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Abstract
We show that a quantum Otto cycle in which the medium, an interacting ultracold gas, is driven
between a superfluid and an insulating phase can outperform similar single particle cycles. The
presence of an energy gap between the two phases can be used to improve performance, while the
interplay between lattice forces and the particle distribution can lead to a many-body cooperative
effect. Since finite time driving of this cycle can create unwanted non-equilibrium dynamics which
can significantly impair the performance of the engine cycle, we also design an approximate
shortcut to adiabaticity for the many-body state that can be used to achieve an efficient Otto cycle
around a critical point.

1. Introduction

The almost unmatched precision of controlling and measuring cold atomic systems provided by recent
experiments has made them forerunners in the area of quantum simulations [1–3]. In particular their
many-body aspect and the ability to create out-of-equilibrium situations in a controlled way has led to
paradigmatic results that are beyond even advanced numerical simulations [4]. They therefore offer an
exciting testbed for exploring ideas in quantum thermodynamics [5], ranging from insights into the
understanding of work and heat at the quantum level to the operation of quantum heat engines (QHE)
and refrigerators [6–11]. Describing such machines taking fundamental quantum effects into account has
already led to a number of unexpected results and can allow one to achieve certain advantages over
comparable classical systems. In recent years this has been shown for machines operating across quantum
phase transitions [12–18], using squeezed baths as quantum environments [19–23], or exploiting the
cooperative effects of many-body quantum systems [24–31].

However, the description of interacting many-particle systems at finite temperatures is a non-trivial
problem and solvable models only exist in restricted circumstances that are often not experimentally
realistic. One notable exception to this are the recently realised Tonks–Girardeau (TG) gases of strongly
interacting bosons in effectively one-dimensional settings [32, 33], where exact solutions can be found
using the Bose–Fermi mapping theorem at finite temperatures [34–37]. Therefore they lend themselves to
exact studies of thermodynamical machines.

In this work we consider a TG gas in a box and realise the compression and expansion strokes a heat
engine requires by the switching on and off of an optical lattice potential. This changes the one-dimensional
volume the system has available and also leads to significant changes in the energy spectrum. Moreover, in
such a system the particle filling statistics plays an important role, as at low temperature and unit filling an
insulating phase forms as soon as an infinitesimally weak lattice potential is applied [38, 39]. This phase
transition is called the pinning-transition and it is signalled by the appearance of an energy gap in the
spectrum. One can therefore drive a quantum Otto cycle between the superfluid and insulating phases by
simply switching the lattice on and off. As the operation of the engine cycle is dependent on the energy
spectrum of the particles, the presence of the energy gap at the quantum critical point can drastically
change the engine performance. Furthermore, due to the competing influence of the lattice potential

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2058-9565/abbc63
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4940-5861
mailto:thomas.fogarty@oist.jp


Quantum Sci. Technol. 6 (2021) 015003 T Fogarty and T Busch

Figure 1. (a) Schematic of the setup for the mQHE and (b) the sQHE. (c) Schematic of the Otto cycle. (d) Single particle
spectrum Ej of a lattice with M = 100 wells and V0 = 0 (light grey), V0 = 5 (black) and V0 = 25 (red). (e) Efficiency and
(f) work output for an adiabatic cycle as a function of the filling ratio N/M, with TC = 0, TH = 5 and Vf = 50. Different values
of Vi are shown, Vi = 0 (blue solid), Vi = 1 (red dotted), Vi = 5 (yellow dashed) and Vi = 10 (purple dot-dashed). The work
output is scaled with the number of particles N.

and the particle interactions, nontrivial energy spectra can be achieved that may exhibit a many-body
cooperative effect on the engine cycle. This can be quantified by comparing the many-body quantum heat
engine (mQHE) with an equivalently sized ensemble of non-interacting single particle quantum heat
engines (sQHE) [27].

Of course, any realistic implementation of a QHE cycle must be carried out on a finite timescale, which
can have a negative impact on the resulting engine performance. If the cycle is performed too quickly, the
excitation of non-equilibrium states may act as a form of inner friction due to the irreversible nature of the
dynamics, thereby reducing performance [40, 41]. While adiabatic dynamics preserve the reversibility of the
cycle through the slow driving of the quantum state, the long timescales required result in negligible output
power. To achieve both, engine cycles that are efficient and fast, one can employ the techniques of shortcuts
to adiabaticity (STA), which allow for adiabatic dynamics on finite timescales [8, 28, 42–49]. However, since
the driven dynamics of our interacting many-particle system encompasses the quantum critical point at the
pinning transition, standard STA approaches cannot be easily employed. We therefore derive and
implement a many-body STA using a variational approach [50, 51], which, although approximate in nature,
improves the performance of the engine when compared to a non-optimised cycle.

2. Methods

The system we consider consists of a gas of N particles of mass m which are trapped in an effectively one
dimensional box potential, VB(x), of length L with infinitely high walls. The single particle Hamiltonian is
given by

H = − �
2

2m
∇2 + VB(x) + Vl(x, t), (1)

where we have also included a time-dependent optical lattice potential of the form
Vl(x, t) = V0(t) cos2(k0x + φ) (see figure 1(a)). The lattice vector is given by k0 = Mπ/L and M is the
number of wells. We choose φ = 0 for M even and φ = π/2 for M odd to ensure that there are no half
lattice sites at the edge of the box. We also choose to fix k0 and scale the size of the box potential to change
the number of lattice sites.

The eigenstates, ψn(x) (which we calculate through exact diagonalization), of the Hamiltonian (1) can
be used to describe a gas of spinless fermions via the Slater determinant
ΨF(x1, x2, . . . , xN) = 1√

N!
detN

n,j=1 [ψn(xj)], which can be mapped onto a TG gas of hard-core bosons after

appropriate symmetrization as ΨB(x1, x2, . . . , xN) =
∏

1�i<j�N sgn(xi − xj)ΨF(x1, x2, . . . , xN) [34, 52]. This
duality can be understood by realising that the spatial distribution of the fermions is governed by a
pseudo-interaction implied by the Pauli exclusion principle (Fermi pressure), which has the same effect as
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the strongly repulsive interaction present in the TG gas. Their respective densities are therefore trivially
identical, and this equivalence also extends to their thermodynamic behaviours which are governed by the
Fermi–Dirac occupation factors, fn = [e(En−μ)/kBT + 1]−1 (with En the eigenenergies, μ the chemical
potential and kB the Boltzmann constant) [35, 37, 53]. This implies that the engine cycles will be identical as
well. In the following we will scale all energies in units of the lattice recoil energy, ER = �

2k2
0/(2m), and

temperature in units of ER/kB.
We consider a quantum Otto cycle (see figure 1(c)) driven between two lattice depths, V0 = {Vi, Vf}, at

different lattice filling ratios, N/M. The cycle consists of four strokes: (i) isentropic compression (lattice
raising from depth Vi to Vf) over a time t1 at fixed temperature TC; (ii) weak coupling to a thermal bath at
temperature TH > TC during a time t2; (iii) isentropic expansion (lattice lowering from depth Vf to Vi) over
a time t3; and (iv) weak coupling to a thermal bath at temperature TC for a time t4. During the isentropic
compression and expansion strokes we assume the system is isolated from the respective thermal reservoirs.

We consider a reversible cycle where the dynamics of the quantum state are sufficiently slow so as to be
considered adiabatic (denoted by the subscript AD). The work done during the isentropic strokes can be
calculated from the difference in energy between the many-body states at lattice depths Vi and Vf at the
different temperatures, 〈WC〉 = 〈HTC (Vf )〉 − 〈HTC (Vi)〉 and 〈WH〉 = 〈HTH (Vi)〉 − 〈HTH (Vf )〉, with
〈H〉 = Tr(Hρ) being the expectation value of the energy of the thermal states. The heat exchanged with the
cold and hot baths is the given by 〈QC〉 = 〈HTC (Vi)〉 − 〈HTH (Vi)〉 and 〈QH〉 = 〈HTH (Vf )〉 − 〈HTC (Vf )〉 and
the efficiency and output power can be calculated as

ηAD = −〈WC〉+ 〈WH〉
〈QH〉

, PAD = −〈WC〉+ 〈WH〉
τ

, (2)

where 〈W〉ext = −
(
〈WC〉+ 〈WH〉

)
is the work output and τ = t1 + t2 + t3 + t4 is the duration of the cycle.

3. Results

3.1. Adiabatic cycle
For the performance of the engine the filling fraction N/M plays an important role. At TC = 0 and for an
incommensurate filling, N �= M, the particles are delocalized in the lattice and can move within the box.
However, for a commensurate filling, N = M, a pinning transition occurs for any infinitesimal lattice
strength, whereby each particle becomes more strongly localized at an individual lattice site, which
significantly restricts its motion [54, 55]. The behaviour of this insulating phase is then determined by the
energy gap in the single particle spectrum (see figure 1(d)) which has a size of approximately V0/2 for
shallow lattices and 2

√
V0 for deep lattices [38]. The differences in the accessible single particle excitation

spectrum for N/M therefore lead to different behaviours when running the engine and in figures 1(e) and
(f) one can clearly see that peak performance is achieved at unit filling. At this point the particles in the cold
adiabat fill the lowest energy band and as V0 is increased the energy gap is widened. Thermal excitations
induced by the hot bath then allow particles to jump the gap and therefore more energy can be extracted as
the lattice depth is decreased along the hot adiabat. As the high performance regime is the interesting one
for heat engines, we will focus on the case of unit filling in the following.

The advantage of exploiting the critical point in a mQHE with N particles can be quantified by
comparison with an ensemble of N sQHE, see figure 1(b). Each sQHE obeys the Hamiltonian given by
equation (1) with a box length of L = π/k0, so that exactly one lattice well is present,
Vl = V0 cos(k0x + π/2). The Otto cycle is then carried out using the same lattice height and bath
temperatures, however in the mQHE the final state is strongly influenced by the presence of the
interparticle interactions and the periodicity of the optical lattice. To quantify the difference between the
mQHE and the sQHE, we calculate the ratio of their respective efficiencies and powers

η∗(N) =
η(N)

η(1)
, P∗(N) =

P(N)

NP(1)
, (3)

such that η∗(N) > 1 and P∗(N) > 1 indicate that the many-body state gives a performance boost [27].
In figure 2(a) we show the efficiency ratio for an adiabatic cycle as a function of the lattice depths Vi and

Vf. For Vf > Vi the cycle produces positive work and therefore acts as an engine. One can see that large
many-body cooperative effects can be achieved in the regime where both lattices are weak, and where
therefore the particles in the mQHE are still partially overlapping. This results in a non-trivial, non-flat
single-particle energy spectrum (see figure 1(d)) and therefore in enhanced efficiency and power output
over the sQHE. When both lattices are deep, V0 � 30, the particles are highly localized in individual lattice
sites and the single particle energy spectrum becomes degenerate forming flat bands. In this limit all
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Figure 2. (a) Efficiency ratio η∗AD as a function of the initial lattice depth Vi and the final lattice depth Vf. The system is at unit
filling with N = M = 100, while the temperatures of the cold and hot reservoirs are TC = 0 and TH = 5, respectively. The grey
region indicates the parameter space where Vi > Vf, in which no work can be extracted from the cycle. (b) Numerical values for
η∗AD (red dotted line) and P∗

AD (black solid line) compared to the approximation given in equation (4) (yellow solid line) as
function of Vf for TH = 5 with N = M = 100. The inset shows P∗

AD for TH = 1 (blue line) and TH = 20 (pink line).
(c) Efficiency at maximum power (see text) and shown as a function of TC/TH for two temperatures of the cold adiabat:
TC = 0.01 (light blue lines) and TC = 0.1 (dark red lines). The solid lines are for the mQHE, the dotted ones for the sQHE and
the black line indicates the Curzon–Ahlborn limit. The inset shows the values of Vf which correspond to the maximum power for
each respective cycle (in log–log scale as a function of TC/TH). (d) Dependence of η∗AD (red dotted line) and P∗

AD (black solid
line) as a function of N at unit filling with TH = 5 and with Vf = 200. The numerical results are indistinguishable from
equation (4). The inset shows η∗AD and P∗

AD for TH = 1 and Vf = 5.

many-body cooperative effects are lost and the mQHE becomes equivalent to the sQHE. Since for weak
initial lattice depths, Vi � 10, the mQHE shows enhanced performance for a range of values of Vf, we will
focus on this region of the parameter space in what follows, specifically considering the limiting case of
initially having free particles (Vi → 0).

Indeed, for mQHE cycles which operate at low reservoir temperatures, θ = ER
kBTH

√
Vf > 1, and which

ramp to deep lattices, Vf 	 1, it is possible to find an approximate expression for the many-body
performance boost,

η∗AD(N) = P∗
AD(N) ≈ 1 +

1 − 1/N

Δ− 3
2 [coth (θ) + 1]

, (4)

where Δ = 2
√

Vf − 1 is the energy gap (see Supplemental Material for details). From this one can
immediately see that at unit filling the mQHE will always outperform the sQHE once Vf > 4. Furthermore,
increasing the number of particles and reaching the state of double filling, N = 2M, where the two lowest
states of each lattice site are occupied, does not lead to improved performance. In the limits θ, M →∞ the

efficiency ratio can be written as η∗(2M) ≡ η(2M)
η(1) → 1−4(Δ−1)−1

1−3Δ−1 , showing that for Vf > 1 the efficiency of
the sQHE is always larger than the mQHE at double filling, which is due to the anharmonicity of the
individual lattice sites leading to reduced gaps between higher lying energy states.

In figure 2(b) we show the numerically obtained values of the ratios η∗AD(N) and P∗
AD(N) as a function

of Vf in comparison to the approximation in equation (4). One can see that the exact ratios peak at lower
values of Vf, which is due to the fact that the particles in the many-body state are still partially delocalized
and therefore many-body cooperativity is stronger. For deeper lattices, Vf � 50, both ratios head towards
one, as stronger localisation makes the lattice sites become effectively independent. The decay of the
many-body advantage is well described by the approximation in equation (4) (solid yellow line in
figure 2(b)) and given by a 1/Δ dependence. While the decay is universal, the position and height of the
maximum depend on the other parameters of the system, in particular TH (see inset of figure 2(b)). In
general, a significant many-body advantage exists by operating the mQHE in weak lattices and at low
temperatures when the commensurate system remains close to the quantum critical point. At higher
temperatures the existing thermal energies diminish the importance of the energy gap and the quantum
criticality is washed out. To demonstrate this we show in figure 2(c) the efficiency at maximum power
(optimised over the lattice depth Vf, see inset in figure 2(c)) for two different temperatures of the cold
adiabat: one deep in the quantum regime TC = 0.01, which ensures that the system is in its ground state
and therefore close to the quantum critical point; the other at a slightly higher temperature TC = 0.1, where
the effect of the quantum criticality is reduced. When TH is small, the mQHE with the lower TC can be seen
to be more efficient and close to the Curzon–Ahlborn efficiency, ηCA = 1 −

√
TC/TH, which is a good

indicator of the performance of the Otto cycle [29, 46, 56]. Furthermore, it is worth noticing that at higher
TC the mQHE is outperformed by the sQHE as the thermal energy leads to less localisation within the box
potential and the energy gap is washed out. Therefore, this quantum critical mQHE only shows enhanced
performance at low temperatures when the system is close to the critical point.
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Figure 3. (a) Efficiency ratio η∗ as a function of ramp time tf for M = 30 with Vf = 25 and TH = 5 (P∗ behaves similarly and is
not shown) at the pinning transition point (N = 30) and away from it (N = 20). (b and c) Irreversible work created during a
process with a ramp time of tf = 2 as a function of total particle number N. (b) 〈Wirr〉 for ramping on the lattice at TC = 0,
(c) 〈Wirr〉 for ramping off the lattice at TH = 0 (blue), TH = 0.5 (yellow) and TH = 5 (red). Efficiency ratio for (d) Vf = 5 and
TH = 0.5 and (e) Vf = 25 and TH = 5 after implementing the non-optimised ramp Vλ(t) (grey dot dashed), and the STAs
〈VSTA(t)〉 (red) and V STA

M−1(t) (black). Insets: energy difference between the non-adiabatic and adiabatic single particle energies
after each ramp, ΔEn = ENA

n − EAD
n , taking tf = 15 and with the colour code matching that of the larger panels.

In deep lattices the power and efficiency ratios are equivalent for any number of lattice sites at unit
filling (N = M) and they are exactly described by equation (4) (see figure 2(d)). As the many-body
advantage is proportional to (1 − 1/N), one can see a rapid increase in both quantities for increasing
particle number until N ∼ 10, after which it asymptotically approaches 1 + (Δ− 3)−1 in the
thermodynamic limit. In more shallow lattices the efficiency and power ratios asymptotically reach
different, but overall larger values, while the dependence on N remains consistent with the behaviour
observed for deep lattices (see inset of figure 2(d)). Indeed, one does not need to create large many-body
states to see a marked improvement in engine performance, rather only a few dozen particles are sufficient
for observing the effects of many-body cooperativity in this system.

3.2. Finite time cycle
While all the results above are obtained for a reversible cycle which undergoes adiabatic dynamics, this
results in negligible power output due to the long timescales for each cycle, therefore necessitating fast
engine cycles for finite power-output. However, fast driving through a critical point will inevitably result in
non-adiabatic dynamics and irreversible work being produced, with the latter being defined as the
difference between the average work of the non-adiabatic (NA) and adiabatic driving,
〈Wirr〉 = 〈W 〉NA − 〈W 〉AD. This ultimately leads to reduced performance of the QHE [57–59]. To explore
the effect of irreversible work on the engine performance we numerically calculate the unitary dynamics of

the single particle states during the compression and expansion strokes, ψn(x, t) = e−
i
�

∫ t
0 H(t′)dt′ψn(x, 0),

describing the insertion and removal of the optical lattice over a finite time tf (in units of 2π/ER). We
parametrise the lattice strength as Vλ(t) = λ(t)Vf cos2(k0x), with
λ(t) = t3/t3

f [1 + 3(1 − t/tf ) + 6(1 − t/tf )2], which is sufficient to explore the dynamical properties of a
finite time engine stroke, but is not necessarily optimal for the system [60–63]. As our focus is on the
non-adiabatic dynamics initiated by the lattice ramp we will neglect the dynamics during the coupling to
the different heat baths and assume that the thermalization times t2 and t4 are much shorter than the times
for the work strokes t1 and t3 [42, 64]. Taking t1 = t3 ≡ tf, the total time for the cycle is τ ≈ 2tf.

For a finite time cycle at commensurate filling the efficiency only slowly approaches the adiabatic
efficiency (see figure 3(a)) due to the large amount of irreversible work created when driving the system at
the pinning transition (see figures 3(b) and (c)). In comparison, incommensurate fillings produce
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significantly less irreversible work as excitations are far from the energy gap and therefore the adiabatic
efficiency can be reached for significantly shorter ramp times. Also note that more irreversibility is created
during the raising of the barrier compared to the lowering, as the opening of the energy gap adds to the
nonequilibrium excitations.

Even with the advantage gained from the energy gap, the resulting irreversible dynamics on short
timescales set a limit on the performance of the engine cycle. In fact, this problem does not just appear in
dynamics about a critical point, but is present in any non-adiabatic driving of QHE. To improve engine
performance on finite timescales different STA approaches have been suggested [28, 42, 43, 46, 65–67].
However, while STAs have been successfully developed for non-interacting and mean-field systems,
designing them for strongly interacting many-body systems poses new challenges when scale invariance can
not be exploited [50], and is especially difficult due to the orthogonality catastrophe in larger systems
[48, 68]. We therefore employ a variational approach which can find the optimal driving amplitude VSTA

n (t)
for each of the single particle functions ψn(x, t) which are used in the Slater determinant to construct the
many-body state [51]. However, while this in principle can optimise the dynamics of each ψn(x, t)
individually, in practice a single lattice ramp must act on the entire many-body state and the chosen VSTA

n (t)
may create unwanted excitations in different ψm(x, t), for m �= n.

We therefore consider two different approximate STAs to optimize the many-body dynamics. First, we
choose the average of the STA pulses for all states up to the energy gap, 〈VSTA(t)〉 =

∑M
n=1 VSTA

n (t)/M, and
numerically time evolve the single particle states with this finite time ramp. While this shows an
improvement over the non-optimized ramp Vλ(t) for all timescales (see figures 3(d) and (e)), it is only
marginal as the optimization is averaged over the whole system. We therefore also consider the ramp
VSTA

M−1(t), which specifically optimizes the most irreversible single particle state, ψM−1(x), which sits just
below the gap and possesses the most excess energy after the Vλ ramp (see insets in figures 3(d) and (e)).
This STA results in a larger efficiency gain as excitations of this state are mostly suppressed, and the
adiabatic limit is quickly reached when the lattice is weak. However, this STA becomes ineffective for
fast cycles, as large modulations in the approximate STA ramp can induce excitations in the rest of the
system, which is a limitation of using these approximate techniques to design STAs for many-body states.

4. Conclusions

In summary, we have described the operation of a quantum Otto cycle about a critical point in a strongly
interacting many-particle system. We have shown that such a setup can yield increased performance due to
the presence of an energy gap and cooperative many-body effects which arise due to competition between
interactions and lattice forces. Using the particular cold-atom setup we have chosen, which has already been
experimentally studied [39], clearly highlights the dynamical effects stemming from the ordering when
going through the critical point and the complex dynamics that arises during non-trivial shortcut driving.
Furthermore, recent experiments have shown that many-particle heat engines can be realized with
two-component ultracold gases [69], whereby inelastic spin-exchange collisions are used to transfer heat
between the engine and the bath. Accordingly, our work lays foundations for the further exploration of STA
techniques for interacting many-body systems and their potential applications in QHE.
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