Then

‖f ∗ g‖Lq,r(Rd) ≤ 3q‖f‖Lq1,r1 (Rd)‖g‖Lq2,r2 (Rd).

Here we utilize certain estimates for functions of bounded variation and sets of finite 
perimeter. Let us here recall their definitions and some properties concerning them. We 
define the space of functions of bounded variation as

BV (Rd) :=

⎧⎨
⎩u ∈ L1(Rd) : sup

Φ

ˆ

Rd

u div Φ dx < +∞

⎫⎬
⎭ ,

where the supremum is taken over all

{
Φ ∈ C1

c (Rd;Rd), ‖Φ‖L∞(Rd;Rd) ≤ 1
}
.

This definition implies the distributional derivative of u, which we denote by Du, is a 
Radon measure with finite total variation:

|Du|(Rd) =
ˆ

Rd

d|Du| < +∞.
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We say that a set E ⊂ Rd has finite perimeter if |E| < +∞ and χE ∈ BV (Rd). In 
particular, this implies that

Per(E) :=|DχE |(Rd)

= sup

⎧⎨
⎩

∣∣∣∣∣∣
ˆ

Rd

χE div Φ dx

∣∣∣∣∣∣
: Φ ∈ C1

c (Rd;Rd), ‖Φ‖L∞(Rd;Rd) ≤ 1

⎫⎬
⎭ < +∞.

For these functions, one has the product rule (see, for example, [2], p. 118, Proposi-
tion 3.2):

Proposition 2.8. Suppose u ∈ BV (Rd) and ϕ ∈ C1
c (Rd). Then

D(uϕ) = Duϕ + u∇ϕLd.

One also has the coarea formula, whose proof can be found in [2], p. 144:

Proposition 2.9. For u ∈ BV (Rd), the set {u > t} has finite perimeter for almost every 
t ∈ R and

|Du|(Rd) =
∞̂

−∞

|Dχ{u>t}|(Rd) dt

Du(Rd) =
∞̂

−∞

Dχ{u>t}(Rd) dt.

We also utilize some estimates and inequalities that involve the (centered) Hardy-
Littlewood maximal function. Here we recall its definition, which for a non-negative 
Radon measure μ, is given by

M(μ)(x) := sup
r>0

1
|B(x, r)|

ˆ

B(x,r)

dμ.

The Hardy-Littlewood maximal function enjoys several boundedness results that we 
employ here. In particular, we require the standard weak-type estimate:

Theorem 2.10. There exists a constant C = C(d) > 0 such that

∣∣{x ∈ Rd : M(μ)(x) > t
}∣∣ ≤ C

t

ˆ

Rd

dμ

for all t > 0 and all non-negative Radon measures μ.
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The proof follows the standard one for functions in L1(Rd), see for example [40], 
p. 6. In the introduction we asserted that one has the following bound for the Hardy-
Littlewood maximal function in the Lorentz spaces (see Grafakos [20], p. 56, Theorem 
1.4.19):

Theorem 2.11. Let 1 < q < +∞ and 0 < r < +∞. There exists a constant C =
C(r, q, d) > 0 such that

|||M(f)|||Lq,r(Rd) ≤ C|||f |||Lq,r(Rd)

for all f ∈ Lq,r(Rd).

3. Several lemmas

In this section we present the details of several estimates that we utilize in the proof 
of our main results. The first is the following non-standard estimate for the Hardy-
Littlewood maximal function, which is a variant of the bound on a Lorentz space Lq,r(Rd)
for 1 < q < +∞ and r < 1.

Theorem 3.1. Let 1 < q < +∞ and 0 < r < +∞. There exists a constant C =
C(r, q, d) > 0 such that

|||M(f)|||Lq,r(Rd) ≤ C‖f‖1−1/q
L∞(Rd)‖f‖

1/q
L1(Rd)

for every f ∈ L1(Rd) ∩ L∞(Rd).

Proof. From the definition we have

|||M(f)|||Lq,r(Rd) = q1/r

⎛
⎝

∞̂

0

(
t|{M(f) > t}|1/q

)r dt

t

⎞
⎠

1/r

.

As the Hardy-Littlewood maximal function satisfies the pointwise L∞(Rd) bound

M(f) ≤ ‖f‖L∞(Rd),

we find

q1/r

⎛
⎝

∞̂

0

(
t|{M(f) > t}|1/q

)r dt

t

⎞
⎠

1/r

= q1/r

⎛
⎜⎝

‖f‖
L∞(Rd)ˆ

0

(
t|{M(f) > t}|1/q

)r dt

t

⎞
⎟⎠

1/r

.
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Then as the standard weak-type estimate stated in Theorem 2.10 asserts

|{M(f) > t}| ≤ C

t

ˆ

Rd

|f |,

we have

|||M(f)|||Lq,r(Rd) ≤ q1/r

⎛
⎜⎝

‖f‖
L∞(Rd)ˆ

0

⎛
⎜⎝t

⎛
⎝C

t

ˆ

Rd

|f |

⎞
⎠

1/q
⎞
⎟⎠

r

dt

t

⎞
⎟⎠

1/r

= C1/qq1/r

⎛
⎜⎝

‖f‖
L∞(Rd)ˆ

0

tr(1−1/q)−1

⎛
⎝
ˆ

Rd

|f |

⎞
⎠

r/q

dt

⎞
⎟⎠

1/r

= C1/qq1/r

(r(1 − 1/q))1/r
‖f‖1−1/q

L∞(Rd)‖f‖
1/q
L1(Rd)

which completes the proof. �
A key component of our argument is the following pointwise interpolation inequality 

for smooth functions, which in the W 1,1(Rd) case has been asserted in the paper of V. 
Maz’ya and T. Shaposhnikova [31]:

Lemma 3.2. Let α ∈ (0, 1). There exists a constant C = C(α, d) > 0 such that

ˆ

Rd

|u(x) − u(y)|
|x− y|d+1−α

dy ≤ C (M(|∇u|)(x))1−α (M(u)(x))α

for every u ∈ C∞(Rd) ∩W 1,1(Rd).

We give a proof here for completeness and convenience of the reader.

Proof. We split the integral into two pieces

ˆ

Rd

|u(x) − u(y)|
|x− y|d+1−α

dy =
ˆ

B(x,r)

|u(x) − u(y)|
|x− y|d+1−α

dy +
ˆ

B(x,r)c

|u(x) − u(y)|
|x− y|d+1−α

dy =: I + II.

Now, for I we let ϕ ∈ C∞
c (B(x, 2r)) be a cutoff function such that ϕ ≡ 1 on B(x, r)

and ‖∇ϕ‖L∞(B(x,2r)) ≤ C
r . Then by Hardy’s inequality ([29], Equation 1.3.3) and the 

assumptions on the support of ϕ we have
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I =
ˆ

B(x,r)

|(ϕu)(x) − (ϕu)(y)|
|x− y|d+1−α

dy

≤
ˆ

Rd

|(ϕu)(x) − (ϕu)(y)|
|x− y|d+1−α

dy

≤ C1

ˆ

Rd

|∇(ϕu)(y)|
|x− y|d−α

dy

= C1

ˆ

B(x,2r)

|∇(ϕu)(y)|
|x− y|d−α

dy.

However, now the Leibniz rule, the L∞(Rd) bound on the derivative of ϕ, and the fact 
that ∇ϕ = 0 in B(x, r) implies

I ≤ C1

ˆ

B(x,2r)

|∇u(y)|
|x− y|d−α

dy + C1

ˆ

B(x,2r)

|∇ϕ(y)||u(y)|
|x− y|d−α

dy

≤ C1

ˆ

B(x,2r)

|∇u(y)|
|x− y|d−α

dy + C ′
1
r

ˆ

B(x,2r)\B(x,r)

|u(y)|
|x− y|d−α

dy

=: III + IV.

Concerning III, we apply Theorem 2 of [40] to deduce

III ≤ C1

∥∥∥∥
χB(0,2r)

| · |d−α

∥∥∥∥
L1(Rd)

M(|∇u|)(x),

which after an evaluation of the integral leads to the estimate

III ≤ C2r
αM(|∇u|)(x).

For IV , we have

IV = C ′
1
r

ˆ

B(x,2r)\B(x,r)

|u(y)|
|x− y|d−α

dy

≤ C ′
1

r1−α
|B(0, 1)|2d

 

B(x,2r)

|u(y)| dy

≤ C3r
α−1M(u)(x),

which shows
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I ≤ C2r
αM(|∇u|)(x) + C3r

α−1M(u)(x).

Finally, we return to II and again apply Theorem 2 of [40] to estimate

II ≤
∥∥∥∥
χB(0,r)c

| · |d+1−α

∥∥∥∥
L1(Rd)

M(u− u(x))(x)

In particular, we deduce

II ≤ C4r
α−1M(u− u(x))(x)

≤ 2C4r
α−1M(u)(x).

The result follows from optimizing in r, for example with the choice

r = M(u)(x)
M(|∇u|)(x) . �

4. Proofs of the main results

We begin with the proof of Lemma 1.2.

Proof of Lemma 1.2. Let us begin by observing that by Lemma 3.2 for u ∈ C∞(Rd) ∩
W 1,1(Rd) we have

D1−α(u)(x) =
ˆ

Rd

|u(x) − u(y)|
|x− y|d+1−α

dy

≤ C (M(|∇u|)(x))1−α (M(u)(x))α .

Thus we find

‖D1−α(u)‖Ld/(d−α),1(Rd) ≤ C‖ (M(|∇u|)(·))1−α (M(u)(·))α ‖Ld/(d−α),1(Rd),

which in turn by Hölder’s inequality in the Lorentz spaces (Theorem 2.6 from Section 2) 
implies

‖D1−α(u)‖Ld/(d−α),1(Rd) ≤ ‖C (M(|∇u|))1−α ‖L1/(1−α),∞(Rd)‖M(u)α‖Ld/α(d−1),1(Rd),

as one checks that

1
d

d−α

= d− α

d
= 1 − α + α− α

d

= 1
1 − α

+ 1
d

α(d−1)
.
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Note here it is crucial that d > 1. Next we estimate this from above with the equivalent 
norm from Section 2 to observe that

‖D1−α(u)‖Ld/(d−α),1(Rd)

≤ Cd

α(d(1 − α) + α)) |||M(|∇u|)1−α|||L1/(1−α),∞(Rd)|||M(u)α|||Ld/α(d−1),1(Rd)

Then the scaling properties of the Lorentz spaces (see Section 2), which one has with 
this equivalent norm, imply

|||M(|∇u|)1−α|||L1/(1−α),∞(Rd) = |||M(|∇u|)|||1−α
L1,∞(Rd)

|||M(u)α|||Ld/α(d−1),1(Rd) = |||M(u)|||αLd/(d−1),α(Rd)

Now, the weak-type estimate for the Hardy-Littlewood maximal function recorded in 
Theorem 2.10 and the strong-type estimate on the Lorentz space Ld/(d−1),α(Rd) proven 
in Theorem 3.1 (and here note that α < 1!) implies

‖D1−α(u)‖Ld/(d−α),1(Rd) ≤ C ′

⎛
⎝
ˆ

Rd

|∇u| dx

⎞
⎠

1−α

‖u‖α/d
L∞(Rd)‖u‖

α(1−1/d)
L1(Rd) .

Now for a set of finite perimeter E, define un := χE ∗ ρn for a sequence of standard 
mollifiers ρn. Then as un ∈ C∞(Rd) ∩W 1,1(Rd), the preceding argument implies

‖D1−α(un)‖Ld/(d−α),1(Rd) ≤ C ′

⎛
⎝
ˆ

Rd

|∇un| dx

⎞
⎠

1−α

‖un‖α/dL∞(Rd)‖un‖α(1−1/d)
L1(Rd) .

We now observe that, up to a subsequence, one has the bound and convergences

a. ‖un‖L∞(Rd) ≤ 1,
b. un → χE strongly in L1(Rd),
c.

´
Rd |∇un| → Per(E),

d. un → χE pointwise almost everywhere in Rd,

and thus Fatou’s lemma implies

‖D1−α(χE)‖Ld/(d−α),1(Rd) ≤ lim inf
n→∞

‖D1−α(un)‖Ld/(d−α),1(Rd)

≤ C ′ (Per(E))1−α |E|α(1−1/d),

which is the thesis. �
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We next prove the following theorem, which is the stronger result referred to in the 
introduction.

Theorem 4.1. Let d ≥ 2 and α ∈ (0, 1). There exists a constant C = C(α, d) > 0 such 
that

‖D1−α(u)‖Ld/(d−α),1(Rd;Rd) ≤ C|Du|(Rd)1−α‖u‖αLd/(d−1),1(Rd)

for all u ∈ BV (Rd).

Proof. We claim that it suffices to prove the inequality for u ∈ W 1,1(Rd), u ≥ 0. To 
see this, suppose we have proven the inequality for such u. Then utilizing the usual 
decomposition of a function by its positive and negative parts, u = u+ − u−, we have 
D1−α(u) ≤ D1−α(u+) +D1−α(u−). In particular the claimed inequality and the triangle 
inequality would then imply

∥∥D1−α(u)
∥∥
Ld/(d−α),1(Rd) ≤

∥∥D1−α(u+)
∥∥
Ld/(d−α),1(Rd) +

∥∥D1−α(u−)
∥∥
Ld/(d−α),1(Rd)

≤ C‖∇u+‖1−α
L1(Rd;Rd)‖u

+‖Ld/(d−α),1(Rd)

+ C‖∇u−‖1−α
L1(Rd;Rd)‖u

−‖Ld/(d−α),1(Rd).

But then one deduces the result for any u ∈ W 1,1(Rd), up to a slightly larger constant, 
by the observations

‖∇u+‖L1(Rd;Rd) ≤ ‖∇u‖L1(Rd;Rd)

‖∇u−‖L1(Rd;Rd) ≤ ‖∇u‖L1(Rd;Rd)

‖u+‖Ld/(d−α),1(Rd) ≤ ‖u‖Ld/(d−α),1(Rd)

‖u−‖Ld/(d−α),1(Rd) ≤ ‖u‖Ld/(d−α),1(Rd).

Finally, once we have established the result for u ∈ W 1,1(Rd), the result for u ∈ BV (Rd)
follows by density in the strict topology, and using a pointwise convergence and Fatou’s 
lemma to pass the limit for the left-hand-side.

Therefore we restrict our consideration to the case u ∈ W 1,1(Rd), u ≥ 0. Let Et

denote the set {u > t}. Then we can express

D1−α(u) =
ˆ

Rd

∣∣´∞
0 χEt

(x) − χEt
(y) dt

∣∣
|x− y|d+1−α

dy

≤
∞̂ˆ |χEt

(x) − χEt
(y)|

|x− y|d+1−α
dydt
0 Rd
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=
∞̂

0

D1−α(χEt
)(x) dt

With this inequality noted, first an application of Minkowski’s inequality for integrals 
and then an application of Lemma 1.2 yields the inequality

∥∥∥∥∥∥

∞̂

0

D1−α(χEt
) dt

∥∥∥∥∥∥
Ld/(d−α),1(Rd)

≤
∞̂

0

∥∥D1−α(χEt
)
∥∥
Ld/(d−α),1(Rd) dt

≤
∞̂

0

C ′Per(Et)1−α|Et|α(1−1/d) dt.

But now Hölder’s inequality for the integral in t with exponents

1
1/(1 − α) + 1

1/α = 1

leads us to conclude

∥∥D1−α(u)
∥∥
Ld/(d−α),1(Rd) ≤ C ′

⎛
⎝

∞̂

0

Per(Et) dt

⎞
⎠

1−α ⎛
⎝

∞̂

0

|Et|1−1/d dt

⎞
⎠

α

.

Finally, by the coarea formula and the formulation of the Lorentz space given in Propo-
sition 2.5 we have

∞̂

0

Per(Et) dt =
ˆ

Rd

|∇u|

∞̂

0

|Et|1−1/d dt = d− 1
d

|||u|||Ld/(d−1),1(Rd),

which implies the desired result. �
We next prove Theorem 1.3, which follows easily from Theorem 4.1 and can then be 

used to deduce Theorem 1.1.

Proof of Theorem 1.3. Let u ∈ BV (Rd) and by a standard approximation argument we 
may find {un} ⊂ C∞

c (Rd) that converges strictly to u. For such un we may integrate by 
parts to obtain

|Iα∇un(x)| = 1
γ(α)

∣∣∣∣∣∣
ˆ ∇un(y)

|x− y|d−α
dy

∣∣∣∣∣∣

Rd
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= d− α

γ(α)

∣∣∣∣∣∣
ˆ

Rd

un(x) − un(y)
|x− y|d+1−α

x− y

|x− y| dy

∣∣∣∣∣∣

≤ d− α

γ(α) D
1−α(un).

This inequality and Theorem 4.1 thus imply

‖Iα∇un‖Ld/(d−α),1(Rd;Rd) ≤ C‖∇un‖1−α
L1(Rd;Rd)‖un‖αLd/(d−1),1(Rd),

and since

‖∇un‖L1(Rd;Rd) → |Du|(Rd)

‖un‖Ld/(d−1),1(Rd) → ‖u‖Ld/(d−1),1(Rd),

as n → ∞, it suffices to show the inequality

‖IαDu‖Ld/(d−α),1(Rd;Rd) ≤ lim inf
n→∞

C‖Iα∇un‖Ld/(d−α),1(Rd;Rd).

However, for any j = 1 . . . d and any ϕ ∈ Cc(Rd), ‖ϕ‖Ld/α,∞(Rd) ≤ 1 we have

∣∣∣∣∣∣
ˆ

Rd

Iα
∂un

∂xj
ϕ

∣∣∣∣∣∣
≤ ‖Iα∇un‖Ld/(d−α),1(Rd;Rd).

We will manipulate the left-hand-side to a suitable form to pass the limit in this inequal-
ity. First, an application of Fubini’s theorem yields the equality

∣∣∣∣∣∣
ˆ

Rd

Iα
∂un

∂xj
ϕ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ˆ

Rd

∂un

∂xj
Iαϕ

∣∣∣∣∣∣
.

Next the fact that ϕ ∈ Cc(Rd) implies that Iαϕ ∈ C0(Rd), and so the weak convergence 
∇un

∗
⇀ Du yields

lim
n→∞

ˆ

Rd

∂un

∂xj
Iαϕ =

ˆ

Rd

Iαϕ d(Du)j .

Then another application of Fubini’s theorem yields
ˆ

Rd

Iαϕ d(Du)j =
ˆ

Rd

ϕ Iα(Du)j .

Putting these several steps together we see that for any j = 1 . . . d we have
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∣∣∣∣∣∣
ˆ

Rd

ϕ Iα(Du)j

∣∣∣∣∣∣
≤ lim inf

n→∞
‖Iα∇un‖Ld/(d−α),1(Rd;Rd).

We now utilize the density of Cc(Rd) to recover the norm in Ld/(d−α),1(Rd):

‖Iα(Du)j‖Ld/(d−α),1(Rd) = sup
ϕ∈Cc(Rd),‖ϕ‖

Ld/α,∞(Rd)≤1

ˆ

Rd

Iα(Du)j ϕ.

Thus we have shown

‖Iα(Du)j‖Ld/(d−α),1(Rd) ≤ C‖∇u‖1−α
L1(Rd;Rd)‖u‖

α
Ld/(d−1),1(Rd),

for all u ∈ BV (Rd), and the claim follows by summing the components (Du)j and using 
the equivalence of norms in finite dimensions. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 1 of [3], the conditions F ∈ L1(Rd; Rd) and curlF = 0
in the sense of distributions imply that we may find a sequence {un} ⊂ C∞

c (Rd) such 
that ∇un → F in L1(Rd; Rd). The inequality proven in Theorem 1.3 implies

‖Iα∇un‖Ld/(d−α),1(Rd) ≤ C‖∇un‖1−α
L1(Rd;Rd)‖un‖αLd/(d−1),1(Rd),

which combined with A. Alvino’s Lorentz space inequality [1] yields

‖Iα∇un‖Ld/(d−α),1(Rd) ≤ C‖∇un‖L1(Rd;Rd).

Finally, the convergence ∇un → F in L1(Rd; Rd) is sufficient to pass the limit on the 
right-hand-side, while for the left-hand-side we may repeat the argument at the end of 
Theorem 1.3 utilizing Fubini’s theorem and the weak convergence to conclude the desired 
result. �

We next prove Theorem 1.4.

Proof. We first prove an analogue of E. Gagliardo and L. Nirenberg’s inequality between 
a function and its (fractional) gradient, from which we can easily deduce the desired 
result. Thus, let u ∈ Lq(Rd) for some 1 ≤ q < d

1−α be such that Dαu = ∇I1−αu ∈
L1(Rd; Rd). Then according to the assumption Dαu ∈ L1(Rd; Rd) and the distributional 
definition of Dαu, we have that curlDαu = 0 in the sense of distributions. Therefore by 
Theorem 1.1 we have

‖IαDαu‖Ld/(d−α),1(Rd;Rd) ≤ C‖Dαu‖L1(Rd;Rd).
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Replacing u by u ∗ ρn, for ρn a sequence of standard mollifiers we obtain

‖IαDα(u ∗ ρn)‖Ld/(d−α),1(Rd;Rd) ≤ C ′‖(Dαu) ∗ ρn‖L1(Rd;Rd)

≤ C ′‖Dαu‖L1(Rd;Rd),

where we have used the fact (which one can check via the distributional calculus) that

Dα(u ∗ ρn) = (Dαu) ∗ ρn

and that mollification is a contraction on L1(Rd).
The assumption u ∈ Lq(Rd) implies that u ∗ ρn is smooth and is an element of 

Lq(Rd) ∩ L∞(Rd). In particular, the manipulation

IαD
α(u ∗ ρn) = ∇I1(u ∗ ρn) = R(u ∗ ρn)

is justified, which combined with the boundedness of

Rj : Ld/(d−α),1(Rd) → Ld/(d−α),1(Rd)

yields the inequality

‖u ∗ ρn‖Ld/(d−α),1(Rd) ≤ C ′‖Dαu‖L1(Rd;Rd).

As n tends to infinity, the preceding inequality, the pointwise convergence u ∗ ρn → u

Lebesgue almost everywhere, and Fatou’s lemma imply

‖u‖Ld/(d−α),1(Rd) ≤ C ′‖Dαu‖L1(Rd;Rd), (4.1)

which is the desired inequality.
Finally, the claimed Hardy inequality follows easily from Hölder’s inequality in the 

Lorentz spaces, as

ˆ

Rd

|u(x)|
|x|α dx ≤ ‖u‖Ld/(d−α),1(Rd)

∥∥∥∥
1

| · |α

∥∥∥∥
Ld/α,∞(Rd)

,

and
∥∥∥∥

1
| · |α

∥∥∥∥
Ld/α,∞(Rd)

≤ C ′′. �

We conclude with a proof of the dual result claimed in the introduction.
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Proof of Corollary 1.5. Let us recall the definition of the Hardy space

H1(Rd) :=
{
f ∈ L1(Rd), Rf ∈ L1(Rd;Rd)

}
.

For elements of this space we introduce the norm

‖f‖X := ‖Rf‖L1(Rd;Rd).

The completion of this set with respect to all the Cauchy sequences in this norm gives 
rise to

X := H1(Rd)
‖·‖X

,

with

H1(Rd) ⊂ X.

By the duality of H1(Rd) and BMO(Rd) we have

X ′ ⊂ BMO(Rd),

while the embedding of X as a closed subset of the d-fold product

L1(Rd) ⊗ . . .⊗ L1(Rd)

enables us to identify X ′ with

X ′ =

⎧⎨
⎩g ∈ BMO(Rd) : g =

d∑
j=1

RjYj for some {Yj}dj=1 ⊂ L∞(Rd)

⎫⎬
⎭ ,

where

‖g‖X′ = inf

⎧⎨
⎩‖|Y |‖L∞(Rd) : g =

d∑
j=1

RjYj for some {Yj}dj=1 ⊂ L∞(Rd)

⎫⎬
⎭ .

Thus it suffices to show the estimate

‖Iαg‖X′ ≤ C‖g‖Ld/α,∞(Rd).

However this follows directly by the standard duality argument. In particular, we have

‖Iαg‖X′ = sup
f

ˆ

Rd

Iαgf dx
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where the supremum can be taken over all functions f ∈ H1(Rd), ‖f‖X ≤ 1. However, 
now the fact that the Riesz potential is self-adjoint and the introduction of the Riesz 
transforms R yields the equality

ˆ

Rd

Iαgf dx = −
ˆ

Rd

Rg · IαRf dx.

But curlRf = 0, and thus Theorem 1.1, along with the boundedness of the Riesz trans-
forms on Ld/α,∞(Rd) yields the inequality

∣∣∣∣∣∣
ˆ

Rd

Rg · IαRf dx

∣∣∣∣∣∣
≤ ‖IαRf‖Ld/(d−α),1(Rd)‖Rg‖Ld/α,∞(Rd;Rd)

≤ C‖Rf‖L1(Rd;Rd)‖g‖Ld/α,∞(Rd)

= C‖f‖X‖g‖Ld/α,∞(Rd),

which shows that for g ∈ Ld/α,∞(Rd), Iαg ∈ X ′ with the desired norm bound. �
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