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Abstract
Action selection has been hypothesized to be a key function of the basal ganglia, 
yet the nuclei involved, their interactions and the importance of the direct/indirect 
pathway segregation in such process remain debated. Here, we design a spiking com-
putational model of the monkey basal ganglia derived from a previously published 
population model, initially parameterized to reproduce electrophysiological activity 
at rest and to embody as much quantitative anatomical data as possible. As a particu-
lar feature, both models exhibit the strong overlap between the direct and indirect 
pathways that has been documented in non-human primates. Here, we first show 
how the translation from a population to an individual neuron model was achieved, 
with the addition of a minimal number of parameters. We then show that our model 
performs action selection, even though it was built without any assumption on the 
activity carried out during behaviour. We investigate the mechanisms of this selec-
tion through circuit disruptions and found an instrumental role of the off-centre/on-
surround structure of the MSN-STN-GPi circuit, as well as of the MSN-MSN and 
FSI-MSN projections. This validates their potency in enabling selection. We finally 
study the pervasive centromedian and parafascicular thalamic inputs that reach all 
basal ganglia nuclei and whose influence is therefore difficult to anticipate. Our 
model predicts that these inputs modulate the responsiveness of action selection, 
making them a candidate for the regulation of the speed–accuracy trade-off during 
decision-making.
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1  |   INTRODUCTION

The basal ganglia are a set of subcortical interconnected nu-
clei, which are thought to play a major role in action selection 
(Mink, 1996; Redgrave, Prescott, & Gurney, 1999) and rein-
forcement learning (Houk, Adams, & Barto, 1995; Schultz, 
Dayan, & Montague, 1997) in vertebrates, but whose com-
plex interconnection scheme is still not fully understood. In 
1989, Albin, Young, and Penney (1989) proposed an inter-
pretation of the basal ganglia circuitry aimed at explaining 
various motor disorders, including Parkinson's disease: the 
operation of the basal ganglia would result from the inter-
actions of two segregated and opposing pathways. In this 
scheme, the direct pathway corresponds to focal inhibitory 
projections from the striatum to the output of the circuit. The 
indirect pathway, also originating in the striatum, is made of 
a cascade of inhibitions and excitations that have a net diffuse 
excitatory effect on the output nuclei. These two segregated 

pathways are supposed to stem from two distinct striatal neu-
ron populations: one expressing receptors which are modu-
lated by dopamine in an excitatory manner (D1 receptors) 
for the direct pathway, and the other one expressing receptors 
with an inhibitory modulation (D2 receptors) for the indirect 
pathway. The imbalance between these pathways, caused 
by alterations of the dopaminergic system, would explain 
the motor disorders. Although it neglects a large number of 
documented projections (Figure 1a), this proposal has the ad-
vantage of disentangling the complexity of the circuit and of 
proposing a simple unifying explanation to different motor 
disorders. Since 1989, the basal ganglia have been the subject 
of intense modelling activity, and probably, more than a hun-
dred models have been published in the scientific literature.

A striking fact is that all the basal ganglia computational 
models posterior to Albin et  al.  (1989), from the earliest 
(Berns & Sejnowski, 1996) to the most recent (e.g. Baladron 
and Hamker (2015); Wei, Rubin, and Wang (2015); Mandali, 

K E Y W O R D S

action selection, basal ganglia, centromedian/parafascicular thalamus, computational model, 
monkey

F I G U R E  1   Structure of the basal ganglia model. (a) Wiring diagram: filled circles represent neurons. Each population is composed of 
channels (three shown here), represented by different shades and separated by dashed lines. For the sake of simplicity, the projections of one neuron 
of the first channel in each population are shown. The number of neurons shown here is not precisely to scale: for example, each channel of the 
striatum is simulated with 10,576 neurons and each channel of the GPi with 56 neurons (the exact number of simulated neurons per channel, in 
accordance with their ratio in the primate brain, is documented in Table 1). (b) Illustration of redundancy: for a fixed number of input synapses 
�

Y→X
, here equal to 6, redundancy ρ can vary from 1 (each input synapse comes from a different neuron of Y, top) to ν (all synapses come from the 

same neuron of Y, bottom). We use ρ = 3 everywhere (middle). All figure by Girard, Liénard & Delord (20202020); available under a CC-BY4.0 
licence (https://doi.org/10.6084/m9.figsh​are.12311564)

https://doi.org/10.6084/m9.figshare.12311564
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Maithreye Rengaswamy, Chakravarthy, and Moustafa (2015); 
Berthet, Lindahl, Tully, Hellgren-Kotaleski, and Lansner 
(2016); Caligiore, Mannella, and Baldassarre (2019)), are 
built on this central idea that the basal ganglia circuit is segre-
gated in direct and indirect pathways. The existence of a strict 
segregation between the pathways is central in a number of 
theories and models. This is, for example, the case in the con-
text of decision-making, where the indirect pathway could 
play a role in the adaptive adjustment of the decision threshold 
in evidence accumulation models (Wei et al., 2015) or in the 
regulation of the exploration/exploitation trade-off (Mandali 
et al., 2015). Major reinforcement learning models also rely 
on specific associations of the pathways to the association 
of the direct pathway (respectively, indirect pathway) with 
the learning of Go (respectively, NoGo) responses (Collins & 
Frank, 2014; Dunovan & Verstynen, 2016; Frank, Seeberger, 
& O’reilly, 2004) or variations of this schema where the hy-
perdirect pathway (from the cortex to the STN) brakes to 
prevent selection, and the indirect pathway controls the in-
hibition of common mistakes (Baladron & Hamker, 2015). 
It is also the case in a recent alternate theoretical proposal, 
suggesting that the basal ganglia are involved in the learning 
control of vigour rather, where the direct (resp. indirect) path-
ways then represent positive (resp. negative) adjustments of 
the movement parameters (Yttri & Dudman, 2016).

When considering non-human primates, this interpreta-
tion raises questions, highlighted as the second “problem on 
the basal ganglia” by Nambu (2008): anatomical results ac-
quired in the 90s in cynomolgus monkeys (Parent, Charara, 
& Pinault,  1995) and later confirmed in squirrel monkeys 
(Lévesque & Parent,  2005), showing that the pathways’ 
boundaries are quite blurred, as more than 80% of striatal 
neurons simultaneously project to nuclei supposed to belong 
to segregated pathways (namely, the GPe on the one hand and 
the GPi or the SNr on the other hand). In other species, recent 
results follow the same trend, showing that pathway segre-
gation may not be that clear (Cazorla et al., 2014; Fujiyama 
et al., 2011; Kawaguchi, Wilson, & Emson, 1990; Schmitt, 
Eipert, Kettlitz, Leßmann, & Wree,  2016; Wu, Richard, & 
Parent,  2000). The segregated pathway model has proba-
bly reached the limits of its explanatory power (Calabresi, 
Picconi, Tozzi, Ghiglieri, & Di Filippo, 2014), as many spe-
cies seem to be fully viable despite clear segregation. This 
motivates a revision of the theories of basal ganglia circuitry 
operation, through the exploration of computational models 
of the basal ganglia that would exhibit the properties that are 
expected from the circuit, despite major pathway overlap.

The conceptual and abstracted rate-based neural network 
models excel at illustrating idealized functions of the brain. 
Their simplicity comes with greater tractability and easier 
analysis. However, such abstracted models remain very far 
from the actual substrate to the extent that they become hard 
to disprove—a characteristic that weakens their potential for 

predictions and ultimately limits their explanatory power. On 
the other end, detailed neural models thrive to stick as close 
as possible to biological details and thus create the conditions 
for a constructive back-and-forth dialogue with experimental 
neurobiology. This advantage comes at a price, though, as 
detailed models are more complicated to implement, param-
eterize and analyse. In particular, the additional degrees of 
freedom introduced with such models make their parameter-
ization difficult or indeed impossible given the available ex-
perimental data. The most complex models may require the 
arbitrary hand-tuning of parameters or the mix of experimen-
tal data obtained in different species (rodents and primates, 
usually), and by doing so, their veracity, or usefulness, be-
comes questionable.

The model of Liénard and Girard (2014) was designed as 
a compromise between mathematical degrees of freedom and 
available experimental data. Its parameters were optimized 
to fit to a large set of known biological constraints, ranging 
from anatomical data (such as bouton count derived from 
single-axon tracing study) to electrophysiological recordings 
(such as the change of firing rate after injection of AMPA, 
NMDA or GABAA antagonists). It relied on a mean-field 
formalism that allies the simplicity and speed of rate-cod-
ing models—enabling optimization of parameters—while 
still being anchored in neuronal physiology, with parameters 
expressed in physical units and directly related to experi-
mental data. Importantly, it relied on basal ganglia activity 
at rest (in normal and pharmacological conditions) and thus 
made no hypothesis on the function of the circuit (what we 
called function-agnostic). The model was later extended to 
add biologically plausible temporal dynamics (Liénard, Cos, 
& Girard, 2017) while still using the mean-field formalism. 
This was done through the inclusion of realistic axonal delays 
and used to pinpoint potential origins of β-band oscillations 
within the basal ganglia circuitry.

In this work, we develop a spiking model of the mon-
key basal ganglia that is based on the parameters of the 
function-agnostic mean-field model optimized in Liénard 
and Girard (2014) and on the temporal extension from 
Liénard et al. (2017). The methodology adopted for trans-
lation from population to individual neuron levels of 
modelling is simple and requires a minimal number of ad-
ditional parameters. We show that the resulting spiking 
model parameterizations pass the same validation tests as 
the original rate-based ones. We then study the response 
of the model to its three sources of inputs (cortico-stri-
atal neurons, pyramidal tract neurons and centromedian/
parafascicular thalamic neurons), showing the specific-
ity of each of them. This step allows to define reasonable 
input configurations that we use to extensively test, and 
validate, the ability of the models to perform action selec-
tion, despite their overlapping pathways. We explore the 
involvement in selection of a number of specific elements 
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of the circuit architecture (lateral and feedforward inhi-
bitions, off-centre/on-surround modules), using circuit 
disruptions. We finally identify a possible role of the cen-
tromedian and parafascicular thalamic inputs in globally 
adjusting the sensitivity of action selection.

2  |   MATERIALS AND METHODS

2.1  |  Integrate-and-fire model

We describe here the mathematical formalism of the leaky 
integrate-and-fire (LIF) network models developed in this 
study, with parameter values based on the optimized mean-
field models of Liénard and Girard (2014). In particular, the 
internuclei projection scheme was conserved (Figure  1a). 
As with the mean-field model of Liénard and Girard (2014), 
the connection scheme used in our integrate-and-fire net-
work includes projections reported in primate basal ganglia 
that are rarely modelled: the subthalamo-striatal (Nakano 
et  al.,  1990; Nauta & Cole,  1978; Parent & Smith,  1987; 
Sato, Parent, Parent, Levesque, & Parent,  2000; Smith, 
Hazrati, & Parent,  1990) and pallido-striatal projections 
(Beckstead,  1983; Kita, Tokuno, & Nambu,  1999; Sato, 
Lavallee, Lavallee, Levesque, & Parent,  2000; Spooren, 
Lynd-Balta, Mitchell, & Haber, 1996).

The subthreshold dynamics of the leaky inte-
grate-and-fire model is governed by Equation  (1), where 
τm is the membrane time constant, V the neuron potential, 
Er the resting threshold, Rm the membrane resistance and 
Iin the input current.

In our simulations, we first chose to shift all resting po-
tentials Er to 0, which does not affect model generality. 
Therefore, when V reaches the firing threshold θ (the value 
of which is shown in Table 2 for each simulated population), 
a spike is emitted and the potential of the neuron is reset to 
zero. Second, the mean-field model proposed in Liénard and 
Girard (2014) integrated a simulation of the post-synaptic po-
tentials (PSP) evoked by incoming spikes, using α-functions, 
and is expressed in mV. Thus, we kept the same formalism 
at the spiking level: the simulated synapses directly generate 
input potentials Vin, rather than currents, leading to the fol-
lowing formulation:

The input potential, Vin, includes a fixed tonic component 
(VC) as well as the PSPs induced by incoming spikes sj from 

all the input neurons j, depending on the neurotransmitter 
type n of each connection:

where the change of potential is dependent on the time 
since the emission of spike s (at time ts

j
) plus the transmission 

delay �j. The α functions ( fn
�
) model the dynamics of the 

post-synaptic potential at one synaptic site, with different tem-
poral dynamics and amplitude depending on the neurotrans-
mitter type n (AMPA and NMDA for glutamatergic spikes and 
GABAA for gabaergic spikes). The ρj factor represents the 
number of synapses per input neuron that we call redundancy. 
The γ factor represents the dendritic attenuation of the PSPs.

To build the ensemble of input neurons J, we first consider 
the populations providing inputs, as defined by the circuit 
connectivity (Figure 1a). Note that when examining selection 
properties, each population of the model is subdivided in chan-
nels, representing the competing options (three such channels 
are represented in Figure 1a), we chose the size of these chan-
nels to be 1/5,000 the total size of each population (values pro-
vided in Table 1). With respects to channels, projections from 
one population to another can be focused (channel to channel) 
or diffuse (all to all). To determine how many neurons from 
a given population Y will provide inputs to a neuron in pop-
ulation X, we first compute ν(Y→X), the number of total input 
synapses from Y to X as in Liénard and Girard (2014):

where nX and nY represent the number of neurons in popula-
tions X and Y, α(Y→X) the average number of synapses each 
neuron of Y makes in population X, and PY→X the propor-
tion of neurons in Y effectively projecting to X. Considering 
that a single neuron of Y may contact a single neuron of X 
with multiple synapses (the average redundancy number ρ, 
Figure  1b), we finally connect �Y→X∕�Y→X neurons drawn 
from population Y to each neuron of X (the non-integer part 
of the value is used as a probability of adding one more con-
nection). Depending on the focused or diffuse nature of the 
projection, these connections are either drawn from the same 
channel as the one the receiving neuron belongs to or from 
all channels of the input population.

The dendrites of a neuron are coarsely modelled as a 
single-compartment finite cable with sealed-end boundary 
condition (Koch, 2005); dendritic attenuation is thus func-
tion on three variables: the average diameter of the cylinder 
model, dx; the average maximal length of the dendrite, lx; 
and the average distance ratio of the dendrite where termi-
nals from population x are contacted, px (with px = 0 corre-
sponding to contacts on the soma and px = 1 corresponding 
to contacts on the far end of the dendritic tree). Formally, 

(1)�m

dV

dt
= Er − V + RmIin

(2)�m

dV

dt
= − V + Vin

(3)Vin(t) = VC+
∑

j∈J

� j�j

∑

n,s

fn
�
(t− (ts

j
+�j))

(4)�Y→X =
Y→XnY

nX

. �Y→X
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the electronic constant Lx is defined from these variables 
and the intracellular resistivity Ri and the membrane resis-
tance Rm:

The dendritic attenuation factor�X←Y is finally computed 
as follows:

2.2  |  Plausible parameters from a mean-
field model

In this work, we translate a previously parameterized mean-
field model into a network of leaky integrate-and-fire neurons 
(LIFs). The mean-field model was optimized to fit of a large 
set of biological constraints (Liénard & Girard, 2014), and a 
prerequisite of a successful translation to the integrate-and-
fire level is the respect of the same constraints. We summa-
rize them briefly in this section and refer readers interested in 
further details about the genetic multi-objective evolutionary 
optimization to the original study.

The first set of biological constraints assesses whether the 
model is plausible by construction, and is thereafter referred 
to as the Anatomical objective. The constraints of this objec-
tive validate that the model parameters are within biological 
plausible ranges. These parameters include axonal bouton 
counts, dendritic synapses counts and average location of the 
synapses along the dendritic arborescence. Their optimized 
values are summarized in Table 2.

The second set of biological constraints assesses whether 
the emerging activities of the model appear to be plausi-
ble, based on quantitative comparison between simulated 
and electrophysiological neural recordings. This objective 
is termed physiological value objective. It is realized (a) if 
each of the simulated firing rates at rest matches a plausible 

(5)Lx = lx

√

4

dx

Ri

Rm

(6)�x←y =
cosh

(

Lx

(

1−px

))

cosh
(

Lx

)

T A B L E  1   Parameters of the integrate-and-fire model imported 
from the mean-field model. These fixed parameters were derived from 
a literature survey in Liénard and Girard (2014)

Parameter Symbol Value Ref

Neurons per channel

MSN nMSN 10,576 AB

FSI nFSI 212 AB

STN nSTN 32 C

GPe nGPe 100 C

GPi/SNr nGPi 56 C

Firing rate at rest (Hz)

CSN �
CSN

2 DE

PTN �
PTN

15 DE

CM/Pf �
CMPf

4 F

PSP amplitudes (mV)

AMPA AAMPA 1 G

GABAA A
GABA

A
0.25 G

NMDA ANMDA 0.025 G

PSP half-times (ms)

AMPA DAMPA 5 H

GABAA D
GABA

A
5 H

NMDA DNMDA 100 H

Dendritic Properties

Membrane resistance (Ω cm2) Rm 20,000 I

Intracellular resistivity (Ω cm) Ri 200 I

Mean dendritic extent (µm)

MSN l
max

MSN
619 B

FSI l
max

FSI
961 B

STN l
max

STN
750 JK

GPe l
max

GPe
865 L

GPi/SNr l
max

GPi
1,132 L

Mean dendritic diameter (µm)

MSN d
max

MSN
1 B

FSI d
max

FSI
1.5 B

STN d
max

STN
1.5 K

GPe d
max

GPe
1.7 L

GPi/SNr d
max

GPi
1.2 L

% of projection neuronsa 

MSN → GPi PMSN→GPi 82% M

STN → GPe PSTN→GPe 83% N

STN → GPi/SNr PSTN→GPi 72% N

STN → MSN PSTN→MSN 17% N

STN → FSI PSTN→FSI 17% N

GPe → GPe PGPe→GPe 84% O

GPe → GPi/SNr PGPe→GPi 84% O

GPe → MSN PGPe→MSN 16% O

(Continues)

Parameter Symbol Value Ref

GPe → FSI PGPe→FSI 16% O

A: (Johnston, Gerfen, Haber, & van der Kooy, 1990) B: (Yelnik, Francis, 
Percheron, & Tandéa, 1991) C: (Hardman et al., 2002) D: (Bauswein 
et al., 1989) E: (Turner & DeLong, 2000) F: (Matsumoto, Minamimoto, 
Graybiel, & Kimura, 2001) G: (Liénard & Girard, 2014) H: (Destexhe, Mainen, 
& Sejnowski, 1998) I: (Koch, 2005) J: (Rafols & Fox, 1976) K: (Yelnik & 
Percheron, 1979) L: (Mouchet & Yelnik, 2004) M: (Lévesque & Parent, 2005) N: 
(Sato, Parent, et al., 2000) O: (Sato, Lavallee, et al., 2000).
aThe projections not reported in the table have a probability of 100%. 

T A B L E  1   (Continued)
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baseline, and (b) if the model can successfully emulate phar-
macological deactivation experiments, where the firing rate 
of neural populations is altered by neurotransmitter blockers. 
Fourteen such comparisons are made, and the score is incre-
mented by one for each of the verified comparisons, thus de-
fining a 0–14 range of values for this objective. In Liénard 
and Girard (2014), we established plausible baselines at rest 
for different nuclei by statistically aggregating activities from 
20 different macaque monkeys through a literature survey. 
We further complement these baselines through the inclusion 
of more recently published data (Methods section 2.4). The 
pharmacological experiments are the same as in the previous 
work and are summarized in Figure 2.

Due to the nature of the anatomical objective, there is 
no need to simulate the model to assess whether it matches 
these anatomical constraints: assessing the parameters’ range 
is sufficient. Thus, any theoretically correct translation of 
plausible parameters at the mean-field level will be equally 
correct at the integrate-and-fire level. However, to assess 
whether integrate-and-fire models still respect the physiolog-
ical value objective, we need to simulate the neural network 
and compare its activities against experimental data.

2.3  |  Translation strategy

Most of the integrate-and-fire model parameters are directly 
derived from the mean-field model parameters (Tables 1 and 2, 
note that in the latter, each of the fifteen models has one value 
for each parameter and that we report the min and max of these 
fifteen values). Three additional degrees of freedom appear 
when transcribing mean field into spiking models. These prop-
erties are the tonic input currents, the refractory periods and, for 
each connection, the redundancy ρ (i.e. the number of synaptic 
contacts made by one source neuron on a single target neuron). 
We detail these differences in parameterizations between mean-
field and integrate-and-fire models in the following.

First, in the mean-field approximation, the state of a neuro-
nal population is abstracted as a single value representing the 
average membrane potential of the neurons composing it (Deco, 
Jirsa, Robinson, Breakspear, & Friston, 2008). The variability 
in the post-synaptic depolarization remains, however, encoded, 
implicitly, through the use of a sigmoid function coupling the 
average membrane potential V with the firing rate ϕ:

T A B L E  2   Parameter ranges of the integrate-and-fire model 
imported from the mean-field model

Parameter Symbol Optimized range

Bouton number

MSN → MSN α(MSN→MSN) 209–627

FSI → MSN α(FSI→MSN) 2,172–4,928

FSI → FSI α(FSI→FSI) 26–140

MSN → GPe α(MSN→GPe) 171–203

MSN → GPi/SNr α(MSN→GPi) 166–288

STN → GPe α(STN→GPe) 291–454

STN → GPi/SNr α(STN→GPi) 159–239

STN → MSN α(STN→MSN) 0–109

STN → FSI α(STN→FSI) 0–92

GPe → GPe α(GPe→GPe) 37–38

GPe → GPi/SNr α(GPe→GPi) 16–17

GPe → STN α(GPe→STN) 19–20

CM/Pf → MSN α(Th→MSN) 5–15

CM/Pf → FSI α(Th→FSI) 2–4

CM/Pf → STN α(Th→STN) 0–1

CM/Pf → GPe α(Th→GPe) 0–1

CM/Pf → GPi/SNr α(Th→GPi) 0–1

CSN → MSN α(CSN→MSN) 248–313

CSN → FSI α(CSN→FSI) 4–9

PTN → MSN α(PTN→MSN) 4–9

PTN → FSI α(PTN→FSI) 0–1

Receptor location (% of dendrite length)

CSN → MSN p(CSN→MSN) 80–100

PTN → MSN p(PTN→MSN) 76–100

CSN → FSI p(CSN→FSI) 80–96

PTN → STN p(PTN→STN) 63–100

MSN → MSN p(MSN→MSN) 64–88

MSN → GPe p(MSN→GPe) 48–60

MSN → GPi/SNr p(MSN→GPi) 30–59

FSI → MSN p(FSI→MSN) 0–19

STN → GPe p(STN→GPe) 23–53

STN → GPi/SNr p(STN→GPi) 45–59

GPe → STN p(GPe→STN) 28–60

GPe → GPe p(GPe→GPe) 0–1

GPe → GPi/SNr p(GPe→GPi) 0–15

CM/Pf → MSN p(Th→MSN) 26–59

CM/Pf → FSI p(Th→FSI) 0–17

Firing threshold (mV)

MSN θMSN 28–30

FSI θFSI 11–21

STN θSTN 24–27

GPe θGPe 6–12

(Continues)

Parameter Symbol Optimized range

GPi/SNr θGPi 5–7

Note: These ranges correspond to extrema of the solutions optimized in Liénard 
and Girard (2014). Note that the bouton numbers from basal ganglia afferents 
(αCSN→*, αPTN→* and αTh→*) were re-scaled assuming a pool of 12,000 neurons 
for each input population.

T A B L E  2   (Continued)
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with Smax being the maximal possible firing rate and θ the dif-
ference between resting and firing thresholds. The denomina-
tor σ' can be interpreted as the deviation of firing thresholds of 
a neural population characterized by an averaged membrane 
potential (Robinson, Rennie, Rowe, & O’connor., 2004; Van 
Albada & Robinson,  2009) or as the deviation of individ-
ual membrane potentials in a population characterized by a 
unique firing threshold (Deco et al., 2008).

An important consequence of activities governed by 
Equation 7 is that the firing rate is always non-null and reaches 
zero only as the negative limit of the average membrane poten-
tial, �(V) →

V→−∞
0. As numerous populations of the basal ganglia 

exhibit tonic activity even in the absence of inputs, the parame-
terizations obtained in the mean-field model made good use of 
this property of the transfer function of the neuron model to get 
such tonic activity. In a LIF model, no external input means no 
spiking activity (the potential V tends to Er, below the firing 
threshold, see Equation 1), and the only way to have sustained 
activity in the absence of inputs is to add a positive constant 
input (VC in Equation 3). This input has two possible (and not 
contradictory) interpretations: it can represent additional exter-
nal inputs that are not explicitly modelled and that are approxi-
mated as constant, or internal neuronal excitability properties.

In mean-field models, neurons from the same population 
are lumped into a single mass whose state can be described 
solely by its average membrane potential or, equivalently, 
its average firing rate (Deco et  al.,  2008). In Liénard and 
Girard (2014), weighting this average firing rate, with the 

(7)�(V) =
Smax

1+exp
(

�−V

�
�

)

F I G U R E  2   Match between simulated firing rates and biological constraints. The average firing rate of models at rest is shown with circles. 
The plausible ranges from experimental electrophysiological studies are shown as shaded areas, in grey, for the model in normal condition, and in 
colours for various pharmacological receptor deactivation tests performed in either the GPe or the GPi (see text for references).
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average number of synapses νY→X, was sufficient to estimate 
the inputs sent from population Y to the target population X. 
When manipulating models of individual spiking neurons, it 
becomes crucial to know from how many different neurons 
these ν synapses come from, hence the introduction of the 
redundancy parameter ρY→X (Figure 1b). It is bounded by a 
minimal value of 1, when each input synapse comes from a 
different source neuron (provided that population Y contains 
enough neurons to allow that; otherwise, this minimum will 
be the size of the population), and a maximal value of αY→X, 
when a single neuron provides all the input synapses. Owing 
to the difficulty of measuring network dynamics in electro-
physiological experiments, and the large density of axonal 
boutons in the striatum corresponding to MSN, FSI and 
other interneurons, axonal redundancy is hard to estimate. 
One notable exception is the electrophysiological study of 
Koos, Tepper, and Wilson (2004), where three simultaneous 
post-synaptic events in one MSN could be attributed to the 
same spike, meaning that on average each MSN should target 
each other MSN 3 times (see also Humphries et al., (2010)). 
In the absence of detailed anatomical data for specific pro-
jections in the primate, we opted to generalize this rodent 
estimate to all connections. We specifically settled on a value 
of ρ = 3 redundant axonal contacts per axon and dendritic 
field, as a way to approximate the available data. This value 
has the advantage to fit with plausible orders of magnitude in 
the striatum, as it results into 70 MSNs targeting one MSN; 
39 FSIs targeting one FSI; and 30 FSIs targeting one MSN.

Finally, we set the refractory period of neurons to 2 ms, a 
value compatible with the maximal firing rates recorded in 
the basal ganglia (around 400 Hz in the globus pallidus, cf. 
Nambu et al. (2000), and Wichmann and Soares (2006)), and 
the membrane time constants with reference to electrophys-
iological studies or previous modelling efforts: �MSN

m
=13 

(Stewart, Bekolay, & Eliasmith,  2012), �FSI
m

=16 (Schulz 
et al., 2011), �STN

m
=26 (Humphries, Stewart, & Gurney, 2006) 

and �GPe
m

= �
GPi
m

=14 (Johnson & McIntyre, 2008).

2.4  |  Additional constraint on fast-spiking 
interneurons and medium spiny neuron 
discharge rate

In our previous optimization of mean-field model parameters 
(Liénard & Girard, 2014), which are used here in the spiking 
model, the frequency of FSI was loosely constrained. Indeed, 
the plausible range of their rest firing rate was [0, 20  Hz], 
owing to the relative scarcity of electrophysiological record-
ings of FSI in awake monkeys at the time. As a result, the 
optimized models displayed highly variable FSI firing rate, 
from 4.5 to 18.3 Hz (median: 12.2 Hz). In the current work, 
we rely on recent data that show that FSI, at rest and in ma-
caque monkey, fire at around 10 Hz: 10.1 ± 6.4 Hz, n = 36 

cells from 2 monkeys (Adler, Katabi, Katabi, Finkes, Prut, & 
Bergman, 2013); 8.7 ± 2.2 Hz, n = 42 cells from 4 monkeys 
(Yamada et al., 2016); and 12.8 ± 8.9 Hz, n = 64 cells from 2 
monkeys (Marche & Apicella, 2016). From these and follow-
ing the same methodology as in Liénard and Girard (2014) to 
establish confidence intervals from experimental data, we de-
rive the plausible range of FSI discharge rates as [7.8–14 Hz].

Similarly, the MSN constraints in our previous work were 
also defined in an approximate way, as they were allowed to 
take on any value in [0, 1 Hz]. However, after the addition 
of tonic current as a new degree of freedom, it became obvi-
ous that the discharge rates of MSN were under-constrained. 
In particular, we observed in preliminary works that a large 
number of parameterizations, setting MSNs to be completely 
silent at rest, could still lay within the plausible firing rate 
bounds from Liénard and Girard (2014). These silent param-
eterizations had highly variable MSN tonic inputs, from as 
high as 30 mV, and going arbitrarily low (0 mV or any nega-
tive value). By contrast, other nuclei display a relatively nar-
row band of plausible tonic inputs (the width of these ranges 
being at most 10 mV). To set a more restrictive lower bound 
on plausible MSN activity, we relied on the electrophysio-
logical study of Adler, Katabi, et al. (2013) which reported 
firing rates superior to 0.1 Hz most of the time. We note that 
by design, a truly silent MSN would not be included in such 
study. Assuming that at least half of the MSNs are not com-
pletely silent, we can then assume that the average firing rate 
of MSN has to be higher than 0.05 Hz. We finally adjust the 
plausible firing rate range to [0.05, 1 Hz], enabling us to bet-
ter constrain the range of MSN tonic input current.

2.5  |  Hypersphere solutions

The original parameterizations of Liénard and Girard (2014) 
can be subsumed into 15 different solutions exhibiting suf-
ficiently different parameters (Liénard et al., 2017). These 
15 parameterizations differ in their internuclei connection 
strengths, resulting in different (but still similar) models that 
fulfil all the plausibility constraint sets of the anatomical and 
physiological value objectives. For each of these parameteri-
zations, after translation to the integrate-and-fire level, we var-
ied the tonic input parameter for each neural population (i.e. 
the 5-dimensional vector VC =

[

VCMSN
, V

CFSI
, VCSTN

, VCGPe
, VCGPi

]

) on 
a regular grid. Given a sufficiently fine grid, many combina-
tions of tonic inputs are able to fulfil all plausibility objectives. 
In order to reduce the number of models investigated and to 
ensure robustness of firing rate to the inherent model stochas-
ticity (i.e. network wiring and cortical/thalamic spike trains), 
we sought to determine the most central location within each 
plausible parameter landscape. In the multidimensional case, 
this most central location V0

C
 can be defined as the centre of 

the maximal radius hypersphere fitting within the plausible 
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domain. Noting F(VC) the physiological value objective of a 
parameterization VC, whose maximal value is 14, we thus look 
for the solution maximizing the hypersphere radius r such as:

V0
C
 was solved numerically by trying all k corresponding 

to the original grid on which VC was varied. This was done 
by maximizing the distance of the 1-nearest-neighbour for 
which F

(

V
p

Cn
+r

)

<14 on the same grid. For some solution, 
several candidates for V0

C
 were found, and we broke these ties 

based on the value closest to the overall median.

2.6  |  Firing rate and power spectra 
estimations

In all simulations, when population firing rates were to be 
estimated, the model was first allowed to converge to a stable 
regime for a duration of one second. Then, the spiking activ-
ity of all neurons of the considered population was recorded, 
and the firing rate was computed as the ratio of the total num-
ber of spikes over the number of recorded neurons and the 
duration of the simulation.

For each model and each neural structure considered, the 
power spectrum was computed using the discrete fast Fourier 
transform of the binned (dt = 1 ms) spiking activity of the 
population during 10-s-long simulations, at rest.

2.7  |  Implementation

The code was implemented using PyNEST, the Python 
bindings of the NEST simulator (Eppler, Helias, Muller, 
Diesmann, & Gewaltig,  2009), based on version 2.10 of 
NEST. Individual neurons were simulated using the iaf_
alpha_psc_mutisynapse model so as to allow the use of two 
types of excitatory synapses (to implement the different dy-
namics of NMDA and AMPA receptors). The model code 
is available at https://github.com/benoi​t-girar​d/sBCBG.

3  |   RESULTS

3.1  |  Integrate-and-fire equivalents of mean-
field models

We obtained leaky integrate-and-fire translations maximiz-
ing both the anatomical and physiological objectives for 
each original parameterization of the mean-field model. This 
was achieved by (a) setting the redundancy count of axonal 
boutons from each axon to each dendritic tree to 3, a value 
compatible with previous estimates (see Methods) and (b) 

varying the tonic inputs VC for each nucleus. Optimal tonic 
levels were overlapping in most neural populations, show-
ing that the different parameterizations of mean-field models 
require similar tonic inputs for their translation to integrate-
and-fire models (Figure S10).

The optimized integrate-and-fire models are thus able to 
match the baseline activity of in vivo, awake monkey record-
ings at rest (grey areas of Figure 2), as well as mimicking the 
firing rate changes in response to various antagonist injections 
(coloured areas of Figure 2). Of interest, two plausible ranges 
were updated in the current work, compared to Liénard and 
Girard (2014): the MSN, updated from 0–1 Hz to 0.05–1 Hz 
to avoid silent models (see Methods), and the FSI, updated 
from 0–20 Hz to 7.8–14 Hz to reflect more recent experimen-
tal data. The MSN of retained solutions were found to have 
mean firing rates ranging in 0.14–0.35 Hz, showing that (a) 
completely silent solutions are avoided, and (b) the precise 
value of the lower bound, here set to 0.05 Hz, is non-criti-
cal as optimized solutions do not reach it in an asymptotic 
way. The FSI of retained solutions ended up well distributed 
around the middle of their updated narrower range, showing 
the overall compatibility of the original parameter set with 
these new biological data.

Due to the high variability of neuronal activity and the 
low sample size recorded in neurotransmitter deactivation 
studies, the plausible ranges are wider than in the baseline 
activity (Figure  2). Nonetheless, the impact of neurotrans-
mitters is obvious, with opposed effects of glutamatergic 
transmitters (AMPA and NMDA) and gabaergic transmitter 
(GABAA). In particular, these effects are shown to be cumu-
lative in the simulated model, with simultaneous injections 
of two or more antagonists resulting in nearly linear summa-
tions of their individual effects.

Qualitatively, spike rasters show activity matching the 
electrophysiological recordings made in non-human pri-
mates (Figure 3). The GPe modelled in our circuit contains 
only continuously spiking neurons, compatible with the pos-
sibility that the pauser neurons observed in vivo belong to 
a GPe subpopulation with different physiology and connec-
tivity (Mallet et al., 2012). Of interest, the activity becomes 
highly synchronized when all neurotransmitter blockers are 
injected in the GPi, with all neurons firing at the same time 
(brown trace of Figure 3). This matches the observation of 
Tachibana, Kita, Chiken, Takada, and Nambu (2008) who 
reported a clock-like, oscillatory activity in the experimental 
set-up.

In addition to the average population firing rates, used 
as a criterion to validate the model, we computed the dis-
tribution of the individual neurons’ firing rates and coeffi-
cients of variation (CV) using 10-s-long simulations. These 
distributions do not differ much from one model to another 
(compare those of models #1, 8, 9 and 10 in Figure  4). 
For all simulated populations, the firing rate distributions 

(8)∀k∈ [−r, r]5, F(V0
C
+r) = 14

https://github.com/benoit-girard/sBCBG
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overlap with the core of those measured experimentally 
(see, e.g., figure 7 of Adler et  al.  (2012) for MSNs and 
GPe, figure 2 of Adler, Finkes, Finkes, Katabi, Prut, and 
Bergman (2013) for MSNs and table 2 of Goldberg, Adler, 
Bergman, and Fee (2010) for GPe and GPi). The simulated 
rate distributions also appear narrower than the experi-
mentally observed ones. For example, while most recorded 
MSNs fire below 1 Hz, a few units can reach 5 Hz. In our 
different model parameterizations, they are all strictly 
below 2  Hz. Concerning the CVs, the simulated ones 
are lower than the experimental ones and also much less 

widespread (with the extreme case of the GPe and GPi CV 
distributions). This means that the models fire much more 
regularly and are also much more homogeneous than the 
real neural substrate. This limited variability on these two 
metrics is probably caused, first, by a too homogeneous 
construction of the models: all cells have the same num-
ber of input synapses from the same number of neurons, 
the same constant input, the same threshold, etc. Adding 
individual variability around these mean values would 
probably enlarge the spread of the distributions. The three 
input populations (CSN, PTN and CM/Pf) are also very 

F I G U R E  3   Spike raster during one second obtained for parameterization #9. Traces are shown for 5 neurons of every nucleus at rest (black) 
and for the nine deactivation studies (same colour code as in Figure 2)
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homogeneous, as all the Poisson processes of each of these 
populations have exactly the same average firing rate, rather 
than a more realistic distribution around these means. The 
low CVs are also probably caused by the simplistic LIF 
model we use that lacks internal dynamics that have been 
documented and modelled (see, e.g., Lindahl and Hellgren 
Kotaleski (2016); Shouno, Tachibana, Nambu, and Doya 
(2017)). Fitting these properties was not the goal of this 
population-to-spike translation work, but could be investi-
gated in future work.

We previously observed (Liénard et al., 2017) that the 
mean-field models can start oscillating strongly in the β band 
when slightly perturbed to simulate Parkinson's disease and 
that these oscillations were generated by the STN-GPe loop. 
These oscillations were paroxysmal, as the whole popula-
tions of these two nuclei were beating between very low and 
very high activities in the high-β range. Here, we measured 
the power spectra of the STN and the GPe of all the fifteen 
spiking models at rest. In this normal state, while the global 
activity (Figure 3) does not appear to be dominated by oscil-
lations, the models still systematically exhibit peaks in the β 
range and also in the γ range (Figure 5), indicating that they 
are prone to oscillate in these bands even in resting condi-
tions. As in Liénard et al. (2017), the β power results from 

the delays in the STN-GPe loop. The γ band oscillation is 
probably linked with the above observation that the GPe (and 
GPi) CVs are very low: their firing rates (respectively, around 
60 and 70Hz) are thus very regular.

3.2  |  Plausible ranges for the different 
inputs and their effects on the circuit

Our model describes explicitly three sources of inputs to the 
basal ganglia: two cortical sources, cortico-striatal neurons 
(CSN) and pyramidal tract neurons (PTN), as well as cen-
tromedian–parafascicular (CM/Pf) thalamic neurons (all the 
other potential inputs are lumped in the non-specific constant 
external inputs, VC). These inputs are modelled as Poisson 
noise generators, with one generator per input neuron. How 
should these external inputs be modulated during activity, for 
example in an arm-reaching selection task (Georgopoulos, 
DeLong, & Crutcher, 1983)? Here, we sought to answer this 
question by investigating the numbers and firing rates of cor-
tical and thalamic neurons simultaneously activated on com-
peting channels.

We specifically focus on simulating rate-coded corti-
cal signals, akin to those recorded in arm-reaching tasks 

F I G U R E  4   Distributions of firing rates and coefficients of variation (CV) of the neurons of models #9, 1, 8 and 10. 10-s-long simulations 
were used. Concerning the MSNs, neurons that emitted 2 spikes or less were excluded from CV computations (same colour code as in Figure 1)
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(Georgopoulos et  al.,  1983). It has been repeatedly noted 
that in these tasks, discrete populations of cortical neurons 
code preferentially for one direction, with a rate increase 
linked to the difference between preferred and actual direc-
tions (Georgopoulos, Kalaska, Caminiti, & Massey,  1982; 
Kalaska, Cohen, Hyde, & M. Prud’Homme.,  1989). These 
neuronal assemblies can further be mapped to cortical col-
umns repeated throughout the motor cortex, possibly re-
flecting the relevance of having directionally tuned neurons 

in different behavioural contexts (Georgopoulos, Merchant, 
Naselaris, & Amirikian, 2007).

The cortical baseline activity of CSN and PTN can be 
estimated to 2 and 15 Hz, respectively, and the increase in 
firing rate of individual neurons recruited in arm-reaching 
tasks can be further modelled as “baseline + 17.7 Hz” and 
“baseline + 31.3 Hz” (Bauswein, Fromm, & Preuss, 1989; 
Turner & DeLong,  2000). It would, however, be an over-
sight to model the cortical activity in an arm-reaching task 

F I G U R E  5   Power spectra of the STN (top) and GPe (bottom) of all models at rest (10-s-long simulations). Frequencies are represented on a 
logarithmic scale. The bands are defined as ranging 2–4 Hz (δ), 8–12 Hz (α), 12–35 Hz (β) and 35–128 Hz (γ), respectively. Each dot indicates the 
maximum value of each band. In the β and γ bands, these maxima correspond to peaks indicating a true resonant mode in the considered structure
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by increasing the cortical activity of all input neurons to a 
basal ganglia channel. Indeed, given the very large number 
of cortico-striatal and cortico-subthalamic boutons on each 
dendritic tree, simultaneous increase in cortical firing rate 
of all afferents would result in tens of thousands additional 
incoming action potential arriving on each striatal and sub-
thalamic neurons per second. Such input would saturate basal 
ganglia activity beyond physiological range. Besides, the af-
ferents to a single striatal and subthalamic neuron arise from 
distinct cortical areas (Draganski et  al.,  2008; Haber, Kim, 
Mailly, & Calzavara, 2006; Haynes & Haber, 2013; Lambert 
et al., 2012), and the extent to which synchronized cortical 
activity from these areas happens in the course of usual tasks 
is unclear. Instead, we assume here conservatively that only a 
fraction of cortical and thalamic afferents is required to elicit 
downstream activity in the basal ganglia.

As such fraction and its global activity level are unknown, 
we first sought to investigate the changes in basal ganglia ac-
tivity as a result of varying the proportion of activated affer-
ents and the amplitude of their activation. For each model 
parameterization, we tested five activated input population 
sizes (250, 500, 1,000, 2,000 and 4,000 neurons), whose fir-
ing rate we systematically increased from the baseline level 
(2 Hz for the CSNs, 15 Hz for the PTNs and 4 Hz for the CM/
Pf) to levels of high activity (20 Hz for the CSNs, 46 Hz for 
the PTNs and 34  Hz for the CM/Pf). The variation trends 
(increase, decrease or absence of significant variations), 
which fall in five categories, are summarized in Table 3, 
and the detailed results for models #9 and 1, representative 
of the two main categories, are reported in Figure  6. Two 

model parameterizations (model numbers 0 and 12) were ex-
cluded from our initial set of fifteen, as they exhibit clearly 
inadequate (too low) MSN activity under increasing CSN re-
cruitment: even with 4,000 CSN inputs firing at 20 Hz, the 
average activity of their MSNs remains below 4 Hz.

Increasing the numbers and firing rates of activated CSNs 
leads to similar variation patterns for all parameterizations 
(Table 3, CSN columns, and Figure 6, left column). It quite 
naturally results in an increase in the activity of the MSNs 
and the FSIs, which are directly excited by CSNs. On the 
other hand, the GPe and GPi that are under strong inhibitory 
control from the MSNs have a decreasing activity, reach-
ing zero for the largest tested numbers of activated neurons 
(2,000 and 4,000). This is compatible with the CSN being 
primarily involved in promoting the selection of their target 
channel. The activity of STN mirrors the one of GPe and thus 
converges to a fixed value (around 42 Hz for model #9), when 
the GPe reaches zero. This is also quite natural: the STN is 
not directly excited by the CSNs. Therefore, during CSN ac-
tivity increase, the STN activity increases only because of 
decreasing GPe inhibition. When this inhibition reaches zero, 
STN neurons discharge at the maximal rate induced by their 
tonic potential VSTN.

The PTN inputs yield a different activation pattern 
(Table  3, PTN columns, and Figure  6, middle column). In 
the model #9-like category, as well as for model #10, despite 
direct projections to the MSNs and the FSIs, the effects on 
these populations (MSN: small increase, contained under 
1 Hz; FSI: small decrease, from 11 to 8 Hz) are limited. The 
smaller model #1-like category, as well as models #2 and 8, 

T A B L E  3   Sensitivity to input patterns of the various model parameterizations

#3, 4, 5, 6, 9, 11 #1, 7, 13, 14

CSN PTN CM/Pf CSN PTN CM/Pf

MSN ↗ ↗ ↘ MSN ↗ ↗ ↘

FSI ↗ = ↗ FSI ↗ ↘ ↗

STN ↗ ↗ ↗ STN ↗ ↗ =

GPe ↘ ↗ ↗ GPe ↘ ↗ ↗

GPi ↘ ↗ ↗ GPi ↘ = ↗

#10 #2 #8

CSN PTN CM/Pf CSN PTN CM/Pf CSN PTN CM/Pf

MSN ↗ ↗ ↘ MSN ↗ ↗ ↘ MSN ↗ ↗ ↘

FSI ↗ = ↗ FSI ↗ ↘ ↗ FSI ↗ ↘ ↗

STN ↗ ↗ = STN ↗ ↗ ↗ STN ↗ ↗ =

GPe ↘ ↗ ↗ GPe ↘ ↗ ↗ GPe ↘ ↗ ↗

GPi ↘ = ↗ GPi ↘ ↘ ↗ GPi ↘ ↘ ↗

The gradual increase in activity and/or recruitment of the input populations, indicated in the columns (CSN, PTN or CM/Pf), causes an increase (↗), a decrease 
(↘) or an absence of significant variation (=) in the model populations indicated in rows (MSN, FSI, STN, GPe and GPi). We report in orange the patterns that 
differ from one parameterization to another. The two categories in the top tables comprise most of the models, while each of the bottom table correspond to a single 
parameterization.
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follows similar increasing/decreasing variations in MSNs/
FSIs, except that they are stronger for large numbers of ac-
tivated input neurons (see Figure 6, lower middle column). 
For all parameterizations, the STN activity increases notably 
and drives an increase in the GPe. The effects on the GPi 
are more diverse: six models react with an increased activity 
(meaning that the increasing excitatory input from the STN 
has a stronger effect than the increasing inhibitory input from 
the GPe, see model #9, Figure  6)), five models exhibit no 
clear modulation (balanced effects of excitation and inhibi-
tion, see model #1, Figure 6, last graph of the middle col-
umn), and two models exhibit a decreasing activity (Table 
3, models #2 and 8). The first set of models thus supports 
the idea that the PTN-driven STN can prevent the selection 
of a channel, a role commonly attributed to this pathway in 
models with handcrafted parameterizations (e.g. Gillies and 
Willshaw (1998); Gurney, Prescott, and Redgrave (2001); 
Frank (2006); Girard, Tabareau, Pham, Berthoz, and Slotine 
(2008)).

Finally, the CM/Pf stimulation (Figure 6, right column) 
results in a significant decrease of activity in MSN and in 
increasing activity in FSI, GPe and GPi. Concerning the 
STN, it leads to an increase (Table 3, models #2, 3, 4, 5, 
6, 9 and 11, see the representative example of model #9 
in Figure 6, upper part) or no modulation, which becomes 
an increase only for the strongest inputs (Table 3, models 
#1, 7, 8, 10, 13 and 14, see the representative example of 
model #1 in Figure 6, lower part). As for GPe and GPi, the 
result of increasing CM/Pf activity would be hard to guess 
based on the graph of its projections in the basal ganglia 
(Figure  1a). Indeed, the CM/Pf projection is diffuse and 
provides excitatory efferents to the whole basal ganglia, 
and the many excitatory and inhibitory loops inside the cir-
cuit make it impossible to predict the overall influence on 
GPe and GPi. In all the models studied here, the overall 
effect of CM/Pf is to control the excitability of the basal 
ganglia: increased CM/Pf inputs globally prevent selection, 
by increasing GPi activity at the output level, as well as by 
decreasing MSN activity and increasing FSI activity at the 
striatal level. This effect is distinct from the PTN input, 
which does not really affect the striatum.

The activity levels and/or the number of activated neu-
rons tested here probably extend beyond the normal values 
in standard task-related activity. Indeed, we expect activi-
ties to reach 30–45 Hz in FSI (Marche & Apicella, 2016), 
to change by 10–50  Hz in GPe and 10–40  Hz in GPi 
(Georgopoulos et  al.,  1983) and 10–20  Hz in STN 

(Georgopoulos et  al.,  1983). These plausibility limits are 
marked by shaded areas in Figure 6, set in the middle of 
these blurry intervals. As noted above, with large num-
bers of CSN neurons increasing their activity, the GPe and 
GPi activity becomes non-existent, meaning that the cor-
responding inputs are probably too high. Increasing PTN 
activity results in STN, GPe and GPi firing rates rising to 
implausible levels. Also, activating too many CM/Pf neu-
rons simultaneously can result very quickly in very high 
FSI discharge rates. Based on these observations, in the 
remainder of our simulations, we will limit the maximal 
number of input neurons contributing to a given stimula-
tion to 500.

3.3  |  Characterization of action selection

Following the approach initially proposed by Gurney 
et al. (2001), and then used by many others (Girard et al., 2008; 
Humphries et al., 2006; Lindahl & Hellgren Kotaleski, 2016; 
Prescott, Montes González, Gurney, Humphries, & 
Redgrave, 2006; Wang, Li, Chen, & Hu, 2007), we character-
ize action selection by performing a systematic exploration 
of the input values of two competing channels (Figure  7), 
while measuring channel disinhibition by the GPi. Following 
the proposal of Prescott et al. (2006), we use the average GPi 
firing rate activity to compute the efficiency and distortion of 
the selection.

The original test gradually increases, from 0 to 1, the input 
(or salience) of the two channels in competition and measures 
which channel is the most disinhibited (i.e. selected), how 
much, and whether its competitor interferes in the selection. 
The test thus has to be adapted to fit with the three inputs of 
our model (CSN, PTN and CM/Pf), each of which has its own 
activation intervals (respectively, 2–20  Hz, 15–46  Hz and 
4–34 Hz). Given the results obtained in the previous section 
concerning the probable role of the CM/Pf to set the global 
excitability of the circuit, we do not implicate it in the action 
selection process and therefore keep its input constant during 
all tests. In the first set of simulations (Figure 7), it is kept 
at its baseline level of activation (4 Hz), while in the second 
(Figure 9), three additional levels are tested (5, 6 and 7 Hz). 
As for the cortical inputs, we randomly select 500 neurons in 
CSN and in PTN and increase their firing rate linearly from 
their respective baseline (2 and 15 Hz, respectively) to their 
maximal rates (20 and 46 Hz, respectively). We record the 
GPi firing rate yGPi

i
 of each channel i, for each salience input 

F I G U R E  6   Sensitivity analysis of the basal ganglia model to its inputs (top: model parameterization #9; bottom: model parameterization #1). 
Each curve represents the evolution of the firing rate of one neural population of the model (MSN, FSI, STN, GPe and GPi, arranged in rows) after 
stabilization, when the considered input population (CSN, PTN and CM/Pf, in columns) has a given number of neurons activated (200, 500, 1,000, 
2,000 or 4,000), with a level of activation varying within ranges representative of the input activities (abscissa, with CSN ∈ [2,20] Hz, PTN ∈ [15, 
46] Hz and CM/Pf ∈ [4, 34] Hz). Shaded areas represent implausible levels of activity
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condition, and use it to compute the efficiency, which rep-
resents how strongly a channel is selected by computing how 
much its GPi output is decreased compared to baseline:

where yGPi
Rest

 is the GPi output at rest (reported in Figure 2). The 
global efficiency ew of the model for a given input condition is 

simply the max of the channels’ efficiencies (i.e. the efficiency 
of the winning channel):

The distortion represents how much the opponent channel 
is disinhibited simultaneously to the winning channel and is 
maximal when both competitors are identically disinhibited:

(9)ei = max (0, 1−yGPi
i

∕yGPi
Rest

)

(10)ew =max
i

(

ei

)

F I G U R E  7   Ability to select competing inputs: Model #9 (top), 1 (middle) and 8 (bottom) action selection properties in the 2-channel 
competition task. Left column: winning channel; blue: channel two; red: channel one; grey: both (the difference between the two selection 
efficiencies is less than 0.1). Middle and Right columns: efficiency and distortion of the selection, as defined in Prescott et al. (2006); see text for 
further details. White squares in Distortion panels indicate cases where no channels are selected, and thus, distortion is undefined



      |  17GIRARD et al.

We will add two global measures to these classical ones 
that we will used to compare the selectivity of models: eΣ 
and dΣ, respectively, the sum of the efficiencies and of the 
distortions computed for each salience input condition tested. 
Therefore, the higher eΣ and the lower dΣ, the better will a 
given model perform selection without interference between 
competitors.

Using three-channel models, we tested all saliences 
from 0 to 1 with an increment of 0.1. All models exhibited 
similar selection, efficiency and distortion patterns: this 
is not trivial, given the variety patterns found in section 
3.2 concerning the effect of an increasing activation of 
the PTNs on the GPi output (increase, decrease or stag-
nation). We illustrate in Figure 7 the results obtained for 
models #9, 1 and 8, which exhibited these three different 
tendencies. They compare quite well with the same met-
rics measured in previous models parameterized to exhibit 
action selection (e.g. Prescott et al. (2006), their figure 7 
and Girard et al.  (2008), their figure 4). Globally, in the 
models investigated here, the channel with the highest sa-
lience is selected (Winner panels in Figure 7); low input 
saliences generate partial selections (Efficiency values 
below one in Figure 7); draw situations, when both chan-
nels have identical saliences; tend to result in simultane-
ous selection (in Figure 7, grey squares on the diagonal 
on the Winner panels when the efficiency difference is 
below 5%, and even when this difference is larger than 
that, strong Distortion values around the diagonal); fi-
nally, high saliences on both channels saturate the sys-
tem and result in simultaneous selection with maximal 
distortion. The relatively symmetric arrangement of these 
measures around the diagonal suggests the system has 
a relatively stable dynamical behaviour, comparable to 
Girard et al. (2008) and contrarily to the hysteresis effect 
exhibited in Prescott et al. (2006). Note, however, that this 
stability has not been checked analytically and that these 
previous models included the whole cortico-baso-thala-
mo-cortical loop, while we are restricted here to the in-
trinsic basal ganglia circuitry.

It is remarkable that these selectivity properties are the 
by-product of an optimization method that was function-ag-
nostic: the sole purpose of its parameterization was to meet a 
set of biological constraints and in particular the strength of 
the connections in the circuit, without making the hypothesis 
that the basal ganglia should perform action selection (see the 
definition of the physiological objective in section 2.2).

Which parts of the circuit are responsible for this selec-
tion capability? Doing a complete analysis of the contribu-
tion of each connection of the circuit to selection (using the 
global efficiency and global distortion metrics) would require 

to compute their Shapley value (Keinan, Sandbank, Hilgetag, 
Meilijson, & Ruppin, 2004). Such a computation would unfor-
tunately require measuring efficiency and distortion for all the 
combinations of connection disruptions. For each connection, 
many disruptions could be taken into consideration: simply 
disconnecting it, replacing the input with Poisson generators 
that have a mean firing rate identical to the rest condition, 
changing the topology with regard to channel organization, 
etc. Even if we restrict to one type of disruption per connec-
tion only and also only to the connections internal to the cir-
cuit (there are 12 such connections), we would still have to test 
more than 479 million combinations. This is intractable with 
the time and computational power available to us.

We can, however, have a partial answer to that question 
by targeting the probable main contributors to selection and 
measure the effect of their isolated disruptions on the global 
selection metrics eΣ and dΣ. In classical BG models, three 
main mechanisms have been proposed to contribute to se-
lection: recurrent lateral inhibitions between MSNs in the 
striatum, feedforward inhibition of the MSNs by the cortical 
inputs via the FSIs, and the off-centre/on-surround pattern 
of projections from, respectively, the MSNs and the STN to 
the GPi and the GPe. We have thus measured eΣ and dΣ for 
each model in the intact circuit and with the following four 
disruptions:

•	 replacement of the MSN inputs to the MSNs by the same 
number of Poisson processes, firing at the MSN baseline 
rate measured at rest,

•	 replacement of the FSI inputs to the MSNs by the same 
number of Poisson process inputs, firing at the FSI base-
line rate measured at rest,

•	 replacement of the diffuse STN-to-GPi projections by fo-
cused ones,

•	 replacement of the diffuse STN-to-GPe projections by fo-
cused ones.

Simulation results reveal that for all models, the off-cen-
tre/on-surround pattern of the MSN/STN-to-GPi projections 
is a major component of selection: when transformed into an 
off-centre/on-centre pattern, the ability to select uniformly 
decreases: eΣ strongly decreases and dΣ strongly increases 
(Figure 8, from the intact circuits, violet circles, to the dis-
rupted ones, the khaki upward triangles). Neutralizing either 
the MSN-to-MSN inhibitions or the FSI-to-MSN inhibitions 
(Figure 8, blue and yellow squares) induces a slight increase 
in the total selectivity eΣ, that is when selected, channels tend 
to be more strongly inhibited. However, the distortion is also 
higher: competing channels are more easily simultaneously 
selected. These connections thus clearly play a role in setting 
a good contrast between the winning channel and the oth-
ers, at the price of a small efficiency decrease. The contribu-
tion of the MSN/STN-to-GPe projection pattern is the most 

(11)dw =

∑

iei−ew
∑

iei
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intriguing one (Figure  8, from violet circles to dark green 
downward triangles): changing it from a diffuse to a focused 
projection seems to better the selection compared to intact 
models. Indeed, this alteration does not really affect total effi-
ciency, but clearly reduces total distortion. Investigating this 
further is beyond the scope of this study.

Given the similarity of these action selection metrics 
across models, despite their differences concerning the effect 
on the GPi of the activation of the PTNs only, we use model 
#9 only to further investigate the effect of varying the global 
and constant CM/Pf input during the selection test. As sug-
gested by the results obtained in section 3.2, increasing the 
CM/Pf reduced the ability of the circuit to select (Figure 9): 
the area for which selection does not happen (i.e. where the 
efficiency is low) increases very rapidly with an increasing 
CM/Pf input. Thus, we predict that the CM/Pf input controls 
the selectivity of the basal ganglia. In the context of accumu-
lation-to-threshold decision-making mechanisms implying 

the basal ganglia (Yartsev, Hanks, Yoon, & Brody,  2018), 
following the suggestion of Thurat, N’Guyen, and Girard 
(2015) that the GPi level of inhibition would control the rate 
of accumulation in the targeted brain regions during the ac-
tion selection process, we can hypothesize that these thalamic 
inputs could participate in controlling the overall responsive-
ness of the basal ganglia, thus modulating the speed–accu-
racy trade-off.

4  |   DISCUSSION

In this paper, we presented a leaky integrate-and-fire (LIF) 
model of the monkey basal ganglia circuitry, derived from a 
previously designed mean-field model (Liénard et al., 2017; 
Liénard & Girard,  2014). This original model had fifteen 
acceptable parameterizations that were originally obtained 
by an optimization process constrained so as to comply 
with extensive anatomical and electrophysiological data, 
in a function-agnostic manner (i.e. without any hypotheses 
about the function of the basal ganglia). Notably, it included 
anatomical constraints derived from Parent et al. (1995) and 
Lévesque and Parent (2005) which showed that, in mon-
keys, the so-called direct and indirect pathways strongly 
overlap, questioning the explanatory value of the concept 
of basal ganglia-segregated pathways inherited from Albin 
et al. (1989). The formalism adopted at the mean-field level 
allowed for a relatively easy conversion to the LIF one, with 
the addition of five parameters only. We showed here we 
could derive fifteen LIF models from the fifteen mean-field 
ones that comply with the same set of constraints (Figures 2 
and 3). We then studied the response of the resulting models 
to realistic activity increases in the three basal ganglia input 
sources (cortico-striatal neurons, pyramidal tract neurons 
and centromedian/parafascicular thalamic neurons). This 
helped identifying two parameterizations to be rejected, 
as their MSNs did not react realistically to vigorous CSN 
stimulations. This also revealed that the activation of small 
proportions of these input populations was sufficient to 
deeply affect the circuit, that the three inputs affected the 

F I G U R E  9   Role of the CM/Pf inputs: Evolution of the efficiency of the selection of model #9 with increasing CM/Pf activity (from left to 
right: 4, 5, 6 and 7 Hz)

F I G U R E  8   Role of key connections of the circuit in selection: 
for each model, eΣ and dΣ are computed for the intact circuit (violet 
circles), and after neutralization of the MSN-to-MSN inhibition 
(MSN-MSN, blue squares) and of the FSI-to-MSN inhibition (FSI-
MSN, yellow squares), or the transformation of the STN-to-GPi (resp. 
GPe) projections from diffuse to focused (resp. STN-GPi, upward 
khaki triangles, and STN-GPe, downward green triangles), the best 
selectivity possible is achieved for eΣ = 121 and dΣ = 0.The points 
corresponding to models illustrated in other figures are labelled
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circuit in radically different manners, that combined CSN 
and PTN activity increases should be able to elicit selec-
tion among competing channels, as proposed in many previ-
ous function-driven basal ganglia models, and finally that 
the widespread CM/Pf inputs control the excitability of the 
whole circuit (Figure 6 and Table 3). Finally, we tested a 
posteriori systematically the ability of the remaining thirteen 
model parameterizations to perform selection among com-
peting channels. While the models were parameterized in a 
function-agnostic manner, all of them appeared to be suit-
able to perform action selection (Figure 7), showing that the 
segregation between direct and indirect pathways is not at 
all necessary to exhibit such a behaviour. Using targeted cir-
cuit disruptions, we showed that the off-centre/on-surround 
organization of the MSN/STN inputs on the GPi is indeed a 
central actor of the selection and that the feedforward and 
lateral inhibitions in the striatum participate in avoiding si-
multaneous multiple selections (Figure 8). A final test also 
confirmed that the CM/Pf input could control the selectivity 
of the whole circuit (Figure 9) and thus act as a regulator 
of the speed–accuracy trade-off. All the tests presented here 
were done in an average firing rate logic: first, to check that 
the model passes the same tests as the mean-field one, and 
second, to compare to classical action selection metrics, also 
used in a spiking context (Humphries et al., 2006; Lindahl 
& Hellgren Kotaleski, 2016). The study of fine temporal dy-
namics of action selection that cannot be properly studied 
with mean-field models will be the object of future investi-
gations on our spiking basal ganglia model.

4.1  |  Robustness of the parameterization

The exploration of varying tonic inputs on the average firing 
rate of the various nuclei (section 3.1) showed that a large 
spectrum of values results in plausible firing rates. Here, in 
order to avoid ending up with tens of LIF model for each of 
the initial fifteen mean-field models, we kept only the centre 
hypersphere parameterization (section 2.5). The tonic input 
parameters thus have to be in defined ranges, but are not tied 
to a single brittle configuration.

Fixing the number of synapses that an individual projec-
tion neuron makes onto each targeted neurons is clearly a lim-
itation of our model. This information is not required at the 
mean-field level, as all the reasoning is made at the average 
level (average number of synapses coming from one popula-
tion to each neuron of a target population) and thus does not 
appear in the original model (Liénard & Girard, 2014). It is, 
however, necessary at the individual neuron level of model-
ling, and the current lack of anatomical data providing that 
level of detail (studies report how many synapses one neu-
ron provides in a given nucleus, but cannot tell how many 
different neurons in that structure are targeted) forced us to 

adopt such a bold approach. The choice of a value of three 
everywhere in the circuit is arbitrary: as stated in section 2.3, 
it derives from a rat study dealing with MSN-to-MSN pro-
jections only. It is a compromise between individual input 
neurons having too low influence on the spiking behaviour 
of their targets and too much influence resulting in strong 
firing synchronizations. We checked the sensitivity of this 
parameter by setting neighbouring redundancy values of 2.75 
or 3.25. These resulted in the previously optimized hyper-
sphere parameterizations still achieving perfect or near-per-
fect scores (for r = 3.25, there were n = 7 parameterizations 
with a score of 14/14 and n  =  8 parameterizations with a 
score of 13/14; for r = 2.75, n = 10 parameterization with a 
score of 14/14, n = 4 parameterization with a score of 13/14 
and n = 1 parameterization with a score of 12/14). Of course, 
future results that we will obtain with this model when study-
ing its dynamics (oscillations, synchronizations, etc.) may be 
impacted by that choice, and it is thus desirable to develop 
experimental anatomical methods that provide that sort of in-
formation that we could use to refine the model.

4.2  |  The mean field to LIF 
parameterization method

As stated in introduction, most basal ganglia modellers, 
including those designing spiking models (Bahuguna, 
Aertsen, & Kumar, 2015; Baladron & Hamker, 2015; Berthet 
et al., 2016; Caligiore et al., 2019; Humphries et al., 2006; 
Mandali et  al.,  2015; Stewart et  al.,  2012; Thibeault & 
Srinivasa,  2013), handcraft most of the projection weight 
parameters from one neural population to another with the 
goal of exhibiting the desired function (in most cases: action 
selection). The exceptions usually concern a few projections 
whose weight can be adjusted by learning, like the cortico-
basal projections. The adjustment process that results in these 
handcrafted weights is not always detailed and often relies 
on the modeller's inspiration or luck. It is on the other hand 
trivial to state that in a neural network, the values of the con-
nection weights play an essential role in the behaviour of the 
model, especially with a heavily recurrent one, like the basal 
ganglia. Therefore, trying to ground these critical parameters 
in experimental data is essential if we want to be sure that 
the fascinating computational objects we design and observe 
teach us something valuable about the real neural substrate.

Doing extensive parameter search or optimization with 
large spiking neural networks comprising a few tens of pa-
rameters is difficult because of the associated computational 
cost, which becomes prohibitive when millions of parame-
terizations of the model have to be simulated and evaluated. 
The approach we advocate in the ensemble formed by the 
present and former works (Liénard et al., 2017; Liénard & 
Girard, 2014) is to first use a detailed but still far less costly 
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mean-field model to perform parameter optimization aimed 
at maximizing biological plausibility and then to translate 
this model into a spiking one. In our case, the optimization 
was performed with an evolutionary algorithm; 1,000 differ-
ent runs were carried out with population sizes of 400 and 
duration of 1,500 generations, thus representing a total of 600 
million model simulations. It permitted to find reasonable 
values for about 50 parameters, while the translation to LIF 
required the adjustment of five additional parameters (the 
constant inputs to the neurons in each modelled population) 
and the choice to have each connection between two neurons 
relying on three synapses. In order to avoid putting too much 
a priori hypotheses about the function of the circuit, we sug-
gest to rely as much as possible on anatomical data and on 
function-independent measurements and to test a posteriori 
the operation of the model, possibly using tests driven by hy-
potheses on the function at that step of the process. For exam-
ple, while Chersi, Mirolli, Pezzulo, and Baldassarre (2013) 
used an automated fitting procedure to determine the syn-
aptic weights of their model, they optimized the model with 
both function-agnostic constraints (firing rates at rest, as we 
did) and function-based ones (action selection behaviour). As 
such, they could not test the initial hypothesis that the basal 
ganglia circuit performs action selection.

4.3  |  Mean field to spiking model translation

Mean-field models were originally designed and ap-
plied to the modelling of dynamical patterns in the cortex 
(Amari,  1977; Nunez,  1974), thalamus (Lopes da Silva, 
Hoeks, Smits, & Zetterberg,  1974) or at their junction 
(Wilson & Cowan,  1973). Their application to model the 
basal ganglia is relatively recent (Tsirogiannis, Tagaris, 
Sakas, & Nikita,  2010; Van Albada, Gray, Drysdale, & 
Robinson,  2009). Some of the assumptions developed for 
the mean-field formalism take their root in the structure of 
cortex and thalamus. In particular, mean-field models rely 
on the assumption that an arbitrarily large number of neu-
rons with a sustained firing rate can be lumped together, as 
to study their average activity meaningfully. These models 
also require that all inputs to a neuron are statistically in-
dependent. While these assumptions are well suited to cor-
tical or thalamic populations, their extension to the basal 
ganglia appears to be less straightforward. Indeed, the me-
dium spiny neurons of the striatum have a very low firing 
rate, specifically here at rest their activity is in the range of 
0.2–0.25 Hz (i.e. once every 4–5 s). Given such sparse indi-
vidual activity, the law of large number may not apply, and 
the relevance and meaning of averaging their whole activity 
with the mean-field formalism as a whole become problem-
atic. Furthermore, the striatum concentrates more than 98% 
of the basal ganglia neurons, leaving only 0.3% of them in 

the STN, 1% in the GPe and 0.5% in the GPi. With such a 
high dimensionality reduction, there is necessarily a large 
convergence of the striatal efferences onto the downstream 
nuclei, at odds with the mean-field assumption of independ-
ent inputs.

In this work, we show that despite these theoretical is-
sues, it is still possible to translate a mean-field model of the 
basal ganglia down to the single-neuron scale—provided that 
some adjustments are made. We show in particular how the 
settings of two new degrees of freedom offered in the inte-
grate-and-fire network models, namely the tonic currents and 
the degree of axonal convergence, can be enough to obtain 
spiking models whose aggregated activity matches one of the 
mean-field models.
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