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Since ancient days, human fasting has been performed for religious or
political reasons. More recently, fasting has been employed as an effective
therapy for weight reduction by obese people, and numerous studies have
investigated the physiology of fasting by obese subjects. Well-established
fasting markers (butyrates, BCAAs and carnitines) were considered essential
energy substitutes after glycogen storage depletion. However, a recently
developed metabolomic approach has unravelled previously unappreciated
aspects of fasting. Surprisingly, one-third (44) of 120 metabolites investigated
increase during 58 h of fasting, including antioxidative metabolites (carno-
sine, ophthalmic acid, ergothioneine and urates) and metabolites of entire
pathways, such as the pentose phosphate pathway. Signalling metabolites
(3-hydroxybutyrate and 2-oxoglutarate) and purines/pyrimidines may also
serve as transcriptional modulators. Thus, prolonged fasting activates both
global catabolism and anabolism, reprogramming metabolic homeostasis.
1. History of fasting
Even in ancient Greece, fasting was performed to achieve increased spirituality.
Since then, fasting has been adopted as a religious practice by Muslims,
Christians, Jews, Buddhists and others [1]. For example, in the tenth century,
Sohoh, a buddhist monk in Japan, fasted for 7 days at the end of a thousand-
day walk through the mountains from Hieizan to the old Imperial Palace in
Kyoto [2]. Subsequently, 50 more people have endured this strict regimen to
attain this highest level of priesthood.

Thus, the spiritual and psychological impacts of fasting have been well
documented since early times, while health benefits from fasting were noticed
only in the nineteenth century. Dr E. H. Dewey, one of the earliest supporters of
fasting, claimed erroneously and somewhat hyperbolically that, ‘every disease
that afflicts mankind develops from more or less habitual eating in excess of the
supply of gastric juices’ [3]. In the 1880s, several individual trials of prolonged
fasting for 30 to 40 days were reported [4], and we periodically hear news
reports of survivors lost at sea or in mountains for weeks. However, most of
these are descriptive case reports or anecdotes about physical and metabolic
changes in non-obese people.

In 1915, fasting therapy for obesity was described by Folin & Denis [5].
Repeated short periods of fasting were proposed as a safe and effective
method of weight reduction [5]. Many obese followers have experienced differ-
ent regimens of fasting for as much as 100 days or more. Since the 1950s, most
data on metabolism during fasting have come from cases involving obesity [6].

Another aspect of human fasting since Roman times concerns hunger strikes.
In the UK, suffragettes preformed hunger strikes in the early twentieth century.
After the Second World War, Gandhi fasted 14 times or more for up to 21 days
as a form of political protest [7]. The longest political fasting of a non-obese
person was the case of Terence MacSwiney, a former mayor of Cork, Ireland,
who fasted for 74 days to his death, after his arrest during English–Irish unrest
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Figure 1. Well-established markers for fasting. After exhaustion of glycogen storage by fasting, lipids in human liver and white adipose tissues (WAT) are used as
alternative energy sources. During fasting, 3-hydroxybutyrate (3-HB) is one of the most prominently increased metabolites (over 25-fold), which is generated from
acetoacetic acid. Traversing the blood–brain barrier (BBB) via the monocarboxylate transporter (MCT), 3-HB is transported into brain, where fatty acids cannot be
used for energy generation. Next, branched chain amino acids (BCAAs) are mainly released from muscles, followed by uptake into the TCA pathway, or lipogenesis in
liver. Third, elevated acylcarnitines facilitate lipid transport into mitochondria. Abbreviations: HBD (α-Hydroxybutyric acid dehydrogenase), SCOT (succinyl-CoA:3-oxo-
acid CoA transferase), Th (mitochondrial thiolase), mCPT1 (mitochondrial Carnitine palmitoyltransferase I).
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in 1920 [8]. Collectively, it appears as though humans can
readily survive without any food for 30–40 days, as long as
they are properly hydrated.
2. Physiology of fasting
Based on the history of fasting, the research on fasting
physiology was initiated, focusing on the body’s metabolic
response, especially in regard to energy substitution. Nutrient
limitation, like fasting, significantly affects energy production
in the human body, triggering a wide range of catabolic reac-
tions (figure 1). Glucose normally constitutes the major fuel
source under non-fasting conditions, but during fasting,
glycogen stores are rapidly exhausted in an effort to maintain
minimum glucose levels in the blood. After glycogen
depletion, constitutive activation of gluconeogenesis supports
most glucose production under prolonged fasting [9,10].

In addition to gluconeogenesis, fasting stress forces the
human body to use various non-carbohydrate metabolites,
such as lipids and branched chain amino acids (BCAAs), as
energy sources [11,12]. Hormonal changes, a decrease in
plasma insulin concentration and increased catecholamines,
stimulate lipolysis in white adipose tissue (WAT) and liver. In
lipolysis, 3-hydroxybutyrate (3-HB) increases over 25-fold
during fasting. Circulating 3-HB is transported into the brain
across the blood–brain barrier (BBB) via the monocarboxylate
transporter (MCT). As the brain cannot use fatty acids for
energy, unlike most other tissues, 3-HB is converted into
acetyl-CoA, providing the brain with an alternative source of
energy during prolonged fasting [11]. Succinyl-CoA-3-oxaloacid
CoA transferase (SCOT) catalyses the first rate-limiting step
in ketolysis by transferring the CoA from succinyl-CoA to
acetoacetyl-CoA. SCOT is expressed in all tissues except liver, a
major ketogenesis organ, while it is most abundantly expressed
inheart, brainandkidney. Elevatedacylcarnitines during fasting
also are essential for lipid transport into mitochondria [13].
Increased concentrations of BCAAs, mainly released from
muscles, are also used in the mitochondrial TCA cycle or in
liver lipogenesis [14]. Thus, the elevation of butyrates, BCAAs,
and acylcarnitines in circulating blood are well-known
indicators of fasting (figure 1).

Lipolytic stimulation facilitates weight reductions of as
much as 1–2 kg day−1 during fasting, demonstrating that it
constitutes an effective therapeutic approach for obese patients.
However, prolonged fasting is accompanied by various
complications, such as headaches, nausea, weakness, cramps,
orthostatic hypotension, and sometimes lethal cardiac arrhyth-
mias, lactic acidosis and renal failure. For fasting research,
careful observation and study designs are required.

In addition, the recent advance in ageing research suggests
the positive impact of fasting on organismal longevity. In 1934,
McCay et al. first reported that calorie restriction by 20%
expanded lifespans by up to 20% in mice [15]. Calorie
restriction of 20–30% can also impact longevity in another
experimental model, Caenorhabditis elegans, Drosophila, fish
and monkeys. Calorie restriction modulates several signalling
pathways, including sirtuins, AMP kinase and the Tor path-
way [16–18]. Genetic and chemical manipulation of these
pathways consistently extends organismal lifespan in exper-
imental models. Moreover, intermittent fasting, a cycle of 3
days of fasting and 3 days of feeding, enables C. elegans to
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Figure 2. Forty-four metabolites that increase during fasting include antioxidants, organic acids and signalling-related compounds. Non-targeted comprehensive
metabolomics of whole blood detected increases of one-third (44) of metabolites identified during 58 h of fasting. In addition to metabolites for energy production,
antioxidative metabolites were identified as fasting markers, which may combat oxidative stress resulting from enhanced mitochondrial activity. Moreover, signalling
metabolites would contribute for remodelling of metabolic homeostasis during fasting. See the text for details. Abbreviations: ET; ergothioneine, OA; ophthalmic
acid, PPP; pentose phosphate pathway, 3-HB; 3-hydroxybutyrate and 2-OG; 2-oxoglutarate.
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live about 50% longer than those on a normal diet [19]. Thus,
calorie restriction and intermittent fasting are well-established
protocols for prolongation of lifespan. However, calorie restric-
tion or fasting studies on longevity of non-obese humans is
much more complex. Thus, little is known about the link
between fasting and ageing in humans.
3. Metabolomics of fasting
Metabolomics, one of the rapidly developing domains of
chemical biology, constitutes a powerful tool in the search for
useful diagnostic or bio-markers, by quantitative detection of
various metabolites. Metabolites, small organic compounds,
are generated by the metabolic activity of living organisms
from bacteria to humans [20,21]. Today, metabolomic studies
provide valuable information about metabolic profiles of
tissues, cells, media, fluids and blood. Human blood is
especially convenient and useful to analyse, as it circulates
throughout the body every fewminutes, reflecting in vivo phys-
iological states influenced by genetic, epigenetic, physiological
and lifestyle factors. Thus, metabolomics of human blood per-
mits comprehensive evaluation of metabolic mechanisms of
physiological responses and diseases, and of biological effects
of drugs, nutrients and environmental stressors.

Blood comprises cellular and non-cellular components: red
blood cells (RBCs), white blood cells (WBCs), platelets and
plasma. As fasting is one of the most comprehensive physio-
logical stimuli to the human body, several studies on serum
or plasma metabolites during human fasting have been
reported. A study by I. Rubio-Aliaga et al. monitored 36 h
fasting of 10 volunteers with broad range of BMI and age
(18.5–39.7 kg m−2 and 25–56 years, respectively) [22], while
S. Krug et al. reported the outcome of 36 h fasting of 15
young, healthy, non-obese participants [23]. These studies
consistently identified β-oxidation intermediates, butyrates,
BCAAs and acylcarnitines as fasting markers, which are well
known as energy substitutes.

We previouslyestablished accurate, quantitative procedures
to analyse metabolites of human whole blood, plasma and
RBCs by liquid chromatography-mass spectrometry (LC-MS),
based on our experience in developing metabolomic methods
for fission yeast cells under various nutritional and genetic per-
turbations [24–26]. Our metabolomic approach to whole blood
efficiently detects blood metabolites in both in RBCs and
plasma. By this approach, we have reported 14 age-related
compounds and 15 markers for frailty, a complex disease of
cognitive impairment, hypomobility, and decline in normal
daily activity, due to age-related dysfunction of tissues and
vulnerability to stress [27,28]. These metabolites include large
numbers that are enriched in RBCs, confirming the efficacy of
whole blood analysis.

We performed non-targeted comprehensive LC-MS analy-
sis of whole blood, plasma and RBCs during 58 h fasting by
four young, non-obese volunteers, because most metabolic
studies of fasting have tracked only specific plasma or serum
metabolites, such as butyrates, acylcarnitines and BCAAs
[29]. In addition to established fasting markers, several TCA
cycle-related compounds (cis-aconitate, malate, 2-oxoglutarate
and succinate) and coenzymes (nicotinamide and pantothe-
nate, a precursor for acetyl-CoA) were also increased,
reflecting enhanced mitochondrial activity in tissues during
fasting. Notably, 44 of 120 metabolites increased 1.5- to 60-
fold during this period. Thus, our whole blood metabolomics
revealed unexpected dynamics of diverse metabolite increases
resulting from greatly activated catabolism and anabolism,
stimulated by fasting (figure 2).
4. New aspects of fasting: antioxidants and
signalling metabolites

It is also conceivable that fasting provokes global remodelling
of transcriptional networks to adapt to metabolic changes.
Consistently, whole blood metabolomics identified purines
and pyrimidines (GTP, CTP, ADP, IMP, cytidine and adenine)
and some signal-modulating metabolites (3-HB and 2-oxoglu-
tarate) as fasting markers [29]. The former would support
anabolic metabolism for RNA and protein synthesis, while
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the lattermay function as signallingmodules tomaintain phys-
iological homeostasis during fasting. 3-HB is also known as a
histone deacetylase inhibitor, as is the related sodium butyrate
[30]. 2-oxoglutarate activates 2-oxoglutarate oxygenase, func-
tioning in demethylation of histones and nucleic acids, and
destabilization of transcriptional factors [31]. Fasting may
genetically or epigenetically modify transcriptional networks
via such metabolites.

In addition to increasedmetabolites for energy production,
previously unappreciated impacts of prolonged fasting
were disclosed. Increases of several antioxidants (carnosine,
ophthalmic acid (OA), ergothioneine (ET), urate and xanthine)
and pentose phosphate pathway (PPP)metaboliteswere newly
observed. These antioxidant metabolites had not been discov-
ered in previous targeted studies on fasting, except for the
increase of urate, one of the most abundant antioxidants in
blood [32]. Carnosine, OA, ET and urate are known as RBC-
enriched compounds, which were efficiently detected by our
whole blood metabolomics [27]. Xanthine is the precursor of
urate. Carnosine, formed from β-alanine and histidine, is
enriched in muscle. OA (L-γ-glutamyl-L-α-aminobutyrylgly-
cine) is a tripeptide analogue of glutathione, in which
cysteine is replaced by 2-aminobutyrate (2-AB), another fasting
marker. ET is mainly synthesized in mushrooms and other
fungi. Among these, increases in antioxidants (OA and ET)
during fasting are evolutionarily conserved in both humans
and fission yeast [24]. Moreover, the pentose phosphate path-
way (PPP) is essential for redox maintenance via NADPH
generation. 6-phosphogluconate, glucose-6-phosphate, pen-
tose phosphate and sedoheptulose-7-phosphate are generated
in the PPP, levels of which were increased in plasma, but not
in RBCs during fasting. Our previous RBC metabolomics
identified sugar phosphates compounds as RBC-enriched;
therefore, PPP metabolite increases only in plasma suggest
that responses in tissues are largely responsible for these
altered profiles during fasting.

Collectively, the increased antioxidative defence is a signifi-
cant physiological response during fasting. Oxidative stress
exerts deleterious effects on cells and tissues, while antioxida-
tive defence preserves cellular function and longevity in
experimental models. Interestingly, calorie restriction extends
organismal lifespans by reducing oxidative damage. Calorie
restriction, including fasting, might modulate longevity by
boosting antioxidant metabolites and activation of PPP. Alter-
natively, increased antioxidative metabolism would defend
physical homeostasis against the oxidative attack derived
from increased mitochondrial activity. In summary, a metabo-
lomic approach to fasting revealed novel aspects of its
physiological impacts, which may have clinical applications
as diagnostic and therapeutic tools in the future.
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