Journal of Physics A: Mathematical and Theoretical

PAPER « OPEN ACCESS

Universal and optimal coin sequences for high entanglement generation
in 1D discrete time quantum walks

To cite this article: Aikaterini Gratsea et al 2020 J. Phys. A: Math. Theor. 53 445306

View the article online for updates and enhancements.

This content was downloaded from IP address 203.181.243.17 on 15/10/2020 at 02:17


https://doi.org/10.1088/1751-8121/abb54d
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssGMmke1OMDV9jZwtlm4HQiPxr_o95yOXBq2NA0piSVoXzYcwDMum0SwOzYEqc0QjTZ26F-cIj45ED_e1qIaZujmrHvBPELdh7jPkAc8dZe76nDyc-P4ALCfmLHxJntU2j1TFh0JxV5oFJNk3MyPDq2h1EfKcdh79fe-GbXE359uHfa9xilGZdDYHfrzhjixmDgAi8YfZn-Ev5rUtM2S1paFseCe0FXjXH0r7S4S93VJLu8pjCQ&sig=Cg0ArKJSzCBazH8Sgm24&adurl=http://iopscience.org/books

OPEN ACCESS

IOP Publishing

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 53 (2020) 445306 (16pp) https://doi.org/10.1088/1751-8121/abb54d

Universal and optimal coin sequences for
high entanglement generation in 1D
discrete time quantum walks

Aikaterini Gratsea'>*©®, Friederike Metz'
and Thomas Busch'’

! Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate
University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan

2 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and
Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona), Spain

E-mail: gratsea.katerina@gmail.com and friederike. metz@oist.jp

Received 28 April 2020, revised 28 August 2020
Accepted for publication 4 September 2020

Published 12 October 2020
CrossMark

Abstract

Entanglement is a key resource in many quantum information applications and
achieving high values independently of the initial conditions is an important
task. Here we address the problem of generating highly entangled states in a
discrete time quantum walk irrespective of the initial state using two different
approaches. First, we present and analyze a deterministic sequence of coin oper-
ators which produces high values of entanglement in a universal manner for a
class of localized initial states. In a second approach, we optimize the discrete
sequence of coin operators using a reinforcement learning algorithm. While the
amount of entanglement produced by the deterministic sequence is fully inde-
pendent of the initial states considered, the optimized sequences achieve in gen-
eral higher average values of entanglement that do however depend on the initial
state parameters. Our proposed sequence and optimization algorithm are espe-
cially useful in cases where the initial state is not fully known or entanglement
has to be generated in a universal manner for a range of initial states.
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1. Introduction

Entanglement plays a fundamental role in quantum information processing [1] and maximis-
ing it is an important goal for reaching high fidelity operations. Developing and understand-
ing methods for creating, maximising and in general engineering entanglement are therefore
important topics in research at the moment. While most often entanglement between different
states of the same degree of freedom is considered, more recently so-called hybrid entangle-
ment between different degrees of freedom has been of interest [2]. If these degrees of freedom
belong to the same particle, more information can be encoded at the single particle level,
which can help to reduce the required resources. Hybrid entanglement has recently been exper-
imentally created in photonic architectures [3, 4] and also studied in neutrons [5] and bosonic
atoms [6].

Here, we discuss the generation of hybrid entangled states that can be created in discrete
time quantum walks, where the motion of a particle that moves in a high-dimensional discrete
space depends on an internal, two-dimensional coin degree of freedom [7-9]. The evolution
itself consists of the recurrent application of a coin and shift operator which in general leads
to entanglement between the walker and coin. Quantum walks have already been realized in a
variety of physical systems such as cold atoms [10, 11], trapped ions [12, 13], superconducting
qubits [14, 15], neutral atoms [16, 17], nuclear magnetic resonance systems [18, 19] and pho-
tonic architectures [20-22]. Hybrid entanglement generation has been observed as well [23,
24], and has been used as a resource for quantum teleportation [25] and for the design of secure
communication protocols [26].

Recently different approaches to enhance the entanglement between the walker and coin
have been explored. It was shown that disorder in the coin can increase the amount of hybrid
entanglement created by the walk [27-30], and that randomly choosing the coin operator at
each time step of the quantum walk can lead to maximally entangled states in the asymp-
totic limit independent of the initial state [27]. However, the large number of steps this strategy
requires makes the scheme unrealistic for current experiments. As a possible solution, the opti-
mization of the coin operator sequence was suggested and it was shown that this can reduce
the number of steps to less than 10 [31, 32]. However, the entanglement that can be generated
by optimizing is highly dependent on the initial state and requires potentially the full set of
possible coin operators to be realized experimentally. In an alternative approach, Wang et al
suggested to restrict the set of possible coin operators to just the Hadamard and Fourier coins
and showed that certain sequences give rise to highly entangled states with as few as 20 steps
[24]. However, the optimal sequences they found were also highly dependent on the initial
state.

In this work we present and discuss deterministic coin sequences that allow to create large
amounts of hybrid entanglement in a quantum walk. To be experimentally realistic we restrict
ourselves to Hadamard and Fourier coins only and aim at a minimal number of steps. It is
worth noting that deterministic sequences of coin operators have already been studied in the
context of the localization—delocalization transition in quantum walks [33—35], where the con-
sidered sequences range from the periodic cases [33] to aperiodic ones like the Thue—Morse,
Rudin—Shapiro, and the Fibonacci sequence [34, 35].

The first sequence we discuss is designed to create the same, large amount of entanglement
independently of the localized initial states, as long as they have a vanishing relative phase. The
structure of the sequence allows it to work for any odd number of time steps, and it therefore
also fulfils the requirement to be useful in experimental settings where often only a few steps
can be realised. We further show that the amount of achievable entanglement can be controlled
by replacing the Hadamard coin in the sequence by a general rotation operator. For localized
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initial states with nonzero local phases the same universal entangling behavior can be observed
if the coin operators in the sequence are modified slightly.

In the second part of this work, we ask if higher values of hybrid entanglement can be
achieved through a direct optimization of the coin operator sequence and choose a rein-
forcement learning (RL) based approach for the optimization. Machine learning has already
achieved remarkable results in various areas of physics [36, 37], and different machine learning
approaches have been combined with quantum walks for exploring quantum speed-up [38, 39]
and graph structures [40]. On the other hand, RL has been successfully applied to challenging
problems in quantum physics including quantum state preparation [41, 42], quantum optimal
control [43, 44], and quantum error correction [45, 46].

In this work, we use an RL technique to tackle the optimization of entanglement in quantum
walks. In contrast to previously employed optimization schemes, RL allows us to not only
find the optimal sequence of coin operators for a specific initial state but also for classes of
initial states. The resulting optimized coin sequences achieve equal or higher average values of
entanglement than the deterministic sequence discussed in the first part of this work. However,
the amount of entanglement created this way is not independent of the initial state.

The paper is organized as follows. In section 2 we briefly review the discrete time quantum
walk and introduce the RL framework as well as the Q learning algorithm used for optimization.
In section 3 we present and analyze the universal entangling coin sequence and compare it to
the results of the RL optimization problem. Finally, we conclude with a summary and outlook
in section 4.

2. Theoretical background

2.1. The quantum walk

The discrete time quantum walk in one dimension is realized on the tensor product of two
Hilbert spaces H = Hy, ® H.. [7-9]. The space corresponding to the position of the walker H.,
is high-dimensional and spanned by {|x) : x € Z}, while the coin space H. is two-dimensional
and spanned by {|1),|])}. We assume that the walker is initially localised on one site in an
arbitrary superposition of the coin states

[1ho) = cos(6/2)[0,1) + € sin(6/2)[0, 1), (1

where § € [0, 7] and ¢ € [0, 27]. The evolution consists of n applications of a unitary operator
U = SC, where S is a translation and C is a local rotation. The translation S moves the walker
either to the left or to the right depending on the internal coin state and has the form

S= lx =L U+ x+ L) (x 1. 2)

The coin operator C rotates the inner degree of freedom and in its most general form can be
expressed as

et cos(a) el sin(a)
—e7 ¢ sin(a) e cos(a)|’

Co1, 50 { 3)

where £, ¢ € [0,27] and « € [0,7/2] are the parameters of the SU(2) rotation and [
fixes the global phase [47]. The coin operators we want to employ are the Hadamard
coin H[f =7/2,a =7/4,§ = ( = —m/2] and the Fourier coin F[§ =0,a = 7/4,£ =0,
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¢ = 7/2], which have the explicit forms
I (1 1 I |1 i
i=sl Al ) v

2.2. Reinforcement learning

RL is a sub field of machine learning in which a trainable agent interacts with an environment,
takes actions, observes states, and obtains rewards [48]. The objective for the RL agent is to
choose actions at each time step that maximize the expected future reward. Here, we imple-
ment the off-policy Q-learning algorithm with the goal of maximizing the hybrid entanglement
between the walker and the coin degree of freedom [49].

Each training episode consists of a fixed number of time steps n of the quantum walk. Since
we are interested in maximizing the entanglement after the evolution is complete, we set all
rewards at intermediate time steps to zero and allow for a nonzero reward only at the final time
step. We use the Schmidt norm as a measure of entanglement and therefore the reward R at the
end of each episode i can be defined as

K

Ri=3 X (5)

k=1

Here \; are the Schmidt coefficients and K = min(d., dy,) with d. and d, being the dimensions
of the coin and walker subsystems respectively. Since the coin space is always two dimensional,
we have K = 2 and the rewards take values between R; € [1, v/2].

At each time step of the quantum walk, the agent can choose between two actions defined as
A € {H, F},where H and F correspond to the Hadamard and Fourier coin operator respectively
(see equation (4)). This choice is made after obtaining information about the current state of
the environment. One way of defining the RL state would be to use the full quantum state
of the system at each time step of the quantum walk. However, since the quantum state is
essentially a vector of continuous complex numbers, it cannot be straightforwardly employed
in tabular (discrete) RL settings and more sophisticated methods like neural network function
approximators are needed [48]. However, in our case we can use the fact that the dynamics
of the system are deterministic and therefore the history of actions (applied coins) contains
the same information for a fixed initial state. Specifically, for a given number of time steps
n and a specific initial state 1), there are 2" possible sequences. For example, for the case
n = 2 the complete set of sequences are { HHy, HF,, FH1,, FF),}. Hence, no information
about the intermediate physical states is needed and the RL states are simply given by S €
{init, H, F, HH, HF, FH, FF}. Here, init refers to the initial state of the environment before the
quantum walk evolution has started.

For obtaining the optimal policy 7*(S) = A, which indicates the optimal action to take given
the current state, we employ the Q-learning algorithm which is based on learning an optimal
Q function. The Q value Q™(S, A) of a state-action pair is defined as the expected cumulative
future reward when starting in state S, taking action A, and following the policy 7 thereafter

Sk

Therefore, the Q value QO(S,A) is a measure of how promising it is to choose the respective
action A in a state S. The optimal Q value Q*(S, A) is simply defined as the maximum Q value

0"(S,A) =E, S,A|. (6)
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over all policies Q*(S,A) = max,;Q"(S,A). In case the optimal Q function is known for all
state-action pairs, the optimal policy can be inferred by selecting actions that maximize the Q
value, i.e. a greedy action selection

™' () = argmax Q"(5,A). 7)

Hence, it suffices to learn the optimal Q values which can be achieved through an iterative
update rule known as temporal difference learning

0(Si, A) — O(Si,Aj) + o |[R; + max O(Siy1,4) — OS5, AD |, (8

where a € [0, 1] is the learning rate and the term in the brackets is called the target. It
can be shown that the Q values eventually converge to their optimal values if the policy
that is followed during training has a finite probability of visiting all state-action pairs [48].
Here, we use an e-greedy action selection during training, i.e. the agent acts randomly with
probability € and otherwise takes action A; which maximizes the Q value in the current
state: A; = argmax,Q(S;, A). Moreover, for a better trade-off between exploration of the full
action space and exploitation of high rewards, € is exponentially decaying after each training
episode i

€(i) = (Einit — Efin) EXP { ] + Efin, 9

episodes
with €jy; and €5, being the initial and final value of e, respectively. The exponential decay
ensures that at the beginning of training the agent acts mostly random and explores a variety of
different actions while towards the end of training actions are chosen more deterministically
according to the target policy. Once training has successfully converged, the optimal policy is
given by a fully greedy action selection given through equation (7).

3. Hybrid entanglement creation

3.1. Universal entangling coin sequence

We are interested in generating highly entangled states during a quantum walk independent
of the initial state. Since the final amount of entanglement cannot be fully independent for
all possible initial states [50, 51], we restrict the initial state to the class of localized states
with zero relative phase, ¢ = 0 (see equation (1)). Hence, the problem reduces to finding a
sequence of coin operators in time that generates entanglement independent of the initial state
parameter 6. For this we propose a sequence given by seq*(2m + 1) = [(H,F)",F], me€Z
for a quantum walk with 2m + 1 time steps. This sequence consists of an alternating application
of the Hadamard and Fourier coin with an additional Fourier coin applied at the final time step
and hence always describes a quantum walk with odd number of steps. In figure 1 we plot
the Schmidt norm at the end of the quantum walk evolution with the proposed sequence for
several different time steps as a function of the parameter 6. One can easily see that the value
of entanglement is always very close to the maximal amount possible and indeed independent
of 6 for each sequence. However it depends on the number of steps taken for short sequences,
but quickly converges to a value close to S/v/2 = 0.99 for larger values of n (see figure 2).
The derivation of the asymptotic limit of this sequence is shown in appendix A. Each point in
figure 2 is obtained after averaging over 1000 random angles 6 and the zero variances confirm
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Figure 1. Schmidt norm S computed after evolution with the sequence seq*(2m + 1) =
[(H,F)",F]form =1,...,5 as a function of the initial state parameter # when ¢ = 0.
The black dashed line indicates the maximum achievable value and the brown dashed-
dotted line the asymptotic value for m — oo.
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Figure 2. Schmidt norm S after evolution with the sequence seq*(2m+ 1) =
[(H, F)", F] as a function of the number of steps n = 2m + 1 (only odd time steps are
displayed). Each point is an average over 1000 random initial states with ¢ = 0. The vari-
ances calculate to zero suggesting that the sequences seq” generate states with an amount
of entanglement being independent of 6. The dashed line denotes again the maximum
achievable Schmidt norm while the brown dashed-dotted line indicates the asymptotic
value reached forn = 2m + 1) — oo.

that the Schmidt norm is independent of the parameter 6. Therefore, from now on we will refer

to the sequence seq” as a universal entangler for the class of initial states defined by ¢ = 0.
In the following we will give an intuitive explanation of how the universal behavior

emerges from this sequence. Generally, the Schmidt norm can be calculated from the reduced
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density matrix of the coin degree of freedom after tracing out the walker states. Representing
the reduced density matrix p as a vector on the Bloch sphere

1
p= I +adé. (10)

where @ is the Bloch vector and & is a vector of Pauli matrices, the Schmidt norm can be
expressed in the form

1 1
S:¢5+&+¢5—@ (11)

which only depends on the norm of the Bloch vector a. During the evolution with the universal
entangling sequence, the behavior of the Bloch vector & follows a periodic pattern. Specifically,
after each application of the Hadamard operator the Bloch vector points along the x-axis, while
the subsequent application of the Fourier operator projects it onto the y-axis. For example,
the sequence [H, F, H] gives rise to a3 = ((cos 0 + sin ) /4,0, 0), whereas after the sequence
[H,F,H, F] we obtain ay = (0, (— cos 6 + 4sin6)/16, 0). At the end of the time evolution, an
additional Fourier coin is applied, which rotates the Bloch vector into a #-dependent direction
in the x—y plane with a norm that is independent of #. For example, after the evolution with the
sequence seq*(5) = [H, F, H, F, F], the Bloch vector calculates to &5 = (cos #/16,sin6/16,0)
with a5 = 1/16 and the Schmidt norm is independent of § and approximately equal to 1.4114.
The same property is also observed in the asymptotic limit when m — oo (see appendix A).

In order to better understand the behavior of the universal entangling sequence, we explore
the role of the two coin operators H and F. The Fourier operator seems to be of signifi-
cant importance for generating highly entangled states. Generally, it increases the localization
of the quantum state [52] which has been associated with an enhancement in the entangle-
ment [30]. On the other hand, the Hadamard operator belongs to the class of rotation matri-
ces [53] and we have found that replacing it with a more general unbalanced operator does
not change the universal behavior of the sequence. The generalized Hadamard operator H is
given by

cos(w)  sin(w)

Hw) = sin(w) —cos(w)|’

(12)

so that the sequence takes the new form of [(f{ (w), F)™, F]. Figure 3 shows the Schmidt norm
after a 5, 7, and 15 step quantum walk as a function of the parameter w for initial states with
zero relative phase. Each data point was obtained after averaging over 1000 random angles ¢
of the initial state and the variance again calculates to zero in all cases. Therefore the amount
of entanglement created is still independent of . Moreover, the plot suggests that by properly
choosing the parameter w for a given length of the sequence, the performance of the universal
entangling sequence can be improved and a state close to a maximally entangled state can be
reached.

Let us finally note that the effect of a nonzero relative phase ¢ in the initial state can be
cancelled out in two ways using the phase operator Z given by

Z:{l o} a3

0 e

The phase operator can be applied either directly to the initial state or to the coin operators.
In the latter case, the H and F operators are altered to HZ and FZ, respectively. However, this
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Figure 3. Value of the Schmidt norm as a function of the generalized Hadamard operator
parameter w after the sequence [(H(w), F)", F] for a 5-step (blue), 7-step (orange) and
15-step (green) quantum walk. Each point is an average over 1000 random initial states
with ¢ = 0. The variances calculate to zero and the dashed line indicates the maximum
achievable Schmidt norm.

requires that the relative phase of the initial state is known beforehand, which can be the case
if the creation process of the initial state is deterministic.

3.2. Optimal coin sequences

Let us next address the question whether we can find coin sequences that perform better on
average than the universal entangling sequence, i.e. that generate higher values of entangle-
ment across all initial states. To solve this optimization problem efficiently we employ the
Q-learning algorithm described in section 2.2. We should emphasize that for a given number
of steps n, the goal is to find the optimal sequence of coins out of the 2" possible sequences
that maximizes the Schmidt norm (the reward) for all initial states. Our RL framework allows
us to solve for this objective due to the agents ignorance of the quantum state. Even though
different initial quantum states are used for each episode, the agent has access only to the states
defined by the history of actions and hence no information about the quantum state is used for
training.

For a better comparison to the previous section, we again restrict the initial states to a sub-
space defined by ¢ = 0. For each episode of training, the remaining initial state parameter
0 is sampled from a uniform distribution such that each episode is initialized with a differ-
ent quantum state. The details of the training and the hyperparameters used can be found in
appendix B.

As an example we show the results of the RL optimization obtained for a 5, 7, and 15 step
quantum walk in figure 4. The Schmidt norm achieved by the optimal sequence is plotted
as a function of the parameter #. Dashed lines of the same color correspond to the respec-
tive universal entangling sequence from the last section. Notice that in the case of a 5 step
quantum walk the universal sequence and the optimal sequence coincide, i.e. the RL agent
finds [H, F, H, F, F] to be optimal. For the cases of a 7 and 15 step quantum walk the optimal
sequences differ from the universal ones and the obtained Schmidt norm is not independent of

8



J. Phys. A: Math. Theor. 53 (2020) 445306 A Gratsea et al

1000 === === = = = = m m e ]

"N

< g994] — =5
0.994 1 -
~ 1 — =
- ] — n=15
0.992j
09905 ...................................
0.988 1
0 /2 pus
(%)

Figure 4. Schmidt norm reached after an evolution of 5-step (blue), 7-step (orange),
and 15-step (green) quantum walk with the optimal sequence (solid line) and the uni-
versal entangling sequence (dotted dashed line). The black dashed line denotes the
maximum achievable Schmidt norm. In the case of a 5-step quantum walk the optimal
and universal entangling sequence coincide. The optimal sequences are [H, F, H, F, F],
[F,H,H,H,F,H,H], and [F,H",F, H®] respectively and were obtained using the Q-
learning algorithm.

2m
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< 7 E
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0

0 /2 ™
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Figure 5. Schmidt norm obtained by evolving with the optimal policy [F,F,H,H, H]
as a function of the initial state parameters ¢ and 6.

the initial state anymore. However, in both cases the amount of entanglement exceeds that of
the universal sequence for all initial state parameters 6.

In order to validate the result, we compared the RL algorithm with a simple brute-force
method for the case of the 5 step quantum walk. The brute-force algorithm explores all of
the possible 2° = 32 coin sequences for 1000 random initial states and computes the average
Schmidt norm for each sequence. We find that the policy giving rise to the highest average
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entanglement is indeed the sequence the RL algorithm suggested previously: [H, F, H, F, F].
While for quantum walks with only a few steps a simple brute-force method as described above
is able to identify optimal policies, the RL algorithm becomes advantageous for larger numbers
of time steps. The number of possible coin sequences grows exponentially with the number of
steps and hence quickly becomes intractable by any brute-force method.

Finally, we train an RL agent on completely random initial states, where both ¢ and 6 are
uniformly sampled at the beginning of each episode. For a five step walk the optimal sequence
suggested by the RL agentis [F, F, H, H, H] and in figure 5 we show the values of the achieved
Schmidt norm as a function of the initial state parameters. One can see that the final amount
of entanglement depends slightly stronger on the initial state compared to the previous cases
where we only considered initial states with ¢ = 0. This is not surprising since it is known that
quantum walks of only a few steps cannot generate highly entangled states in a fully universal
way for all initial states at the same time [50, 51]. However, the RL algorithm is still able to
identify a sequence that, at least on average, performs better than others.

4. Conclusion

We have discussed two different approaches for generating hybrid entanglement in a quantum
walk. We first presented and studied an entangling sequence consisting of a deterministic string
of Hadamard and Fourier coin operators that created a universal amount of entanglement for all
initial states with zero relative phase. Since this sequence works for any number of steps larger
than two, it is valuable for experimental settings where the number of possible steps is limited.
The second method was based on direct optimization of the coin sequence using RL, which is a
technique that allows to also determine longer sequences where brute force optimisation is not
possible. We have shown that this method allows to find coin sequences that yield high average
values of entanglement over many initial states, which is particularly useful in cases where the
initial state is not fully known, very noisy, or simply whenever it is required to generate highly
entangled states independent of the initial state.

Our work therefore extends existing results that either achieve state independent entangle-
ment only in the asymptotic limit of an infinite quantum walk [27] or that can achieve maximal
entanglement in a short sequence, but not independently of the initial state [31, 32]. Further-
more, the RL scheme we have presented can be useful in a variety of other, experimentally
relevant settings. For example, the class of initial states that is optimized over can be restricted
to match the experimental problem, such as a fixed initial state with noise. The RL objective
can also be altered in different ways. One could for example choose to maximize the fidelity
between the final state and a given target state. Another option is to apply the techniques to
higher dimensional quantum walks [54], quantum walks on graphs [55], or quantum walks
involving more than one particle [56]. Additionally, one could move to the continuous case
and use deep RL to directly optimize the parameters in the coin operator.

Let us finally note that the universal entangling and optimized sequences give rise to qual-
itatively different probability distributions of the walker. The universal sequence produces a
delocalised distribution whereas the optimised sequences generate more localised one. This
effect will be a topic of future research.
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Appendix A. Asymptotic limit of the universal entangling coin sequence

In this appendix we derive the asymptotic limit of the coin reduced density matrix under the
universal entangling sequence, i.e. seq*(2m + 1) = [(H, F)", F] with m — oo, which allows
us to calculate the asymptotic value of the Schmidt norm and prove its independence of the
initial state angle 6. We follow the approach of reference [57, 58] where the evolution of the
reduced density matrix of the coin degree of freedom is directly computed through an effective
superoperator in Fourier space.

The quantum walk shift operator S of equation (2) can be expressed in momentum space
after performing a Fourier transform defined by k) = Y e**|x), which leads to

Sk = lky (k| @ (e 1) (1] + e 1) (1) - (A1)

The combined effect of the shift and coin operator can therefore be reduced to a 2 x 2 matrix
acting on the coin degree of freedom only and for the Hadamard and Fourier coin we obtain

1 elk _eik

SiH = 1; ® NG (e—ik e—ik) , (A2)
1 fie et

SiF =1, ® 7 (e—ik ; e—ik) . (A3)

These operators act on the full quantum state |¢)) (coin and momentum degree of freedom),
however, we can also directly work in the reduced space of the coin which can be represented
as a vector on the Bloch sphere as

p = Try (|’(ﬂ><¢‘) = apl + 01 + aroy + a303. (A4)

For an arbitrary initial state of equation (1) the Bloch vector components yield

(7)) 1

L |ar| _1[ cosep sinf

"7 || 2| —sing sind |- (AS)
3 cosf

During the quantum walk evolution the reduced density matrix transforms according to an
effective evolution superoperator L; and after n steps of the quantum walk is given by

T dk
Pn = / 5, L) po- (A6)
%

K

Using the vector notation of equation (A5), the operator L; can be represented as a4 x 4 matrix.
The matrix entries are obtained after working out how each of the Pauli matrices transforms

1
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under the combined effect of shift and coin operator, i.e. equations (A2) and (A3). For the case
of the Hadamard and Fourier coin the superoperators compute to

1 0 0 0
0 0 sin2k cos2k
H _
B=10 0 cos2k —sin2k |’ (A7)
0 -1 0 0
1 0 0 0
F_ |0 cos2k 0 —sin2k
L = 0 —sin2k 0 —cos2k (A8)
0 0 1 0

Hence, two steps of the quantum walk with a Hadamard coin applied at the first time step and
a Fourier coin applied at the second time step, give rise to the following superoperator

1 0 0 0
0 sin2k sin2kcos2k cos® 2k
0 cos2k  —sin?2k  —sin2kcos 2k
0 0 cos 2k —sin 2k

LiF = f1l = (A9)

Since we are interested in the long time behavior, we first diagonalize the matrix above before
exponentiating it to the desired power. The eigenvalues are given by

=1 MN=1 =0t )\3=e 0 (A10)
with
1 .2
cosy = E(l + sin” 2k). (A11)

After n = 2m steps of the quantum walk with a Hadamard and Fourier coin applied at
alternating time steps we obtain

1 0 0 0
m 0 1 0 0
(Li-IF) =B 0 0 eim(’y—&-‘n) 0 BT, (A12)
0 0 0 e ~im(y+m)

where the matrix B contains the corresponding eigenvectors as column entries

1 0 0 0
0 v vz vz

. Al3
0 vy v vy (A13)
0 w31 w3 s

When taking the limit m — oo, the oscillatory terms e*"”0+™ vanish due to the stationary
phase theorem. Therefore, we get the following expression for the asymptotic superoperator

0 0 0

2 * *
(LfF)m |Ull‘* V11Vy 1)111)11 , (Al4)
m—00 V2101 |’l)21‘ V2103,

[

* % 2
v31VY; V31U |vsl
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which only involves the components of the first eigenvector

V11 1 + sin 2k
2%
7= [vn cos cos2k | . (A15)

. V4 — (sin® 2k + 12 \ | _ gin2k

The superoperator L; of the universal entangling sequence is obtained by acting with an
additional final Fourier superoperator LI

Li(m) = Lf (L")". (A16)

The asymptotic limit of the reduced density matrix can then be calculated by performing the
momentum integrals for each matrix entry separately giving rise to

¥

e . de .
pm:rgggo B ﬂLk(m)po
1 0 0 0
2
0 0 —1+—= 2-V3]| [a
% o
o —24+4v3 1-= 0 a
V3 a
2 0 3
0 0 -1+ ==
V3
1

1 (2 — \/5) cos 6
2 (—2+ \/5) sin 6
0

(A17)

In the last line we used that ¢ = 0 for the initial states considered here. The final state lies in
the x—y plane of the Bloch sphere with a norm independent of the angle #. As a consequence
the Schmidt norm defined in equation (11), which is only a function of the length of the Bloch
vector, is also independent of  and computes to

S:\/;+;(2_\/§)+\/;—;(2—\/5)~09908><\/§. (A18)

This value matches the asymptotic behavior we observe in figure 2 of the main text.

Appendix B. Details of the RL training procedure

All instances of training were performed using the Q-learning algorithm [49] with Q val-
ues initialized to zero. We found a learning rate of o = 0.7 to give the best results overall.
The exploration parameter £ decays exponentially throughout the training from an initial
value of ¢; = 0.9 to a final value of ¢f = 0.01. The only parameters that were changed for
obtaining the different results in the main text are the number of episodes of training and
the number of independent runs. In figure 6 on the next page we show the learning curves
of the RL agent for a 5, 7 and 15 step quantum walk that are further discussed in the main
text.

13
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Figure 6. Learning curves for the optimization problems discussed in the main text. The
episodic reward (Schmidt norm) is averaged over 300 [(a) and (b)] or 400 [(c) and (d)]
independent runs. The light blue area corresponds to the confidence interval and dashed
lines denote the maximally achievable reward of V2. (a)—(c) Learning curves for the 5,
7, and 15 step quantum walk where the initial state parameter ¢ is set to zero and the
parameter 6 is sampled from a uniform distribution at the beginning of each new episode.
(d) Learning curve for the 5 step quantum walk where both initial state parameters ¢ and
0 are sampled at the beginning of each training episode.
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