Biogenesis of type V pili 1

2	Running title: Mechanism of type V pili
3	Mikio Shoji ¹ , Satoshi Shibata ² , Takayuki Sueyoshi ¹ , Mariko Naito ¹ , Koji Nakayama ¹
4	
5	¹ Department of Microbiology and Oral Infection, Graduate School of Biomedical
6	Sciences, Nagasaki University, Nagasaki, Nagasaki 852-8588, Japan.
7	² Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and
8	Technology Graduate University, Onna, Okinawa 904-0495, Japan.
9	
10	Corresponding author
11	Mikio Shoji, Department of Microbiology and Oral Infection, Graduate School of
12	Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki 852-8588, Japan.
13	Email: <u>m-shoji@nagasaki-u.ac.jp</u>
14	Telephone: +81-90-819-7649
15	ORCID ID: 10 https://orcid.org/0000-0002-7605-4721
16	Subject section and specified field
17	Bacteriology and bacterial components
18	Funding Statement
	1

19	Japan Society for the Promotion of Science, Grant/Award Numbers: 19K10072, 19K10083
20	
21	
22	
23	
24	
25	

26 Abstract

28	Pili or fimbriae, which are filamentous structures present on the surface of bacteria, were
29	purified from a periodontal pathogen, Porphyromonas gingivalis, in 1980s. The protein
30	component of pili (stalk pilin), which is its major component, was named FimA; it has a
31	molecular weight of approximately 41 kDa. Since the molecular weight of the pilin is
32	twice that of pilins from other bacterial pili, the P. gingivalis Fim pili were suggested to
33	be formed via a novel mechanism. In earlier studies, we reported that the FimA pilin is
34	secreted on the cell surface as a lipoprotein precursor, and the subsequent N-terminal
35	processing of the FimA precursor by arginine-specific proteases is necessary for Fim pili
36	formation. The crystal structures of FimA and its related proteins were determined
37	recently, which show that Fim pili are formed by a protease-mediated strand-exchange
38	mechanism. The most recent study conducted by us, wherein we performed cryo-electron
39	microscopy of the pilus structure, provided evidence in support of this mechanism. As the
40	P. gingivalis Fim pili are formed through novel transport and assembly mechanisms, such
41	pili are now designated as type V pili. Surface lipoproteins, including the anchor pilin
42	FimB of Fim pili that are present on the outer membrane, have been detected in certain
43	gram-negative bacteria. Here, we describe the assembly mechanisms of pili, including

44	those of type V and other pili, as well as the lipoprotein transport mechanisms.
45	
46	Key words: Bacterial components, Lipoprotein, Periodontal pathogen, Pili
47	
48	
49	
50	

51 1. INTRODUCTION

Periodontal disease and dental caries are two leading causes of the loss of teeth 53 54 worldwide. Periodontal disease is more commonly known to cause the loss of teeth than dental caries in people aged 40 years or above in Japan¹. With age progression, the 55 proportion of people with severe symptoms of periodontal disease increases as well and 56 this tendency is noted approximately till individuals reach 80 years of age ²⁻³. Chronic 57 58 periodontitis is known to be caused by multiple bacteria that inhabit the periodontal pocket and owing to the consequent immune responses⁴. Large-scale epidemiological 59 studies have revealed the bacteria involved in the prevalence of periodontal disease⁵⁻⁷. 60 . Among periodontopathic bacteria, Porphyromonas gingivalis, Tannerella forsythia, and 61 Treponema denticola are strongly associated with the onset and progression of chronic 62 periodontitis and are referred to as the "red complex"8. In particular, P. gingivalis is a 63 64 keystone pathogen because even a small population of the pathogen can initiate and exacerbate chronic periodontitis⁹. Recently, a dysbiotic microbial community formed as 65 66 a result of *P. gingivalis* infection was reported to mediate periodontitis in a mouse model¹⁰. 67 As P. gingivalis is unable to use carbohydrates as an energy source, the bacterium secrete proteases with significant proteolytic ability to use peptides/amino acids as an 68

69	energy source, such as gingipains, and various peptidases, including dipeptidyl peptidases,
70	to survive in the periodontal pocket where is deeper space around teeth led by periodontal
71	disease. Gingipains consist of arginine-specific proteases (RgpA and RgpB) and a lysine-
72	specific protease (Kgp). These are C25 family cysteine proteases and degrade or process
73	host matrix proteins ¹¹ , immunoglobulins ¹² , and complement factors ¹³ , as well as bacterial
74	surface proteins, including pilins (or fimbrillins) such as FimA and Mfa1 proteins that are
75	major subunits of Fim and Mfa pili (or fimbriae), respectively ¹⁴⁻¹⁶ .
76	P. gingivalis forms colonies with black pigmentation on blood agar plates. The
77	black pigmentation is attributed to the accumulation of μ -oxo-bis heme on the cell
78	surface ¹⁷ . In particular, Kgp participates in the degradation of hemoglobin, which contains
79	heme molecules, and accordingly, kgp mutants form unpigmented colonies on blood agar
80	plates ¹⁸⁻²⁰ . Using colony pigmentation, we discovered a type IX secretion system (T9SS)
81	that mediates the secretion of gingipains ²¹⁻²⁷ and also determined the mechanism by
82	which gingipains attach to the cell surface, which involves binding with anionic
83	polysaccharide containing LPS (A-LPS) ²⁸⁻³³ . In <i>P. gingivalis</i> , the gingipains-A-LPS-pili
84	triad interacts with one another and is a major contributor to the pathogenicity of the
85	bacteria ³⁴ .

Bacterial pili play roles in adherence to host cells or coaggregation with other

87	bacterial cells. There are two types of pili with distinct functions: adhesive pili and sex
88	pili; the latter is involved in the transfer of plasmid DNA from donor cells to recipient
89	cells in conjugation. Among adhesive pili, chaperone-usher pili, curli, and type IV pili in
90	gram-negative bacteria and sortase-dependent pili in gram-positive bacteria were reported
91	before the discovery of type V pili ³⁵⁻³⁶ . Most recently, <i>P. gingivalis</i> pili were classified as
92	a novel type of adhesive pili and designated as type V pili37. The genome of gut
93	commensal bacteria such as Bacteroides spp. and Prevotella spp. comprises type V pili-
94	related genes. Although there are several aspects of type V pili that remain unknown, we
95	discuss recent findings pertaining to the biogenesis and structure of type V pili compared
96	to those of other types of pili. In addition, bacterial lipoproteins are also discussed, as
97	most pilins that form type V pili are secreted as lipoproteins.
98	
99	2 PREVIOUSLY CHARACTERIZED BACTERIAL PILI
100	
101	2.1 Chaperone-usher pili
102	Bacteria in Enterobacteriaceae such as Salmonella spp. and Escherichia spp. produce a
103	variety of adhesive pili, including chaperone-usher pili ³⁸⁻³⁹ . Type 1 and P pili are typical

104 chaperone-usher pili⁴⁰. They consist of a linear body with 7-nm-diameter known as "rod"

105	and a thin, flexible fibril with a small tip that plays an important role in cell attachment ⁴¹ .
106	Type 1 and P pili are known to be major virulence factors that mediate urinary tract
107	infections in the bladder, urinary tract, or kidney ⁴² . Type 1 and P pili bind to α -D-mannose
108	and α -D-galactopyranosyl-(1-4)- β -D-galactopyranoside, respectively, present on the
109	surface of urinary cells of the host. Polymerization that occurs within the usher protein is
110	mediated by the donor-strand exchange (DSE) mechanism ⁴³ . Although the major subunit
111	protein of chaperone-usher pili contains an immunoglobulin-like fold which consists of a
112	beta-sandwich of seven or more strands in two sheets with a Greek-key topology, it lacks
113	the seventh β strand, and this leads to the formation of a hydrophobic groove. The
114	hydrophobic groove of the subunit protein is buried by the G1 strand of chaperone protein
115	in the periplasm, and this constitutes the donor-strand complementation (DSC)
116	mechanism ⁴⁴ . Subsequently, the binding partner is altered by the zip-in zip-out
117	mechanism with the N-terminal end of the approaching protein subunit within the usher
118	protein in the outer membrane, and this constitutes the DSE. Escherichia coli FimA
119	protein of type 1 pili and PapA protein of P pili were of 18 and 20 kDa, respectively.
120	Notably, the rod compartment of those pili possesses spring-like properties, such that
121	bacteria with pili can adhere to urinary cells and resist urine flow ³⁵ .

123 2.2 | Curli

124 Curli are assembled via the nucleation precipitation pathway, which is also known as the type VIII secretion system⁴⁵. Curli consist of non-branching, highly aggregative fibers 125 and possess functional amyloid-like property which can be stained by Congo-red or 126 Thioflabin T⁴⁶. Curli consist of CsgA, CsgB, CsgC, CsgD, CsgE, CsgF, and CsgG 127 128 proteins. CsgA is a major curli subunit protein and forms a substantial part of amyloid 129 fibers. CsgB serves as a nucleator that nucleates CsgA subunits to form amyloid fibers. 130 CsgA and CsgB are structurally similar and both consist of three components: a signal 131 peptide, an N-terminal segment, and a C-terminal amyloid core domain comprising five 132 repeating units. CsgC is present in the periplasm and acts as an inhibitor to prevent 133 naturally forming CsgA polymers. CsgD, which plays a part in the csgDEFG operon, regulates the expression of the csgBAC operon. Lipoprotein CsgG forms a nonameric 134 135 channel in the outer membrane and transports CsgB and CsgA from the periplasm to the 136 cell surface. CsgE binds to CsgG in the periplasm⁴⁷, while CsgF binds to the inner surface of the CsgG channel⁴⁸. Initially, CsgB interacts with CsgF at the outer membrane and 137 138 serves as a nucleator for the CsgA subunits. Subsequently, a secreted soluble CsgA protein 139 binds to CsgB, self-assembles, and is eventually converted to an amyloid structure. CsgE 140 captures CsgA and pushes it into the periplasmic chamber of CsgG to enhance its

translocation efficiency. The soluble CsgB and CsgA proteins usually adopt a diffusionbased, entropy-driven transport mechanism in the CsgG channel⁴⁷.

143

144 2.3	Type IV	pili
----------------	---------	------

Type IV pili are widely detected in gram-negative, and gram-positive bacteria, and in 145 146 archaea; these participate in adhesion, twitching motility, swimming motility, natural competence for DNA uptake, and phage secretion⁴⁹⁻⁵¹. Type IV pili include Type IVa, 147 148 Type IVb, Tad/Flp, and Com pili, and archaeal flagellum (archaellum). Type IVa pili are 149 the best type IV pili characterized thus far. In gram-negative bacteria, type IV pili 150assembly involves the participation of 10 to 18 distinct proteins that are located in the inner membrane, periplasm, and outer membrane⁵². PilA is a major subunit protein of the 151 type IV pili; it contains a signal sequence and is translocated across the inner membrane 152 by the Sec apparatus. The signal sequence of PilA is cleaved by a prepilin-specific signal 153 peptidase to form the mature pilin⁵³. The mature PilA protein has a lollipop-like structure 154 with an N-terminal helix and a globular domain⁵⁴. Pilus formation is initiated by the minor 155 156 pilin complex that stabilizes the tip of pilus and provides a template for the assembly of major subunits⁵⁵. Pilus elongation and retraction are mediated by PilC, and two 157 antagonistic ATPases, PilB and PilT⁵⁶⁻⁵⁷. The structures and molecular weights of the 158

minor pilins are different from those of the major pilin. Minor pilins mediate specific
functions such as DNA binding, aggregation, and adherence⁵⁵.

161

162 2.4 | Sortase-dependent pili

Among gram-positive bacteria, Actinomyces naeslundii⁵⁸, Corynebacterium diphteria⁵⁹, 163 Enterococcus faecalis⁶⁰, Streptococcus agalactiae⁶¹, Streptococcus pneumoniae⁶², 164 Streptococcus pyogenes⁶³, Streptococcus suis⁶⁴ were observed to contain pili⁶⁵. Gram-165 positive bacterial pili are assembled through a sortase-dependent mechanism⁵⁹. Sortases 166 167 are cell surface-associated or -anchored enzymes that cleave the sorting signal sequence 168 of secreted proteins and form isopeptide bonds between the secreted proteins and peptidoglycans or polypeptides. The cell wall sorting signal sequence consists of an 169 LPXTG motif, a hydrophobic domain, and a short tail comprising positively charged 170 residues⁶⁶⁻⁶⁷. The active site cysteine of the sortase contributes to cleavage of the amide 171 172 bond between threonine and glycine of the LPXTG motif and generates a thioester 173 intermediate. Nucleophilic attack by the amino group within the pentaglycine crossbridge 174of lipid II in the cell wall links the C-terminal threonine within the LPXTG motif of the cell surface protein⁶⁵. Sortase is classified into classes A, B, C, and D⁶⁵. Sortase-175 dependent pili are synthesized by class C sortases and certain class B sortases³⁶. In 176

177	Corynebacterium diphtheriae, the formation of SpaA pili is initiated by isopeptide bond
178	formation between threonine of SpaC (tip protein) and lysine of SpaA (shaft protein),
179	following which consecutive SpaA molecules are linked sequentially. The elongation of
180	the SpaA pili is terminated upon the incorporation of a SpaB (anchor protein) molecule
181	by the house keeping class A sortase. Eventually, SpaA pili are anchored to the cell wall ⁶⁸ .
182	

183 **3 | TYPE V PILI**

184

185 **3.1 | Biogenesis of Type V pili**

Genes associated with type V pili biogenesis are present in class Bacteroidia³⁷. As P. 186 187 gingivalis pili are the best studied type V pili, we describe the biogenesis and structure of P. gingivalis type V pili. P. gingivalis pili are known to be important virulence factors 188 189 that mediate the coaggregation of the pathogen with other microorganisms and the colonization of host cells⁶⁹. *P. gingivallis* contains two types of pili: Fim and Mfa⁷⁰⁻⁷³. In 190 191 addition, the PGN_1808 protein, which is overexpressed in strain ATCC 33277, can polymerize in vivo to form pilus-like filaments⁷⁴. As the PGN_1808 protein contains a 192 193 FimA related motif and is matured by gingipain proteases, PGN_1808 presumably belongs to Type V pili³⁷. Notably, the PGN_1808 polymer is detergent- and heat-labile 194

195	compared to Fim and Mfa pili. The role of PGN_1808 has not been identified in detail.
196	FimA is a major subunit protein (stalk pilin) in Fim pili and the N-terminal sequence of
197	FimA purified from Fim pili begins at 47 th alanine residue in the FimA amino acid
198	sequence encoded by the <i>fimA</i> gene, which is preceded by arginine at the 46 th position ⁷⁵
199	(Fig. 1). N-terminal processing of FimA by the arginine-specific gingipain Rgp is
200	necessary for FimA polymerization because Rgp-deficient cells do not contain pili ¹⁴ . In
201	1990s, Mfa pili were determined to be the second type of pili. Mfa1 is the major
202	component of Mfa pili and has a molecular weight of approximately 70 kDa (67-75
203	kDa) ⁷¹⁻⁷³ . The Mfa1 protein obtained from the membrane fraction begins with alanine
204	residue at the 50 th position and is preceded by arginine at the 49 th position ¹⁵ (Fig. 1). Both
205	N-terminal signal sequences of FimA and Mfa1 proteins have a motif resembling the
206	lipobox that is detected in those of bacterial lipoproteins (Fig. 1). The lipobox-like motif
207	consists of a cysteine residue and three peripheral amino acids. The thiol group of the
208	cysteine residue may bind to diacylglycerol. Therefore, we hypothesized that FimA and
209	Mfa1 pilins might be translocated as lipoproteins from the inner membrane to the outer
210	membrane. Treatment with globomycin, which is a signal peptidase II inhibitor, labeling
211	with palmitic acid, and site-specific substitution with amino acid methods demonstrated
212	that FimA and Mfa1 were secreted at the cell surface as lipoprotein precursors ⁷⁶ . After

213	the N-terminal region of each pilin is cleaved by Rgp proteases, pilus polymerization
214	occurs on the cell surface ^{14-15, 76} . FimB and Mfa2 function as anchor proteins that
215	terminate pilus polymerization ⁷⁷⁻⁷⁸ . Furthermore, FimC, FimD, FimE, Mfa3, Mfa4, and
216	Mfa5 are accessory proteins that are predicted to be located at the tips of Fim and Mfa
217	pili ⁷⁹⁻⁸¹ . Out of the accessory proteins, Mfa5 is secreted at the outer membrane by T9SS ⁸² .
218	Other accessory proteins, as well as the stalk pilins FimA and Mfa1, are presumably
219	secreted as lipoproteins and mature upon the cleavage of the N-terminal regions by Rgp
220	proteases. The fimA, fimB, fimC, fimD, and fimE genes form a gene cluster, while the
221	mfa1, mfa2, mfa3, mfa4, and mfa5 genes form a separate gene cluster. These two gene
222	clusters are located at different positions in the <i>P. gingivalis</i> chromosome ⁸³⁻⁸⁴ .
223	To elucidate the mechanism underlying pilus polymerization, we determined the
224	crystal structures of 20 pili-related proteins in class Bacteroidia ³⁷ . The 20 pilin related
225	proteins belong to three Pfam families: P_gingi_FimA family (PF03621) which include
226	structural (e.g., FimA and Mfa1) and tip (e.g., Mfa4) pilins, Mfa2 family (PF08842)
227	which include anchor proteins such as FimB and Mfa2, and DUF3988 family (PF13149)
228	whose members contain a domain of unknown function and this family is related to the
229	other two Pfam families. The FimA protein (FimA4) from P. gingivalis strain W83
230	consists of two domains, the N-terminal and C-terminal domains. Each domain comprises

231	seven β -strands (A1-A7 and B1-B7, respectively). Notably, an additional typical β -strand
232	structure (A1'-A2') is present at the C-terminus. In several cases, the additional C-terminal
233	β -strands were bent inward and were closed by a loop containing an N-terminal Rgp
234	cleavage site. Conversely, additional C-terminal β -strands of certain pili-related proteins
235	which were in Mfa2 and DUF3988 families were outside. These findings suggest that
236	Rgp proteases degrade the loop after the N-terminal A1 β -strand to release the additional
237	C-terminal β -strands, which leads to the formation of a mature form with a hydrophobic
238	groove, and later, outward β -strands of the approaching mature FimA proteins embed into
239	the groove of the former acceptor mature FimA protein, which results in pilus
240	polymerization. To confirm that the outward C-terminal β -strands are embedded in the
241	groove, we performed a Cys-Cys cross-linking analysis and observed that the C-terminal
242	β -strands act as a linker for polymerization ³⁷ . In addition, the C-terminal β -strands of the
243	anchor proteins FimB and Mfa2 play a role in determining the length of Fim and Mfa pili
244	because the anchor pilins do not possess an N-terminal Rgp cleavage site and are
245	lipoproteins that remain attached to the cell surface. Since the mechanisms underlying the
246	secretion and pilus formation of <i>P. gingivalis</i> Fim and Mfa pili are different from those of
247	previously discovered pili, we designated these pili as type V pili ³⁷ . The main reasons for
248	the newly defined type V pili are that FimA and Mfa1 are not homologous to other pili

249	proteins at the amino acid level and that they are secreted to the cell surface via a
250	lipoprotein transport system. The crystal structures of Mfa1, Mfa2, Mfa3, and Mfa4 have
251	been determined ⁸⁵⁻⁸⁶ . Similar to FimA and FimB, Mfa1 and Mfa2 contain additional C-
252	terminal $\boldsymbol{\beta}$ strands that function as linkers. In contrast, Mfa3 and Mfa4 do not contain
253	additional C-terminal $\boldsymbol{\beta}$ strands. Although both Mfa3 and Mfa4 proteins appear to be
254	located at the tip, the exact binding mechanism between these proteins and the major pilin
255	Mfa1 remains unknown. C-terminal peptides of Mfa1 and FimA inhibit the
256	polymerization of Mfa1 and FimA proteins, respectively ⁸⁷ . The construction of more
257	effective inhibitors of pilus formation that are based on the recently discovered crystal
258	structures of Fim-related proteins will help prevent the colonization by the periodontal
259	pathogen.
260	Recently, we determined the crystal structures of FimA proteins: FimA1 from
261	strain ATCC 33277 and FimA2 from strain TDC60. The proteins from both strains consist
262	of two domains, the N-terminal and C-terminal domains with an additional typical β -
263	strand structure (A1') at the C-terminus ⁸⁸ (Fig. 2). In addition, we successfully performed
264	the <i>in vitro</i> formation of the FimA polymer that is generated by mixing recombinant FimA
265	protein purified from E. coli with RgpB protease isolated from P. gingivalis. Cryo-
266	electron microscopic observation of the FimA polymer revealed that additional C-

267	terminal strands of FimA protein are embedded in the groove of a preceding FimA protein,
268	which indicates the protease-mediated strand-exchange of type V pilus polymerization
269	(Fig. 3). Immuno-electron microscopy with anti-His tag antibody revealed that the N-
270	terminal His tag of recombinant FimA, which is separated from FimA upon cleavage by
271	RgpB protease, is detected at one end of the FimA polymer, which suggests that the N-
272	terminal anchor strand of FimA remains embedded in the groove even after RgpB
273	cleavage ⁸⁸ . We found that FimA that lack the last amino acid residue tryptophan at the
274	383 rd position (FimA[Δ 383]), which cannot polymerize, is located on the cell surface. To
275	determine whether the N-terminal anchor strand remains associated with the N-terminal
276	domain of FimA[Δ 383] post RgpB cleavage, we created FimA[Δ 383] derivatives with
277	cysteine pairs in the anchor strand and its neighboring strands after substituting intrinsic
278	cysteines with alanines. The cross-linking of these mutants with a crosslinking agent, dithio-
279	bis-maleimidoethane, led to an increase in the molecular mass of FimA, which corresponded
280	to the molecular mass of the anchor strand, and this effect was reversed upon the addition of
281	β -mercaptoethanol ⁸⁸ . These results indicate that pilins are anchored to the cell surface even
282	after RgpB cleavage, which facilitates a smooth reaction between pilins. We also observed
283	that the FimA polymer can be generated using a mouse-derived arginine-specific protease
284	instead of RgpB, which suggests that only the proteolytic function of RgpB is a

285 prerequisite for FimA polymerization (Shibata et al., unpublished data) (Fig. 4).

286

287

3.2 | Lipidation of bacterial lipoproteins

As FimA-related proteins such as FimA, FimB, FimC, FimD, Mfa1, Mfa2, Mfa3, and 288 Mfa4 are secreted by lipoproteins⁷⁶, here, we discuss the lipoproteins present in bacteria. 289 290 Lipoproteins are present in bacteria, archaea, and eukarya. Lipoproteins present in gram-291 negative and gram-positive bacteria possess a unique feature: they undergo membrane association, which involves the linking of a diacylglycerol unit thioether with the N-292 terminal cysteine of the lipoprotein⁸⁹. Lipidation is mediated by prolipoprotein 293 294 diacylglyceryl transferase (Lgt) after translocation across the cytoplasmic membrane 295 occurs via the Sec or Tat translocation pathway. Next, the lipidated proteins are cleaved by lipoprotein-specific signal peptidase II (LspA). In E. coli, additional fatty acids are 296 297 linked to the N-terminus of the LspA-processed protein by N-acyltransferase (Lnt). 298 The *lgt* and *lspA* genes are essential in gram-negative bacteria and nonessential

in gram-positive bacteria⁹⁰⁻⁹². We also attempted to construct *P. gingivalis* mutants 299 300 lacking lgt and lspA genes. However, attempt has been unsuccessful thus far, which 301 suggests that these genes play vital roles in the proliferation of *P.gingivalis* (Shoji et al., unpublished data). The tri-acylation of lipoproteins is mediated by Lnt in E. coli. Notably, 302

303 lipoprotein intramolecular transacylase (Lit) in gram-positive bacteria was recently found 304 to be a novel N-acylating enzyme⁹³⁻⁹⁴. PG_1828 of *P. gingivalis* 381 was reported to be 305 a tri-acylated lipoprotein⁹⁵. However, we did not detect Lnt or Lit homologs in *P.* 306 *gingivalis*. Further analysis is necessary to determine whether triacylated lipoproteins are 307 common in other *P. gingivalis* strains and the enzyme responsible for N-acylation.

308

309 **3.3** | Lipoprotein sorting from inner membrane to outer membrane

LolA, a periplasmic protein, was found to be involved in lipoprotein sorting to the outer membrane in *E. coli*⁹⁶; LolB, which is located in the inner leaflet of the outer membrane, was found to act as a receiver for the LolA-carrying lipoprotein⁹⁷⁻⁹⁸. LolA homologs are present in various bacteria and more than 3,000 bacterial species contain proteins with the LolA domain, as revealed in the Pfam family database. In addition, LolA_like (PF17131) and LolA_2 (PF16584) family proteins were detected in 1,000 and 267 bacterial species, respectively.

LolA has eleven antiparallel β-sheets and three α-helices, which form an incomplete β-barrel structure with a lid⁹⁹. The barrel has a hydrophobic cavity and can bind the acyl chains of lipoproteins. The *lolA* gene is essential in *E. coli* and *Pseudomonas aeruginosa*¹⁰⁰⁻¹⁰¹, whereas it is nonessential in *Helicobacter pylori*¹⁰², *Flavobacterium*

321	johnsoniae ¹⁰³ , Cellulophaga algicola ¹⁰⁴ , or Xanthomonas campestris pv. campestris ¹⁰⁵ ,
322	as evidenced by the successful generation of respective <i>lolA</i> -deficient mutants. Notably,
323	in E. coli, both lolA- and lolB- deficient mutants can be generated in the genetic
324	background with <i>lpp</i> and <i>rcsB</i> mutations and the activating Cpx envelope stress
325	response ¹⁰⁶ . These results indicate the presence of an alternative LolA-independent
326	lipoprotein-trafficking mechanism. The P. gingivalis genome does not encode any
327	homologs of the LolA family (PF03548), as revealed in the Pfam database, although we
328	detected homologs of the LolA_2 family (PG_1635 in strain W83; PGN_0486 in strain
329	ATCC 33277) and LolA_like family (PG_1179 in strain W83; PGN_0947 and PGN_1919
330	in strain ATCC 33277). In strain ATCC 33277, PGN_0947 and PGN_1919 were observed
331	to be duplicates and were located within two copies of TnPg17 ⁸⁴ . P. gingivalis W83 and
332	TDC60 each contain one copy of $TnPg17$ at the same chromosomal position as that in
333	PGN_0947 in ATCC 33277. Using strain W83, we generated a mutant that lacks PG_1179
334	and PG_1635 genes and found that the mutant formed colonies with black-pigmentation
335	on blood agar plates, similar to those formed by the parental strain W83. Furthermore, the
336	PG_1179 and PG_1635 double mutant of strain W83 was found to have the ability to
337	form Fim pili, as revealed by the introduction of the <i>fimA</i> gene of ATCC 33277 into the
338	mutant and detection of FimA ladder bands indicating FimA polymerization upon

immune-reaction with anti-ATCC 33277 FimA antibody (Shoji et al., unpublished data).
This indicates that the FimA lipoprotein is translocated to the cell surface through a
lipoprotein secretion pathway without the LolA-related proteins (Shoji et al., unpublished
data). Further analysis is required to elucidate the lipoprotein trafficking mechanism in *P*. *gingivalis*.

344 The crystal structure of LolB is considerably similar to that of LolA. The C-345 terminal loop of LolA is its characteristic trait and can help avoid retrograde localization of lipoproteins to the inner membrane¹⁰⁷. Conversely, leucine at the 68th position present 346 in the protruding loop of LolB plays an important role in outer membrane targeting¹⁰⁸. 347 348 LolA (Pfam code PF03548) is particularly conserved in phyla Proteobacteria, and 349 Bacteroidetes, whereas LolB (Pfam code PF03550) is conserved only in phylum Proteobacteria¹⁰⁹. *P. gingivalis* and *Bacteroidetes* spp., among other bacteria from phylum 350 Bacteroidetes lack LolB homologs, which suggests that the function executed by LolB 351 are not necessary in these bacteria, or perhaps these bacteria contain a different protein 352 with the same function as LolB. 353

Outer membrane proteins in gram-negative bacteria are synthesized in the cytoplasm and transported across the inner membrane by the Sec apparatus. Subsequently, the signal peptide is cleaved by a signal peptidase, and the processed protein is then 357 transported by outer membrane transportation systems, such as the β -barrel assembly machinery (BAM) and the translocation and assembly module (TAM)¹¹⁰. The BAM 358 complex is known to be an essential component in E. coli. In P. gingivalis, BamA 359 (PGN 0299) and BamD (PGN 1354) are thought to form the Bam complex. The P. 360 361 gingivalis BamA homolog (PGN_0299) is predicted to be an essential component of the pathogen¹¹¹⁻¹¹². TAM consists of TamA and TamB proteins. These proteins are assumed 362 363 to transport autotransporter proteins and hydrophobic molecules¹¹³. We detected homologs of TamA (PGN 0147 and PGN 0973) and TamB (PGN 0145 and PGN 0148) 364 365 in P. gingivalis. P. gingivalis PGN_0147 and PGN_0973 double mutant formed colonies 366 with black-pigmentation on blood agar plates, and yet, expressed Fim and Mfa pili, which suggests that TamA homologs are not involved in lipoprotein transport in the organism 367 (Shoji et al., unpublished data). 368

369

370 **3.4** | Lipoprotein transport to the cell surface

In gram-negative bacteria, lipoproteins are known to have the following features: (i) diacylglyceration at a cysteine residue that is located at the end of the N-terminal signal sequence by the diacylglyceryl transferase, Lgt, (ii) cleavage of the N-terminal signal sequence by the type II signal peptidase, Lsp, in the inner membrane, and (iii) addition of

375	an N-acyl fatty acid to the N-terminal end of the protein by the N-acyltransferase, Lnt, in
376	the inner membrane. The lipoprotein sorting systems in <i>E. coli</i> are well studied ¹¹⁴ . <i>E. coli</i>
377	lipoproteins are translocated from the outer leaflet of the inner membrane to the inner
378	leaflet of the outer membrane by the lipoprotein sorting machinery. which consists of a
379	lipoprotein-specific ABC transporter, the LolCDE complex in the inner membrane, and
380	aforementioned LolA and LolB proteins. Some lipoproteins remain in the inner
381	membrane because they possess the Lol avoidance signal that has asparagine and
382	glutamic acid residues in the second (+2) and third (+3) positions after lipidated cysteine.
383	<i>E. coli</i> has more than 90 lipoproteins. Among them, only RcsF^{115} and Pal^{116} proteins are
384	translocated to the outer leaflet of the outer membrane.

Conversely, it is noteworthy that Borrelia burgdorferi expresses more than 80 385 lipoproteins on its cell surface¹¹⁷⁻¹¹⁸. However, molecules that translocate lipoproteins 386 387 across the outer membrane, such as flippase, have not been detected. Zückert's group 388 found that the surface lipoproteins contain tether regions that are necessary for 389 translocation across the outer membrane, which consist of lipidated cysteine and nearly ten amino acids; however, there are no specific consensus amino acids in the tether 390 regions¹¹⁹⁻¹²¹. Bacteroides spp. contain starch-degrading surface lipoproteins such as 391 SusC, SusD, SusE, SusF, and SusG¹²²⁻¹²⁴. Lauber et al¹²⁵ observed that the surface 392

393	lipoproteins of <i>Bacteroides</i> harbor lipidated cysteine with XQKDDE as a consensus motif
394	for translocation across the outer membrane. The consensus motif is named the
395	lipoprotein export sequence (LES). The presence of acidic residues such as aspartic acid
396	and glutamic acid in the LES are particularly important for translocation across the outer
397	membrane. LES-like motifs are present in the surface lipoproteins of other bacteria such
398	as Capnocytophaga canimorsus, Flavobacterium johnsoniae, and Bacteroides fragilis.
399	As mentioned above, <i>P. gingivalis</i> FimA and Mfa1, the major stalk pilins of Fim and Mfa
400	pili, respectively, are positioned at the cell surface as lipoproteins before the N-terminal
401	regions of the proteins are cleaved by Rgp proteases ⁷⁶ . Anchor and accessory pilins of
402	Fim and Mfa, except Mfa5 ⁸² , are also secreted as lipoproteins. Fim and Mfa pilins, except
403	Mfa5, contain LES-like sequences in the N-terminal regions. Fim- and Mfa-related
404	proteins are widely conserved in Bacteroides spp37. Our preliminary survey on
405	lipoproteins using LIPO ¹²⁶ and Lipo P1.0 ¹²⁷ programs revealed that there are 85
406	lipoproteins in P. gingivalis. Of these, 67 lipoproteins were predicted by both programs.
407	Besides the Fim and Mfa proteins, the SusD homolog RagB, IhtB, HmuY, and Omp28
408	were predicted to be present as surface lipoproteins in P. gingivalis. The lipoproteins are
409	likely to have an LES because acidic residues are positioned adjacent to cysteine. The
410	T9SS component proteins, PorK, PorE, and PorW are predicted to be lipoproteins. PorK

is located in the inner leaflet of the outer membrane¹²⁸, while the subcellular positions of 411 412 PorE and PorW have not been determined. As PorE, PorW, and PorK do not contain LESlike sequences, it is assumed that these are not positioned at the cell surface (Fig. 5). 413 Notably, Hooda et al.¹²⁹ found that an outer membrane protein, Slam, can 414 translocate lipoproteins to the cell surface in Neisseria spp. Slam possesses an N-terminal 415 domain that contains tetratricopeptide repeats and a C-terminal β-barrel domain named 416 417 DUF560. Slam homologs are present in bacterial species that inhabit in diverse environments, including free-living, commensal, and pathogenic bacteria such as N. 418 419 meningitidis, Vibrio cholerae, Salmonella enterica, and Acinetobacter baumannii; however, Slam homologs are absent in *Borrelia* spp., *Bacteroides* spp.¹³⁰, and *P*. 420 gingivalis. 421 422 **4 | CONCLUDING REMARKS** 423 424 *P. gingivalis* is known to be a keystone pathogen that induces the onset and exacerbation 425 of periodontal disease. Inclusion of P. gingivalis in the periodontal microbiota that 426 427 constitutes the periodontal biofilm alters the normal state of the periodontal environment

428 to a periodontopathic state. Therefore, it is necessary to develop pharmaceutical drugs

429	targeting P. gingivalis. Drugs that control pilin transport or pilus formation in the
430	bacterium are likely to be good candidates, since such drugs can specifically eliminate
431	the bacterium from the periodontal environment without affecting the normal microbiota
432	and are distinctly different from previously known antibiotics.
433	
434	

436 Acknowledgements

437	We thank Editage	(www.editage.com)	for English	language editing.
-----	------------------	-------------------	-------------	-------------------

438

439 **Disclosure**

- 440 There is no conflict of interest.
- 441

442 **Data Availability Statement**

443 Data available on request due to privacy/ethical restrictions.

444 **References**

445	1.	8020zaidan.	The second	national	survey	on the r	easons for	r extraction	of perm	lanent
446		teeth, 2018								

2. Nazir M. A. Prevalence of periodontal disease, its association with systemic
diseases and prevention. *International journal of health sciences*, 2017; 11(2), 72–
80.

450 3. Tonetti MS, Bottenberg P, Conrads G, et al. Dental caries and periodontal diseases

in the ageing population: call to action to protect and enhance oral health and well-

- being as an essential component of healthy ageing Consensus report of group 4 of
- 453 the joint EFP/ORCA workshop on the boundaries between caries and periodontal
- 454 diseases. J Clin Periodontol. 2017;44 Suppl 18:S135-S144. doi:10.1111/jcpe.12681
- 455 4. Könönen E, Gursoy M, Gursoy UK. Periodontitis: A Multifaceted Disease of
- Tooth-Supporting Tissues. *J Clin Med.* 2019;8(8):1135. Published 2019 Jul 31.
- 457 doi:10.3390/jcm8081135
- 458 5. Rodenburg JP, van Winkelhoff AJ, Winkel EG, Goené RJ, Abbas F, de Graff J.
- 459 Occurrence of *Bacteroides gingivalis*, *Bacteroides intermedius* and *Actinobacillus*
- 460 *actinomycetemcomitans* in severe periodontitis in relation to age and treatment

461	ł	nistory. J Clin Periodontol. 1990;17(6):392-399. doi:10.1111/j.1600-
462	(051x.1990.tb00036.x
463	6. 5	Slots J, Feik D, Rams TE. Actinobacillus actinomycetemcomitans and Bacteroides
464	i	intermedius in human periodontitis: age relationship and mutual association. J Clin
465	Ì	Periodontol. 1990;17(9):659–662.
466	7.	Chigasaki O, Takeuchi Y, Aoki A, et al. A cross-sectional study on the
467		periodontal status and prevalence of red complex periodontal pathogens in a
468		Japanese population. J Oral Sci. 2018;60(2):293-303. doi:10.2334/josnusd.17-
469		0223
470	8.	Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and
471		Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic
472		consortium in periodontitis. Periodontol 2000. 2005;38:72-122.
473		doi:10.1111/j.1600-0757.2005.00113.x
474	9.	Hajishengallis G, Liang S, Payne MA, et al. Low-abundance biofilm species
475		orchestrates inflammatory periodontal disease through the commensal microbiota
476		and complement. Cell Host Microbe. 2011;10(5):497-506.
477		doi:10.1016/j.chom.2011.10.006
478	10.	Payne MA, Hashim A, Alsam A, et al. Horizontal and vertical transfer of oral

480		doi:10.1177/0022034519877150
481	11.	Potempa J, Banbula A, Travis J. Role of bacterial proteinases in matrix
482		destruction and modulation of host responses. Periodontol 2000. 2000;24:153-
483		192. doi:10.1034/j.1600-0757.2000.2240108.x
484	12.	Fujimura S, Hirai K, Shibata Y, Nakayama K, Nakamura T. Comparative
485		properties of envelope-associated arginine-gingipains and lysine-gingipain of
486		Porphyromonas gingivalis. FEMS Microbiol Lett. 1998;163(2):173–179.
487		doi:10.1111/j.1574-6968.1998.tb13042.x
488	13.	Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE. Activation of
489		complement components C3 and C5 by a cysteine proteinase (gingipain-1) from
490		Porphyromonas (Bacteroides) gingivalis. J Biol Chem. 1992;267(26):18902–
491		18907.
492	14.	Nakayama K, Yoshimura F, Kadowaki T, Yamamoto K. Involvement of arginine-
493		specific cysteine proteinase (Arg-gingipain) in fimbriation of Porphyromonas
494		gingivalis. J Bacteriol. 1996;178(10):2818–2824. doi:10.1128/jb.178.10.2818-
495		2824.

microbial dysbiosis and periodontal disease. J Dent Res. 2019;98(13):1503-1510.

496	15.	Kadowaki T, Nakayama K, Yoshimura F, Okamoto K, Abe N, Yamamoto K.
497		Arg-gingipain acts as a major processing enzyme for various cell surface proteins
498		in Porphyromonas gingivalis. J Biol Chem. 1998;273(44):29072–29076.
499		doi:10.1074/jbc.273.44.29072
500	16.	Haruyama K, Yoshimura A, Naito M, Kishimoto M, Shoji M, Abiko Y, Hara Y,
501		and Nakayama K: Identification of a gingipain-sensitive surface ligand of
502		Porphyromonas gingivalis that induces TLR2- and TLR4-independent NF-κB
503		activation in CHO cells. Infect. Immun. 2009;77(10):4414-4420.
504	17.	Smalley JW, Silver J, Marsh PJ, Birss AJ. The periodontopathogen
505		Porphyromonas gingivalis binds iron protoporphyrin IX in the mu-oxo dimeric
506		form: an oxidative buffer and possible pathogenic mechanism. <i>Biochem J</i> .
507		1998;331 (Pt 3):681-685. doi:10.1042/bj3310681
508	18.	Okamoto K, Nakayama K, Kadowaki T, Abe N, Ratnayake DB, Yamamoto K.
509		Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and
510		heme accumulation by Porphyromonas gingivalis. J Biol Chem.
511		1998;273(33):21225–21231. doi:10.1074/jbc.273.33.21225
512	19.	Lewis JP, Dawson JA, Hannis JC, Muddiman D, Macrina FL. Hemoglobinase
513		activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83.

514 *J Bacteriol*. 1999;181(16):4905–4913.

515	20.	Curtis MA, Aduse Opoku J, Rangarajan M, et al. Attenuation of the virulence of
516		Porphyromonas gingivalis by using a specific synthetic Kgp protease inhibitor.
517		Infect Immun. 2002;70(12):6968-6975. doi:10.1128/iai.70.12.6968-6975.2002
518	21.	Sato K, Sakai E, Veith PD, et al. Identification of a new membrane-associated
519		protein that influences transport/maturation of gingipains and adhesins of
520		Porphyromonas gingivalis. J Biol Chem. 2005;280(10):8668-8677.
521		doi:10.1074/jbc.M413544200
522	22.	Sato K, Naito M, Yukitake H, et al. A protein secretion system linked to
523		bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci USA.
524		2010;107(1):276-281. doi:10.1073/pnas.0912010107
525	23.	Shoji M, Sato K, Yukitake H, et al. Por secretion system-dependent secretion and
526		glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS One.
527		2011;6(6):e21372. doi:10.1371/journal.pone.0021372
528	24.	Sato K, Yukitake H, Narita Y, Shoji M, Naito M, Nakayama K. Identification of
529		Porphyromonas gingivalis proteins secreted by the Por secretion system. FEMS
530		Microbiol Lett. 2013;338(1):68-76. doi:10.1111/1574-6968.12028
531	25.	Nakayama K. Porphyromonas gingivalis and related bacteria: from colonial

532 pigmentation to the type IX secretion system and gliding motility. J Periodontal *Res*. 2015;50(1):1–8. doi:10.1111/jre.12255 533 534 26. Sato K, Kakuda S, Yukitake H, et al. Immunoglobulin-like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion 535 536 system. Mol Microbiol. 2018;110(1):64-81. doi:10.1111/mmi.14083 27. Naito M, Tominaga T, Shoji M, Nakayama K. PGN_0297 is an essential 537 538 component of the type IX secretion system (T9SS) in Porphyromonas gingivalis: Tn-seq analysis for exhaustive identification of T9SS-related genes. Microbiol 539 Immunol. 2019;63(1):11-20. doi:10.1111/1348-0421.12665 540 541 28. Curtis MA, Thickett A, Slaney JM, et al. Variable carbohydrate modifications to 542 the catalytic chains of the RgpA and RgpB proteases of *Porphyromonas gingivalis* W50. Infect Immun. 1999;67(8):3816-3823. 543 29. Shoji M, Ratnayake DB, Shi Y, et al. Construction and characterization of a 544 545 nonpigmented mutant of Porphyromonas gingivalis: cell surface polysaccharide as an anchorage for gingipains. *Microbiology*. 2002;148(Pt 4):1183–1191. 546 547 doi:10.1099/00221287-148-4-1183

30. Shoji M, Yukitake H, Sato K, et al. Identification of an O-antigen chain length 549 regulator, WzzP, in Porphyromonas gingivalis. Microbiologyopen. 550 2013;2(3):383-401. doi:10.1002/mbo3.84 31. Shoji M, Sato K, Yukitake H, Naito M, Nakayama K. Involvement of the Wbp 551 552 pathway in the biosynthesis of *Porphyromonas gingivalis* lipopolysaccharide with 553 anionic polysaccharide. Sci Rep. 2014;4:5056. Published 2014 May 23. 554 doi:10.1038/srep05056 32. Shoji M, Nakayama K. Glycobiology of the oral pathogen Porphyromonas 555 556 gingivalis and related species. Microb Pathog. 2016;94:35-41. 557 doi:10.1016/j.micpath.2015.09.012 33. Shoji M, Sato K, Yukitake H, et al. Identification of genes encoding 558 glycosyltransferases involved in lipopolysaccharide synthesis in Porphyromonas 559 560 gingivalis. Mol Oral Microbiol. 2018;33(1):68-80. doi:10.1111/omi.12200 561 34. Nakayama K.: The type IX secretion system and the type V pilus in the phylum 562 Bacteroidetes. Japanese Journal of Bacteriology 72(4), 219-227, 2017 35. Hospenthal MK, Costa TRD, Waksman G. A comprehensive guide to pilus 563 564 biogenesis in Gram-negative bacteria. Nat Rev Microbiol. 2017;15(6):365-379. 565 doi:10.1038/nrmicro.2017.40

566	36.	Khare B, V L Narayana S. Pilus biogenesis of Gram-positive bacteria: Roles of
567		sortases and implications for assembly. Protein Sci. 2017;26(8):1458–1473.
568		doi:10.1002/pro.3191
569	37.	Xu Q, Shoji M, Shibata S, et al. A distinct type of pilus from the human
570		microbiome. Cell. 2016;165(3):690-703. doi:10.1016/j.cell.2016.03.016
571	38.	Busch A, Waksman G. Chaperone-usher pathways: diversity and pilus assembly
572		mechanism. Philos Trans R Soc Lond B Biol Sci. 2012;367(1592):1112-1122.
573		doi:10.1098/rstb.2011.0206
574	39.	Hansmeier N, Miskiewicz K, Elpers L, Liss V, Hensel M, Sterzenbach T.
575		Functional expression of the entire adhesiome of Salmonella enterica serotype
576		Typhimurium. Sci Rep. 2017;7(1):10326. doi:10.1038/s41598-017-10598-2
577	40.	Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in
578		Escherichia coli and Salmonella. EcoSal Plus. 2018;8(1):10.
579		doi:10.1128/ecosalplus.ESP-0007-2017
580	41.	Kuehn MJ, Heuser J, Normark S, Hultgren SJ. P pili in uropathogenic E. coli are
581		composite fibres with distinct fibrillar adhesive tips. Nature. 1992;356(6366):252-
582		255. doi:10.1038/356252a0
583	42.	Mizunoe Y, Wai SN. Bacterial fimbriae in the pathogenesis of urinary tract

584		infection. J Infect Chemother. 1998;4, 1-5. https://doi.org/10.1007/BF02490057
585	43.	Phan G, Remaut H, Wang T, et al. Crystal structure of the FimD usher bound to its
586		cognate FimC-FimH substrate. Nature. 2011;474(7349):49-53.
587		doi:10.1038/nature10109
588	44.	Hung DL, Knight SD, Woods RM, Pinkner JS, Hultgren SJ. Molecular basis of
589		two subfamilies of immunoglobulin-like chaperones. EMBO J. 1996;15(15):3792-
590		3805.
591	45.	Chagnot C, Zorgani MA, Astruc T, Desvaux M. Proteinaceous determinants of
592		surface colonization in bacteria: bacterial adhesion and biofilm formation from a
593		protein secretion perspective. Front Microbiol. 2013 Oct 14;4:303. doi:
594		10.3389/fmicb.2013.00303.
595	46.	Chapman MR, Robinson LS, Pinkner JS, et al. Role of Escherichia coli curli
596		operons in directing amyloid fiber formation. Science. 2002;295(5556):851-855.
597		doi:10.1126/science.1067484
598	47.	Goyal P, Krasteva PV, Van Gerven N, et al. Structural and mechanistic insights
599		into the bacterial amyloid secretion channel CsgG. Nature. 2014;516(7530):250-
600		253. doi:10.1038/nature13768
601	48.	Yan Z, Yin M, Chen J, Li X. Assembly and substrate recognition of curli

602		biogenesis system. Nat Commun. 2020;11(1):241. Published 2020 Jan 13.
603		doi:10.1038/s41467-019-14145-7
604	49.	Albers SV, Jarrell KF. The Archaellum: An Update on the Unique Archaeal
605		Motility Structure. Trends Microbiol. 2018;26(4):351-362.
606		doi:10.1016/j.tim.2018.01.004
607	50.	Craig L, Forest KT, Maier B. Type IV pili: dynamics, biophysics and functional
608		consequences. Nat Rev Microbiol. 2019;17(7):429-440. doi:10.1038/s41579-019-
609		0195-4
610	51.	Pelicic V. Monoderm bacteria: the new frontier for type IV pilus biology. Mol
611		Microbiol. 2019;112(6):1674-1683. doi:10.1111/mmi.14397
612	52.	Pelicic V. Type IV pili: e pluribus unum?. <i>Mol Microbiol</i> . 2008;68(4):827–837.
613		doi:10.1111/j.1365-2958.2008.06197.x
614	53.	Strom MS, Nunn DN, Lory S. A single bifunctional enzyme, PilD, catalyzes
615		cleavage and N-methylation of proteins belonging to the type IV pilin family.
616		Proc Natl Acad Sci U S A. 1993;90(6):2404–2408. doi:10.1073/pnas.90.6.2404
617	54.	Giltner CL, Nguyen Y, Burrows LL. Type IV pilin proteins: versatile molecular
618		modules. <i>Microbiol Mol Biol Rev.</i> 2012;76(4):740–772.
619		doi:10.1128/MMBR.00035-12

620	55.	Jacobsen T, Bardiaux B, Francetic O, Izadi-Pruneyre N, Nilges M. Structure and
621		function of minor pilins of type IV pili [published online ahead of print, 2019 Nov
622		29]. Med Microbiol Immunol. 2019;10.1007/s00430-019-00642-5.
623		doi:10.1007/s00430-019-00642-5
624	56.	Takhar HK, Kemp K, Kim M, Howell PL, Burrows LL. The platform protein is
625		essential for type IV pilus biogenesis. J Biol Chem. 2013;288(14):9721-9728.
626		doi:10.1074/jbc.M113.453506
627	57.	Tsai CL, Tainer JA. The ATPase motor turns for type IV pilus assembly. <i>Structure</i> .
628		2016;24(11):1857-1859. doi:10.1016/j.str.2016.10.002
629	58.	Yeung MK, Donkersloot JA, Cisar JO, Ragsdale PA. Identification of a gene
630		involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect
631		Immun. 1998;66(4):1482–1491.
632	59.	Ton-That H, Schneewind O. Assembly of pili on the surface of Corynebacterium
633		diphtheriae. Mol Microbiol. 2003;50(4):1429-1438. doi:10.1046/j.1365-
634		2958.2003.03782.x
635	60.	Nallapareddy SR, Singh KV, Sillanpää J, et al. Endocarditis and biofilm-
636		associated pili of Enterococcus faecalis. J Clin Invest. 2006;116(10):2799-2807.
637		doi:10.1172/JCI29021

638	61.	Lauer P, Rinaudo CD, Soriani M, et al. Genome analysis reveals pili in Group B
639		Streptococcus. Science. 2005;309(5731):105. doi:10.1126/science.1111563
640	62.	Barocchi MA, Ries J, Zogaj X, et al. A pneumococcal pilus influences virulence
641		and host inflammatory responses. Proc Natl Acad Sci U S A. 2006;103(8):2857-
642		2862. doi:10.1073/pnas.0511017103
643	63.	Mora M, Bensi G, Capo S, et al. Group A Streptococcus produce pilus-like
644		structures containing protective antigens and Lancefield T antigens. Proc Natl
645		Acad Sci U S A. 2005;102(43):15641–15646. doi:10.1073/pnas.0507808102
646	64.	Takamatsu D, Nishino H, Ishiji T, et al. Genetic organization and preferential
647		distribution of putative pilus gene clusters in Streptococcus suis. Vet Microbiol.
648		2009;138(1-2):132-139. doi:10.1016/j.vetmic.2009.02.013
649	65.	Hendrickx AP, Budzik JM, Oh SY, Schneewind O. Architects at the bacterial
650		surface - sortases and the assembly of pili with isopeptide bonds. Nat Rev
651		Microbiol. 2011;9(3):166–176. doi:10.1038/nrmicro2520
652	66.	Navarre WW, Schneewind O. Proteolytic cleavage and cell wall anchoring at the
653		LPXTG motif of surface proteins in gram-positive bacteria. Mol Microbiol.
654		1994;14(1):115–121. doi:10.1111/j.1365-2958.1994.tb01271.x
655	67.	Mazmanian SK, Ton-That H, Schneewind O. Sortase-catalysed anchoring of

656		surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol.
657		2001;40(5):1049–1057. doi:10.1046/j.1365-2958.2001.02411.x
658	68.	Mandlik A, Das A, Ton-That H. The molecular switch that activates the cell wall
659		anchoring step of pilus assembly in gram-positive bacteria. Proc Natl Acad Sci U
660		SA. 2008;105(37):14147–14152. doi:10.1073/pnas.0806350105
661	69.	Amano A. Bacterial adhesins to host components in periodontitis. Periodontol
662		2000. 2010;52(1):12–37. doi:10.1111/j.1600-0757.2009.00307.x
663	70.	Yoshimura F, Takahashi K, Nodasaka Y, Suzuki T. Purification and
664		characterization of a novel type of fimbriae from the oral anaerobe Bacteroides
665		gingivalis. J Bacteriol. 1984;160(3):949–957.
666	71.	Yoshimura F, Watanabe K, Takasawa T, Kawanami M, Kato H. Purification and
667		properties of a 75-kilodalton major protein, an immunodominant surface antigen,
668		from the oral anaerobe Bacteroides gingivalis. Infect Immun. 1989;57(11):3646-
669		3652.
670	72.	Ogawa T, Yasuda K, Yamada K, Mori H, Ochiai K, Hasegawa M.
671		Immunochemical characterisation and epitope mapping of a novel fimbrial protein
672		(Pg-II fimbria) of Porphyromonas gingivalis. FEMS Immunol Med Microbiol.
673		1995;11(3):247–255. doi:10.1111/j.1574-695X.1995.tb00122.x

674	73.	Hamada N, Sojar HT, Cho MI, Genco RJ. Isolation and characterization of a
675		minor fimbria from Porphyromonas gingivalis. Infect Immun. 1996;64(11):4788-
676		4794.
677	74.	Nagano K, Hasegawa Y, Yoshida Y, Yoshimura F. Novel fimbrilin PGN_1808 in
678		Porphyromonas gingivalis. PLoS One. 2017;12(3):e0173541. Published 2017 Mar
679		15. doi:10.1371/journal.pone.0173541
680	75.	Onoe T, Hoover CI, Nakayama K, Ideka T, Nakamura H, Yoshimura F.
681		Identification of <i>Porphyromonas gingivalis</i> prefimbrilin possessing a long leader
682		peptide: possible involvement of trypsin-like protease in fimbrilin maturation.
683		Microb Pathog. 1995;19(5):351-364. doi:10.1016/s0882-4010(96)80006-4
684	76.	Shoji M, Naito M, Yukitake H, et al. The major structural components of two cell
685		surface filaments of Porphyromonas gingivalis are matured through lipoprotein
686		precursors. Mol Microbiol. 2004;52(5):1513-1525. doi:10.1111/j.1365-
687		2958.2004.04105.x
688	77.	Hasegawa Y, Iwami J, Sato K, et al. Anchoring and length regulation of
689		Porphyromonas gingivalis Mfa1 fimbriae by the downstream gene product Mfa2.

.

690 Microbiology. 2009;155(Pt 10):3333-3347. doi:10.1099/mic.0.028928-0

691	78.	Nagano K, Hasegawa Y, Murakami Y, Nishiyama S, Yoshimura F. FimB
692		regulates FimA fimbriation in Porphyromonas gingivalis. J Dent Res.
693		2010;89(9):903-908. doi:10.1177/0022034510370089
694	79.	Nishiyama SI, Murakami Y, Nagata H, Shizukuishi S, Kawagishi I, Yoshimura F.
695		Involvement of minor components associated with the FimA fimbriae of
696		Porphyromonas gingivalis in adhesive functions. Microbiology. 2007;153(Pt
697		6):1916–1925. doi:10.1099/mic.0.2006/005561-0
698	80.	Hasegawa Y, Nagano K, Ikai R, et al. Localization and function of the accessory
699		protein Mfa3 in Porphyromonas gingivalis Mfa1 fimbriae. Mol Oral Microbiol.
700		2013;28(6):467-480. doi:10.1111/omi.12040
701	81.	Ikai R, Hasegawa Y, Izumigawa M, et al. Mfa4, an accessory protein of Mfa1
702		fimbriae, modulates fimbrial biogenesis, cell auto-aggregation, and biofilm
703		formation in Porphyromonas gingivalis. PLoS One. 2015;10(10):e0139454.
704		Published 2015 Oct 5. doi:10.1371/journal.pone.0139454
705	82.	Hasegawa Y, Iijima Y, Persson K, et al. Role of Mfa5 in expression of Mfa1
706		fimbriae in Porphyromonas gingivalis. J Dent Res. 2016;95(11):1291–1297.
707		doi:10.1177/0022034516655083

708	83.	Nelson KE, Fleischmann RD, DeBoy RT, et al. Complete genome sequence of the
709		oral pathogenic Bacterium porphyromonas gingivalis strain W83. J Bacteriol.
710		2003;185(18):5591-5601. doi:10.1128/jb.185.18.5591-5601.2003
711	84.	Naito M, Hirakawa H, Yamashita A, et al. Determination of the genome sequence
712		of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with
713		strain W83 revealed extensive genome rearrangements in <i>P. gingivalis</i> . DNA Res.
714		2008;15(4): 215-225. doi:10.1093/dnares/dsn013
715	85.	Kloppsteck P, Hall M, Hasegawa Y, Persson K. Structure of the fimbrial protein
716		Mfa4 from Porphyromonas gingivalis in its precursor form: implications for a
717		donor-strand complementation mechanism. Sci Rep. 2016;6:22945. Published
718		2016 Mar 14. doi:10.1038/srep22945
719	86.	Hall M, Hasegawa Y, Yoshimura F, Persson K. Structural and functional
720		characterization of shaft, anchor, and tip proteins of the Mfa1 fimbria from the
721		periodontal pathogen Porphyromonas gingivalis. Sci Rep. 2018;8(1):1793.
722		Published 2018 Jan 29. doi:10.1038/s41598-018-20067-z
723	87.	Alaei SR, Park JH, Walker SG, Thanassi DG. Peptide-based inhibitors of fimbrial
724		biogenesis in Porphyromonas gingivalis. Infect Immun. 2019;87(3):e00750-18.
725		Published 2019 Feb 21. doi:10.1128/IAI.00750-18

726	88.	Shibata S, Shoji M, Okada K, et al. Structure of polymerized type V pilin reveals
727		assembly mechanism involving protease-mediated strand exchange. Nat
728		Microbiol. 2020; 5: 830-837. https://doi.org/10.1038/s41564-020-0705-1
729	89.	Braun V, Wu HC. Lipoproteins: structure function, biosynthesis and model for
730		protein export. New Comp. Biochem. 1994; 27, 319-341.
731	90.	Yamagata H, Ippolito C, Inukai M, Inouye M. Temperature-sensitive processing
732		of outer membrane lipoprotein in an Escherichia coli mutant. J Bacteriol.
733		1982;152(3):1163–1168.
734	91.	Petit CM, Brown JR, Ingraham K, Bryant AP, Holmes DJ. Lipid modification of
735		prelipoproteins is dispensable for growth in vitro but essential for virulence in
736		Streptococcus pneumoniae. FEMS Microbiol Lett. 2001;200(2):229–233.
737		doi:10.1111/j.1574-6968.2001.tb10720.x
738	92.	Réglier-Poupet H, Frehel C, Dubail I, et al. Maturation of lipoproteins by type II
739		signal peptidase is required for phagosomal escape of Listeria monocytogenes. J
740		Biol Chem. 2003;278(49):49469-49477. doi:10.1074/jbc.M307953200
741	93.	Armbruster KM, Meredith TC. Identification of the lyso-form N-acyl
742		intramolecular transferase in low-GC Firmicutes. J Bacteriol.
743		2017;199(11):e00099-17. Published 2017 May 9. doi:10.1128/JB.00099-17

744	94.	Nakayama H, Kurokawa K, Lee BL. Lipoproteins in bacteria: structures and
745		biosynthetic pathways. FEBS J. 2012;279(23):4247-4268.
746		doi:10.1111/febs.12041
747	95.	Hashimoto M, Asai Y, Ogawa T. Separation and structural analysis of lipoprotein
748		in a lipopolysaccharide preparation from Porphyromonas gingivalis. Int Immunol.
749		2004;16(10):1431-1437. doi:10.1093/intimm/dxh146
750	96.	Matsuyama S, Tajima T, Tokuda H. A novel periplasmic carrier protein involved
751		in the sorting and transport of Escherichia coli lipoproteins destined for the outer
752		membrane. EMBO J. 1995;14(14):3365-3372.
753	97.	Matsuyama Si, Yokota N, Tokuda H. A novel outer membrane lipoprotein, LolB
754		(HemM), involved in the LolA (p20)-dependent localization of lipoproteins to the
755		outer membrane of Escherichia coli. EMBO J. 1997;16(23):6947-6955.
756		doi:10.1093/emboj/16.23.6947
757	98.	Narita SI, Tokuda H. Bacterial lipoproteins; biogenesis, sorting and quality
758		control. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(11):1414–1423.
759		doi:10.1016/j.bbalip.2016.11.009
760	99.	Takeda K, Miyatake H, Yokota N, Matsuyama S, Tokuda H, Miki K. Crystal
761		structures of bacterial lipoprotein localization factors, LolA and LolB. EMBO J.

762	2003;22(13):3199-3209. doi:10.1093/emboj/cdg324
763	100.Tajima T, Yokota N, Matsuyama S, Tokuda H. Genetic analyses of the in vivo
764	function of LolA, a periplasmic chaperone involved in the outer membrane
765	localization of Escherichia coli lipoproteins. FEBS Lett. 1998;439(1-2):51-54.
766	doi:10.1016/s0014-5793(98)01334-9
767	101.Fernández-Piñar R, Lo Sciuto A, Rossi A, Ranucci S, Bragonzi A, Imperi F. In
768	vitro and in vivo screening for novel essential cell-envelope proteins in
769	Pseudomonas aeruginosa. Sci Rep. 2015;5:17593. Published 2015 Dec 1.
770	doi:10.1038/srep17593
771	102.Chalker AF, Minehart HW, Hughes NJ, et al. Systematic identification of selective
772	essential genes in Helicobacter pylori by genome prioritization and allelic
773	replacement mutagenesis. J Bacteriol. 2001;183(4):1259–1268.
774	doi:10.1128/JB.183.4.1259-1268.2001
775	103.Rhodes RG, Samarasam MN, Van Groll EJ, McBride MJ. Mutations in
776	Flavobacterium johnsoniae sprE result in defects in gliding motility and protein
777	secretion. J Bacteriol. 2011;193(19):5322-5327. doi:10.1128/JB.05480-11
778	104.Zhu Y, McBride MJ. Comparative Analysis of Cellulophaga algicola and
779	Flavobacterium johnsoniae Gliding Motility. J Bacteriol. 2016;198(12):1743-

780	1754. Published 2016 May 27. doi:10.1128/JB.01020-15
781	105.Liao CT, Chiang YC, Hsiao YM. Functional characterization and proteomic
782	analysis of lolA in Xanthomonas campestris pv. campestris. BMC Microbiol.
783	2019;19(1):20. Published 2019 Jan 21. doi:10.1186/s12866-019-1387-9
784	106.Grabowicz M, Silhavy TJ. Redefining the essential trafficking pathway for outer
785	membrane lipoproteins. Proc Natl Acad Sci U S A. 2017;114(18):4769-4774.
786	doi:10.1073/pnas.1702248114
787	107.Okuda S, Watanabe S, Tokuda H. A short helix in the C-terminal region of LolA is
788	important for the specific membrane localization of lipoproteins. FEBS Lett.
789	2008;582(15):2247-2251. doi:10.1016/j.febslet.2008.05.022
790	108.Hayashi Y, Tsurumizu R, Tsukahara J, et al. Roles of the protruding loop of factor
791	B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial
792	triacylated proteins to the outer membrane. J Biol Chem. 2014;289(15):10530-
793	10539. doi:10.1074/jbc.M113.539270
794	109.Sutcliffe IC, Harrington DJ, Hutchings MI. A phylum level analysis reveals
795	lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell.
796	2012;3(3):163–170. doi:10.1007/s13238-012-2023-8

797	110.Webb CT, Heinz E, Lithgow T. Evolution of the β -barrel assembly machinery.
798	Trends Microbiol. 2012;20(12):612-620. doi:10.1016/j.tim.2012.08.006
799	111.Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, Hu LT.
800	Identification of essential genes of the periodontal pathogen Porphyromonas
801	gingivalis. BMC Genomics. 2012;13:578. Published 2012 Oct 31.
802	doi:10.1186/1471-2164-13-578
803	112.Hutcherson JA, Gogeneni H, Yoder-Himes D, et al. Comparison of inherently
804	essential genes of Porphyromonas gingivalis identified in two transposon-
805	sequencing libraries. Mol Oral Microbiol. 2016;31(4):354-364.
806	doi:10.1111/omi.12135
807	113.Levine TP. Remote homology searches identify bacterial homologues of
808	eukaryotic lipid transfer proteins, including Chorein-N domains in TamB and
809	AsmA and Mdm31p. BMC Mol Cell Biol. 2019;20(1):43. Published 2019 Oct 14.
810	doi:10.1186/s12860-019-0226-z
811	114.Okuda S, Tokuda H. Lipoprotein sorting in bacteria. Annu Rev Microbiol.
812	2011;65:239–259. doi:10.1146/annurev-micro-090110-102859
813	115.Konovalova A, Perlman DH, Cowles CE, Silhavy TJ. Transmembrane domain of
814	surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen

816	doi:10.1073/pnas.1417138111
817	116.Michel LV, Shaw J, MacPherson V, et al. Dual orientation of the outer membrane
818	lipoprotein Pal in Escherichia coli. Microbiology. 2015;161(6):1251-1259.
819	doi:10.1099/mic.0.000084
820	117.Schulze RJ, Zückert WR. Borrelia burgdorferi lipoproteins are secreted to the
821	outer surface by default. Mol Microbiol. 2006;59(5):1473–1484.
822	118.Dowdell AS, Murphy MD, Azodi C, et al. Comprehensive Spatial Analysis of the
823	Borrelia burgdorferi Lipoproteome Reveals a Compartmentalization Bias toward
824	the Bacterial Surface. J Bacteriol. 2017;199(6):e00658-16. Published 2017 Feb
825	28. doi:10.1128/JB.00658-16
826	119.Chen S, Zückert WR. Probing the Borrelia burgdorferi surface lipoprotein
827	secretion pathway using a conditionally folding protein domain. J Bacteriol.
828	2011;193(23):6724-6732. doi:10.1128/JB.06042-11
829	120.Kumru OS, Schulze RJ, Rodnin MV, Ladokhin AS, Zückert WR. Surface
830	localization determinants of Borrelia OspC/Vsp family lipoproteins. J Bacteriol.
831	2011;193(11):2814–2825. doi:10.1128/JB.00015-11
832	121.Zückert WR. Protein secretion in Spirochetes. Microbiol Spectr.

of β-barrel proteins. *Proc Natl Acad Sci U S A*. 2014;111(41):E4350–E4358.

833 2019;7(3):10.1128/microbiolspec.PSIB-0026-2019.

- 834 doi:10.1128/microbiolspec.PSIB-0026-2019
- 835 122.Anderson KL, Salyers AA. Biochemical evidence that starch breakdown by
- 836 *Bacteroides thetaiotaomicron* involves outer membrane starch-binding sites and
- periplasmic starch-degrading enzymes. *J Bacteriol*. 1989;171(6):3192–3198.
- 838 doi:10.1128/jb.171.6.3192-3198.1989
- 123. Wilson MM, Anderson DE, Bernstein HD. Analysis of the outer membrane
- 840 proteome and secretome of *Bacteroides fragilis* reveals a multiplicity of secretion
- 841 mechanisms. *PLoS One*. 2015;10(2):e0117732. Published 2015 Feb 6.
- 842 doi:10.1371/journal.pone.0117732
- 843 124. Valguarnera E, Scott NE, Azimzadeh P, Feldman MF. Surface exposure and
- packing of lipoproteins into outer membrane vesicles are coupled processes in
- 845 *Bacteroides. mSphere*. 2018 Nov 7;3(6). pii: e00559-18.
- 846 doi:10.1128/mSphere.00559-18.
- 125.Lauber F, Cornelis GR, Renzi F. Identification of a new lipoprotein export signal
- 848 in Gram-negative bacteria. *mBio*. 2016;7(5):e01232-16. Published 2016 Oct 25.
- 849 doi:10.1128/mBio.01232-16
- 126.Berven FS, Karlsen OA, Straume AH, et al. Analysing the outer membrane

851	subproteome of Methylococcus capsulatus (Bath) using proteomics and novel
852	biocomputing tools. Arch Microbiol. 2006;184(6):362-377. doi:10.1007/s00203-
853	005-0055-7
854	127.Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A.
855	Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci.
856	2003;12(8):1652–1662. doi:10.1110/ps.0303703
857	128.Gorasia DG, Veith PD, Hanssen EG, et al. Structural insights into the PorK and
858	PorN components of the Porphyromonas gingivalis type IX secretion system.
859	PLoS Pathog. 2016;12(8):e1005820. Published 2016 Aug 10.
860	doi:10.1371/journal.ppat.1005820
861	129.Hooda Y, Lai CC, Judd A, et al. Slam is an outer membrane protein that is
862	required for the surface display of lipidated virulence factors in Neisseria. Nat
863	Microbiol. 2016;1:16009. Published 2016 Feb 29. doi:10.1038/nmicrobiol.2016.9
864	130.Hooda Y, Lai CCL, Moraes TF. Identification of a large family of Slam-dependent
865	surface lipoproteins in Gram-negative bacteria. Front Cell Infect Microbiol.
866	2017;7:207. Published 2017 May 31. doi:10.3389/fcimb.2017.00207
867	

868 Figure Legends

Fig. 1. N-terminal prosequences of FimA and Mfa1 proteins.

Arginine residues of cleavage sites by Rgp are colored in red. Underlines indicatelipoprotein box signals.

872

873 Fig. 2. Crystal structure of FimA protein.

874

875 (A) Structure of FimA protein (FimA1) derived from strain ATCC 33277 (Protein Data

876 Bank accession number: 6JZK), as observed using X-ray crystallography. FimA1 is

877 composed of the N-terminal domain (NTD) and C-terminal domain (CTD). The arginine-

878 specific cleavage site (R|A, in yellow) is marked by a scissor symbol. Mature protein

begins at 47th alanine residue in the FimA amino acids. The conserved β -sheet core (cyan),

- the N-terminal anchor strand (blue), and the C-terminal donor strand (red) are colored.
- (B) A topological diagram of a secondary structure of FimA1 color-coded as in (A).
- 882 Original figures are from Shibata et al. ⁷⁵.

883

884 Fig. 3. Structure of FimA polymer.

886	(A) An electron micrograph of negatively stained FimA polymers. A recombinant pro-
887	FimA protein from strain ATCC 33277 was purified from E. coli and treated with RgpB
888	protease purified from P. gingivalis, and subsequently formed a mixture of monomers
889	and polymers of FimA. FimA polymers were precipitated using polyethylene glycol. The
890	FimA polymers were negatively stained with uranyl acetate and imaged using electron
891	microscopy. (B) Cryo-electron microscopic reconstruction. Single-particle cryo-electron
892	microscopy analysis revealed the structure of the FimA polymer at the atomic level. The
893	C-terminal donor strand of FimA acts as a linker sequence. Original figures are from
894	Shibata et al. ⁷⁵ .

.

1 -

0

895

.....

896 Fig. 4. Transport of Fim pilins and formation of Fim pili.

897

The FimA protein (stalk pilin) is initially integrated into the inner membrane by the Sec 898 899 apparatus. Signal sequence (orange), lipoprotein export signal (green), N-terminal anchor 900 strand (blue), main body (cyan), and C-terminal donor strand (red) of FimA are indicated. 901 The lipid-modified precursor form of FimA is transported from the inner membrane (IM) 902 to the outer membrane (OM) via a putative ABC transporter and unknown factor(s). The 903 lipid-modified precursor positioned at the cell surface is then cleaved by arginine-specific

904	proteases (Rgp) that are anchored to anionic lipopolysaccharide containing
905	lipopolysaccharide (A-LPS) in the outer leaflet of the outer membrane, and subsequently
906	form a mature FimA that consists of an outward C-terminal donor strand (red) and a
907	hydrophobic groove partially occupied by the N-terminal anchor strand (blue). The N-
908	terminal anchor strand embedded in the hydrophobic groove is not released immediately
909	from the FimA main body even after it is cleaved by Rgp and plays a role in anchoring
910	the FimA main body to the OM. Pilin polymerization is initiated upon the insertion of the
911	C-terminal donor strand of an approaching FimA into the hydrophobic groove of the
912	preceding FimA. The N-terminal anchor strand of the preceding FimA is released from
913	the FimA main body upon the entry of the C-terminal donor strand of FimA. The reaction
914	occurs continuously until the anchor pilin FimB is incorporated. Pilin polymerization at
915	the cell surface may be initiated at the tip pilin that lacks the C-terminal donor strand. As
916	the C-terminal donor strands are needed to form pili, it is unlikely that a tip pilin would
917	be incorporated into a pilus at the filament tip after pilin polymerization. The stalk pilin
918	FimA is sufficient for initiating pilus assembly in vivo; this indicates that initiation does
919	not require a tip pilin, which would otherwise result in the formation of a mixed
920	population of tipped and untipped pili.

922 Fig. 5. Lipoprotein export sequence in *Porphyromonas gingivalis*.

923

(A) The N-terminal lipid-modified cysteine and the subsequent amino acids of *P. gingivalis* lipoproteins. The lipoproteins are classified based on their locations (outer
leaflet of the outer membrane, inner leaflet of the outer membrane, and unknown). (B)
Consensus lipoprotein export signals in surface lipoproteins of *Capnocytophaga canimorsus, Flavobacterium johnsoniae*, and *Bacteroides fragilis*. Acidic amino acids
(green) and basic amino acids (cyan) are color-coded.

Fig. 1 Rgp FimA MKKTKFFLLGLAALAMTACNKDNEAEPVTEGNATISVVLKTSNSNRA 4647 Rgp Mfa1 MKLNKMFLVGALLSLG<u>FASC</u>SKEGNGPDPDNAAKSYMSMTLSMPMGSARA 4950 Fig. 2

В

А

Fig. 4

Α

	FimA FimB FimC FimD FimE	CNKDNEAEPVTEGNATISVV CIKEDYSDCPRPFRLTVRAW CTKEDNPDQPTSDEVATVKM CVREDIESDMNETSSLFLQV CVADKSEPCPSGEPTRVSG	<i>C. canimorsus F. johnsoniae B. fragilis</i>
Outer leaflet of outer membrane	Mfa1 Mfa2 Mfa3 Mfa4 PGN 1808	CSKEGNGPDPDNAAKSYMSM CDKMIYDNYDDCPRGVYVNF CDRGVDPQPDPLQPDVYLLV CSKNNPSEPVEDRSIEISIRV	
	RagB IhtB HmuY Omp28	CDLQRDPDGSDEQKDHFASF CSSNNKDLENKGEATLLVTFG CGKKKDEPNQPSTPEAVTK CDIIDKDQTLLPAPTNVTPD	
Inner leaflet of	PorK	CGSSKRAVGGELTGAKL SSW	
Unknown -	PorE PorW	CKSVKLKDAEKAHDRQEYTKA CSTSKNTAASRFYHNFTTRYNV	

В

canimorsus CQKDDE johnsoniae CSDDFE fragilis CSDDDD