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E C O L O G Y

Ocean currents promote rare species diversity 
in protists
Paula Villa Martín1, Aleš Buček1, Thomas Bourguignon1,2, Simone Pigolotti1*

Oceans host communities of plankton composed of relatively few abundant species and many rare species. The 
number of rare protist species in these communities, as estimated in metagenomic studies, decays as a steep 
power law of their abundance. The ecological factors at the origin of this pattern remain elusive. We propose that 
chaotic advection by oceanic currents affects biodiversity patterns of rare species. To test this hypothesis, we 
introduce a spatially explicit coalescence model that reconstructs the species diversity of a sample of water. Our 
model predicts, in the presence of chaotic advection, a steeper power law decay of the species abundance distribution 
and a steeper increase of the number of observed species with sample size. A comparison of metagenomic studies 
of planktonic protist communities in oceans and in lakes quantitatively confirms our prediction. Our results 
support that oceanic currents positively affect the diversity of rare aquatic microbes.

INTRODUCTION
Oceanic plankton can be transported across very large distances by 
currents. Many planktonic species are cosmopolitan, i.e., they are 
found virtually everywhere across the global ocean (1). These obser-
vations suggest that, at first sight, the distribution of planktonic spe-
cies is not limited by dispersal and, therefore, that niche preference 
is the predominant factor determining species abundance (2). 
However, in the presence of a limited set of resources, niche theory 
predicts species-poor communities. In contrast, planktonic com-
munities in the oceans are very diverse (3–6). This contradiction of 
the basic principles of niche theory (7) has puzzled ecologists for 
decades (8) and has fostered numerous attempts to explain the di-
versity of plankton (9). One proposal is that variable environments 
offer more possibilities for specialization of ecological traits (4, 10–14). 
Another proposal is that chaotic advection by oceanic currents 
creates barriers reducing competition among species, therefore 
promoting species coexistence (15, 16). Quantitative analyses also 
suggest that oceanic currents play an important role in organizing 
large-scale diversity patterns (17, 18) and that dispersal limitation 
contributes, alongside with niche specialization, to the microbial 
biodiversity of oceans (19–23). The influence of oceanic currents on 
biodiversity patterns of planktonic communities can be tested by a 
comparison of oceans and lakes, in which currents are reduced.

DNA metabarcoding has allowed rapid and extensive measure-
ments of the diversity of aquatic microbial communities, providing 
new means to study the ecological forces shaping planktonic 
communities. Metabarcoding studies have revealed that, besides 
commonly observed species, planktonic communities are charac-
terized by a vast range of rare species. This so-called rare biosphere 
(24, 25) makes up the majority of planktonic species (21, 26) and is 
the subject of our study. The diversity of planktonic species can be 
quantified by the species abundance distribution (SAD), defined as 
the frequency P(n) of species with abundance n in a sample. 
SADs of rare marine protists are qualitatively different from those 

of abundant species (27, 28) and appear to follow a power law 
distribution

	​ P(n ) ∝ 1 / ​n​​ ​​	 (1)

The exponent  varies significantly among samples, is weakly 
correlated with environmental factors, and is significantly larger 
than 1 on average (29). Diversity patterns in other microbial com-
munities, such as that of the human gut (30), are well described by a 
form of SAD following the Fisher log series, P(n) ∝ e−c n/n (31), as 
predicted by Hubbell’s neutral model (31). For large communities, 
the parameter c is very small, so that the distribution is close to a 
power law with  = 1. Hubbell’s neutral model is therefore unable to 
explain the steep decay of SADs in the rare oceanic biosphere. This 
steep decay can be obtained with a modified neutral model that 
takes into account density dependence of growth and death rates 
(29, 32–34). However, the ecological forces determining this density 
dependence in the oceans are unknown.

Here, we propose that the steep decay of SADs observed in the 
oceans is caused by the particular way chaotic advection by oceanic 
currents limits dispersal. Oceanic currents affect distributions of 
planktonic populations by stirring and mixing. At the submesoscale, 
oceanic currents also affect ecological interactions, light exposure, 
and nutrient upwelling (35). Previous theoretical studies have 
shown that currents can affect effective population size (36) and 
provoke counterintuitive effects on fixation times (37), particularly 
in the presence of divergent flows (38, 39). However, these studies 
did not scrutinize the effects of advection on multispecies communities. 
To test our hypothesis, we introduce a model that takes into account 
the role of transport by oceanic currents in determining the genealogy 
of microbes in a sample. Our model predicts that, in the presence of 
chaotic advection, SADs are characterized by larger values of the 
exponent . It also predicts that chaotic advection causes a sharper 
increase of species diversity as a function of sample size. To validate 
these results, we analyze 18S ribosomal RNA (rRNA) sequencing data 
generated from oceanic water samples (29). We compare these results 
with sequencing data from lake protist communities (40). The 
observations quantitatively match our predictions, supporting the 
idea that chaotic advection by oceanic currents is responsible for 
the differences in biodiversity patterns between oceans and lakes.
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RESULTS
Coalescence model predicts the effect of chaotic advection 
by oceanic currents on SADs
We introduce a computational model to assess the effect of chaotic 
advection on the protist species distribution of a water sample. In 
this model, we assign a Lagrangian tracer (hereafter “tracer”) to 
each individual in the sample (see Fig. 1). Tracers are initially placed 
in a local area, representing the portion of water where the sample 
was collected. The spatial coordinates x and y of each tracer move 
backward in time, following the spatial trajectory of the ancestors of 
each individual (see Fig. 1). If two tracers are at a sufficiently close 
distance, then they coalesce into a single tracer with a given proba-
bility. This new tracer represents the common ancestor of the two 
individuals. Last, tracers are assigned at a fixed rate  to one species. 
These events represent immigration due to other causes than ocean 
currents. Assigned tracers are eliminated from the system. At the 
end of a run, individuals in the original sample are considered con-
specific if their corresponding tracers have coalesced to a common 
ancestor before being eliminated (see Materials and Methods, 
Fig. 1, and movie S1). This coalescence model can be interpreted as 
the backward version of an individual-based community model, 
which includes advection by currents (see fig. S1) (38, 41). The 
coalescent formulation has the advantage of describing the dynamics 
of one sample embedded in a larger ecosystem (42, 43).

We simulate the coalescence model with and without oceanic 
currents. In the latter case, movements of tracers are modeled as a 
simple diffusion process, taking into account individual movements 
and small-scale turbulence. In the former case, we superimpose to 
this diffusion process the effect of large-scale oceanic currents. We 
model transport by these currents with a kinematic model of a 
meandering jet, which is a common large-scale structure characterizing 
oceanic flows (44, 45). Population sizes and parameters characterizing 

the flow are sampled in a physically realistic range (see Materials 
and Methods) (45). All other parameters characterizing population 
dynamics are chosen identically in the two cases (see Materials 
and Methods).

SADs predicted by the model present a considerable variability 
depending on parameters and demographic stochasticity, both in 
the presence and absence of currents (see Fig. 2, A and B). To 
characterize individual SAD curves, we fit them with a power law 
function P(n) ∝ 1/n using maximum likelihood in an optimal 
range of abundances (see Materials and Methods). For comparison, 
we also fit an exponential distribution P(n) ∝ e−c n and a Fisher log 
series P(n) ∝ e−c n/n in the same range. In most cases, the power law 
provides a better fit than the exponential distribution (74 and 77% 
of samples with and without currents, respectively) and than the 
Fisher log series (75 and 62% of samples with and without currents, 
respectively).

Introducing oceanic currents in the model increases, on average, 
the steepness of SADs (see Fig. 2, A and B). We investigate the phys-
ical mechanisms causing this effect. One property of transport by 
currents is to enhance the effective diffusivity (46). We test whether 
effective diffusivity is responsible for the steepening of SADs by 
running our model with the effective diffusivity of the kinematic 
model but without currents. In this case, we find that the distribution 
of SAD exponent has lower average than in the case with smaller 
diffusion constant (see fig. S2). This implies that the increase of 
SAD exponents caused by currents is due to structures created by 
the flow that cannot be simplified into a diffusion process. We 
further run our model with a parameter choice yielding currents 
constant in time (see fig. S3). Neither in this case do we observe the 
steep SADs as that found in the presence of time-dependent currents.

These results suggest that the time-varying, chaotic nature of 
oceanic transport is responsible for the steepening of SAD curves. 

Fig. 1. Genealogy in oceanic currents. (Left) The coalescence model predicts the protist species composition in a sample of oceanic water taken from an area of size 
L0 × L0. Different colors represent different species. Arrows represent the velocity field induced by ocean currents. (Right) Trajectories of the coalescence model with 
ocean currents. Individuals are represented by tracers that are transported backward in time and can coalesce with other tracers if they reach a close distance. 
Coalescence events are marked by open circles; trajectories of individuals that have coalesced are shown in the same color. Tracers are removed from the population at 
an immigration rate  (marked by crosses). See also movie S1.
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In particular, chaotic transport is often characterized by the presence 
of barriers limiting diffusion among certain regions of the flow. The 
presence of these barriers can be detected by finite-size Lyapunov 
exponents (FSLEs) (47). FSLEs quantify the growth rate of a finite 
separation among two particles advected by a flow. We measure 
local FLSEs for our model and find that they are significantly correlated 
with the spatial dependence of the exponent  (see fig. S4). This result 
supports the view that the long-lived barriers characterizing fluid 
flows prevent formation of large operational taxonomic units (OTUs) 
in the model and are thus responsible for the steepening of SAD curves.

Protist SADs are steeper in oceans than in freshwater
To test our predictions, we analyze DNA metabarcoding datasets 
from two studies of aquatic protists. The first dataset includes 
oceanic protist DNA sequences of 157 water samples from the TARA 
ocean expedition (29). The second dataset includes protist DNA 
sequences of 206 freshwater samples taken from lakes (40). We 
calculate SAD for each sample of both datasets using OTUs as proxies 
for species (see Materials and Methods). Here and in the following, if 
not stated otherwise, OTUs are built by clustering protist sequences 
at 97% sequence identity threshold. From now on, we discard 
“abundant species,” defined as those in abundance classes P(n) 
including less than four species. The remaining “rare species” are 
the subject of our study. They constitute 93% of all species in ocean 
samples and 78% of all species in lake samples.

As for the model, empirical SAD curves display considerable 
sample-to-sample variability, both in ocean and in freshwater sam-
ples (see Fig. 3). This variability is possibly caused by differences in 
ecological conditions among sampling sites. Empirical SAD curves 
are better fitted by a power law than by exponential or Fisher log 
series in most cases. The exponential distribution provides a better 
fit than the power law in 13% of lake samples and 13% of oceanic 
samples, whereas the Fisher log series provides better fits than the 
power law in 39% of lake samples and 18% of oceanic samples. We 
obtain similar results with different OTU definitions (95 and 99% 
instead of 97% similarity) and different thresholds separating abun-
dant from rare species (see fig. S5). Notably, the power law decay of 
SADs is, on average, steeper in oceans than in lakes (see Fig. 3), as 
predicted by our coalescence model.

Distribution of the SAD exponent is quantitatively predicted 
by the coalescence model.
We quantify the agreement between our model and the data by 
analyzing the distribution of the power law exponent  in Eq. 1. In 
the presence of currents, the model predicts a value of the exponent 
significantly larger than one (average  = 1.70, SD  = 0.68). In the 
absence of oceanic currents, the model predicts an average  = 1.26, 
( = 0.46), a value compatible with the neutral prediction  = 1 in 
well-mixed systems (31) and spatially explicit neutral models 
(43). To verify whether the results are robust to oceanic current 
models, we also implement a kinematic model of the Adriatic 
sea and a chaotic Taylor-Green vortex (see fig. S6). In both cases, 
we obtain qualitatively similar results to that obtained for the 
meandering jet (see fig. S6), supporting that the observed mechanism 
is general.

Observations in both oceans and lakes are in excellent agree-
ment with the distributions of exponents predicted by our model 
(see Fig. 4A). Our analysis confirms that the average exponent  is 
significantly larger than 1 in the oceans [average  = 1.79,  = 0.52; 
see Fig. 4A and (29)]. In the lakes, the average exponent is  = 1.37 
( = 0.44; see Fig. 4A). Adopting a different definition of OTUs 
(95 and 99% instead of 97%), different thresholds separating abundant 
from rare species and rarefying oceanic and lake data to the same 
sample size lead to qualitatively similar results (see fig. S5). In 
particular, the average exponent  in the oceans is between 4 and 
23% larger than that in the lakes, depending on the threshold and 
the definition of OTUs (P values of Games-Howell test <0.002 in 
all cases).

The ocean (29) and lake (40) datasets we analyzed used different 
polymerase chain reaction (PCR) primers. To verify that this differ-
ence does not affect our results, we analyze two further metage-
nomic datasets, one from oceans (48) and one from lakes (49), that 
used the same primer. Also in this case, we find higher average 
exponent  in the oceans, confirming the robustness of our results 
(see fig. S7).

In the case of the meandering jet, we find that four parameters 
characterizing the shape and the mixing level of the jet mostly affect 
. The value of the exponent is significantly correlated with the pa-
rameters , ϵ, and c (see Fig. 4B and fig. S8). In particular, the strong 
correlation with the forcing frequency  driving the chaotic motion 
is a further evidence that the steepening of SAD exponents is caused 
by chaotic advection.

Chaotic advection by oceanic currents leads to a steeper 
increase in number of species as a function of sample size
By simulating our model at varying sample size N with and without 
currents, we predict that currents should significantly increase the 
number of expected species in each sample (see Fig. 5A). This effect 
is consistent with the increase of  in the presence of currents: 
Increasing  suppresses very abundant species and therefore increases 
the species diversity of the samples. This effect becomes more and 
more pronounced as N is increased. In the data, we find that 
samples from oceans contain more species than samples from lakes 
at similar sample size, which is consistent with our predictions (see 
Fig. 5A). The observed enrichment is even stronger than predicted 
by our model.

We now study the increase of number of species with sample size 
in oceanic and lake water samples individually. In the case of well-
mixed populations, the species composition of a given sample is 

A B

Fig. 2. Coalescence model predicts effect of chaotic advection by oceanic 
currents on SAD. The two panels show SADs (A) in the presence (orange lines) and 
(B) absence (green lines) of oceanic currents for the coalescence model. Here and 
below, SAD curves are rescaled so that P(1) = 1 to ease visualization. Model details 
and parameters are presented in Materials and Methods. Dashed lines are power 
laws to guide the eye (see also Fig. 3).

http://advances.sciencemag.org/


Villa Martín et al., Sci. Adv. 2020; 6 : eaaz9037     15 July 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 8

described by the Ewens sampling formula (50), which predicts that 
the expected number of species in the sample is

	​ S  = ​  ∑ 
j=0

​ 
N

 ​​ ​   ─ 
 + j − 1 ​​	 (2)

where  = 2Neff is the fundamental biodiversity number (31) and 
Neff is the effective population size. Alternatively, sample species 
composition can be empirically described using a power law (51).

	​ S  ∝ ​ N​​ z​​	 (3)

Our model predicts an increase in number of species with 
sample size, as predicted by the Ewens sampling formula (see 
Fig. 5, A and B). Both for ocean and freshwater samples, the power 
law model provides a better fit (see Fig. 5, A and B) with a higher 

exponent for oceanic samples (z = 0.73) compared to lake samples 
(z = 0.65). This result is qualitatively robust with respect to changing 
the OTU similarity threshold (see fig. 5C). Understanding why the 
observed number of species seems to depend on the sample size as 
a power law is an interesting question for future studies.

DISCUSSION
Oceanic currents are known to largely affect plankton distribution 
at large scale (15–17). Here, we show that chaotic advection by 
oceanic currents profoundly affects diversity of rare protist species 
even at the level of single metagenomic samples. Our coalescence 
model bridges the gap between large-scale oceanic dynamics and 
ecological dynamics at the individual level and provides a versatile 
and powerful tool to validate individual-based ecological models 
using DNA metabarcoding data. Although we focus on neutral 
dynamics of rare protists, our approach can be extended to more 
general ecological settings and to other plankton communities, in-
cluding animals and prokaryotes. These generalizations, combined 
with high-throughput sequencing data, will permit to test whether 
the mechanism described here affects other kingdoms characterized 
by different population sizes, dispersal, and spatial turnover rates 
(52). These tests can shed light on the main ecological forces deter-
mining plankton dynamics and help understanding the difference 
in empirically observed patterns between abundant and rare species 
(24, 25).

The coalescence model predicts that the chaotic advection is 
responsible for steeper decay of SAD curves and steeper increase in 
the number of observed rare species with sample size. Both these 
predictions are in quantitative agreement with observations, although 
the exponent of the ocean and lake SADs largely overlap, suggesting 
that the trend is true globally but not necessarily so locally. The 
steep decay of SAD distributions in the oceans has been previously 
explained in terms of density-dependent effects (29). Although our 
study does not preclude this possibility, the comparison with freshwater 

A B

Fig. 3. Rare SADs present a steeper decay with abundance in oceans than in 
lakes. Continuous lines represent SADs of protist communities from (A) 157 oce-
anic samples (29) and (B) 206 freshwater samples (40). Total numbers of individuals 
in each sample are in the ranges of (A) (103, 105) and (B) (104, 106). In both panels, 
power laws (dashed lines) are shown to guide the eye.

Fig. 4. Power law exponents of SADs. We run our models for different population sizes and different values of flux parameters for ocean samples (see Materials and 
Methods). We select 157 oceanic samples and 206 freshwater samples as in Fig. 3. We fit the power law exponent  of the SADs to the model and to the data using maximum 
likelihood. (A) Continuous distributions of the exponent obtained by kernel density estimation. (B) Dependence of the exponent on four main parameters of the oceanic 
flow: forcing frequency , wave perturbation amplitude ϵ, mean wave amplitude B0, and phase speed c. In each subpanel, other parameters are kept constant 
(see Materials and Methods). Correlation tests of , ϵ, B0, and c with the exponent  yield Pearson coefficients rP = 0.72, 0.48, −0.04, and −0.58 and P values P = 3 × 10−9, 
6 × 10−4, 0.77, 10−5, respectively.
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ecosystems strongly suggests that chaotic advection effectively 
determines this density dependence. The steeper decay of SAD curves 
predicted by the coalescence model depends on geophysical parameters 
characterizing mixing. The irregular behavior of the SAD exponent 
as a function of these parameters (see Fig. 4B) potentially explains 
the fact that observed values of  appear weakly correlated with other 
physicochemical measurements at the sampling sites (29).

Chaotic flows, such as those considered here, are characterized 
by areas of strong mixing separated by barriers limiting transport. 
In our coalescence picture, these barriers reduce the pace of individual 
coalescence into species and therefore limit the formation of abundant 
species. Ecologically, this means that competition among individuals 
at opposite side of a barrier is reduced. This effective isolation 
prevents formation of very abundant species and therefore of SAD 
distributions with broader tails. A detailed physical theory of this 
phenomenon, building on recent advances on describing spatial 
neutral models (53, 43), remains a challenge for future studies.

In summary, our study provides a mechanistic theoretical 
framework to analyze diversity of rare microbial species in aquatic 
environments at the individual level. This paves the way to quanti-
tatively understand how the chaotic advection by oceanic currents 
shapes the diversity of planktonic communities.

MATERIALS AND METHODS
Coalescence model
We consider N microbial individuals in an aquatic environment 
and seek to reconstruct their species identity. Each individual is 
associated with a Lagrangian tracer with two-dimensional spatial 
coordinates x and y. Initially, tracers are homogeneously distributed in 
a sample area ​​L​ 0​​ × ​L​ 0​​​, representing the place where the sample was 
collected. The tracers move in space according to the stochastic 
differential equations

	​​  
​ d ─ dt ​ x  =  − u(x, y, t ) + ​√ 

_
 2D ​ ​​ x​​(t)

​   
​ d ─ dt ​ y  =  − v(x, y, t ) + ​√ 

_
 2D ​ ​​ y​​(t) 

​​	 (4)

where u and v are the components of an advecting velocity field 
representing the effect of oceanic currents. The velocity field has a 
minus sign since time runs backward: t = 0 is the time at which the 
sample was collected, and positive times correspond to the past history 
of the tracer. The terms proportional to ​​√ 

_
 2D ​​ are diffusion terms 

modeling individual movement and small-scale turbulence. The 
quantities x(t), y(t) are independent white noise sources satisfying 
〈i(t)〉 = 0, 〈i(t)j(t′)〉 = ij(t − t′) where 〈…〉 denotes an average and 
i, j ∈ (x, y). The advecting field u, v is specified in the next subsection.

To reconstruct the species identity of the tracers, we track their 
positions backward in time. Tracers at a short distance  from each 
other at time t ≥ 0 can coalesce at a rate r. If this event occurs, then 
individuals in the sample represented by the two tracers descend 
from a common ancestor at time t in the past and therefore belong 
to the same species. We implement immigration events by assigning 
species at a rate . At each time step dt: 

1)Each tracer moves from its position (x, y) to (x + x, y + y). 
The increments x, y are obtained by numerically integrating Eq. 4. 

2)Tracers are selected one by one and are removed with prob-
ability  dt (immigration event). Further, each tracer i can coalesce 
with probability r dt with any other tracer j present in an area of 
size  ×  centered at the coordinates of tracer i.

We set r = 1,  = 10−4, and the diffusion constant to D = 3 × 10−9, 
as further discussed below. The interaction distance  is chosen to 
satisfy D = r2, see (41). We take the linear size of the sample area 
on the order of the mean distance traveled by an individual in 
one generation, L0 = 5 km, estimating a protist lifetime of about 1 day 
(54) and protist movements of about 20 km2 day−1 (55). Population 
size is randomly selected for each run in the range N ∈ (103,105) 
unless otherwise indicated. For Fig. 4B and movie S1, we set 
N = 8192.

Each simulation is run until all individuals have been assigned to 
OTUs by coalescence or immigration events. In the range of param-
eters we explored, the duration of a run is on the order of 100 years. 
However, most coalescence events occur on a much faster time 
scale (median of the coalescence times t ≈ 82 days for the ocean case 
and t ≈ 67 days for the freshwater case).

A B C

Fig. 5. Chaotic advection by oceanic currents increases species number S in a water sample. (A) Ratio Socean/Slake as a function of the sample size N for the model and 
the data. We simulate the model at increasing sample sizes N in powers of 2 and obtain continuous curves by interpolation. Other parameters are presented in Materials 
and Methods. Averaged data are obtained by binning for both oceans and lakes. (B and C) Number of species S in samples of N individuals in (B) oceans and (C) lakes. A 
power law (Eq. 3) fits the data better than the Ewens sampling formula (Eq. 2) for both (B) oceanic (normalized log-likelihood −19.39 versus −449.52) and (C) lake samples 
(normalized log-likelihood −6.64 versus −117.21). Fitted exponents are z = 0.73 and z = 0.65 for oceans and lakes, respectively. The results of the coalescence model are 
shown with and without oceanic currents (orange and green lines, respectively). The Ewens sampling formula provides a better fit than the power law in both cases 
[normalized log-likelihood −420.95 versus −2131.43 in (B) and −434.66 versus −1902.62 in (C)].

http://advances.sciencemag.org/


Villa Martín et al., Sci. Adv. 2020; 6 : eaaz9037     15 July 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 8

Kinematic model of the oceans
We model large-scale oceanic currents by means of a kinematic 
model of a meandering jet (44, 45). The velocity field u, v is defined 
in terms of a stream function. In a fixed reference frame, the stream 
function reads

	​​ ψ(x', y', t') = ​ψ​ 0​​​{​​1 − tanh​(​​ ​ 
y' − A(t') cos [ κ(x'− ​c​ x​​ t') ]

   ──────────────────   
λ ​√ 

_______________________
   1 + ​κ​​ 2​ ​A​​ 2​(t') ​sin​​ 2​ [ κ(x'− ​c​ x​​ t')] ​
 ​​)​​​}​​​​	

(5)

The stream function is more conveniently written in a dimen-
sionless form

	​​ (x, y, t ) = − tanh​(​​ ​ 
y − B(t ) cos(kx)

  ─────────────  
​√ 

_________________
  1 + ​k​​ 2​ ​B​​ 2​(t ) ​sin​​ 2​(kx) ​
 ​​)​​ + cy​​	 (6)

being B(t) = A(t′)/ = B0 + ϵcos (t + ), c = cxL/0, and k = 2/L, 
with L the meander wavelength. The transformation between di-
mensional and dimensionless units is x = (x′ − cxt)/, y = y′/, and 
t = t′0/2 (44). The frame of reference of the dimensionless co-
ordinates moves with the speed cx of the jet. Given the stream func-
tion, the components of the velocity field in dimensionless units are

	​​
u  =  − ∂  / ∂ y

​ 
v  =  ∂  / ∂ x

  ​​	 (7)

We run the simulations using the moving dimensionless coordi-
nates in a virtually infinite system. In the case without currents, this 
modeling choice is justified a posteriori by the fact that, on the basis 
of our observations, lake SAD exponents do not present a significant 
dependence on lake area (see fig. S9). For the ocean simulations, 
results can be affected by the position of the sample area. For this 
reason, we place the sample area L0 × L0 at random coordinates x0, 
y0 ∈ (0,8) for each run. For Fig. 5, we fix x0 = 7.5 and y0 = 1.

Parameters of the kinematic model
Realistic parameters of the dimensionless stream function, Eq. 6, are 
estimated as L = 7.5, c = 0.12, B0 = 1.2,  = 0.4, ϵ = 0.3, and  = /2 (45). 
We consider parameter ranges based on these values c ∈ (0.06, 0.18), 
B0 ∈ (0.7, 1.7), and  ∈ (0.25, 0.55) and fix L = 7.5,  = /2. The value 
of ϵ has to be larger than a critical value depending on  to prevent 
transported particles to remain trapped into long-lived eddies (45). 
To meet this condition while exploring a range of values of , we fix 
ϵ ∈ (2,4). For Figs. 4B and 5, we set c = 0.12, B0 = 1.2,  = 0.5, and ϵ = 3.

To convert from dimensionless units to dimensional units, we 
use the spatial scale  = 40 km (44) and the stream function scale 0 = 
160 km2 day−1. With this choice, the time unit 2/0 is equal to 
1 day. The parameter 0/ represents the maximum velocity in the 
center of the jet. With our choice of units, the velocity is equal to 
40 km day−1, slightly lower than the average velocity of large-scale 
oceanic currents (about 0/ ≈ 200 km day−1 for the surface Gulf 
stream and 50 km day−1 for the lower thermocline (44)).

In physical units, the coalescence rate is equal to r = 1 day−1, i.e., 
about one generation time for protists (54). Our choice of the diffusion 
constant to D = 3 × 10−9 in dimensionless units corresponds to 
about 6 × 10−5 m2/s in physical units, which is consistent with 
observations (46).

Species abundance distribution
We compute the distribution P(n) of the species abundances n for 
each sample. Species with low-to-intermediate abundance appear 

to follow a different distribution than abundant species, as previously 
observed (27–29). For this reason, we filter out species in abundance 
classes below P(n) = 4. To avoid overfitting, we also discard samples 
with SAD composed of less than 10 points with different frequencies 
P(n). After this selection, we are left with 157 samples for oceans 
and 206 for lakes. We compute the SAD P(n) for the coalescent 
model with and without advection. Each sample is obtained for 
different flux parameters and population sizes (described above). 
The resulting distributions P(n) are averaged over up to 102 realiza-
tions of the model and filtered in the same way as the data samples 
for consistency.

Data fits
To determine the exponent , we fit the function

	​ P(n ) = C / ​n​​ ​​	 (8)

in a range of intermediate abundances (nmin, nmax). The exponent , 
the proportionality constant C, and the values of nmin and nmax are 
simultaneously determined by maximizing the normalized log-
likelihood ln L = (1/𝒩)∑i[ni ln P(ni) − P(ni) + ln (ni ! )], where 𝒩 is 
the number of nonzero abundance classes for n in the range (nmin, 
nmax) and we assumed Poissonian counts. We discard samples for 
which the range (nmin, nmax) includes less than 5 points. We also 
fit an exponential P(n) = Ce−c n and a Fisher log series P(n) = Ce−c n/n 
with the same method and in the same interval [nmin, nmax] deter-
mined with the power law fit. Since all the distributions have the 
same number of free parameters, we always consider a better fit the 
distribution characterized by the largest normalized log-likelihood. 
The percentage of data samples for which a power law fits better 
than the exponential and Fisher log series and the corresponding 
exponents is presented in fig. S5.

OTU analysis
We analyze metabarcoding data from marine (29) and freshwater 
(40) protist planktonic communities. We retrieve the dataset of 
oceanic samples from the European Nucleotide Archive (accession 
ID PRJEB16766) (further referred to as the Ocean dataset). The 
dataset consists of assembled paired-end Illumina HiSeq2000 
sequencing reads of PCR-amplified V9 loop of protist 18S rRNA 
gene obtained from 121 seawater locations distributed worldwide. 
We trim the primer sites using USEARCH (v.11.0.667) (56). Primer 
sites include 15 and 20 nucleotide sites for the 5- and 3-end, respectively. 
The trimmed sequences are quality-filtered with USEARCH using 
the option –fastq_maxee 1.0, which discards sequences with >1 
total expected errors in the sequence. The sequences are dereplicated, 
and singleton sequences (i.e., sequences with single occurrence in 
the dataset) are removed using VSEARCH (v.2.10.1) (57). Chimeric 
sequences are detected and removed using UCHIME (implemented 
in VSEARCH) (58) and a combination of reference-based (with 
nonredundant SILVA SSU Ref database ver.132 used as reference) 
and de novo methods. Sequences are then clustered into OTUs 
using VSEARCH and the –cluster_size option. We use sequence 
identity thresholds of 95, 97, and 99%, which provides different 
levels of taxonomic resolution. To account for different depths of 
sequencing between samples, the OTU tables are subsampled 
(rarefied) to depths of 5000 and 10,000 reads per sample using 
script single_rarefaction.py from QIIME package (59). In addition, 
we analyze a second global oceanic dataset of deep-water ocean samples 
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(48), further referred to as the Pernice ocean dataset. The Pernice 
ocean dataset consists of 454 pyrosequencing reads of PCR-amplified 
V4 region of 18S rRNA gene obtained from RNA isolated from 
27 seawater locations distributed worldwide (48). First, primer 
sites [primer TAReuk454FWD1: CCAGCA(G/C)C(C/T)GCGG-
TAATTCC] are trimmed with CUTADAPT (60), discarding reads 
missing the primer site. After trimming, the dataset is analyzed, as 
described above for the Ocean dataset, with the exception of (i) 
quality filtering with option –fastq_maxee 2.0, which discards 
sequences with >2 total expected errors in the sequence, and (ii) 
taxonomy assignment and taxonomy-based filtering, as described be-
low for the Lake dataset.

We obtain the freshwater dataset, consisting of paired-end Illumina 
HiSeq2500 reads of amplified genomic region encompassing V9 
loop of 18S rRNA and ITS1 gene for 217 European freshwater lakes, 
from the Short Read Archive (Bioproject ID PRJNA414052). First, 
reads from PCR replicates and sequencing replicates are merged for 
each lake sample. Next, primer regions are trimmed with CUTADAPT 
(60), discarding reads missing one or both of the primer sites. For-
ward and reverse reads with a minimal overlap of 70 base pairs and 
with a maximum of 5 nucleotide differences in the overlapping 
region are merged with VSEARCH (command –fastq_mergepairs). 
Next, we extract from the amplified SSU V9 + ITS1 region the SSU 
V9 region using ITSx (v.1.1.1) (61). This step allows the taxonomic 
resolution of the clustered freshwater planktonic community 
OTUs to closely resemble the taxonomic community resolution 
of the marine planktonic community, which is based on sequenced 
V9 loop regions of 18S rRNA genes. The reads with >1 total ex-
pected errors in the sequence are discarded, datasets are derepli-
cated, singletons and chimeras are removed, and the quality-filtered 
reads are clustered into OTUs and rarefied, as described above for 
the Ocean dataset. The taxonomy is assigned against SILVA v123 
eukaryotic 18S subset database. OTUs assigned to Fungi, Metazoa, 
or Embryophyta (i.e., nonprotist eukaryotes) with at least Bootstrap 
Support (BS) >0.8 support and OTUs not assigned to kingdom 
level (BS <0.8) are excluded from the final OTU tables. In addition, 
we analyze a second lake dataset, further referred to as the Filker 
lakes dataset (49). The Filker lakes dataset consists of merged and 
quality-filtered Illumina sequencing reads of PCR-amplified V4 
region of 18S rRNA gene obtained from 13 high-mountain lakes 
distributed worldwide (49). The reads are dereplicated, singletons and 
chimeras are removed, filtered reads are clustered into OTUs and 
rarefied, and taxonomy is assigned, as described above for the Lake 
dataset.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/29/eaaz9037/DC1
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