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Abstract 

Termites are important plant biomass decomposers. Their digestive activity typically relies on 

prokaryotes and protozoa present in their guts. In some cases, such as in fungus-growing termites, 

digestion also relies on ectosymbiosis with specific fungal taxa. To date, the mycobiome of termites 

has yet to be investigated in detail. We evaluated the specificity of whole-termite associated fungal 

communities in three wood-feeding termite species. We showed that the whole-termite fungal 

community spectra are stable over diverse environments, regardless of the host species, and differ 

markedly from the wood in which they nest. The core mycobiome is similar to that found in other 

ecologically related insects and consists of a narrow spectrum of common filamentous fungi and 

yeasts, known for their stress tolerance and their ability to decompose plant biomass. The observed 

patterns suggest that a number of fungal strains may have a symbiotic relationship with termites, and 

our results set the stage for future investigations into the interactions between fungi, termites, and their 

other gut microbiota. 

 

Keywords: mycobiome; symbiosis; Coptotermes; Heterotermes; Nasutitermes; yeast; moulds 

  

http://creativecommons.org/licenses/by-nc-nd/4.0


©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 

license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

Introduction 

Dead plant materials are mostly made of lignocellulose, the most common polymer on Earth, which 

relatively few metazoan taxa are able to significantly decompose (Lo et al., 2003). All key taxa 

consuming dead plant tissues, such as ruminants, earthworms and insects, largely rely upon a rich 

microbial consortium, which possess the necessary metabolic pathways for lignocellulose 

decomposition (Watanabe and Tokuda 2010; Brune and Dietrich 2015). Termites process this 

cellulose far more efficiently than other decomposers (Brune 2014) and their dominance in tropical 

ecosystems makes them key players at a global scale (Bignell and Eggleton 2000; Bar-On et al., 2018; 

Griffiths et al., 2019). While early branching termite lineages (“lower” termites) feed exclusively on 

wood or grasses, the “higher” termites (i.e. the crown family Termitidae) consume a variety of plant 

materials irrespective of decomposition status, and a majority of these taxa are soil-feeders (Jouquet et 

al., 2006; Krishna et al., 2013). To digest cellulose, termites rely on their own endogenous cellulases 

(Watanabe et al 1998), in combination with microbial cellulases in their guts. Lower termites depend 

primarily on flagellate protozoa, with some contribution by prokaryotes, while “higher” termites lack 

cellulolytic flagellates completely and depend on bacteria and archaea for cellulose decomposition 

(Brune and Ohkuma 2011; Hongoh 2011; Brune and Deitrich 2015). 

In herbivorous or detritovorous insects, both prokaryotes and fungi are generally thought to 

form core taxa of the gut microbiome, despite the fact that most studies have considered prokaryotes 

only (Gurung et al., 2019; Ravenscraft et al., 2019). Both types of microorganism can act as nutritional 

symbionts assisting with digestion, detoxification and essential nutrients synthesis, or as protective 

symbionts (Dillon and Dillon 2004; Gurung et al., 2019). Other roles, such as the effect on the host 

cells physiology and interactions with other microbes can be expected, as is known in mammals (Lai 

et al., 2018). The core gut mycobiome of wood feeding insects covers a relatively narrow set of 

ubiquitous yeasts and filamentous fungi such as Candida, Mucor, Aspergillus, Penicilium, Alternaria 

or Trichoderma (Pérez et al., 2003; Rojas-Jiménez and Hernández 2015; Ziganshina et al. 2018) and 

the same taxon spectrum is reported not only in other insects (Moraes et al., 2001; Fredensborg et al., 

2020), but also in mammals (Lai et al., 2018). 

Associations between termites and fungi have so far been considered in two categories: firstly, 

interactions that affect the discovery and consumption of food or its nutrient value, but which fall short 

of mutualism; secondly, the cultivation of fungus-combs (Termitomyces spp.) by fungus farming 

Macrotermitinae (Lenz et al., 1991; Rouland-Lefèvre 2000). However, apart from a few studies 

reporting common yeasts and filamentous fungi, found in termite guts (Prillinger et al., 1996; 

Prillinger and König 2006), the fungi associated with termites are yet to be systematically investigated. 

The only studies which have compared the microbiota of termite guts and termite ambient 

environments showed that fungal assemblages of guts differ markedly from nest walls or food nodules 

in litter and humus feeding termites (Menezes et al., 2018; Moreira et al., 2018). Based on the current 

http://creativecommons.org/licenses/by-nc-nd/4.0


©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 

license http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

knowledge of insect microbiomes, we hypothesised that fungi, which are a neglected part of the 

termite gut microbiome, form predictable communities and have stable interactions with their hosts. 

We compared the specificity of body associated fungal communities (i.e. fungi in gut and on 

exoskeleton) in three ecologically similar species, Heterotermes tenuis, Coptotermes testaceus (both 

lower termites, Rhinotermitidae) and Nasutitermes octopilis (higher termites, Termitidae: 

Nasutitermitinae), which can be simultaneously collected from the same large wood item. We 

examined the mycobiomes of whole termite bodies as a proxy for termite gut mycobiomes, which 

enabled us to analyse large sample sizes, necessary for statistical testing. We hypothesized that fungal 

communities are similar in termites with a similar diet, and more alike in the genera Heterotermes and 

Coptotermes compared to Nasutitermes, as Coptotermes is nested within the genus Heterotermes 

(Bourguignon et al., 2016, Buček et al., 2019). We examined fungal communities using high-

throughput sequencing of ITS2 metabarcodes of termite bodies, their food source (narrow termite 

galleries), and intact control wood near to areas where termites were feeding. The patterns described 

below are based on repeated samples from the same log, usually of multiple species from the same 

trunk, which allowed us to test for termite species and colony-level specificity of the associations. 

 

Material and Methods 

 

Study site and sampling  

The samples were collected in November 2014 in Nouragues Nature reserve (French Guiana; N 

04°05’, W 52°41’). Large wood items were inspected for the presence of two “lower” termite species, 

Coptotermes testaceus (Rhinotermitidae) with a preference to sound white wood, Heterotermes tenuis 

(Rhinotermitidae) preferring red-rot wood, and one “higher” termite species, Nasutitermes octopilis, 

(Termitidae: Nasutitermitinae) having no clear specialisation to the wood-decomposition degree. 

A single sample set comprised of three samples: (1) 10 workers from a single foraging party, 

(2) their feeding substrate (approx. 1 cm3 piece of wood containing gallery) and (3) the control sample 

(approx. 1 cm3 of wood roughly 10 cm away from the closest termite gallery) (Fig. 1). Two or three 

sample sets, collected 1 m away from each other, were taken from the single wood log. Visually 

healthy workers were collected and narrow termite galleries with minimal amounts of frass were 

selected. Samples were firstly stored in RNAlater® solution at -20 °C within 12 h following 

collection, and shipped to Prague where they were stored at -80 °C until DNA extraction. In total, 82 

samples sets (Coptotermes: n = 28, Heterotermes: n = 31, Nasutitermes: n = 23) originated from 23 

trunks were studied. Storage in RNA later ® solution caused hardening of termite bodies preventing 

gut dissection. Thus, as extraction of the intact intestine was impossible, we used whole termite bodies 

as a proxy for the study of intestinal microbiota.                                                                                                                                                                                                                                                               
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DNA extraction and PCR amplification 

Total DNA was extracted using Macherey-Nagel NucleoSpin® Soil kit with following modifications. 

Each termite sample was homogenized together in 500 μL of SL1 Lysis buffer, 100 μL of SX 

enhancer buffer and two sterilized steel beads (3 mm diameter) using a Mixer Mill MM 400 for 2 min, 

set on 30 Hz. Sample lysis by using a vortex was shortened to 2 min. The wood samples were 

mechanically crushed to small pieces, placed in a 2 mL tube with a five steel beads, frozen in liquid 

nitrogen for 1 min and grinded in Mixer mill Retsch MM 400 for 10 min at 30 Hz. 550 μL SL2 of 

extraction buffer was added to homogenized material and the grinding was repeated once more. 

Sample lysis was extended to 10 min. 

PCR amplification of the fungal ITS2 region from DNA was performed using gITS7 (50-

GTGARTCATCGARTCTTTG-30) and ITS4 (50-TCCTCCGCTTATTGATATGC-30) (Ihrmark et 

al., 2012; Tedersoo et al., 2015), each of them was barcoded in three PCR reactions per sample. The 

PCR reactions contained 2.5 μL of 10× buffer for DyNAzyme II DNA Polymerase, 0.75 μL of bovine 

serum albumin (20 mg/mL), 1 μL of each primer (0.01 mM), 0.5 μL of PCR Nucleotide Mix (10 mM 

each), 0.75 μL of polymerase (2 U/μL DyNAzyme II DNA polymerase), and 1 μL of template DNA. 

PCR was performed by using an Eppendorf Mastercycler® (Eppendorf AG, Hamburg, 

Germany) nexus cycler. The PCR cycling parameters were 94 °C – 5 min (1 cycle), 94 °C – 45 sec, 56 

°C – 35 sec, 72 °C – 30 sec (40 cycles), final extension at 72 °C – 10 min. PCR triplicates were 

combined and purified using MinElute PCR Purification Kit (QiagenGmbH, Hilden, Germany) 

according to provided manual and eluted in 20 μL. Paired-ends amplicon reads were sequenced on 

Illumina MiSeq sequencer (Illumina Inc., USA) using V2 chemistry producing 2 × 250 bp output. 

 

Data processing 

Raw fungal ITS paired-end sequences were joined using fastq-join software (Aronesty 2011) and 

demultiplexed, filtered and trimmed using the pipeline SEED 2 (version 2.1.05) (Vetrovsky et al., 

2018). Low-quality sequences (mean Phred quality score < 30) and all sequences with mismatches in 

barcodes were removed from the dataset. After the quality filtering, all fungal sequences were 

extracted from the joined sequences using ITSx (v 1.0.11) (Bengtsson-Palme et al., 2013) to acquire 

complete ITS2 region. All ITS2 sequences shorter than 40 bp were discarded, yielding a dataset of 

3 967 992 fungal ITS2 sequences (length distribution 40-395 bp, avg. 175 bp). The dataset was 

clustered into operational taxonomic units (OTUs) using UPARSE implementation in USEARCH 

version 8.1.1861 (Edgar 2013) with 97% similarity threshold (109 476 fungal chimeric sequences 

were excluded during this step). A total of 10 742 fungal OTUs (without singletons) were obtained 

during the clustering step. To reduce the influence of contaminations and minimize the effects of 

barcode hopping all OTUs with up to 4 reads were discarded, what resulted in 2857 OTUs used for 

further analysis. 
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The most abundant sequence from each cluster was used as a representative sequence for 

taxonomic classification. Fungal sequences were classified based on BLAST best hit against UNITE 

database, version 7.2 (Koljalg et al., 2013). The functional guild of each fungal OTU was assigned 

based on the FUNGuild database (Nguyen et al., 2016). For alpha diversity estimation, all fungal 

samples were resampled to 909 sequences. Diversity indices were estimated using SEED 2 version 

2.1.05. The abundances of sequence reads were plotted on the phylogenetic tree constructed using 

NCBI molecular data via phyloT (Letunic 2015) and the iTol visualisation tool (Letunic and Bork 

2019). Data were deposited in the MG-RAST database under accession number mgp91984 and in 

NCBI Sequence Read Archive (SRA) under BioProject accession number PRJNA639228. Processes 

data (extracted ITS2 reads) were deposited in the GlobalFungi Database (https://globalfungi.com, 

Větrovský et al. 2020). 

 

Statistical analysis 

To test the null hypothesis of no difference between termite body, gallery and wood (control) fungal 

community composition, PERMANOVA analysis (Anderson 2001) was performed with adonis() 

function of vegan package (Oksanen et al., 2018) in R (R Core Team, 2018). Euclidean distance on 

Hellinger-transformed fungal composition (i.e. Hellinger distance matrix) (Legendre and Gallagher 

2001) was used as response matrix, and sample type (body, gallery or wood) was used as fixed 

explanatory variable. Since observations were paired within triplets (the three sample types were 

sampled in each triplet), which, in turn, were nested in logs, the permutations were constrained to 

occur within triplets, using the variable triplet as blocking factor (or strata). To visualize the results, 

non-metric multidimensional scaling (NMDS) was performed in two different ways. In the first way, 

raw community data was ordinated by their fungal composition. This NMDS plot shows all the 

variability in the dataset. In the second way, community data was first regressed against triplet and log 

effects (i.e. the effect of spatial variability due to the experimental design was removed from the data) 

and, then, the residualized distance matrix was ordinated using NMDS as suggested by Anderson et al. 

(2017). This plot shows the variability in the dataset, once the effect of triplet and log has been taken 

into account. 

To test the null hypothesis of no effect of sample type and termite species on fungal diversity 

(measured with Chao 1 index, Shannon-Wiener diversity index, and Pielou's evenness), linear mixed 

effect models were fitted using the function lme() from the R package nlme (Pinheiro et al., 2018). The 

interaction between termite species and sample type was fitted as the fixed part of the model, and, a 

random structure of the form ~1|triplet/log was included in each model to account for the fact that 

measurements were grouped in triplets, which, in turn, were nested in logs. Tukey post-hoc tests were 

performed using the function lsmeans() of the R package lsmeans (Lenth 2016). 
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To identify the fungal OTUs contributing to the separation between termite bodies, galleries 

and wood, partial redundancy analysis (partial RDA) was used (Legendre and Legendre 2012) for each 

termite species separately. Separating the communities by termite species allowed checking whether 

similar OTUs contribute to the separation between sample types in the three termite species. In each 

RDA, Hellinger-transformed fungal OTU composition was used as response matrix, sample type was 

used as fixed explanatory factor, and the analysis was conditioned with the effect of the log and triplet. 

1% of the OTUs with highest loadings to the ordination axes RDA1 and RDA2 in the three partial 

RDAs were depicted in triplots (Legendre and Legendre 2012). 

Lastly, to test and quantify the effect of termite species and log identity on fungal mycobiome 

composition, variation partitioning was performed based on RDA (Legendre and Legendre 2012). 

Variation in Hellinger-transformed fungal OTU composition of termite bodies and galleries was 

partitioned in the effect of termite species and log identity. Since the number of body and gallery 

samples per species was not equal, Coptotermes and Heterotermes were randomly subsampled to 

balance the design, which makes the hypothesis testing more robust to the presence of heterogeneous 

group dispersions (Anderson and Walsh 2013). The partial effect of each fraction (i.e. the effect of a 

fraction –e.g. species– once the effect of the other fraction –e.g. log identity– has been taken into 

account) was tested using a permutation test in partial RDA results. 

 

Results 

Fungal diversity 

The diversity of fungal OTUs was significantly higher in termite bodies of all three species than in 

their galleries and intact wood, and was also significantly different between termite species. The 

estimated number of OTUs (Chao-1 estimate) in termite body samples, counted from the resampled 

dataset, ranged from 26 to 221 with an average 92-101 per species. Estimated OTU numbers and 

diversity indices were at least two times lower in termite galleries and in control wood. The fungal 

communities from termite bodies were significantly more even than termite galleries and control wood 

samples (Fig. 2).  

 

Fungal community composition 

The wood control and galleries were dominated by Basidiomycota followed by Ascomycota while 

there was an obvious shift to the dominance of Ascomycota over Basidiomycota in the termite bodies, 

with the addition of Mucoromycotina and Chytridiomycota members (Fig. 3A). A significant diversity 

of fungal taxa unidentified at the phylum level was recovered for all three treatments. At the finer 

taxonomic scale, 25 fungal orders were most abundant (Fig. 3B, 4). Among the most abundant orders, 

Mucoromycotina GS23 (artificial group, see Figure 3 for definition), Eurotiales, Hypocreales, 

Ophiostomatales and Saccharomycetales were typically associated with termite bodies, whereas 
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Chaetosphaeriales, Auriculariales and partially also Corticiales were associated with wood and 

galleries. Wood was also marked by the high abundance of Polyporales (Fig. 3, 4, Supplementary 

Table 1). Finally, the members of the order Hymenochaetales were abundant in all variants. The 

majority of the fungal taxa identified to the ecological guild were predicted to be saprotrophs, 

combination of mixed trophic modes (mostly saprotrophs and pathotrophs) and pathotrophs. 

Saprotrophs and pathotrophs were more abundant in termite bodies (frequency of reads in saprotrophs 

- 39-23%; pathotrophs - 5-11 %) than in galleries and wood (22-11%; 0.1 -3%). Those taxa belonged 

mostly to plant pathogens, with the small fraction of insect pathogenic fungi (0.05-0.25%) dominated 

by Metarhizium spp. and Lecanicillium spp. (Supplementary table 2). 

Multivariate analysis of the raw OTU dataset did not clearly separate samples by their types, 

but showed that the intestinal mycobiota of all three termite species is rather homogenous and similar, 

in comparison to the very heterogeneous communities colonizing their galleries and wood controls (k 

= 3 dimensions, final stress = 0.24, Fig. 5A). By contrast, once the spatial variability due to the 

experimental design (i.e. the effect of log and triplet identity) is removed (k = 3 dimensions, final 

stress = 0.25, Fig. 5B), body samples clearly separate from galleries and controls. The NMDS revealed 

a high stress value indicating that 2D graphical representation only roughly corresponds with the 

underlying data. However, the observed patterns were confirmed by the PERMANOVA analysis 

which showed that fungal communities from termite bodies were significantly different from galleries 

and controls (permutations = 999, P-value = 0.001). 

Constrained RDA analysis with the removed effect of the sampling design revealed a clear 

separation of samples based on their type in all three termite species. The first axis of RDA (RDA1) 

separates termite bodies from galleries and controls, whereas the second axis (RDA2) separates 

galleries from controls (Fig. 6). As opposed to the unconstrained ordination (NMDS, Fig. 5), the 

constrained ordination (Fig. 6) distinguishes between the fungal compositions of galleries and 

controls. OTU 12, 20 and 34 are consistently positively associated with termite bodies in all three 

species. A further 13 OTUs are associated with two termite species (Table 1). The fungal genera 

linked with termite bodies (i.e. with high negative RDA1 axis loadings, Fig. 6), in all three termite 

species includes a narrow spectrum of filamentous ascomycetes (Trichoderma, Penicillium, 

Scytalidium, Hawksworthiomyces, Lasiodiplodia), a few basidiomycete genera (Malassezia, Phlebia, 

Hyphodontia, Corticium, Wrightoporia etc.), a single but abundant taxon from Mucoromycotina and a 

chytrid species from the genus Spizellomyces specifically associated with Coptotermes and 

Heterotermes (Table 1, Supplementary Table 3). Fungal genera linked with galleries include mostly 

wood saprobes from Basidiomycota (Resinicium, Hyphodontia, and unidentified genera), the very 

abundant genus Chaetosphaeria, and other wood inhabiting ascomycetes (Pseudolachnella, Orbilia, 

Calonectria, etc.). Genera linked with wood were Auricularia, Porotheleum and numerous, mostly 

unidentified, genera of Polyporales, Auriculariales and Agaricomycetes but also various wood roting 
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ascomycota (Hypoxylon, Kretzschmaria, Camarops, Cordana, Chaetosphaeria) (Fig. 6, 

Supplementary table 3). 

The fungal community composition of termite bodies and galleries was significantly affected 

by both termite species and log identity. Total explained variation in gallery mycobiomes (0.118) was 

more than the half (0.261) of the explained variation in body mycobiomes. Accordingly, the variations 

explained by only termite species, only log and the shared fraction (i.e. the fraction that cannot be 

clearly attributed to either species or log) were more than double in termite bodies compared with 

galleries (Fig. 7). 

 

Discussion 

Termite associated mycobiome 

Fungal communities of galleries and intact overlapped and differed from termite communities, which 

also overlapped with each other (Figs 3-6). The termite mycobiota is likely to be a mix of fungi 

present on insect cuticular tissues (mostly from the mouthparts and pathogenic fungi present on the 

body surface), fungi present in the gut, and possibly fungi present internally in other organs or in the 

haemolymph. In our study, the fraction of insect pathogenic fungi was higher in termites than in their 

galleries, but their overall abundance was very low and did not contribute to the separation of the 

studied sample types (Table 1, Supplementary Table 2). Intestinal fungi appear to dominate the termite 

mycobiome. Whether fungi occur in other internal organs (i.e. haemolymph, gonad rudiments) is 

unclear. The presence of fungi on termite exterior cuticles could potentially reduce the differences 

between the termite and gallery communities, due to the fact that termites are in close contact with 

their galleries. Despite this limitation, we found statistically significant differences between both 

communities. 

In our study, representatives of the Saccharomycetales, Malasseziales, Eurotiales, Hypocreales 

and Mucoromycota common in whole termites, and much less frequent in galleries and wood (Fig. 3, 

Supplementary Table 1), can be considered as typical members of termite mycobiome. Two previous 

studies quantified termite associated fungi using ITS metabarcoding. They found Eurotiales, 

Trichosphaeriales and Pleosporales (Menezes et al. 2018) together with Hypocreales (Moreira et al. 

2018) are associated with guts and much less abundant in surrounding environments. This is in line 

with our results, including the presence of Trichosphaeriales and Pleosporales, which were rare in our 

study, but typically present in termite bodies (Fig. 3, Supplementary Table 1).  

Yeasts, i.e. species from Saccharomycetales, Malasseziales and Trichosporonales, are the best 

studied fungi in “lower” termites (Prillinger et al., 1996; Prillinger and König 2006) and the insect gut 

in general (Blackwell 2017; Stefanini 2018). Genera frequently found in our study, Candida, 

Debaryomyces, Pichia, Cryptococcus, and Trichosporon, are known as typical termite gut inhabitants 

(Prillinger et al., 1996; Prillinger and König 2006). At the species level (i.e. OTUs with ≥99 % 
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similarity) we identified several taxa already known as intestinal symbionts of various insects (e.g. 

Candida haemulonis, C. parapsilosis (Suh et al., 2007; Bozic et al., 2017), C. elateridarum (Suh and 

Blackwell 2004), Malassezia restricta (Zhang et al., 2003), Metschnikowia pulcherrima (Woolfolk 

and Inglis2004) and Trichosporon insectorum (Fuentefria et al., 2008) (Supplementary Table 1). 

Surprisingly, yeasts (with the exception of Malassezia) did not contribute to the statistical separation 

of gut and gallery associated fungal communities, when the effect of sampling design was removed 

(Fig. 6). This was partially due to the high inter-sample variability of yeast communities, but also 

because of their consistent occurrence (although in very low abundances) in the galleries. 

The statistical separation of the whole termite mycobiota in our study was mostly due to the 

differences among representatives of ubiquitous genera of plant endophytes and saprobes including 

Mucoromycotina spp., Trichoderma, Hawksworthiomyces and Penicillium (Table 1). Data on termite 

gut associated filamentous fungi are scarce (for review see König et al., 2006; Prillinger and König 

2006). The genera Trichoderma, Penicillium, Aspergillus and Alternaria (Hendee 1935; Rajagopal et 

al., 1979, 1981; Varna et al., 1994; Jayasimha and Henderson 2007), together with numerous 

Mucoromycotina spp. (Zoberi et al. 1990), were already reported from termite guts, which corresponds 

to our results (Table 1). Interestingly, a similar spectrum of genera (i.e. Penicillium, Trichoderma, 

Fusarium, Cladosporium, Aspergillus, Rhizopus, and Mucor) is also present in the guts of other plant 

biomass feeders such as isopods (Kayang et al., 1996), Tenebrio molitor (Fredensborg et al., 2020), 

wood feeding beetles (Rojas-Jiménez and Hernández 2015; Mohammed et al., 2018; Ziganshina et al., 

2018), cockroaches (Salehzadeh et al., 2007), bark beetles (Perez et al., 2003) and grasshoppers 

(Idowu et al., 2009). It is also worth mentioning the abundant presence of Spizellomyces sp., identified 

in more than 50% of C. testaceus and H. tenuis samples, but absent in N. octopilis. Spizellomyces is a 

genus of zoosporic fungi living in soil, or as plant pollen, or fungal parasites (Wakefield et al., 2010), 

and its association with termites calls for further studies. 

Although previous works studied the presence of various fungi in termites (Prillinger et al., 

1996; König et al., 2006; Jayasimha and Henderson 2007; Santana et al. 2015; Menezes et al. 2018; 

Moreira et al. 2018), our study is the first large and systematic comparison targeting the fungal 

communities using a statistically robust dataset of termites, their environments, and their feeding 

substrates. In agreement with previous studies (König et al., 2006; Prillinger and König 2006), our 

results indicate that the termite intestine is inhabited by ubiquitous environmental fungi. We showed 

that the termite associated community is distinct and relatively homogenous and stable over diverse 

environments and termite species, compared with termite galleries and control wood. In addition, 

termite galleries represent a specific habitat which significantly differs from wood in fungal 

community composition. This is similar to results found in studies of humus and litter feeding 

termites, where intestinal fungal communities differed substantially from communities of feeding 
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nodules and/or nest walls (Menezes et al. 2018, Moreira et al. 2018) suggesting that termites possessed 

a host-defined intestinal mycobiome. 

Strong environmental filtering appears to allow a relatively small number of fungi to grow 

freely and persist inside termites, across different species, after being taken up from the environment 

(soil galleries used for foraging, or the wood upon which termites feed). Vertical transmission of fungi 

by termites may also occur, although our results do not provide a clear answer on this. Both modes of 

symbiont acquisition, or their combination, can result in the observed stability of the intestinal 

communities across various collection dates, termite populations and species. In addition, the galleries 

themselves host specific fungal communities, which are more similar to intact wood and less affected 

by the termite species that form the galleries (Fig. 6, 7).  

Interestingly, the effect of termite species on fungal community composition in whole termites 

was very low (Fig. 7), which shows that different termites shape their fungal communities in a similar 

way. This is in contrast to patterns found in bacteria (Colman et al., 2012; Bourguignon et al., 2018; 

Chouvenc et al., 2018; Menezes et al., 2018; Moreira et al., 2018), which are more host specific. This 

is partly explained by the fact that many termite-associated bacteria are highly co-evolved vertically 

transmitted obligate symbionts (of termites or associated protists), whereas most identified fungi are 

presumably facultative associates, frequently existing as environmental fungi. Higher OTU diversity 

in whole termites in comparison to galleries and control wood is another feature constantly shared 

among different termite species (Fig. 2). This pattern is expected if we consider that the intestine itself 

is highly compartmentalised, which results in an increase in microbial diversity (Mikaelyan et al., 

2017).  

The core mycobiome of the termite gut is composed of plant biomass decomposers (see 

below), which are stress tolerant, fast growing and sporulating. It is likely that they are pre-disposed to 

live in the environment of the termite gut, which is characterized by harsh microaerobic conditions, 

steep gradients of oxygen and hydrogen, and activity of strong hydrolytic enzymes (König et al., 

2006). Furthermore, it is possible that such features allow these fungi to live not only in termites, but 

also in taxonomically distant insect plant biomass feeders. The apparent stability of the fungal 

community between different termites could be considered evidence for symbiosis. Although it 

appears likely that the fungi we identified are able to live and grow in the termite gut, it is also 

possible that the origin of some strains is from the digested material, but were nevertheless picked up 

using our methods.  

 

Ecological role of gut associated fungi 

Both the presence and the ecological role of fungi in the termite gut have been poorly studied so far. 

However, fungi have generally not been considered as an important part of the termite holobiont 

(Slaytor 1992; Brune and Dietrich 2015; Peterson and Scharf 2016) and their presence is usually 
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ignored. It has been shown that the intestinal fungi were not essential for Nasutitermes exitiosus 

survival in the lab experiments (Eutick et al., 1978), but similar studies in other termite species are 

needed to confirm their facultative status. More insight into their ecological functions has been 

provided with the transcriptome data. The fungal contigs from nymphoid neotenic (i.e. the 

developmental stage fed mostly by proteinaceous labial gland secretions) intestinomes in 

Reticulitermes spp. represent 10.2% of the fraction of non-termite origin (Dedeine et al., 2015). 

Another study showed that 18% of all carbohydrate-active enzymes in Coptotermes formosanus 

transcriptomes were of fungal origin, similar to bacteria (24%) but not to protists (6% only) (Zhang et 

al., 2012). In Reticulitermes flavipes symbiont libraries (gut content only), fungi represent 7% of the 

non-animal fraction of the reads (protists 71%, prokaryotes 21%) (Tartar et al., 2009). Little is known 

concerning fungal gut biomass. In the termites Zootermopsis angusticollis and Neotermes castaneus,  

107-108 yeast cells per millilitre of gut content were found, which is comparable to the number of 

flagellates, and similar, or two orders of magnitude lower, than the numbers found in bacteria (König 

et al., 2006, Prillinger and König 2006). This suggests that fungi may actively proliferate in termite 

guts and they might be an important part of the lignocellulolytic machinery as proposed by Zhang et 

al. (2012). 

Ecologically, yeast are typical inhabitants of the insect gut, including termites (Blackwell 

2017; Stefanini 2018), and they can extracellularly decompose cellulose, hemicellulose and xylans, 

thus contributing to wood digestion (Prillinger and König 2006; Schäfer et al., 1996). Interestingly, the 

dominant fungal strains identified in our study, especially Trichoderma and Penicillium, are well 

known for their ability to degrade cellulose, hemicellulose, and lignin, and are often used in 

biotechnology (de França Passos et al., 2018). Significant lignocellulosic activities have also been 

reported in Phlebia, Hyphodontia, Scytalidium (Eriksson et al., 2012), Hawksworthiomyces (De Beer 

et al., 2016) and Lasiodiplodia (Félix et al., 2018). Such strong enzymatic activities were shown in 

vitro directly in the strains from termites (Tarayre et al., 2015). This information, together with 

published transcriptomic data, reinforce the idea that, in termites, fungi may contribute to the 

degradation of lignocellulose and hemicellulose (Tartar et al., 2009). In addition, detoxification ability, 

which is well known in fungi, was also found in the yeasts from termites (Molnar et al., 2004) and 

therefore toxin degradation could be another important role of the intestinal fungal symbionts. 

However, further characterisation of the real contribution of fungi to food-processing in termites still 

remains to be undertaken. 
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Fig. 1. Sampling scheme. Termites were collected in foraging galleries, and workers and soldiers were 

used for voucher sample in 80% ethanol (_A), while 10 workers for RNAlater sample (_R). Samples 

of foraging galleries (_WF) and control wood (_WC; roughly 10 cm from the closest termite gallery) 

were also stored in RNAlater. Up to three sample sets were collected from the same log, with a 

distance at least one meter from each other. If more than a single focal termite (T1 and T2) was found 

in the same log, both were treated independently. 
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Fig. 2. Alpha diversity indices; Chao-1 index (A), Shannon-Wiener index (B) and evenness (C) 

calculated from the fungal OTUs found in termite bodies, their galleries and insect-free wood controls. 

Data from Coptotermes testaceus, Heterotermes tenuis, Nasutitermes octopilis are shown. Groups 

sharing a letter are not significantly different (Tukey HSD post-hoc tests, p < 0.05). 
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Fig. 3. Relative abundance of sequence reads classified at the phylum (A) and order (B) level. Only 

the orders with higher relative abundance (≥ 1% of reads in at least one sample type) are shown in Fig. 

3B. Data from the wood control (W0), bodies (T) and galleries (W) of the termites Coptotermes 

testaceus (C), Heterotermes tenuis (H), and Nasutitermes octopilis (N) are shown. Artificial order 

Mucoromycotina GS23 was created for OTU285 (see Table 1) and OTUs with 95% similarity.   
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Fig. 4. Relative abundance of sequence reads classified at the order level. Data from the wood control 

(W0), bodies (T) and galleries (W) of the termites Coptotermes testaceus (C), Heterotermes tenuis 

(H), and Nasutitermes octopilis (N) are shown. The number of OTUs for each order are given in the 

parentheses. Abundant orders, which reached at least 1 % abundance in one fungal community were 

selected for presentation. 
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Fig. 5. Non-metric multidimensional scaling (NMDS) ordination of the sampling units by their fungal 

OTU (≥97% identity) composition based on ITS2 rRNA gene metabarcoding. A) Ordination of raw 

fungal OTU composition (k = 3 dimensions, final stress = 0.24); B) ordination of residualized fungal 

OTU composition (i.e. the effect of log and triplet identity removed; k = 3 dimensions, final stress = 

0.25). Sample type significantly affects fungal community composition (PERMANOVA: permutations 

= 999, P-value = 0.001, R2 = 0.044). 
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Fig. 6. Partial RDA triplots showing the partial effect (i.e. once the effect of log and triplet identity has 

been taken into account) of sample type on fungal OTU composition for A) Coptotermes, B) 

Heterotermes and C) Nasutitermes. Sample type significantly affects fungal community for 

Coptotermes (Permutation test of RDA: permutations = 999, P-value = 0.001), Heterotermes 

(permutations = 999, P-value = 0.001) and Nasutitermes (permutations = 999, P-value = 0.001). One 

percent of OTUs (labelled as X14 etc.) with the highest fit to RDA1 or RDA2 are depicted (see Table 

1 for further details). 
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Fig. 7. Venn diagram of RDA variation partitioning of fungal OTU composition in A) whole termites 

and B) termite galleries. Numbers are adjusted R2 values. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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Table 1. Fungal OTUs specifically associated with termite bodies. First 30 OTUs with the highest fit to RDA1 axis (see Fig. 6) are presented for each termite species. 

Taxonomic identity of OTUs is based on the Blast similarity search against NCBI Genbank and Unite database. Abbreviations: A – Ascomycota, B – Basidiomycota, C – 

Chytridiomycota, M – Mucoromycotina.  

1 – 98% sequence similarity with the type of Spizellomyces punctatus NR_111189 

2 – no reliable ITS2 sequence similarity to named taxa. The best hits (≤90%) are various Mucoromycotina spp. (e.g. HQ406814, LC189046) 

 

Coptotermes testaceus Heterotermes tenuis Nasutitermes octopilis 

OTU 

# 

RDA axis loadings Best Hit description 
OT

U # 

RDA axis loadings Best Hit description 
OTU 

# 

RDA axis loadings Best Hit description 

RDA1 RDA2 
Similarity / Coverage 

[%] 
Taxon RDA1 RDA2 

Similarity / Coverage 

[%] 
Taxon RDA1 RDA2 

Similarity / 

Coverage [%] 
Taxon 

14 -1.05 0.14 94.8/100 (KJ654590) Phlebia sp. (B) 34 -1.02 -0.01  unidentified 4 -1.20 0.14 
88.1/93.5 

(HM162185) 
Podospora sp. (A) 

15 -0.95 0.12  unidentified 15 -0.60 -0.01  unidentified 104 -0.98 0.08 
87.1/100 

(AB846969) 
GS23 sp. (M)2 

82 -0.58 0.02 99.5/98.5 (HM771021) Hawksworthiomyces sp. (A) 20 -0.58 0.06 91.2/89.5 (AY762623) 
Scytalidium 

lignicola (A) 
12 -0.96 0.01 

100/100 

(GU945354) 

Lasiodiplodia citricola 

(A) 

31 -0.54 0.09 100/100 (AY857228) Trichoderma harzianum (A) 11 -0.57 -0.01 90.4/96.7 (KU214528) 
Arthrographis sp. 

(A) 
413 -0.56 0.17 

97/100 

(GU054100) 

Wrightoporia tropicalis 

(B) 

210 -0.47 0.08 98.3/100 (AY997092) Spizellomyces punctatus (C)1 41 -0.54 0.04 90.4/76 (UDB014156) 
Auriculariales sp. 

(B) 
258 -0.48 0.12  unidentified 

23 -0.45 0.06  unidentified 68 -0.53 -0.39  unidentified 11 -0.44 0.04 
90.4/96.7 

(KU214528) 
Arthrographis sp. (A) 

24 -0.44 0.06 91.3/44 (UDB028178) Hyphodontia pilaecystidiata (B) 207 -0.50 0.07 99.6/100 (AY743636) 
Malassezia 

restricta (B) 
20 -0.37 0.02 

91.2/89.5 

(AY762623) 
Scytalidium lignicola (A) 

203 -0.40 0.08 100/100 (AY154939) Trichoderma spirale (A) 286 -0.48 0.01 92/98 (GQ272617) 

Scytalidium 

ganodermophthor

um (A) 

171 -0.31 -0.02 
100/100 

(EU401550) 

Trichoderma orientale 

(A) 

20 -0.35 -0.05 91.2/89.5 (AY762623) Scytalidium lignicola (A) 24 -0.48 0.00 91.3/44 (UDB028178) 
Hyphodontia 

pilaecystidiata (B) 
885 -0.30 0.04 

84.4/100 

(AB846969) 
GS23 sp. (M)2 

285 -0.35 0.05 92.9/93.8 (AB846959) GS23 sp. (M)2 214 -0.48 -0.03 87.8/100 (AB846969) GS23 sp. (M)2 183 -0.30 -0.01 
90.5/81 

(AB846975) 
GS23 sp. (M)2 

286 -0.34 0.04 92/98 (GQ272617) 
Scytalidium ganodermophthorum 

(A) 
31 -0.45 -0.03 100/100 (AY857228) 

Trichoderma 

harzianum (A) 
121 -0.27 0.17  unidentified 

22 -0.32 -0.17 87.6/72.9 (FJ231021) Penicillium curticaule (A) 210 -0.44 0.12 98.3/100 (AY997092) 
Spizellomyces 

punctatus (C)1 
179 -0.27 0.04 

94.8/100 

(KT951335) 

Agaricus 

candidolutescens (B) 

197 -0.32 0.05 99.4/100 (KJ174211) Trichoderma koningiopsis (A) 149 -0.42 -0.01 89.8/90.3 (AB846969) GS23 sp. (M)2 256 -0.26 0.02 
86.3/56.7 

(KM103946) 
Fungi sp. (unidentified) 

41 -0.32 0.12 90.4/76 (UDB014156) Auriculariales sp. (B) 145 -0.34 -0.03  unidentified 118 -0.26 -0.01 
88.3/95.7 

(UDB013022) 
Sordariales sp. (A) 

12 -0.32 0.06 100/100 (GU945354) Lasiodiplodia citricola (A) 22 -0.32 0.03 87.6/72.9 (FJ231021) 
Penicillium 

curticaule (A) 
59 -0.25 0.04  unidentified 

154 -0.31 0.02 90.7/100 (GQ272617) 
Scytalidium ganodermophthorum 

(A) 
629 -0.31 0.00 98.6/100 (KU164491) 

Malassezia 

restricta (B) 
156 -0.24 -0.07 

100/19.5 

(GQ280589) 

Calonectria leguminum 

(A) 

38 -0.30 0.13  unidentified 85 -0.30 -0.07 100/100 (HM770996) Helotiales sp. (A) 1923 -0.24 -0.05 
100/98.8 

(EU280098) 

Trichoderma citrinoviride 

(A) 

28 -0.30 -0.02 86.9/100 (JX857794) Corticium sp. (B) 203 -0.29 0.06 100/100 (AY154939) 
Trichoderma 

spirale (A) 
6 -0.24 0.01 

86/47.6 

(DQ826552) 
Resinicium monticola (B) 

34 -0.30 0.04  unidentified 248 -0.28 0.04 100/100 (GU237707) 
Boeremia exigua 

(A) 
32 -0.24 -0.01  unidentified 
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158 -0.28 0.00 89.2/97.4 (GQ272617) 
Scytalidium ganodermophthorum 

(A) 
202 -0.27 0.00  unidentified 229 -0.23 0.03 

99.6/100 

(UDB014090) 
Trechisporales sp. (B) 

257 -0.27 -0.02 88.6/100 (KU295549) GS23 sp. (M)2 257 -0.26 -0.02 88.6/100 (KU295549) GS23 sp. (M)2 34 -0.22 0.02  unidentified 

152 -0.26 0.03  unidentified 259 -0.26 0.00 100/98.1 (JN626104) 
Penicillium 

mallochii (A) 
25 -0.22 -0.04 

85.6/96.1 

(HF677173) 
Cordana terrestris (A) 

94 -0.26 -0.22  unidentified 302 -0.26 -0.01 99.5/100 (KF472157) 
Verticillium 

leptobactrum (A) 
172 -0.21 0.03  unidentified 

133 -0.25 0.03 92.9/90.4 (EF127890) Hawksworthiomyces lignivorus (A) 223 -0.25 0.00  unidentified 199 -0.21 0.04 
86/92.6 

(KU975068) 

Pseudoproboscispora sp. 

(A) 

267 -0.25 0.00 94.3/98.1 (AF033470) Penicillium sclerotigenum (A) 946 -0.25 -0.01 93.7/100 (AB846969) GS23 sp. (M)2 82 -0.21 0.07 
99.5/98.5 

(HM771021) 

Hawksworthiomyces sp. 

(A) 

30 -0.24 0.03 90.9/43.4 (JX675137) Gymnoascus sp. (A) 12 -0.25 -0.03 100/100 (GU945354) 
Lasiodiplodia 

citricola (A) 
7 -0.20 -0.74 

99/100 

(KT224922) 
unidentified 

509 -0.24 0.03 99.4/100 (DQ109528) Trichoderma lieckfeldtiae (A) 83 -0.25 -0.01 99.3/100 (GQ272617) 

Scytalidium 

ganodermophthor

um (A) 

88 -0.20 0.39 
100/100 

(HM148090) 

Cladosporium 

exasperatum (A) 

402 -0.23 0.03 91.1/93.2 (AB846969) GS23 sp. (M)2 122 -0.24 -0.06 99.3/100 (AY273308) 
Ascomycota sp. 

(A) 
299 -0.18 0.04 

100/19.4 

(GQ280589) 

Calonectria leguminum 

(A) 

399 -0.22 -0.04 90.8/62.5 (AB846970) GS23 sp. (M)2 14 -0.23 0.00 94.8/100 (KJ654590) Phlebia sp. (B) 425 -0.18 0.04 
86.6/79.2 

(KY687694) 
GS23 sp. (M)2 

207 -0.22 0.05 99.6/100 (AY743636) Malassezia restricta (B) 234 -0.23 0.03 99.3/100 (FR682163) Malassezia sp. (B) 190 -0.18 0.04 
88.7/100 

(JX545187) 
GS23 sp. (M)2 

http://creativecommons.org/licenses/by-nc-nd/4.0

