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SUMMARY
In the hippocampus, locations associated with salient features are represented by a disproportionately large
number of neurons, but the cellular and molecular mechanisms underlying this over-representation remain
elusive. Using longitudinal calcium imaging in mice learning to navigate in virtual reality, we find that the
over-representation of reward and landmark locations are mediated by persistent and separable subsets
of neurons, with distinct time courses of emergence and differing underlying molecular mechanisms. Strik-
ingly, we find that in mice lacking Shank2, an autism spectrum disorder (ASD)-linked gene encoding an excit-
atory postsynaptic scaffold protein, the learning-induced over-representation of landmarks was absent
whereas the over-representation of rewards was substantially increased, as was goal-directed behavior.
These findings demonstrate that multiple hippocampal coding processes for unique types of salient features
are distinguished by a Shank2-dependent mechanism and suggest that abnormally distorted hippocampal
salience mapping may underlie cognitive and behavioral abnormalities in a subset of ASDs.
INTRODUCTION

Navigation and spatial memory are essential elements of animal

behavior that allow animals to forage, return home, and avoid

danger. The hippocampus plays a crucial role in these cognitive

processes, as hippocampal neurons fire when an animal is

located in a particular part of an environment, providing an allo-
This is an open access article under the CC BY-N
centric cognitive map of space (O’Keefe and Nadel, 1978).

Although whether these ‘‘place cells’’ (PCs) are indeed memory

cells has been long debated, one line of evidence that favors

this notion indicates that hippocampal place-specific firing ex-

hibits dynamic changes according to context and experience

on multiple timescales, ranging from a few minutes to days or

weeks (Muller and Kubie, 1987; Bostock et al., 1991; Mehta
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Figure 1. Transgenic Mice and Behavioral Task

(A) Transgene construct for Thy1-G-CaMP7 mice (top) and expression of G-

CaMP7 (bottom left, green) and DsRed2 (bottom right, red) in a parasagittal

section from a mouse at six months of age. Scale bar, 2 mm.

(B) G-CaMP7 expression (green) and calbindin immunofluorescence (calb,

magenta) in the dorsal CA1 of the hippocampus of Thy1-G-CaMP7 transgenic

mice. Arrows indicate examples of calbindin-positive G-CaMP7-negative

cells. SO, stratum oriens; SP, stratum pyramidale; SR, stratum radiatum. Scale

bar, 20 mm.

(C) A schematic of the two-photon microscope and virtual reality setup (top)

and virtual endless linear track task (bottom). The linear track segment con-

tained a visual landmark (a green gate) and a reward delivery point at two

distinct locations. When the mouse’s virtual position reached the point indi-

cated by the red dotted line in the middle, it returned to the origin, such that the

same track segment was presented repeatedly.

(D) Example behavioral data from a single 10-min session. From top to bottom,

themouse’s virtual position on the linear track, running speed, timing of reward

delivery, and behavioral state are shown, where running is represented in blue.

(E) Behavioral changes induced by repeated training. Total distance traveled

(distance, top), the fraction of time spent running (run period, middle), and

running speed (speed, bottom) are shown. Data are expressed as mean ±

SEM.
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et al., 1997; Lever et al., 2002; Leutgeb et al., 2005). Furthermore,

studies have reported that disproportionately large numbers of

PCs are recorded in locations that are associated with reward,

safety, or local cues (O’Keefe and Conway, 1978; Wiener et al.,

1989; Hetherington and Shapiro, 1997; Hollup et al., 2001; Du-

pret et al., 2010; Danielson et al., 2016; Zaremba et al., 2017;

Gauthier and Tank, 2018, Bourboulou et al., 2019), indicating

that the environment surrounding an animal is not represented

uniformly in the hippocampal cognitive map; representations

are strongly influenced by the motivational and environmental

salience of the locations.

These findings imply that the activity of an increased number

of neurons encodes the presence of salience in the hippocampal

map. This idea further proposes potential roles of such salience

maps not only in spatial (Hollup et al., 2001; Dupret et al., 2010) or

episodic-like memories (Komorowski et al., 2009; Eichenbaum

and Cohen, 2014) but also in goal-directed and landmark-based

navigation (Burgess and O’Keefe, 1996; Gothard et al., 1996).

PCs are formed rapidly within minutes after initial exposure to

a new environment (Hill, 1978; Wilson and McNaughton, 1993;

Frank et al., 2004). However, how the over-representation of

salient features is established and modified by experience re-

mains to be fully understood. Several important questions

regarding these salience maps remain to be addressed: for

example, whether the over-representation of reward and that

of other types of salient features are mediated by a single shared

or multiple distinct mechanisms and how altered over-represen-

tation relates to behavioral and cognitive abnormalities in various

brain disorders, including autism spectrum disorders (ASDs).

To elucidate the cellular and molecular mechanisms that

govern the dynamics of hippocampal salience representation,

we longitudinally imaged functional cellular maps of the deep

sublayer of CA1 during training on a virtual linear track, in which

two distinct locations were associated with reward or a visual

landmark. We show that over-representations of motivationally

and environmentally salient features are mediated by persistent

and separable subsets of neurons with distinct time courses of

emergence and differing molecular mechanisms. Remarkably,

mice lacking Shank2 (Won et al., 2012), a mouse model of ASD

that lacks a glutamatergic postsynaptic scaffold protein, exhibit

selective loss of learning-induced over-representation of land-

mark locations, while their rapid over-representation of reward

locations and goal-directed behavior is further enhanced.

RESULTS

Mice and Behavioral Task
To reliably perform longitudinal imaging of large-scale functional

hippocampal cellular maps, we generated a transgenic mouse

line, herein termed Thy1-G-CaMP7, that coexpresses the

fluorescent calcium indicator protein G-CaMP7 and the cal-

cium-insensitive red fluorescent marker protein DsRed2 via 2A

peptide-mediated bicistronic expression under the neuron-spe-

cific Thy1 promoter (Figure 1A; Ohkura et al., 2012; Sato et al.,

2015; see also STAR Methods and Figure S1). In the dorsal

CA1 of the hippocampus, the population of calbindin D-28K-

negative pyramidal cells in the deep pyramidal cell sublayer

was preferentially labeled with G-CaMP7 (Mizuseki et al., 2011;
2 Cell Reports 32, 107864, July 7, 2020
Kohara et al., 2014; Lee et al., 2014; Valero et al., 2015; Daniel-

son et al., 2016; Figures 1B and S1A). Immunofluorescence la-

beling of glutamic acid decarboxylase 65/67, parvalbumin, and

somatostatin revealed that interneurons positive for these

markers were devoid of G-CaMP7 expression (Figure S1B).
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To allow imaging of hippocampal maps during repeated

training of spatial behavior, we trained Thy1-G-CaMP7 mice in

a virtual linear track task (Figures 1C and 1D; see STARMethods

for details). The mouse started running from the origin of the

segment, passed under a green gate as a visual landmark, then

receivedwater at a reward point and returned to the origin instan-

taneously after reaching the other end. The visual landmark and

reward delivery were associated with two distinct locations to

examine the effects of two different types of salience separately.

In training, behavioral performance as measured by time spent

running, distance traveled, and running speedduring 10-min ses-

sions markedly increased as training proceeded (Figure 1E;

distance, p < 0.0001, F(14,154) = 7.30; run period, p < 0.0001,

F(14,154) = 5.26; speed, p < 0.0001, F(14,154) = 11.6; n = 12 mice

from three groups, one-way analysis of variance [ANOVA]).

Furthermore, licking and slowing of running speed before the

reward delivery point developed as training proceeded (Fig-

ure S2). The emergence of such anticipatory behavior indicates

that the task involves goal-directed spatial learning.

Rapid and Delayed Emergence Distinguishes Over-
Representations of theReward and Landmark Locations
To examine whether and when the representations of the two

salient locations become prominent in the map, we next visual-

ized the emergence and establishment of hippocampal CA1

spatial maps during training on the virtual linear track task (Fig-

ure S3; see STAR Methods for details on imaging and analysis).

The cells that exhibited virtual-location-specific activity (PCs)

showed spatially more informative activity and higher event fre-

quency than non-PCs (Figures S3H–S3K).

Consistent with previous studies in real and virtual environ-

ments, PCs were formed rapidly within the first session on the

virtual linear track (Hill, 1978; Wilson and McNaughton, 1993;

Frank et al., 2004; Chen et al., 2013) (Figures 2A and 2B). The

fractions of PCs were initially low but then increased as the

training proceeded. The fraction of PCs and that of time spent

running showed a good overall correlation (Figure 2C). The slope

of a regression line (termed the ‘‘PC formation factor’’) signifi-

cantly increased in the late phase of training compared with

the early phase (Figures S4A and S4B). Furthermore, the ses-

sions in the late phase contained larger fractions of PCs than

the sessions in the early phase with comparable amounts of

running time (Figures S4C and S4D). The average event fre-

quency, mutual information content, and response amplitude

of PCs did not notably change during training (Figures S4E–

S4G).

We then examined whether the locations associated with

salience were disproportionately represented in the hippocam-

pal map. The histograms of PCs against positions typically ex-

hibited two large peaks, which appeared more clearly in the

late training phase; one peak corresponded to the location of

the landmark, and the other corresponded to that of the reward

(Figure 2D). While the first peak closely matched the landmark

location, the second peak was slightly shifted in the direction

the mouse was running, which likely reflects that the animals

received the rewards in places that were slightly past the delivery

point, as suggested by decreased running speed in this area

(Figure S2A). Importantly, the over-representation of the reward
location was discernible even in the first session of training,

whereas that of the landmark location gradually developed as

the training proceeded (Figures 2D–2F). The fraction of PCs

that encoded the location of the reward (herein termed ‘‘reward

cells’’ [RW cells] for convenience) was not significantly different

between the early and late phases of training, whereas that

of PCs that encoded the location of the landmark (similarly

termed ‘‘gate cells’’ [GT cells]) increased significantly, with a

complementary decrease in the fraction of PCs that encoded

other locations (termed ‘‘non-reward/gate cells’’ [non-RW/GT

cells]; Figures 2E and 2F). The delayed emergence of increase

in PCs that encode locations associated with salient visual

cues is further supported by a more delayed and reduced in-

crease in PCs that encode a location with less visual salience,

such as a boundary of different wall patterns (termed ‘‘wall cells’’

[WL cells]; Figures S4H and S4I). Collectively, these results

demonstrate that the over-representation of salient locations is

formed and maintained at a population level, although the

maps develop dynamically throughout the training period. The

establishment and refinement of representations of salience

depend on its nature; the representation of motivational salience

is established rapidly, whereas that of environmental salience

develops over the course of training.

RW Cells and GT Cells Form Stable Singularities during
Experience-Dependent Map Consolidation
The PC maps imaged in each session appeared rather different

from each other, evenwithin the same animals, implying that hip-

pocampal spatial representations are highly dynamicwhile being

established (Figure 2A). To investigate whether representations

of salient locations aremore stable than those of nonsalient loca-

tions, we investigated training-induced changes in the maps at

an individual cell level by comparing the place fields of the

same cells across different sessions (Figure S5; see STAR

Methods for details). In the early maps, only a small number of

PCs were identified as common to both sessions (these cells

are hereinafter called ‘‘common PCs’’), but the fraction of com-

mon PCs increased significantly as additional PCs were imaged

in the late phase of the training (Figures 3A–3C). Moreover, the

fraction of PCs that had stable place fields in both sessions (‘‘sta-

ble PCs’’) also increased markedly as the training proceeded

(Figures 3A, 3B, 3D, and 3E), indicating that themaps are consol-

idated in an experience-dependent manner. Image comparisons

between adjacent sessions showed that the fractions of com-

mon cells were constant over time (p = 0.57, one-way ANOVA;

Figure S5E). Furthermore, the fractions of common and stable

PCs normalized to the number of PCs also increased signifi-

cantly as the training proceeded, indicating that the training-

induced increase in PC stability was not simply due to the in-

crease in the number of PCs (Figure S6). We then calculated

the fractions of stable PCs with respect to the number of com-

mon PCs as an index of stable representations at each location

and found that this index was significantly higher for locations

associated with the landmark or reward than for other locations

(Figures 3F and 3G). In addition, the gain of PC stability between

the early and late phases of training in individual animals ex-

hibited a good linear correlation with their differences in time

spent running between the two phases of the training (r = 0.90,
Cell Reports 32, 107864, July 7, 2020 3



Figure 2. Over-Representations of the Reward and Landmark Locations Emerge with Different Time Courses

(A) Examples of place cell (PC) maps imaged in the same animal at the early (session 1), middle (session 9), and late (session 14) phases of training on the virtual

endless linear track task (top). PCs and non-PCs are represented by filled circles of various colors and gray dots, respectively. The different colors of the filled

circles represent different locations of the place fields. Heatmaps shown below are distributions of place fields of the corresponding sessions ordered by their

positions (bottom).

(B) The fractions of PCs relative to the number of total identified cells imaged at each session. n = 7 mice.

(C) The fractions of PCs were plotted against the corresponding fractions of time spent running (n = 105 sessions from seven mice). The red line represents linear

regression (r = 0.59).

(D) Histograms indicating the distribution of PCs with respect to track position in the early (session 1), middle (session 6), and late (session 12) phases of the

training. The average data from seven mice are shown. For comparison, the histogram of the early phase was scaled to that of the late phase by their maximum

values and is plotted in light blue on its right y axis. The green, red, and magenta dashed lines delineate the positions of the landmark, reward delivery, and

boundary between different wall patterns, respectively. The areas shown in green, red, and magenta indicate those that define gate, reward, and wall cells,

respectively.

(E) Hippocampal spatial representations as expressed by the fractions of gate cells (GT cells, green), non-reward/gate cells (non-RW/GT cells, blue), and reward

cells (RW cells, red) relative to the number of total PCs identified in each session. Values were normalized to that obtained in the case of uniform distribution (i.e.,

0.0125/bin), and values greater than 1 indicate that the locations are over-represented.

(F) Average normalized fractions of GT (green), non-RW/GT (blue), and RW (red) cells for the early, middle, and late phases of the training. *a, p = 0.046, F(2,12) =

3.26; ***b, p = 0.0003, F(2,12) = 15.3; n.s.c, p = 0.96, F(2,12) = 0.067; one-way ANOVA, n = 5 sessions each; #d, p = 0.014 versus non-RW/GT early, F(1.059,4.235) = 6.33;

##e, p = 0.0037 versus non-RW/GT middle; ##f, p = 0.0044 versus non-RW/GT middle, F(1.334,5.335) = 27.8; ###g, p = 0.0009 versus non-RW/GT late; ###h, p =

0.0007 versus non-RW/GT late, F(1.142,4.566) = 50.68; one-way ANOVA; n = 5 sessions each.

(B and D–F) Data are expressed as mean ± SEM.
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Figure 3H). The results suggest that hippocampal place maps

are more strongly stabilized if the animals learn to run the virtual

linear track task more effectively.

Response Properties of RW Cells and GT Cells
In order to further characterize RW cells and GT cells, mice

trained in the normal task were subjected to a task with 50%
4 Cell Reports 32, 107864, July 7, 2020
reward delivery and a task with no gate (n = 3 mice). In the

50% reward task, reward was delivered randomly with 50%

probability at the same delivery point, and the data were sepa-

rately analyzed for rewarded trials and non-rewarded trials (Fig-

ure 4A). The fraction of time spent running increased slightly but

not significantly in non-rewarded trials (rewarded trials 66.9% ±

4.2% versus non-rewarded trials, 74.9% ± 3.9%, p = 0.076,



Figure 3. RW Cells and GT Cells Form Stable Singularities in Hippocampal Cognitive Maps

(A) Example hippocampal CA1 PC maps imaged in two consecutive sessions in the early phase of the training. Maps shown on top, middle, and bottom present

cells identified in common to both sessions (common cells), cells identified as PCs in both sessions (common PCs), and cells identified as PCs with stable (<

10 cm difference) place fields in both sessions (stable PCs), respectively. The histogram shown at the bottom indicates the distributions of the stable PCs against

track position.

(B) PC maps imaged in the late phase of training in the same animal as presented in (A).

(C) The fraction of common PCs relative to the number of common cells identified in the two consecutive sessions that were compared. The x axis indicates the

earlier of the two sessions that were compared. n = 7 mice.

(D) PC stability calculated as the fraction of stable PCs relative to the number of common PCs identified in the two consecutive sessions that were compared.

(E) Average PC stability in the early (sessions 1–4, numbered according to the earlier of the two sessions that were compared), middle (sessions 5–10), and late

(sessions 11–14) phases of training. *p = 0.021 versus early, **p = 0.0050 versus early, F(2,11) = 8.04, one-way ANOVA; n = 4, 6, and 4 session pairs for the early,

middle, and late phases, respectively.

(F) The average fractions of stable PCs relative to the number of commonPCs plotted against track position. Values were calculated from data across all sessions

and averaged for seven mice. The fractions were determined using the number of common PCs obtained separately for each spatial bin in the earlier of the two

sessions compared. The green and red dashed lines delineate the positions of the landmark and reward delivery, respectively. The areas shown in green and red

are those that define GT cells and RW cells, respectively.

(G) The average PC stability for GT, non-RW/GT, andRWcells. #p = 0.015 versus non-RW/GT cells, ##p = 0.0025 versus non-RW/GT cells, F(1.215,7.290) = 11.6, one-

way ANOVA, n = 7 mice.

(H) The relationship between PC stability and learning to run along the track. The x axis presents the task performance of eachmousemeasured by the difference

in the fraction of time spent running between the early (average of sessions 1–5) and late (average of sessions 11–15) phases of the training. The y axis presents

the difference in PC stability between the early and late phases of training.

(C–G) Data are expressed as mean ± SEM.
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t(5) = 2.23, paired two-tailed t test, n = 6 sessions from three

mice). Licking within the reward zone decreased in non-re-

warded trials with marginal statistical significance, whereas

licking immediately before and far outside the reward zone

was not altered between rewarded trials and non-rewarded trials

(Figure 4B). Consistent with the notion that the presence of

reward is encoded by the increased density of RW cells, the rep-

resentation of the reward zone substantially decreased in non-

rewarded trials (Figure 4C; rewarded trials, 1.19 ± 0.12 versus

non-rewarded trials, 0.50 ± 0.09-fold relative to a uniform distri-

bution [see Figure 2E legend], p = 0.0031, t(5) = 5.35, paired two-

tailed t test, n = 6 sessions from three mice). Thus, RW cells
appear to be enriched in the reward location due to the presence

of reward.

We then tracked the changes in RW cells in non-rewarded tri-

als. Twenty-one percent of RW cells (96 out of 467 cells) still had

their place fields within the reward zone in non-rewarded trials

(RW-RWcells; Figures 4D and 4E), while 37% (173 cells) became

PCs that encoded other parts of the track and 42% (198 cells)

lost their properties as PCs. The consistency of RW cells was

markedly lower than the other categories of cells; 59% of GT

cells (251 out of 423 cells) and 51% of non-RW/GT cells (552

out of 1,088 cells) in rewarded trials remained GT cells and

non-RW/GT cells, respectively, in non-rewarded trials. However,
Cell Reports 32, 107864, July 7, 2020 5



Figure 4. Response Properties of RW Cells and GT Cells

(A) An example segment of 50% reward delivery sessions. The blue line represents the animal’s position. Red dots and red circles indicate licking and reward

delivery, respectively.

(B) Licking within the reward zone (in), immediately before the reward zone (ant), and elsewhere (out) in rewarded (R) and non-rewarded (NR) trials (R in versus NR

in, p = 0.077, t(5) = 2.22, paired two-tailed t test, n = 6 sessions each). Data are expressed as mean ± SEM.

(C) Histograms indicating the distribution of PCs with respect to track position for R and NR trials (left). The y axis represents PC fractions normalized relative to a

uniform distribution. The average data of six sessions using three mice are shown. The green and red dashed lines delineate the positions of the landmark and

reward delivery, respectively. The red area defines RW cells. Heatmaps shown on the right highlight the distributions of place fields in R and NR trials, ordered by

their positions (right). n = 1,978 cells (R trials) and 1,915 cells (NR trials), respectively, from six sessions using three mice.

(D) A scatterplot showing the distribution of place-field positions in R and NR trials. Each dot represents the position of a cell’s place field, and the color indicates

the activity bias index of the cell. Cells from all relevant sessions are shown. The green and red dashed lines delineate the positions of the landmark and reward

delivery, respectively. The red area enclosed by a black dashed rectangle defines RW cells in R trials that remained PCs in NR trials, and a histogram of the

distribution of their place fields along the NR axis is shown in (E). The same convention applies hereinafter.

(legend continued on next page)

6 Cell Reports 32, 107864, July 7, 2020
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1.78-fold enrichment of RW–RW cells relative to a uniform distri-

bution of PCs (96 out of 269 cells; Figure 4E) indicates that a part

of RW cells still tend to be RW cells even in the absence of

reward, which likely reflects a general tendency of PCs that their

fields tend to remain in the same locations in non-rewarded trials

(Figure 4D).

To further investigate how reward modulates RW cell activity,

we compared the activity of each RW-RW cell between re-

warded and non-rewarded trials and divided them into three

groups according to the direction and extent of their activity

biases (Figures 4F and 4G). Interestingly, we found that 30.2%

of RW-RW cells (29 out of 96 cells) increased their activity in

the absence of reward (no-reward-preferring RW cells), while

approximately similar proportions of cells exhibited constant

(termed ‘‘constant RW cells’’ after their constant activity regard-

less of the presence or absence of reward; this terminology does

not mean they continuously encode the reward location, 36.5%)

or decreased activity (reward-preferring RW cells, 33.3%; Fig-

ures 4F and 4G).

Next, we examined the effect of the visual landmark on GT cell

activity in the no-gate task, in which the green gate was removed

from its location throughout a test session that was conducted

immediately after a preceding control session (pre). The fraction

of time spent running did not change notably in no-gate sessions

(pre, 76.4% ± 8.9%, versus no gate, 79.8% ± 9.5%, n = 3 ses-

sions each from three mice). The representation of GT location

decreased in no-gate sessions (Figure 4H; pre, 1.37 ± 0.19,

versus no gate, 1.01 ± 0.06-fold relative to a uniform distribution,

n = 3 sessions each), supporting the idea that the increased den-

sity of GT cells encodes the presence of the landmark. In no-gate

sessions, 36% of GT cells identified in pre (103 out of 287 cells,

3.3-fold relative to a uniform distribution) maintained their place

fields within the area that defined GT cells (GT-GT cells; Figures

4I and 4J), while 36% (104 out of 287 cells) had significant place

fields in other parts of the track and the remaining 28% (80 out of

287 cells) lost their properties as PCs. Thus, similar to RW cells,

GT cells appear to accumulate at the landmark location when the

landmark is present. Moreover, a part of GT cells tend to be GT
(E) A histogram showing the distribution of place-field positions of PCs in NR trials

represent the proportions of reward-preferring RW cells, constant RW cells, and

bin. The red area definesRWcells in R trials that persisted as RWcells in NR trials (

and no-reward-preferring RW cells in these cells are shown in (F).

(F) Proportions of reward-preferring RW cells, constant RW cells, and no-reward

(G) Examples of reward-preferring RW cells (left), constant RW cells (middle), an

imaged during the same session. Top panels show raster plots against position

separately sorted. Bottom panels show activity histograms of each example ce

separately for R (red) and NR (blue) trials during the corresponding session.

(H) Histograms indicating the distribution of PCs with respect to track position fo

fractions normalized relative to a uniform distribution. The average data from thr

(I) A scatterplot showing the distribution of place-field positions in pre and NG s

sessions that remained PCs in NG sessions. A histogram of the distribution of th

(J) A histogram showing the distribution of place-field positions of PCs in NG sessi

the stacked bar represent the proportions of gate-preferring GT cells, constant GT

in that bin. The green area defines GT cells in pre that persisted as GT cells in the N

GT cells, and no-gate-preferring GT cells among these cells are shown in (K).

(K) Proportions of gate-preferring GT cells, constant GT cells, and no-gate-prefe

(L) Examples of gate-preferring GT cells (left), constant GT cells (middle), and no-g

which pre andNG sessions are shown above and below the red horizontal lines, re

(turquoise) sessions and activity histograms of each example cell against positio
cells in the absence of landmark as PCs generally tend to have

their fields at the same locations (Figures 4I and 4J). GT-GT cells

were then categorized similarly into three groups by comparing

their activity between the preceding control and no-gate ses-

sions (Figures 4K and 4L). Notably, 62.1% (64 out of 103 cells)

of GT-GT cells were gate-preferring GT cells, whereas only

13.6% of them (14 out of 103 cells) were no-gate-preferring GT

cells (Figures 4J and 4K). This asymmetricmodulation of GT cells

by visual landmark indicates that the majority of GT cells

decrease their activity when the visual landmark is not available.

Persistent Subsets of Cells Mediate Over-
Representations of Reward and Landmark Locations
To elucidate the cellular mechanism of map establishment, we

analyzed the transitions among RW, GT, non-RW/GT cells, and

non-PCs between adjacent sessions (Figure 5). Although the

conversion of PCs from non-PCs exhibited significant biases to-

ward RW cells (Figure 5A), a subpopulation of PCs that became

non-PCs also exhibited a similarly biased distribution (Figure 5B).

This implies that the disproportionate formation of PCs is equil-

ibrated by a similar bias in the disappearance of part of the

PCs (Figure 5C). The distribution of PCs derived from former

non-RW/GT cells appeared not to be significantly biased toward

RW or GT cells (Figure 5D). In contrast, the distribution of PCs

derived from former GT or RW cells was substantially biased to-

ward the location by which each of the two PC subcategories

was defined (Figures 5E and 5F). The persistence and relative in-

dependence of RW cells and GT cells demonstrate that selective

stabilization of RW and GT cell subsets, rather than lateral

recruitment of non-RW/GT cells, is a major mechanism that un-

derlies the establishment of hippocampal salience maps. A

further analysis of the cellular origins of RW cells and GT cells

confirmed that most RW cells and GT cells in the middle and

late sessions were cells of the same subcategories in preceding

sessions, although these cells in the early sessions mainly origi-

nated from net formation from non-PCs (Figures 5G and 5H).

Collectively, these findings indicate that hippocampal map for-

mation consists of two steps: first, early populations of RW cells
that were RW cells in R trials. Red, white, and blue segments of the stacked bar

no-reward-preferring RW cells, respectively, to the total number of cells in that

RW-RW), and the proportions of reward-preferring RWcells, constant RWcells,

-preferring RW cells among RW-RW cells.

d no-reward-preferring RW cells (right). The three example cells shown were

, in which the plots for R and NR trials are divided by red horizontal lines and

ll against position for R (red) and NR (blue) trials and running speed averaged

r preceding control (pre) and no-gate (NG) sessions. The y axis represents PC

ee sessions using three mice are shown. The green area defines GT cells.

essions. The green area enclosed by a black rectangle defines GT cells in pre

eir place fields along the NG axis is shown in (J).

ons that were GT cells in pre sessions. Green, white, and turquoise segments of

cells, and no-gate-preferring GT cells, respectively, to the total number of cells

G condition (GT-GT), and the proportions of gate-preferring GT cells, constant

rring GT cells among GT-GT cells.

ate-preferring GT cells (right). Top panels show raster plots against position in

spectively. Bottompanels show running speed averaged for pre (green) andNG

n for pre (green) and NG (turquoise) sessions.
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Figure 5. Persistent Neuronal Subsets Mediate Over-Representations of the Reward and Landmark Locations

(A) Formation of different PC categories from non-PCs. (Left) A histogram showing the distribution of PCs that were non-PCs in the previous sessions against

position. The values were calculated from data across all sessions and averaged for seven mice. For comparison, the histograms shown in (A), (B), and (D–F) are

plotted on the left y axes on the same scale. In addition, the histograms in (D) and (F) were scaled by their maximum values and are plotted in a light color on the

right y axes. (Right) The average cell density of each PC subcategory formed from non-PCs. #p = 0.023 versus non-RW/GT, c2
(2) = 8.00; Friedman test, n = 7mice.

(B) Elimination of different PC categories by conversion to non-PCs. (Left) A histogram showing the distribution of PCs that became non-PCs in subsequent

sessions against position. (Right) The average cell density of each PC subcategory that became non-PCs in the subsequent sessions. ##p = 0.0099 versus non-

RW/GT, c2
(2) = 8.86; Friedman test, n = 7 mice.

(C) Net PC formation. (Left) A histogram of the difference obtained by subtracting the histogram in (B) from that in (A). (Right) The average cell density of PCs of

each subcategory.

(D) Transition and stability of non-RW/GT cells. (Left) A histogram showing the distribution of PCs that were non-RW/GT cells in the previous sessions against

position. (Right) The average cell density of each PC subcategory that was derived from non-RW/GT cells.

(E) Transition and stability of GT cells. (Left) A histogram showing the distribution of PCs that were GT cells in the previous sessions against position. (Right) The

average cell density of each PC subcategory that was derived from GT cells. #p = 0.023 versus non-RW/GT, c2
(2) = 7.14, Friedman test, n = 7 mice.

(F) Transition and stability of RW cells. (Left) A histogram showing the distribution of PCs that were RW cells in the previous sessions against track position. (Right)

The average cell density of each PC subcategory that was derived from RW cells. ###p = 0.0005 versus non-RW/GT, c2
(2) = 14.0, Friedman test, n = 7 mice.

(G) The numbers of RW cells that were derived from RW cells, GT cells, non-RW/GT cells, and non-PCs during the early, middle, and late phases of training. The

transitions from non-PCs represent net formation after subtracting the disappearance of the existing PCs. *p = 0.021 versus early RW, F(3,33) = 3.16; two-way

ANOVA, n = 4–6 session pairs.

(H) The numbers of GT cells that were derived from RW cells, GT cells, non-RW/GT cells, and non-PCs during the early, middle, and late phases of training.

***a, p = 0.0003 versus early GT, ***b, p < 0.0001 versus early GT, F(3,33) = 17.6; ##c, p = 0.0011 versus middle non-RW/GT, ##d, p = 0.0018 versus late non-RW/GT,

F(2,11) = 4.96; two-way ANOVA, n = 4–6 session pairs.

(A–H) Data are expressed as mean ± SEM.

(I) A model for the formation of the hippocampal salience map. The key processes in each phase are shown in red. During the early phase of map formation, de

novo conversion from non-PCs primarily sets out a prototypemap (left). Selective consolidation of GT cells andRWcells subsequently plays a dominant role in the

establishment and maintenance of the salience map during the middle and late phases of training (right).
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Figure 6. Enhanced Goal-Directed Behavior of Shank2-Deficient

Mice

(A) The fraction of time spent running for the early (sessions 1–5), middle

(sessions 6–10), and late (sessions 11–15) phases of training in wild-type (WT)

and Shank2-deficient (KO) mice (WT versus KO, p = 0.025, F(1,7) = 8.14, two-

way ANOVA, n = 5 WT and 4 KO mice).

(B) The number of rewards obtained in sessions in the late training phase.

***p < 0.0001 versus WT, t(43) = 5.07; unpaired two-tailed t test, n = 25 and 20

sessions from 5 WT and 4 KO mice, respectively.

(C) Slowdown before the reward delivery point *p = 0.031, F(1, 7) = 2.199, t(21) =

2.811, two-way ANOVA with the Holm-Sidak test, n = 5 WT and 4 KO mice.

(A–C) Data are expressed as mean ± SEM.

(D) Examples of trial-by-trial (gray) and average (red) running speed plotted

against position for WT (left) and KO (right) mice in single sessions in the late

training phase.
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andGT cells are primarily derived from non-PCs until the number

of cells is sufficient; second, thereafter, each subcategory be-

comes its own dominant source in the middle and late sessions

(Figure 5I).

Since the analyses thus far considered active cells that ex-

hibited detectable fluorescence changes, we further investi-

gated the dynamics of inactive ‘‘silent’’ cells during the middle

and late phases of map formation (for details, see STAR

Methods). This independent analysis replicated the findings of

selective stabilization of RW cells and GT cells and unbiased

recruitment of non-RW/GT cells to these cell categories during

map formation (recurrence of GT cells, 68.1% ± 7.0% [4.5-fold

relative to a uniform distribution]; recurrence of RW cells,

50.8% ± 7.5% [2.5-fold relative to a uniform distribution]; recruit-

ment of non-RW/GT cells to RW cells, 13.0% ± 3.2% [0.9-fold

relative to a uniform distribution]; recruitment of non-RW/GT

cells to GT cells, 14.2% ± 2.2% [0.7-fold relative to a uniform dis-

tribution]; n = 10 sessions of 893–1,219 cells from twomice). The

analysis of silent cell dynamics revealed that themajority of silent

cells (65.7% ± 2.2%, mean ± SD, n = 10 sessions of 1,576–1,682

cells from two mice) remained silent cells in the subsequent ses-

sions. Among the silent cells that exited the pool of silent cells,

29.9% ± 4.6% and 70.1% ± 4.6% of them became PCs and
non-PCs, respectively, while 29.9% ± 4.8% and 70.1% ± 4.8%

of active-cell-derived silent cells returned from PCs and non-

PCs, respectively. Of those silent-cell-derived PCs, 24.1% ±

4.8% (2.0-fold representation versus non-RW/GT cells) and

22.4% ± 4.5% (1.4-fold versus non-RW/GT cells) became GT

cells and RW cells, respectively, whereas 22.3% ± 3.2% (1.8-

fold versus non-RW/GT cells) and 22.6% ± 3.6% (1.3-fold versus

non-RW/GT cells) of PC-derived silent cells returned from GT

cells and RW cells, respectively. These results demonstrate

that salient-location-biased PC formation from silent cells is

equilibrated by a similarly biased elimination, as in the case of

non-PCs (Figures 5A–5C). Silent cells and non-PCs thus share

a similar mode of dynamics when they convert to and revert

from PCs.

Separable Reward and Landmark Coding Revealed by
Shank2-Deficient Mice
To dissect themolecular mechanisms underlying the over-repre-

sentation of salient locations, we examined mice deficient in

Shank2, a gene that encodes a scaffold protein found at the

excitatory postsynaptic density (PSD). These mice mimic the

microdeletion of Shank2 identified in a case of ASD with mild in-

tellectual disability (Berkel et al., 2010), and exhibit ASD-like be-

haviors, including impaired social interaction and hyperactivity,

reduced N-methyl-D-aspartate (NMDA) receptor function, and

impaired long-term potentiation and long-term depression at

hippocampal CA1 synapses (Won et al., 2012), providing a

unique opportunity to test whether the integrity of postsynaptic

signaling and synaptic plasticity is necessary for hippocampal

map formation and plasticity.

Shank2-deficient mice displayed not only an increased frac-

tion of time spent running (Figure 6A; knockout [KO] versus

wild type [WT], p = 0.025, F(1,7) = 8.14, two-way ANOVA, n = 5

WT and 4 KO mice) and acquisition of an increased number of

rewards (Figure 6B) but also enhanced anticipatory slowdown

before the reward zone (Figures 6C and 6D). This finding sug-

gests that the hyperactivity of thesemice is not merely a reckless

run but rather reflects amore frequent repetition of highly stereo-

typed goal-directed behavior. However, the possibility that a

higher level of attention and/or increased anxiety also contribute

to this behavior cannot be excluded (Won et al., 2012). Consis-

tent with the running-dependent increase in the fraction of PCs

(Figure 2C), the overall PC fraction was elevated in Shank2-defi-

cient mice compared to WT mice (Figure 7A; KO versus WT, p =

0.025, F(1,7) = 8.07, two-way ANOVA, n = 5 WT and 4 KO mice).

Remarkably, the hippocampal maps of Shank2-deficient mice

exhibited substantially enhanced over-representation of the

reward location, whereas their learning-induced over-represen-

tation of the landmark location was selectively and completely

lacking (Figures 7B, 7H, and 7I). It is unlikely that the absence

of over-representation of the landmark location in Shank2-defi-

cient mice was due to their potential impairment in vision, as

they exhibited anticipatory behavior before the landmark even

when the position of the landmark that indicated the reward loca-

tion was randomly shifted (Figure S7). Compared to the average

non-RW/GT cell fractions, the average RW cell fractions of each

mouse had an increased correlation with the average number of

rewards obtained throughout the training (Figure 7C), which
Cell Reports 32, 107864, July 7, 2020 9



Figure 7. Loss of Over-Representation of the Landmark Location and Augmented Over-Representation of the Reward Location in Shank2-

Deficient Mice

(A) PC fractions in the early, middle, and late phases of training (n = 5 WT and 4 KO mice).

(B) Normalized fractions of GT (left), non-RW/GT (middle), and RW (right) cells relative to the number of total PCs in each phase of training. ***a, p = 0.0009, ***b, p <

0.0001, F(1,7) = 22.39; ***c, p = 0.0014, **d, p = 0.0003, **e, p = 0.0003, F(1,7) = 33.33; two-way ANOVA, n = 5 WT and 4 KO mice.

(C) Correlations between the number of rewards obtained and the fractions of RW or non-RW/GT cells. The data for the early (average of sessions 1–5) and late

(average of sessions 11–15) phases of training are shown in the left andmiddle panels, respectively. Each point represents the data from an individual animal, and

the points and regression lines shown in red and blue represent those for RW and non-RW/GT cells, respectively. The graph shown right indicates the correlation

coefficients of linear regressions for RW (red) and non-RW/GT (blue) cell fractions in the early, middle, and late phases of training. n = 5 WT and 4 KO mice.

(D) Scatterplots showing the relationship between the fraction of GT (left), non-RW/GT (middle), and RW (right) cells with respect to total identified cells and the

fraction of time spent running. Each symbol represents an individual session. Solid and dotted lines indicate linear regression and 95% confidence intervals,

respectively.

(E) Net formation of GT, non-RW/GT (n-R/G), and RW cells during the early training phase inWT and KOmice. #p = 0.046, F(1.025,3.075) = 2.35, t(3) = 4.979; one-way

ANOVA with the Holm-Sidak test, n = 4 KO mice.

(F) The average PC stability for GT, non-RW/GT, and RW cells in WT and KO mice. #a, p = 0.036, #b, p = 0.034, F(1.938,7.753) = 11.36, one-way ANOVA, n = 5 WT

mice. ##c, p = 0.0011, F(1.04,3.12) = 16.5, one-way ANOVA, n = 4 KO mice.

(G) Design of the reward-rearrangement task. Mice were first trained on the standard linear track, which included a visual landmark (GT) and reward delivery (RW)

at separate locations, in preceding control sessions (pre). Once training was complete, the location of reward delivery was shifted to match the location of the

landmark (GT+RW), and the mice were retrained in this new arrangement for the following five sessions (rearr 1–5).

(H and I) Example PC maps (top) and histograms indicating the average distribution of PCs with respect to position (bottom) before (pre �2) and after (rearr 4)

reward rearrangement of WT (H) and KO mice (I).

(J) Normalized representations for GT (left), non-RW/GT (middle), and RW (right) cells in each session of reward-rearrangement experiments (n = 5 WT and 4 KO

mice).

(K) Two-dimensional plots showing the positions of place fields of common PCs immediately before (pre �1) and after (rearr 1) the reward rearrangement in WT

(left, n = 259 cells from five mice) and KO mice (right, n = 339 cells from four mice). Red arrows indicate clusters of cells that persistently encode the reward

locations. The green arrow indicates a cluster of stable GT cells in WT mice.

(A), (B), (E), (F), and (H)–(J) Data are expressed as mean ± SEM.
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indicates that RW cell fractions are a better indicator of the

amount of rewarded experience. The fraction of GT cells for a

given amount of spatial behavior was substantially reduced in

Shank2-deficient mice, while those of non-RW/GT and RW cells

were slightly decreased and increased, respectively (Figure 7D).

Consistent with these findings, the net formation of GT cells from

non-PCs during the early phasewas significantly less than that of

non-RW/GT cells in these mice (Figure 7E). Moreover, the stabil-

ity of GT cells was reduced to a level comparable to that of non-

RW/GT cells (Figure 7F). These findings indicate that Shank2

plays an indispensable role in both initial formation and subse-

quent stabilization of GT cells. Finally, we testedwhether Shank2

is required for the reorganization of preformed maps in reward-

rearrangement experiments, where mice trained on the standard

virtual linear track for 15 sessions were further trained for the

following five sessions on the same track with the exception

that the location of reward was shifted to match the landmark

location (Figure 7G). In contrast to the pivotal role of Shank2 in

synaptic plasticity, the peak of the density of RW cells rapidly

shifted to the new reward location in Shank2-deficient mice as

in WT mice (Figures 7H–7J); thus, Shank2 is dispensable for

reward-relocation-induced plasticity of RW cells (Figure 7K). In

summary, the results clearly demonstrate that the two forms of

hippocampal over-representation are mechanistically sepa-

rable. Shank2 is required for learning-induced over-representa-

tion of landmark locations but not for rapid emergence and plas-

ticity of over-representation of reward locations. The absence of

Shank2 elicits abnormally enhanced over-representation of

reward locations, and this ‘‘super-representation’’ is associated

with enhanced running and goal-anticipation behavior and

increased acquisition of rewarded outcomes.

DISCUSSION

In this study, we found that hippocampal over-representations of

locations associated with reward and a visual landmark are medi-

ated by separable subsets of neurons with different time courses

of emergence and different underlying molecular mechanisms.

The disproportionate hippocampal maps were established as a

result of de novo conversion of the cells that encode each salient

location from nonspatially tuned cells in the early phase, followed

by their selective stabilization in the late phase. The two types of

hippocampal over-representations were distinguishable by the

necessity of Shank2; the learning-induced over-representation

of the landmark location is dependent on Shank2, whereas rapid

emergence and plasticity of over-representation of the reward

location is independent of Shank2. Moreover, the abnormally dis-

torted representation toward the reward location in the Shank2-

deficient mouse model of ASD was associated with enhanced

running and goal-anticipation behavior and increased acquisition

of the rewarded experience, which suggests that aberrant hippo-

campal mapping of salient features may underlie cognitive and

behavioral abnormalities in a subset of ASD cases.

In contrast to the preceding studies that examined only a sin-

gle type of salient feature (O’Keefe and Conway, 1978; Wiener

et al., 1989; Hetherington and Shapiro, 1997; Hollup et al.,

2001; Dupret et al., 2010; Danielson et al., 2016; Geiller et al.,

2017; Zaremba et al., 2017; Gauthier and Tank, 2018, Bourbou-
lou et al., 2019), our study investigated the impacts of reward and

a landmark separately side by side and provided strong evi-

dence that multiple mechanistically distinct over-representa-

tions encode different types of salient features within a single

hippocampal map. In our model, the number or fraction of a

particular functional subset of neurons is determined by equilib-

rium between their stability and instability. During the early phase

of map formation, new conversion of PCs from non-PCs creates

a sparse prototype map in which ‘‘seed’’ GT cells and RW cells

are laid out. The higher stability of each of these cell categories

shifts the equilibrium upward to an elevated steady-state level

and enables induction or maintenance of increased numbers of

cells during the later phases. Representations of salient loca-

tions by these subsets of neurons constitute more stable singu-

larities within hippocampal maps and may provide substrates by

which different kinds of salient experience form lasting memory

traces. Immediate emergence of over-representation for motiva-

tional salience is favorable for the rapid location of a source of

positive reinforcement within the subject’s environment,

whereas gradual mapping of environmental salience presumably

reflects experience-dependent learning of the environment that

could contribute to some form of landmark-based navigation

(Sato et al., 2017; Le Merre et al., 2018). Thus, the multiplicity

of functionally distinct salience coding revealed in our study

expands the capacity of hippocampal maps to encode the pres-

ence and absence of a variety of nonspatial features onto their

spatial representations.

We identified Shank2 as a single gene that is essential for the

establishment of hippocampal over-representation. Since the

global KO of Shank2 is thought to cause many changes

throughout the brain, the relevant circuit mechanisms need to

be elucidated in future studies. One possibility is that since the

Shank2-deficient mice used in our study show regular synapse

numbers yet impaired NMDA receptor function and synaptic

plasticity in the hippocampal CA1 (Won et al., 2012), this sug-

gests that normal NMDA receptor-mediated signaling fulfilled

by Shank2 may play a role in the formation and stabilization of

GT cells. Detailed circuit and molecular dissection of pathways

that convey distinct salience signals for reward and landmark

also remains to be conducted. Neurons in the lateral entorhinal

cortex fire in the vicinity of objects when they are introduced

into the environment (Deshmukh and Knierim, 2011; Tsao

et al., 2013; Basu et al., 2016; Wang et al., 2018), which makes

them a putative source of the salience signal for landmarks.

The selective loss of landmark over-representation unveiled in

the present study might be implicated in a specific type of navi-

gation impairment in humans, landmark agnosia, which involves

the temporal lobe and hippocampus as its major neural corre-

lates (van der Ham et al., 2017), and could also shed light on

spatial behavior in ASD (Smith, 2015). Salience signals may

modulate PC stability via not only anNMDA-receptor-dependent

mechanism but also a dopamine-dependent mechanism (Ken-

tros et al., 1998, 2004). Loss of Shank2 did not abolish the rapid

emergence and plasticity of RW cells. While a mouse model of

22q11.2 deletion syndrome that affects more than 20 genes

shows deficits in hippocampal reward over-representation and

goal-oriented learning (Zaremba et al., 2017), a specific deletion

of the single Shank2 gene in our study leads to substantially
Cell Reports 32, 107864, July 7, 2020 11
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augmented reward over-representation and enhanced running

and goal-anticipation behavior, demonstrating that hippocampal

reward representation and related behavior can be altered bidi-

rectionally in mutually opposite directions in different mouse

models of neurodevelopmental disorders. The appearance of

reward over-representation preceding the emergence of antici-

patory behavior during training raises the possibility that the

former could play a role in the occurrence of the latter. Hypermo-

tivated behavior and increased ventral striatal function have

been reported in other Shank2-deficient rodent models (Pappas

et al., 2017; Modi et al., 2018), suggesting a hypothesis that

enhanced hippocampal reward mapping in the absence of

Shank2 contributes to the development of augmented goal-

anticipation behavior via increased interaction with striatal moti-

vational circuits (Lansink et al., 2009).
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Masaki

Sato (masaaki.sato@riken.jp).

Materials Availability
The mouse line generated in this study is available from the RIKEN BioResource Center (http://www.brc.riken.jp/lab/animal/en/;

stock number RBRC06579).

Data and Code Availability
The datasets and custom computer code associated with this study will be made available by the authors upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were conducted in accordancewith institutional guidelines and protocols approved by the RIKEN and Kyoto University

Animal ExperimentsCommittees. Adultmale Thy1-G-CaMP7 transgenicmice and those lackingShank2were used for the experiments.

Homozygous Shank2-deficient mice (Won et al., 2012) carrying the Thy1-G-CaMP7 transgene and age- and gender-matchedwild-type

control transgenicmicewere obtained by crossingmale homozygous Thy1-G-CaMP7 transgenic, heterozygousShank2-deficientmice

with female heterozygous Shank2-deficient mice lacking the Thy1-G-CaMP7 transgene. All mice used were at least 12 weeks old and

weighed 28-35 g at the beginning of surgery. The mice were housed in groups of one to four per cage on a 12 h-12 h light-dark cycle

(with lights on at 6 pm and off at 6 am the next day). Thy1-G-CaMP7 mice were genotyped by PCR using the primers 50-
CTGCTGCCCGACAACCA-30 and 50-GTCGTCCTTGAAGAAGATGG-3’, which provided a 465-bp product of the G-CaMP7 coding

sequence from tail DNA samples of transgene-positive mice. The wild-type and Shank2-deficient alleles were detected by PCR using

the primers WT fwd 50-GCTAGCATGACGTGTGTTGTG-30 and rev 50-ACCTGTGTGTGATTTCTGAC-30, and the primers KO fwd2 50-
CCGACTGCATCTGCGTGTTC-30 and rev 50-ACCTGTGTGTGATTTCTGAC-30, respectively (Won et al., 2012).

METHOD DETAILS

Generation of Thy1-G-CaMP7 transgenic mice
The cDNA encoding G-CaMP7 (Ohkura et al., 2012) ligated to the coding sequence of DsRed2 via a Thosea asigna virus-derived 2A

peptide (T2A) sequence (Sato et al., 2015) was subcloned into the Xho I site of the modified mouse Thy-1.2 promoter vector (Feng

et al., 2000). The 8.7-kb DNA fragment was prepared by digestion with Not I and Pvu I restriction enzymes and subsequent gel

purification and injected into the pronuclei of 466 fertilized eggs of C57BL/6Jmice. From 32 offspring, 9micewere identified as trans-

gene positive, and 6 exhibited transgene expression in the brain. One founder mouse that expressed the transgene at a high level in

the hippocampus was used for this study.

Analysis of transgene expression
Analysis of transgene expression in Thy1-G-CaMP7 mice was conducted essentially as described previously (Sato et al., 2015). The

primary antibodies used in immunolabeling were rabbit anti-calbindin D-28K (1:500, AB1778, Millipore, Billerica, MA), rabbit anti-

GAD65/67 (1:500, AB1511, Millipore), mouse anti-parvalbumin (1:1000, clone PARV-19, P3088, Sigma, St. Louis, MO), mouse

anti-somatostatin (1:200, clone SOM-018, GTX71935, Gene Tex, Irvine, CA), rabbit anti-glial fibrillary acidic protein (GFAP)

(1:1000, N1506, Dako, Denmark) and rabbit anti-Iba1 (1:1000, 019-19741, Wako Pure Chemical Industries, Ltd., Japan), and the sec-

ondary antibodies used were Alexa Fluor 647-labeled goat anti-rabbit and anti-mouse IgG antibodies (1:700-1000, A-21245 and A-

21236, Thermo Fisher Scientific, Waltham, MA). Nuclear counterstaining was conducted in PBS containing 10 mg/ml Hoechst 33258

(Calbiochem) and 0.1% Triton X-100 at room temperature for 5 min. The densities of CA1 pyramidal cells were determined in the

pyramidal cell layer of the dorsal CA1 hippocampus in 4 fields per animal (field size, 212 3 212 mm) and expressed as cell number

per 200 mm length of the pyramidal cell layer. A quantitative analysis of G-CaMP7 and calbindin immunolabeling fluorescence signals

was performed by averaging fluorescence intensities across cell bodies and normalizing them to those of the brightest cells within the

field of view. High-calbindin cells were defined as those whose normalized calbindin signals were greater than or equal to 0.2, and the

remaining cells were grouped as low-calbindin cells.

The histological analyses confirmed that the long-term transgenic expression of G-CaMP7 in Thy1-G-CaMP7mice does not cause

discernible toxicity. The pyramidal cell densities and overall distribution patterns of glial fibrillary acidic protein (GFAP)-positive as-

trocytes and Iba1-positive microglia were indistinguishable between Thy1-G-CaMP7 and wild-type (WT) C57BL/6 mice (Figure S1C;

pyramidal cell density, 51.3 ± 2.4 cells/200 mm pyramidal cell layer in Thy1-G-CaMP7mice versus 48.7 ± 1.2 cells/200 mm pyramidal

cell layer in WTmice; t(14) = 0.975, p = 0.35, n = 8 fields each from 2 Thy1-G-CaMP7 and 2WTmice, unpaired two-tailed t test). It was

also found that in addition to strong hippocampal expression (Figure S1D), Thy1-G-CaMP7 mice express G-CaMP7 in diverse brain

areas, including the cerebral cortex, olfactory bulb, brainstem and cerebellum (Figures S1E–S1P).
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Surgery
Mice were anesthetized with isoflurane in ambient air (3% induction, 1.5% maintenance) and placed in a custom-made stereotaxic

frame. To reduce secretions and brain edema, we administered atropine (0.3 mg/kg, s.c.) and dexamethasone (2 mg/kg, s.c.) prior to

anesthesia. A circular piece of the scalp was removed, and the underlying bonewas cleaned and dried. Three small screwswere then

placed in the skull (two at the suture of the interparietal and occipital bones and one on the right frontal bone) to provide anchors for

the head plate. A thin layer of cyanoacrylate was applied to provide a substrate to which the dental acrylic could adhere.

A stainless steel head plate (25 mm length, 4 mm width, 1 mm thickness) with a wide circular opening (7 mm inner diameter and

10mm outer diameter, the center is 2.5 mm off relative to the middle of the long side of the plate) was affixed to the skull using dental

cement. The center of the opening was targeted at 2 mm posterior to the bregma and 2 mm lateral to the midline in the left hemi-

sphere. The cement wasmixed with black ink to block light entry from the LCDmonitor into themicroscope and placed onto the skull

such that it covered the entire skull, including the anchor screws, except for the area of skull inside the opening of the head plate.

Optical window preparation was performed as described previously with modifications (Dombeck et al., 2010; Sato et al., 2016). A

few days after the head plate surgery, a 2.5-mm-diameter circular craniotomy was created on the skull overlying the dorsal hippo-

campus. The dura was removed with forceps, and the overlying cortex was aspirated in a small amount at a time using a blunted 25-

gauge needle connected to a vacuum pump. This step was continued with occasional irrigation with cortex buffer (123 mM NaCl,

5 mM KCl, 10 mM glucose, 2 mM CaCl2, 2 mMMgCl2, 10 mM HEPES, pH 7.4) until the white matter, including the corpus callosum,

was exposed. Then, the top-most layers of the white matter were gently peeled aside by holding with the vacuum-connected blunted

needle such that its minimal thickness remained covering the dorsal surface of the hippocampus. To minimize bleeding, aspiration

was initiated from a cortical area devoid of large vessels, and bleeding was treated immediately with a piece of gelatin sponge (Spon-

gel, Astellas Pharma, Tokyo, Japan) wetted with cortex buffer. An imaging window was then inserted to mechanically support the

cranial hole, its surrounding tissue and the hippocampal surface. The imaging window consisted of a stainless steel ring (2.5 mm

outer diameter, 2.2 mm inner diameter and 1.0 mm height) with a round coverslip (2.5 mm diameter, 0.17 mm thickness, Matsunami

Glass Ind., Osaka, Japan) attached to the bottom using a UV-curable adhesive (NOA81, Norland Products, Cranbury, NJ). To reduce

brain movement during imaging, a small disk of medical grade clear silicone sheeting (0.13 mm thickness, 20-10685, Invotec Inter-

national, Jacksonville, FL) was attached to the surface of the coverslip facing the hippocampal tissue (Mower et al., 2011). When the

windowwas positioned, the bottom coverslip was approximately parallel relative to the head plate, and the hippocampal surfacewas

clearly visible through the bottom coverslip without any trace of bleeding. The upper rim was then cemented to the skull with dental

acrylic.

After surgery, a metal cover (0.3 mm thickness) was screwed onto the upper surface of the head plate to protect the imaging win-

dow from dust. Themice were placed in a warmed chamber until they fully recovered from anesthesia and were then returned to their

home cages. They were housed for at least 4 weeks of postoperative recovery before the start of handling.

VR set-up
A VR system with an air-supported spherical treadmill for head-fixed mice was constructed as described previously (Sato et al.,

2017). A 20-cm-diameter Styrofoam ball placed inside the bowl provided a freely rotating surface on which the mouse stood. The

mouse was positioned near the top of the ball with its head fixed via the steel head plate that was screwed into a rigid cross bar

and posts. A single wide-screen 23’’ LCD display (Dell U2312, Round Rock, TX) placed 30 cm in front of the mice presented VR

scenes rendered by OmegaSpace 3.1 (Solidray Co. Ltd., Yokohama, Japan) running on a Windows 7 computer in 81� horizontal

and 51� vertical fields of view. The LCD monitor was large enough to cover the major part of the mouse’s binocular and monocular

visual fields (Sato and Stryker, 2008). The use of a single LCD monitor for VR presentation effectively elicits visual cue-based virtual

navigation behavior in head-fixed mice (Youngstrom and Strowbridge, 2012; Sato et al., 2017).

The movement of the ball was measured with a USB optical computer mouse (G400, Logitech, Newark, CA) via custom driver and

LabVIEW software (National Instruments, Austin, TX). The optical mouse was positioned in front of the mouse and at the intersection

of the mouse’s sagittal plane and the equator of the ball. The signals along the horizontal axis (aligned parallel to the mouse’s sagittal

plane) generated by the running of the head-fixed mouse was used to compute rotational velocity in the forward-backward direction.

This velocity signal was converted into analog control voltages (0–5 V) via a D/A converter and fed to a USB joystick controller

(BU0836X, Leo Bodner, Northamptonshire, UK) connected to the OmegaSpace computer to move the mouse’s position in VR.

Water rewards (5 ml/reward) were delivered by a microdispenser unit (O’Hara & Co., Ltd., Tokyo, Japan) attached to a water-

feeding tube positioned directly in front of the mouse’s mouth. The unit was triggered upon reward events in VR by 5 V TTL signals

generated by an OmegaSpace script via a USB-connected D/A device (USB-6009, National Instruments). The behavioral parame-

ters, such as themouse’s location in the virtual environment, the trigger signals for water rewards and the rotational velocity signals of

the spherical treadmill, were recorded at 20-ms intervals using custom software in LabVIEW. The TTL signals for each frame sent by

the microscope computer were recorded with the behavioral data to synchronize the imaging and behavioral data.

Behavior
At least 5 days before the start of imaging experiments, mice implanted with the head plate and the imaging windowwere acclimated

to handling and the Styrofoam ball. During this acclimation, mice were handled by an experimenter for 5–10 min and then allowed to

move freely on the top of the ball, which was rotated manually by the experimenter, for another 5–10 min. The procedure was
Cell Reports 32, 107864, July 7, 2020 e3
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performed once a day and repeated for at least 3 days. Themicewere then placed on awater restriction schedule 2–3 days before the

start of the experiments. No other type of pre-training was conducted before the mice were exposed to the virtual environment in the

first sessions. Body weight and general appearance were checked daily to ensure that the animals maintained at least�85% of their

preoperative body weight and exhibited no signs of abnormal behavior throughout the study. The experiments were performed dur-

ing the dark phase of the cycle to enhance the locomotion of the mice.

The virtual endless linear track was created using an editor function in OmegaSpace. The mouse started at the origin of the virtual

linear track segment and ran along the track unidirectionally with visual feedback rendered by OmegaSpace. The track segment was

100 cm long,measured as the number of rotations of the ball required tomove from one end of the track to the other times the circum-

ference of the ball. Themousemoved only one-dimensionally along themidline of the track, with its view angle fixed in the direction of

movement. Different patterns were placed on the walls of each track subsegment as follows: vertical white and black stripes at

0–25 cm, horizontal white and black stripes at 25–50 cm, and black dots on a white background at 50–100 cm. The floor was

patterned with a white grid on a black background. The space above the track was colored black. A green gate was placed

25 cm from the origin to serve as a salient landmark. Water rewards were delivered when the mouse reached a reward point located

75 cm from the origin. This reward point was located in themiddle of a track zonewith a certain wall pattern (i.e., black dots on a white

background) and not denoted with any other salient visual cues. Upon reaching the other end of the segment, the mouse’s virtual

position was transferred back to the origin, and the same segment of the linear track was presented again. The approaching track

segment following the current segment was always rendered on themonitor, such that the virtual linear track appeared infinitely long.

Themice underwent a total of 15 training sessions in the above task, with 1–2 sessions per day. Each session was 10min long. When

2 sessionswere performed in one day, the intervals between sessionswere at least 4 h, and themicewere returned to their home cages

between the sessions. The entire training period from the first to the last sessionwas 225± 8 h (mean±SD, n = 7mice). Eachmousewas

lightly anesthetized with isoflurane to detach the metal window cover screwed onto the head plate and clean the imaging window, after

which the mouse was placed into the VR apparatus. The head was then fixed to the crossbar above the ball via the head plate, and the

mouse was left on the ball in the dark for approximately 20 min until it had recovered fully from the anesthesia. During the behavioral

session, the animalwas allowed to behave freely in the head-fixed arrangement.G-CaMP7 fluorescence in hippocampal CA1pyramidal

neuronswas simultaneously imagedasdescribedbelow. Lickingwas detected using an infraredphoto beamsensor (OPR-LKR,O’Hara

& Co., Ltd.) in a subset of experiments. Slowdown of running speed before the reward delivery point was calculated as the difference

between themaximumaverage running speedbetween the landmark location and the rewarddelivery point (32.5–65 cm from the origin)

and the average running speed in the area immediately before the reward delivery point (65–75 cm from the origin).

For the reward-rearrangement task, mice first underwent 15 training sessions on the virtual linear track as described above. The

mice were further trained for the following 5 sessions (Rearrangement 1-5) in the same virtual linear track except that the location of

reward delivery (75 cm from the origin) was shifted to match the location of the landmark (25 cm from the origin). Data obtained from

the last 4 sessions of the initial 15 training sessions before the shift (Sessions 12 through 15, also referred to as Pre �4 through �1)

were analyzed as pre-rearrangement baseline sessions. The first rearrangement sessions were performed immediately after the last

baseline sessions without releasing the mice from head fixation.

For the taskwith 50% reward delivery and the taskwith no gate, a separate cohort ofmice (n = 3) were trained in 15 normal sessions

andwere then subjected to 2 sessions of the 50% reward task, in which the rewardwas delivered at the same delivery point with 50%

probability, followed by 2 normal sessions and 1 no-gate session, where the green gate was removed from its location throughout the

entire sessions. The first 50% reward sessions and the no-gate sessions were performed immediately after the preceding normal

sessions without releasing the mice from head fixation.

For the randomgate shift task,mice (n = 3wild-typemice and 3Shank2-deficientmice) were first trained on the virtual linear track in

which the visual landmark indicated the reward location at 62.5 cm from the origin for 15 sessions. Then, each of the following 5

random shift sessions began with 12 baseline trials in which the position of the landmark plus reward was fixed at the pre-trained

location, followed by random shift trials in which their position was shifted forward or backward by 12.5 cm or remained at the

pre-trained (normal) position on a trial-by-trial basis in a randommanner. Each of the three landmark plus reward position was tested

four times for a total of 12 random shift trials. Slowdown and licking immediately (0–10 cm) before the landmark plus reward location

were analyzed separately for baseline, forward, normal and backward trials in each session and averaged across the last three of the

five sessions for each mouse.

Imaging
Imaging was performed using a Nikon A1MP (Nikon, Tokyo, Japan) equipped with a 16x, NA 0.8 water immersion objective lens. The

microscope was controlled with Nikon NIS-elements software. G-CaMP7 and DsRed2 were excited using a Ti-sapphire laser (MaiTai

DeepSee eHP, Spectra-Physics, Santa Clara, CA) at 910 nm. Typical laser power was approximately 40 mW at the objective lens.

G-CaMP7 fluorescence was separated using a 560-nm dichroic mirror and collected with an external GaAsP photomultiplier tube

(10770PB-40, Hamamatsu Photonics, Hamamatsu, Japan) mounted immediately above the objective lens. The calcium-insensitive

DsRed2 fluorescence, which helped to identify G-CaMP7-labeled pyramidal neurons, was simultaneously imaged and recorded us-

ing another GaAsP photomultiplier tube. The DsRed2 images were checked by the experimenter for the on-site assessment of the

quality of image acquisition but not used for offline quantitative image analysis, except for image alignment across sessions

(Figure S5).
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To image G-CaMP7-labeled CA1 pyramidal neurons, the microscope was focused at a depth of approximately 150 mm from the

hippocampal surface. To prevent the entry of light from the LCD monitor into the microscope, a small sheet of aluminum foil was

wrapped around the objective lens, so the foil completely covered the space between the objective and the skull. Images of

512 3 512 pixels were acquired at a rate of 15 frames per second using a resonant-galvo scanner mounted on the microscope.

Each imaging session was 10 min long. The size of the field of view was 532 3 532 mm. In repeated chronic imaging, previously

imaged cell populations usually re-appeared at similar depths in new sessions. We took reference images of DsRed2 fluorescence

at the beginning of each session to confirm that the reference image of the current session was very similar to that of the previous

session by ensuring that blood vessels and neurons arranged in unique patterns appeared in the same parts of the two images.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image analysis
Each frame of a G-CaMP7 time-lapse movie was aligned to an average fluorescence image of the movie for motion correction using

the TurboReg ImageJ plug-in. The registered movie was then denoised by a spatio-temporal median filter. This preprocessed movie

f(t,x) was reconstituted to the sum of fluorescence intensity of individual cells using a modified non-negative matrix factorization al-

gorithm, as described in detail elsewhere (Vogelstein et al., 2010; Pnevmatikakis et al., 2016; Takekawa et al., 2017; Giovannucci

et al., 2019). Briefly, this algorithm assumes that the fluorescence intensity of each cell can be deconvoluted to the spatial filter

ac(x), which represents the position and shape of the cell, and the time variation vc(t) derived from spiking activities uc(t):

fðt; xÞ � N

 
a0ðxÞ + v0ðtÞ +

X
c

acðxÞvcðtÞ;s2

!

where a0, v0 are baselines, and s2 is intensity of Gaussian noise. As is the case in cell identification using independent component

analysis (Mukamel et al., 2009), this algorithm preferentially detects cells that change their fluorescence intensities over time (‘‘active

cells’’) because cells that barely do so are regarded as being near baseline. Each spike derives the transient elevation of fluorescence

intensity with a double-exponential shape:

vcðtÞ =
Xt
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�
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�
� t � t0
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�
� exp

�
� t � t0

t2

��
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The exponential rise and decay time constants t1 = 0.09 and t2 = 0.261, respectively, were obtained by curve fitting of actual traces of

cellular calcium transients in G-CaMP7-expressing CA1 pyramidal neurons in Thy1-G-CaMP7 mice in vivo. Spatial filters and spike

timings were estimated by two iterative steps. In the first step, we prepared tentative spatial filters and estimated spike trains cor-

responding to respective filters by a least-squares approach with a non-negative restraint condition. Subsequently, spatial filters

were estimated using the least-squares method on the condition that the estimated spike trains were feasible. In addition, we intro-

duced L1 sparse regularization derived frompriors that represented the typical cell size and spike frequency. To determine themutual

relationship between a and u, a regularized term was also introduced to the model. This condition guaranteed the uniqueness of the

scale of a, u and v. As a consequence, a, u and v are presented in arbitrary units, while the product of a and v corresponds to the

observed data.

In practice, 512 3 512 pixel image data were divided into 4 3 4 of 128 3 128 pixel subareas with 32-pixel overlap regions. Each

subarea was analyzed with the above algorithm, and the results were combined to cover the whole image area. After the initial calcu-

lation, the morphology of each spatial filter was defined as the region above 0.2 times its peak value, and the position of the filter was

defined by its weighted centroid. We then removed the following filters as those that did not represent complete single pyramidal cell

morphology: (1) filters whose areaswere smaller than 25 pixels, (2) filters whose areaswere larger than 400 pixels, (3) filters located on

the edge of the image, (4) filters whose heights or widths were greater than 64 pixels because they often contained structures of mul-

tiple cells, and (5) smaller filters in filter pairs whose distances were closer than 10 pixels (10.4 mm) and whose temporal correlation

coefficients of activities were greater than 0.3 because they were considered to be derived from the same cell.

After those non-cell filters were removed, we recalculated the activity time series for the new filter set. Visual inspection confirmed

that nearly all active cells that were represented in a background-subtracted maximum-intensity projection image were identified

with this procedure (Figures S3A and S3B). All images of the entire session, regardless of the mouse’s behavioral state, were

used for this image analysis. The average number of cells identified from a movie of a session was 900 ± 246 (mean ± SD, n =

105 sessions from 7 mice).

Analysis of place fields
Place fields were calculated using cellular activity during movement periods. We defined these periods as the time when the mouse

moved at a speed of > 0.5 cm/s continuously for a duration of > 2 s to reject irrelevant movements, such as grooming and jittering on

the ball. We divided the entire virtual linear track segment into 80 bins (bin size = 1.25 cm) and created a histogram of neuronal activity

versus track position for each cell. The activity events were defined by binarizing the time series of inferred spike activity u at a

threshold of 0.1, which was empirically determined to remove baseline noise. The counts on the histogram were then divided by
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the mouse’s occupancy time in each bin, and the resultant place fields were smoothed with a Gaussian function (Gaussian window

size = 6.25 cm) and normalized to the maximum values. To test the significance of place-related activity, we calculated the mutual

information content between neuronal activity and the mouse’s virtual location for each cell (Markus et al., 1994; Ziv et al., 2013). We

compared this value to a distribution of mutual information content calculated using 1000 randomly permuted data for the same cell.

The permutation was conducted by rotating the activity event time series by a random amount relative to the time series of the

mouse’s virtual positions. Cells were considered place cells (PCs) if their overall activity rates within the session were no less than

0.1 events/s and their mutual information content in the real data was greater than the 95th percentile of the values obtained from

the randomly permuted data. We defined the position of the place field of each PC by the position of the peak of the field. A PC

was considered a ‘‘gate (GT) cell,’’ ‘‘reward (RW) cell’’ or ‘‘wall (WL) cell’’ if the position of its place field was 17.5–32.5, 75–95 or

47.5–55 cm from the origin of the track segment. PCs with place fields outside the above zones were categorized as ‘‘non-reward,

non-gate cells (non-RW/GT cells).’’ The PC formation factor was defined by the slope of a least-squares regression line fitted to a plot

of the fraction of PCs against the fraction of time spent running, which contained data points from all tested animals in the session of

interest. The linear regressionmodel included no constant term under the assumption that no PCswere formedwithout running in any

given session. When we calculated the fractions of GT, RW and non-RW/GT cells relative to the number of total PCs, we used data

from sessions with at least 35 total PCs to avoid the effects of improperly large or small fractions caused by small numbers of cells.

Analysis of cellular activity in the 50% reward task was conducted by dividing the data from the full sessions into two subsets,

namely, rewarded trials and non-rewarded trials, and analyzing them separately. The activity bias index between rewarded trials

and non-rewarded trials was then calculated as (R-N)/(R+N), where R and N represent the cell’s in-field activity in rewarded trials

and non-rewarded trials, respectively. The activity bias index ranges from �1 to 1, where a positive value indicates a bias toward

rewarded trials and a negative value indicates a bias toward non-rewarded trials. Cells that had activity bias indices < �0.1 (equiv-

alent to an approximately 1.22-fold increase in non-rewarded trials), �0.1 % activity bias indices < 0.1 (equivalent to an approxi-

mately 1.22-fold increase in rewarded trials), and activity bias indicesR 0.1 were subsequently categorized as no-reward-preferring

RW cells, constant RW cells, and reward-preferring RW cells, respectively. In the analysis of cellular activity in the no-gate task, the

same cells that were identified both in the preceding control (pre) and no-gate sessions were determined as described below (‘‘Align-

ment of cells across sessions’’), and the calculation of the activity bias index between pre and no-gate sessions and the categoriza-

tion of gate-preferring GT cells, no-gate-preferring GT cells, and constant GT cells was conducted as in the 50% reward task.

Alignment of cells across sessions
To find a consistent population of cells in images that were acquired in two different sessions, we first estimated the extent of overall

image displacement that existed between the two image datasets. We searched for a peak in the two-dimensional correlation co-

efficient calculated between the two DsRed2 reference images obtained at the beginning of each session within a range of 25 3

25 pixels (26.0 3 26.0 mm) of displacement in the x and y dimensions (Figure S5A). In this analysis, we conservatively focused on

comparisons between two consecutive sessions (i.e., sessions 1 and 2, 2 and 3, etc.) because the quality of the image alignment

was gradually reduced as the number of sessions that separated the two images increased (p < 0.0001, F(13,721) = 10.94, one-

way ANOVA, Figure S5F). A preliminary assessment of the first cohort confirmed that every compared image pair displayed a

peak within this range (average displacement in the x dimension, 5.9 ± 4.5 mm; average displacement in the y dimension, 4.7 ±

4.2 mm; average peak correlation coefficient, 0.77 ± 0.09; mean ± SD; n = 98 image pairs). During the calculation of two-dimensional

correlation coefficients, the image of one session (the ‘‘source’’ session) was systematically shifted relative to that of the other ses-

sion (the ‘‘target’’ session). The map of the coordinates of all cell positions in the target session was then overlaid with that of the

source session, shifted by the amount of the estimated displacement (Figure S5A). The cell closest to each cell in the target session

was searched in the displaced source session map, and the cell that was found was regarded provisionally to be the same cell if they

were separated by 5 pixels (5.2 mm) or less. Cells that were unable to find the closest cells within this range were rejected from the

subsequent analysis. After finding the provisional counterparts in the displaced source session map, the same procedure was

repeated for the cells in the displaced source session map to conversely find their closest partners in the target session. This

step helped remove cell pairs that were redundantly assigned (e.g., two different cells in one session falsely assigned to the same

single cell in the other session) and the resultant cell pairs that had mutually unique correspondence were considered to be the pairs

that represented the same cells (termed hereafter ‘‘common cells’’). When comparing PC maps, common PCs were defined as a

subset of common cells that were identified as significant PCs in both consecutive sessions. Stable PCs were defined as a subset

of common PCs with place-field positions in the consecutive sessions that were close to each other (i.e., place field distance <

10 cm). In the analysis of formation, recruitment and stabilization of PCs (Figure 5), we first identified a population of common cells

that belonged to the cell category of interest in the reference session N and then tracked the position of the place field of each cell in

the subsequent session N+1. The transition was quantified by determining the density of cells at each bin in session N+1.

Since the above-described pairwise cell matching can identify only the correspondence between active cells in adjacent sessions,

a subset of data (n = 2 mice, 15 training sessions from each) was further analyzed including inactive (‘‘silent’’) cells as follows. Spatial

filters and spike timings of all sessions were estimated from G-CaMP7 time-lapse movies with the constrained nonnegative matrix

factorization (CNMF) implementation developed by Pnevmatikakis et al. (2016) and Giovannucci et al. (2019). Common spatial filters

were detected using a model that finds the most probable counterpart by jointly taking into account their centroid distances and

correlations between spatial filters (Sheintuch et al., 2017). This procedure found common spatial filters in 77% of filters examined
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(n = 32,816) in two adjacent sessions. This search was then extensively conducted in every pair within a series of sessions, and

clusters of common spatial filters detected in at least two different sessions were selected as candidate cells. These cells were

considered ‘‘silent’’ in the sessions in which no corresponding spatial filters were identified. We confirmed that none of thesemissing

regions contained individual cell-like activity by calculating the probability of obtaining the maximum amplitude deviation from base-

line activity under given baseline fluctuations. Map comparisons including these silent cells were conducted as described above

except that they additionally took into account the transitions from and to silent cells.

Statistics
Statistical details including sample sizes can be found in the figure legends and Results. When only two groups were compared, two-

sided Student’s t tests were used if the variances of the two groups were similar. Otherwise, two-tailed Mann-Whitney tests were

used. When more than two groups were compared, analysis of variance (ANOVA) was used if variances of the groups compared

were similar. Otherwise, a non-parametric version of ANOVA (Friedman test) was used. In both parametric and non-parametric

ANOVA, p values were adjusted for post hoc multiple comparisons. Exact p values are shown unless p < 0.0001. Statistical tests

were performed using GraphPad Prism versions 6 and 7 (GraphPad Software, Inc., La Jolla, CA).
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