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ABSTRACT
Using general rigid bead–rod theory, we explore the effect of twisting a macromolecule on its rheological properties in suspensions. We
thus focus on macromolecules having the form of Möbius bands so that the number of twists can be incremented. We call these Möbius
macromolecules. When represented in general rigid bead–rod theory, these macromolecules comprise beads whose centers all fall on a Möbius
band. From first principles, we calculate the complex viscosity of twisted rings with zero to seven twists. We find that the zero-shear values
of the viscosity and first normal stress coefficient increase with twisting. Furthermore, we find that the real part of the complex viscosity
descends more rapidly, with frequency, with extent of twist. For the imaginary part of the complex viscosity, the more twisted, the higher the
peak. For each part of the dimensionless complex viscosity and the first normal stress coefficient, the results fall on one of just three curves
corresponding to zero, even, or odd numbers of twists. We also explore the effects of the length and the aspect ratio of twisted macromolecular
suspensions. We close with a worked example for a suspension of triply twisted Möbius annulene.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0022546., s

I. INTRODUCTION

General rigid bead–rod theory affords the opportunity to
explore how the macromolecular shape, even if complex, affects the
rheology of polymeric liquids. We explore how twisting a macro-
molecule affects its complex viscosity. Previously, we studied the
effect of twisting on linear chains, such as doubly helical macro-
molecules, including deoxyribonucleic acid (see Subsection V C
of Ref. 1). However, for linear helical macromolecules, the chain
length is proportional to the number of twists, so the effect of twist-
ing is confounded by the chain length. We therefore explore the
role of the number of twists in ring polymers on complex viscos-
ity. Adding one or more twists to ring polymers produces Möbius
macromolecules, which we define mathematically below. Although
this work is mainly driven by curiosity,2 its applications have not

escaped our attention. For instance, to introduce chemical stabil-
ity, organic chemists twist pi-bonded structures into ringed macro-
molecules.3 The more twisted, the more stable the macromolecule
might be.2,3 For our symbols, dimensional and non-dimensional,
listed in Tables I and II, we follow those of the corresponding text-
book treatments, Example 16.7-1 of Ref. 4 or Example 13.6-1 of
Ref. 5.

For linear viscoelastic behaviors, general rigid bead–rod theory
has been evaluated for only a few very simple structures: rigid rings,
the rigid tridumbbell, and three quadra-functional branched struc-
tures along a backbone (Table 16.7-1 of Ref. 5). More ambitiously,
and still unpublished, recent work attacks other branch functionali-
ties along a backbone, star branched architectures, be they planar or
polyhedral,6 and diblock copolymers.7 For oscillatory shear flow, the
frequency dependencies of both parts of the complex viscosity are
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TABLE I. Dimensional variables. Legend: M ≡ mass, L ≡ length, t ≡ time, and T
≡ temperature.

Name Symbol Dimensions

Absolute temperature T T
Angular frequency ω t−1

Band width w L
Boltzmann constant kB ML2/Tt2

Cartesian coordinates x,y,z L
Cylindrical angular coordinate θ rads
Equilibrium center to center separation L L
Extra stress tensor τ M/Lt2

Friction constant ζ M/t
Lateral position across the strip s L
Normal stress coefficient,

Ψd
1 M/Lfirst, displacement

Normal stress coefficient, first, Ψ′′1 M/Lminus imaginary part
Normal stress coefficient, Ψ′1 M/Lfirst, real part
Normal stress coefficient, first, complex Ψ∗1 = Ψ′1 − iΨ′′1 M/L
Normal stress coefficient, Ψ1,0 M/Lfirst, zero-shear
Number of twists, integer τ Twists
Radius, circle of support R L
Relaxation time λ t
Shear rate γ̇ t−1

Shear rate amplitude γ̇0 t−1

Time t t
Trigonometric shift [Eq. (35)] κ rads
Viscosity, complex η∗ ≡ η′ − iη′′ M/Lt
Viscosity, complex, minus imaginary part η′′ M/Lt
Viscosity, complex, real part η′ M/Lt
Viscosity, solvent ηs M/Lt
Viscosity, zero-shear η0 M/Lt

predicted qualitatively. By qualitatively, we mean that the real part
of the complex viscosity descends with frequency from its asymp-
totic zero-shear value and then inflects with frequency, while the
imaginary part rises and then falls.8

TABLE II. Dimensionless variables and groups.

Name Symbol

Aspect ratio R/w
Orientation constant [Eq. (22)] a
Orientation constant [Eq. (23)] b
Orientation constant [Eq. (24)] ν
Bead row index j
Bead rows, number of J
Bead position index k
Beads in each row K
Deborah number, oscillatory shear De ≡ λω
Weissenberg number Wi ≡ λγ̇0

From general rigid bead–rod theory, the viscous contribution
to the dimensionless complex viscosity is given by [Eq. (40) of Ref.
9]

η′ − ηs
η0 − ηs

= ( 1
2b/aν + 1)

−1

( 1
2b/aν +

1
1 + (λω)2 ) (1)

and minus the elastic contribution by [Eq. (41) of Ref. 9]

η′′

η0 − ηs
= ( 1

2b/aν + 1)
−1 λω

1 + (λω)2 , (2)

which are subject to the definition of small-amplitude oscillatory
shear flow (SAOS) [Eq. (31) of Ref. 9],

λγ̇0 ≪ 1
ν
√

2
, (3)

which is a restriction we will also use below.
By substituting Eqs. (64)–(66) of Ref. 9 into Eqs. (68)–(70) of

Ref. 9, Kanso and Giacomin bridged continuum theory to macro-
molecular, yielding expressions for the normal stress difference
responses from general rigid bead–rod theory. By continuum theory,
we mean any case of the Oldroyd 8-constant framework (see Table
III of Ref. 10 and Table I of Refs. 11 and 12), including the coro-
tational Jeffreys model. The coefficients of the displacement term of

TABLE III. Möbius bands with three rows and an aspect ratio of twenty.

Twists I1 I3 a b ν 2b/aν λ/λ0
η0−ηs
nkBTλ

Ψ1,0
nkBTλ2

0 1548.774 2995.258 745.28 0.5234 0.003 874 0.3625 3097.549 1.9670 1.0643
1 1537.670 3023.265 729.38 0.5600 0.003 902 0.3936 3075.340 1.9831 1.1297
2 1125.685 2205.196 535.72 0.5518 0.005 330 0.3865 2251.371 1.9795 1.1150
3 1420.718 2794.051 673.74 0.5606 0.004 223 0.3941 2841.437 1.9833 1.1307
4 1882.388 3702.388 892.59 0.5609 0.003 187 0.3943 3764.776 1.9834 1.1311
5 1365.395 2685.078 647.54 0.5605 0.004 394 0.3940 2730.790 1.9833 1.1305
6 984.935 1937.258 467.03 0.5609 0.006 092 0.3943 1969.870 1.9834 1.1312
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TABLE IV. Möbius bands with three rows and an aspect ratio of ten.

Twists I1 I3 a b ν 2b/aν λ/λ0
η0−ηs
nkBTλ

Ψ1,0
nkBTλ2

0 214.6036 377.6226 109.7048 0.3462 0.02796 0.2258 429.2071 1.8798 0.7367
1 209.1659 391.5534 103.1734 0.4562 0.02869 0.3083 418.3318 1.9360 0.9426
2 115.2762 213.3275 57.3000 0.4341 0.05205 0.2911 230.5524 1.9253 0.9019
3 157.3290 295.1023 77.4970 0.4601 0.03814 0.3114 314.6580 1.9379 0.9497
4 226.2647 424.7007 111.3990 0.4615 0.02652 0.3124 452.5293 1.9385 0.9523
5 139.9470 262.4252 68.9486 0.4596 0.04287 0.3109 279.8941 1.9376 0.9487
6 84.3479 158.3068 41.5305 0.4613 0.07113 0.3123 168.6957 1.9384 0.9519

TABLE V. Möbius bands with seven rows and an aspect ratio of ten.

Twists I1 I3 a b ν × 10−3 2b/aν λ/λ0
η0−ηs
nkBTλ

Ψ1,0
nkBTλ2

0 12 847.5031 23 550.3026 6424.3269 0.4164 0.4670 0.2776 25 695.0062 1.9165 0.8691
1 12 383.3944 23 699.3317 6009.5876 0.5010 0.4845 0.3441 24 766.7888 1.9569 1.0241
2 6 889.4652 13 057.4891 3368.3107 0.4809 0.8709 0.3279 13 778.9303 1.9476 0.9877
3 9 952.2323 19 055.0158 4828.0793 0.5019 0.6029 0.3449 19 904.4646 1.9573 1.0258
4 14 249.9226 27 289.1107 6911.8948 0.5024 0.4211 0.3452 28 499.8452 1.9575 1.0266
5 7 873.3171 15 072.8281 3819.9030 0.5017 0.7621 0.3447 15 746.6341 1.9572 1.0253
6 4 738.0159 4 738.0159 2298.0951 0.5024 1.2664 0.3453 9 476.0315 1.9576 1.0267

TABLE VI. Möbius bands with seven rows and an aspect ratio of seven.

Twists I1 I3 a b ν × 10−3 2b/aν λ/λ0
η0−ηs
nkBTλ

Ψ1,0
nkBTλ2

0 4904.7733 8293.7032 2548.8953 0.2864 1.2233 0.1837 429.2071 1.8455 0.6209
1 4569.7701 8393.6137 2282.2573 0.4201 1.3130 0.2804 418.3318 1.9184 0.8760
2 2074.6151 3744.4869 1046.8013 0.3887 2.8921 0.2568 230.5524 1.9025 0.8173
3 3078.3776 5660.9635 1536.2909 0.4223 1.9491 0.2821 314.6580 1.9195 0.8800
4 4109.8159 7562.1381 2050.2919 0.4234 1.4599 0.2829 452.5293 1.9200 0.8820
5 2144.6821 3942.7513 1070.5244 0.4217 2.7976 0.2816 279.8941 1.9191 0.8790
6 1203.3400 2214.3663 600.2849 0.4235 4.986 0.2830 168.6957 1.9201 0.8823

TABLE VII. Zero-shear viscosities and first normal stress coefficients made dimensionless with λ0.

Table III Table IV Table V Table VI Table VIII

Twists η0−ηs
nkBTλ0

Ψ1,0
nkBTλ2

0

η0−ηs
nkBTλ0

Ψ1,0
nkBTλ2

0

η0−ηs
nkBTλ0

Ψ1,0
nkBTλ2

0

η0−ηs
nkBTλ0

Ψ1,0
nkBTλ2

0

η0−ηs
nkBTλ0

Ψ1,0
nkBTλ2

0

0 6092.8789 3508.7006 806.8235 232.9423 49 244.4794 19 408.3326 792.1017 165.4666 . . . . . .
1 6098.7068 3924.8169 809.8904 371.6857 48 466.1290 25 974.9328 802.5277 321.0178 . . . . . .
2 4458.5684 2798.9608 443.8825 187.5368 26 835.8447 13 442.0533 438.6259 154.0042 . . . . . .
3 5635.422 3632.7274 609.7757 283.7995 38 959.0086 20 944.7842 603.9860 243.6711 2463.1281 154.6226
4 1882.388 5582.6812 877.2280 410.3877 55 788.4470 30 036.2023 868.8563 352.0334 . . . . . .
5 5415.9758 3490.0322 542.3228 251.9135 30 819.3123 16 553.4930 537.1448 216.2577 . . . . . .
6 3907.0402 2520.6721 326.9997 152.8574 18 550.2793 9 988.8069 323.9126 131.3217 . . . . . .
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the normal stress differences in SAOS are [Eq. (71) of Ref. 9 and Refs.
11 and 13]

Ψd
1

nkTλ2 =
b

1 + (λω)2 (4)

and of the parts that are in-phase with cos 2ωt [Eq. (72) of Ref. 9],

Ψ′1
nkTλ2 = b

(1 − 2(λω)2)
(1 + (λω)2)(1 + 4(λω)2)

(5)

and out-of-phase with cos 2ωt [Eq. (73) of Ref. 9],

Ψ′′1
nkTλ2 = 3b

λω
(1 + (λω)2)(1 + 4(λω)2)

, (6)

which goes through a maximum, as does η′′/(η0 − ηs) of Eq. (2).9,13

Below, we will capitalize on Eqs. (4)–(6) subject to Eq. (3) to study
the effect of architecture on Möbius macromolecules.

Since general rigid bead–rod theory relies entirely on macro-
molecular orientation for explaining rheological responses of
macromolecular suspensions,17 the theory neglects interactions
between macromolecules. We are attracted to general rigid bead–
rod theory for the accuracy of its predictions for its simplest special
cases and to the rigid dumbbell, at least qualitatively, for most of
the viscoelastic material functions measured in the laboratory (see
Introduction of Refs. 9, 10, 15, and 16). Perhaps the reason for the
apparent success of the rigid dumbbell, even for flexible macro-
molecules, is that the overall orientation of the molecule is the most
important factor in determining the rheological responses of elastic
liquids. The chain expansion and contraction seem to be less impor-
tant. Furthermore, the successes (Fig. 20 of Ref. 1, Fig. 14 of Ref. 9,
and Fig. 2 of Ref. 16) of general rigid bead–rod theory for concen-
trated systems suggests that interactions between macromolecules
are also less important.

II. METHOD
We study macromolecules whose bead positions all lie on the

surfaces of Möbius bands, with τ twists, given by

⎡⎢⎢⎢⎢⎢⎢⎣

x

y

z

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

{R + ssin 1
2 τθ}cosθ

{R + ssin 1
2 τθ}sinθ

scos 1
2 τθ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, 0 ≤ θ ≤ 2π,

− 1
2w ≤ s ≤

1
2w, τ = 0, 1, 2, . . . ,

(7)

where w is the strip width, s is the lateral position across the strip,
θ is the cylindrical angular coordinate, and τ is the integer num-
ber of twists. The cylindrical angular coordinate, θ, thus defines the
position along the strip. We call macromolecules whose bead posi-
tions satisfy Eq. (7) Möbius macromolecules. Otherwise put, Möbius
macromolecules are objects whose representations in general rigid
bead–rod theory comprise beads whose centers fall on Möbius
bands. Equation (7) is parametric in θ, and all bands described by
it intersect at the circle of support of radius R,

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Rcosθ
Rsinθ

0

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ θ ≤ 2π. (8)

Without twists, τ = 0, and Eq. (7) reduces to the parametric equation
for a right circular cylinder,

FIG. 1. [(a) and (b)] Effect number of twists on the viscoelastic response [Eqs. (1)
and (2)]. No twists (black), even number of twists (red) (Fig. 10), and odd number
of twists (blue) (Fig. 11). Möbius bands from three rows of beads with aspect ratio
ten.
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⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

Rcosθ
Rsinθ
s

⎤⎥⎥⎥⎥⎥⎦
, 0 ≤ θ ≤ 2π,− 1

2w ≤ s ≤
1
2w. (9)

Thus, we will compare twisted structures, exploring one to seven
twists, with their untwisted counterpart, this right circular cylinder.

When modeling Möbius macromolecules using general rigid
bead–rod theory, we begin with a set of rigidly spaced beads with
position vector ri, where the macromolecular center of mass R
satisfies

N

∑
i=1

mi(ri − R) = 0 (10)

so that

R = 1
M

N

∑
i=1

miri, (11)

where the subscript i indicates the bead number, N is the total num-
ber of beads, and M ≡ ∑N

i=1 mi is the molecular weight. Since we

construct our Möbius macromolecules with identical beads of diam-
eter d and mass m, the molecular weight is given by M ≡ mN, and
thus, the center of mass is

R = 1
N

N

∑
i=1

ri, (12)

which we will use below.
We next install molecular coordinates at the macromolecular

center of mass, and we orient these Cartesian coordinates such that
δ̂3 is along the polar axis of the moment of inertia ellipsoid (MIE).
The position vector of the ith bead with respect to the center of mass
is given by [Eq. (16.7-16) of Ref. 4 or Eq. (13.6-16) of Ref. 6]

Ri ≡ [ri1, ri2, ri3] − R. (13)

Equation (7) refers to a coordinate system whose origin is arbitrarily
set at the position [0,0,0]. To get Ri, we insert Eq. (7) into Eq. (12) to
get R and then this into Eq. (13).

FIG. 2. [(a)–(c)] Effect number of twists
on the first normal stress difference [Eqs.
(4), (5), and (6)]. No twists (black), even
number of twists (red) (Fig. 10), and odd
number of twists (blue) (Fig. 11). Möbius
bands from three rows of beads with
aspect ratio ten.
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Thus, combining Eq. (7) with (13) gives for our Möbius macro-
molecules

⎡⎢⎢⎢⎢⎢⎢⎣

Ri,1

Ri,2

Ri,3

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

{R + skcos 1
2 τθj}cosθj

{R + skcos 1
2 τθj}sinθj

sksin 1
2 τθj

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, 0 ≤ θj ≤ 2π,

− 1
2w ≤ sk ≤

1
2w, τ = 0, 1, 2, . . . ,

(14)

where the bead rows across the Möbius strip are numbered j = 1, 2,
. . ., J and the bead positions along the rows, k = 1, 2, . . ., K, so that
N ≡ JK. By rows, we mean beads of the same longitudinal
position, θ.

We can define the principal moments of inertia I1, I2, and I3 by
[Eqs. (16.7-17) and (16.7-18) of Ref. 4 or (13.6-17) and (13.6-18) of
Ref. 5]

I1 ≡ m
N

∑
i=1
(R2

i2 + R2
i3), (15)

I2 ≡ m
N

∑
i=1
(R2

i1 + R2
i3), (16)

I3 ≡ 2m
N

∑
i=1

R2
i1. (17)

We design each Möbius macromolecule by rigidly connecting each
bead to its nearest neighbors, center to center, with massless dimen-
sionless rods.8 Adjacent rows are indexed identically,

I1 ≡ m
J

∑
j=1

K

∑
k=1
({R + skcos 1

2 τθj}
2sin2θj + s2

ksin2 1
2 τθj), (18)

I2 ≡ m
J

∑
j=1

K

∑
k=1
({R + skcos 1

2 τθj}
2cos2θj + s2

ksin2 1
2 τθj), (19)

I3 ≡ 2m
J

∑
j=1

K

∑
k=1
{R + sksin 1

2 τθj}
2cos2θj. (20)

By indexed identically, we mean that, for each row j, all beads have
the same value of θ. From Eqs. (18) and (19), we learn that, if iden-
tically indexed beads are spaced evenly along and across the strip,
I1 = I2. We call such Möbius macromolecules axisymmetric.

Hassager derives the expression for the shear relaxation func-
tion from general rigid bead–rod theory for axisymmetric macro-
molecules,17,18

G(s) ≡ (2ηs + nζL2a)δ(s) + nkTbe−s/λ (21)

in which [Eqs. (16.7-38) of Ref. 4 or Eqs. (13.6-44), (13.6-45), and
(13.6-46) of Ref. 5]

a ≡ 2I1 + I3

6mL2 −
(I1 − I3)2

5mL2I1
, (22)

b ≡ 3(I1 − I3)2

5I2
1

, (23)

ν ≡ 6mL2

I1
. (24)

The three quantities in Eq. (21), a, b, and λ, thus define completely
the differences in linear viscoelastic behaviors arising between dif-
ferent axisymmetric Möbius macromolecules. Whereas we associate

FIG. 3. [(a) and (b)] Effect of band width on the viscoelastic response [Eqs. (1) and
(2)] of one twist Möbius bands. Three rows of beads with aspect ratio ten (blue)
(Fig. 11) and seven rows of beads with aspect ratio ten (red).
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a with the Dirac delta function contribution to the relaxation func-
tion given by Eq. (21), we associate b with the dying exponential. We
call a, b, and ν the orientation constants of the macromolecule.

The relaxation time can be expressed as

λ ≡ ζI1

6mkT
≡ ζL2

νkT
, (25)

where

ζ ≡ 3πdηs. (26)

For later convenience, we define

λ0 ≡
ζL2

12kT
= πdηsL2

4kT
, (27)

which we will use below.
From Ref. 17 (Chap. 16 of Refs. 4, 6, or 9), we learn that the

value of 2b/aν reflects lopsidedness, namely, the extent to which
the macromolecule deviates from a spherically symmetric structure.

The minimum value of 2b/aν is 0, obtained for spherically symmet-
ric structures such as rigid regular octahedra (Macromolecule 5 of
Ref. 9), and the maximum is 3/2 for long slender bodies such as the
rigid dumbbell (Macromolecule 1 in Table 4 of Ref. 9).

We classify macromolecules as prolate or oblate. By prolate,
we mean that the macromolecule MIE is longer than it is wide. By
oblate, we mean that the MIE is wider than it is long. Otherwise put,
oblate and prolate macromolecules depart differently from spherical
symmetry.

Dividing Eq. (25) by Eq. (27) normalizes the relaxation time of
the general macromolecule to that of the simplest,

λ
λ0
≡ 12

ν
, (28)

which we will use below.
Equations (22)–(24) imply the quadratic

a2ν2 +
2
3
(b − 9)aν +

1
9
(b2 − 33b + 81) = 0 (29)

FIG. 4. [(a)–(c)] Effect of band width
on the first normal stress difference
[Eqs. (4)–(6)] of one twist Möbius bands.
Three rows of beads with aspect ratio ten
(blue) (Fig. 11) and seven rows of beads
with aspect ratio ten (red).
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whose prolate lower branch is given by

aν = 9 − b −
√

15b
3

(30)

and whose oblate upper branch is given by

aν = 9 − b +
√

15b
3

. (31)

From Eqs. (29)–(31), we learn that every axisymmetric macro-
molecule occupies one and only one position on either the upper
or lower branch.

The simple shapes given by parametric equation (7) are not to
be confused with the more complicated shapes arising when thick
flat elastic strips are curved into cylindrical or twisted bands. These
more complicated shapes are governed by solid mechanics.19–21

III. RESULTS
Tables III–VI compare the moments of inertia, orientation con-

stants, lambda ratios, and zero-shear properties for every Möbius
macromolecule studied in this paper. Table III includes the results
for Möbius bands of three rows with aspect ratio R/w = 20. By R/w,
we mean the ratio of the radius of the circle of support, R, to the
band width, w, of the Möbius macromolecule. Table IV includes the
results for Möbius bands of three rows with an aspect ratio of ten.
Table V includes the results for Möbius bands of three rows with an
aspect ratio of ten. Table VI includes the results for Möbius bands of
three rows with an aspect ratio of seven.

From Columns 9 and 10 of Table III–VI, we learn that the zero-
shear viscosities and first normal stress coefficients, made dimen-
sionless with λ, for the untwisted Möbius macromolecule are much
higher than any of its twisted counterparts. By contrast, we also learn
that the zero-shear viscosities and first normal stress coefficients,
made dimensionless with λ, for the twisted Möbius macromolecules
do not differ from on another. From Table VII, on the other hand,
we learn that the zero-shear viscosities and first normal stress coef-
ficients, made dimensionless with λ0, do differ significantly and
without pattern.

A. Twists
Figure 1 shows the effect of the number of twists on the viscous

and elastic response of Möbius band macromolecules. We find that
for the dimensionless real part of the complex viscosity [Eq. (1)],
the results fall on just three curves: one for zero twists [Eq. (9)],
another lower one for an odd number [Eq. (7) with τ odd], and an
even lower one for an even number [Eq. (7) with τ even]. This dif-
ference in η′(ω) increases with frequency [Fig. 1(a)]. We also find
that for minus the dimensionless imaginary part of the complex vis-
cosity [Eq. (2)], the results also fall on just three curves: one for zero
twists, another higher one for an odd number, and an even higher
one for an even number. This difference in η′′(ω) does not vary
with frequency [Fig. 1(b)]. We thus find that the effect of twisting
the Möbius macromolecule on the parts of the complex viscosity is
binary. This binary dependence on twist parity surprised us.

Figure 2 shows the effect of the number of twists on each of
the three parts of the dimensionless complex first normal stress

coefficient response of Möbius band macromolecules. We find that
for the dimensionless displacement value of the first normal stress
coefficient [Eq. (4)], the results fall on just two curves: one for zero
twists and the other higher one for twisted, be the number of twists

FIG. 5. [(a) and (b)] Effect of aspect ratio on the viscoelastic response [Eqs.
(1) and (2)] of one twist Möbius macromolecules. Three rows of beads with
aspect ratio ten (blue) (Fig. 11) and three rows of beads with aspect ratio twenty
(red).
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FIG. 6. [(a)–(c)] Effect of aspect ratio
on the first normal stress difference
[Eqs. (4)–(6)] of one twist Möbius bands.
Three rows of beads with aspect ratio ten
(blue) (Fig. 11) and three rows of beads
with aspect ratio twenty (red).

even or odd. This difference decreases with frequency [Fig. 2(a)].
Similarly, we find that for the part in-phase with cos 2ωt [Eq. (5)], the
results also fall on just two curves, and their difference also decreases
with frequency [Fig. 2(b)]. We find likewise for minus the part out-
of-phase with cos 2ωt, Eq. (6) [Fig. 2(c)]. By contrast with the parts
of the complex viscosity [Fig. 1], we find that the effect of twisting
the Möbius macromolecule on the in-phase and out-of-phase parts
of the first normal stress coefficient is not binary. Our findings of
binary twist parity for η∗, and not for Ψd

1 or Ψ∗1 , establish intuitive
expectations for future work on twisted macromolecules.

B. Band width
To study the effect of band width, we compare a Möbius

macromolecule with three rows of beads and an aspect ratio of
ten to a Möbius macromolecule with seven rows of beads with the
same aspect ratio of ten. Band width is the width of the Möbius
macromolecule and is not to be confused with band width of signal
processing.

Figure 3 shows the effect of Möbius macromolecule band width
on the viscous and elastic response of Möbius band macromolecules.

We find that for the dimensionless real part of the complex viscosity
[Eq. (1)], the increase in band width lowers the curve. This differ-
ence in η′(ω) increases with frequency [Fig. 3(a)]. We also find that
for minus the dimensionless imaginary part of the complex viscosity

FIG. 7. The Möbius macromolecule triply twisted annulene.3
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TABLE VIII. Möbius macromolecule triply twisted annulene.

Twists I1 I3 a b ν 2b/aν λ/λ0
η0−ηs
nkBTλ

Ψ1,0
nkBTλ2

3 705.6461 1051.8263 376.5535 0.1444 0.0085 0.0769 1411.2921 1.7453 0.3310

[Eq. (2)], the increase in band width increases the peak value. This
difference in η′′(ω) does not vary with frequency [Fig. 3(b)].

Figure 4 shows the effect of the band width on the first normal
stress of Möbius band macromolecules. We find that for the dimen-
sionless displacement value of the first normal stress coefficient
[Eq. (4)], a decrease in band width lowers the curve. This difference
decreases with frequency [Fig. 4(a)]. Similarly, we find that for the
part in-phase with cos 2ωt [Eq. (5)], a decrease also lowers the curve
[Fig. 4(b)]. We find likewise for minus the part out-of-phase with
cos 2ωt, Eq. (6) [Fig. 4(c)].

C. Aspect ratio
To study the effect of aspect ratio, we compare a Möbius macro-

molecule with three rows of beads and an aspect ratio of ten to
a Möbius macromolecule with seven rows of beads with the same
aspect ratio of ten.

Figure 5 shows the effect of the chain aspect ratio on the viscous
and elastic response of Möbius band macromolecules. We find that
for the dimensionless real part of the complex viscosity [Eq. (1)],
the increase in aspect ratio lowers the curve. This difference in η′(ω)
increases with frequency [Fig. 5(a)]. We also find that for minus the
dimensionless imaginary part of the complex viscosity [Eq. (2)], the
increase in aspect ratio increases the peak value. This difference in
η′′(ω) does not vary with frequency [Fig. 5(b)].

Figure 6 shows the effect of the aspect ratio on the first normal
stress of Möbius band macromolecules. We find that for the dimen-
sionless displacement value of the first normal stress coefficient [Eq.
(4)], decreasing the aspect ratio lowers the curve. This difference
decreases with frequency [Fig. 6(a)]. Similarly, we find that for the
part in-phase with cos 2ωt [Eq. (5)], a decrease also lowers the curve
[Fig. 6(b)]. We find likewise for minus the part out-of-phase with
cos 2ωt, Eq. (6) [Fig. 6(c)].

IV. WORKED EXAMPLE: TRIPLY TWISTED MÖBIUS
ANNULENE

We next turn our attention to a specific organic Möbius macro-
molecule, the triply twisted annulene, shown in Fig. 7, whose bead
centers are given in the supplementary material of Ref. 3. Proceed-
ing from these bead centers and following the method of Sec. II,
we generate Table VIII from general rigid bead–rod theory. Then,
using Eqs. (1) and (2) with Table VIII, we predict the parts of the
complex viscosity for a suspension of triply twisted annulene in
small-amplitude oscillatory shear flow, after which we plot these in
Fig. 8. To our knowledge and presumably due to the scarcity of the
compound, the complex viscosity of such a suspension has yet to be
measured. Using Eqs. (4)–(6) with Table VIII, we predict all three
parts of the first normal stress coefficient response for a suspension

FIG. 8. General rigid bead rod theory for twisted annulene (Fig. 1 of Ref. 3, Fig. 7).
Complex viscosity: (a) in-phase with γ̇ [Eq. (1)] and (b) minus out-of-phase with γ̇
[Eq. (2)].
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FIG. 9. General rigid bead rod theory
for twisted annulene (Fig. 1 of Ref. 3,
Fig. 7). First normal stress coefficient: (a)
displacement value [Eq. (4)] and (b) in-
phase with cos 2ωt [Eq. (5)]. (c) Minus
out-of-phase with cos 2ωt [Eq. (6)].

of triply twisted annulene in small-amplitude oscillatory shear flow
and plot these in Fig. 9. As far as we know, the first normal stress
coefficient of such a suspension has yet to be measured.

From Table VIII, we learn that a triply twisted annulene
ν ≅ 0.0085, which when inserted into Eq. (3) yields

λγ̇0 ≪ 83.19, (32)
which defines small-amplitude for triply twisted annulene in oscilla-
tory shear flow.

V. CONCLUSION
In this paper, we calculate the complex viscosity [Eqs. (1) and

(2)] and the corresponding first normal stress coefficient [Eqs. (4)–
(6)] in small-amplitude [Eq. (3)] oscillatory shear flow of suspen-
sions of Möbius macromolecules from general rigid bead–rod the-
ory. Figures 10 and 11 provide a representation of Möbius macro-
molecules with differing amounts of twists, from various angles. We
discover binary behaviors for both the real and imaginary parts of

FIG. 10. [(a)–(i)] Even twisted Möbius bands.
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FIG. 11. [(a)–(i)] Odd twisted Möbius bands.

the complex viscosity [Figs. 1(a) and 1(b), respectively]. By binary,
we mean that the result depends only on the Möbius macromolecule
twist parity. By contrast, we discover that the behaviors for all
three parts of the first normal stress coefficients in small-amplitude
oscillatory shear flow [Figs. 2(a)–2(c)] are not binary.

We study macromolecules whose bead positions all lie on the
surfaces of Möbius bands, described by Eq. (7), which includes
the cylinder as a special case [Eq. (9)]. Equation (7) thus describes
Möbius bands constructed by cutting and twisting a right circu-
lar cylinder. By contrast, Möbius bands can also be constructed by
cutting and twisting a frustrated disk, and these surfaces are given
by

⎡⎢⎢⎢⎢⎢⎢⎣

x

y

z

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

{R + ssin 1
2 τθ}cosθ

{R + ssin 1
2 τθ}sinθ

scos 1
2 τθ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, 0 ≤ θ ≤ 2π,

− 1
2w ≤ s ≤

1
2w, τ = 0, 1, 2, . . . ,

(33)

where all bands described by this intersect at the circle of support of
radius, R [Eq. (8)]. Without twists, τ = 0, and Eq. (33) reduces to

⎡⎢⎢⎢⎢⎢⎢⎣

x

y

z

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

{R + s}cosθ
{R + s}sinθ

0

⎤⎥⎥⎥⎥⎥⎥⎦

, 0 ≤ θ ≤ 2π,− 1
2w ≤ s ≤

1
2w, (34)

which represents the frustrated disk.
Generalizing Eqs. (7) and (33) yields for the surfaces of all

Möbius bands constructed by cutting and twisting either cylinders
(κ = 0) or frustrated disks(κ = π/2)

⎡⎢⎢⎢⎢⎢⎢⎣

x

y

z

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

{R + ssin(κ + 1
2 τθ)}cosθ

{R + ssin(κ + 1
2 τθ)}sinθ

scos(κ + 1
2 τθ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, 0 ≤ θ ≤ 2π, 0 ≤ κ ≤ π
2 ,

− 1
2w ≤ s ≤

1
2w, τ = 0, 1, 2, . . . .

(35)

We leave the study of this broader class of Möbius macromolecules
for another day.

Since Möbius bands can evert,22 in principle, so might Möbius
macromolecules during flow, including oscillatory shear flow, the
flow at issue in this paper. However, our general rigid bead–rod the-
ory precludes eversion during flow. This being said, when everted,
the principal moments of inertia of a Möbius macromolecule do not
change. Our theory could be used to calculate the torque about the
neutral axis of the Möbius macromolecules during flow. We could
then see if this torque ever exceeds the critical torque for eversion.
We leave this exploration for another day.

We have neglected interferences of solvent velocity profiles
between adjacent beads. Called hydrodynamic interactions,23 we
leave this improvement for another day. Of course, general rigid
bead–rod theory explains the elasticity of the liquid by means of
macromolecular orientation alone. We also leave the role played
by macromolecular compliance24 in the rheology of Möbius macro-
molecules for another day.

In previous work, we managed to derive exact analytical expres-
sions for the properties in Tables III–VIII of simpler architectures
including shish-kebabs, rigid rings, and planar star-shaped polymers
(see Table XV of Ref. 9). We have proceeded numerically from the
bead positions. For the simplest general rigid bead–rod theory rep-
resentation of Möbius macromolecules, one might proceed analyti-
cally from Eq. (14). Following the method of Sec. II, one might also
attack interlocking Möbius macromolecules of like or unlike twist
parities. We leave these interesting tasks for another day.

For rigid dumbbells, we know of reasonable predictions for
the steady shear viscosity and first normal stress difference material
functions of polymeric liquids (see Sec. 6 of Ref. 14). The rigid-
dumbbell suspension has also been shown to predict accurately the
Cox–Merz rule.25 Of course, we can bridge general rigid bead–rod
theory with continuum mechanics to arrive at approximate rela-
tions for the steady shear material functions. We would do so by
inserting the bridging relations Eqs. (64)–(66) of Ref. 9 into the
steady shear material functions for Oldroyd 8-constant fluids [Eqs.
(74)–(76) of Ref. 9]. The result could then be tested against the
measured structure dependencies of the steady shear material func-
tions. We leave this task for another day. When using the references
cited herein, it is best to be mindful of corresponding ganged errata
in Ref. 26.
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