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The appearance of nontrivial phases in Kitaev materials exposed to an external magnetic field has recently
been a subject of intensive studies. Here, we elucidate the relation between the field-induced ground states
of the classical and quantum spin models proposed for such materials, by using the infinite density matrix
renormalization group (iDMRG) and the linear spin wave theory (LSWT). We consider the K��′ model,
where � and �′ are off-diagonal spin exchanges on top of the dominant Kitaev interaction K . Focusing on
the magnetic field along the [111] direction, we explain the origin of the nematic paramagnet, which breaks the
lattice-rotational symmetry and exists in an extended window of magnetic field, in the quantum model. This
phenomenon can be understood as the effect of quantum order-by-disorder in the frustrated ferromagnet with a
continuous manifold of degenerate ground states discovered in the corresponding classical model. We compute
the dynamical spin structure factors using a matrix operator based time evolution and compare them with the
predictions from LSWT. We, thus, provide predictions for future inelastic neutron scattering experiments on
Kitaev materials in an external magnetic field along the [111] direction. In particular, the nematic paramagnet
exhibits a characteristic pseudo-Goldstone mode, which results from the lifting of a continuous degeneracy via
quantum fluctuations.
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I. INTRODUCTION

Recently, there has been a surge of interest in Kitaev mate-
rials [1–6] due to the promise for the discovery of a Kitaev
spin liquid [7]. The presence of strong spin-orbit coupling
in these materials gives rise to bond-dependent interactions
between effective spin-1/2 moments on the underlying hon-
eycomb lattice [8–10]. In addition to a substantial Kitaev
interaction, there exist other types of spin-exchange inter-
actions [11] in these materials, which ultimately stabilize a
magnetic order instead of the desired quantum spin liquid. A
paradigmatic example of Kitaev materials is α-RuCl3 [12],
which has a zigzag (ZZ) ordered ground state [13–16].
Upon applying a magnetic field, however, the ZZ order
vanishes [14,17–22], while a half-quantized thermal Hall con-
ductivity is observed [23]. This would be consistent with the
theoretical prediction of the non-Abelian chiral spin liquid in
the pure Kitaev model under a magnetic field [7]. It leads
to the speculation that the field-induced phase is indeed the
quantum spin liquid.
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The experiment mentioned above [23] and recent inelastic
neutron scattering experiments [15,20,24–26] have motivated
a number of numerical studies [27–31] in an effort to identify
possible nontrivial phases in theoretical spin models proposed
for realistic materials. For instance, the K��′ model, which
is considered as a minimal model describing a broad class
of Kitaev materials including α-RuCl3, has been studied with
an external magnetic field. Exact diagonalization on a 24-site
cluster shows that the Kitaev spin liquid (KSL) is stable in a
window of fields slightly tilted from the [111] direction [27].
In a field along the [111] axis, however, a tensor network study
reveals that KSL is confined to the vicinity of the pure Kitaev
model, while novel nematic paramagnetic states, which breaks
the lattice-rotational symmetry, occupy a significant portion
of the phase diagram at intermediate fields [31]. On the other
hand, the classical model exhibits a plethora of magnetic or-
ders with large unit cells, and a ferromagnetic phase frustrated
by the � interaction and the field, before the system becomes
fully polarized [30,32,33].

In this work, we investigate the origin of the nematic para-
magnet in the quantum K��′ model and its relation to the
classical ground states, employing the infinite density matrix
renormalization group (iDMRG) approach [34–36] and linear
spin wave theory (LSWT). Our main findings are the follow-
ing. (1) The nematic paramagnetic state arises due to quantum
order-by-disorder effect in the continuous manifold of degen-
erate classical ground states, dubbed frustrated ferromagnet,
in the corresponding classical model. (2) The dynamical
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FIG. 1. Phase diagram of the K��′ model in a magnetic field along the [111] axis when (a) �′ = 0 and (b) −0.06. In both cases, the Kitaev
spin liquid (KSL) is observed only in a small region near φ → 0 and h → 0. A large fraction of the phase diagram is occupied by a nematic
paramagnet (NP) that spontaneously breaks the C3 lattice-rotation symmetry. The inset illustrates the extension of NP down to zero field
and right to the pure � model. A long-range zigzag (ZZ) ordered phase appears at �/|K| � 1 at intermediate fields. The orange dashed line
indicates the transition between the fully polarized phase and frustrated ferromagnet based on ansatz (3) in the corresponding classical model.
A finite �′ < 0, i.e., (b) �′ = −0.06, induces ZZ at low fields such that NP occurs at intermediate fields between ZZ and the longitudinally
polarized paramagnet (P) that is adiabatically connected to the fully polarized limit. The phase diagram (a,b) is obtained on the rhombic-2
cylinder geometry with Lcirc = 10 (see Fig. 3). [(c)–(f)] Dynamical spin structure factors S(k, ω) of P and NP near the upper critical field at
two opposite limits of the K� model as illustrated by the orange hexagons in (a). In both limits, the magnon band at low energies, which is
apparent in P, becomes diffuse in NP, whereas the continuum at higher energies persists across the transition P to NP. The characteristic feature
of NP is the increased spectral weight at � and at low energies, which is indicative of the pseudo-Goldstone mode. Remarkably, the continuum
exhibits a very different structure in both limits.

structure factors for the nematic paramagnetic state reveal
the existence of a pseudo-Goldstone mode resulting from
the quantum order-by-disorder effect. Our predictions for the
dynamical structure factors can be compared to future neutron
scattering experiments to confirm the nematic paramagnetic
state. The dynamical structure factors in the corresponding
regions in the phase diagram are shown in Fig. 1.

Furthermore, in the process of achieving these goals, we
attempt to resolve the differences and establish meaningful
connections between the results of different numerical stud-
ies, with the understanding that different numerical methods
possess their own limitations and offer complementary infor-
mation. We elaborate all of these findings in a concise fashion
in the rest of the introduction. Further and complete details
can be found in the main text.

We first investigate the phase diagram of the K��′ model
in a magnetic field along the [111] direction. In agreement
with Ref. [31], we find the KSL to be confined to a small
corner of the phase diagram, while a nematic paramagnet (NP)
appears at intermediate fields before the system enters the
longitudinally polarized paramagnet (P) at high field that is
adiabatically connected to the fully polarized limit. The NP
phase breaks lattice-rotational symmetry but preserves trans-
lational symmetry. In that context, it is worth emphasizing that
NP is not the type of quantum spin-nematic associated with
the breaking of spin-rotation symmetry [37–40]. We expect

that NP is more likely to be observed than the KSL due to the
much wider extent of the former in parameter space.

Next, we reveal the origin of NP by demonstrating that it
arises from a quantum order-by-disorder effect [41,42] in the
frustrated ferromagnet (FF) found in the classical model [30].
In the classical limit, the FF appears in a window of interme-
diate magnetic fields between a series of magnetically ordered
phases and the polarized state at low and high fields respec-
tively. The spin orientation in the FF possesses an azimuthal
symmetry, which results in a U(1) degenerate manifold of
states. Upon the inclusion of zero point quantum fluctuations
via the linear spin wave theory (LSWT) [43], a discrete set
of azimuthal angles is selected, lifting the U(1) degeneracy.
The selection of azimuthal angles, which depends on the field
strength, is consistent with our iDMRG results as well as
the magnetizations of the NP states identifed by the tensor
network study [31]. Furthermore, the series of large unit cell
orders [30] observed at low fields in the classical model is
replaced by NP in the quantum model.

We then present the dynamical spin structure factors (DSF)
of the NP and P phases of the quantum model, using the
matrix product operator based time evolution (tMPO) [44],
and compare them to the spin wave dispersions as obtained in
the semiclassical LSWT approach. In P at high fields, the DSF
clearly shows two magnon bands. The magnon excitation gap
shrinks as the field decreases towards the transition into NP. At
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the critical field, the magnetic excitations become gapless at
the � and �′ points in the reciprocal space, which can be inter-
preted as the onset of the pseudo-Goldstone mode associated
with the lifted U(1) degeneracy [43] upon entering NP. In NP,
while there exists relatively well defined magnon excitations
at lower energies, a broad continuum forms at higher energies,
which is reminiscent of that as seen in inelastic neutron scat-
tering experiments [15,20,24–26]. Approaching the KSL, the
excitation continuum becomes much broader, which may be
considered as a signature of the proximate KSL [15,45,46].
We suggest to perform neutron scattering experiments with
the [111] magnetic field to test our predictions for the pseudo-
Goldstone mode and the nematic paramagnetic state.

II. MODEL

We study spin-1/2 degrees of freedom on a honeycomb
lattice with bond-dependent interactions. The Hamiltonian of
interest is given by

H =
∑
〈i, j〉γ

Kγ Sγ

i Sγ

j +
∑

〈i, j〉γ ,α,β �=γ

�γ

(
Sα

i Sβ
j + Sβ

i Sα
j

)

+
∑

〈i, j〉γ ,α,β �=γ

�′
γ

(
Sα

i Sγ

j + Sβ
i Sγ

j + Sγ

i Sα
j + Sγ

i Sβ
j

)

− h
∑

i

ĥ · Si , (1)

where 〈i, j〉γ are neighboring sites connected by a bond
with label γ ∈ {x, y, z}. The first term is the Kitaev or bond-
dependent Ising exchange, which, in the absence of other
interactions, stabilize a quantum spin liquid [7]. The second
and third terms are the off-diagonal � and �′ exchanges. Clas-
sically, the pure � model is known to host a spin liquid [47],
but its quantum ground state is still under debate [47–49].
With dominant K < 0 and � > 0 interactions, a finite �′ < 0
exchange stabilizes the long-range ordered zigzag phase at
zero field [11,50]. The h term describes the Zeeman coupling
of the spins to an external magnetic field along the direction
ĥ. Here, we consider a trigonometric parametrization of the
Kitaev and � interactions such that

K = − cos φ and � = sin φ . (2)

We focus on the range 0 � φ � π/2, fix �′ to be either 0 or
−0.06,1and apply the field in the [111] direction. The [111]
field retains the C3 symmetry of the K��′ model.

III. CLASSICAL U(1) DEGENERACY AND QUANTUM
ORDER-BY-DISORDER

We start by considering the classical limit of (1) with
O(3) spins. At high fields, a narrow window with ferro-
magnetic order exists where the spins are uniformly aligned

1The choice of �′ = −0.06 is based on (a) �′ being sufficiently
large to induce ZZ order and (b) �′ being sufficiently small to keep
a small region of KSL in the phase diagram when using iDMRG.
Consequently, our choice for �′ differs slightly from the ones used
in other works [27,30,31].

but canted away from the [111] field. Such a canting orig-
inates from the competition between the field and the �

interaction [30,32,33], thus motivating the name frustrated
ferromagnet (FF) for such a phase.

Assuming a ferromagnetic ansatz, i.e., for all sites i, we
write

Si = S(sin ϑ cos ϕ â + sin ϑ sin ϕ b̂ + cos ϑ ĉ) ≡ S, (3)

where â, b̂, and ĉ are the unit vectors along the [112̄], [1̄10],
and [111] directions (or the a, b, and c axes) respectively, ϑ =
[0, π ] is the polar angle measured from the c axis, while ϕ =
[0, 2π ) is the azimuthal angle in the ab plane measured from
the a axis.

Substituting (3) into (1), the energy turns out to depend
only on ϑ but not on ϕ. The critical field, above which
the spins are fully polarized, is calculated to be hcrit =
3(� + 2�′)S. Below hcrit , the spins are canted away from the
[111] direction by ϑ = cos−1 (h/hcrit ), yielding an emergent
U(1) manifold of degenerate ground states. When choosing
a particular value of ϕ out of the U(1) degenerate manifold,
the spins spontaneously break a continuous symmetry. As a
consequence, the spin wave spectrum of the FF order exhibits
a Nambu-Goldstone mode [51].

We further investigate whether the classical U(1) degener-
acy is lifted by quantum fluctuations, demonstrating a concept
known as quantum order-by-disorder [41,42]. Within LSWT,
the quantum correction to the energy is given by [43]

E = S2

[(
1 + 1

S

)
Ecl + 1

S

1

2

∑
kn

ωkn + O

(
1

S2

)]
, (4)

where Ecl is the classical energy and ωkn is the magnon dis-
persion.

Our calculation shows that either of the following sets
of azimuthal angles, {π/3, π, 5π/3} and {0, 2π/3, 4π/3},
are more energetically favorable than others [see Figs. 2(a)
and 2(b)]. Within each set, the three angles yield the same
energy, i.e., the U(1) degeneracy is broken down to a C3

degeneracy. For ϕ = π/3, π , and 5π/3, the spins cant towards
the cubic axes [010], [001], and [100], respectively, leading
to Sα = Sβ < Sγ , where α, β, γ ∈ {x, y, z} denote the spin
components and are also related to the labels of bonds. As we
will show later, the selected state is related to the NP phase
occurring in the quantum model. We therefore denote this
set as NPγ . On the other hand, for ϕ = 0, 2π/3, and 4π/3,
the spins cant towards the [110], [011] and [101] directions
respectively, leading to Sα = Sβ > Sγ , which we denote as
NPαβ . The magnetization of NPγ (NPαβ) coincide with that
of the NP1 (NP2) phase reported in Ref. [31].

As the field is tuned, our quantum order-by-disorder com-
putation reveals a transition from NPγ to NPαβ , e.g., Fig. 2(b).
Fixing �′ = 0, we indicate the location of the FF, as well as
the corresponding NP states selected by quantum fluctuations,
in the classical phase diagram of (1) as shown in Fig. 2(c).

IV. QUANTUM SPIN-1/2 GROUND STATE

We consider now the quantum limit of (1) with spin-1/2
constituents. Figure 1 shows the phase diagram near the KSL
for (a) �′ = 0 and (b) −0.06, as well as (inset) the entire range
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FIG. 2. (a) Canting of the classical spin away from the [111] field, its U(1) manifold (orange line) of degenerate states, and the two sets
of azimuthal angles selected by quantum fluctuations (empty and filled circles). (b) Lifting of the classical U(1) degeneracy via quantum
order-by-disorder, and the azimuthal dependence of energy, Eq. (4), at φ/π = 0.17, �′ = 0 and h ∈ {1.43, 1.44, 1.45}. The average energy
Ē = 1/2π

∫ 2π

0 dϕE (ϕ) has been subtracted. As the field is tuned, a transition from one set of azimuthal angles to the other occurs. (c) Frustrated
ferromagnet (FF, blue) in the phase diagram of the classical K� model (�′ = 0) subjected to a magnetic field in [111] direction. FF is
stabilized between the fully polarized state and other nontrivial ordering patterns, e.g., ZZ and 18-site order [30]. Upon incorporating quantum
fluctuations into the classical FF state via LSWT, Eq. (4), FF turns into the nematic paramagnet (NP). The subscripts γ and αβ indicate that
quantum fluctuations lift the classical U(1) degeneracy differently. The orange line signifies the transition between NPγ and NPαβ .

0 < φ/π < 0.5 for �′ = 0. We employ iDMRG [34–36] on
cylinders with various geometries and circumferences as il-
lustrated in Fig. 3. The phase diagram is obtained on the
rhombic-2 geometry with Lcirc = 10 sites and twisted bound-
ary conditions. The other geometries with upto Lcirc = 12 are
used checking against possible classical ordering patterns, see
Sec. IV B for more details.

Firstly, we find the KSL to be confined to a small corner
near the Kitaev limit, while a large fraction of the phase dia-
gram is occupied by either NP that spontaneously breaks the
lattice-rotational symmetry or ZZ long-range magnetic order
that further breaks translational symmetry.

At high fields, the ground state is a longitudinally polarized
paramagnet (P) that is adiabatically connected to the fully
polarized limit. The system enters NP upon lowering the field
except at very small values of � where a direct transition into
the KSL occurs. Similar to the FF phase, NP is characterized
by a canting of the field-induced magnetic moment away from
the [111] field. In contrast to FF, NP extends down to h = 0
if �′ = 0, where the magnetic moment vanishes. Since at zero
field NP has already broken the C3 symmetry, as indicated by
anisotropic bond energies, a field-induced magnetic moment
is no longer protected to align in the [111] direction. As such,
the canting can be regarded as a consequence of the broken C3

symmetry.
As discussed in the previous section, quantum order-by-

disorder selects a discrete subset of states out of the classical
U(1) degenerate manifold. Our result strongly suggests that
the NP phase originates from the FF phase upon the incor-
poration of quantum fluctuations. Furthermore, the NP phase
is much enhanced in the quantum model as compared to
the FF phase in the classical model, which we argue as fol-
lows: (a) NP has an increased critical field of the transition
into P relative to its classical counterpart. (b) NP supersedes
many of the classical long-range ordered states [30,31] in a
wide region of the phase diagram with ZZ being the only
exception.

The transition from P into NP appears to be continuous
with a gap closing and a consecutive range of fields with
long correlation length. For Hamiltonians with only local
interactions, a long correlation length implies a small spec-
tral gap [52]. Here we expect a small spectral gap from the
quantum order-by-disorder scenario. In order to verify our
hypothesis, we slightly tilt the magnetic field by 1◦ from, and
rotate it around, the [111] axis. Within the range of fields with
a small gap, we find that the canting direction continuously
follows the rotated field with only small and smooth variation
in the ground-state energy (see Appendix B). The magnitude
of the variation is of similar order as in LSWT.

As the field is tuned, the fully quantum model exhibits
transitions between different NP states at certain ratios �/|K|
similar to the transition between NPγ and NPαβ observed with
LSWT in Sec. III. Contrary to LSWT and an earlier tensor
network calculation [31], however, iDMRG reveal multiple
transitions between NPγ , NPαβ , and other NP states. The
order in which the sets appear, as well as the critical fields
separating them, depend on the geometry used with iDMRG.
This is in stark contrast to the critical fields of transitions from
P to NP and from NP to ZZ which are relatively insensitive to
the geometry. As a consequence different NP states compete
in a wide range in parameter space and, therefore, we do
not distinguish between them in the quantum phase diagram
Fig. 1. In Sec. IV A, we introduce an order parameter for NP
and discuss the different NP states in more detail.

A ZZ phase at intermediate fields exists embedded within
NP for φ/π � 0.25, or �/|K| � 1. The upper transition be-
tween NP and ZZ is likely continuous. Further lowering the
field, the transition from ZZ back to NP appears to be first
order and its critical field depends on the geometry used. As a
consequence, it is difficult to draw a firm conclusion on the
extent of the ZZ phase. While there is no evidence within
iDMRG for a long-range magnetically ordered phase at zero
field for all the geometries (up to Lcirc = 12 sites) explored
here, scenarios for the two-dimensional limit in which either
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FIG. 3. In order to enable the use of iDMRG to obtain the
ground-state wave function in the form of matrix product state
(MPS), the two-dimensional honeycomb lattice is mapped to an
infinitely long cylinder. The following geometries are used: (a) rhom-
bic with a circumference of Lcirc = 6 and 12 (not shown) sites and
(b) its allowed momenta in reciprocal space, [(c) and (d)] rectangular
with Lcirc = 8 and 12 (not shown), and [(e) and (f)] rhombic-2 with
Lcirc = 10. The geometries are chosen such that they (1) capture the
K point in reciprocal space, at which gapless Majorana-Dirac cones
of the Kitaev model with isotropic coupling strength occur [7], and
(2) the flux decoration of the classical � model [47] is not frustrated.

the ZZ phase ranges down to zero field [48] or other mag-
netic orderings [31] are stabilized cannot be excluded. In fact,
various magnetic orders that appear in the classical model (1)
are obtained as meta-stable states at small χ and, thus, these
orderings are competing with NP in the quantum model. We
refer interested readers to Sec. IV B for more details.

Upon the inclusion of a small �′ = −0.06, the ZZ phase
is stabilized at small fields. The KSL shrinks and borders
NP, ZZ, and P. The critical field of the transition from P
into NP is slightly renormalized to a smaller value due to
the �′ interaction, as in the classical model. Beyond that, the

phenomenology of the phase transitions remains the same as
in the case of �′ = 0, namely the transition between P and NP
as well as that between NP and ZZ appear to be continuous.

A. Order parameter of the nematic paramagnet

While the canting of the magnetic moments is an indicator
of the broken C3 symmetry, it is not a suitable order parameter
in the zero field limit as the magnetic moments vanish. A
more adequate order parameter can be defined in terms of
bond energies Eγ = 〈H〉〈i, j〉γ , where γ ∈ {x, y, z} is the label
of the bonds. The broken C3 symmetry manifests in different
Eγ on each bond, while if the C3 symmetry is not broken, e.g.,
at high fields, the bond energies satisfy Ex = Ey = Ez. This
motivates to define an order parameter Oγ

C3
on each bond γ by

the difference of Eγ to the average bond energy as

Ox
C3

= Ex − 1
3 (Ex + Ey + Ez ),

Oy
C3

= Ey − 1
3 (Ex + Ey + Ez ), (5)

Oz
C3

= Ez − 1
3 (Ex + Ey + Ez ).

In terms of bond energies, NPγ is characterized by a single
preferred bond, Eγ < Eα 
 Eβ and hence Oγ

C3
< 0 < Oα

C3
=

Oβ
C3

, while for NPαβ two bonds are equally preferred, Eα 

Eβ < Eγ and hence Oα

C3
= Oβ

C3
< 0 < Oγ

C3
. An arbitrary NP

state has three different bond energies, Eα �= Eβ �= Eγ , and
hence Oα

C3
�= Oβ

C3
�= Oγ

C3
.

In any case, a finite Oγ
C3

indicates that the C3 symmetry
is broken, in particular as soon as the NP phase is stabi-
lized (see Fig. 4). The C3 symmetry remains broken down to
the zero field limit. Whether NPγ , NPαβ , or a different NP
state gets selected is, however, dependent on the geometry
used in iDMRG. While the rhombic geometry prefers NPαβ

near the upper critical field and in the zero field limit, the
rectangular geometry prefers the NPγ phase. Moreover, both
geometries have in common an intermediate transition into a
phase, which exhibits the homogeneous canting of the mag-
netic moments characteristic for NP, but the azimuthal angle
ϕ neither belongs to NPγ nor NPαβ . Instead, degenerate states
with ϕ = nπ/3 ± δ occur, where n is an odd (even) integer
corresponding to NPγ (NPαβ). In the two-dimensional limit,
this ϕ implies a sixfold degeneracy.

In conclusion, the different sets of NP states compete over
a wide range of fields, and their difference in energy appears
to be of the order of, or smaller than, finite-size corrections.
Whether the intermediate NP state is an effect of quantum
order-by-disorder or of the finite circumference has to remain
an open question. In that context one should recall that the
quantum order-by-disorder computation which we present in
Sec. III is semiclassical. Nonlinear terms, which were not in-
cluded, may be relevant to stabilize an intermediate NP phase
different from NPγ or NPαβ and with a sixfold degeneracy.

B. Zero-field limit of the K� model

The ground state of the K� model [i.e., (1) with �′ = 0]
at zero field in the range 0 � φ/π � 0.5 has been a sub-
ject of debate recently. Various numerical methods provide
different answers [31,48,49,53,54]. Here, we use different
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(b) the rhombic geometry with Lcirc = 12. The nonzero Oγ

C3
indicates

the broken C3 symmetry of NP. Depending on the geometry both sets
of nematic states occur. Namely, (a) the rectangular geometry selects
NPγ , while (b) the rhombic geometry selects NPαβ in a wide range of
fields. Both geometries exhibit an intermediate NP phase with states
which neither correspond to NPγ nor NPαβ .

cylinder geometries with circumferences as large as Lcirc = 12
and vary the bond dimension χ of the matrix product state
(MPS), which encodes the quantum wave function, to further
support our interpretation that NP extends down to zero field.
However, as we discuss in the following, the finite circumfer-
ence affects the ground-state energy significantly and a firm
conclusion regarding the ground state in the two-dimensional
limit cannot be drawn.

In Fig. 5, we compare the ground state energies EGS of
different geometries upon varying χ at φ/π = 0.1, 0.25, and
0.5. Narrow cylinders with Lcirc = 6 (3xLy rho) or Lcirc = 8
(2xLy rec) show good convergence with respect to χ and
feature an almost flat evolution of EGS. In contrast, cylinders
with Lcirc = 10 or 12 require relatively large χ for conver-
gence. Nonetheless, we can read off the following tendencies.
Firstly, the rhombic geometry (rho) exhibits an NPαβ ground
state, while the rectangular geometry (rec) exhibits NPγ at
sufficiently large χ . Secondly, EGS depends significantly on
Lcirc where the narrowest cylinder (3xLy rho) has the lowest
energy, which is about 2 to 3% below EGS of cylinders with
Lcirc = 12. This implies that finite-size effects are significant
as will be discussed below. Thirdly, some of the magneti-
cally ordered states observed in the corresponding classical
model [30] appear as metastable ground states if an MPS
ansatz with small χ is used, in particular at φ/π = 0.5, see
Fig. 5(c). The difference in energy between the magnetically
ordered states and the NP phase is much smaller than that
between different circumferences. Consequently, finite-size
effects make it difficult to conclude the precise nature of the
ground state near the � limit as h −→ 0.
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E
/N

E
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E
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FIG. 5. In the limit h −→ 0, the quantum ground state obtained
by iDMRG depends on the cylinder geometry and the bond dimen-
sion χ of the MPS. The solid line represents a quadratic fit to the
energies of MPS that belong to NP, while for dashed lines the MPS
exhibits a long-ranged magnetically ordered state. More specifically,
we find the following states. At (a) φ/π = 0.1 and (b) 0.25, the
ground state is either NPαβ for rhombic unit cells (rho) or NPγ

for rectangular unit cells (rec). The rhombic-2 (rho-2) geometry
cannot be associated with either of them, as it does not exhibit the
corresponding anisotropy in bond energies, namely Eα 
 Eβ < Eγ

(NPαβ ) or Eγ < Eα 
 Eβ (NPγ ) with a, b, c ∈ {x, y, z}. Zigzag (ZZ)
order is found close in energy for rho-2. (c) In the pure � > 0
model, i.e., φ/π = 0.5, cylinders with Lcirc = 12 (3xLy rec, and 6xLy

rho) exhibit transitions from states with finite magnetic moment and
long-range order at small χ into either of the NP phase at large
χ . In particular, “5:2 rho-2” exhibits a ZZ order for χ � 1200, as
does “6x2 rho” for χ � 450, “6x3 rho” exhibits a 12-site order for
χ � 256, “3x1 rec” and “3x2 rec” show a six-site order for χ � 640
“3x3 rec” exhibits an 18-site order for χ � 640. This indicates that
NPγ , NPαβ and several magnetically ordered states observed in the
classical model [30] are close in energy.

Remarkably, we find NPαβ to be adiabatically connected to
uncoupled K� chains [55] along alternating α and β bonds.2

2Likewise, we find NPγ to be adiabatically connected to uncoupled
K� dimers on bonds with label γ . This is consistent with a recent
series expansion on a dimer ansatz [70], which finds the dimerized
ansatz to be stable up to almost isotropic couplings.
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FIG. 6. Dynamical spin structure factor S(k, ω) at φ/π = 0.1. (a) h = 2.0 and (b) h = 1.2 in the high-field paramagnet (P) phase, (c) h =
0.8 in P right before the transition into the nematic paramagnet (NP), and (d) h = 0.4 within NP. In (a)–(c), P exhibits two magnon bands,
with the lower one remaining sharp but the upper one being obscured by the multimagnon continuum upon decreasing the field. Comparing to
the dispersion obtained by LSWT, the lower magnon band (solid line) is shifted downwards in energy and hits zero at the � and �′ point at a
higher critical field than that predicted classically. Within NP, as in (d), the lower magnon band becomes slightly diffusive. A broad continuum
appears, ranging from (almost) zero frequency to about ω = 1.6. The spectral weight is mostly concentrated at low frequencies near the �

point, indicating long wavelength excitations corresponding to a pseudo-Goldstone mode. LSWT spectrum in the FF phase, or NP in the
quantum limit, is gapless by the Nambu-Goldstone theorem. Some of the spectral weight is redistributed to the M-point, signaling that a small
perturbation, e.g., �′, may be sufficient to drive the system into the zigzag (ZZ) order.

That is to say, we do not observe a phase transition—other
than a change to a different NPαβ orientation—upon adia-
batically turning off the couplings on all bonds 〈i, j〉γ with
a label γ ∈ {x, y, z}. In particular, consider the rhombic ge-
ometry with bond labels as in Fig. 3(a). The ground state
obtained by iDMRG is NPyz with Ey = Ez < Ex. We denote
the interactions on the x bond collectively as Jx, and multiply
it by the factor 1 − η with η ∈ [0, 1]. In doing so, we do not
find a phase transition upon tuning η from 0 to 1. On the other
hand, if the interactions on the y or z bonds are switched off
using a similar parametrization, a different orientation, NPxz

or NPxy respectively, is selected at a small but finite η.
The three possible orientations of the NPαβ are exactly

degenerate in the two-dimensional limit. This degeneracy,
however, is lifted on the cylinder due to its finite circumfer-
ence, which is best understood in the limit of the uncoupled
K� chains. On the rhombic geometry, see Fig. 3(a), NPyz

corresponds to a K� chain composed of alternating y and z
bonds along the circumference. Such a chain is finite with
Lcirc sites and subjected to periodic boundary conditions.
The remaining two orientations instead correspond to infinite
chains. The ground-state energies obey E |L=6 < E |L=12 <

... < E |L=∞. Here, EL=6 is about 1 to 2% smaller than that
of L = ∞, which is of the same energy scale as over which
EGS spreads for the different geometries, see Fig. 5. Thus the
significant finite-circumference—or finite-size—effects of the
two-dimensional K� model can be explained, at least within
the NPαβ set of the NP phase, by its relation to the K� chains.
We expect this type of finite-size effect to be quite ubiquitous
in any numerical study of an extended spin-1/2 Kitaev model
with the Kitaev and other anisotropic exchange interactions
using a finite geometry [27,48,49,53,54,56].

V. DYNAMICS

The dynamical spin structure factor S (k, ω) contains in-
formation about the excitation spectrum and can be probed
by inelastic neutron scattering experiments. We consider
S (k, ω) = ∑

γ∈{x,y,z} Sγ γ (k, ω) with Sγ γ (k, ω) being the

spatiotemporal Fourier transform of the dynamical correla-
tions

Sγ γ (k, ω) = N
∫

dt eiωt
∑
a,b

eik·(rb−ra ) Cγ γ

ab (t ) , (6)

where γ ∈ x, y, z is the spin component, ra and rb are the spa-
tial positions of the spins, N is a normalization factor defined
via

∫
dω

∫
dk Sγ γ (k, ω) = ∫

dk, and Cγ γ

ab (t ) denotes the dy-
namical spin-spin correlation Cγ γ

ab (t ) = 〈ψ0|Sγ
a (t )Sγ

b (0)|ψ0〉.
Given the ground-state wave function in MPS form, the time
evolution is carried out using the tMPO method [44] until
t = 60. The time series is then extended by a linear predic-
tion [57–59] and multiplied with a Gaussian distribution. The
resulting line broadening amounts to σω = 0.036. We restrict
ourselves to magnetic fields near the transition between P and
NP, where the numerical errors and finite size effects are found
to be small. A rhombic geometry with Lcirc = 6 sites is used
such that three separated lines of accessible momenta exist in
the first Brillouin zone, as illustrated in Fig. 3.

We present two sets of S (k, ω), Figs. 1(c)–(f) and 6, along
the high-symmetry direction �-M-�′ in the Brillouin zone.
In Figs. 1(c)–(f), we want to emphasize the similarities and
differences of S (k, ω) in the two limits [(c) and (d)] � −→ 0
and [(e) and (f)] K −→ 0. Whereas in Fig. 6 we focus on the
evolution of the magnon bands upon reducing the field across
the critical field while keeping φ/π = 0.1 fixed. S (k, ω) for
additional parameters are presented in Appendix C.

As highlighted before, the NP phase remains stable in a
wide range in parameter space. NP extends from the almost
(FM) Kitaev limit, φ −→ 0, to the (AF) � limit, φ/π −→
0.5 and beyond when �′ = 0. In the entire range, the lower
magnon band which is apparent in P reduces in energy upon
approaching the critical field of the transition P to NP, where
eventually it condenses at � and �′. Within NP, the main
spectral weight is observed at long wavelengths and low
frequencies above a small spectral gap. Such excitations are
consistent with the slightly lifted accidental U(1) degeneracy
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and correspond to the slow pseudo-Goldstone mode and is the
characteristic feature of NP.

On the contrary, the continuum exhibits a very distinct
structure in both limits of φ. Near φ −→ 0, that is near
the pure Kitaev model with K < 0, S (k, ω) bears similar-
ities to that of the nearby ferromagnetic KSL. The broad
continuum of the KSL is formed by itinerant Majorana
fermions subject to a quantum quench caused by the exci-
tation of a flux pair when acting with a spin operator on
the ground state [60,61]. Since the flux-pair excitation is
gapped, S (k, ω) has a finite gap even though the Majorana
fermion spectrum is gapless. The continuum above the spec-
tral gap has an almost k-independent width equal to that of
the single Majorana fermion dispersion. S (k, ω) of NP and
P proximate to the KSL exhibit a similar continuum with
the same upper cutoff frequency ω ≈ 1.6. Thus remnants
of the Majorana fermion excitations of the KSL appear to
persist at higher energies. Differences between NP and KSL
are most obvious at lower energies. While the KSL has a
relatively low-lying dispersion and the spectral gap, NP ex-
hibits a somewhat broadened dispersing low-energy mode
associated with the pseudo-Goldstone mode. As a conse-
quence, it may be challenging to discern NP and the nearby
KSL using inelastic neutron scattering experiments. Such
a phenomenology, which is known as proximate spin liq-
uid [15], was previously observed in the Kitaev-Heisenberg
model [45,46].

In the other limit φ/π −→ 0.5, i.e., the pure � model with
� > 0, S (k, ω) of NP at h = 1.4 is dominated by diffuse
remnants of the magnon modes that exist in P at h = 1.6, com-
pare Figs. 1(e) and 1(f). The magnon mode has an enhanced
bandwidth and dispersion which remains of equal magnitude
upon approaching the transition. This is in contrast to the
pure Kitaev model in a [111] field, which exhibits a band
that simultaneously flattens and approaches zero in the entire
reciprocal space [62]. Moreover, the continuum within NP has
more structure and an increased energy scale, �ω/� ≈ 2.5,
compared to that of the KSL, �ω/K ≈ 1.6. In comparison
to the � model (with � > 0) at zero field [63], we observe
a similar energy scale of the continuum. At low energies,
however, the main spectral weight shifts from M at zero field,
to � at high field, which corresponds to the pseudo-Goldstone
mode. Above the pseudo-Goldstone mode, in particular at
� and �′, the continuum exhibits a gap similar to the gap
observed at zero field.

Figure 6 demonstrates the evolution of the magnon modes
upon approaching the critical field. Two magnon bands exists
due to the unit cell having two sites. The two magnon modes
are most pronounced at high fields, e.g., Fig. 6(a) at h = 2.0,
where the magnetic moment is close to saturation. Agreement
with LSWT is good except from an overall shift of the lower
magnon band towards smaller frequencies. Upon reducing
the field, e.g. Fig. 6(b) at h = 1.2, both magnon bands move
downwards in energy, while their shapes are essentially the
same as those at h = 2.0. However, the upper band starts to
overlap with the two-magnon continuum resulting in a broader
linewidth due to additional decay channels. The bottom of the
two-magnon continuum as obtained from LSWT is marked
by the dashed line. In the fully quantum computation (tMPO),
however, the continuum starts at lower frequencies due to the

overall reduction of the lower magnon band as compared to
LSWT.

Right before entering NP, e.g., Fig. 6(c) at h = 0.8, the
lower magnon band approaches zero frequency at the � and
�′ points, illustrating a condensation of magnons and the
imminent uniform canting of the magnetic moments. LSWT
predicts a gap, as the classical model is still in the fully
polarized phase due to a lower hcrit . The continuum overlaps
with the upper magnon band and obscures it except near the �′
point. Upon the transition from P to NP, the continuum does
not change significantly and, thus, confirms that the transition
is continuous.

Within NP, e.g., Fig. 6(d) at h = 0.4, a broad continuum
appears and extends up to ω ≈ 1.6. Furthermore, a softening
of the DSF at the M point signals the development of a sig-
nificant ZZ correlation when the magnetic field is lowered.
Adding a small �′ < 0 indeed leads to the ZZ order as in
Fig. 1(b). The ZZ correlation may be related to the presence
of an intermediate ZZ order that takes place at larger �/|K|
(φ/π � 0.25) in the quantum phase diagram Fig. 1(a). In
the corresponding classical model, the intermediate ZZ order
extends down to φ/π = 0.1 [30]. Thus the ZZ correlation
may also be a remnant of the classical ZZ order. The LSWT
spectrum is gapless at the � point as the classical model is
now in the FF phase. Analogous to tMPO, LSWT predicts a
condensation of magnons at the M point, which becomes more
pronounced upon further lowering the field and approaching
the transition into ZZ in the classical model (see Appendix D).

VI. DISCUSSION

We demonstrate that the K� and K��′ models in a mag-
netic field along the [111] direction support an NP phase,
which is not magnetically ordered, but breaks the lattice-
rotation symmetry while preserving translational symmetry.
We trace the origin of NP to the FF phase in the correspond-
ing classical model, which has a U(1) degenerate manifold
of states. When zero-point quantum fluctuations are incor-
porated, the U(1) degeneracy is broken down to a discrete
subset of ground states related by the C3 symmetry. This
quantum order-by-disorder effect leads to a pseudo-Goldstone
mode [43] in the excitation spectrum, as shown in the dynam-
ical spin structure factors of the quantum model.

In realistic Kitaev materials like α-RuCl3, the lattice-
rotational symmetry has already been broken by a monoclinic
distortion [14,64]. Therefore it is reasonable to expect that the
degeneracy of NP is lifted, i.e., one or two out of the six cant-
ing directions is favored. In fact, a substantial magnetic torque
is measured for α-RuCl3 at high fields [65], indicating that NP
may be stabilized in α-RuCl3. While monoclinic distortion
may have already caused a small canting of the magnetic
moment, we argue that the canting of magnetic moments in
NP is much more pronounced. It would be necessary to look
for a second transition at high fields to verify the existence
of the field-induced NP, which is sandwiched between the
long-range zigzag order and the longitudinally polarized para-
magnet. The latter only exhibits a negligible torque, while
NP has a much larger torque due to the induced canting. The
specific nature of the distortion may either enhance or mitigate
the extent of NP.
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Considering the wide range in parameter space over which
NP occurs, this phase may as well be relevant to other
Kitaev materials. In the context of the NP phase, with its
spontaneously broken C3 symmetry, a particularly interesting
example is the iridate K2IrO3. Recently, K2IrO3 was pro-
posed to exhibit ferromagnetic Kitaev exchange and large
off-diagonal exchange while maintaining a C3 point group
symmetry [66].

An important implication for experiments is drawn from
the dynamical spin structure factor of the NP phase, which
exhibits diffusive scattering features masking sharp magnonic
excitations. Such a scattering continuum bears some similari-
ties to that of the nearby KSL. With a greater ratio of �/|K|,
the continuum appears in a wider range of energies. Therefore
the excitation continuum observed in inelastic neutron scat-
tering experiments on α-RuCl3 [15,20,24–26] could originate
from the NP phase. The intriguing question of whether NP is a
topologically nontrivial phase is an excellent subject of future
study.
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APPENDIX A: MINIMIZATION OF THE CLASSICAL
ENERGY IN THE FERROMAGNETIC PHASE

In this section, we work in the crystallographic (abc)
coordinates, and write the spin components in (3) as S =
(Sa, Sb, Sc). For a ferromagnetic order, the Hamiltonian (1)
reduces to [30]

H = N{K|S|2 + γ [−(Sa)2 − (Sb)2 + 2(Sc)2]

− 2(haSa + hbSb + hcSc)} + λ(|S|2 − S2), (A1)

where N is the total number of unit cells, γ ≡ � + 2�′ (as-
suming nonzero), and the Lagrange multiplier λ has been
introduced to constrain the spin magnitude. As any ferromag-
netic order saturates the lower bound of the classical energy
of the Kitaev interaction with K < 0 [67], we can simply drop
it from (A1) in the subsequent analysis. Extremizing H with

respect to the variables Sa, Sb, Sc, and λ leads to the following
equations

∂H

∂Sa
= −2γ Sa − 2ha + 2λSa = 0, (A2a)

∂H

∂Sb
= −2γ Sb − 2hb + 2λSb = 0, (A2b)

∂H

∂Sc
= 4γ Sc − 2hc + 2λSc = 0, (A2c)

∂H

∂λ
= (Sa)2 + (Sb)2 + (Sc)2 − S2 = 0. (A2d)

We study the case where the field is completely aligned
in the [111] direction, i.e., ha = 0 and hb = 0, but hc �=
0. (A2a) becomes −2γ Sa + 2λSa = 0. (A2b) yields a similar
condition.

(i) Suppose that Sa �= 0 or Sb �= 0. Then λ = γ . (A2c) then
implies Sc = hc/3γ , which is a physical solution only when
hc/3γ � S.

(ii) Suppose that Sa = 0 and Sb = 0. Then, (A2a)
and (A2b) are satisfied. Futhermore, λ �= −2γ , other-
wise (A2c) would imply hc = 0. Therefore Sc = hc/(λ + 2γ ),
with λ chosen to satisfy the normalization (A2d).

In conclusion, the frustrated ferromagnet (FF) can be real-
ized only when hc < 3γ S. As hc � 3γ S, the system becomes
fully polarized. We thus identify 3γ S as the critical field hcrit .

APPENDIX B: SIGNATURES OF THE ACCIDENTAL U(1)
DEGENERACY

As shown in Sec. III, quantum order-by-disorder lifts
the accidental U(1) ground-state degeneracy in the classical
model (1). In order to see whether this happens in the quantum
model using iDMRG, we apply a magnetic field

h = h(sin ϑ cos ϕ â + sin ϑ sin ϕ b̂ + cos ϑ ĉ) (B1)

that is slightly tilted away from and rotated around the [111]
axis. Here, we choose ϑ = 1◦. Upon rotation of the tilted field
around the [111] axis by varying ϕ ∈ [0, 2π ), we observe the
following. Firstly, the variation in E (ϑ = 1◦, ϕ) is generally
small, of the order 10−4. The variation is the smallest near
the P to NP transition and increases upon lowering the field.
Secondly, the tilting angle ϕm of the magnetic moments con-
tinuously follows that of the field ϕh, though there is a small
deviation |ϕm − ϕh| � 7◦. Thirdly, E (ϑ = 1◦, ϕ) has a period
of 2/3π .

The first observation is consistent with the quantum order-
by-disorder scenario since quantum fluctuations only result
in small corrections to the energy. As a result, the gap in-
duced by quantum order-by-disorder is small and can be easily
overcome by small perturbations, e.g., a slight tilting of the
field. While the second observation is a consequence of the
first one, it also implies that one can continuously tune from
NPαβ to NPγ as well as between different orientations thereof.
Moreover, NPγ and NPαβ are related by the same spontaneous
symmetry breaking.

The third observation is linked to the ground-state degener-
acy. In NP the C3 symmetry is broken spontaneously, which is
apparent from the anisotropic bond energies and the canting
of the induced magnetic moment. As a consequence, acting
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FIG. 7. In order to verify the nearly degenerate U(1) manifold of
ground states in the quantum model (1), we tilt the magnetic field
slightly from the [111] axis by ϑ = 1◦ and then rotate it by varying
ϕ. Plotted are the ground-state energy as obtained with iDMRG
for two different geometries with 12 sites circumference each, 6x1
rho [see Fig. 3(a)] and 3x1 rec [see Fig. 3(b)]. The average energy
ĒGS = 1/2π

∫ 2π

0 dϕEGS(ϕ) has been subtracted. The magnetic mo-
ment follows the rotating field smoothly with a slight deviation up to
7◦. As discussed in Sec. III, the classical U(1) degeneracy is lifted by
quantum fluctuations. The induced gap is of the order of ε ≈ 10−4

and increases upon lowering the field. The minima are located at
ϕ = 0, 2

3 π , and 4
3 π corresponding to NPαβ .

with a C3 rotation on the ground state transforms the state
to a different state with the same energy. This implies at
least a threefold degeneracy which is manifest in the 2π/3
periodicity in Fig. 7. Deviations from an exact threefold de-
generacy are caused by the cylindrical geometry. They are
most pronounced for small Lcirc and upon reducing the field.

In summary, our observations from tilting and rotating
the magnetic field away from and around the [111] axis are
consistent with the scenario of NPγ and NPαβ being related to
the classical FF phase. Quantum fluctuations induce a small
gap and only a discrete subset of states is selected out of the
U(1) manifold in the classical model.

APPENDIX C: ADDITIONAL PLOTS OF DYNAMICAL
SPIN STRUCTURE FACTOR

We complement the discussion on dynamical spin structure
factors S (k, ω) by presenting the data for additional sets of
parameters, as shown in Fig. 8. We restrict ourselves to the
phases close to the transition between P and NP, where the
numerical errors and finite size effects are found to be small.
Here we employ the rhombic geometry with Lcirc = 6 sites
that has three separated lines of accessible momenta in the
first Brillouin zone, as shown in Figs. 3(a) and 3(b).

The P phase clearly exhibits two magnon bands, where
the lower band attains its minimum at the Brillouin zone
center, i.e., the � and �′ points, for any φ/π ∈ (0, 0.5]. Upon
approaching the transition, the lower band touches zero fre-
quency at � and �′, which is consistent with the uniform
canting of spins in the NP phase.
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FIG. 8. Dynamical spin structure factors S(k, ω) complementing Figs. 1(c)–1(f) and 6 in the main text. Superimposed are the single-
magnon bands (solid line) and the onset of the two-magnon continuum (dashed line) as obtained from LSWT. Near the Kitaev limit, φ/π =
0.05 (a,b), there exists a broad continuum akin to the KSL and an almost flat band at low energies within P. Its dispersion increases upon tuning
up φ and reaches a maximum around φ/π = 0.25 (e,f). In the pure � model, φ/π = 0.5 (g,h), the dispersion is still present although reduced.
In the entire region φ/π = (0, 0.5] the lower band attains its minimum at the Brillouin zone center, i.e., the � and �′ points, and reaches zero
frequency at the transition between P and NP. Within NP the main spectral weight is located at low frequencies and long wavelengths, which
is consistent with the existence of a pseudo-Goldstone mode. Some spectral weight is distributed around the M point, where the band bends
towards lower energies. Thus a small perturbation, e.g., �′ < 0, may trigger a transition into the ZZ order.
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FIG. 9. The magnon dispersions in the FF phase calculated with LSWT for the K� model at φ/π = 0.1 and (a) h = 0.42, (b) 0.4, and
(c) 0.389. Upon lowering the field, the excitation gap at the M point decreases and approaches zero, as there is a nearby phase transition to the
ZZ order in the classical model.

Regardless of the specific value of φ, S (k, ω) of the NP
phase features a nearly vanishing gap at � that opens slightly
upon further lowering the field. The small gap gives rise to
a multi-particle continuum near the zero energy, partially ob-
scuring the single-magnon mode by enabling decay channels.
The spectral weight is mostly concentrated just above the gap
at the �, signifying low-energy excitations with long wave-
lengths. Such excitations correspond to the pseudo-Goldstone
mode of the slightly lifted U(1) degenerate manifold of states.
Moreover, S (k, ω) exhibits a distinctive feature at high ener-
gies above �′, which, as suggested by LSWT, appears to be a
remnant of the upper branch of the one-magnon excitation.

Superimposed in Fig. 8 are the two single-magnon bands
and the resulting lower edge of the two-magnon continuum
calculated by LSWT. While in the P phase the bandwidth
and the dispersion generally agree with the DSF computed
by tMPO, the lower band of the latter is shifted towards
lower energies. Within NP (or FF in the classical model),
LSWT exhibits a gapless excitation at � and �′ that is the
Nambu-Goldstone mode arising from spontaneously breaking
a continuous symmetry.

In the limit φ −→ 0, the system enters the KSL phase,
which is characterized by the fractionalization of spins into
itinerant Majorana fermions with a background of static Z2

fluxes [7]. The fluxes are gapped excitations of an emergent
Z2 gauge field. S (k, ω) of the KSL features a spectral gap
� equal to the energy of a flux pair. A continuum starts
at � and has a width equal to that of the single Majorana
fermion dispersion [60,61]. The continuum is almost entirely
formed by Majorana fermions subject to a quantum quench
that caused by exciting a flux pair [60].

In the NP or P phase proximate to the KSL, see Figs. 6(c)
and 6(d) for φ/π = 0.01 and Fig. 8 for φ/π = 0.05, we
observe an equally wide continuum suggesting a likewise
description of the high-energy excitations in terms of Ma-
jorana fermions. However, neither P nor NP is close to the
flux-free state of the KSL and, in fact, fluxes are no longer
conserved quantities in the presence of a magnetic field or
�. Consequently, S (k, ω) at lower energies is distinct from
that of the KSL. More precisely, the continuum does not have
a constant spectral gap, dispersion evolves, and within P a
distinctive magnon band appears.

Upon further increasing φ and thus �/|K|, S (k, ω) exhibits
enhanced dispersions at both the lower and the upper edges of
the continuum in NP and P. Among the values of φ examined
here, the magnon bands at φ/π = 0.25 has the largest band-

width in the P phase. In the pure � model (i.e., φ/π = 0.5),
the dispersion is still present but its bandwidth is reduced.

Within NP at φ/π = 0.05, 0.15, the excitation gap de-
creases at the M point together with a significant redistribution
of spectral weight there indicating the enhancement of ZZ
correlations. Subsequently, a small perturbation like a neg-
ative �′ may stabilize a long-range ZZ ordered phase. The
LSWT spectrum at φ/π = 0.05 exhibits the same phe-
nomenology due to the nearby transition into the ZZ phase
present in the classical model.

Along the lines of accessible momenta not presented here,
we observe that the gap between the two magnon bands closes
at the K point at φ/π = 0.15, both in LSWT and tMPO. This
is due to a duality transformation that exists in the parameter
space of the JK��′ in a [111] field mapping the K� model at
φ = tan−1(1/2) ≈ 0.148π to the pure FM Heisenberg model
at high field [68]. For smaller as well as larger φ, the magnon
bands are well separated and known to be topological with
nonzero Chern numbers implying edge modes on geome-
tries with open boundaries [68,69]. Moreover, the magnetic
moment just above the critical field is expected to be fully
polarized only at the φ dual to FM Heisenberg, where the fully
polarized stated is in eigenstate. Anywhere else, frustration
leads to a reduced magnetic moment which approaches the
fully polarized state in the limit h −→ ∞. This motivates
to distinguish the longitudinally polarized paramagnet in the
quantum model from the fully polarized phase in the classical
model.

At φ/π = 0.5, i.e., the pure � > 0 model, the P phase
follows the same phenomenology as at smaller φ, see
Figs. 6(e), 6(f) and 8. The dispersing magnon bands shift
downwards in energy and the excitation gap closes at the �

and �′ point upon the transition into the NP phase. As the
field is lowered, a multi-magnon continuum starts to form
within P and persists across the transition into NP. In con-
trast, the pure Kitaev model in a [111] field exhibits a band
that simultaneously flattens and approaches zero in the entire
reciprocal space [62]. At φ/π = 0.5 and h ∈ [1.4, 1.8], the
classical ground state is some six-site magnetic order distinct
from P or FF, which is why the LSWT spectra are not plotted.

APPENDIX D: ADDITIONAL PLOTS OF LINEAR SPIN
WAVE DISPERSION

The classical limit of the K� model exhibits a phase tran-
sition from the FF phase to the ZZ long-range order upon
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lowering the field for a wide range of φ (see Ref. [30]). We
examine the dispersion obtained via LSWT within the FF
phase near this transition. As the field decreases, the excitation
gap at the M point shrinks and approaches zero, as shown in

Fig. 9. This is also seen in the DSF of the quantum model, as
discussed in Sec. V and Appendix C. We remark that the DSF
at a certain choice of h agrees better with the LSWT spectrum
at a lower h than that at the same h.
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