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ABSTRACT Despite the promise of nanomedicine in the fight against complex diseases, the 

enthusiasm for its pharmaceutical development is backed by the elevated costs associated with 

the R&D process. Therefore, as a compromise solution, nanotechnology was mainly applied as 

drug delivery system to improve bioavailability and controllability of pharmaceutical drugs. 

Attempting to break the restrictions without elevating potential costs, we multiply the functions 

of excipients in nanodelivery system by endowing subcellular-targeting ability. To prove the 

concept, fluorescent endoplasmic reticulum-targeted short peptides were covalently connected to 

chemotherapy medication Chlorambucil achieving enhanced drug loading efficiency. Via 

visualized intracellular dynamic enzyme-catalyzed hydrolysis, ER-targeting excipient and 

nucleus-targeting Chlorambucil are released simultaneously, reaching synergistic anticancer 

effect and elucidating the influence of intracellular self-assembly transition on enzymatic 

reactions. 
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INTRODUCTION 

Nanotechnology-based drug development has made important contributions in cancer 

treatment during the past decades,1-3 while most drug research still concentrated on small 

molecules since they have long been associated with biological discoveries.4 Over 50% of the 

FDA-approved cancer drugs are protein targeted small molecules,5 even though the poor 

bioavailability and the target-based resistance limit their applications. To improve the 

biocompatibility of small molecules, a nanoscale drug delivery system called small-molecule 

nanomedicine6 assembled by small pharmaceutical molecules with minimum non-toxic 

excipients is constructed to enhance drug loading efficiency. Applying drug combinations to 

target multiple components of biological regulatory circuits produces stronger treatment, 

combating drug resistance.7 Meanwhile, molecular self-assembly in cell milieu is emerging as 

another practical strategy for multi-component targeting nanomedicine without developing drug 

resistance,8-11 although the dynamics of self-assembly in vitro is still obscure.12-13 Enzyme-instructed 

assembly developed by Xu and co-workers has been widely utilized in the regulation of cell 

behavior with antitumor activities.14 This strategy creates modulated and dynamic alteration of 

functions of assembled objects from rather simple molecular sources facilitating nanomedicine 

development.15 Unfortunately, further investment beyond traditional R&D for drug development 

hinders the progress of such nanomedicine. Based on the statement of James Black that “the best 

way to discover a new drug is to start with an old one”,16 we developed a strategy of producing 

advanced version of small-molecule nanomedicine for multi-targeting (endoplasmic reticulum 

(ER) and nucleus) combination therapy (Scheme 1).17  
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Scheme 1. Schematic illustration of self-assembling molecule design for ER and nucleus dual-

targeting cancer treatment. 

EXPERIMENTAL SECTION 

CES-catalyzed hydrolysis of synthetic molecules in buffer. Carboxylesterase (CES) as 

lyophilized powder was purchased from Sigma-Aldrich (E0887). Following the enzymatic assay 

of esterase, CES stock solution (0.2 U/ µL) in borate buffer (pH 8.0) was prepared. 100 µM 

solution of SJC-1 or SJC-2 was prepared by diluting its DMSO solution (40 mM) with borate 

buffer. The CES stock solution was added into a solution of molecule to reach a final 

concentration of 5 U/mL. And the mixture solution was kept at 37 °C.  High performance liquid 

chromatography (HPLC) and Mass spectrometry (MS) were applied to record the kinetic 

progress of hydrolysis reactions.  
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CES catalyzed hydrolysis of synthetic molecules in vitro. MCF-7 cells were cultured in 35 

mm polystyrene culture dish. When cells reached approximately 80% confluence in the log 

phase growth period, culture media were aspirated and the cells were gently washed using 1x 

PBS buffer. After removing the washing buffer, 2 mL culture medium containing SJC1 or SJC2 

at a concentration of 30 µM, (Coumarin 466)-FFK-Ace and (Coumarin 466)-ffk-Ace were added 

into the culture dish. Treated MCF-7 cells were incubated at 37°C with a humidified atmosphere 

of 5% CO2 for 6 hours. Media were aspirated and the gently washed by cooling down 1x PBS 

buffer for 3 times. 1 mL mixture of cold MeOH and 1x PBS solution (1:1) was added into the 

wells and scratched to harvest the MCF-7 cells. The obtaining cell suspensions were sonicated 

for 10 min, 20s pulse after every 10s interval at 0 °C to break the cell membrane, centrifuged at 

20000 rpm for 5 min at 4 °C, and then collected the supernatant. The supernatants were analysed 

using HPLC-MS to study the intracellular CES catalysed hydrolysis. 

UV-Vis absorption and fluorescence emission spectroscopy. UV-Vis absorption 

measurement was carried out using a NanoDrop 2000C spectrophotometer (Thermo Scientific). 

The cuvette has a 0.5 cm path length. The detection range was set to 250-700 nm with a spectral 

resolution of 1.0 nm. Emission spectra were collected using a custom-made fluorescence 

spectrophotometer (Hamamatsu Photonics). The excitation wavelength was set to 405 nm and 

emission collection range was set between 415 and 750 nm. 

Transmission electron microscopy (TEM). TEM imaging was carried out using a JEM-

1230R (JEOL, Japan) electron microscope. Specimen was prepared following procedure: carbon-

coated copper grids were glow discharged to enhance hydrophilicity; 5 µL sample solution was 

placed on the grid for about 60s and the excess fluid was removed using filter paper; the grid was 

washed using 5 µL distilled water for 3 times and the excess water was removed by a filter 
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paper; 5 µL uranyl acetate (1%)  was placed on the grid for 20s and the excess staining solution 

was removed by touching the edge of grid using a filter paper; the grid was washed using 5 µL 

distilled water; the grid was dried at room temperature before it is ready for imaging. 

Circular dichroism (CD) spectroscopy. CD spectra were recorded using a CD 

spectrophotometer (JASCO J-820) with bandwidth of 1.0 nm in the region (200-550 nm) under 

the nitrogen atmosphere. The cuvette has a 1 mm path length. 

Cell culture. HeLa, SKOV3, OVCAR-3, MCF-7 cell lines were purchased from American 

Type Culture Collection (ATCC, USA) and cultured in ATCC recommended media. Histone 

H2B-GFP expressing HeLa cell line (SCC117) was purchased from Merck Millipore. HeLa cell 

lines were cultured in DMEM containing 10% FBS; SKOV3 cells were cultured in McCoy’s 

medium with 10% FBS; OVCAR-3 cells were cultured in RPMI 1640 medium with 20% FBS 

and MCF-7 cells were cultured in EMEM with 0.01 mg/mL insulin and 10% FBS. Cell 

incubation was carried out at 37 °C with a humidified atmosphere of 5% CO2. The cells were 

maintained at 80% confluency and used for the bioassays. 

Confocal imaging. HeLa or MCF-7 cells (1 × 105) were seeded in 35mm glass bottom dish. 

The cells were allowed to attach for 24 h at 37 ºC under 5% CO2. The culture media were 

removed and changed to fresh media containing (Coumarin 466)-FFK, (Coumarin 466)-ffk, 

SJC-1, SJC-2, (Coumarin 466)-FFK-Ace or (Coumarin 466)-ffk-Ace at a concentration of 20 

μM. After incubation for 2 h, cells were washed using 1× PBS buffer three times and stained 

with commercial fluorescent dyes including ER-TrackerTM Red (BODIPYTM TR Glibenclamide) 

and Lyso-TrackerTM Red DND-99 from ThermoFisher. After removing the staining solution, the 

cells were washed three times using 1× PBS buffer. The cells were observed in Cell Imaging 

Solution using a Nikon A1 confocal microscope. 
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Flow cytometry analysis of cell cycle distribution. HeLa cells (1 × 105) were seeded in 6-

well plates and allowed to attach for 24 hours at 37 ºC under 5% CO2. The cells were treated with 

SJC-1 or SJC-2 at a concentration of 20 µM for various durations (6 h, 12 h, and 24 h). 

Untreated HeLa cells were used as control. Cells were harvested by trypsin and washed twice 

using ice-cold 1× PBS buffer. The cells were further fixed with 70% ethanol at 4 ºC overnight 

and treated with RNase A for 30 min at 37 ºC, followed by PI staining for 30 min in the dark at 

room temperature. Cell cycle analysis was carried out using flow cytometer (Merck Millipore 

ImageStream X Mark II), and 2×104 events per sample were counted. 

Cell viability assay. For all cell lines, 1×104 cells per well in exponential growth phase were 

seeded in a 96 well plate. The cells were allowed to attach to the wells at 37 ºC, 5% CO2 for 

several hours. The culture media were removed followed by addition of 100 μL culture media 

containing compound (Coumarin 466)-FFK, (Coumarin 466)-ffk, SJC-1, SJC-2, (Coumarin 

466)-FFK-Ace, (Coumarin 466)-ffk-Ace, chlorambucil (immediately diluted from 80 mM stock 

solution in DMSO), the mixture of chlorambucil/(Coumarin 466)-FFK (1:1) or 

chlorambucil/(Coumarin 466)-ffk (1:1), and Cisplatin at different concentrations. After 

incubation, 10 μL MTT solution (5 mg/mL) was added to each well and incubated at 37 °C for 4 

h. Then 100 μL SDS solution (10% in Milli-Q water) was added to each well to stop the 

reduction reaction and dissolve the purple formazan. The absorbance at 570 nm was measured 

using Nivo3 microplate reader (PerkinElmer). All experiments were performed in triplicate and 

repeated three times. 

Western blotting. 5.0 × 105 MCF-7 cells per well were seeded in 6-well plate and allowed to 

attach for 24 hours. The cells were treated with 0, 5, 10 and 20 μM SJC-1 and SJC-2; 0, 10, 25 

and 50 μM (Coumarin 466)-FFK-Ace and (Coumarin 466)-ffk-Ace for 12 hours. The cells were 
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harvested and washed using 1× ice cold PBS twice. 70μL CelLytic M solution (Sigma-Aldrich) 

containing protease inhibitors cocktail was added to the cells for 30 min incubation on a shaker 

at 0 °C. Then centrifuge the lysed cells for 5 min at 20000 rmp (4 °C) to pellet the cellular 

debris. The protein concentrations of lysates were determined via the bicinchoninic acid (BCA) 

method. Proteins were dissolved in SDS sample buffer containing 2% β-mercaptoehtanol. 

Samples (10 µg of protein, ~ 10 μL) were loaded and separated by 10% Laemmli-SDS-PAGE. 

For Western blot analysis, the proteins were transferred onto a polyvinylidene difluoride (PVDF; 

Bio-Rad, Hercules, CA, USA) membrane. After blocking with Blocking one-P (Nacalai Tesque, 

Kyoto, Japan), the membrane was incubated with the antibody. Specifically, incubating with 

1:1000 dilution for Bip, Calnexin, IRE1a and PDI (Cell Signaling Technology, #9956), and 

1:2000 dilution for beta-actin (Abcam, ab8227) antibody for overnight at 4 °C. After washing, 

the membrane was incubated with 1000-fold diluted peroxidase-conjugated goat anti-rabbit IgG 

(Bio-Rad, Hercules, CA, USA) for 90 min, and then stained using ECLTM prime Western 

blotting detection reagent (GE Healthcare, Little Chalfont, UK). 

RESULTS AND DISCUSSION 

Design self-assembling molecules for dual-targeting anticancer strategy. As demonstrated 

in scheme 1, Chlorambucil, the small molecule chemotherapy medication with poor 

biocompatibility that alkylates and crosslinks DNA,18 was selected as the ‘old drug’ to couple 

with ER-targeting, p-p stacking and hydrogen bonding oriented self-assembling molecule17 

(Coumarin 466)-FFK covalently via diester bond.19 The obtained ‘new drug’ SJC-1 is a 

nanoscale delivery system for high Chlorambucil loading. Upon the hydrolysis by 

carboxylesterase (CES) that is commonly expressed in tumor tissue,20 Chlorambucil is released to 

damage DNA, and (Coumarin 466)-FFK is released to self-assemble on ER inducing ER stress. 
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The combination of small pharmaceutical molecule and subcellular-targeted self-assembly 

achieves a synergistic therapeutic effect against cancer without developing target-based 

resistance.21 To explore the intracellular self-assembly dynamics and the impact on cellular 

response, a D-version22-24 ER-targeting ‘excipient’ (Coumarin 466)-ffk is applied to couple with 

Chlorambucil obtaining SJC-2 for comparison. 

In water, SJC-1 and SJC-2 both self-assemble into clusters of irregular nanovesicles with 

diameters around 100 nm (Figure 1A) linked by fibrillar structures (Figure S1) at the 

concentration beyond 20 µM (Figure S2). The circular dichroism (CD) spectra of both molecules 

are specular images (Figure 1B) indicating that the chirality of the short peptide building blocks 

FFK/ffk is transferred supramolecularly to SJC-1 and SJC-2 assembled nanostructures.25 

Although they share the same chemical structures, the chirality difference leads to different 

kinetic profiles of CES-catalyzed hydrolysis. As indicated in Figure 1C, under the same reaction 

condition, SJC-1 is hydrolyzed at a slower speed than SJC-2. For example, the time required for 

complete hydrolysis reaction of SJC-1 is twice the time required for completed hydrolysis of 

SJC-2 (Figure S3). The difference in hydrolysis dynamics is maintained inside the cell (Figure 

S4). Both hydrolysis reactions lead to self-assembling morphology transition from vesicle-like to 

film-like nanostructures (Figure 1D). The steady state absorption and emission spectra of SJC-1 

(Figure 1E) and SJC-2 (Figure 1F) both exhibit absorption peak at 421 nm in water, whereas 

their hydrolyzed analogue molecules exhibit absorption peak at 433 nm. The fluorescence 

emission peaks of SJC-1 and SJC-2 were both observed at 557 nm in water. After CES-

catalyzed hydrolysis, both obtained analogue molecules exhibit emission peak at 480 nm.  The 

observed blue shift is highly possibly due to the H-type aggregation of Coumarin 466 in 

hydrolyzed analogues.26 Such drastic fluorescence shift (91 nm) provides researchers the 
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possibility of in situ observation of the dynamics of intracellular self-assembly triggered by CES-

catalyzed hydrolysis (Figure S5).  

 

Figure 1. (A) TEM images of self-assembly of SJC-1 or SJC-2 in water at a concentration of 50 

µM. Scale bars represent 100 nm. (B) CD spectra of SJC-1 or SJC-2 in water at a concentration 

of 200 µM. (C) Kinetic profiles of CES-catalyzed hydrolysis (5 U/mL) of SJC-1 or SJC-2 at a 

concentration of 100 µM in borate buffer (pH = 8.0) at 37 °C. (D) TEM images of self-assembly 

of (Coumarin 466)-FFK or (Coumarin 466)-ffk in water at a concentration of 50 µM. 

Normalized absorption and emission spectra of SJC-1 (E) or SJC-2 (F) before and after the 

hydrolysis by CES. 

CES-triggered dual-targeting anticancer approach against multiple cancer cell lines. 

Upon the treatment of SJC-1 or SJC-2 at relative low concentration (50 µM), DNA 

condensation was observed after short but different period of incubation (Figure 2A and Figure 
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S6). SJC-2 exhibited DNA condensation effect on HeLa cells few hours faster than SJC-1 

indicating a better synergistic effect of cell uptake and chlorambucil release. The flow cytometry 

analysis for cell cycle distribution confirmed the mitotic arrest induced by the treatment of SJC-

1 or SJC-2 (Figure S7). The results suggest that efficient delivery of Chlorambucil is achieved 

by these two small molecule nanomedicines. Confocal microscopy images of HeLa cells upon 

the treatment of two molecules at relatively low concentrations with reduced cell toxicity 

confirmed that the hydrolyzed analogue molecules (Coumarin 466)-FFK and (Coumarin 466)-ffk 

both accumulated on ER (Figure 2B and 2C). And the strong fluorescence signal confirmed to 

have high drug loading efficiency too. Via cell viability tests, the dual-targeting small-molecule 

nanomedicines are confirmed with high toxicity against different types of cancer cells including 

HeLa cells (cervical cancer) (Figure 2D), SKOV3 cells (ovarian cancer) (Figure 2E), OVCAR-3 

cells (drug-resistant ovarian cancer) (Figure 2F), and MCF-7 cells (breast cancer) (Figure 2G). 

Even though MCF-7 cells are known for consistent resistance to alkylating agents by exhibiting 

close to 100% cell viability upon the treatment of Chlorambucil, (Coumarin 466)-FFK, 

(Coumarin 466)-ffk, and their combinations (Figure 2H),27 SJC-1 and SJC-2 exhibited IC50 of 

21.7 µM and 10.9 µM, respectively, much lower than the IC50 of prolidase-activated prodrug of 

Chlorambucil and the chemotherapy drug Cisplatin (Figure S8).28 On all cancer cell lines, SJC-2 

exhibits higher toxicity than SJC-1. 
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Figure 2. (A) Fluorescent images of chromatin in histone H2B-GFP expressing HeLa cells 

treated by SJC-1 or SJC-2 at a concentration of 50 µM for 4 hours. Scale bar represents 10 µm. 

(B) Intracellular localization of (Coumarin 466)-FFK in HeLa cells treated by SJC-1 (20 µM) 

for 2 hours and co-stained with ER-tracker (red). Scale bar represents 10 µm. (C) Intracellular 

localization of (Coumarin 466)-ffk in HeLa cells treated by SJC-2 (20 µM) for 2 hours and co-

stained with ER-tracker (red). Scale bar represents 10 µm. 12-hour and 24-hour HeLa cell (D), 

SKOV3 cell (E), OVCAR-3 cell (F), and MCF-7 cell (G) viabilities upon the incubation with 

SJC-1 or SJC-2 at various concentrations. (H) 24-hour MCF-7 cell viability upon the incubation 

of Chlorambucil, (Coumarin 466)-FFK, (Coumarin 466)-ffk, and their mixtures at various 

concentrations.  
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CES-triggered molecular self-assembly induces ER-stress. Since direct treatment of 

(Coumarin 466)-ffk in MCF-7 cell culture failed in accumulation on ER (Figure S9), to properly 

examine the influence induced by ER-targeted self-assembly, two small-molecule medicines 

(Coumarin 466)-FFK-Ace and (Coumarin 466)-ffk-Ace as CES-instructed nanoscale delivery 

systems are designed and synthesized (Figure 3A). Following their static absorptions at 436 nm 

and fluorescent emissions around 470 nm (Figure 3B), the confocal microscopy imaging was 

conducted to examine intracellular localizations. Upon the treatment of these two molecules, 

(Coumarin 466)-FFK and (Coumarin 466)-ffk were successfully delivered to ER at high loading 

rate (Figure 3C and 3D) and exhibited similar concentration dependent toxicity against MCF-7 

cells (Figure 3E). 

The ER transmembrane sensor protein IRE129, ER stress regulators including ER chaperone 

proteins Bip30 and Calnexin31, and luminal ER oxidoreductase protein disulfide isomerase-A1 

(PDI)32 exhibited upregulation at different levels in MCF-7 cells upon the treatment of SJC-1, 

SJC-2, (Coumarin 466)-FFK-Ace, and (Coumarin 466)-ffk-Ace at increased concentrations 

(Figure 3F and Figure S10), which confirmed the ER-targeted self-assembly of (Coumarin 466)-

FFK and (Coumarin 466)-ffk both induce ER stress triggering cell death. 
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Figure 3. (A) Schematic illustration of CES-catalyzed hydrolysis of (Coumarin 466)-FFK-Ace 

or (Coumarin 466)-ffk-Ace. (B) Absorption and emission spectra of (Coumarin 466)-FFK-Ace 

or (Coumarin 466)-ffk-Ace before and after CES-catalyzed hydrolysis. (C) Intracellular 

localization of (Coumarin 466)-FFK in MCF-7 cells treated by (Coumarin 466)-FFK-Ace (20 

µM) for 2 hours and co-stained with ERtracker (red). Scale bar represents 10 µm. (D) 

Intracellular localization of (Coumarin 466)-ffk in MCF-7 cells treated by (Coumarin 466)-FFK-

Ace (20 µM) for 2 hours and co-stained with ERtracker (red). Scale bar represents 10 µm. (E) 

12-hour and 24-hour MCF-7 cell viability upon the incubation with (Coumarin 466)-FFK-Ace or 

(Coumarin 466)-ffk-Ace at various concentration. (F) Immunoblotting analysis of MCF-7 cells 
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transiently expressing IRE1a, Calnexin, Bip, and PDI upon incubation with SJC-1, SJC-2, 

(Coumarin 466)-FFK-Ace, or (Coumarin 466)-ffk-Ace at various concentrations for 12 hours.  

CES-triggered dynamic intracellular self-assembly. To understand the drug synergy for 

further optimization of beneficial drug interactions, we monitored the intracellular dynamics of 

CES-instructed self-assembly upon the treatment of SJC-1 and SJC-2 using time-lapse confocal 

microscopy imaging of MCF-7 cells (Figure 4A). Upon 1-hour treatment, both intracellular SJC-

1 and SJC-2 are in reticular shape localized on ER with higher loading efficiency in SJC-2 

treatment. At the same time, CES-catalyzed hydrolysis efficiently proceeded exhibiting ER-

targeted self-assembly of analogue molecules. Since 6-hour treatment, SJC-1 gradually 

transformed into punctuate shape aggregates colocalized with part of the (Coumarin 466)-FFK. 

Zoom-in image exhibited co-existence of punctuate and reticular shape (Coumarin 466)-FFK, 

and the punctuates co-localized with SJC-1 (Figure 4B). Smaller amount of punctuate 

aggregation of SJC-2 was also observed after 6-hour treatment. After 12 hours, large amount of 

punctuate shape SJC-1 were still remained, while most of the SJC-2 were hydrolyzed except 

small amount in punctuate shape. Zoom-in image exhibited much higher accumulation rate of 

(Coumarin 466)-ffk on ER than (Coumarin 466)-FFK. 

Regarding the intracellular morphology transition of self-assembled SJC-1/SJC-2, and their 

hydrolysis reaction rate, we tested the CES-catalyzed hydrolysis in their aggregating state in 

solution (Figure S11). The results indicate that the hydrolysis is severely hindered when the 

reactants are tightly packed. And this may well explain why the unhydrolyzed intracellular SJC-

1/SJC-2 are punctuated aggregates. Since the CES-catalyzed hydrolysis of SJC-2 is faster than 

SJC-1, higher production rate of (Coumarin 488)-ffk than (Coumarin 488)-FFK were achieved 

before SJC-2 and SJC-1 transform into punctuate aggregates. Therefore, less unhydrolyzed 
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nanomedicines remained in the SJC-2 treated MCF-7 cells, while more Chlorambucil was 

released for efficient DNA damaging. The higher stability of D-version peptide than the L- 

version also contribute to long-term higher accumulation rate of (Coumarin 488)-ffk than 

(Coumarin 488)-FFK raising ER stress for synergistic anticancer effect with Chlorambucil. 

 

Figure 4. (A) Spatial distribution of (Coumarin 466)-FFK (ex/em: 405/420-490nm) and SJC-1 

(ex/em: 442/528-593 nm) in MCF-7 cells upon the treatment of SJC-1 (10 µM) for 1, 6, and 12 

hours. Spatial distribution of (Coumarin 466)-ffk (ex/em: 405/420-490nm) and SJC-2 (ex/em: 

442/528-593 nm) in MCF-7 cells upon the treatment of SJC-2 (10 µM) for 1, 6 and 12 hours. 

Scale bar represents 30 µm. (B) Intracellular co-localization of (Coumarin 466)-FFK with SJC-1 

in MCF-7 cells upon the treatment of SJC-1 for 12 hours, or (Coumarin 466)-ffk with SJC-2 in 

MCF-7 cells upon the treatment of SJC-2 for 12 hours.  
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CONCLUSIONS 

The higher anticancer toxicity of D-version peptide has been very well studied.22 And it’s 

generally agreed that the intracellular stability is the key for the efficacy. However, the 

observation and comparison of dynamic self-assembly and the correlated hydrolysis rate between 

L-version and D-version nanomedicines in cell milieu has not been reported yet.33 This research 

clearly presented the influence of self-assembly transitions on its enzyme-catalyzed hydrolysis 

reactions, which is essential to drug release efficiency. These correlated kinetic profiles will offer 

important insights into the intracellular enzyme-instructed molecular self-assembly, which will 

provide valuable contribution to the development of advanced nanomedicines. 
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