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Abstract.

We introduce a socially motivated extension of the voter model in which individual

voters are also influenced by two opposing, fixed-opinion news sources. These sources

forestall consensus and instead drive the population to a politically polarized state, with

roughly half the population in each opinion state. Two types social networks for the

voters are studied: (a) the complete graph of N voters and, more realistically, (b) the

two-clique graph withN voters in each clique. For the complete graph, many dynamical

properties are soluble within an annealed-link approximation, in which a link between

a news source and a voter is replaced by an average link density. In this approximation,

we show that the average consensus time grows as Nα, with α = p`/(1 − p). Here p

is the probability that a voter consults a news source rather than a neighboring voter,

and ` is the link density between a news source and voters, so that α can be greater

than 1. The polarization time, namely, the time to reach a politically polarized state

from an initial strong majority state, is typically much less than the consensus time.

For voters on the two-clique graph, either reducing the density of interclique links or

enhancing the influence of news sources again promotes polarization.
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1. Introduction

News sources play a pivotal role in influencing public opinion, and the manner by which

they influence society is complex. Each of us is bombarded with often conflicting

narratives that originate from news sources with different viewpoints. Some news

sources are authoritative and others are trivial and/or wrong. In such a cacophonous

environment, how does public opinion change in time? Motivated by this basic question,

we introduce a simple extension of the classic voter model (VM) [1–9] to investigate how

opposing news sources influence the opinions of individuals.

The VM provides an idealized description of the opinion dynamics in a population

that consists of N voters, each of which can be in one of two possible opinion states,

denoted as + and −. In the VM the opinion of each voter changes in an elemental

update event as follows: a randomly selected voter adopts the opinion of a randomly

selected neighbor. This updating is repeated until a finite population necessarily reaches

consensus.

Two well-known and basic characteristics of the VM are: (a) the exit probability

and (b) the consensus time. The exit probability is defined as the probability for the

population to reach + consensus as a function of the initial fraction x of + voters. The

consensus time is defined as the average time for the population to reach consensus

(either + or −) as a function of N and x. The dependences of the exit probability

and the consensus time on N and x have been fully characterized for a wide range of

underlying networks [10–16].

While the VM is compelling because of its simplicity and natural applications, the

model is much too naive to account for opinion formation of a real society. A wide variety

of extensions of the VM have therefore been proposed that incorporate more realistic

features of individual opinion changes. Some examples include: zealotry [17–19], where

some voters never change opinion, adaptation [20–27], where the underlying network

connections change in response to opinion changes, vacillation [28], where a voter may

consult multiple neighbors before changing opinion, latency [29], where a voter must

“wait” after an opinion change before changing again, heterogeneity [30], where each

voter has a distinct rate to change opinion, and reputation [31], where a dynamically

changing individual reputation determines how likely a voter can influence the opinion

of a neighbor. Some of these extensions are discussed in a recent review [32].

While much rich phenomenology has been uncovered by these studies, consensus

is not the typical outcome for many decision-making processes. This basic fact has

motivated additional extensions of the VM in which consensus can be forestalled as

a natural outcome of the dynamics. Some examples include: stochastic noise [33–35],

the influence of multiple neighbors [36], self confidence [37], partisanship [38, 39], and

multiple opinion states [40–42].

Within the rubric of hindering consensus, a natural mechanism is the influence of

external and competing news sources. In this work, we introduce a simple extension

of the VM in which voters are influenced both by their neighbors and by two news
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sources with fixed and different opinions. Related models have been investigated in

Refs. [43–45]. Each news source is connected to a specified subset of voters, which

may be disjoint or overlapping. A news source can influence individual voters but the

news sources are not influenced by public opinion. Our goal is to characterize when the

population reaches consensus and when it is driven to a politically polarized state, with

roughly half of the voters in each voting state, as a function of the persuasiveness of the

news sources.

In Sec. 2, we briefly outline the theoretical approaches that will be used to quantify

the properties of our model. We will focus on the exit probability, the consensus time,

and the polarization time, namely, the time for the population to reach a politically

polarized state of 50% + voters and 50% − voters when starting from a state with

unequal densities of + and − voters. We then discuss the basic properties of the model

when voters reside on a complete graph with two opposing news sources (Sec. 3). In

Sec. 4, we treat the model in the more realistic situation where voters reside on a two-

clique graph with each news source linked to only one of the cliques. We give a brief

summary In Sec. 5.

2. Formalism

We first introduce the basic quantities that will be studied and also outline our

theoretical formalism; a close related approach was given in Ref. [46]. We denote by

x the fraction of voters with + opinion at any time t, and y as the initial fraction

of + voters at t = 0. We define the exit probability E+(y) as the probability that

a population of N voters reaches + consensus when the initial fraction of + voters is

y. Correspondingly, E−(y) = 1 − E+(y) is the probability for the population to reach

− consensus from the same initial state. The consensus time Tcon(y) is defined as the

average time for a population of N voters to reach + or − unanimity when the initial

fraction of + voters equals y. We are typically interested in the initial condition y = 1
2
;

in this case, we write the consensus time as Tcon, with no argument.

In the presence of opposing news sources, there exists another characteristic and

distinct time scale that we term the polarization time, Tpol(y). This quantity is defined

as the average time for the population to reach the politically polarized state, with

equal densities of + and − voters, when the initial fraction of + voters equals y, which

we take as less than 1
2

without loss of generality. The polarization time quantifies the

effectiveness of the opposing news sources to promote their viewpoints and thereby

forestall the consensus that would arise if individuals only interacted amongst their

peers. A natural initial condition for the polarization time is y = 0; that is, starting

from − consensus. This state is not a fixed point of the stochastic dynamics because

of the presence of the + news source that pulls the population away from − consensus

whenever this state is reached. For this initial condition, we write the polarization time

as Tpol, again with no argument.

The time evolution of opinions is controlled by the rates for x to change by
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± 1
N
≡ ±δx in a single update event; these are defined as r±(x) respectively. In terms

of these microscopic rates, the probability P (x, t) δx that the fraction of + voters lies

between x and x+ δx changes in time according to the master equation

∂P

∂t
= r+(x−δx)P (x−δx, t) + r−(x+δx)P (x+δx, t)−

[
r+(x)+r−(x)

]
P (x, t) . (1a)

Expanding this equation in a Taylor series to second order gives the Fokker-Planck

equation

∂P

∂t
= − ∂

∂x
[V (x)P ] +

∂2

∂x2
[D(x)P ] , (1b)

where the drift velocity and diffusion coefficient are

V (x) =
[
r+(x)− r−(x)

]
δx ,

D(x) =
[
r+(x) + r−(x)

]
(δx2/2) ,

(2)

respectively. We can view the instantaneous opinion x as undergoing biased and

position-dependent diffusion in the interval [0, 1] in the presence of the effective potential

φ(x) = −
∫ x V (x′)

D(x′)
dx′ . (3)

As we shall see, the nature of this potential determines the N dependence of the

consensus and polarization times.

To determine the exit probability, as well as the consensus and polarization times,

we use the backward equation approach, a basic tool of first-passage processes [47–49].

This approach relies on the fact that the opinion state of the population “renews” itself

after each microscopic update event. In this framework, the exit probability satisfies

the backward equation

E+(y) = εE+(y + δy) + (1− ε)E+(y − δy) , (4a)

where ε = r+(y)/[r+(y)+r−(y)] is the probability for y to increase by δy = 1
N

in a single

update. This equation merely states that the exit probability starting from the state

y is a weighted average of the exit probabilities after one update step. Namely, with

probability ε, y → y+ δy, at which point the exit probability is E+(y+ δy). Conversely,

with probability 1 − ε, y → y − δy, at which point the exit probability is E+(y − δy).

Expanding (4a) in a Taylor series to second order gives

V (y)
∂E+

∂y
+D(y)

∂2E+

∂y2
= 0 . (4b)

To find the exit probability, we first rewrite that Eq. (4b) as

∂

∂y

[
e−φ(y)

∂E+

∂y

]
= 0 . (4c)
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Integrating twice with respect to y gives the general solution

E+(y) = C1

∫ y

exp[φ(y′)]dy′ + C2 , (5)

where C1 and C2 are constants of integration. Equation (5) is subject to the boundary

conditions E+(0) = 0, E+(1) = 1; that is, when y = 1, exit to the state y = 1 occurs

with probability 1, while when y = 0, exit cannot occur. The formal solution is

E+(y) =

∫ y
0

exp[φ(y′)]dy′∫ 1

0
exp[φ(y′)]dy′

, (6)

and normalization gives E−(y) = 1− E+(y).

By this same reasoning, the consensus and polarization times satisfy the backward

equation [47–49],

T (y) = ε[T (y + δx) + dt] + (1− ε)[T (y − δy) + dt] . (7a)

Here dt = [r+(y) + r−(y)]−1 is the time for an elemental update from the state y.

Expanding Eq. (7a) in a Taylor series to second order now gives

V (y)
∂T

∂y
+D(y)

∂2T

∂y2
= −1 , (7b)

Using the definition of effective potential given in Eq. (3), we first rewrite Eq. (7b) as

∂

∂y

[
e−φ(y)

∂T

∂y

]
= −e

−φ(y)

D(y)
. (7c)

Integrating Eq. (7c) twice with respect to y we obtain the general solution

T (y) = −
∫ y

dy′
∫ y′

dy′′
exp[φ(y′)− φ(y′′)]

D(y′′)
+ C1

∫ y

exp[φ(y′)]dy′ + C2 . (8)

We find the constants C1 and C2 from the distinct boundary conditions for the

consensus and polarization times. For the consensus time, the boundary conditions

are T (0) = T (1) = 0; that is, the consensus time starting from either consensus state is

zero. For the polarization time, the appropriate boundary conditions are T (1
2
) = 0 and

∂T
∂y

∣∣
y=0

= 0. That is, starting from the polarized state, the polarization time is zero,

while the polarization time obeys the no flux condition if consensus is reached. Then

latter boundary condition arises because the consensus state is not an attractor of the

stochastic dynamics. If consensus happens to be reached, the two opposing fixed-opinion

news sources pull the population away from consensus.

The formal solutions for the consensus and polarization times are

Tcon(y) = E+(y)I(y, 1)− E−(y)I(0, y) ,

Tpol(y) = I(y, 1/2) ,
(9)
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where

I(a, b) =

∫ b

a

dy′
∫ y′

0

dy′′
exp[φ(y′)− φ(y′′)]

D(y′′)
.

In the absence of the news sources, the dynamics is simply that of the classic VM.

When the voters reside on the complete graph, the transition rates are (Appendix A.1)

r+(x) = 1
2
Nx(1− x) , r−(x) = 1

2
Nx(1− x) . (10)

From these rates, Eq. (2) gives V (x) = 0 and D(x) = x(1 − x)/2N , and the full

dynamics is solvable [1–9]. Three basic results for the VM on the complete graph

are: (i) E+(y) = y (which is also a consequence of magnetization conservation), (ii)

Tcon(y) = −2N [y ln y + (1 − y) ln(1 − y)]; that is, the consensus time is linear in N ,

and (iii) because x = 0, 1 are natural absorbing boundaries, Tpol(y) is infinite. That

is, when the initial fraction of + voters is y 6= 1
2
, there is a finite probability to reach

consensus before the polarized state, which means that the polarization time is divergent.

However, the polarization time is both finite and meaningful when the population is also

influenced by two opposing news sources. We now determine how the presence of news

sources alters the above three properties of the VM.

3. Voters on the complete graph

Suppose thatN voters on the complete graph are additionally influenced by news sources

with fixed + and − opinions (Fig. 1). These news sources have L+ and L− links to

random voters, respectively, with 0 < L± ≤ N , so that the corresponding link densities

`± = L±/N lie between 0 and 1. A basic parameter in our model is the propensity p,

which quantifies the influence of a news source on a given voter. This propensity is

implemented as follows: for a voter that is linked to one news source and N − 1 other

voters, the news source is picked with probability p/R and a neighboring voter is picked

with probability (1 − p)(N − 1)/R, where R = p + (N − 1)(1 − p) is the total rate of

picking any interaction partner, either neighbor or news source. If a voter is connected

to both news sources, then R = 2p + (N − 1)(1 − p). Once a voter has selected an

interaction partner, the voter adopts the opinion of this partner. This update step is

repeated ad infinitum.

The opinion evolution depends on the actual connection pattern between the news

sources and voters, a situation that is analytically intractable. This leads us to apply a

simplification that we term the annealed-link approximation. Here, we replace the true

transition rates for each voter on a given fixed-link realization by the average transition

rate, in which a link to a news source occurs with probability proportional to the

appropriate link density. We now apply this approximation to determine the three basic

characteristics of the collective opinions, namely, E+(y), Tcon(y), and Tpol(y). We first

first need the transition rates r+(x) and r−(x) within the annealed-link approximation.
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Figure 1. The complete-graph system. Two opposing news sources (squares) influence

voters (circles) on the complete graph. The news sources have L+ and L− links to

individual voters.

By a somewhat tedious but straightforward calculation (see Appendix A.2 for details),

these rates are

r+(x) = 1
2
ANx(1− x) +B+(1− x) ,

r−(x) = 1
2
ANx(1− x) +B−x .

(11)

The A terms account for the rate at which voters adopt the opinion of neighboring

voters, while the B terms account for opinion changes due to the interaction of voters

with news sources. As shown in Appendix A.2, the amplitudes A and B± are

A =
(1−`+)(1−`−)

1−(1/N)
+

(1− p)(`+ + `− − 2`+`−)

(1− p) + (2p− 1)/N
+

(1− p)`+`−
(1− p) + (3p− 1)/N

, (12a)

B± =
p`±
2

[
1−`∓

(1−p)+(2p−1)/N
+

`∓
(1−p)+(3p−1)/N

]
. (12b)

The three distinct terms in A account for voters that are not connected to any news

source, connected to one news source, and connected to both news sources. Similarly,

the two terms for B± account for voters that are connected to one news source or to

both news sources, respectively. While the coefficients A and B± are complicated, they

greatly simplify in the large-N limit, where

A→ 1 B± →
1

2

p`±
(1− p)

. (12c)

Substituting the transition rates (11) in Eq. (2), the drift velocity and the diffusion

coefficient are:

V (x) =
B+(1− x)−B−x

N
, D(x) = A

x(1− x)

2N
+
B+(1− x) +B−x

2N2
. (13)

Using these quantities in the formalism of Sec. 2, we can compute the exit probability,

the consensus time, and the polarization time for different link densities `±. As a

preliminary, we first study the influence of a single + news source on voter opinions and

then turn to the influence of two opposing news sources.
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3.1. Single news source

When there is only a single news source, the opinion state of the population is

monotonically driven to consensus that is aligned with the news source. We now

determine its effectiveness in driving this consensus.

For a single news source, we set `− = 0 and `+ = ` in Eq. (13), from which

V (x)

D(x)
=

α

x+ α/(2N)
, (14)

where α ≡ 2B+/A, which approaches p`/(1 − p) as N → ∞. The parameter α is

fundamental, as it characterizes the effectiveness of the news source in influencing the

population, both by its intrinsic persuasiveness and by the extent of its reach.

Using Eq. (14) in (3), the effective potential in which x diffuses is

φ(x) = −α ln
(
x+

α

2N

)
. (15)

This asymmetric potential biases individual opinions towards the + consensus state.

We determine the exit probability by substituting the effective potential (15) into (6)

and performing the integral to give

E+(y) =


(α + 2Ny)1−α − α1−α

(α + 2N)1−α − α1−α
α 6= 1 ,

ln (2Ny + 1)

ln (2N + 1)
α = 1 .

(16)

By increasing α, the news source becomes more effective in biasing the opinions

towards + consensus, as shown in Fig. 2. Here, we choose (p, `) = (1
2
, 1) to achieve

α = 1, and (p, `) = (2
3
, 1) to achieve α = 2. Unless otherwise stated, we use these

parameter choices to generate systems with α = 1 and α = 2 in subsequent figures. The

qualitative behavior in Fig. 2 is the same as exit probability of a biased random walk on

a finite interval with bias to the right [49]. As expected, when the news source is very

effective, the exit probability is nearly 1, even for y close to 0.

To compute the consensus time, first note, from Eq. (14), that V/D is of order 1,

except when x is of order 1/N or smaller. Within this boundary layer near x = 0, the

second term in the denominator of V/D ensures that V/D remains finite even when

x = 0. We can simplify the algebra considerably by excluding this thin boundary layer

and correspondingly dropping this second term in the denominator of V/D. We checked

numerically that this approximation has a vanishingly small effect on the consensus time

for large N . We determine the range of the resulting slightly truncated interval [a, 1]

by equating the two terms in the denominator of V/D to give a = α/(2N). In this

truncated interval, we have

V (x) =
B+(1−x)

N
D(x) ≈ Ax(1−x)

2N
. (17)
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Figure 2. Exit probability versus initial fraction of + opinion voters y for

N = 128 voters that are influenced by single news source with link density

` = 1. The curves represent Eq. (16) and the symbols represent simulations

over 104 realizations.
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Figure 3. Consensus time versus the initial fraction of + opinion voters y for

N = 128 voters with a single news source. The solid curves represent Eq. (18)

and the symbols represent simulation results over 104 realizations.

With these simplifications, the effective potential becomes φ(x) = −α lnx for x ∈ [a, 1].

We now substitute this effective potential, as well as the above form for D(x), into

the first of Eqs. (9). The resulting integral can be evaluated for certain simple values of

α. For the cases α = 1 and α = 2, in particular, we obtain

Tcon(y) =


2N

[
ln(a/y)

ln a

π2

6
+

ln y

ln a
Li2(a)− Li2(y)

]
α = 1 ,

2N
(

1− 1

y

)
ln

(1− y)

(1− a)
α = 2 ,

(18)

where Li2(y) is the dilogarithm function [50]. It is possible that analytical solutions

also exist for other simple values of α, but the results given above mostly encompass

the generic behavior for a single news source; namely, the consensus time scales linearly
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with N , except in the limit α→∞. When the initial state is y = 1
2
, we have

Tcon =


2N ln 2 ≈ 1.386N α = 0(
ln2 2 + π2/6

)
N ≈ 2.125N α = 1

2N ln 2 ≈ 1.386N α = 2 .

The first line is the complete-graph VM result without news sources. Because the news

source biases the population to + consensus, the maximum of Tcon(y) shifts gradually

towards x = 0, as shown in Fig. 3. Coincidentally, the consensus time starting from

y = 1
2

is the same for α = 0 and α = 2.

In the opposite limit of α → ∞, the consensus time scales as lnN . This limit is

conveniently realized by choosing ` = 1 and p→ 1. Then Eq. (12) gives A ≈ 1
2
N(1− p)

and B+ ≈ 1
2
N , so that α = 2B+/A ≈ 2/(1 − p). When 1 − p � 2

N
, A is vanishingly

small, so the forward rate r+(x) ≈ B+(1 − x) and the backward rate r−(x) ≈ 0. Thus

the fraction of + voters only increases with time until + consensus is reached. For the

initial condition x = 1
2
, we determine the consensus time from

Tcon =

1− 1
N∑

x= 1
2

1

r+(x)
=

1− 1
N∑

x= 1
2

1

B+(1− x)
' 2 lnN .

3.2. Two opposing news sources

We now turn to our main focus of two opposing news sources. To determine the exit

probability, as well as the consensus and polarization times, we again need to simplify

the form of the drift velocity and the diffusion coefficient in Eq. (13). Again, the ratio

V/D is of order 1, except when x is a distance of order 1/N from the boundaries at 0 and

1. The algebra simplifies considerably when we ignore these boundary layers. Following

the same procedure as in the previous subsection, the second term in the denominator

of V/D can be neglected when x is in the range [a−, 1 − a+], with a± = B∓/AN . In

this truncated interval, we may write

V (x) =
[B+(1−x)−B−x]

N
D(x) ≈ Ax(1−x)

2N
. (19)

Using this approximation for V (x) and D(x), the effective potential (3) becomes

φ(x) = − ln[xα+(1− x)α− ] , (20)

with α± = 2B±/A ≈ p`±/(1 − p). Thus in the presence of opposing news sources,

the density x undergoes diffusive dynamics in the (generally) asymmetric logarithmic

potential well (20). Because of this well, the consensus time can be much longer than in

the case of no news sources, as we would naively expect. However, because the potential

at the interval boundaries depends logarithmically on N , the consensus time grows only

algebraically, rather than exponentially, with N .
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3.2.1. Symmetrically connected news sources For simplicity, first consider equally

connected news sources and define the common link density as ` ≡ `±. Now the

parameter that quantifies the effectiveness of the news sources is α = α± ≈ p`/(1− p),
while the effective potential simplifies to φ(x) = −α ln [x(1− x)]. Moreover, the relevant

range of x is a ≤ x ≤ 1− a, where a+ = a− ≡ a = α/(2N).

To obtain the exit probability, we substitute the symmetrized version of Eq. (19)

into Eq. (6) and evaluate the integral to obtain

E+(y) =
1

2

[
1− Gα(y)

Gα(a)

]
, (21)

where, for simple rational values of α, Gα can be determined analytically. The specific

examples that we could compute are:

G 1
2
(y) = sin−1

√
y − π

4

G1(y) = ln
(
y−1 − 1

)
G 3

2
(y) =

√
y(1− y)−1 −

√
y−1(1− y)

G2(y) = y−1 − (1− y)−1 + ln
(
y−1 − 1

)2
.

By plotting these expressions, we find that the exit probability has an anti-sigmoidal

shape for α > 0 (Fig. 4). This behavior reflects the opposing role of the two news

sources. If the initial density of the system is y 6= 1
2
, the news sources tend to drive

the opinions to the politically polarized state of y = 1
2

before consensus is reached.

Consequently, the exit probability becomes nearly independent of the initial condition

as the news sources become more effective, i.e., α� 1.
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Figure 4. Exit probability to + consensus versus y for N = 128 voters with

opposing and symmetrically linked news sources. Equation (21) gives the curves

and the symbols correspond to simulations over 104 realizations.

For the consensus time, we again substitute the symmetrized form of Eq. (19) into

the first of Eqs. (9) and evaluate the integral to give

Tcon(y) = N [Hα(a)−Hα(y)] (22)
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where, once again, Hα can be determined explicitly for certain rational values of α:

H 1
2
(y) = −4 sin−1

√
y sin−1

√
1− y ,

H1(y) = − ln [y(1− y)] ,

H 3
2
(y) =

(2y − 1)√
4y(1− y)

[
sin−1
√
y − sin−1

√
1− y

]
,

H2(y) = 1
6

[
y−1(1− y)−1 − 2 ln [y(1− y)]

]
.

We can determine the N dependence of the consensus time from the large-N

behavior of the functions Hα(a) with a = α/(2N). The dominant contribution for

large N arises from the term Hα(a) with a→ 0:

H 1
2
(a) ∼ a1/2

H1(a) ∼ − ln a

H 3
2
(a) ∼ a−1/2

H2(a) ∼ a−1 .

Using a = α/2N and combining the above results with Eq. (22), we find

Tcon ∼


N 0 ≤ α < 1 ,

N lnN α = 1 ,

Nα α > 1 .

(23)

Equation (23) is one of our major results.
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Figure 5. (a) Consensus time versus y. Equation (22) gives the curves and

symbols represent simulations results for N = 128 voters over 104 realizations.

(b) Consensus time versus N . The curves again represent the predictions from

Eq. (22). We fix ` = 1 and use α = p/(1− p) to specify p for a given α value.

(c) Consensus time exponent versus p for two ` values. The symbols represent

simulation results and the curves are predictions from Eq. (23).

Our simulation results are consistent with these predictions (Fig. 5). A striking

feature of Fig. 5(a) is that the consensus time increases dramatically when α increases
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from 1 to 2. This behavior reflects the different N dependences of the consensus time

for α < 1 and α ≥ 1 in Eq. (23). Our estimates for the consensus time exponent for

various combinations of p and ` are given in Fig. 5(c). We determine the exponent

by extrapolating local slopes of lnTcon versus lnN based least-squares fits of subsets of

successive data points. For each p and `, α is given by α = p`/(1 − p). The sudden

increase in the exponent value at the two distinct p values corresponds to the transition

at α = 1 predicted by (23).

There are two natural ways that the news sources are connected to voters: (i)

random connections, and (ii) disjoint connections. In the first case, a voter may be

connected to zero, one, or two news sources, while in the latter, a voter may be connected

to either zero or one news source. For the same link densities between the news sources

and voters, we found negligible differences in our results for the exit probability and the

consensus and polarization times. The simulation results presented here are for the case

of random connections.

We can understand the N and α dependences of the consensus time in a simple way

in terms of the effective potential (20). According Kramers’ theory [52], the time to reach

the boundaries at a and at 1 − a are proportional to exp[φ(a)] and to exp[φ(1 − a)],

respectively, while the potential at these two points scales as α lnN . Consequently

Tcon ∼ Nα for α > 1. For α < 1, the effect of the logarithmic potential is subdominant

with respect to fluctuations [53], and it is the latter drive the system to consensus,

leading to Tcon ∼ N .

We now determine the polarization time. Substituting the symmetric forms of the

drift and diffusion coefficients from Eq. (19) into the second of Eq. (9) and evaluating

the integral, which can be done for certain simple values of α, we obtain:

Tpol(y) =



4N
(
π
4
− sin−1

√
y
) (

π
4

+ sin−1
√
y − 2 sin−1

√
a
)

α = 1
2
,

2N [a ln y + (1− a) ln(1− y) + ln 2] α = 1 ,

N(2y−1)√
y(1−y)

[
sin−1

√
a− sin−1

√
y − (1−2a)

√
a(1−a)

]
α = 3

2
,

1
3
N
{

2 + 2 ln[2(1−y)]− 1
1−y − a

2(3−2a)
[

1−2y
y(1−y) + 2 ln (1−y)

y

]}
α = 2 .

(24)

The main qualitative feature of Tpol(y) is that it is maximal for y → 0 and decreases

to 0 as y → 1
2
. The N dependence of the maximal polarization time may be found by

setting y = a = α/(2N) in Eq. (24) and keeping the dominant contribution. This gives:

Tpol '



1
4
π2N ≈ 2.467N α = 1

2
,

2 ln 2N ≈ 1.386N α = 1 ,

N α = 3
2
,

1
3
(1 + 2 ln 2)N ≈ 0.795N α = 2;
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that is, the maximal value of the polarization time scales linearly with N .

0

(a)

1

(b)

F

(c)

Figure 6. The three states in the reduced state space of the complete-graph

system with a single link from each news source: (a) the initial consensus state

|0〉. Active and inactive links are shown in green and magenta. (b) The excited

state |1〉, where the single voter linked to the + news source changes its opinion

to + and now disagrees with all its N − 1 neighbors, leading to many active

links. (c) The final polarized state |F 〉; here the active links are not shown.

However, the polarization time grows faster than linearly in N for sufficiently small

α, corresponding to weak news sources. To understand the behavior in this limit, it is

instructive to consider the extreme limit where each news source is connected to a single

voter (Fig. 6). Suppose that the population starts in the − consensus state. At some

point, an “informed” voter (the one linked to the + news source) changes its opinion

from − to + by interacting with the news source. When this happens, this informed

voter now disagrees with all its neighbors. From this excited state, subsequent opinion

changes are primarily caused by disagreeing voters within the complete graph because

links between voters are numerous and there is only one link to the news source. Thus

the voters undergo classic VM dynamics, as long as there is any disagreement.

Within this picture, we can reduce the dynamics to a three-state space (Fig. 7):

the state |0〉, corresponding to − consensus (x = 0), in which only the news source

influences the voters, the final polarized state |F 〉 (x = 1
2
), and the excited state |1〉, in

which one voter in the complete graph has the + opinion. As indicated in Fig. 6(b),

the news source has a negligible influence on this excited state. After this reduction, it

is straightforward to compute the time to reach the polarized state |F 〉 starting from

the initial consensus state |0〉 by applying first-passage ideas [49]. Starting from |0〉,
the state |1〉 is necessarily reached, so the transition probability from |0〉 to |1〉 equals

1. Similarly, E = 2
N

is the probability to reach polarized state |F 〉 from |1〉 by VM

dynamics (that is, one + voter initially and N
2

+ voters in the final state). This portion

of the dynamics coincide with the VM because the news sources play no role.

We define T0 and T1 as the first-passage times to reach the polarized state from the

initial states |0〉 and |1〉 respectively. These first-passage times satisfy

T0 = dt0 + T ′0 ,

T1 = Eτ + (1−E)(dt1 + T1) ,
(25)
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Figure 7. The transition rates and transition times in the reduced system.

where, from Eq. (11),

dt0 = 1/[r+(0)+r−(0)] = 2/α ,

dt1 = 1/
[
r+( 1

N
)+r−( 1

N
)
]
≈ 1 ,

are the transition times to leave the states |0〉 and |1〉, respectively, and τ = 2N(1− ln 2)

is the conditional time to reach the final state |F 〉 from |1〉 by VM dynamics (Appendix

B). Solving Eqs. (25) gives,

Tpol ≡ T0 = τ +
dt0
E

+
(1− E)dt1

E
≈ N

(
5
2
− 2 ln 2

)
+
N

α
. (26)

Thus the polarization time scales linearly with N , unless α → 0. This limit of α → 0

is achieved, for example, when a single link connects the news source to voters. In this

case, α = p`/(1− p) = p/[N(1− p)], which gives Tpol ∼ N2(1− p)/p.

3.2.2. Asymmetrically connected news sources When the number of links from the

two news sources differ, the density x now diffuses in an asymmetric logarithmic

potential. To achieve consensus, x has to surmount one of the potential barriers, either

at a− or at 1 − a+, with respective barrier heights α+ lnN and α− lnN . Again from

Kramers’ theory, the dominant contribution to the consensus time scales exponentially

in the lowest barrier height, as long as the barrier height grows at least as fast as

lnN . Thus the consensus time scales as Nα, with consensus time exponent now

given by α = min(α+, α−, 1). To test this hypothesis, we show the N dependence

of Tcon from simulations in Fig. 8 for two combinations of unequal link densities. For

(α+, α−) = (3
2
, 1
2
), the consensus time scales linearly with N , while for (α+, α−) = (3

2
, 2),

the consensus time scales as N3/2, as we expect. In the simulations, we fix p = 2
3

and

`+ = 3
4

to give α+ = 3
2
, and then use `− = 1

4
to give α− = 1

2
and `− = 1 to give α− = 2.

Another basic characteristic of the collective opinion state is its distribution. The

opposing nature of the two news sources drives the population to a steady state in the

long-time limit. We obtain the steady-state opinion distribution, Pss(x) ≡ P (x, t→∞),

by setting ∂P/∂t = 0 in the Fokker-Planck equation (1b) and then solving. To have

a well-posed problem, we need to specify the boundary conditions. The appropriate

conditions are reflection at x = a− and x = 1− a+ because for all α > 0, the endpoints

are not fixed points of the stochastic dynamics. Solving this Fokker-Planck equation

and imposing normalization,
∫ 1−a+
a−

Pss(x)dx = 1, we obtain

Pss(x) =
xα+−1(1− x)α−−1

B [1− a+;α+, α−]−B [a−;α+, α−]
, (27)
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Figure 8. The consensus time versus N for voters influenced by two news

sources with unequal link densities. The data are from simulations over 104

realizations. The lines are guides for the eye.
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Figure 9. Steady-state distribution of x for 128 voters. The curves are the

predictions of Eq. (27) and symbols represent simulations.

where B(x; y, z) is the incomplete beta function [50].

In the symmetric case, `± = `, this distribution reduces to Pss(x) ∝ [x(1− x)]α−1,

which undergoes a bimodal to unimodal transition as α passes through 1 (Fig. 9). In

this figure, we fix ` = 1 and use α = p`/(1 − p) with appropriate values of p to give

α = 1
2
, 1, and 3

2
, and then evolve the system until the steady state is reached (typically

for times greater than 106). When α < 1, the distribution has maxima at x = 0, 1.

That is, for weak news sources, the population typically remains close to one of the

two consensus states. Conversely, for influential news sources (α > 1) the steady-state

distribution has a maximum at x = 1/2, corresponding to the politically polarized state.

In the marginal case of α = 1, all possible opinion states are equally likely.

4. Voters on a two-clique graph

We now investigate the influence of two opposing news sources when the voters reside on

a two-clique graph, with N voters in each clique (Fig. 10). The + news source connects

to random voters on C+ via L+ links and the − news source connects to random voters
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on C− via L− links. We write `± = L±/N as the corresponding link densities. To

simplify matters, we restrict ourselves to the case of equally connected news sources,

`+ = `− ≡ `. However, the voter model on the two-clique graph with unequal-size

cliques was very recently investigated in [51], where a non-monotonic dependence of the

consensus time on interclique density was found. In our symmetric two-clique graph, the

voters on different cliques are connected by L0 = Nβ interclique links, with 0 ≤ β ≤ 2.

For L0 → N2, the two cliques together form a complete graph of 2N voters. We focus on

the interesting (and realistic) case where the cliques are sparsely interconnected (β → 0).

  

L L
+

C
+C

L
0

+

+
+

++

+

+
+

+

+

Figure 10. The two-clique system, with two opposing news sources (squares) and

voters (circles). Each clique contains N voters, with L0 links between cliques C+ and

C−.

Let x1 and x2 denote the fraction of + opinion voters on clique C+ and C−,

respectively, at time t. We represent the state of the system by the clique densities

(x1, x2). Let r±i (x1, x2) be the rates for xi to change by ±δx. Within the annealed-link

approximation, these rates are (see Appendix A.3 for details):

r+1 (x1, x2) = 1
2
A [Nx1(1−x1) + `0(1−x1)x2] +B(1−x1)

r−1 (x1, x2) = 1
2
A [Nx1(1−x1) + `0 x1(1−x2)]

r+2 (x1, x2) = 1
2
A [Nx2(1−x2) + `0 x1(1−x2)]

r−2 (x1, x2) = 1
2
A [Nx2(1−x2) + `0(1−x1)x2] +Bx2 (28)

where `0 = L0/N = Nβ−1 is the number of voters in C+ that link to a voter in C− or

vice versa, and the coefficients A and B are

A =
`(1− p)N

(1− p)(N + `0 − 1) + p
+

(1− `)N
N + `0 − 1

,

B =
`pN

2[(1− p)(N + `0 − 1) + p]
.

(29a)

Ignoring terms of order 1/N , these coefficients reduce to

A ≈ N

N + `0
, B ≈ `p

2(1− p)
. (29b)

Let P (x1, x2) δx
2 be the probability for the opinion state of the population to be

within a range δx2 about (x1, x2). Expanding the underlying master equation in a Taylor
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series to second order gives the two-variable Fokker-Planck equation

∂

∂t
P (x1, x2, t) =

2∑
i=1

{
− ∂

∂xi
[ViP ] +

∂2

∂x2i
[DiP ]

}
, (30)

where

Vi(x1, x2) = [r+i (x1, x2)− r−i (x1, x2)]δx ,

Di(x1, x2) = [r+i (x1, x2) + r−i (x1, x2)](δx
2/2) .

The coupling between x1 and x2 arises because a change in x1 alters V2 and D2, and vice

versa for x2. Because of this complication, an analytical approach of the full dynamics

appears to be challenging. However, Ref. [51] has made progress in this direction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

t

x
1

x
2

(a)

 0

 1

 2

 3

 0  0.25  0.5  0.75  1

P
s
s
(x

1
)

x1

β=2, p=0.75

β=1, p=0.75

β=1, p=0.95

(b)

Figure 11. (a) Typical trajectories for x1 and x2 in the two-clique graph with

N = 128, β = 0.5, and α = 2 (` = 1 and p = 2/3). (b) Distribution of fraction

x1 of + opinion voters on clique C+ of 128 voters on the two-clique graph, with ` = 1.

To make progress, it is helpful to first study the time evolution of the trajectories

of x1 and x2 for sparsely connected cliques (Fig. 11(a)). The population spends a large

fraction of the time in the neighborhood of the state (x1 =1, x2 =0), which we term the

maximally polarized (MP) state. The population tends to remain close to the MP state

because: (i) the news sources tend to drive the clique opinions to this state, and (ii) the

transition time to leave the MP state,

dt0 =
[
r+1 (1, 0) + r−1 (1, 0) + r+2 (1, 0) + r−2 (1, 0)

]−1
,

scales as N1−β, which becomes large as β → 0. These two properties is reflected in the

steady-state opinion distribution in each clique (Fig. 11(b)). As shown in the figure, this

distribution becomes more concentrated near x1 = 1 as either the number of interclique

links is reduced or the interactions with news sources become stronger. (By symmetry,

the opinion distribution on C− is concentrated near x2 = 0.)

In the limit of sparsely connected cliques, we may again reduce the state space

(Fig. 12(a)), analogous to the construction given in Figs. 6 and 7, to determine the
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Figure 12. (a) The reduced states to determine the consensus time for the two-clique

graph: (left) the initial maximally polarized state |0〉. (middle) The excited state

|1〉, in which one voter in clique C+ has changed opinion from + to −. (right) The

final consensus state |F 〉. (b) Reduced states of the two-clique graph to determine the

polarization time: (left) the initial consensus state |0〉. (middle) The excited state |1〉,
in which one voter in clique C+ has changed opinion from − to +. (right) The final

maximally polarized state |F 〉.

consensus time for the complete-graph system. First, note that the Nβ interclique links

are relevant only in the MP state. In all other opinion states, the dynamics is controlled

by the 1
2
N(N − 1) � Nβ intraclique links. Thus we can view the system as being

comprised of two isolated cliques, with one clique inactive (where all voters agree with

the news source) and the other clique, where the voters are not in consensus, active.

Starting in the MP state, suppose that one voter in C+ changes opinion from + to

− due to an interaction with a − voter in C−. The population is now in the excited state(
1− 1

N
, 0
)

where the − voter in C+ differs with the rest of its N − 1 neighbors. Because

interclique links are sparse (β → 0) and the number of intraclique links between voters

with differing opinions in C+ is of order N , the opinion dynamics is driven by the latter

class of links. For the active clique C+, there are two possible outcomes starting from

the excited state
(
1 − 1

N
, 0
)
. Either C+ returns to + consensus (and the full system

returns to the MP state) or C+ reaches − consensus. We again visualize the MP state

(1, 0) as |0〉, the excited state
(
1 − 1

N
, 0
)

as |1〉, and the − consensus state (0, 0) as

the final state |F 〉 (Fig. 12(a)). With these reduced states, we obtain the consensus

time by the same calculation as that given in the previous subsection to determine the

polarization time for the complete graph.

Starting from the state |0〉, the system moves to state |1〉 after a transition time

dt0 = N1−β. The time to reach the final consensus state starting from |0〉 satisfies

T0 = dt0 + T1 . (31a)

where T1 is the time to reach consensus from the initial state |1〉. Substituting the state

|1〉 densities (x1, x2) =
(
1− 1

N
, 0
)

into the rates (28), the transition time to leave state

|1〉 is dt1 ≈ (1 + `0)
−1. Starting from |1〉, the probability for the active clique to reach

the state |2〉 is E = 1 − E+

(
1− 1

N

)
, with E+(y) given in Eq. (16). We also define the
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mean conditional time to reach |2〉 from |1〉 as τ . Then T1 satisfies

T1 = Eτ + (1− E)(dt1 + T0) . (31b)

Solving these equations gives

T0 ≡ Tcon = τ +
dt0
E

+
(1− E)dt1

E
. (32)

In the limit β → 0, τ is subdominant (see Appendix C) and dt1 � dt0, so that the third

term is also subdominant. Thus keeping only the dominant term dt0/E, the consensus

time has scaling behavior:

Tcon ∼


N2−β α < 1 ,

N2−β lnN α = 1 ,

N1+α−β α > 1 .

(33)

The consensus time exponent increases as interclique links become more rare and

also as the influence of news sources increases beyond α ≥ 1 (Fig. 13(a)). The data in

this figure corresponds to fixed β = 1
2

and ` = 1, and p is varied to give the α values

shown. Figure 13(b) shows the consensus time exponent as a function of p for fixed `, as

well as the comparison with our basic prediction Eq. (33). Our results for the consensus

time are consistent with previous studies [51, 54] of the VM on the two-clique graph.
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Figure 13. (a) Consensus time versus N for voters on a two-clique graph. The

solid lines give dt0/E from Eq. (32) and the symbols represent simulations over

103 realizations. (b) Consensus time exponent as a function of p. The symbols

are the simulation results and the curves are the predictions of Eq. (33).

For the polarization time, we again use a reduced state-space approach, analogous

to that developed to derive Eq. (26) for the complete-graph system. For concreteness

and simplicity, we start the system in the − consensus state (0, 0) (Fig. 12(b)) and

determine the time to reach the (1, 0) MP state in the interesting limit of weak news
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sources and weak intraclique connections. We now denote the (0, 0) consensus state as

|0〉, the excited state
(

1
N
, 0
)
, where a single voter in clique C+ has changed opinion, as

|1〉, and the MP state as |F 〉, respectively (Fig. 7). In state |0〉, the opinion change that

leads to state |1〉 is caused only by the link between a voter and the + news source. In

|1〉, subsequent opinion changes occur by classic VM dynamics because interclique links

significantly outnumber all other links and the effect of the latter can be ignored.

Referring to Fig. 12(b), let dt0 and dt1 denote the transition times out of the states

|0〉 and |1〉 respectively. These transition times are the inverse of the sum of the rates

out of these states. To obtain dt0 we substitute (x1, x2) = (0, 0) into the rates (28) and

obtain, after straightforward steps, dt0 = 2(1 − p)/p`. Similarly for dt1, we substitute

(x1, x2) =
(

1
N
, 0
)

into (28) and ultimately obtain dt1 ≈ 1 for large N and ` → 0. Let

E denote the exit probability to reach |F 〉 starting from |1〉 without reaching |0〉; thus

1−E is the probability to reach |0〉 without reaching |F 〉. Because the opinions evolve

according to the classic VM dynamics when the system is in state |1〉, E = 1− 1
N

and the

conditional time to reach |2〉 from |1〉 is τ = 2N , (Appendix C). Let T0 and T1 be the

first-passage times to |F 〉 starting from the initial states |0〉 and |1〉. These first-passage

times again satisfy Eqs. (25) whose solution now is

Tpol = τ +
dt0
E

+
(1− E)dt1

E
≈ 3N +

2N

α
. (34)

The main message from this result is that as soon as the news sources connect to a

non-vanishing fraction of the population, the polarization time is of order N , and is

generally much smaller that the consensus time when α is large.

5. Summary

We introduced an opinion dynamics model where individuals that change their opinions

by VM dynamics are also influenced by two fixed and opposing news sources. Our

model is motivated by the current polarized political state in Europe and the US [55–

61], as well as by the recent emergence of biased news sources that promulgate fixed

political viewpoints [62–64]. Our interest was to investigate the consequences of political

polarization, which seem to be largely influenced by these types of news sources. In the

VM framework, the two news sources are zealots that never change their opinion, but

which influence the opinions of individual voters. Voters, on the other hand, may consult

either news sources or neighboring voters to update their opinion state. The strength of

the news sources is quantified by a single parameter α, which encapsulates their degree

of connection to the population and the relative likelihood that a voter consults a news

source rather than a fellow voter. We developed a general framework to understand the

rich dynamics of this model.

Our modeling relies on using highly idealized social networks. The two examples

that we studied were the complete graph of N voters and, more realistically, the two-

clique graph with N voters in each clique. The primary reason for this extreme level
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of idealization is to formulate analytically tractable models. In the complete graph,

the news sources connect either to disjoint or to random voters; both subcases gave

virtually identical results. In the two-clique graph, each news source connects to voters

in disjoint cliques. With this modeling perspective, we can understand many properties

of the opinion dynamics analytically. The analytical approach also allows us to develop

insights that would be extremely difficult to reach through numerical simulations of our

model on realistic social networks.

We studied basic characteristics of the collective opinion state including: the exit

probability, the consensus time, and the polarization time. Generally, the consensus

time increases while the polarization time decreases as the news sources becomes more

influential. This behavior can be understood in terms of a diffusion-like picture for

the opinion evolution. For the complete graph, the fraction x of + voters can be

viewed as an effective particle that undergoes convection-diffusion in the interval [0, 1] in

the presence of an effective potential. Reaching consensus corresponds to the effective

particle surmounting the potential barriers near x = 0 or x = 1, while reaching the

polarized state corresponds to the effective particle being pushed to the minimum of

the potential. This potential picture explains why the consensus time is much longer

than the polarization time. This disparity was also reflected in the steady-state opinion

distribution, which undergoes a transition from a bimodal to a unimodal state as the

influences of news sources is increased.

The existence of an effective potential implies that the magnetization, namely,

the difference in the fraction of + and − voters, is not conserved by the dynamics. In

previous studies of variants of the VM with non-conserved magnetization, the consensus

time was found to grow faster than any power law in N (see, e.g., [28, 29, 31]). In

contrast, in this work the effective potential at the boundaries scales logarithmically in

N , which leads to a power-law dependence of the consensus time on N , with a non-

universal exponent.

We also found that voters on a two-clique graph are driven to a maximally polarized

state in which voters on two different cliques independently reach unanimity but in

opposite opinion states. The driving mechanism towards this state becomes stronger

either when the number of interclique links is reduced or when the influence of news

sources is increased. Weakly interconnected societies are very common around us

because of social segregation, geopolitics (e.g., countries, states, etc.), and cultural

differences (language, religion, etc.). All of these factors contribute to political

polarization, and our modeling seems to capture an essence of this phenomenology.

It would be worthwhile to allow the network itself to evolve to mimic the feature that

societies are currently tending to increased fractionation.

We thank Mirta Galesic for helpful discussions and also gratefully acknowledge NSF

financial support from grant DMR-1608211.
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Appendix A. Transition rates

To determine the transition rates r±(x), we need: (a) the elemental time step δt for a

single update, and (b) the probabilities q±(x) for x to change by ±δx in an update. In

terms of these quantities, the rates r±(x) are

r+(x) =
q+(x)

δt
, r−(x) =

q−(x)

δt
. (A.1)

The probability for x to not change in an update is 1− [r+(x) + r−(x)]δt = 1− q+(x)−
q−(x).

Appendix A.1. Voter on a complete graph

We first determine the rates for the VM on a complete graph of N voters, where the

elemental time step is δt = 2/N . To find the probabilities, q±(x), first consider q+(x).

For x to increase, a − voter has to be selected that then adopts the opinion of a

neighboring + voter. The probability to pick a − voter is N−/N = (N −N+)/N , where

N+ = Nx is the number of + voters. The selected − voter has N − 1 neighbors, of

which N+ have opinion +. The probability for the − voter to pick a + neighbor is

N+/(N − 1). Therefore the probability for x to increase by δx is,

q+(x) =
N −N+

N

N+

N − 1
=
x(1− x)

1− 1/N
= q−(x) . (A.2)

The last equality follows from the +− symmetry of the VM.

Substituting q±(x) and δt = 2/N into Eq. (A.1), the rates r±(x) are

r±(x) =
Nx(1− x)

2(1− 1/N)
≈ Nx(1− x)

2
, (A.3)

as quoted in Eq. (10).

Appendix A.2. Voters on a complete graph influenced by two news sources

Now consider voters on a complete graph that are additionally influenced by two news

sources (Sec. 3). The system consists of N + 2 agents: N voters and two news sources,

so that the elemental time step is δt = 2/(N + 2). We now determine the probability

q+(x) for a voter to adopt the opinion of a neighboring + voter. The probability to

pick a − voter out of N + 2 individuals is, (N −N+)/(N + 2). The − voter has N − 1

neighboring voters, but this voter may or may not be connected to the news sources. To

find the probability that the selected − voter changes its opinion, we have to consider

four possibilities:

(a) The − voter is not connected to any news source [Fig. A1(a)]: the probability for

this configuration is (1 − `+)(1 − `−). The − voter then adopts opinion from a
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N +

(a) (b) (c) (d)

+ +
N-1-N

+
N +

N-1-N
+

N +
N-1-N

+
N +

N-1-N
+

Figure A1. Possibilities for a − voter (circle) to be connected to the news

sources (squares). (a) The − voter is connected to N − 1 neighboring voters,

with N+ having + opinion, but not to any news source. (b) The − voter is

connected to a + news source, (c) connected to the − news source, and (d)

connected to both the news sources.

neighboring + voter with probability N+/(N − 1). The contribution to q+(x) from

this configuration is

q1 = (1− `+)(1− `−)
N+

N − 1
. (A.4a)

(b) The − voter is connected only to the + news source (Fig. A1(b)), with probability

`+(1−`−). The− voter adopts the opinion of a neighboring + voter with probability

(1−p)N+/R or adopts the opinion of the + news source with probability p/R, where

R = p+ (N − 1)(1− p). Thus the second contribution to q+(x)

q2 = `+(1− `−)
(1− p)N+ + p

p+ (N − 1)(1− p)
. (A.4b)

(c) The − voter is connected only to the − news source (Fig. A1(c)), with probability

(1− `+)`−. The probability for the − voter to adopt the opinion of a neighboring

+ voter is (1−p)N+/R, where R = p+(N −1)(1−p). Thus the third contribution

to q+(x) is,

q3 = (1− `+)`−
(1− p)N+

p+ (N − 1)(1− p)
. (A.4c)

(d) The − voter is connected to both the news sources (Fig. A1(d)) with probability

`+`−. The− voter thus adopts the opinion of a neighboring + voter with probability

(1−p)N+/R or adopts the opinion of the + news source with probability p/R, where

R = 2p+ (N − 1)(1− p). Thus the fourth contribution q+(x) is

q4 = `+`−
(1− p)N+ + p

2p+ (N − 1)(1− p)
. (A.4d)

We now write q+(x) = N−(q1 + q2 + q3 + q4)/(N + 2) and use N− = N − N+ ,

N+ = Nx, to obtain, after some rearrangement of terms

q+(x) =
1

N + 2
[ANx(1− x) + 2B+(1− x)] , (A.5a)

where A and B+ are defined in Eqs. (12). Using +− symmetry, we can also write

q−(x) =
1

N + 2
[ANx(1− x) + 2B−x] . (A.5b)
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In Eqs. (A.5), the first term inside the bracket accounts for voters that adopt the

opinion of a neighboring voter and the second term accounts for voters that adopt

the opinion of a news source. Now using δt = 2/(N +2) and Eqs. (A.5) in the definition

of r±(x) = q±(x)/δt, we obtain the rates given in Eq. (11).

Appendix A.3. Voters on the two-clique graph influenced by two news sources

In the two-clique graph, each clique contains N voters, with a + news source that

influences voters on C+ and a − news source that influences voters on C−. The entire

system thus consists of 2(N + 1) agents and the elemental time step is δt = 1/(N + 1).

Let x1 and x2 be the instantaneous fraction of + voters on C+ and C− respectively.

In an elemental time step, define q±1 (x1, x2) as the probabilities for x1 to change by ±δx;

similarly, q±2 (x1, x2) is the probability for x2 to change by ±δx. We first evaluate the

probability for x1 to increase by δx. For this to occur, a − voter in C+ must be selected

which adopts the opinion of a + neighbor. The probability to pick a − voter in C+ out

of 2(N + 1) total agents is N−1 /[2(N + 1)] where N−1 = N −N+
1 and N+

1 = Nx1 is the

number of + voters on C+. The configurations that contribute to the probability for

the − voter to change its opinion are:

(a) The selected− voter is not connected to the + news source (with probability (1−`)).
This voter has N+`0−1 neighboring voters, including N−1 in the same clique and

`0 in the other clique. The − voter therefore adopts opinion from a neighboring

+ voter in C+ with probability N+
1 /(N + `0 − 1) or from a + voter in C− with

probability N+
2 `0/[N(N + `0 − 1)], where N+

2 = Nx2 is the number of + voters on

C−. Thus the first contribution to q+1 (x1, x2) is

q1 = (1− `) N
+
1 + `0(N

+
2 /N)

N + `0 − 1
. (A.6a)

(b) The selected − voter is connected to the + news source (with probability `). This

− voter has N + `0 neighbors, including N + `0 − 1 voters and the news source.

The − voter adopts the opinion of a neighboring + voter in C+ with probability

(1 − p)N+
1 /R or the opinion of a neighboring + voter in C− with probability

(1−p)`0N+
2 /(NR), where R = p+(N + `0−1)(1−p). The − voter may also adopt

opinion from the + news source with probability p/R. Thus the second contribution

to q+1 (x1, x2) is,

q2 = `
(1− p)[N+

1 + `0(N
+
2 /N)] + p

p+ (N + `0 − 1)(1− p)
. (A.6b)

We can now write q+1 (x1, x2) = (N − N+
1 )(q1 + q2)/[2(N + 1)]. Using N+

i = Nxi
and after some rearrangement of terms, we obtain

q+1 (x1, x2) =
A

(N + 1)

[
Nx1(1− x1)

2
+
`0(1− x1)x2

2

]
+

B

N + 1
(1− x1) , (A.7a)
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where A and B are defined in Eqs. (29). In Eq. (A.7a), the term in the square bracket

accounts for voters that adopt the opinion of a neighboring voter. Inside the square

bracket, the first term accounts for intraclique opinion adoption and the second term

accounts for interclique opinion adoption. The last term in Eq. (A.7a) accounts for

voters that adopt the opinion from the + news source.

Similarly, we now evaluate the probability for x1 to decrease by δx. For this to

occur, a + voter in C+ has to adopt the opinion of a − neighbor. Because the −
news source influences voters only in C−, a + voter in C+ can change opinion by either

adopting the opinion from a neighboring − voter in either C+ or C−. Following the

steps that led to Eq. (A.7a), we find

q−1 (x1, x2) =
A

N + 1

[
Nx1(1− x1)

2
+
`0x1(1− x2)

2

]
. (A.7b)

We use symmetry to find the probability for x2 to change by ±δx. Their explicit forms

are,

q+2 (x1, x2) =
A

N + 1

[
Nx2(1− x2)

2
+
`0x1(1− x2)

2

]
, (A.8a)

q−2 (x1, x2) =
A

N + 1

[
Nx2(1− x2)

2
+
`0(1− x1)x2

2

]
+

B

N + 1
x2 (A.8b)

We use q±i (x1, x2) in Eqs. (A.7) and (A.8), and the time step δt = 1/(N + 1) to

determine the opinion change rates. Similar to Eq. (A.1), we define the rate for xi to

change by ±δx as r±i (x1, x2) = q±i (x1, x2)/δt. Using this definition, together with the

probabilities q±i (x1, x2) and the time step δt, we obtain Eqs. (28).

Appendix B. Polarization time in the complete graph

To compute the polarization time for the complete graph, Eq. (26), we need the quantity

τ in this equation. In turn, τ is just the conditional polarization time in the VM. When

the initial fraction of + voters is y, with 0 < y < 1/2, we first define the conditional

polarization probability to reach x = 1
2

without hitting x = 0 as E 1
2
(y). Similarly, the

conditional time to reach the polarized state x = 1
2

without hitting x = 0 is T 1
2
(y).

The conditional probability satisfies the backward equation Eq. (21) subject to

the boundary conditions E 1
2
(0) = 0 and E 1

2
(1
2
) = 1. Substituting the drift velocity

V (x) = 0 and diffusion coefficient D(x) = x(1 − x)/2N of the VM into Eq. (21), we

obtain E 1
2
(y) = 2y. Similarly, the product T (y) ≡ T 1

2
(y)E 1

2
(y), satisfies the backward

equation [49],

T (y) = εT (y + δy) + (1− ε)T (y − δy) + E 1
2
(y)dt . (B.1)

Here ε is the probability for y to increase by δy and the transition time to leave the

state y is dt, as given in Sec. 2. Expanding Eq. (B.1) in a Taylor series to second order
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in δy = 1/N gives

V (y)
∂T (y)

∂y
+D(y)

∂2T (y)

∂y2
= −E 1

2
(y) . (B.2)

Solving Eq. (B.2) subject to the boundary conditions T (0) = T (1
2
) = 0 gives

T 1
2
(y) = T (y)/E 1

2
(y) = −2N

[
1− y
y

ln(1− y) + ln 2

]
. (B.3)

For the initial condition y = 1
N

, we have τ = T 1
2

(
1
N

)
≈ 2N(1 − ln 2) and E 1

2

(
1
N

)
= 2

N
.

These results give the polarization time in Eq. (26).

Appendix C. Characteristic times on the two-clique graph

Appendix C.1. Consensus time

To compute the consensus time for the two-clique graph, Eq. (32), we need the quantity

τ ≡ T−
(
1 − 1

N

)
in this equation. Here T−(y) is the conditional time for a population

on the complete graph that is additionally influenced by a single + news source to first

reach − consensus, without previously reaching + consensus, when the initial fraction of

+ voters is y (and vice versa for T+(y)). Following the same steps that led in Eq. (B.2),

the product E±(y)T±(y) satisfies

V (y)
∂(E±(y)T±(y))

∂y
+D(y)

∂2(E±(y)T±(y))

∂y2
= −E±(y) , (C.1)

subject to the boundary conditions E±(0)T±(0) = E±(1)T±(1) = 0. For the complete

graph with a single news source, V (x) and D(x) are given by Eq. (17), from which we

obtain

T−(y) =


−2N [Li2(y)− Li2(a)] + 4N

[
Li3(y)−Li3(1)

ln y
+ Li3(1)−Li3(a)

ln a

]
α = 1,

−2N
[

y
1−y ln y − ln a

N−1

]
α = 2.

(C.2)

where a = α/2N , and L2(y) and L3(y) are the dilogarithm and trilogarithm functions

respectively [50, 65].

For the initial condition y = 1− 1
N

, τ ≈ (π2/3)N for α = 1 and τ ≈ 2N for α = 2.

Thus τ grows linearly with N for both α values and is subdominant in Eq. (32). To

show that τ is subdominant for large α, we will make use of the identity

Tcon(y) = E−(y)T−(y) + E+(y)T+(y) . (C.3)

We first find a heuristic upper bound for Tcon(1− 1
N

) and then use this to find an upper

bound on τ . Since the clique is influenced by a single news source, the effective potential

(15) monotonically drives the opinion state x towards 1. From Eq. (18), Tcon(1 − 1
N

)
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is a decreasing function of α and is of the order of 1 when α = 2. We argue that this

decrease continues for larger α. Indeed, for a uniformly biased random walk on the

interval [0, 1] that starts near x = 1, it is known that the time to reach the boundary

at x = 1 decreases as the bias increases [49]. Using the hypothesis that Tcon(1 − 1
N

)

continues to decrease as α increases in (C.3), we can write E−(1− 1
N

)T−(1− 1
N

) ≤ O(1).

Now using the exit probability Eq. (16), we obtain τ ≤ O(Nα) for α > 2. Consequently,

τ makes a subdominant contribution to the consensus time in Eq. (32) for large α.

Appendix C.2. Polarization time

To compute the polarization time for the two-clique graph, Eq. (34), we again need the

quantity τ in this equation. Here τ coincides with conditional time T+
(

1
N

)
in the VM on

the complete graph with no news source. For this VM, V (x) = 0, D(x) = x(1− x)/2N ,

and the exit probability is E+(y) = y. Using these in Eq. (C.1) now gives

T+(y) = −2N
(1− y)

y
ln(1− y) , (C.4)

so that τ ≡ T+
(

1
N

)
≈ 2N .
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