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Upscaling of perovskite solar cells to module scale and affording long-term 17 

stability have been recognized as the most important challenges for commercialization 18 

of this emerging photovoltaic technology. In a perovskite solar module (PSM), each 19 

interface within the device contributes to the efficiency and stability. Here, we employ 20 

a holistic interface stabilization strategy by modifying all the relevant layers and 21 

interfaces, namely the perovskite layer, charge transporting layers and the device 22 

encapsulation to improve the efficiency and stability of PSMs. The treatments were 23 

selected to be compatible with low-temperature scalable processing and the module 24 

scribing steps. Our unencapsulated PSM achieved a reverse-scan efficiency of 16.6% 25 

with a designated area of 22.4 cm2. The encapsulated PSM retained approximately 86% 26 
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of the initial performance after continuous operation for 2000 h under AM 1.5G light 27 

illumination, with translates into a T90 lifetime of 1570 h and an estimated T80 lifetime 28 

of 2680 h. 29 

 30 

Introduction 31 

In the past decade, small-size perovskite solar cells (PSCs) with an active area of 32 

~ 0.1 cm2 have achieved outstanding power conversion efficiencies (PCE) over 25%.1 33 

For practical applications, PSCs must retain high efficiency when up-scaled. However, 34 

when their size was increased to module scale with active area above 10 cm2 the 35 

efficiency decreased significantly. The efficiency of 10-cm2 perovskite solar modules 36 

(PSMs) is currently in the range of 10 ~ 17%.2-4 As the PCE is still much lower than 37 

that of commercialized solar modules based on other photovoltaic technologies it is 38 

desirable to further improve the PSMs efficiency.  39 

Besides up-scalability and efficiency, the long-term stability of PSMs is another 40 

important aspect for their practical application.5,6 In particular, the device operation 41 

stability under continuous illumination is an important indicator of the long-term 42 

stability of PSCs, as well as PSMs.5,7-9 To improve the continuous operation stability 43 

of PSCs, the engineering of the individual functional layer and the relevant interfaces 44 

including perovskite layer10-14, electron transport layer (ETL)15, hole transport layer 45 

(HTL)16, counter electrode (CE)17 and encapsulation layer18 has been developed in 46 

separate works. Although fine control of each interface has been proven to be of chief 47 

importance for the photovoltaic performance of PSCs, similar interface engineering 48 

strategies have not been widely considered and systematically investigated in the 49 

context of PSMs. This has been proposed to be the main reason why the PSCs stability 50 

reduce quickly when scaling up.2,4 It is thus desirable to transfer the accumulated 51 

successful experiences in PSCs to PSMs.  52 

Since each functional layer in a PSM contributes to its efficiency and stability, a 53 

holistic approach to the optimization of the interfaces of each functional layer 54 

throughout the entire device must be employed rather than the engineering of an 55 



3 
 

individual interface. However, the structure of PSMs is complex compared to 56 

small-area cells due to the series connections of multiple sub-cells and P1-P2-P3 57 

interconnection structures. The interface engineering strategies employed in lab-scale 58 

PSCs that work for small-area cell are not always trivial to transfer to PSMs. For 59 

example, TiO2 ETL has played a pivotal role in high-efficiency PSCs, but if one does 60 

not remove TiO2 in the P2 patterning step for PSM, the relatively high resistance of 61 

TiO2 will cause a substantially lower FF.19,20 Besides, the exposure of P2 and P3 62 

patterning lines also increase the possibility for external stressor induced degradation.21 63 

Therefore, a holistic approach to PSM design that considers the process compatibility 64 

with scalable production as well as the module structure and encapsulation is essential 65 

for transferring the strategies of PSCs to PSMs. 66 

Here, we report a holistic interface stabilization (HIS) strategy that takes into 67 

consideration the engineering of all the relevant interfaces in a perovskite solar device 68 

at the module scale. More specifically, we stabilize the SnO2 ETL with 69 

ethylenediaminetetraacetic acid dipotassium (EDTAK), reduce the defects in the 70 

perovskite surface with an ethylammonium iodide (EAI) treatment, inhibit the 71 

moisture ingress and Au migration into the 72 

2,2’,7,7’-tetrakis[N,N-bis(p-methoxyphenyl)amino]-9,9’-spirobifluorene 73 

(spiro-OMeTAD) HTL with the incorporation of poly(3-hexylthiophene) (P3HT) and 74 

ensure an effective device encapsulation with a parylene film. These treatments are 75 

not only compatible with scalable processing but also with scribing steps. Our HIS 76 

strategy leads to not only PSMs efficiency improvement, but also stability 77 

enhancement. The PSMs without encapsulation achieved a reverse-scan efficiency of 78 

16.6% with a designated area of 22.4 cm2. The encapsulated PSM with the best 79 

stability gave T90 and T80 operation stability lifetime of 1570 h and 2680 h, 80 

respectively, under AM 1.5G light illumination test. 81 

 82 

Holistic interface stabilization approach  83 
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We adopt an indium tin oxide (ITO)/SnO2/Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3 (FA is 84 

formamidinium, MA is methylammonium)/spiro-OMeTAD/Au configuration as the 85 

basis to fabricate PSMs.22,23 To improve both efficiency and stability, we devise an 86 

HIS strategy that optimize all the relevant layers and interfaces from the bottom ETL 87 

layer to the top encapsulation layer as shown in Figure 1. We consider the 88 

compatibility of each individual interface modification with the other modifications, 89 

with the PSM design and with the scalable manufacturing. Such integrated approach 90 

should facilitate the future transfer of the optimized device design to practical 91 

manufacturing processes.  92 

 93 
Figure 1 Holistic interface stabilization (HIS) strategy for PSMs. The HIS 94 

strategy consists of four treatments for the main device layers and their interfaces: the 95 
use of EDTAK to modify SnO2; the use of EAI/MAI to form the EAMA-based 96 
perovskite on the surface of Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3 (FAMA based 97 
perovskite); the incorporation of P3HT into the spiro-OMeTAD layer; the 98 
employment of the parylene encapsulation. 99 

 100 

Regarding ETL and ETL/perovskite interface, we employ a commercial SnO2 as 101 

ETL to take advantage of its efficient electron-selective properties24, and its 102 
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compatibility with low-temperature and scalable coating process22. The use of 103 

approximately 20 nm-thick SnO2 layer also enables a low resistance of P2 104 

interconnection to ensure low series resistance and high fill factor.19,25 Furthermore, we 105 

use EDTAK to mitigate the reaction of OH– in SnO2 with perovskite and tune the 106 

energy-level alignment at the ETL/perovskite interface. This modification also has 107 

negligible influence on the conductivity of the SnO2 layer, which is important to ensure 108 

high-quality interconnection with low series resistance between each sub-cell in PSMs.  109 

Regarding the perovskite/HTL interface, we use EAI/MAI surface treatment to 110 

passivate the surface defects of Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3 perovskite (PVSK) 111 

and tune the energy-level alignment at this interface. The formed EAMA-perovskite 112 

could also reduce the influences from moisture in both top surface region and the 113 

regions related to wiring and encapsulation.  114 

We then incorporate P3HT into the spiro-OMeTAD layer to induce a stable HTL 115 

against moisture and Au migration during device operation and P2 cutting process.21  116 

These steps, the coating of SnO2 with EDTAK followed by the deposition of the 117 

perovskite layer and the subsequent EAI/MAI treatment as well as the deposition of the 118 

HTL are highly compatible with scalable coating processes developed for organic and 119 

dye-sensitized solar modules.2,4 120 

On the top of metal electrode, parylene encapsulation was made via upscalable 121 

chemical vapor deposition. Parylene encapsulation acts as a uniform and robust barrier 122 

layer, which helps keep the whole module including the P2 and P3 patterning lines into 123 

a closed space to prevent diffusion of external ambient gases such as moisture and 124 

oxygen, and contain the internally generated volatile degradation products.26 125 

 126 

Stabilization of the ETL/perovskite interface 127 

A stable ETL/perovskite contact and suitable energy-level alignment at this 128 

interface is essential for efficient and stable PSCs. The first step of our HIS strategy is 129 

to mitigate the reaction of OH– in SnO2 with perovskite (Supplementary Figure 1 and 130 

Supplementary Note 1) to form a stable ETL/perovskite interface by using EDTAK to 131 



6 
 

post-treat the SnO2 layer on the basis of the acid-base neutralization reaction. The use 132 

of EDTAK also retained the positive passivation effect of K+.22 The treatment 133 

condition was optimized by changing the EDTAK concentration (Supplementary 134 

Table 1).  135 

The observed N 1s peak in X-ray photoelectron spectroscopy (XPS) results in 136 

Figure 2a confirms the existence of EDTAK on the surface of the EDTAK treated 137 

SnO2 (SnO2-EDTAK) films. By immersing the SnO2-EDTAK sample and pristine 138 

sample (SnO2) into water and testing the pH value of the obtained aqueous solution, 139 

the pH value is slightly alkaline for the control sample, and neutral for the 140 

SnO2-EDTAK sample. Based on the above observation, the reaction of KOH with 141 

perovskite is believed to be effectively mitigated by the EDTAK treatment. 142 

 143 

Figure 2 ETL/perovskite and perovskite/HTL interface stabilization and 144 
energy-level alignment. a-b, The N 1s spectra (a) and Sn 3d spectra (b) of SnO2 and 145 
SnO2-EDTAK films measured by XPS measurements. In (a) and (b), black circles 146 
show the original XPS data, black curves represent the background, the grey bold 147 
curves show the total fitting results. In (a), the purple vertical dash line shows the N 148 
1s position with respect to SnO2-EDTAK, the purple curves are the fitting results of 149 
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N1s signal. In (b), the red and blue vertical dash line show the Sn 3d3/2 and Sn 3d5/2 150 
position, respectively, with respect to pristine SnO2, the red and blue curves are the 151 
fitting results of Sn 3d3/2 and Sn 3d5/2 signal, respectively. c, UPS spectra (using the 152 
He-I line with a photon energy of 21.22 eV) corresponding to the secondary electron 153 
onset region and valence band maximum (VBM) of SnO2, SnO2-EDTAK, perovskite 154 
(PVSK), EAI/MAI-treated perovskite (PVSK(EAMA)) with respect to the Fermi 155 
energy (EF). VBM for perovskites was determined from the semi-log plots 156 
(Supplementary Figure 3). d, Diagram of the energy levels of the materials as 157 
extracted from the UPS data.  158 

Unlike a previous study27 using EDTA as a pretreatment modifier to modify the 159 

SnO2 colloidal solution, in the current work EDTAK is used as an interface 160 

post-treatment modifier to tune the energy-level alignment at the ETL/perovskite 161 

interface.28 To investigate this point, XPS and ultraviolet photoemission spectroscopy 162 

(UPS) measurements were conducted. The observed slight shift of the Sn 3d peaks of 163 

SnO2-EDTAK with respect to SnO2 (Figure 2b) suggests a chemical interaction of 164 

EDTAK with SnO2, which is likely to affect the energy-level alignment at the 165 

ETL/perovskite interface. As shown in Figure 2c, the work function (WF) of pristine 166 

SnO2 and SnO2-EDTAK is determined to be 3.84 eV and 4.00 eV, respectively. On the 167 

basis of our UPS and XPS analysis, EDTAK most likely act as interface modifier 168 

leading to variations in the WF of SnO2-EDTAK, while minimum changes are 169 

observed for VBM and XPS Sn 3d core levels (see Supplementary Figure 2 and 170 

Supplementary Note 2). 171 

The conduction band minimum (CBM) of the pristine SnO2 was calculated to be 172 

−3.69 eV (with respect to the vacuum level Evac), in agreement with reported 173 

values.24,25 The CBM of SnO2-EDTAK film shifts downward by about 0.26 eV with 174 

respect to the pristine SnO2 film, which was calculated to be −3.95 eV. The improved 175 

energy-level alignment with CBM (−3.93 eV) of the perovskite (Figure 2d and 176 

Supplementary Figure 3) is expected to be beneficial for charge extraction at 177 

perovskite/ ETL interface.  178 

To verify this, time resolved photoluminescence (TRPL) measurements were 179 

conducted (Supplementary Figure 4). The faster quench of perovskite PL for 180 



8 
 

SnO2-EDTAK versus SnO2 indicates a faster charge transfer from perovskite to 181 

SnO2-EDTAK.  182 

We also used secondary ion mass spectrometry (SIMS) measurements to 183 

investigate whether K+ in EDTAK-SnO2 can migrate into the perovskite film 184 

(Supplementary Figure 5). The SIMS result confirms that the K+ is distributed in both 185 

perovskite bulk film and in the EDTAK-SnO2 film. The K+ 22,29 and Lewis base of the 186 

alkylamine group30 in EDTAK-SnO2 could passivate perovskite defects, which is 187 

supported by the longer PL lifetime of the glass/EDTAK/perovskite sample versus the 188 

glass/perovskite sample (Supplementary Figure 4 and Supplementary Table 2). 189 

To study the effect of the EDTAK treatment on device performance, small-size 190 

PSCs were fabricated (Supplementary Figure 6). The current density-voltage (J-V) 191 

curves of the devices based on pristine SnO2 and EDTAK-SnO2 are shown in Figure 192 

3a. The pristine SnO2 based PSCs (denoted as SnO2/PVSK/spiro-OMeTAD/Au) show 193 

a typical PCE of 19.2% with a short-circuit current density (JSC) of 23.2 mA cm−2, an 194 

open-circuit voltage (VOC) of 1.07 V, and a fill factor (FF) of 77.6%. EDTAK-SnO2 195 

based PSCs show a JSC of 23.2 mA cm−2
, a VOC of 1.10 V and a FF of 78.4%, leading 196 

to an improved PCE of 20.1% with suppressed hysteresis (Supplementary Table 3). As 197 

shown in Figure 3b, the representative external quantum efficiency (EQE) of 198 

SnO2-EDTAK device shows slightly higher values than the SnO2 device at both the 199 

short-wavelength and long-wavelength region, leading to a slightly higher integrated 200 

Jsc for the former case (22.8 mA cm−2 versus 22.4 mA cm−2). The improved Jsc as 201 

well as improved VOC and FF are likely due to dual function of the EDTAK treatment, 202 

i.e., improvement of charge transport and suppression of charge recombination as 203 

discussed above. 204 

Stabilization of the perovskite/HTL interface  205 

The second interface stabilization step is focused on the perovskite/HTL interface. 206 

The higher defect density at the perovskite surface, especially at the surface grain 207 

boundaries, with respect to the perovskite/ETL interface usually affects device 208 

performance and stability significantly.14,31 Here, interface stabilization with 209 
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EAI/MAI modification is adopted on the surface of perovskite to passivate defects as 210 

well as to enhance the device stability due to the robust stability of the EAMA based 211 

perovskite32-34. With respect to long-alkyl or other large-size ammonium-based 212 

cations, EA+ has a relative smaller size, which favors the formation of quasi-3D 213 

perovskite even with a relative high EA content (Supplementary Note 3, 214 

Supplementary Figure 7-9 and Supplementary Table 4).35-37  215 

To check the effect of the EAI/MAI treatment on the device performance 216 

(Supplementary Figure 10), small-size PSCs were fabricated, a typical J-V curve is 217 

shown in Figure 3a. The devices with both EDTAK and EAI/MAI treatment (denoted 218 

as SnO2-EDTAK/PVSK(EAMA)/spiro-OMeTAD/Au, PVSK(EAMA) is 219 

Cs0.05FA0.54MA0.41Pb(I0.98Br0.02)3 perovskite with the EAI/MAI treatment) show a 220 

typical PCE of 21.8% with a JSC of 23.6 mA cm−2, a VOC of 1.12 V, and a FF of 221 

82.3%. Based on EQE result in Figure 3b, the integrated current density is calculated 222 

to be 23.3 mA cm−2, which is consistent with JSC obtained from the J-V curve. This 223 

value is also higher than that of the device without treatment 224 

(SnO2/PVSK/spiro-OMeTAD/Au) and device with EDTAK treatment 225 

(SnO2-EDTAK/PVSK/spiro-OMeTAD/Au). Especially, the device with both EDTAK 226 

and EAI/MAI treatment shows higher EQE values at the long-wavelength region than 227 

that of device with EDTAK treatment. Considering that long-wavelength light is 228 

mainly absorbed by the perovskite near the perovskite/HTL interface. The improved 229 

current density is proposed attributed to the passivation effect of EAI/MAI treatment. 230 

Besides, the improved FF and VOC also contribute to significantly improved PCE 231 

from 20.1% to 21.8% with EAI/MAI treatment. 232 

To verify the passivation effect of EAI/MAI treatment, we used TRPL to 233 

investigate the charge carrier properties of the perovskite with and without EAI/MAI 234 

treatment (Figure 3c and Supplementary Table 5). The EAI/MAI treated perovskite 235 

sample showed a much longer PL lifetime than that of the untreated perovskite sample 236 

(122.4 ns versus 42.8 ns), which is likely the result of a reduction in nonradiative 237 

recombination by defect passivation via the EAI/MAI treatment. The defect density 238 
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reduction from 0.86 × 1016 to 0.47 × 1016 cm−3 measured by space-charge-limited 239 

current (SCLC) test further confirms the passivation effect of the EAI/MAI treatment 240 

(Figure 3d and e and Supplementary Note 4). 241 

In addition, the EAI/MAI treatment affects the energy-level alignment at the 242 

perovskite/HTL interface. As shown in Figure 2c and d, the WF of EAI/MAI treated 243 

perovskite and untreated perovskite is determined to be 3.99 eV and 4.34 eV, 244 

respectively. The VBM is determined to be 1.41 eV and 1.17 eV, respectively, 245 

yielding the ionization energy value of 5.40 eV and 5.51 eV for perovskite with and 246 

without EAI/MAI treatment, respectively. The relative energy level position of the 247 

Fermi level shift also indicates a more n-type nature for the top surface of perovskite 248 

after the EAI/MAI treatment (Figure 2c, 2d, and Supplementary Figure 3), which is 249 

likely to originate from the partial change of the lead halide rich surface to a more 250 

organic halide rich surface induced by the EAI/MAI treatment.38  251 

The mismatch of the energy-level alignment between perovskite and 252 

spiro-OMeTAD (ionization energy, 5.18 eV39) is reduced from 0.33 eV to 0.22 eV 253 

after the EAI/MAI treatment, which may benefit charge extraction at the 254 

perovskite/HTL interface. A faster quenching of perovskite PL for the 255 

PVSK(EAMA)/spiro-OMeTAD in comparison with PVSK/spiro-OMeTAD sample 256 

measured by TRPL (Figure 3c and Supplementary Table 5), further suggests that 257 

faster charge transfer occurs from EAI/MAI treated perovskite to spiro-OMeTAD. 258 

This also contributes to the suppressed hysteresis for the PSCs with both EDTAK and 259 

EAI/MAI treatment versus the PSCs with EDTAK treatment (Supplementary Table 260 

3). 261 
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 262 

Figure 3 PSCs performance with ETL/perovskite and perovskite/HTL interface 263 
stabilization treatments and passivation effect of EAI/MAI treatment. a, J-V 264 
curves and b, EQE spectra and integrated JSC of the PSCs treated with both EDTAK 265 
and EAI/MAI (red curve), treated with EDTAK (blue curve) and without treatments 266 
(black curve). c, TRPL decay curves of the perovskite thin film with (blue and black 267 
curves) or without (pink and red curves) EAI/MAI treatment as bare film (black and 268 
red curves) or interfaced with spiro-OMeTAD (blue and pink curves). d-e, J−V 269 
characteristics of SCLC result. The J-V curve can be fitted according to ܬ ∝ V௡ with 270 
different values of the exponent n: n = 1 is the ohmic region (dark fitted lines in (d) 271 
and (e)); n > 3 is the trap-filled limited (TFL) region (red fitted line and blue fitted 272 
line in (d) and (e), respectively). The TFL voltage (VTFL) is onset voltage of the TFL 273 
region. 274 

To further explore how the EAI/MAI treatment affects the perovskite film 275 

stability, the morphology of the perovskite with and without EAI/MAI treatment is 276 

measured by scanning electron microscopy (SEM) (Figure 4a-b). The grain 277 

boundaries are filled with additional structure for the EAI/MAI treated perovskite film 278 

with reduced roughness from 27.4 to 19.7 nm confirmed by atomic force microscopy 279 

(AFM) measurements (Figure 4c-d).  280 

It has been reported that perovskite decomposition mainly starts from grain 281 

boundaries due to the relatively weak chemical binding and severe ion migration.14,31 282 
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The newly formed EAMA perovskite is thus expected to improve the perovskite 283 

stability due to passivation of grain boundaries. To verify this, the perovskite films are 284 

further subjected to high-energy electron beam with a voltage of 20 kV under SEM 285 

measurements (Supplementary Figure 11). Obvious cracks are observed for the 286 

untreated perovskite film, while the EAI/MAI treated perovskite film remains densely 287 

packed grain, which indicates an enhanced stability of latter case.30  288 

To further study the perovskite stability, the perovskite films with and without 289 

EAI/MAI treatment are subject to a high relative humidity close to 100% at 290 

approximately 40 oC by monitoring the XRD evolution (Figure 4e-f). The PbI2 peak 291 

in the untreated perovskite film shows much faster increase than that in the EAI/MAI 292 

treated perovskite film, which indicates slower degradation of EAI/MAI treated 293 

perovskite. The 85 oC thermal aging test of the films in a dry N2 glove box also 294 

suggests the improved stability of EAI/MAI treated perovskite film (Supplementary 295 

Figure 12). These XRD observations together with the above morphology study 296 

coincidently suggest that the stability of perovskite film can be improved via 297 

EAI/MAI treatment.31 298 

  299 
Figure 4 Perovskite film stability with perovskite/HTL interface stabilization. 300 

a-b Surface SEM images of the perovskite films without (PVSK) (a) and with 301 
(PVSK(EAMA)) (b) EAI/MAI treatment. c-d, AFM topography of the perovskite 302 
films without (c) and with (d) EAI/MAI treatment, RSM is root mean squared surface 303 
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roughness. e-f, XRD patterns evolution of the perovskite films without (e) and with 304 
(f) EAI/MAI treatment under aging test in a high relative humidity close to 100% 305 
condition at approximately 40 oC. 306 

To apply the above studied interface stabilization strategy into large-scale device, 307 

PSMs were fabricated based on mirror-like and uniform large-area perovskite films 308 

(Supplementary Figure 13). Figure 5a shows the optical image of the PSM and Figure 309 

5b shows the J-V curves of the PSMs with a designated area of 22.4 cm2 obtained 310 

from reverse scan.  311 

Consistent with the PSCs performance, the PSM with both EDTAK and 312 

EAI/MAI treatment (SnO2-EDTAK/PVSK(EAMA)/spiro-OMeTAD/Au) showed 313 

substantially better performance (Supplementary Table 6). A champion module with 314 

both EDTAK and EAI/MAI treatment show a reverse-scan PCE of 16.6%, which 315 

corresponds to an active-area-efficiency of 18.2% (Supplementary Figure 14). To 316 

confirm our J-V results, we sent our module to National Institute of Advanced 317 

Industrial Science and Technology (AIST) for J-V characterization according to their 318 

standard protocol IEC60904-3 Ed. 3 (Supplementary Figure 15). The result is 319 

relatively consistent with our in-house measurements (Supplementary Figure 16).  320 

The PSMs with both EDTAK and EAI/MAI treatment also exhibit good 321 

reproducibility (Supplementary Figure 17, Supplementary Table 7) and a small 322 

hysteresis (Supplementary Figure 18). To study the operation stability of above PSMs 323 

without encapsulation, we tracked the operation stability at a fixed bias that was set to 324 

be the initial MPP voltage under continuous AM 1.5G light illumination in a N2 box 325 

with a relative humidity <5% (Figure 5c). The initial values of the PV parameters for 326 

the devices tested for stability are reported in Supplementary Table 6. It was found 327 

that the T80 lifetime of the PSMs is estimated to be 24, 116 and 268 h, respectively. 328 

The significantly improved device stability for the modules with both EDTAK and 329 

EAI/MAI treatment is ascribed to the above-mentioned ETL/perovskite and 330 

perovskite/HTL interface stabilization strategy.  331 

 332 

Stabilization of the HTL/electrode interface 333 
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A stable HTL/electrode interface is also important for PSM stability.41 To further 334 

improve the stability of HTL, we incorporated a small amount of P3HT into 335 

spiro-OMeTAD.42 This mixed HTL (denoted as spiro-OMeTAD-P3HT) can deliver 336 

comparable performance with the spiro-OMeTAD based PSM (Supplementary Figure 337 

19 and 20, Supplementary Table 6). To study whether this strategy can improve the 338 

stability, we measured the operation stability of PSM based on mixed HTL 339 

(SnO2-EDTAK/PVSK(EAMA)/spiro-OMeTAD-P3HT/Au). It was found that the 340 

module with both EDTAK and EAI/MAI treatment and mixed HTL shows a T80 341 

lifetime exceeding 1600 h, which is much longer than the pure spiro-OMeTAD case 342 

(Figure 5c). We ascribe the improved stability to the HTL/CE interface engineering, 343 

where the spiro-OMeTAD-P3HT layer may slow down the gold inward migration and 344 

also enhance the stability of HTL against moisture. To verify this, we performed 345 

SIMS measurements on the aged samples (Supplementary Figure 21). The SIMS 346 

results coherently indicate that the slower Au migration into spiro-OMeTAD-P3HT 347 

versus spiro-OMeTAD case, which slow down the irreversible degradation induced by 348 

Au migration.40 The improved shielding effect of the spiro-OMeTAD-P3HT is 349 

assigned to the thiophene-like structures of P3HT that has a strong chemical 350 

interaction with Au, which helps retard Au migration (Supplementary Figure 22 and 351 

Supplementary Note 5).  352 

In addition, moisture resistance of the HTLs was studied by measuring the 353 

contact angle of a deionized water droplet. The contact angle is increased from 71.6° 354 

for the spiro-OMeTAD sample to 107.0° for the spiro-OMeTAD-P3HT sample 355 

(Supplementary Figure 23). This observation evidently demonstrates a change of HTL 356 

from hydrophilic to hydrophobic through introducing additional conjugated polymers, 357 

i.e., P3HT into spiro-OMeTAD. The improved moisture resistance is beneficial for the 358 

device resistance against moisture during P2 cutting process and device operation. 359 

Note that when water droplets were kept on the top of spiro-OMeTAD-P3HT layer for 360 

several minutes during the contact angle test, the underneath perovskite still changed 361 

its color from dark brown to yellow, which suggests the spiro-OMeTAD-P3HT is not 362 
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able to completely retard the moisture induced degradation. This observation inspired 363 

us to make additional interface stabilization to further improve the PSMs stability. 364 

 365 

Device encapsulation 366 

To further improve PSMs stability, parylene encapsulation43 and cover glass 367 

protection are employed on PSMs with both EDTAK and EAI/MAI treatment and 368 

mixed HTL (Supplementary Figure 24-26). The encapsulated PSMs show a 369 

comparable efficiency as PSMs without encapsulation (Supplementary Figure 27).  370 

The operation stability of three encapsulated PSMs was investigated (Figure 5d 371 

and Supplementary Figure 28), and the temperature on the surface of the module was 372 

measured to be approximately 40 oC during stability measurements (Supplementary 373 

Figure 29). All three modules show nearly identical stability evolution trend. At the 374 

beginning, there is a very fast burn-in decay process. This might due to the thermal 375 

effect, a faster perovskite degradation or spiro-OMeTAD conductivity variation 376 

(Supplementary Note 6). We then observed a slightly increase of the performance 377 

followed by a slow linear decay, where the slow increase after burn-in decay is likely 378 

due to the perovskite recovery or spiro-OMeTAD conductivity recovery 379 

(Supplementary Note 6). Figure 5d shows that the encapsulated PSM with the best 380 

stability remained 86% of the initial performance after aging for 2000 h, and gave a 381 

T90 lifetime of 1570 h and an estimated T80 lifetime of 2680 h.31 Moreover, all three 382 

modules show a T80 lifetime over 2000 h with good stability reproducibility, which 383 

give an average T80 lifetime of 2457±274 h.  384 

Here, the parylene encapsulation is demonstrated to act as a thin-film barrier 385 

largely to enhance the long-term stability of PSMs (Supplementary Note 7). The 386 

thermal stability (60 oC) of the PSMs was also studied. The PSMs retained over 80% 387 

of their initial efficiency after 1000 h test (Supplementary Figure 30 and 388 

Supplementary Table 8). When compared with the reported results, our modules 389 

performance result is among the top reported efficiency and stability for PSMs 390 

(Supplementary Table 9). Our PSMs stability study suggests the relatively good 391 
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stability of our solar module and verify the effectiveness of above studied HIS 392 

strategy. 393 

 394 

Figure 5 PSMs photovoltaic performance and stability. a, Photograph of a 395 
PSM. b, Representative J–V curves of the PSMs with varying structures. c, Operation 396 
stability of un-encapsulated PSMs with varying structures measured at a fixed bias 397 
near initial maximum power point (MPP) under continuous AM 1.5G light 398 
illumination in a N2 box with a relative humidity <5%. The initial values of the PV 399 
parameters for the devices tested for stability are reported in Supplementary Table 6. 400 
d, Operation stability of encapsulated 401 
SnO2-EDTAK/PVSK(EAMA)/spiro-OMeTAD-P3HT/Au PSM with parylene and a 402 
cover glass measured under the same conditions as in (b). The initial values of the PV 403 
parameters for the PSM tested for stability are reported in Supplementary Figure 27, 404 
PSM #1. 405 
 406 

Conclusions 407 
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In summary, we demonstrated a holistic interface engineering strategy to 408 

fabricated PSMs relying on treatments that are compatible with scalable processing 409 

and scribing steps. First, we treated the SnO2 ETL with EDTAK to mitigate the 410 

reaction of OH– with perovskite, passivate defects and afford good energy-level 411 

alignment at the ETL/perovskite interface. Then, we passivated surface defects at the 412 

perovskite/HTL surface with ethylammonium iodide as well as improved perovskite 413 

stability and energy-level alignment at the perovskite/HTL interface. We then 414 

improved the device stability by incorporating P3HT into the HTL and encapsulate the 415 

device with a parylene film. The resultant PSMs without encapsulation achieved a 416 

reverse-scan efficiency of 16.6% with a designated area 22.4 cm2. Moreover, the 417 

encapsulated PSM stability maintained about 86% of the initial performance after 418 

continuous operation for 2000 h under AM 1.5G light illumination, which translates 419 

into a T90 lifetime of 1570 h and a T80 lifetime of 2680 h. This demonstration is a step 420 

forwards in the development and commercialization of large-scale perovskite 421 

photovoltaics. 422 

 423 

Methods 424 

Materials. All reagents were used as received without further purification, 425 

including PbI2 (99.99%, TCI), formamidinium iodide (FAI, greatcell solar), 426 

methylammonium iodide (MAI, greatcell solar), methylammonium bromide (MABr, 427 

greatcell solar), methylammonium chloride (MACl, greatcell solar), ethylammonium 428 

iodide (EAI, Sigma-Aldrich), cesium iodide (Sigma-Aldrich), 4-tert-butylpyridine 429 

(99.9%, Sigma Aldrich), bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI, 430 

Sigma-Aldrich), acetonitrile (99.9%, Sigma-Aldrich), chlorobenzene (99.8%, Wako), 431 

2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene 432 

(spiro-OMeTAD, Merck), poly(3-hexylthiophene) (P3HT, Luminescence Technology 433 

Corp.), SnO2 (Alfa Aesar, tin (IV) oxide, 15% in H2O colloidal dispersion), 434 

ethylenediaminetetraacetic acid dipotassium (Sigma-Aldrich), methanol (Wako), 435 
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isopropanol (Wako), N,N-dimethylformamide (DMF, Wako), dimethyl sulfoxide 436 

(DMSO, Wako). 437 

PSCs fabrication. The ITO substrate was sequentially washed with distilled 438 

water, acetone, ethanol and isopropanol. Then treated using UV/O3 for 30 min. The 439 

SnO2 layer was subsequently coated on ITO substrate with the SnO2 nanocrystal 440 

solution (diluted by H2O to 2.5%) at 3000 rpm for 30 s, and annealed at 150 °C for 30 441 

min in air. Then an ethylenediaminetetraacetic acid dipotassium methanol solution 442 

was spin-coated on the SnO2 film at 3000 rpm for 30 s, and annealed at 100 °C for 5 443 

min in air. Then, a 1.35 M PbI2 and 0.0675 M CsI solution (dissolved in mixed 444 

DMF/DMSO (V:V = 19:1) solvent and stirred at 70 oC for 2 hours before filtered with 445 

PTFE syringe filters) was spin-coated on substrate at 2000 rpm for 30 s. Then a mixed 446 

organic cation solution (FAI 400 mg; MAI 200 mg; MABr 50 mg; MACl 50 mg, 447 

dissolved in 10 mL isopropanol) was spin-coated at 1750 rpm. for 30 s and then 448 

annealed at 150 °C for 15 min in air. Then a EAI/MAI solution dissolved in mixed 449 

IPA/DMF (V:V = 200:1) was spin-coated on the top of perovskite layer at 6000 rpm 450 

for 30 s and annealed at 70 oC for 5 min. Then the hole transport materials (HTM) 451 

solution was deposited by spin-coating at 3000 rpm for 30 s. The spiro-OMeTAD 452 

solution was prepared by dissolving spiro-OMeTAD in chlorobenzene (72.3 mg 453 

mL−1) with the addition of 17.5 μL Li-TFSI/acetonitrile (520 mg mL−1), and 28.8 μL 454 

4-tert-butylpyridine. A mixture of spiro-OMeTAD/P3HT (weight ratio, 9:1) was used 455 

for mixed HTM solution preparation, similar amount of Li-TFSI and 456 

4-tert-butylpyridine were added. Finally, a gold layer with a thickness of 100 nm was 457 

deposited as the counter electrode on the top of HTL through shadow masks via 458 

thermal evaporation under high vacuum (5 × 10−5 Torr).  459 

PSMs fabrication. The perovskite solar module consists of seven perovskite 460 

sub-cells connected in series on a 5 cm × 5 cm substrate. Between each cell there is a 461 

line (P1) with a width of 50 µm patterned by laser-etching to separate ITO stripes, 462 

with a dimension of 6.65 mm by 49 mm (Supplementary Figure 14). The ETL, 463 

perovskite, and HTL were prepared using the same process as small-size PSCs. After 464 
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coating ETL, perovskite, and HTL, one more line (P2) with a width of about 250 µm 465 

is patterned by CO2 laser with a power of 5.6 W to expose the bottom ITO/SnO2 466 

electrodes to form the series connections between the cells. A gold film with a 467 

thickness of 120 nm was then thermally evaporated as the counter electrode and each 468 

sub-cell was separated by mechanical scribing to form P3 patterning.  469 

PSMs encapsulation. Parylene is used due to its robust water resistance 470 

capability and the capability to provide compact enclosure to prevent leakage. In 471 

addition, parylene encapsulation avoids the direct exposure of perovskite and HTL to 472 

air at the scribed series interconnections region in a PSM, which favors the 473 

enhancement of PSM stability. Before parylene encapsulation, metal wires were 474 

connected to the PSM by ultrasonic soldering (Sunbonder USM-560). Then, the 475 

parylene film was deposited by a chemical vapor deposition process using PDS 2010 476 

LABCOATER (Supplementary Figure 24). The PSMs for encapsulation were first 477 

loaded into the CVD chamber, which was pumped to a pressure below 1500 Pa. Then, 478 

the precursor particles (Parylene C, SCS coatings, 2 g) were kept at a temperature of 479 

175 oC for vaporization. The furnace tube is kept at a temperature of 690 oC to 480 

pyrolyse the precursor into monomers. During the parylene deposition, the chamber is 481 

kept at a pressure of approximately 3500 Pa. The substrate temperature during 482 

deposition was approximately 40 oC. The polymerization and deposition rate of 483 

parylene is approximately 2 μm per hour. The thickness of the parylene encapsulation 484 

was approximately 2 μm. A cover glass was further attached on the top of the PSMs to 485 

provide mechanical protection for the underneath layers. For cover glass sealing, a 486 

glass sheet with a thickness of 2 mm was carefully sealed on top of the parylene film 487 

by kapton tape (Supplementary Figure 25). The space between glass and the parylene 488 

film is approximately 0.2 mm, which is determined by the tape thickness. 489 

Photovoltaic characterization. J–V characteristics of perovskite solar cells are 490 

measured under one sun illumination (AM 1.5 G, 100 mW cm−2, calibrated using a 491 

KG3 reference Si-cell (Enlitech), Oriel Instruments Model Number 90026564, 2×2 492 

cm2) using a solar simulator (Newport Oriel Sol 1A, Xenon-lamp, USHIO, 493 
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UXL-150SO) and a Keithley 2420 source meter in ambient air at about 25 oC and a 494 

relative humidity of 40 ~ 60%. The small-size PSCs were measured using a metal 495 

mask with the aperture area of 0.09 cm2. The designated area of 22.4 cm2 for modules 496 

was defined by a corresponding metal mask. The J-V scan range is from −0.1 V to 1.2 497 

V for small-size PSCs and from −0.2 V to 8.5 V for modules. All the J-V curves were 498 

measured under reverse scan with a scan rate of 0.25 V s−1 without preconditioning 499 

unless otherwise specified. No preconditioning protocol was used before the 500 

characterization. The EQE spectra of small-cells were characterized using Oriel IQE 501 

200.  502 

Stability testing. For continuous operation stability measurements, the PSMs 503 

were loaded in our home-designed enclosure box with dry N2 flow to maintain a 504 

relative humidity below 5%. The PSMs were under continuous illumination by a solar 505 

simulator (Peccell PEC-L01, AM1.5G without UV filter) and source meter (Keithley 506 

2401), which was controlled by a LabView program to allow automatic measurements 507 

on the PSMs. To simulate continuous PSM operation (i.e., operation stability), a fixed 508 

bias voltage was continuously applied to the PSMs maintaining the PSM operation 509 

near the MPP. The bias voltage value was set to be the initial MPP voltage during the 510 

operation stability measurement. The photocurrent output of the modules was also 511 

measured by Keithley 2401, and was recorded by the home-made LabView program. 512 

For the thermal stress test under dry N2 condition, the PSMs were loaded on a hotplate 513 

at a temperature of approximately 60 oC for aging in a dry N2 glove box with a 514 

relative humidity below 5%. 515 

Characterization. SEM measurements were carried out using a scanning 516 

electron microscope (Helios NanoLab G3 UC, FEI). XRD measurements were carried 517 

out in a Bruker D8 Discover instrument (Bruker AXS GmbH, Karlsruhe, Germany) 518 

equipped with Cu wavelength λ = 1.54 Å X-ray source operated at 1600 W and 519 

Goebel mirror. The UPS and XPS spectra were recorded from an X-ray photoelectron 520 

spectrometer (XPS-AXIS UltranHAS, Kratos) equipped with monochromatic Al-Kα 521 

= 1486.6 eV and nonmonochromatic He–I = 21.22 eV sources. XPS results were 522 
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fitted using Gaussian-Lorentzian functions after background subtraction 523 

corresponding to the inelastic scattering processes. TRPL data were acquired using the 524 

time-correlated, single-photon counting technique (Hamamatsu, C10627), and 525 

excitation was provided by a femtosecond mode-locked Ti:sapphire laser 526 

(Spectra-Physics, MAITAI XF-IMW) at 450 nm with an average power at 8 MHz of 527 

0.74 mW. SIMS (Kratos Axis ULTRA) equipped with quadrupole mass spectrometer 528 

(HAL 7, Hiden Analytical) was used to collect the elemental signal in positive ion 529 

detection mode (PID). For sputtering in SIMS, 3 keV Ar+ primary beam with a current 530 

of 10 mA and a diameter of 100 µm was utilized. To study the effect of mixed HTM 531 

on retarding gold migration, we have prepared the samples according to a previous 532 

study on a similar topic.40 Our result was obtained from the samples with Au layer. 533 

The samples were prepared on 1.5 cm × 1.5 cm ITO substrate according to the same 534 

procedure as the fabrication procedure of our devices. Then, the samples were placed 535 

on a hot plate which was kept at a temperature of 70 oC for 24 h in a N2 glove box. 536 

The aged samples were transferred into the SIMS chamber for measurements. The 537 

beam was at an angle of 45 ° with respect to the sample surface normal. The 538 

spectrometer was operated at a pressure of 10−8 torr. The SCLC data were collected 539 

with a semiconductor characterization system in N2 (4200-SCS, Keithley). 540 

Absorbance was measured using a UV-Vis spectrometer (JASCO Inc., V-670).  541 

Reporting summary. Further information on research design is available in the 542 

Nature Research Reporting Summary linked to this article. 543 
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