
 

 

CsPbBrxI3-x thin films with multiple ammonium ligands for low 
turn-on pure-red perovskite light-emitting diodes  

Maowei Jiang, Zhanhao Hu, Luis K. Ono, and Yabing Qi () 
 
Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, 
Onna-son, Okinawa 904-0495, Japan  
 

 

  

 

 

 

TABLE OF CONTENTS (TOC) 

 

CsPbBrxI3-x thin films with multiple ammonium 

ligands for low turn-on pure-red perovskite 

light-emitting diodes 

Maowei Jiang, Zhanhao Hu, Luis K. Ono, and Yabing Qi* 

Okinawa Institute of Science and Technology Graduate 

University (OIST), Japan  

 

 

 

 

CsPbBrxI3-x thin films featuring nano-sized crystallites were prepared via 

incorporating multiple ammonium ligands in a one-step spin-coating route. The 

CsPbBrxI3-x LED, adopting a conventional device structure of ITO/PEDOT:PSS/ 

CsPbBrxI3-x/PCBM/BCP/Al, showed a pure-red color at 659 nm, low turn-on 

voltage (1.6 V), high brightness (2859 cd m-2) and high external quantum 

efficiency (8.94%). 

 

Yabing Qi, https://groups.oist.jp/emssu/yabing-qi 



 

 

 ISSN 1998-0124 CN 11-5974/O4 

2 https://doi.org/(automatically inserted by the publisher) 

R
e
s
e
a
rc

h
 A

rt
ic

le
 
 
 

 

 

CsPbBrxI3-x thin films with multiple ammonium ligands for low 
turn-on pure-red perovskite light-emitting diodes  

Maowei Jiang, Zhanhao Hu, Luis K. Ono, and Yabing Qi () 
 
Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, 
Onna-son, Okinawa 904-0495, Japan  
 

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 

Received: day month year / Revised: day month year / Accepted: day month year (automatically inserted by the publisher) 

 

ABSTRACT 

All-inorganic α-CsPbBrxI3-x perovskites featuring nano-sized crystallites show great potential for pure-red light-emitting diode (LED) 

applications. Currently, the CsPbBrxI3-x LEDs based on nano-sized α-CsPbBrxI3-x crystallites have been fabricated mainly via the 

classical colloidal route including a tedious procedure of nanocrystal synthesis, purification, ligand or anion exchange, fil m casting, etc. 

With the usually adopted conventional LED device structure, only high turn-on voltages (> 2.7) have been achieved for CsPbBrxI3-x 

LEDs. Moreover, this mix-halide system may suffer from severe spectra-shift under bias. In this report, CsPbBrxI3-x thin films featuring 

nano-sized crystallites are prepared by incorporating multiple ammonium ligands in a one -step spin-coating route. The multiple 

ammonium ligands constrain the growth of CsPbBrxI3-x nanograins. Such CsPbBrxI3-x thin films benefit from quantum confinement. The 

corresponding  CsPbBrxI3-x LEDs, adopting a conventional LED structure of indium-doped tin oxide 

(ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/CsPbBr xI3-x/[6,6]-phenyl C61 butyric acid methyl ester 

(PCBM)/bathocuproine (BCP)/Al, emit pure-red color at Commission Internationale de l'éclairage (CIE) coordinates of (0.709, 0.290), 

(0.711, 0.289), etc., which represent the highest color-purity for reported pure-red perovskite LEDs and meet the Rec. 2020 requirement 

at CIE (0.708, 0.292) very well. The CsPbBrxI3-x LED shows a low turn-on voltage of 1.6 V, maximum external quantum efficiency of 

8.94%, high luminance of 2859 cd m-2 and good color stability under bias. 

KEYWORDS 
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1 Introduction 

Over the past few years, great efforts have been made for 

light-emitting applications of lead halide perovskites [1-5], of 

which one important subject is the pure-red perovskite 

light-emitting diodes (PeLEDs) with emissions from 630 nm to 

660 nm [5-7]. For APbI3 perovskites, organic A-site cation (such 

as methylammonium and formamidinium) based perovskites 

exhibit near-infrared emissions, while all-inorganic α-CsPbI3 

perovskite intrinsically emits a deep-red color at about 700 nm 

[4, 8, 9]. From the viewpoint of bandgap, the all-inorganic 

α-CsPbI3 perovskite shows potential in red LEDs. However, 

CsPbI3 suffers from phase instability issue, i.e., it readily 

transforms from metastable black phase to yellow phase at 

room temperature [8, 10]. To overcome this issue, several 

methods have been reported, e.g., synthesis of CsPbI3 

nanocrystals (NCs) or quantum dots (QDs) [11], incorporation 

of bromide ion into CsPbI3 [12, 13], etc.  

Currently, one of the most prevailing ways of devising 

pure-red all-inorganic PeLEDs is based on colloidal CsPbBrxI3-x 

NCs, which have the benefits of (i) the versatile surface 

chemistry with efficient ligand passivation, (ii) the spatial 

confinement for exciton recombination, (iii) the phase 

stabilization induced by the nano-size effect, and (iv) the color 

tunability due to Br-incorporation, etc. [5, 6, 11, 14] The 

CsPbBrxI3-x NCs are normally synthesized via colloidal route 

such as hot-injection method, then post-treated by purification, 

ligand- or anion- exchange, and finally spin-coated onto 

substrates for further LED fabrication [5, 6, 15]. Note that, the 

tedious post-treatment procedures may lead to changes of 

size/morphology and optical properties of perovskite NCs, 

because ionic perovskite NCs are sensitive to 

dielectric-constant solvents, which result in the desorption of 

surface ligands [11, 16-18]. Thereby, seeking alternative 

options for fabricating CsPbBrxI3-x NC based thin films beyond 

the colloidal route is motivated.  

On the other hand, the CsPbI3 QD based LEDs through 

colloidal route normally exhibit EL above 688 nm, and via 

inorganic cation substitution such as zinc or strontium in 

CsPbI3 QDs can further blue-shift their EL to 678 nm [19-24], 

which is not good enough to meet the requirement of Rec. 2020 

color gamut at CIE (0.708, 0.292) [25]. Efforts to realize 

pure-red EL emitting (e.g., 630 nm ~ 660 nm) should be made. 

Indeed, in our literature survey list in Table S1 (see Electronic 

Supplementary Material (ESM)), most reports of efficient 

all-inorganic PeLEDs in the pure-red region are based on the 

mix-halide system, of which the color tunability benefits from 
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bandgap broadening induced by excess Br-incorporation [5, 6, 

22, 26]. But unfortunately in these studies, most cases fail in 

sustaining their color purity because of halide ion mobility and 

phase segregation under bias [5, 6, 27-29]. For example, Kido et 

al. reported a mix-halide CsPbBrxI3-x QD based LED adopting a 

conventional LED device structure (Table S1), which showed an 

external quantum efficiency (EQE) of 21.3%, turn-on voltage of 

2.8 V, luminance of 500 cd m-2 at 653 nm (Table S1); but the EL 

spectra showed red-shift under bias [5]. Besides, for pure-red 

CsPbBrxI3‑x LEDs, low turn-on voltage, high luminance, high 

EQE and good color stability still cannot be simultaneously 

achieved yet. Up to date, with an inverted LED device structure, 

the reported highest EQE of CsPbBrxI3‑x LEDs in pure-red 

wavelength range (e.g., 630 ~ 660 nm) did not exceed 6.3% 

(Table S1) [6, 23]. For those adopting a conventional LED 

device structure, the lowest turn-on voltage was about 2.7 V 

(Table S1) [5, 30], which is much higher than their emission 

photon energy about 1.9 V; and the record luminance was 

about 2671 cd m-2 with a peak EQE of 3.55% reported by Yao 

and co-workers [6]. 

Exploring new strategies to improve the performance of 

all-inorganic pure-red CsPbBrxI3‑x LEDs, simultaneously with 

low turn-on voltage, high luminance, high EQE and good color 

stability, is still an open challenge. In this report, a new route to 

fabrication of CsPbBrxI3-x thin films, featuring nano-sized 

crystallites, is developed via a simple one-step spin-coating 

method, which simplifies the fabrication procedure in 

comparison with the classical colloidal route. The CsPbBrxI3-x 

nanograins in the thin films are enabled by the surface 

termination effect of multiple bulky ammonium ligands [31-33]. 

In addition, the CsPbBrxI3-x thin films benefit from bandgap 

broadening by quantum confinement. The CsPbBrxI3-x thin film 

based LED with a conventional LED device structure 

(indium-doped tin oxide 

(ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS)/CsPbBrxI3-x/[6,6]-phenyl C61 butyric acid methyl 

ester (PCBM)/bathocuproine (BCP)/Al) shows a pure-red color 

at CIE (0.711, 0.289), low turn-on voltage of 1.6 V, maximum 

EQE of 8.94%, and high luminance of 2859 cd m-2. In addition, 

the spectra-shift phenomenon under bias has been greatly 

inhibited, which leads to good color purity. 

2 Results and discussion 

The CsPbBrxI3-x thin films were fabricated via the typical 

one-step spin-coating method (Fig. 1(a)). Briefly, the perovskite 

solution incorporating with multiple ammonium ligands was 

firstly prepared by dissolving 1 mmol of PbI2, 1 mmol of CsI, 

0.25 mmol (25% relative to perovskite precursor) of 

phenethylammonium iodide (PEAI), 0.25 mmol (25%) of 

isobutylammonium bromide (IBAB), 0.1 mmol (10%) of 

1.3-propanediammonium bromide (PDAB) and 0.1 mmol (10%) 

of N,N-dimethyl-1,3-propanediammonium bromide (DMPDAB) 

Figure 1 (a) Illustration of one-step spin-coating method to prepare CsPbBrxI3-x films. The chemical structures of multiple ammonium ligands are shown 
in the right panel. (b) Tapping-mode AFM images of the CsPbBrxI3-x thin film incorporating with multiple (four) ligands. The film RMS roughness is about 
0.99 nm; the scan area is 2 × 2 μm. (c) XRD curves of CsPbBrxI3-x film incorporating with multiple ligands and control film incorporating with 35% PEAI 

and 35% IBAB. (d) AFM images of the control film incorporating with 35% PEAI and 35% IBAB. The film RMS roughness is about 12.67 nm; the scan 
area is 5 × 5 μm. (e) A schematic drawing showing a nano-sized grain with multiple ammonium ligands on its surface. 
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in 3.33 ml of dimethyl sulfoxide (DMSO). The concentration of 

perovskite precursor was indicated as 0.3 M. The as-prepared 

precursor solution was spin-coated onto PEDOT:PSS substrate 

(see more details in Experimental section), which was then 

annealed for better crystallization. The typical annealing 

temperature was 100°C if not stated otherwise. We suggest that 

the Br content in CsPbBrxI3-x may be reduced to a small amount 

so as to inhibit the robust spectra-shift under bias. Herein, a 

small ratio of Br anion, 16.7% approximately, was introduced 

from the ammonium bromide ligands, taking into account the 

total ratio of Br/(Br + I) in the perovskite precursors and 

ligands.  

The surface morphology information of the CsPbBrxI3-x thin 

film incorporating with multiple ammonium ligands was 

studied by atomic force microscope (AFM). The AFM images in 

Fig. 1(b) and S1 reveal no large grains existing in the film and 

uniform perovskite grains within nano-sized range are formed. 

Further calculation of root mean square (RMS) value based on 

the AFM image in Fig. 1(b) reveals a rather smooth surface of 

the CsPbBrxI3-x film, with a very small RMS value of 0.99 nm. 

This RMS value of the CsPbBrxI3-x film is even smaller than that 

(~ 2.43 nm) of colloidal CsPbBrxI3-x QD based thin film [6, 21]. 

Moreover, the scanning electron microscope (SEM) 

characterization in Fig. S2 further demonstrates the conclusion 

that uniform perovskite nano-sized grains (~ 8 nm 

approximately) are formed in the film incorporating with 

multiple ammonium ligands. In addition, we performed X-ray 

diffraction (XRD) measurement to study the crystallinity of the 

CsPbBrxI3-x thin films. In Fig. 1(c) and S3, the α-phase 

CsPbBrxI3-x thin film featuring nano-sized crystallites is 

revealed by the broadened XRD peaks with reduced diffraction 

intensity [34]. By contrast, the broadened XRD peaks of the 

CsPbBrxI3-x thin film in current system are consistent with 

those of colloidal CsPbBrxI3-x QDs in previous reports [6, 22]. 

On the other hand, as a further auxiliary evaluation for the 

CsPbBrxI3-x nano-sized crystallites in the film, a calculation 

based on the Scherrer formula according to the full-width at 

half maximum (FWHM) of the XRD peaks was performed and 

the result reveals an approximate size of 8.2 nm for the 

nanograins. The AFM, SEM and XRD results synergistically 

demonstrate the formation of CsPbBrxI3-x thin films featuring 

nano-sized crystallites, which is consistent with previous 

reports about perovskite thin films featuring nano-sized 

crystallites by Rand, Xiao and coworkers [33, 34]. Notably, no 

obvious layer-stacked structures are observed by the XRD 

result, which is consistent with the UV-vis absorption spectrum 

as shown in Fig. S4 [26, 31, 33-36]. 

For bulky organoammonium ligands, the ammonium groups 

can only coordinate on the surface of CsPbBrxI3-x crystallites. In 

other words, incorporation of bulky organoammonium ligands 

constrains the growth of perovskite crystallites [32, 34, 37]. To 

explore this constraining effect, or called as surface 

termination effect, we initially considered single kind of bulky 

organoammoniums such as phenethylammonium, 

butylammonium, n-propylammonium, 

1-naphthylmethylammonium, etc., which have been widely 

studied in perovskite systems; however, single type of these 

ligands as the surface termination agent tend to stack to form 

quasi-2D perovskites when the ligand usage was over 40% of 

perovskite precursor approximately [26, 32, 34, 36, 38-40]. For 

example, Huang et al. [26] reported quasi-2D CsPbI3 

perovskites with 1-naphthylmethylammonium as ligands 

exhibiting a peak EQE value of 7.3% and maximum luminance 

of 732 cd m-2 at 694 nm; however, as EL wavelength of the LEDs 

shifted to 684 nm, the luminance was decreased greatly to 4 cd 

m-2 with an EQE of 1.2% (Table S1). Choy et al. [38] separately 

incorporated n-propylammonium, n-butylammonium, 

n-hexylammonium etc., to prepare quasi-2D CsPbI3 perovskites 

and the corresponding PeLEDs showed a maxium EQE value of 

1.84% and luminance of 106 cd m-2 at 658 nm. 

In another report, Sargent and coworkers reported a ligand 

system including two different kinds of ammoniums, 

phenethylammonium and iso-propylammonium, which 

reduces the van der Waals interactions of ligands to enhance 

the phase monodispersity of quasi-2D perovskites [31]. 

Inspired by this work, a control experiment using two kinds of 

ammonium ligands including 35% PEAI and 35% IBAB was 

performed. 2D layered structures are formed in this control 

film, as demonstrated by the XRD curve in Fig. 1(c). The AFM 

images in Fig. 1(d) and SEM image in Fig. S2(b) reveal a 

relatively rough surface of this control film with a RMS value of 

12.67 nm, and larger perovskite grains are formed. Besides, the 

PL lifetime measurement result in Fig. S5 shows that the 

perovskite thin film incorporating with multiple ligands has a 

longer average PL lifetime of 5.9 ns, and the control film has an 

average PL lifetime of 2.9 ns. The multiple ammonium ligands 

demonstrate a better passivation effect for perovskite thin films 

[32, 33]. Further EL studies based on this control film system 

show broadening and shifting of EL peaks under increasing 

voltages (Fig. S6), and the corresponding PeLED shows a 

maxium EQE value of 1.05% and luminance of 595 cd m-2 at 

675 nm (Fig. S6). The optoelectronic performance is not as 

good as that using our suggested multiple ammonium ligand 

recipe, which is discussed below. 

The polydisperse phases of quasi-2D CsPbBrxI3-x thin films 

with two kinds of PEAI and IBAB ammonium ligands in above 

control experiment may be further focused by inhibiting the 

formation of multi-layered 2D perovskite structures. The 

question is how to inhibit the periodic stacks of the organic end 

groups in the ammonium ligands. We propose that it may be 

realized via random arrangement of multiple ammonium 

ligands including both the hydrophobic and hydrophilic end 

groups [32], which can increase the diversity of surface 

termination agent and reduce the van der Waals interactions of 

ligands [31, 32, 41]. Based on this proposal, we designed a 

multiple ammonium ligand recipe, with a small amount of 

hydrophilic bi-ammonium [32], namely PDAB (10%) and 

DMPDAB (10%) ligands, replacing a portion of PEAI (25% left) 

and IBAB (25% left) ligands. The PDAB and DMPDAB ligands 

have been demonstrated to show good passivation effect on 

perovskites in our previous report [32]. In that report, we 

explored the effect of the mentioned hydrophilic bi-ammonium 

(PDAB and DMPDAB) dominated ligand system on the 

performance of perovskite thin films. In this report, the widely 

used bulky ammonium ligands with hydrophobic end groups 

(PEA+, IBA+, etc) dominated the ligand system, and we intended 

to use a small portion of hydrophilic bi-ammonium to break the 

stack trend of these widely used bulky ammonium ligands 

featuring hydrophobic end groups. As a result, using the 

multiple ammonium recipe as mentioned above, the CsPbBrxI3-x  
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thin films featuring nano-sized crystallites are formed and the 

2D structures are effectively inhibited. A schematic drawing 

showing a nano-sized grain in our CsPbBrxI3-x film is proposed 

in Fig. 1(e), which shows the possible random arrangement of 

different ligands at the perovskite surface. 

A conventional LED device structure of ITO/PEDOT:PSS/ 

CsPbBrxI3-x/PCBM/BCP/Al was adopted for EL studies of the 

CsPbBrxI3-x films (Fig. 2(a)). The cross-section SEM image of the 

device architecture in Fig. 2(b) shows small nanoparticles 

about 7 ~ 8 nm in the perovskite layer, which is consistent with 

the conclusion of XRD and SEM results in Fig. 1(c), S2(a) and S3. 

Such nano-sized CsPbBrxI3-x crystallites are supposed to 

preserve the quantum confinement effect, as reported in other 

CsPbBrxI3-x QD (x = 0, 3) systems [11, 32]. In Fig. 2(c), the 

energy levels of different layers are taken from literature [5, 42, 

43]. In the LED structure of this work, the PEDOT:PSS is as the 

hole injection layer (HIL), the PCBM and a very thin layer of 

BCP are as the electron injection layers (EIL). We note that in 

the field of perovskite solar cells, the PEDOT:PSS and PCBM 

layers showed good carrier extraction properties due to their 

suitable energy levels with respect to perovskites; and PCBM 

may also passivate the trap states on perovskite surface and 

grain boundaries [44-46]. We find that the deposition of the 

PCBM layer onto the perovskite thin film results in a slightly PL 

decrease of perovskite thin film, which is proposed to be 

caused by the carrier extraction effect of PCBM (Fig. S7). In 

contrast with the carrier extraction process for solar cell 

applications, charge carriers in LED applications should be 

injected into the perovskite emitting layer under external 

applied bias (Fig. S7). The suitable energy levels of PEDOT:PSS 

and PCBM with CsPbBrxI3-x perovskite facilitate the charge 

injection process, which is demonstrated by the LED 

optoelectronic performace as discussed below. 

Based on above LED device structure, the as-prepared 

CsPbBrxI3-x LED shows an EL peak at 659 nm with a FWHM of 

40 nm (Fig. 2(d)). The EL spectrum exhibits a slight red-shift 

relative to the PL spectrum, which is consistent with previous 

reports of PeLEDs and can be attributed to the interparticle 

interaction and Stark effect [6, 24]. The PL quantum yield 

(PLQY) of the CsPbBrxI3-x thin film is about 15.3%. The CIE 

coordinates of CsPbBrxI3-x LED are located at CIE (0.711, 0.289) 

(Fig. 2(e)), which meet the requirement of Rec. 2020 color 

gamut at CIE (0.708, 0.292) very well [25]. For the CsPbBrxI3-x 

LED, the current density versus voltage curve in Fig. 2(f) 

reveals weak current leakage, and the luminance versus voltage 

curve shows a very low turn-on voltage at 1.6 V. Notably, the 

turn-on voltage of the CsPbBrxI3-x LED has been greatly reduced 

from >2.7 V to 1.6 V, in comparison with other reports featuring 

a conventional LED device structure (Table S1). The turn-on 

voltage of 1.6 V is lower than the emission photon energy of 

~1.88, thereby indicating efficient and barrier-free charge 

injection into the perovskite emitters [47]. A number of 

literature of LED devices with different active materials such as 

perovskites [47, 48] and QDs [49, 50] has reported this 

sub-bandgap turn-on phenomenon, which is hypothesized to 

be caused by the Auger-assisted charge injection. Moreover, the 

CsPbBrxI3-x LED shows a maximum luminance of 2859 cd m-2 

and a maximum EQE value of 8.94%, which have been one of 

the best cases for the pure-red CsPbBrxI3-x LEDs at CIE (0.711, 

0.289) (Table S1) [5, 6]. In addition, an average luminancemax of 

2708 cd m-2, and an average EQEmax of 7.99% are achieved for 

the CsPbBrxI3-x LEDs as shown in Fig. S8, which demonstrate 

good reproducibility for the devices. 

The EL peaks could be tuned by controlling the annealing 

temperature of the CsPbBrxI3-x films. For example, annealing the 

perovskite films at 85°C or 110°C would result in CsPbBrxI3-x 

LEDs (labelled as 85°C/110°C–CsPbBrxI3-x LEDs) emitting at 

650 nm or 673 nm, respectively (Fig. 3(a) and Table 1). The 

similar phenomenon of emission wavelength difference 

dependent on film annealing temperature had been also 

observed in other quasi-2D perovskites and perovskite QD or 

NC system [38, 51], which is explained by quantum 

confinement relative to the particle size of nanograins (Fig. S9). 

Due to quantum confinement ,  red -shifted emission 

corresponds to larger crystallite grains, which indicates that 

higher film annealing temperature results in larger crystallite 

Figure 2 (a) LED device structure adopted in this work, and its Cross-section SEM image (b) and corresponding energy diagram (c). In (b), the tilt angle 

(Y direction) is 52°. (d) Normalized (Norm.) PL and EL spectra of the CsPbBrxI3-x film. (e) CIE coordinates of the CsPbBrxI3-x LED. (f) Current density and 
luminance versus voltage curves of the CsPbBrxI3-x LED. (g) EQE versus voltage curve of the CsPbBrxI3-x LED. The CsPbBrxI3-x thin film was annealed at 
100°C. 



Nano Res.  5 

 

Table 1 Summary of the performance of CsPbBrxI3-x films and LEDs. 

Film Annealing 

Temperature 

PLQY EL peak EL FWHM Voltageturn-on Luminancemax EQEmax 
CIE (x, y) 

(%) (nm) (nm) (V) (cd m-2) (%) 

85°C 15.9 650 38 1.7 2294 5.34 (0.709, 0.290) 

100°C 15.3 659 40 1.6 2859 8.94 (0.711, 0.289) 

110°C 7.9 673 41 1.6 802 1.51 (0.715, 0.279) 

 

grains in the CsPbBrxI3-x films. The conclusion is also consistent 

with the XRD and UV-vis results in Fig. S9. This result is similar 

as the colloidal CsPbBrxI3-x (x = 0) QD system synthesized in 

solution, in which higher synthesis temperature results in 

larger QDs (from 3.4 nm to 12.5 nm), as reported by Luther et 

al. [11] On the other hand, the shift of emission peak indicates 

that quantum confinement is preserved in our CsPbBrxI3-x thin 

films, which is consistent with previous reports about 

perovskite thin films featuring nano-sized crystallites with 

quantum confinement [11, 33, 34]. The 85°C–CsPbBrxI3-x thin 

film featuring smaller particle size shows a shorter average PL 

lifetime of 2.3 ns in comparison with 110°C–CsPbBrxI3-x thin 

film showing an average PL lifetime of 6.2 ns (Fig. S9(d)). The 

PLQY values of the 85°C/110°C–CsPbBrxI3-x thin films are about 

15.9% and 7.9%, respectively. The CIE coordinates of 

85°C/110°C– CsPbBrxI3-x LEDs are (0.709, 0.290) and (0.715, 

0.279), respectively (Table 1). In Fig. 3(b), the 

110°C–CsPbBrxI3-x LED shows a low turn-on voltage of 1.6 V. By 

contrast, the 85°C–CsPbBrxI3-x LED shows a slightly increased 

turn-on voltage at about 1.7 V, which is attributed to the 

slightly bandgap broadening of the CsPbBrxI3-x film. For 

85°C/110°C–CsPbBrxI3-x LEDs, the maximum luminance values 

are 2294 cd m-2 and 802 cd m-2, respectively. Correspondingly, 

the EQE values of 85°C/110°C–CsPbBrxI3-x LEDs are 5.34% and 

1.51%, respectively (Fig. 3(c)). The performance of CsPbBrxI3-x 

LEDs is summarized in Table 1. As observed in Table 1, the 

well-performed CsPbBrxI3-x LEDs are achieved with the film 

annealing temperature of 100°C. 

EL emission under bias was further studied for the 

best-performed 100°C–CsPbBrxI3-x LED. The EL spectra were 

measured under different voltages firstly. In Fig. 4(a), the EL 

intensities are enhanced gradually as the voltages are increased 

to 4.4 V, then reduced. No spectral shift is observed for the 

CsPbBrxI3-x LED under operating voltages from 2 V to 7.2 V (Fig. 

4(a)). In addition, we further tested the spectral stability of our 

LED under a continuous bias voltage of 2.1 V (Fig. S10). As 

shown in Fig. 4(b), there is no spectral shift for the CsPbBrxI3-x 

LED within the test. This result shows a great improvement for 

the color stability of pure-red CsPbBrxI3-x based PeLEDs in 

comparison with previous studies, in which the robust spectral 

shift of mix-halide CsPbBrxI3-x LEDs occurred within few 

Figure 3 (a) Normalized EL spectra for the CsPbBrxI3-x LEDs with different film annealing temperatures at 85°C or 110°C respectively (labbleled as 

85°C/110°C–CsPbBrxI3-x LEDs). (b) Current density and luminance versus voltage curves of the 85°C/110°C–CsPbBrxI3-x LEDs. (c) EQE versus voltage 
curves of the 85°C/110°C–CsPbBrxI3-x LEDs. 

Figure 4 EL stability of the CsPbBrxI3-x LED. (a) EL spectra of the 
CsPbBrxI3-x LED under different voltages. (b) Normalized EL spectra of the 
CsPbBrxI3-x LED at different time under a constant driving voltage of 2.1 V. 
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seconds or minutes [5, 6, 27]. For example, Halpert et al. 

studied the field-driven spectral shift phenomenon of 

mix-halide CsPbBrxI3‑x LEDs under a constant operation voltage; 

in their report, under a high voltage, it took only few seconds to 

accomplish the red shift from 607 nm to 678 nm [27]. Yao et al. 

studied the pristine CsPbBrxI3‑x NC based LEDs, which showed a 

red-shift of 23 nm swiftly from 638 nm to 661 nm within 3 min 

under a constant operation voltage [6]. Thus, our CsPbBrxI3-x 

LED shows great potential in sustaining the color purity of 

pure-red all-inorganic CsPbBrxI3‑x PeLED. Note that, the 

operation voltage of the CsPbBrxI3-x LEDs in current system is 

rather low, which benefits from their low turn-on voltage 

(Table S1). On the other hand, the operational half-lifetime of 

our LED is about 2.2 min with a relatively high initial 

luminance of ~ 150 cd m-2 at 2.1 V (Fig. S10), which is close to 

those of pristine CsPbBrxI3-x QD based LEDs considering the 

difference of initial luminance in references [5, 6, 21]. The 

operational instability is still a challenge. Further exploration 

combining our advantages in the current system and recent 

impressive reports to increase the operational lifetime of 

CsPbBrxI3-x LEDs are motivation for future work [6, 21, 52]. 

 

3 Conclusions 

In summary, we firstly developed a CsPbBrxI3-x thin film system 

comprised of nano-sized CsPbBrxI3-x crystallites by a typical 

one-step spin-coating method, which simplified the procedure 

of preparing CsPbBrxI3-x NC based thin films in comparison 

with the classical colloidal method. The CsPbBrxI3-x nanograins 

were enabled by the surface termination effect of multiple 

bulky ammonium ligands. Furthermore, we adopted a 

conventional LED device structure of 

ITO/PEDOT:PSS/CsPbBrxI3-x/PCBM/BCP/Al to fabricate 

CsPbBrxI3-x LED devices. The CsPbBrxI3-x thin film based LED 

exhibited a pure-red color with the CIE coordinates of (0.711, 

0.289) at 659 nm, low turn-on voltage of 1.6 V, maximum 

luminance of 2859 cd m-2, and maximum EQE of 8.94%. In 

addition, the CsPbBrxI3-x LED showed improved color stability 

under operating voltages. Our strategy via the spin-coating 

method to prepare CsPbBrxI3-x thin films incorporated with 

multiple ammonium ligands paves the way to fabricate 

color-pure and color-stable all-inorganic PeLEDs. 

4 Experimental 

4.1 Chemicals 

Cesium iodide (CsI, 99.999%), phenethylammonium iodide 

(PEAI, 98%), propane-1,3-diammonium bromide (PDAB, 98%), 

bathocuproine (BCP, 99%) were purchased from Sigma-Aldrich. 

[6,6]-Phenyl C61 butyric acid methyl ester (PCBM, 99%) was 

purchased from American Dye Source. Lead iodide (PbI2, 98%), 

isobutylammonium bromide (IBAB, 98%), 

N,N-dimethyl-1,3-propanediamine dihydrobromide (DMPDAB, 

98%) was purchased from Tokyo Chemical Industry. Dimethyl 

sulfoxide (DMSO, super dehydrated) was purchased from Wako. 

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT:PSS, Clevios PVP AI 4083) was purchased from 

Heraeus. All chemicals were used as received.  

4.2 Perovskite film and LED fabrication 

The patterned-ITO substrates were sequentially sonicated with 

detergent, deionized water, acetone, and isopropyl alcohol for 

20 min, respectively. After drying under a nitrogen flow, the ITO 

substrates were treated under oxygen plasma for 10 min. A 

PEDOT:PSS layer was spin-coated onto the ITO substrate at 

3500 rpm for 30 s and then baked at 150°C for 10 min. The 

ITO/PEDOT:PSS substrates were transferred into a N2 glove box. 

For depositing the perovskite emitting layer, the CsPbBrxI3-x 

precursors incorporating with multiple ammonium ligands 

were firstly prepared by dissolving 1 mmol of PbI2,1 mmol of 

CsI, 0.25 mmol of PEAI, 0.25 mmol of IBAB, 0.1 mmol of PDAB 

and 0.1 mmol of DMPDAB in 3.33 ml of DMSO. Herein, a small 

amount of Br anion in CsPbBrxI3-x was introduced from the 

organic ammonium bromide in the ligands. The precursor 

solution was spin-coated onto the ITO/PEDOT:PSS substrates 

in the glove box at 4500 rpm for 40 s, which were then baked at 

100°C (or 85°C/110°C as pointed out in the main text) for 10 

min. The as-prepared ITO/PEDOT:PSS/CsPbBrxI3-x films were 

transferred into a vacuum chamber for further thermal 

evaporation of 40 nm of PCBM and 3 nm of BCP layers 

sequentially. At last, with a shadow mask, a 100 nm of Al layer 

was evaporated under a pressure of 2 × 10−4 Pa. The active 

device area was 0.04 cm2 as defined by the overlapping area of 

the ITO and Al electrodes. 

4.3 Characterization 

XRD data were acquired with a Bruker D8 Discover 

diffractometer using Cu Kα radiation (λ = 1.54178 Å). SEM 

images were acquired using a FEI Helios NanoLab G3 

equipment. AFM images were acquired using an 

ASYLUM-MFP-3D equipment. PL spectra were acquired using a 

JASCO FP-8500 spectrometer. PL lifetime was measured using 

the time-correlated, single-photon counting technique 

(Hamamatsu, C10627), and excitation was provided by a 

femtosecond mode-locked Ti:sapphire laser (Spectra Physics, 

MAITAI XFIMW) at 400 nm. PLQY values were acquired using a 

calibrated integrating sphere system coupled with a JASCO 

FP-8500 spectrometer. UV-vis spectra were measured using a 

JASCO V-670 spectrometer. The LED characterization was 

acquired with a Konica Minolta CS-2000 spectroradiometer 

coupling with a Keithley source meter (Keithley 2400), which 

were controlled via a computer (Fig. S11). Thereinto, a Keithley 

2400 was used to obtain current density versus voltage data, 

and the corresponding EL spectra and luminance data were 

acquired using a Konica Minolta CS-2000 spectroradiometer. 

The LEDs were tested in air without encapsulation.  
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