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Abstract

Algorithmic and Architectural Developments for Cryo-Electron
Tomography

Molecular structure determination is important for understanding functionalities and
dynamics of macromolecules, such as proteins and nucleic acids. Cryo-electron tomog-
raphy (Cryo-ET) is a technique that can be used to determine structures of individual
macromolecules, thus providing snapshots of their native conformations. Such 3D re-
constructions encounter several types of imperfections due to missing, corrupted and
low-contrast data. This thesis focuses on the algorithmic and architectural aspects of
improving and accelerating tomographic reconstructions specifically for Cryo-ET. The
thesis explores modern compressed sensing and graph-based non-local approaches for
noise removal and for partially recovering the missing wedge. These methods act as
a proof-of-concept for the applicability of sparsity exploiting methods to tomographic
image reconstruction. The thesis also explores, analyses and explains an extended field
(EF)-based noise removal method. When used in conjunction with a variety of recon-
struction procedures with a regularization capability it proved to be computationally
efficient, reliable and stable. Through extensive empirical simulations it was shown
that extending the reconstruction space reduces the error at a relatively lower regular-
ization parameter thus allowing a better fit with the projections and preventing over-
smoothing. Computational constraints are a major issue in speeding up tomographic
reconstruction and refinement. One of the fundamental components, which often be-
comes a bottleneck in a variety of analytical tomographic reconstruction methods, is
the 2D fast Fourier transform (FFT). Generally, 2D FFTs suffer from edge artifacts
or series termination errors, which stem from the fact that two opposing edges of an
image are often not periodic. These artifacts can propagate to next stages of process-
ing and appear as errors in reconstructions. This thesis also explores simultaneous 2D
FFTs and edge artifact removal for real-time applications. This was accomplished on a
multi-FPGA (Field Programmable Gate Array) reconfigurable computing system with
a high-speed bus. The algorithmic optimization and architecture are general and can
be replicated to a variety of different hardware setups.
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Summary of Contributions

Cryo-Electron Tomography (Cryo-ET) is a modern structure determination method
that can preserve the conformations of molecules being imaged in their native states.
Reconstructing Cryo-ET data is an ill-posed inverse problem due to missing, noisy and
incomplete data, which leads to non-unique unstable solutions. This thests focuses
on developing and analyzing tomographic image reconstruction algorithms
for denoising Cryo-ET reconstructions as well as developing architectures
that could potentially accelerate reconstruction methods. The reconstruction
and denoising problem is approached purely from an image reconstruction and algo-
rithm development point of view. An analysis of the proposed methods for specific
biological molecules is beyond the scope of this engineering oriented thesis. Architec-
tural developments associated with FPGA-based reconfigurable computing methods
are general and can be adapted to a variety of different applications. The following
original contributions have been made in this thesis:

From an Image Reconstruction Perspective:

e The proposition of graph-based non-local sinogram denoising, its analysis and
effectiveness for enhancing standard tomographic reconstruction methods. This
method exploits the fact that the sinogram has structure since it is composed of
projections from the same sample. Non-local processing methods can be used to
denoise the sinogram based on similar pixels which are spatially far from each
other (Chapter 2).

e The proposition of adaptive graph-based total variation as a compressed sensing-
type sparsity exploiting image reconstruction method which can simultaneously
reconstruct and denoise tomographic data. The study of the ability of the method
to reconstruct from missing and noisy data. A unique aspect of the method is
that it can be seen as a generalization of compressed sensing and total variation-
type methods being extensively used, a fact of significance and interest for the
image reconstruction community (Chapter 3).

e Analysis of an extended field-based reconstruction method that can be used to
denoise reconstruction without direct manipulation of individual voxels or pixels
and is computationally efficient and stable. Major contribution in this area was
to enable the use of extended field with a wide variety of methods and to study
its properties pertaining to the extension size and its ability to reduce the regu-
larization parameter thus preserving the faithfulness of the reconstruction with
the projection data (Chapter 5).
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xiv Summary of Contributions

From a Reconfigurable Computing Perspective:

e Development of an FPGA-based 2D FFT architecture with simultaneous edge
artifact removal for high-performance applications. This was achieved by making
the following contributions:

e Optimizing the existing periodic plus smooth-based edge artifact removal scheme
to reduce the access of DRAM and 1D FFT invocations for an efficient FPGA

implementation.

e Designing a custom memory controller to overcome the ‘memory wall’ issue which
results in reduced memory access speeds while accessing data stored column-wise

in external memory.

A more detailed summary of contributions has been given at the end of Chapter 1.
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Figure 1: A graphical representation of algorithmic and architectural contributions.
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Chapter 1

Introduction

1.1 Chapter Outline

In this chapter we introduce the field of Cryo-Electron Tomography (Cryo-ET) as
a structure determination method and discuss its benefits and limitations. We also
review various analytical and iterative tomographic reconstruction methods as well as
the fundamental mathematical concepts associated with these methods such as Radon
transform and the Fourier slice theorem. All tomographic reconstruction methods have
a high computational cost specifically for large size reconstructions. Analytical methods
can provide a primitive reconstruction which can then be used as a starting point
(prior) for more complex iterative methods and help speed up convergence. Although,
analytical methods such as FBP perform relatively faster than iterative methods, they
become increasingly complex for large image sizes. Reconfigurable computing can be
used as an acceleration platform for speeding-up some of these methods and will also
be reviewed in this chapter. Finally, we present the algorithmic and architectural
contributions of this thesis.

1.2 Macromolecular Structure Determination

Macromolecules such as proteins, amino acids, and nucleic acids are important biolog-
ical molecules, which possess important functional information within their structure.
Structure determination has various applications, specifically for understanding inter-
actions between proteins which is of vital importance for drug development [1]. Most
basic biological questions of significance can be tracked back to the cell. Obtaining
high resolution images of macromolecular complexes and their interactions with the
cell is of immense interest to the biological and medical community. The resolution of
modern light microscopes, that can examine the cell in vivo, is limited by the wave-
length of visible light (400 - 700 nanometers). There are three main physical techniques
for three dimensional (3D) structure determination of biological macromolecules, x-ray
crystallography (XTAL), nuclear magnetic resonance (NMR) and single particle elec-
tron microscopy (SPEM). Despite the fact that x-ray crystallography can achieve high
resolution and is able to determine a vast range of structures from very small to large,
crystallization and averaging are its limiting factors. Approximately only 10% of the
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known proteins can be crystallized, other proteins need to be fragmented before crys-
tallization, making the overall process tedious. NMR on the other hand has a size
limitation, the larger the size of the protein the more difficult it is to apply NMR.
Structures of proteins up to 20-25kDa are easily determined after which it becomes in-
creasingly difficult [2]. That said, NMR is a relatively new technique and its capability
to determine structures of higher sized proteins is continuously increasing.
Cryo-Electron Tomography (Cryo-ET) although having a lower resolution has the
ability to preserve the native structure of the macromolecules due to rapid cooling of
the sample to a lower temperature. Moreover, Cryo-ET requires much lower amount
of sample as compared to the other two techniques. This can be quite beneficial for

eukaryotic proteins as they are difficult to purify in large quantity and are tedious for
XTAL or NMR |[3].

Drawback of Averaging Methods

Proteins are flexible since they do not have a rigid structure. Averaging techniques lose
spatio-temporal information regarding the conformation or flexibility of the protein
structure. During averaging a huge number of similar particles are averaged to form
the final structure. During this process relatively rigid segments become prominent and
significant information about the conformation of the molecule is lost. For example
during x-ray crystallography flexible segments often do not have a well defined electron
density, and thus averaging leads to the loss of information about the flexibility.

Single Particle Cryo-Electron Microscopy (SPEM)

Single particle Cryo-EM technique involves averaging of molecular structures by deter-
mining and superimposing macromolecules in different angular orientations either from
single or multiple micrographs to reconstruct a 3D structure. Translation and in-plane
rotation along with cross-correlation are used for determining similar molecules which
are then separated into classes according to their angular orientations. SPEM requires
less amount of sample and the sample is rapidly frozen at low temperature. One of the
problems with this technique is that it is difficult to classify molecules which have very
little difference or have a very close projection angle, making it difficult to use single
particle technique with molecules smaller than 200kDa because there are issues with
assignment of projection angles. Similar to other averaging method,s single particle
technique also loses information about the flexibility of molecules. Still, single particle
cryo-EM has been used to determine large macromolecular structures like viruses and
the ribosome at high resolution [4].

1.3 Cryo-Electron Tomography (Cryo-ET)

Cryo-electron tomography (Cryo-ET) is the only structure determination method that
can determine 3D structures of individual biological molecules in their native states.
It preserves the occurrence of many different molecular conformations due to rapid
freezing at liquid nitrogen temperature. Since Cryo-ET does not necessarily require
a lot of averaging |5, 6], it can provide vital information for examinations of proteins



1.3 Cryo-Electron Tomography (Cryo-ET) 3

e beam Tilt Series
+70° l l l SRR

Thin Sample

forward -70° Alignment & Extractions
problem
D

etector

inverse
l % problem

v ! ‘.“ ‘
9 AT T AN
A O p,“.;?.s\
§ S K. — - AN
NS . | ’
: v"-. .
J)
3D reconstruction 3D reconstruction,

of individual regularization and
molecules refinement

Figure 1.1: The overall process of cryo-electron tomography from data collection
(forward problem) to reconstruction and refinement (inverse problem).

in situ, interactions among proteins, and analysis of molecular dynamics. Cryo-ET
involves a transmission electron microscope (TEM) to take images of a cryo-specimen at
successive angles by tilting the specimen in the electron microscope. These 2D images,
often referred to as tilt series, are then aligned, and the desired region of reconstruction
is extracted from each image. The 2D aligned extractions are then used to reconstruct a
3D tomogram via filtered back-projection (FBP) or other reconstruction and refinement
methods [7] (Figure 1.1).

Cryo-ET has the same advantages of rapid freezing and low sample requirement as
single particle cryo-EM but it has two additional advantages:

1. It does not necessarily involve averaging which gives us the ability to study flexible
multi-domain proteins [5]. However, subtomogram averaging may be required to
achieve higher resolution structures. During sub-tomogram averaging one may
choose what to average, i.e, averaging of shape classified regions.

2. We do not have to determine and classify a lot of molecules according to their an-
gular orientations, which gives us the ability to study relatively smaller molecules.

The drawbacks of Cryo-ET involve lower resolution compared to other methods.
However, as mentioned using sub-tomogram averaging can lead to high resolution
structures from Cryo-ET [8, 9]. The theoretical resolution is generally limited by the
electron dose from the microscope, the thickness of the specimen (D) and the number
of tilts (n, calculated over 180°) and is given by the Crowther criterion [10],
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r="" (1.1)

n

A lower dose is generally used to prevent degradation of the sample, this results
in a lower contrast electron micrograph so a compromise must be made to obtain an
effective image. For example on a cryo-biological sample which is being imaged by
a 300keV TEM a dose of 406/1&2 is often considered to be optimal. TEM Specimen
thickness is determined by the size of the molecule under study; larger molecules require
thicker specimens and have lower resolution.

1.3.1 Cryo-ET: Methodology

Cryo-ET generally involves the following steps:

1. Sample Preparation and Imaging.
2. Alignment and 3D Reconstruction.

3. Refinement and Noise Removal.

Sample Preparation

Cryo-ET samples are prepared and subsequently flash-frozen at liquid ethane temper-
ature (-180°) at an extremely fast speed (~ 107 sec), which keeps the conformation of
the molecules intact and prevents water molecules from crystallization. The thickness
of the sample is preferred to be as small as possible, although as mentioned earlier it
is limited by the size of the molecule. As we do not need crystals for cryo-specimen
preparation we have relatively more freedom to choose the solution conditions. The
sample is placed in a thin electron microscope (EM) grid and is rapidly submerged into
liquid ethane.

Image Acquisition

After the sample is prepared it is exposed to vacuum and is then bombarded with a
controlled dose of electrons in a transmission electron microscope (TEM). Interpreting
the scattering of electrons forms a 2D image, the TEM has magnetic lenses to magnify
and focus the image on a Charged Coupled Device (CCD) or a modern direct electron
CMOS detector by which it is digitized. The specimen is tilted up to a range of angles
in both directions with a constant step size to obtain multiple 2D projections of the
cryospeimen often referred to as micrographs. Although the tilting process is fine, it
is subject to mechanical errors and the specimen has to be refocused for every tilt.
Simulating the image acquisition is commonly referred to as the forward problem, a
detailed account of this has been presented in [11, 12].

Tilt-Series Alignment

Accurate alignment of the series of 2D images at different tilt angles is very important
for getting a good 3D map. There are two commonly used methods for alignment
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detector rather the sample is rotated. Physical constraints limit the rotation of the
sample to a certain angle.

a) fiducial markers (gold markers) b) sequential cross-correlation. Spherical gold par-
ticles having a diameter of ~10nm can be used as markers which appear in all 2D
images because they are electron dense and create high-contrast circle like features.
After the dataset is recorded the gold-markers can be identified and ’picked’ (local-
ized) either manually or automatically. Once the markers are localized, least squares
tracking of these can be used to determine the relative shift and the rotation of the elec-
tron micrograph. Alternatively, a cross-correlation technique can be used that tracks
similar image features, which are present in all micrographs, and treats them as mark-
ers. Although automated methods based on cross-correlation and tracking features or
patches have been developed such methods are highly sensitive to noise in low-dose
micrographs, so using gold markers has proven to be more accurate [12]. The aligned
images are then used for further processing stages.

Contrast Transfer Function (CTF) Deconvolution

The CTF is simply the Fourier transform of the point spread function. Generally a
radial averaging of the CTF is used for analysis. Micrographs collected from TEMs are a
projection of the specimen’s electrostatic potential, convolved with the with the inverse
Fourier transform of the CTF. The CTF oscillates around zero, this modulates the
amplitude of the signal in Fourier space and also reverses the phase at some frequencies.
This is not a problem if the expected resolution is below the first zero of the CTF.
However, for higher resolution images the CTF must be corrected. Accurate CTF
determination is not trivial since the SNR of the micrographs is quite low. More
details regarding CTF estimation and deconvolution can be found in [12].

Tomographic Reconstruction

Once the collected tilt-series is aligned the 2D projections can be reconstructed to form
a 3D density or tomogram. Fundamental tomographic reconstruction is based on the
Fourier slice theorem also known as the projection slice theorem. However, due to the
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fact that Cryo-ET is a non-trivial reconstruction problem affected by issues discussed in
1.4. A more detailed review of tomographic image reconstructions has been presented
in section 1.5.

1.4 Cryo-ET: Noise, Imperfections and Challenges

Equation 1.1 gives the maximum theoretical resolution possible. However this is never
achievable since 3D reconstruction from TEM images is a severely ill-posed inverse
problem, encountering several challenges that stem from noisy and incomplete data.
The data usually encounters several different types of imperfections, measurement er-
rors and reconstruction challenges [12].

1.

First, to minimize radiation damage, the sample is usually exposed to a low
electron dose, which decreases the signal-to-noise ratio (SNR) of the micro-
graphs. Specimen damage due to electron-specimen interaction is one of the
major problems in Cryo-ET. Details regarding specimen damage due to ioniza-
tion can be found in [13, 14]. The number of electron-specimen interactions need
to be minimized such that the structural integrity of the specimen is preserved
while collecting an entire tilt-series of images from the same specimen. This
problem is addressed by reducing the dose on each individual tilt (projection) or
by collecting less number of projections.

Second, shot noise can occur due to random arrival of electrons at a specific
sensor element. Shot noise is Poisson-distributed and can be reduced using pro-
cedures of regularized refinement [15].

. Third, 2D tilt images are usually collected at small angular differences. Ideally,

tilts should be recorded to cover the entire 180° range of angles. However, due
to the increased sample thickness at higher angles and the small space within
the pole piece gap of the TEM objective lenses where the specimen is placed,
the tilt angle is limited to +70°. This leads to missing data commonly known as
the missing wedge [16|. This turns the reconstruction inverse problem to be
unstable without a unique solution rendering it ill-posed. The affect of having a
missing wedge is shown in Fig. 1.7.

. Fourth, specimen moise occurs due to rearrangement of the specimen during

data recording. Although, the tilting process in modern microscopes is quite fine
there can be mechanical errors.

. Fifth, during data acquisition, the specimen is tilted, and at every tilt angle 6, its

effective thickness increases according to 1/cos@ [17]. This increased thickness
causes more inelastic scattering, which contributes to low contrast in the image.

Sixth, correlated noise can appear due to imperfections of the TEM detector.
Normally, a gain reference is created to equalize the response from individual
detector elements. However, errors in the gain reference give rise to noise that
can be correlated with a region of the detector rather than with the specimen.



1.5 Tomographic Image Reconstruction 7

All these sources of imperfections, noise and missing data render the inverse prob-
lem severely ill-posed since the solution can not be unique and is unstable. A more
detailed account of the unstable nature and non-uniqueness of inverse problems in gen-
eral has been given in [18| and specifically for Cryo-ET reconstruction problem has
been discussed in [12].

1.5 Tomographic Image Reconstruction

The word tomography originates from two Greek works 'tomos’, meaning slice or part
and ’graphein’, meaning to write. Tomography is the art of reconstructing an ob-
ject from its projections. Applications of tomographic reconstruction first came into
consideration when it was realized that it was possible to non-invasively reconstruct
the interior of a human body. There are a variety of tomographic modalities used in
biomedicine, material science and geology. Most tomographic modalities are distinct
on the basis of the imaging spectrum and the data acquisition geometry. All modalities
are based on the premise that rays from a certain source passing through an object
are altered, based on the alteration of the rays an image can be generated. The pro-
cess is repeated by rotating the ray source or the object and the resulting images are
processed to reconstruct a representation of the object. An interesting and detailed
historical account of tomographic reconstruction can be found in [19]. In this section
the review has been presented from the point of view of Cryo-ET that uses a parallel
beam geometry.

1.5.1 Analytical Reconstruction Methods

Analytical reconstruction methods! are generally used to achieve relatively fast but
primitive tomographic reconstructions. Results from such methods are often used for
intuition and also serve as priors for more complex and computationally demanding
iterative, statistical and model-based methods. Such methods are also important when
computational time is critical and work well for applications where limited and low-
dose data is not a major constraint. In certain applications a primitive but rapidly
available reconstruction may be deemed sufficient. Certain aspects of these methods
are still open research questions and entire books have been dedicated to analytical
image reconstruction such as [20, 21].

There are several factors that limit the performance of analytical reconstruction
methods. Such methods assume continuous measurements whereas sampling issues
associated with analytical methods are dealt with in the discrete domain. Such methods
also poorly handle measurement noise and noise removal is not incorporated in the
problem formulation but is usually achieved as a post-processing step via filtering or
other operations that also tend to remove useful information from the reconstruction.
Removing streaking artifacts during post-processing is also fairly common as shown in
[22, 23]. Although the limitations seem broad, such methods are commonly used in

IThese methods are also refereed as Fourier reconstruction methods and direct reconstruction meth-
ods.
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medical tomographic scanners that can collect sufficient and high contrast data using
standard geometries and can avoid the limitations associated with such methods.

Radon Transform

The most fundamental component of analytical methods is the radon transform that
was first presented in 1917 by Austrian mathematician Johann Radon in [24, 25].
Consider an object f(x,y) as shown in Fig. 1.3 being imaged by parallel rays. A ray
passes through the object at angle 6 with the x-axis and has a distance of ¢; from the
origin. The perpendicular line ¢; can be defined as,

t1 = xcos(f) + ysin(6). (1.2)

Fig. 1.3 represents only a single ray, i.e., for Py(t;), on collecting several rays one
would end up with Py(t). The function Py(.) is called the projection of f(x,y) at angle
0.

Rt - | o) ds (13
x cos(6)+y sin(6)

Py(t) = /_OO /_00 f(z,y)d(x cos(f) + ysin(f) — ) dx dy, (1.4)

where 0(.) donates the 1D Dirac impulse function. The radon transform can be
used to model the forward transform and has been used in various forms in this thesis
for simulating reconstruction problems.

Sinogram

A sinogram, S, is a matrix of all the projections collected from a specific object. In
other words a sinogram is a discretized version of the two dimensional continuous Radon
Transform. Fig. 1.4 shows the sinogram for a small box as well as a Shepp-Logan [26]
phantom. The construction of the sinogram can be column-wise or row-wise, i.e., each
successive projection may be placed in a column or a row.

Fourier Slice Theorem

The Fourier Slice Theorem was first presented by Ron Bracewell in 1956 in [27] and is
the foundation of analytical reconstruction methods?. If f : R — C is the continuous
integrable function. The Fourier transform of f(x,y) is defined as follows:

f(u,v) = /OO /OO f(:v,y)e_%(“””y)i dx dy (1.5)

The inverse Fourier transform of f(u,v) is defined as follows:

2 Although, the theorem first appears in the 1956 paper according to Jeff Fessler during a symposium
held in July of 2004 at Stanford to celebrate the 75th birthday of Albert Macovski, Ron Bracewell
mentioned that the theorem was commonly known among the radio astronomy community in the
1950s.
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Figure 1.3: Figure showing graphical representation of the radon transform. A single
ray passing through an object f(z,y), when several rays pass through the f(z,y) they
form a projection of the object at an angle ¢ with the z-axis.
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Flay) = /_ Z /_ Z Flu, )20+ gy, gy (1.6)

The Fourier slice theorem according to [21, 28| for reconstructing a 2D image from
1D projections can be stated as: the Fourier transform of a parallel projection of
image f(x,y) taken at an angle 6 gives the vales of the two-dimensional transform
f (u,v) along a line that is at an angle § with the u-axis. This has been visually shown
in Fig. 1.5. A primitive reconstruction can be obtained by taking successive Fourier
transforms of projections and aligning them into a rotational grid and taking the inverse
Fourier transform of the grid. From Fig. 1.5 it can be noted that higher frequency
components, i.e., points further away from the origin are less well known as compared
to lower frequency components. These unknown points have to be approximated by
interpolation. The interpolation problem has been addressed in detail in [21, 28|.
Mathematically, the theorem can be defined as: The Fourier transform of a parallel
projection of a 2D object f(x,y) taken at an angle 0 pg(w) gives the values of the 2D
transform of f(x,vy), i.e., f(u, v) along a line that subtends and angle 0 with the u-axis
in the frequency domain [21],

~

Py(w) = f(wcos(h),wsin(8)). (1.7)

Filtered Back Projection (FBP)

The filtered back projection algorithm and its variants can be constructed by rewriting
the 2D Fourier transform presented above. It is evident from Fig. 1.5 that practically
only a finite number of projections can be collected from a certain object. Aligning
these projections in Fourier domain will thus always result in less information of higher
frequency components as opposed to closely spaced lower frequency components. This
essentially means that interpolation is always required which is much easier to do in
the spatial rather than frequency domain. The FBP algorithm needs a change of
coordinates from Cartesian to polar. Consider u = wcos(f) and v = wsin(f). The
Jacobian J would be,

0(u,v)

7= ‘aw,e)

_ ‘_cos(@) sin(6)

wsin(6) wcos(e)‘ = w(cos*(f) +sin?(9)) = w. (1.8)

Replacing the differentials du dv to w dw df, Equation 1.6 can be rewritten as

21 oo
f(z,y) = / / f(w, 9)we2ﬂ(zcos(9)+ysm(9))i dw df (1.9)
o Jo

Simplifying further using the Fourier Slice Theorem and t = x cos(#)+y sin(f) gives
the following:

flz,y) = /07r /_OO Py(w) |w] e*™ dw df (1.10)
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Shepp Logan Phantom 6 Projections

=

18 Projections

Figure 1.6: FBP reconstructions (Linearly interpolated, ‘Ram-Lak’ filter) with chang-
ing number of projections. The streaking artifacts show for lower number of projections
show that there is not enough information to confine certain parts of the projections.
The projections were simulated without any noise.

This equation explains fundamental FBP3 The outermost integral represents the
summations of the back projections over angles and the innermost integral is the back-
projection of a single projection.

Fig. 1.6 shows results from reconstructing a modified Shepp-Logan phanton from
6,9,18,36,60,90 and 180 equally spaced projections*. Fig 1.7 shows FBP reconstructions
with a missing wedge, this simulation is closer to a real Cryo-ET problem and the effects
of the missing wedge are evident in both the spatial and frequency domain. A more
detailed account of FBP and its variants can be found in [21].

1.5.2 TIterative Reconstruction Methods

As opposed to analytical methods which are dependent on step-by-step procedures as
well as limited by geometrical constraints, iterative methods are often model-based, can
incorporate prior information better and can also incorporate statistical noise models
[7, 18, 29]. Development and enhancement of such methods is an active research area
and this thesis partially focuses on the development, understanding and enhancement
of such methods. Iterative methods can be classified as algebraic and variational meth-
ods. A variety of algebraic and variational methods are used in different chapters of

3In some literature this form of back-projection is also refereed to as weighted back projection
(WBP), |R|-weighted back projection or according to the equation |w|-weighted back-projection.

4Although, reconstructions are generally performed on a circular grid for emulate perfect projec-
tions, in this thesis all reconstructions will be displayed on a rectangular grid, this is for the ease of
visualization.
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Missing Wedge [-70:1:70] Missing Wedge [-65:1:65] Missing Wedge [-60:1:60]

2D FFT 2D FFT 2D FFT
Missing Wedge [-70:1:70] Missing Wedge [-65:1:65] Missing Wedge [-60:1:60]

Figure 1.7: FBP reconstructions (Linearly interpolated, ‘Ram-Lak’ filter) showing
the effect of the missing wedge in the reconstructed phantom as well as the frequency
domain. The projections were simulated without any noise. The 2D FFT shown is with
the zero frequency component shifted to the center. Higher frequencies are attenuated
due to the Ram-Lak filter.

this thesis, fundamental methods have been explained as they are used in proceeding
chapters.

Data Model: Discretization of the Cryo-ET Inverse Problem

In order to analyze the ill-posed inverse problem of reconstructing data from projections
(tilt-series), it is fundamental to have an accurate formulation of the forward operator,
solving the problem of modeling the process of image formation in the absence of noise
and measurement errors [11]. The collected projection images can be denoted by:

FPy:0<z<Zni0 <y <Y, —ma® <0< +ma’ (1.11)

Where 2,4, and 4,4, is the maximum size of the projections and +ma° is the max-
imum possible tilt angle, these parameters are determined by the microscope hardware
[30]. The forward model for Cryo-ET has been extensively discussed in [11] where it
has been shown that it may be assumed that collected tilt series images are equivalent
to the forward projection, i.e., Radon Transform of the specimen. A sinogram (S5)
represents the tilt series of raw data, i.e., a matrix where each column represents a
projection at a different angle. Mathematically, a discretized and simplified version
of the noise-free forward operator can be described in terms of a linear system where
projections b from are collected from specimen x, given a matrix representation of the
imaging device A.
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Ar=b AeR™" zeR" beR™ (1.12)

The vector b is the vectorized form of S which is constructed from projections Fy.
Each row of A corresponds to a single ray passing through the density being imaged.
Since each ray only passes through a certain number of voxels, matrix A is usually
sparse. This sparsity can be used to a computational advantage since A can be stored
and used in a sparse way, utilizing less memory.

The imaging model presented above represents a set of linear equations such that
there is one equation for each ray passing through the object. In an ideal, noise-free
case, these linear equations would be consistent. However, in practice this is never the
case, since the right hand side of the linear system is usually marred by noise b = b* +e,
where b* is ideal data and e represents perturbation® or data errors. Throughout this
thesis we assume that all the forms of measurement errors and missing data limitations
are reflected in b.

Algebraic Reconstruction Methods

Algebraic Reconstruction Methods (ARMs)S are a class of methods which solve Equa-
tion 1.12 as a set of linear equations using standard equation solving methods such as
Kaczmarz, Landwabber, Cimmino etc. Kaczmarz method in particular was reinvented
as the Algebric Reconstruction Technique (ART) specifically for tomographic appli-
cations. Many of these methods are stopped at semi-convergence for stability, hence
the iteration index acts as a regularization parameter. A more detailed description
of ARMs has been given in Chapter 4 where they are used for extended field-based
reconstructions.

Variational Reconstruction Methods

Variational methods re-cast the reconstruction problem as an optimization problem
that involves one or multiple forms of regularization. As mentioned earlier the right-
hand-side of Az = b is corrupted by noise and measurement errors mentioned in section
1.4. Although algebraic methods such as ART and SIRT do possess some regulariza-
tion capabilities most of them are derived from semi-convergence [18, 31]. To handle
arbitrarily large perturbations on the right-hand-side of Equation 1.12 we need regu-
larization that can compute more sensitive approximations. The typical approach is
to formulate the optimization problem as a minimization of the linear combination of
a data consistency error term and a regularization penalty as,

argmin D(A(z),b) + A\G(x). (1.13)

T

5The word perturbation used in this thesis refers to secondary influence on an imaging system that
causes deviation.

6 ARMs or Row Action Methods (RAMs) and methods associated with them have been ambiguously
defined in various literature and are often a source of confusion. The term ARM is often confused
with ART, ARMs represent a class of methods while ART is simply Kaczmarz Method used in a
tomographic setting.
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In the above optimization problem = — G(x) is the regularization term with A
as the regularization parameter. D(A(x),b) is the data discrepancy functional or the
data consistency error term. A more detailed account of fundamentals of variational
reconstruction methods can be found in [18].

1.6 High-Performance and Reconfigurable Comput-
ing

All methods discussed in the previous sections are computationally demanding specif-
ically for large size reconstructions. Speeding-up analytical reconstruction methods
and decreasing the convergence time for iterative methods are active research areas.
Analytical methods can provide a primitive reconstruction that can then be used as
a starting point (prior) for more complex iterative methods and help speed up con-
vergence. Although, analytical methods such as FBP perform relatively faster than
iterative methods they become increasingly complex for large image sizes since their
complexity scales according to O(n?)).

Although, the number of transistors in a dense integrated circuit doubles every two
years [32] our hunger for computational speed, throughput and performance increases
proportionally. For every general purpose processing system there is a problem, which
is too large for it to handle, this is where application specific hardware comes in and
provides solutions, which are robust and are based on handling several tasks in a single
computation cycle. Enhancing performance by customizing hardware comes with a
standard trade-off of losing flexibility. Reconfigurable computing (RC) combines the
high performance of a hardware system with the flexibility of software and bridges the
gap between general-purpose processors (GPPs) and Application Specific Integrated
Circuits (ASIC) [33, 34]. Estrin and Bussell introduced reconfigurable computing in
1963 [35] but it has not been studied in depth because commercial reconfigurable hard-
ware only became available in the 1990s. International Technology Road-map for Semi-
conductors has predicted that the minimum feature size for modern chips will reach
as low as S5nm and on chip clock frequency of about 50 GHz by 2020. The flexibility
and reprogramming ability of general-purpose computers served as the essence of the
computing revolution. Very large-scale integration (VLSI) based technologies enabled
us to integrate entire processors into single chips. The fact that a single processor could
perform a variety of operations without hardware modification was revolutionary but
it came at the expense of several trade-offs including speed and throughput [35]. Nowa-
days, clock frequencies have reached up to 4GHz, which means GPPs, are capable of
performing high-speed computations in a single clock cycle. Reconfigurable computing
can bridge the gap between hardware and software; so as to obtain highly efficient per-
formance than pure software implemented microprocessors, while being more flexible
than ASIC hardware.

Trade-off between high performance and flexibility has always been a problem in
modern digital design, the choice between a completely inflexible but efficiently per-
forming ASIC on one end and a highly flexible GPP with inferior performance. Al-
though FPGAs run at much lower clock speeds they have the tendency to have higher
computational speeds because they require much less cycles to execute an operation as
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compared to GPPs. RC is a unique computing model, which allows post-manufacturing
reconfiguration. Nowadays Graphical Processing Units (GPUs) are becoming more and
more common to achieve high throughput on large scale computing tasks. However,
they require more energy and the transition between a GPU implementation and an
ASIC implementation would be relatively more tedious as opposed to moving from an
FPGA design to ASIC implementations.

Application Specific Integrated Circuits (ASICs) are hardwired systems designed
to perform a certain task, although they rank at the highest level on the performance
scale they have very little to negligible flexibility. Although it may seem to be an
ultimate solution for achieving high throughput design, ASICs entail several issues
from design complexity to having high degree of design failure and testing problems.
Reconfigurable Computing acts as the most optimal solution since it does not require a
chip being manufactured every time a certain design has to be tested while at the same
time it provides a significant degree of higher performance as compared to GPPs. The
most modern form of reconfigurable computing are Field Programmable Gate Arrays
(FPGASs) that have evolved from Programmable Logic Devices (PLDs). Despite having
clock cycle speeds several times less than GPPs, FPGAs can achieve much higher
speeds because they are able to reduce the overall number of cycles required to execute
a certain task. This will further be discussed in more detail in Chapter 5.

1.7 Contributions

Figure 1.8 reflects the contributions of this thesis. The basic aim of the thesis is to
explore algorithmic methods for improving tomographic reconstructions and the de-
velopment of reconfigurable computing-based architectures to speed-up and accelerate
such methods. Major Contributions Include:

1. Studying Graph-based non-local methods and their feasibility for improving to-
mographic reconstructions. Using the ability of graph-based non-local Total Vari-
ation to establish a connection between different regions of an image which are
spatially far from each other to refine the sinogram by exploiting the structure
within the sinogram (Chapter 2).

2. Development of adaptive graph-based total variation (AGTV) for tomographic
reconstructions Similar to state-of-the-art Non-local TV (NLTV) the proposed
method goes beyond spatial similarity between different regions of an image being
reconstructed by establishing a connection between similar regions in the image
regardless of spatial distance. However, it involves updating the graph prior
during every iteration making the connection between similar regions stronger.
Moreover, it promotes sparsity in the wavelet and graph gradient domains. Since
TV is a special case of graph TV the proposed method can also be seen as
a generalization of Sparsity Exploiting Reconstruction (SER) and TV methods
(Chapter 3).

3. Studying the affect of extending field (EF)-based noise removal from tomographic
reconstructions. The study demonstrates that extending the reconstruction space,
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which increases the dimensionality of the linear system being solved during itera-
tive tomographic reconstruction, facilitates the separation of signal and noise. A
considerable amount of the noise associated with collected projection data arises
independently from the geometric constraint of image formation, whereas the
solution to the reconstruction problem must satisfy such geometric constraints.
Increasing the dimensionality thereby allows for a redistribution of such noise
within the extended reconstruction space, while the geometrically constrained
approximate solution stays in an effectively lower dimensional subspace. Employ-
ing various tomographic reconstruction methods with regularization capability we
performed extensive simulation and testing and we observed that enhanced di-
mensionality significantly improves the accuracy of the reconstruction. Although
the proposed method is used in the context of Cryo-ET, the method is general
and can be extended to a variety of other tomographic modalities (Chapter 4).

4. The two-dimensional Discrete Fourier Transform is a fundamental component
of a variety of methods used for Cryo-ET. All methods developed in contribu-
tions 1-3 assume Filtered Back Projection (FBP) as a starting point of prior.
Although FBP is a computationally efficient operation when compared to itera-
tive reconstruction methods it can be computationally demanding for large size
reconstructions. One of the major bottlenecks for computing the FBP is the 2D
FFT. 2D FFTs also have a variety of other applications for Cryo-ET e.g. in sub-
tomogram averaging etc. We develop an FPGA based 2D FFT with simultaneous
edge artifact removal. The contributions in the reconfigurable computing domain
are two-fold:

e Since the 2D FFT is generally implemented on FPGAs using a row-column
decomposition (RCD)-based approach intermediate storage and access from
the external DRAM becomes a problem for large datasets. We propose
a tile-hopping memory mapping scheme which minimizes strided DRAM
access and can increase the overall bandwidth of data exchange from external
memory (Chapter 5).

e Since we incorporate simultaneous edge artifact removal into our 2D FF'T
implementation this results in added complexity. We propose an optimized
periodic plus smooth decomposition-based approach which reduces 1D FFT
invocations and DRAM access (Chapter 5).
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Chapter 2

Graph-based Non-Local Sinogram
Denoising

2.1 Chapter Outline

Traditionally, denoising the raw projection data acquired from various tomographic
modalities as a pre-processing step has been discouraged due to high degree of manip-
ulation associated with standard filtering and other denoising methods. Observing the
raw data in terms of the sinogram shows that it has structure and high redundancy
since each projection is collected from the same object. In this chapter, a novel algo-
rithm for denoising the sinogram is presented inspired by the modern field of signal
processing on graphs. This method has been published in [36]. Graph-based non-local
methods often perform better than standard filtering operations since they can exploit
the signal structure by establishing a connection between regions of the data that are
spatially far from each other. Non-local image processing has the ability to prevent
over-smoothing and can preserve texture details better than local methods. This makes
the sinogram an ideal candidate for graph-based non-local denoising given its high de-
gree of redundancy and the fact that any denoising method employed should preserve
high-frequency details. The proposed method was tested with a variety of phantoms
and different reconstruction methods. The presented numerical study shows that the
proposed algorithm improves the performance of analytical filtered back-projection
(FBP) and iterative methods ART (Kaczmarz) and SIRT (Cimmino). It was observed
that a graph denoised sinogram always minimizes the error measure, improves the ac-
curacy of the solution with minimal resolution loss as compared to regular analytical
and iterative methods that attempt to denoise the data as an integral component of
the reconstruction method.

2.2 Sinogram Denoising

As extensively discussed in Chapter 1 low-dose, limited, and incomplete data are com-
mon problems in a variety of tomographic reconstruction paradigms including Cryo-ET.
Low dose computerized tomography (CT) and Cryo-ET reconstructions are ill-posed
inverse problems that encounter significant amounts of noise [16, 37|. During data

19
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collection, individual projections are usually marred by noise due to low illumination,
which stems from low electron or x-ray doses.

Current efforts to reduce the dose for Cryo-ET reconstructions can be divided into
three categories [38][39]:

1. Pre-processing-based methods, that tend to improve the raw data (sinogram),
followed by standard analytical or iterative reconstruction methods [40, 41].

2. Denoising of reconstructed tomograms in the image domain. This approach is
usually accomplished by filtering or extensive averaging. Post-processing of re-
constructed densities to enhance features, decrease limited angle streaking arti-
facts and removing speckle (i.e., areas with inconsistent intensity) is particularly
common [23, 42].

3. Iterative image reconstruction and statistical methods [43]. Such methods are
often based on variational regularization and recast the reconstruction problem
as an optimization problem. This optimization problem is then solved by moving
back and forth between the sinogram and reconstruction domain so that the final
result is faithful to the raw data while satisfying a regularization penalty term to
constrain the noise.

A diagram representing various methods to achieve better tomographic reconstruc-
tions has been shown in Fig. 2.1. Traditionally, the idea of manipulating raw data
before reconstruction has been treated with caution since there is a possibility of remov-
ing high frequency signal information from raw data while removing noise. However,
recent developments in image denoising methodology have changed this. A review
of recent image denoising algorithms has been presented in [44]. There has been a
growing interest in denoising the sinogram, specifically for CT reconstructions [45, 46].
These algorithms vary from simple adaptive filtering and shift-invariant low-pass fil-
ters to computationally complex Bayesian methods [46, 47]. Other approaches involve
Fourier and wavelet transform-based, multi-resolution methods [21] and denoising pro-
jection data in Radon space [48]. Since the variance of Poisson noise is dependent on
the amplitude of the signal, adaptive filters seem to be a good choice for denoising
the sinogram and have been studied in [42, 49]. Methods that denoise the projection
data in Radon space (after logarithmic transformation) are of particular interest be-
cause Poisson noise can be treated as Gaussian making noise refinement easier. This
has been theoretically studied in [48, 50|. Over the past few years there has been a
growing interest in graph-based non-local methods for image processing applications.
Such methods are of particular interest because of their ability to establish connections
between regions of the image that are spatially far from each other. This helps in
processing similar regions together rather than the traditional approach of processing
proximal pixels. In this study a non-local graph-based sinogram denoising approach is
presented and analyzed.
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Figure 2.1: Various tomographic reconstruction improvement methods summarized.
Most methods are based on local image processing paradigms whereby only proximal
pixels or voxels are taken into account while processing the data. This chapter fo-
cuses on a non-local pre-processing method which is proceeded by a non-local sparsity
exploiting regularization-based method in Chapter 3.
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2.3 Introduction to Graphs

Graphs describe geometric structures of data domains in a plethora of applications
such as energy systems, transportation, sensor networks, human neuronal networks.
The edge weights of a graph reflect the similarity between the two vertices the edge
connects. The edge weights depend on the problem under consideration. In image
processing there has been an increasing interest in graph-based non-local or semi-local
processing specifically for filtering [51, 52]. Such approaches are able to connect pixels
of an image that are not only in the regional proximity but spatially far for each other.
Thus non-local methods have the ability to better preserve edges and textures in an
image. A more detailed review regarding graph-based methods can be found in [53, 54].

Signal Processing on Graphs Preliminaries

Mathematically, a graph is represented as a tupple G = {V,£, W} where V is a set
of vertices, £ a set of edges, and W : V x V — R, a weight function. We assume
that the vertices are indexed from 1,...,|V|. The weight matrix W is assumed to be
non-negative, symmetric, and with a zero diagonal. Each entry of the weight matrix
W e RMXM corresponds to the weight of the edge connecting the corresponding
vertices: Ww = W(v;,v;) and if there is no edge between two vertices, the weight is
set to 0. A node v; connected to v; is denoted by i <+ j. For a vertex v; € V, the
degree d(i) is defined as the sum of the weights of incident edges: d(i) = >_,.,; Wi ;.
We define a graph signal as a function s : YV — R which assigns a value to each vertex
in the graph. It is convenient to consider a signal s as a vector of size |V| with the *®
component representing the signal value at the i vertex.

We define two types of signals on graphs, the one which resides on the vertices and
the other one on edges. For a signal s residing on the vertices of graph G, the gradient
Vg : RVl — RI€l is defined as

Vgs(i,g) = v/ J) ( J%— J%)

where we consider only the pair {4, j} when ¢ <> j. For a signal f residing on the graph
edges, the adjoint of the gradient V7§ : RIEI — RVl called divergence can be written as

S0 = S (60 i)

The Laplacian corresponds to the second order derivative and its definition arises from
Ls := V;Vgs. Let D be the diagonal degree matrix with diagonal entries D;; = d(i),
then another interpretation of the Laplacian is the difference of the weight matrix W
from the degree matrix D, thus L = D — W, which is referred to as combinatorial
Laplacian.

A graph G can be constructed from a dataset in several ways. For example, for a
signal Y € RP*" the vertices v; of the graph G can correspond to the data samples y; €
RP. For the purpose of this work we are interested in a standard -nearest neighbors

i) —
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strategy for the graph construction. The first step of this strategy consists of searching
the closest neighbors for all the samples using Euclidean distances. Thus, each y;
is connected to its I nearest neighbors (nearest in term of Euclidean distance not
proximal distance) y;, resulting in |£| ~ Kn number of connections. The second step
consists of computing the graph weight matrix W using one of the several commonly
used strategies. The most commonly used scheme is based on the Gaussian kernel:

exp ( - M) if y; is connected to y;
W, = ’ (2.1)

0 otherwise.

Other common weighting schemes include the binary weighting kernel and cor-
relation based weighting. Binary weighting can not give importance to each patch,
correlation-based schemes are generally used for temporal signals (e.g. EEG signals).
Gaussian-based weighting is the most common weighting scheme for imaging applica-
tions.

It should be noted here that the nearest neighbor parameter, IC, has to be selected
carefully. If K is too large the graph would be fully connected and may lead to over-
smoothing. If I is too low less similarity between different regions of the image will
be considered. Unfortunately, there is no hard and fast rule to tune K except for hit
and trial.

How can the notion of graphs be used in signal processing? A primary example is
the denoising operation, where one can solve an inverse problem by regularizing with a
graph tikhonov operator. For a noisy signal y € R™ and a graph Laplacian L constructed
between the entries of y, the graph tikhonov regularization on the optimization variable
x (the clean signal) is defined as [53]:

JZTLZL' = %; ; Ww(l’z - ZL’j)2.

Clearly, the strongly connected samples in y;,y; have a higher W;;, therefore, the
resulting x;, x; resemble each other more. This smoothness prior can be used to de-
noise a signal y with an irregular structure by solving the optimization problem of the
following form:

min [y — (|3 +ya " La

GTV is another graph based regularizer that has been frequently used in many
applications. We discuss this regularizer in detail in the next section.

Why is the concept of graphs interesting for image processing applications? Images
generally contain significant self-similarities on a pixel level. Most image processing
paradigms focus on processing adjacent pixels of an image for refinement, filtering,
information extraction and analysis. However, pixel-level similarities transcend spatial
proximities, regions of a specific image may be similar to pixels that are spatially far
from each other. Non-Local methods! exploit this similarity by processing similar

!The major difference between non-local methods and graph-based methods for image processing
is the use of nearest neighbor search conditions. Due to the relative newness of the field the term non-
local methods is often used synonymous to patch-based methods or graph-based methods for image
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patches of an image together.

The non-local means (NLM) filter introduced by Buades et.al. in [51, 55] was the
first attempt to denoise images non-locally. NLM takes advantage of similar patches
in an image which are non-local to each other, i.e., spatially far from each other. The
similarity between the patches is given a weight, thus the similarity can be represented
as a weight function inducing a weighted averaging filter. The well known bilateral
image filter can be considered to be a special case of the NLM filter. NLM simply
uses self similarity to reduce the noise by averaging the near-by (but not essentially
spatially proximal) similar weighted overlapping patches.

Most non-local algorithms are designed for general denoising and are not applicable
to inverse problems. In this chapter we focus on denoising the raw data (sinogram)
using non-local total variation, this work is proceeded by development of an adaptive
graph-based reconstruction algorithm in Chapter 3. The proposed method can ex-
ploit the hidden structure of the sinogram due to high redundancy of information in
projections collected from the same sample.

2.4 Graph-based Sinogram Denoising

Graph-based denoising, tends to perform better than simple filtering operations due to
its inherent capacity to exploit signal structure [53]. The proposed denoising method
is general in the sense that it can be applied to raw data independent of the type of
data, tomographic modality under consideration or the reconstruction method being
employed.

Preliminaries

Let S € RP*? be the sinogram corresponding to the projections of the sample x € R™*"
being imaged, where p is the number of rays passing through x and ¢ is the number
of angular variations at which = has been imaged. Let b € RP? be the vectorized
measurements or projections and A € P he the sparse projection operator. Then,
the goal of a typical tomographic reconstruction method is to recover the sample z from
the projections b. Of course, one needs to solve a highly under-determined inverse
problem for this type of reconstruction, which can be even more challenging if the
projections b are noisy. To circumvent the problem of noisy projections, a proposed
two-step methodology for the reconstruction is given below:

1. Denoise the sinogram, S, using graph total variation reqularization.

2. Reconstruct the sample, x, from denoised projections using standard reconstruc-
tion methods.

We motivate the denoising method here via Fig. 2.2(a,b,d,e), which shows sino-
grams corresponding to the Modified Shepp-Logan and Smooth phantoms. It can

processing. However, this can be a source of confusion since there is no universally accepted definition
for how the weight matrix is constructed. For the purposes of this thesis we define graph-based
methods as mentioned in section 2.3



2.4 Graph-based Sinogram Denoising 25

- Projections 9 - Projections
e

40

60

80

10 20 30 10 20 30
9 - Projections ¥ - Projections

Figure 2.2: a) The Shepp Logan Phantom. b) Noisy sinogram of the Shepp Logan
phantom (relative noise 0.08) c¢) Graph Denoised Sinogram. d) Smooth Phantom.
e) Noisy sinogram of the Smooth phantom (relative noise 0.05) f) Graph Denoised
Sinogram. Clearly, the projections have a smooth structure, which when exploited,
denoises these sinograms significantly.

be observed that the sinograms have a piecewise smooth structure. If a sinogram is
treated as an image, it can be said that some patches of the sinogram are similar to
other patches for a given phantom. This structure can be exploited in the form of a
pairwise similarity graph constructed between the patches of the sinogram and then
used to denoise it via graph reqularization.

2.4.1 Graph Construction for Sinogram Denoising

In this case the graph G is a patch graph, i.e, a graph between the patches of sinogram
S and it is built using a three-step strategy. In the first step the sinogram S € RP*? is
divided into pq overlapping patches. Let s; be the patch of size [ x [ centered at the *"
pixel of S and assume that all patches are vectorized, i.e, s; € R°. In the second step
the search for the closest neighbors for all vectorized patches is performed using the
Euclidean distance metric. Each s; is connected to its K nearest neighbors s;, resulting
in |£] number of connections. In the third step the graph weight matrix W is computed
as defined in 2.1.

The parameter o, used while calculating the weights, can be set experimentally as
the average distance of the connected samples. This procedure has a complexity of
O(pge) where e is the number of edges which scale linearly with the size of the image
(sinogram in this case). Although the complexity seems to be a major issue it can be
reduced by using approximations. This will be discussed in more detail in Chapter 3.
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Figure 2.3: The overall process of Graph-based Sinogram denoising showing graph
construction on the sinogram.

2.4.2 Graph Total Variation Denoising

Once the graph G has been constructed, we solve the following optimization problem
to denoise b (i.e. the vectorized form of the sinogram).

min ||z — b5 + 71| Vgz[1, (2.2)

where z is the clean vectorized sinogram. The problem can also be written as,

mgn||2—b||§+722vm,j|zi—Zj\a (2.3)
i

where Vgz denotes the graph total variation of z. The parameter v controls the
amount of smoothing on z. Higher levels of noise require higher v but at the expense of
losing signal information. The choice of v is heavily dependent on the type of data and
the amount of noise in the sinogram. This parameter generally has to be tuned for a
certain type of signal. The optimization problem is referred to as Graph Total Variation
used here as a denoising operator, and minimizes the sum of the gradients at the
nodes of the graph. This setup is similar to standard non-local TV regularization first
presented by Rubin, Osher and Fatemi in the so called ROF model in [56]. However,
in this case it is applied as a TV filter to denoise the sinogram rather than solving
an actual inverse problem and also involves graph-based non-local processing. A more
detailed account of Graph TV has been explained in the proceeding chapter (Section
3.4.3) where it is used as an additional sparcifying transform for solving an inverse
problem.

Stated more simply, as ¢; norm promotes sparsity, problem (2.2) tends to smooth the
projections b, such that the new projections z have sparse graph gradients. Intuitively,
this makes sense, as the sinograms (Fig. 2.2) have a piecewise smooth structure. Thus,
all the strongly connected patches in S will have a similar structure in z (zero graph
gradients) whereas the weakly connected patches in S will have different structure in
z (non-zero graph gradients). It should be noted here that the weights in equation
2.3 are from the patches while the ¢; distance is between pairs of pixels. Weights are
assigned on pairs of patches and not between pairs of pixels to avoid assigning weights
to noise.

The solution to problem (2.2) is given by the Algorithm 1. The algorithm requires
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Algorithm 1 Graph Total Variation Denoising
INPUT: up =0, e >0, OUTPUT: z;
for j=0,...J—1 do

zj = b—=Vg(u)
r; = u;T + Vg(2;)
s; = max(r; —v7,0)
Uj+1 = %(T‘j — Sj)
Fj1 = |b— zill3 + Yllwjra
if oDk < ¢ then
[l F511%

BREAK

end if

end for

V&(+), which is the adjoint operator (divergence) of Vg and 7 is the spectral norm
(maximum eigenvalue) of Vg, i.e, 7 = ||Vgl|2. The algorithm is a simple application of
the proximal splitting methods commonly used in signal processing [57]. Note that the
solution to the ¢; norm is a simple element-wise soft-thresholding operation. Although,
the optimization problem here has been solved using the forward-backward primal dual
[57] available from Open Source tool-box UnLocBox [58] it may be solved using a variety
of other optimization tools.

2.5 Reconstruction Phase

In order to show the effectiveness of the proposed approach, the refined sinogram was
reconstructed using different analytical and iterative methods. Analytical methods
such as FBP [59] are the most commonly used methods employed for ET, CT scanners
and other tomographic modalities since they are relatively simple and computation-
ally trivial but do not provide robustness to noise. Iterative methods can partially
remedy this but with a varying degree of certainty and almost never perfectly. Iter-
ative row action methods such as algebraic reconstruction technique (ART) [60] and
simultaneous reconstruction technique (SIRT) [61] are commonly used due to their
semi-convergence? and regularization capabilities. ART or Kaczmarz method operates
on each row/equation of the linear system defined in section I and treats it as a hy-
perplane in vector space. Starting from an initial guess each iteration entails sweeping
all rows by taking orthogonal projections successively until it converges to a solution.
This can be defined as,

bl-—a

"t = 2F 4\ a A€ (0,2), (2.4)

2
lailly

where k is the iteration, ) is the relaxation parameter® and the rest of the vari-

2In some literature the concept of semi-convergence is also referred to as ‘early stopping’. This has
been clearly explained in [18, 31]. Some litrature also attributes ’early stopping’ as a semi-convergence-
based stopping criteria for algebraic methods.

3The relaxation parameter should not be confused with the regularization parameter in variational
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ables are the same as mentioned in the preliminaries. The fact that during the early
iterations, Kaczmarz quickly semi-converges to an approximate solution, makes it an
ideal method to test sinogram denoising. A refined sinogram should semi-converge
more quickly to a smaller error and should diverge more slowly from the most accurate
solution. SIRT methods access all rows simultaneously and generally have better regu-
larization capabilities, compared to ART methods. Although there are several different
variants of SIRT, in this study Cimmino’s method [62] was used which can be defined
as follows:

Ly +)\k—ZwZ — (o2 (2.5)

laill;

Cimmino’s method usually converges faster than ART and has similar semi-convergance
properties. However, these properties vary substantially based on the data being re-
constructed and the amount of noise in the data. A more detailed account regarding
algebric reconstruction method including ART, SIRT and their variants will be dis-
cussed in Chapter 4. Here they can be treated as standard reconstruction methods
employed to test the effectiveness of sinogram denoising explained in the previous sec-
tions.

2.6 Experiments and Results

2.6.1 Simulation Setup
The Validation Problem

Validation is a serious problem not only in Cryo-ET or other tomographic modalities
but with all inverse problems in general. Most iterative image reconstruction (IIR)
methods lack proper validation. Such literature is particularly deficient for Cryo-ET
where FBP, SIRT and their variants have been the standard methods for a long time
and remain the most commonly used methods today. In order for a new method
to justify superiority over existing methods simply showing the ability to reconstruct
cleaner images is not sufficient. Such a method must also justify that it does not
produce superfluous artifacts. Another problem is that the notion of resolution is
often unclear and misunderstood, there are no theoretical results that give bounds to
the best possible* resolution [12]. Validation in Cryo-ET and most other heavily ll-

regularization problems. The relaxation parameter is merely the step size algebraic methods take
during each iteration to approach an approximate solution. The regularization parameter on the
other hand is what determines a balance between the regularity of the solution and its faithfulness
to raw data. In the case of algebraic methods, their regularization properties are purely associated
with semi-convergence to an approximate solution. Some literature such as [18] suggests that the
iteration number for algebraic methods can be associated with the regularization parameter however
this is debated. Although, the semi-convergance properties of SIRT and its variants have been studied
extensively such analysis for ART remains an open problem.

4Not to be confused with ’ideal’ or ‘theoretical’ resolution which is given by the Crowther’s Criteria
explained in Equation 1.1.
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posed® inverse problems must be using simulated phantoms, i.e., images, datasets and
specimens whose ‘true’ values (intensities, frequency analysis etc.) are already known.
In order to minimize the possibility of committing the so-called "inverse crime" |63, 64],
a new method should be able to recover several different simulated phantoms and the
results should be compared with the ground truth® and the recovered resolution should
be analyzed using frequency analysis tools. Simulating a phantom to generate a tilt
series close to actual data acquisition settings is not trivial and has been discussed in
detail in [65].

Analyzing phantoms reconstructed from various methods is also a non-trivial prob-
lem and the effectiveness of various established methods is debated. Standard signal-to-
noise ratio and /5 residual norm error-based metric can compare the original phantom
with the reconstructed data but fails to effectively analyze the amount of informa-
tion compromised during reconstruction. Due to this reason besides using standard ¢
residual norm errors, intensity analysis and visual inspection of reconstructed phan-
toms frequency analysis based on radially averaged power spectrum was also used. In
certain cases Fourier ring correlation” was also used. The choice of these metrics de-
pends on the nature and objective of the experiment and has been explained as they are
used in the proceeding subsections and subsequent chapters. As the objective of this
thesis is more relevant to image reconstruction methodology rather than determining
structures of molecules we will stick to phantom based studies with some tests on real
data.

Experiment 2.1: Denoising and Reconstructing a Shepp-Logan Sinogram
using ART (Kaczmarz)

Atm
To investigate the extent of improvement that can be achieved by denoising a sino-

gram using graph-based Total Variation and reconstructing the phantom using ART
(Kaczmarz Method) and FBP.

Method

Raw data was simulated from a 64 x 64 Shepp-Logan [26] phantom by collecting 36
equally spaced projections from the data (i.e., 0:5:180). Sinogram, S, is of size 95 x 368
where each column corresponds to projections at each of the equally spaced 36 angles
from 0 to 180 degrees. Random Gaussian noise with mean 0 and variance adjusted

5The term "heavily" ill-posed inverse problems was coined to distinguish Cryo-ET from other
problems which are ill-posed, i.e., lack uniqueness, stability and sufficient data but can be estimated
or solved with greater precision. This terminology is simply a testament to the fact that 'not all
ill-posed inverse problems are created equal’ and is inspired by [12] and [18].

6The term "Ground Truth” has a variety of meanings in various fields and can be a confusing for
interdisciplinary readers; in this thesis it simply means the 'real true’ value. Recent machine learning
literature relates the word with ’data that is known to be correct’.

"Fourier Ring Correlation is a 2D form of Fourier Shell Correlation commonly used in structural
biology to determine the resolution of structures.

81t should be noted that the size of the sinogram here is corrosponding to the radon(z, ) function
in MATLAB 2014a and assumes a rectangular matrix input.
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Table 2.1: COMPARISON OF REGULAR AND GRAPH
DENOISED (GD) RECONSTRUCTIONS

Phantom FBP FBP-GD" ART! ART-GD"
Shepp-Logan (RN=0.05) 6.41  6.36 458  3.89
Shepp-Logan (RN=0.08) 6.76  6.53 5.03 4.44

Phantom FBP FBP-GD" SIRT? SIRT-GD*
Smooth (RN=0.05) 851 3.68 482 281
Smooth (RN=0.08) 13.16 4.83 6.65 3.82

" Proposed Method

to 8% of the norm is added to individual projections. For the graph based total
variation denoising stage of the experiments, the sinogram is divided into 95x 36 = 3420
overlapping patches of size 3 x 3. Larger patches tend to decrease the likelihood of
finding similar regions and are generally not used. The graph G is constructed between
the 3420 patches with the 10 nearest neighbors (K = 10) and o for the weight matrix
(Section 2.4.1) is set to the average distance of the 10-nearest neighbors. Various values
of v in the range of [0, 10] are tested for denoising (Algorithm 1). The parameters are
tuned by defining a logarithmic range followed by a linear range within the region of
interest determined by the logarithmic range. The best ~ is selected based on the
minimum /¢, reconstruction for the phantom. The relaxation parameter A was also
tuned to achieve best semi-convergence results. The relaxation parameter for ART
and SIRT is tunes tuned between zero and two and was tuned via tools available in
the AIR tools package [31].

Conclusions

Fig. 2.4 presents the reconstructed phantom using FBP and ART with both the regular
sinogram as well as the graph denoised (GD) sinogram. ¢, reconstruction error varia-
tions with the iterations, k, have been shown in Fig.2.5. /5 reconstruction error for the
k" iteration relative to the original phantom was calculated using ka —a* H ,» Where x*
is the original phantom and z* is the result of the k" iteration of the iterative method
being used. A close analysis of the results shows that graph-based denoising helps to
attain lower reconstruction error for analytical (FBP) as well as iterative (ART and
SIRT) methods. This result is also visually obvious from the reconstructed phantoms.
Error curves and intensity profiles show that for both phantoms, a smaller error can be
achieved using graph denoised sinograms rather than regular raw data. Shepp-Logan
reconstruction with ART specifically shows that semi-convergence to an approximate
solution is faster and divergence from this approximation is slower, an indication that
the system has lower noise. These results show that the proposed method is extremely
general and can be adapted for any tomographic reconstruction modality, regardless of
the reconstruction method employed.
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Figure 2.4: Recovered Shepp-Logan phantoms and intensity profiles for the following
methods: 1) Filtered back projection (FBP), linearly interpolated, Ram-Lak filtered.
2) Graph denoised FBP (FBP-GD). 3) ART reconstruction (without denoising) and
4) Graph denoised ART / SIRT reconstruction (ART-GD, SIRT-GD). Images can be
best viewed in color in the electronic version of the chapter.
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Experiment 2.2: Denoising and Reconstructing a Smooth Sinogram using
SIRT (Cimmino)

Atm
To demonstrate the effectiveness of sinogram denoising using a smooth phantom re-
constructed using Cimmio’s Method.

Method

Raw data was simulated from a 64 x 64 Smooth [31] phantom by collecting 36 equally
spaced projections from the data (i.e., 0:5:180). Sinograms, S, is of size 95 x 36 where
each column corresponds to projections at each of the equally spaced 36 angles from
0 to 180 degrees. Random Gaussian noise with mean 0 and variance adjusted to 5%
of the norm of the individual projections is added to individual columns of S. The
remaining simulation setup is similar to experiment 2.1.

Conclusions

Fig. 2.6 shows the reconstructed smooth phantom as well as the intensity profiles. The
semi-convergance behaviour of SIRT can be observed from Fig. 2.5. Clearly there is
an improvement in the signal, it will be further investigated in the next experiment
that how much frequency information is compromised to achieve this improvement.
The results presented in this experiment and experiment 2.1 are from relatively less
amount of data (10% maximum possible data, given one projection can be collected
every degree). However, these do not fully simulate the cryo-ET situation and without
a detailed frequency analysis it is not possible to deduce the effectiveness of the method.

Experiment 2.3: Effect of Graph Sinogram Denoising on the Missing Wedge
using a Ring Phantom (More Realistic Cryo-ET Simulation Setting)

Atm
To investigate the extent of improvement that can be achieved by denoising a sinogram
with a missing wedge using graph-based Total Variation and reconstructing the phan-

tom using various reconstruction methods. Also, analyzing the resolution compromised
as the result of using graph-denoised sinograms.

Method
2D Cryo-ET Phantom Simulation Model

Experiments 2.1 and 2.2 and the results described therein simply give a feel for the
method. In oder to avoid unrealistically optimistic results from the proposed method
further tests were conducted with more realistic simulations taking into account fur-
ther challenges associated with Cryo-ET. In this experiment we generate the angles
according to the missing wedge (i.e.,—70° < § < +70°). Moreover, even though there
has been significant development in alignment procedures for Cryo-ET tilt series, the
data is always misaligned to a certain degree. To emulate this effect and ensure a more
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Figure 2.6: /, reconstruction error variations with k iterations, recovered phantoms
and their intensity profiles for the following methods: 1) Filtered back projection (FBP)
2) Graph denoised FBP (FBP-GD) 3) ART / SIRT reconstruction (without denoising)
and 4) Graph denoised ART / SIRT reconstruction (ART-GD, SIRT-GD). Images can
be best viewed in color in the electronic version of the chapter.

realistic simulation setup the projections were automatically shifted to a randomly
scaled amount within a 41 pixel margin. This simulation setup was inspired by [66]
and was implemented using MATLAB. In order to avoid the ’inverse crime’ of using the
same model or discretization system to create and reconstruct the phantom any dis-
cretization steps were completed in Mathematica. This was only rarely the case since
most phantoms used were already discretized and generated by a system independent
of MATLARB. This simulation setup is used throughout this chapter as well as chapter
3.

Raw data was simulated from a 128 x 128 Ring phantom [66] by collecting 71
equally spaced projections from the data (i.e., —70° < 6 < 470°, every two degrees).
Sinograms, S, is of size 181 x 71 where each column corresponds to projections at each of
the equally spaced 71 angles with a missing wedge in between (the effect of the missing
wedge was demonstrated in Chapter 1). A mixture of Random Gaussian and Poisson
noise was added to the projections (hereafter this combination will simply be referred
to as noise). For the graph based total variation denoising stage of the experiments, the
sinogram is divided into 181 x 71 = 12851 overlapping patches of size 3 x 3. The graph
G is constructed between the 12851 patches with the 10 nearest neighbors (K = 10)
and o for the weight matrix (Section 2.4.1) is set to the average distance of the 10-
nearest neighbors. Various values of v in the range of [0, 10] are tested for denoising
(Algorithm 1). The best v is selected based on the minimum ¢ reconstruction for
the phantom. The denoised sinogram was reconstructed using Kaczmarz, Cimmino’s
Method, the relaxation parameter A\ was also tuned to achieve best semi-convergence
results. FBP reconstructions were linearly interpolated and ram-lak filtered.
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Figure 2.7: The phantom, reconstructions and intensity profiles of reconstructing
a 128 x 128 ring phantom from 71 equally spaced projections with a missing wedge
(—=70° < 6 < 470°) in the middle. It can be clearly seen that the effect of missing
wedge elongation is prominent in the graph-denoised reconstructions. However, it can
be seem from the intensity profiles that the overall noise in the reconstruction is much
more constrained.
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Conclusions

Fig. 2.7 shows the reconstructions and intensity profiles of the reconstructed ring phan-
tom. The reconstructions from the graph denoised sinogram are much more cleaner and
the intensity profiles are more constrained. In order to investigate the amount of high
frequency details compromised a radially averaged power spectrum? was calculated and
the results are shown in Fig. 2.8. It can be clearly seen from both the reconstructed
phantoms as well as from the RAPS that due to the missing wedge elongation and
missing data effects the edges of the circles are elongated. This shows up as high fre-
quency details in some methods. The graph denoised reconstructions are much more
constrained. The RAPS in general shows that all reconstruction methods employed
are able to deduce the basic structure of the phantom being reconstructed given the
fact that for lower wave numbers the spectrum is very similar. For higher frequency
FBP in specific adds superfluous details in the reconstruction as seen from the RAPS
its spectrum reaches beyond the ground truth. All reconstructions from the graph
denoised sinogram are closer to the ground truth demonstrating that although there is
some loss in frequency the lost component may be from superfluous higher frequency
details and noise. That said, the proposed method does not guarantee perfect recovery
and the final results will always depend on the type of data being reconstructed and
the amount of noise present in the data. It should be noted that given the fact that
the sinogram is being denoised all reconstructions give a better ¢y error rate except
for situations when + is too high that it smooths out all useful information from the
sinogram. For this reason /5 errors have not been used as a metric for this and pro-
ceeding experiments in this chapter. However, they were used as a stopping criteria for
some algebraic reconstructions as well as for tuning the regularization and relaxation
parameters!®

Experiment 2.4: Effect of Graph Sinogram Denoising on the Missing Edge
using a 256 x 256 Shepp-Logan Phantom

Aim

To investigate the extent of improvement that can be achieved by denoising a sinogram
corresponding to a 256 x 256 Shepp-Logan Phantom with a missing wedge using graph-
based Total Variation using ART (Kaczmarz Method) and FBP.

Method

The methodological setup is exactly the same as experiment 2.3 except there is 7%
noise added to the sinogram. All parameters were tuned to achieve best results.

9The radially averaged power spectrum (RAPS) is the mean spectrum independent of direction
in the image. More specifically, it is the average of all possible directional power spectra.The metric
provides an easy way to compare and contrast information contained in 2D spectra in 1D.

0An interesting future direction is to choose the regularization parameter () of the sinogram
denoising and the relaxation parameter for algebraic methods (A) based on both the ¢3 error norm
as well as RAPS. Choice of these parameters is an open research problem and it is non-trivial to find
rules that can be generically applied to all types of data.
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Figure 2.8: Radially averaged power spectrum (RAPS) of ring phantom reconstruc-
tions using FBP(linearly interpolated, ram-lak filtered), FBP using GD-Sinogram ART
(Kaczmarz, SC=100), ART using GD-Sinogram, SIRT(Cimmino, SC=100) and SIRT
using GD-Sinogram. This clearly shows that all methods are able to determine the
basic structure of the phantom as seen from the lower wave number values. Due to
the missing wedge and noise some methods add extra high resolution details to the
result which are erroneous and incorrect. These erroneous high resolution details can
be reduced by non-locally denoising the sinogram using the proposed method.
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Conclusion

Fig. 2.9 shows the reconstructed phantoms and intensity profiles. The missing wedge
elongation is certainly much larger in FBP but this can be reduced to some extent
with standard algebraic methods even when GD sinogram is not employed. The graph
denoised reconstructions are much cleaner and have constrained amount of noise. Fig.
2.10 shows a particularly interesting behavior for FBP, regular reconstruction in this
case is adding too much erroneous high frequency details in the reconstructed image. It
should be noted that this is not always the case, and depending on the randomized noise
added the reconstruction may not add too many high frequency details which are not
true. However, this effect becomes more prominent with missing data due to streaking
artifacts and the missing wedge elongation. On using FBP with the graph-denoised
sinogram it becomes over-smoothed and loses most high frequency details. This is
remedied by using iterative ART or SIRT. It should be noted that both GD-ART and
GD-SIRT stay below the ground truth, 7.e., they possibly don’t include high frequency
details which are erroneous but do lose resolution while covering up for those details.
That said, some amount of resolution loss is expected from all denoising methods. It
has been shown in previous literature that non-local graph-based methods preserve
higher frequency details better than local denoising methods, thus a direct comparison
between local and non-local sinogram denoising was tested but not included in this
chapter.

Experiment 2.5: Results with Real Data
Awm

To investigate the extent of improvement that can be achieved by denoising a sinogram
when reconstructing real Cryo-ET data from a biological specimen.!!

Method

A 256 x 256 cryo-ET image from open-sourse EMD database was emulated to generate
141 equally spaced projections with a missing wedge in between, the 1D aligned pro-
jections had noise which is naturally added during data collection hurdles mentioned
in Chapter 1. A sinogram was constructed and denoised using graph total variation
according to the setup explained earlier while tuning the regularization parameter, ~.
The projections were reconstructed using FBP and GD-FBP and intensity profiles and
RAPS was analyzed.

1 This thesis focuses on image reconstruction from a methodological prospective and testing of these
methods on real data and to answer specific biological questions is beyond the scope of this thesis.
This is basically because these methods are evolving and the focus of these methods is to improve
image reconstruction methodology which is much more evident from Chapter 3. These results are
presented as a teaser for how this method can behave in a real data setting, to achieve a better result
more investigation in necessary in terms of parameter tuning and reducing the complexity of graph
construction. The computational complexity associated with graph construction is O(n?) which can
be significant for large datasets.
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Figure 2.9: The phantom, reconstructions and intensity profiles of reconstructing a
256 x 256 Shepp-Logan phantom from 71 equally spaced projections with a missing
wedge (—70° < 0 < +70°) in the middle. It can be clearly seen that the effect of missing
wedge elongation is prominent in the graph-denoised reconstructions. However, it can
be seen from the intensity profiles that the overall noise in the reconstruction is much
more constrained.
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Figure 2.10: RAPS of the Shepp-Logan phantom reconstructions using FBP(linearly
interpolated, ram-lak filtered), FBP using GD-Sinogram ART (Kaczmarz, SC=100),
ART using GD-Sinogram, SIRT(Cimmino, SC=100) and SIRT using GD-Sinogram.
This clearly shows that all methods are able to determine the basic structure of the
phantom as seen from the lower wave number values. Due to the missing wedge and
noise some methods add extra high resolution details to the result which are erroneous
and incorrect. These erroneous high resolution details can be reduced by non-locally
denoising the sinogram using the proposed method.
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Figure 2.11: Figure showing the FBP and GD-FBP reconstruction of Cryo-ET em-
ulated data as well as their RAPS and intensity profiles. The data used is from EMD-
4067. It can be seen that although the image reconstructed from the graph-denoised
image is smoother it loses significant frequency details. There high frequency details
could also be from noise. The image was reconstructed from 141 1D projections. Data
used is from an Influenza virus available from opensource EM-Data-Base Entry: 4067.

Conclusions

Fig. 2.11 shows reconstructions, intensity profiles and the RAPS. It can clearly be
seen that the FBP reconstruction has a higher RAPS as compared to the GD-FBP
reconstruction. This makes sense since the sinogram is denoised. Although FBP has
higher frequency details as seen from simulated data in the previous experiments it is
evident that these details can come from erroneous details due to missing data and
missing wedge elongation which are picked up by the method. The intensity profile
shows recovery of the signal while loosing some high intensity information.

2.7 Limitations and Shortcomings

The major limitation of this work is the fact that although non-local TV can perform
better than local TV and filtering based methods to denoise the raw data it does not
come with a guarantee of signal recovery without loosing high frequency details in
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the image. Another constraint is that the current method needs to build a nearest
neighbor similarity patch graph on overlapping patches. This process has a complexity
which scales with O(n?®). Although graph construction can be approximated using
procedures discussed in the proceeding chapter, the approximation procedure should
not be preferred for sinogram denoising. Graph approximation is fine when graphs are
being used to promote sparsity in compressed sensing type reconstructions since the
error originating from the approximation will have minimal effect on the final results.
While manipulating raw data this type of approximation may generate minor denoising
errors that can become arbitrarily large during the reconstruction process.

Another factor contributing to the complexity of the method is that for real 3D
data the degree of similarity has to be associated with all 2D projections, this can
be achieved by tensor processing where a cube instead of a patch graph is built and
a weight matrix is constructed on overlapping cubes. This further contributes to the
complexity. Given the fact that tensor-based non-local processing is still an active
research area and procedures of complex multidimensional non-local processing are
still under development further contributes to the problem. An approach to remedy
this is to rearrange the data in a way that each 2D matrix of the 3D sinogram has a
column or row of pixels originating from the same column or row in the 2D projections.
This can be proceeded by denoising each 2D layer of the 3D sinogram non-locally slice
by slice. Although this method could produce interesting results it will fail to associate
various regions of the sinogram and the risk of artifacts would be high.

Another major shortcoming is the tuning for the regularization parameter. Selec-
tion of such parameters in an open research problem not only for Cryo-ET but for
inverse problems in general. In this case the selection is more critical because we
are manipulating the raw data, in the case of variational regularization based recon-
struction methods where the fit and the regularity of the solution is being balanced
iteratively, this is much less of a problem. Choosing a high regularization parameter
can overly smooth the sinogram whereas choosing a small parameter can increase the
noise in the reconstruction. The solution to this is testing each problem with all possi-
ble parameters and estimating the parameter for similar problems. Moreover, as seen
from the results, the proposed method does not have the ability to recover missing
data. The effects seen on the missing wedge are merely the effect of smoothing.

2.8 Conclusions

This chapter presented a sinogram denoising preprocessing method based on non-local
graph denoising. The method is interesting in the sense that it makes use of the fact
that unlike the reconstructed image the sinogram has a piecewise smooth structure
because of the high degree of redundancy in the data. The effectiveness of the method
was shown with a variety of phantoms in several different conditions as well as some
real data. Although, the method can denoise the reconstructions it does not have
the ability to reconstruct missing data. This study is proceeded by a more complex
non-local simultaneous denoising and reconstruction method in the next chapter which
makes use of modern sparsity exploiting image reconstruction and shows how they can
be used to partially recover missing data.






Chapter 3

Adaptive Graph Total Variation for
Tomographic Reconstructions

3.1 Chapter Outline

Sparsity exploiting image reconstruction (SEIR) methods such as compressed sensing
(CS) have been extensively used with Total Variation (TV) regularization for a variety
of inverse problems including tomographic reconstructions. Over the past few years
the interest in CS has exponentially grown due to the ability of such methods to
reconstruct from limited data. Local TV regularization methods fail to preserve texture
details and often create additional artifacts due to over-smoothing. Non-Local TV
(NLTV) has been recently proposed as a solution to this but lacks continuous update
and becomes computationally complex if updated every iteration. In this chapter we
propose Adaptive Graph-based TV (AGTV). Similar to NLTV our proposed method
goes beyond spatial similarity between different regions of an image being reconstructed
by establishing a connection between similar regions in the image regardless of spatial
distance. However, it is computationally more efficient and involves updating the graph
prior during every iteration making the connection between similar regions stronger.
Moreover, it promotes sparsity in the wavelet and graph gradient domains. Since TV
is a special case of graph TV the proposed method can also be seen as a generalization
of SEIR and TV methods!. Extensive experimentation shows that when compared to
other state-of-the-art methods the proposed method achieves a better result in terms of
reconstructing from missing, noisy and erroneous data while preserving high frequency
components of the signal. This work has been archived as [67].

3.2 The Story So Far

Chapter one introduced the fundamental concepts, challenges and problems associated
with Cryo-ET in specific and tomography in general. This was proceeded by Chapter 2
which introduces and analyses a pre-processing-based method to denoise the raw data

LDr.Bo Zhao of Harvard University deserves to be acknowledged for pointing this interesting aspect
of the method at the 38" IEEE Engineering in Medicine & Biology Conference, Orlando, FL. Aug,
2016.
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before it is reconstructed. Although, graph-based non-local denoising works better
than standard SIRT and ART reconstructions it still manipulates the raw data which
comes with a risk of loosing useful information while smoothing the raw sinogram.

As mentioned in Chapter one tomographic modalities such as electron tomogra-
phy (ET) and computed tomography (CT) suffer from low-dose and missing data con-
straints which lead to noisy and erroneous reconstructions. In the case of ET, biological
samples are rotated in a transmission electron microscope (TEM) and cannot be ex-
posed to high levels of electron dose because it leads to the degradation of the sample
[4, 9]. Whereas, in the case of CT low-dose has been a clinical objective to prevent the
patient from over exposure to ionizing radiation [68-70]. One way to reduce the dose is
by reducing the number of projections or views collected during tomographic imaging.
However, this leads to missing data, which results in reconstructions effected by noise.
In short, like several other tomographic modalities the Cryo-ET reconstruction problem
is made tedious by the fact that the problem is ill-posed due to under sampled, missing
and noisy raw data and has no unique solution. In other words the system of linear
equations being solved is highly under-determined, making signal recovery difficult.

A variety of analytical [21, 37, 71] and iterative image reconstruction |7, 15, 39, 72—
74] algorithms have been employed over the years to deal with the low-dose and missing
data problem. Iterative image reconstruction (IIR) methods traditionally yield more
favourable results when reconstructing noisy and missing data due to their regular-
ization properties and ability to incorporate prior knowledge. Algebric IIRs such as
ART, SIRT and their variants have mild regularization capabilities steming from their
semi-convergance properties [18, 31]. Recent statistical approaches to IIRs are often
based on the Ordered Subset (OS) technique [39, 75-77].

3.3 Sparsity Exploiting Image Reconstruction (SEIR)

Over the recent years the concepts of recovering a signal from under-sampled raw data
have undergone a major paradigm shift. This is due to the development of a new class
of algorithims known as sparsity exploiting methods (SEMs) with compressed sensing?
[78, 79| at its core. It has been well known that prior knowledge can improve signal
recovery for tomographic reconstructions. This prior knowledge can be as little as
knowing that the outcome is non-negative. Compressed Sensing exploits the fact that
most signals are sparse or compressible in some known transform domain. However, for
realistic applications CS alone is not sufficient to cater for the sparsity of the Gradient
Magnitude Image (GMI), therefore, it is used along with Total Variation (TV) in CT
and ET [79-84|. The joint CS and TV setup is referred to as CSTV in the sequel. The
authors of [66] use CSTV for ET and show that the reconstruction error is better than
other iterative algorithms when reconstructing from limited data. A comparison of
statistical iterative reconstruction methods with CSTV has been provided in [83]. An
analysis of the CSTV method for reconstructing needle shaped biological specimens is

2 Also known as compressive sensing, compressive sampling. The label, “Compressed Sensing(CS)”
has been used in a variety of different ways in various literature. Although, initial literature suggests
that CS should be associated with methods where these is an absolute guarantee of signal recovery,
there is a plethora of literature where CS simply means sparsity exploiting reconstruction.
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presented in [17]. CSTV has also been used in photo-acoustic tomography as presented
by the authors of [85]. A concise review of the iterative reconstruction algorithms,
including TV regularization methods is presented in [43].

A more advanced type of TV regularizer, known as the non-local TV (NLTV) [86]
has been shown to be much more efficient for inverse problems, such as denoising,
inpainting and super-resolution [52, 87|. In contrast to simple TV, which takes into
account the similarity of a region with only its neighboring regions, NLTV overcomes
this limitation by associating a similarity measure of every region of an image with
all other regions (full NLTV) or a few regions in the spatial neighborhood (partial
NLTV). This will be explained in more detail in the upcoming sections of this chapter.
As an application of NLTV, the authors of [88] presented a reconstruction method
for Magnetic Resonance Imaging (MRI) via CS. NLTV has been further explored in a
spectral CT setting in [89, 90].

A primary short-coming of full NLTV-based methods used in CT, ET and MRI
settings is that the similarity matrix constructed in the beginning from the initial
estimate of the sample is not updated throughout the algorithm, for example [88|.
The authors of [89] construct a similarity matrix from the solution of a TV based
minimization method and then keep it fixed throughout the algorithm. A primary
reason for keeping it fixed is that the NLTV based method suffers from a high cost of
associating a similarity measure between every pair of regions in an image / sample.
For an image of the size n x n, NLTV costs n* and is computationally cumbersome for
high resolution applications. Furthermore, it does not make sense for every region to be
connected to all other regions. Therefore, NLTV requires a threshold parameter which,
based on the euclidean distance can decide if the similarity is strong enough to be non-
zero. However, there is no appropriate method to fix this parameter and it depends on
the scale of pairwise distances. Although, the results obtained by the above methods
are state-of-the-art, the final reconstruction would be more faithful to the original
one if one updates the similarity matrix from the simultaneously reconstructed sample
regularly throughout the algorithm.

Contributions

In this chapter Compressed Sensing and Adaptive Graph Total Variation (AGTV) is
proposed as a method for simultaneous reconstruction and denoising of tomographic
data. The method uses a more sophisticated and scalable form of NLTV and has a
much lower computational complexity as compared to NLTV?. The proposed method
promotes the use of K-nearest neighbor graphs in Graph Total Variation (GTV), where
IC is fixed and unlike NLTV, does not depend on the scale of the pairwise distances.
The graph is constructed by using an approximate nearest neighbor search algorithm
(FLANN) [91]. Furthermore, our method requires updating the GTV prior in every

3The proposed method is computationally less complex when compared to an adaptive version of
full NLTV. Generally, NLTV in literature is non-adaptive and keeps the similarity matrix constant.
The difference between AGTV and NLTV has to be clarified, the proposed method AGTV is a CS-
type sparsity exploiting reconstruction method which uses graph-based non local TV as an additional
sparsifying transform. NLTV in the context of this chapter it means a similar setup to AGTV where
NLTYV is used as an additional sparcifying transform
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iteration by constructing a new graph from simultaneously reconstructed sample.

3.4 Compressed Sensing & Adaptive Graph Total Vari-
ation

Our proposed method involves simultaneous denoising and reconstruction of tomo-
graphic projections and constitutes the following important components:

1. Compressed sensing type sparse reconstruction.

2. Adaptive Graph total variation reqularizer for improved denoised reconstruction.

3.4.1 Optimization Problem

We first present the optimization problem under consideration and then study each of
the terms of the objective function in detail. Let S € RP*? be the sinogram correspond-
ing to the projections of the sample X € R"*" being imaged, where p is the number
of rays passing through X and ¢ is the number of angular variations at which X has
been imaged. Let b € RP? be the vectorized measurements or projections (b = vec(S)),
where vec(-) denotes the vectorization operation and A € RP17* he the sparse pro-
jection operator. Then, the goal in a typical tomographic reconstruction method is
to recover the vectorized sample = = vec(X) from the projections b. A highly under-
determined inverse problem needs to be solved for this type of reconstruction, which is
even more tedious if the projections b are heavily corrupted with noise, measurement
errors and missing data. To circumvent the problem of noisy projections, we propose

min || Az — b5 + A2 (2) |1 + [2[lgto, (3.1)

where @ is the wavelet operator and ®*(x), where  represents the adjoint operation,
denotes the wavelet transform of  and x4, denotes the total variation of x w.r.t graph
G. The first two terms of the objective function above comprise the compressed sensing
based sparse reconstruction part of our method and the third term, to which we refer
as the graph total variation (GTV) regularizer acts as an additional prior for denoising
and smoothing the reconstructed sample. These two components are explained in detail
below:

3.4.2 Compressed Sensing

Compressed Sensing (CS), introduced in the seminal papers of Donoho [78] and Candes
et. al. [92] guarantees the recovery of a data sample from highly under-sampled
measurements if the sample to be recovered can be sparsely represented in a basis.
CS exploits fundamental principles of sparse approximation and transform coding that
were established for image compression algorithms e.g. sparse representations from the
discrete cosine transform (DCT) and the discrete wavelet transform (DWT) form the
basis of the JPEG and JPEG-2000 image compression formats. Generally, for image
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compression after an image is sampled and its transform coefficients are calculated,
smaller insignificant coefficients are discarded and fewer large components are stored.
Since there are fewer large components, given the correct choice of the transform, the
representation of the image can be considered as ‘compressed’. Thus the major goal to
compress an image is to represent it in as few coefficients as possible while still being
able to reconstruct a reasonable quality image. In CS this concept of compressibility
and transform sparsity is exploited during initial acquisition. The simplest way to
understand CS is to think of the data acquisition process as a system of collecting a
compressed form of data that has to be recovered. In this case the fundamental aim
would be to record a small number of samples which best represent the important
information in the signal such that they can be recovered perfectly. In the case of
any tomographic experiment the measurements will be line integrals, and the sensing
waveforms are the projected lines through the sample.

Let z € R™ be the vectorized CT sample under consideration and ® € R"*"* be
the fourier basis, whose columns contain the fourier atoms. The proposed model, as
described earlier, uses wavelets, however for the ease of description and explanation
compressed sensing is explained with a Fourier matrix instead. For the case of Fourier
matrix, ®*(x) = ®"x and one can sparsely represent the sample z in ® as:

r = Z(I)'ch = (I)C,

where ||c||o < n?, i.,e the number of non-zeros in ¢ is much less than n. The sparse
coefficients ¢ are also referred to as the transform codes. Given this assumption, it
is possible to estimate the unknown z from highly under-sampled measurements or
projections b € RP4, where pq < n?. The projections or the measurements b can be
obtained by applying a projection or sampling operator A € RP?*"* o the sample .
Thus, the projections b can be given as:

b= Ax = Adc
Given b, it is possible to recover x by solving the following sparse recovery problem

min |7z, s.t: Az =b,
xT

where ®7 denotes the forward transform (Fourier transform if ® is a Fourier matrix).
In case the projections or measurements b are contaminated with noise, one can solve
the following recovery problem:

min || Az — b||3 + \| DTz,

where ) is the regularization parameter which provides a trade-off between the sparsity
and noise tolerance.

For tomographic applications, the projection matrix A is a line integral computed
by rotating the sample x at different angles and the projections b are typically corrupted
by Poisson noise. Therefore, CS is not only used as a reconstruction algorithm but also
provides robustness to noise. However, in case of a high fraction of noise, CS fails to
recover the sample efficiently, therefore, we propose to add another regularization term
to our setup as explained below. More detail regarding CS methods and their variants,
capabilities, properties and interesting applications can be found in [93-96].
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3.4.3 Graph Total Variation

The graph total variation (GTV), denoted as ||z 4, in eq. (3.1), like the standard
TV has two types 1) anisotropic and 2) isotropic. The former involves the sum of
the gradients of nodes (entries in z) w.r.t G and the later involves the sum of the Iy
norms of the gradients at each node of G. Throughout this chapter we use the former
formulation as it has an intuitive interpretation, thus

lzllge =1Vg(@)lh = D IVgzilh

:ZZ VWijllzi = ], (3.2)

i JEN;

where the second sum runs over all the neighbors of i, denoted by A;. The above
expression clearly states that GTV involves the minimization of the sum of the gradients
of the signals on the nodes of the graphs. In our case, we assume that the elements
of the vector x lie on the nodes of the graph G which are connected with the edges
whose weights are W;;. Thus, the minimization of the GTV would ensure that z; and
x; possess similar values if W;; is high and allow dissimilar values if W;; is small or
zero. As compared to the standard TV, the structure of the sample z is taken into
account for the reconstruction purpose. It is a well known fact that /; norm promotes
sparsity, so the GTV can also be viewed as a regularization which promotes sparse
graph gradients. This directly corresponds to enforcing a smoothness of the signal x
w.r.t graph G.

The proposed method with GTV can be seen as a generalization of the compressed
sensing and total variation based methods since standard TV commonly used with CS
15 Just a special case of GTV. While, the standard TV minimizes the gradients of the
signal x w.r.t its spatial neighbors only, the GTV does so in a region which is not
restricted only to the neighbors of the elements in x. Thus, the standard TV can be
viewed as a specific case of the GTV, where the graph G,.q is a grid graph. In a grid
graph G,,.q of a sample x, the pixels are only connected to its spatial neighbors (upper,
lower, left and right) via unity weights.

Using eq. (3.2) in eq. (3.1), our proposed model can be written as:

min [|Az — b5 + A|2"(z) ][ + [ Vgzls (3-3)

Now using x = ®(c) we get

min [|A®(c) — bl[3 + Allells + ([ Vg(2c) s (3.4)

From the above equation it is obvious that our proposed model promotes simulta-
neous sparsity of the transform coefficients ¢ in the Wavelet domain ® and the sparsity
of the gradients in the graph domain. Hence, the model can be viewed as promoting a
doubly sparse structure in wavelet and graph domains respectively.
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Shepp Logan Phantom n x n overlapping patches of size | x [

Figure 3.1: For the construction of patch graph, zp, € R™" is divide into n?
overlapping patches of size [ x [ each.

3.4.4 Graph Construction for Total Variation

An important step for our method is to construct a graph G for TV regularization. In
contrast to standard TV, which can be directly used as a prior for regularization, GTV
needs a graph G to start with. Ideally, G should be representative of the reconstructed
sample x, however, this is unknown before the reconstruction. To cater this problem,

we propose to construct G from an initial naive estimate of the sample zy,, using
filtered back projection (FBP) method.

We propose to construct a graph between the patches of x;, instead of pixels. As
the sample to be reconstructed is an image, and the graph is being constructed from
the noisy zy,, to obtain robustness to noise, it makes more sense to construct the
graph from the patches rather than the pixels of x,,. In the first step zs, € R™*"
is divided into n? overlapping patches. Let s; be the patch of size | x [ centered at
the it" pixel of Ty and assume that all patches are vectorized, i.e, s; € R (Figure
3.1). In the second step the search for the closest neighbors for all vectorized patches
is performed using the Euclidean distance metric. Each s; is connected to its I = 10
nearest neighbors s;, resulting in |£| number of connections. In the third step the
graph weight matrix W is computed using the Gaussian kernel weighting scheme (eq.
(2.1)), for which the parameter o is set experimentally as the average distance of the
connected samples. Finally, the combinatorial Laplacian is computed.

Note that the computation of the weight matrix W for graph G costs O(n?). For
small n?, we can use the above strategy directly. Although, the computation of W is
expensive, it should be noted that with sufficiently small n?, the graph can still be com-
puted in the order of a few seconds. For big or high dimensional samples, i.e, large n?,
we can use a similar strategy but the computations can be made efficient (O(n? log n?))
using the FLANN library (Fast Library for Approximate Nearest Neighbors searches
in high dimensional spaces) [91]. However, the quality of the graphs constructed using
this strategy is slightly lower due to the approximate nearest neighbor search method.
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Sinogram b € R4 FBP aj, € R Patch graph construction Final reconstruction x € R"*"
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Figure 3.2: The complete methodology for AGTV. The input sinogram / projections
b € RP*? is first used to obtained a filtered back projection (FBP) x s, € R™™. It is
then used to construct the initial patch graph G to be used by the CSGT method. The
output of CSGT is used to refine / reconstruct the graph and this process is repeated
until convergence.

3.4.5 Adaptive Graph Total Variation Regularization

The above description refers only to the non-adaptive part, where the graph G is fixed.
It is important to point out that the initial estimate of the graph G, obtained via
the filtered back projection z ), is not very faithful to the final solution z. As x is
being refined in every iteration, it is natural to update the graph G as well in every
iteration. This simultaneous update of the graph G corresponds to the adaptive part
of the proposed algorithm and its significance will be explained in detail in Section 3.6
of the chapter.

3.5 Optimization Solution

We make use of proximal splitting methods to solve problem (3.3). The specialty
of such methods is that they can resolve a tedious complex problem into smaller and
relatively trivial subproblems which are solved using proximal operators. The proximal
operator of a function Ah is defined as follows:

1
proxy,(y) = argmin 2 [lz — y|l3 + Ah(z).
More detailed information about such methods can be found in [57, 97].

3.5.1 Forward-Backward based Primal Dual Solver

We cast our problem in the form and use the Forward-backward based primal dual
method to solve it.

argarcnin f(z) + g(Az) + h(B(z)). (3.5)

The first term of (3.1), f : R"” — R is a convex differentiable function defined as
f(z) = ||Ax — b||32. This function has a S-Lipschitz continuous gradient

Vi(z) =2AT (Az —b).
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Note that g = 2||A||> where ||A]|2 is the spectral norm (or maximum eigenvalue) of A.
The constant § has important implications in deciding the time step in the iterative
optimization methods.

The proximal operator of the second function g = A||®*(x)||; (in eq. 3.3) is the ¢,
soft-thresholding of the wavelet coefficients given by the elementwise operations.

prox, ,(z) = sgn(x) o max(|z| — 1A, 0), (3.6)

The third term in eq. (3.3) h : REI" — R, where |£| denotes the cardinality of £
the set of edges in G, is a convex function defined as h(D) = v||D||;. The proximal
operator is:

prox, , (D) = sgn(D) o max(|D| — 757,0), (3.7)

where o denotes the Hadamard product and D = Vgx. Further details regarding
forward backward solvers have been reviewed in [57, 98-100].

3.5.2 Algorithm

Using these tools, we can use the forward backward based primal dual approach pre-
sented in [97] to define Algorithm 2 where 7y, 7, 73 are convergence parameters € the
stopping tolerance and I,J the maximum number of iterations. ¢ is a very small
number to avoid a possible division by 0. Since we use Unlocbox [58] for solving the
optimization algorithm, the convergence parameters 7, 7, 73 are set automatically ac-
cording to the specified 3. U; corresponds to the primal and V; to the dual variable in
Algorithm 2.

More specifically, Algorithm 2 is based on a forward-backward approach [57]. It
combines a gradient descent step (forward step) with a computation step involving a
proximity operator (step la in Algorithm 2). Note that the gradient in this step is w.r.t.
the differentiable function f, to which the result of the application of adjoint operator
of g, i.e, Vg is added. Then, the proximity step corresponds to the application of the
proximal operator of h, which is an element wise soft-thresholding, on this result. This
computation corresponds to a kind of subgradient step performed in an implicit (or
backward) manner [57]. A deeper justification of this terminology is provided by the
theory of monotone operators [100].

3.5.3 Computational Complexity
Complexity of Graph Construction

As mentioned earlier we use the Fast Approximate Neartest Neighbors search algorithm
(FLANN) [91]. The computational complexity of the FLANN algorithm for n? patches
of size I each and fixed K is O(n?log(n?)). Note that {* and K do not appear in the
complexity because they are constants. Furthermore, n? is the size of the sample under
consideration so the computational complexity is much lower than NLTV [52| based
methods.
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Algorithm 2 Forward-backward primal dual for AGTV
o = xfbp
1. INPUT: Uy = z¢, Vo = Vgzxg, € >0
fori=0,...1 —1do
for 7=0,...J—1 do
a. P; = ®(prox,,, (®*(U;) — n®* (V,(U;) + V5V;))
b. T’] = ‘/] + TQVg(ZPj - U])
c. Q;="1T; — T2 PIOXL, <T—12T]
d. (Ujs1, Vita) = (U, Vy) + (P, Q;) — (U;, V5))
ifw<eandw<ethen
U;1%+6 V;lI346
BREAK
end if
end for

2. Ty =Ujp1
3. Construct patch graph G from z;

if —Hﬁr;ﬁéjg% < € then
BREAK
end if
end for

OUTPUT: z;

Algorithm Complexity

Let J denote the number of iterations for the algorithm (the for loop in Algorithm 2)
to converge, and I the number of outer iterations (step 4 of Algorithm 2), then the
computational cost of our algorithm is O((J|€|I), where |E| denotes the number of
non-zeros edges in the graph G. For a K-nearest neighbors graph |£| ~ Kn? so the
computational complexity of our algorithm is linear in the size of the data sample n?,

i.e O((JKn2I).

Overall Complexity

The complexity of our algorithm is O((JKn?I) and the graph G is O(n*log(n?)). The
graph G needs to be updated once in every outer iteration of the algorithm I, thus
the overall complexity of the proposed AGTV method is O(IJKn?+ In*log(n)).* The
complexity term does not depend on the image size. The iterations in Algorithm 2 are
independent of image size. However, it takes longer for the optimization problem to
converge for large size images, as will be shown in the experiments.
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Figure 3.3: A comparison of the Total Variation (TV) and Adaptive Graph Total
Variation (AGTV) priors for the methods CSGT and AGTV. The TV prior does not
connect patches ‘a’ and ‘b’ which possess structural similarity, whereas the GTV prior
connects them because the K-nearest neighbor graph is not restricted to spatial neigh-
bors only. Furthermore, this connection keeps getting stronger due to iterative removal
of noise and graph updates in every iteration.

3.6 Working Explanation of AGTV

We present a simple example to motivate the use of AGTV rather than simple CSGT
and CSTV?®. Clearly, the compressed sensing part of all these methods is responsible
for retrieving the sample x from the projections b. Thus, our comparison study is
focused on the two regularizers, i.e, Adaptive Graph Total Variation (AGTV) and
Total Variation (TV). Our two step exposition is described below:

1. CSGT is better than CSTV.
2. Adaptive Graph Total Variation (AGTV) is better than CSGT.

Consider the example of a Shepp-Logan Phantom as shown in top leftmost plot of
Fig. 3.4. The goal is to recover this phantom from its noisy projections so that the
recovered sample is faithful to its original clean version. The CSTV method requires
a total variation prior to recover the sample while the CSGT method requires a graph
total variation prior for the recovery. Both methods need an initial estimate for the
construction of this prior, therefore, for the ease of demonstration we use the filtered
back projection (FBP) as an initial estimate of the sample. Recall that our proposed
method decomposes the FBP into n x n patches of size [ x [ each. Let (4, j) denote the
(horizontal, vertical) position of the center of each patch then:

e [or the total variation, each patch s; ; is connected to its spatial neighbors only,
©.€, Siy1,j,Si—1,j,Sij+1,5ij—1, as shown in Fig. 3.3. These connections are fixed
throughout the algorithm.

e For the graph total variation, each patch s;; is only connected to the patches
which are among the K nearest neighbors. Note that unlike TV the connected
patches can be spatially far from each other.

4The square term in the log complexity may be further simplified: O(n?log(n?)) = O(2n?log(n)) =
O(n?log(n)).

5The acronyms can get confusing here. AGTV is the proposed method which is a combination of
CS and adaptive Graph TV. CSTV is the classical method of using CS and local TV. CSGT is CS
and Graph TV (i.e., similar to AGTV but similarity matrix is not updated during every iteration).
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Now let us take the example of two patches ‘a’ and ‘b’ as labeled in the FBP of
Fig. 3.3. Comparing with the clean phantom in Fig. 3.4 it is obvious that these
patches should possess the same texture at the end of the reconstruction algorithm.
Therefore, an intelligent regularizer should take into account the inherent similarity
between these patches. To explain the difference between the TV and GTV priors
we use a point model as shown in Fig. 3.3, where each point corresponds to a patch
in the FBP. Since ‘a’ and ‘b’ are not spatially co-located, the total variation prior
does not establish any connection between these patches. Thus, TV fails to exploit
the similarity between these patches throughout the algorithm. This leads to slightly
different textures for the two patches, as shown in the 3rd row of Fig. 3.4.

Now consider the case of GTV. Even though the intial estimate of graph G is
obtained from the noisy estimate of sample, i.e, the FBP, patches ‘a’ and ‘b’ still
possess enough structural resemblance to be connected together by an edge (even if it
is weak) in the graph. Now, if the graph is kept fixed which is the case of CSGT, one
still obtains a better result as compared to CSTV, as shown in the 5th row of Fig. 3.4.
This is due to the fact that the important connections are established by the graph
G and similarity of patches is not restricted to spatially co-located patches only. This
is also obvious from the intensity profile analysis in the 6th row of Fig. 3.4. Finally,
we discuss the case of AGTV, where the graph G is updated in every iteration of the
algorithm. Obviously, every iteration of the algorithm leads to a cleaner sample and
updating the graph G is only going to make the connection between the patches ‘a’ and
‘b’ stronger. This leads to significantly better result than CSTV and CSGT as shown
in Fig. 3.4. Note that the patches ‘a’ and ‘b’ possess almost the same structure at the
end of AGTV.

3.7 Experimental Results

General Experimental Setup

Experiments were performed using two open source toolboxes, GSPBox [101] for the
graph construction and UNLocBox for the convex optimization part [58]. These tool-
boxes provide fast and efficient general purpose algorithms, with an automatic tuning
of many implicit non-model parameters, such as step size for iterative optimization
algorithms. Additional code was written in MATLAB to enable AGTV with these
packages. To test the performance of our AGTV method, we perform reconstructions
for many different types of phantoms from different number of projections with varying
levels of Poisson noise. Throughout this section, we report the reconstruction results
of various phantoms in terms of the ¢y reconstruction error. We compare the perfor-
mance of AGTV with many state-of-the-art iterative and convex optimization based
algorithms, which include FBP, ART (Kaczmarz), SIRT (Cimmino), CS, CSTV and
CSGT. Simulation setup pertaining to more realistic Cryo-ET simulations which in-
corporate the effects of the missing wedge and simulated shift between the projections
was according to Experiment 2.3 presented in Chapter 2. Each of these methods has
its own model parameters, which need to be set or tuned in an appropriate manner.
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Experiment 3.1: Effectiveness of AGTV when compared to algebraic and
state-of-the-art SEIR methods.

Aim

To demonstrate the effectiveness of reconstructing a noisy Shepp-Logan phantom from
limited data using AGTV when compared to algebraic methods (ART, SIRT) and SEIR
methods (CS,CSTV,CSGT).

Method

To explain the performance of our model in detail we reconstructed a 64 x 64 Shepp-
Logan [26] phantom from 36 erroneous projections. A sinogram .S was built by pro-
jecting the phantom using Radon transform and 36 equally spaced projections were
collected from 0 to 180 degrees. The projections were then corrupted with 10% Pois-
sion noise. ART (Kaczmarz) and SIRT (Cimmino) were performed using FBP as a
priori. The stopping criteria for ART and SIRT was set to 100 iterations and the
relaxation parameter () was tuned to achieve the best result. For the CS method,
the reconstruction was performed for uniformly spaced values of A in the range (0, 10)
and the best A\ was selected based on the minimum /¢ reconstruction for the phan-
toms. For CSTV, the reconstruction was performed for sparsity parameter A € (0, 1)
and TV parameter v € (0,10) and the parameters for the best result were selected.
The ranges were defined linearly following a more exhaustive logarithmic range search.
For the graph based reconstruction (CSGT, AGTV) a graph prior G was generated by
dividing the result from FBP into patches as explained in Section 3.4.4. For example,
for a Shepp-Logan phantom of size 64 x 64, the graph was constructed by dividing it
into 64 x 64 = 4096 overlapping patches of size 3 x 3. A graph G was constructed
between the 4096 patches with 15 nearest neighbors (X = 15) and o for the weight
matrix was set to the average distance of the 15-nearest neighbors. The number of
nearest neighbors is usually set via hit and trial. More complex methods for adjusting
the value of K is an open research problem. Setting K too large makes the graph
fully connected which leads to operations being computational complex. Setting K too
small may overlook similarities between different regions of the image. Experiment 3.5
discusses this in more detail.

Randomized Kaczmarz used for comparison in this experiment is a variant of Kacz-
marz method whereby the rows associated ith Az = b are accessed at random [102].
For Algorithm 2, we set [ = J = 50 and the convergence parameters 71, 79, 73 were set
automatically by UNLocBox. It is worth mentioning here that our GTV based adap-
tive graph regularization is a faster method of implementing NLTV by using KC-nearest
neighbors graph. Thus the CSGT and NLTV based regularization are equivalent in
performance. Therefore, we did not include comparisons with the NLTV based method.

Conclusion

Figure 3.4 provides a detailed comparison of the reconstruction of Shepp-Logan phan-
tom via various algorithms along with the intensity profiles plotted underneath each of
the reconstructions. It can be clearly seen that AGTV performs better than CSGT and
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CSTV. It is possible to appreciate this visually as the phantom obtained via AGTV
is very similar to the original phantom except for the edges. The edges may be cor-
rected by tuning the parameters better. Furthermore, a comparison of the intensity
profiles of the two phantoms also reveals the same fact. The next best result is ob-
tained by CSGT. Algorithmically, the only difference between CSGT and AGTV is the
regular graph update step in the latter, which tends to make the final reconstruction
more faithful to the original phantom. CSTV also obtains a reasonable reconstruction,
though worse than AGTV. CS alone however, has a poor performance. This is not
surprising, as for tomographic applications, CS has been mostly used in combination
with TV, as it alone does not cater for the sparsity required. The claim that ACSGT
is better than other methods is further substantiated in Experiment 3.2.

Experiment 3.2: Effectiveness of AGTV with a 128 x 128 Torso Phantom
Atm

To demonstrate the effectiveness of reconstructing a noisy 128 x 128 Torso phantom
from limited data using AGTV with reduced number of nearest neighbors C and fewer
iterations when compared and SEIR methods (CS,CSTV,CSGT).

Method

A 128 x 128 Torso phantom was simulated to generate from 36 projections. A sinogram
S was built by projecting the phantom using Radon transform and 36 equally spaced
projections were collected from 0 to 180 degrees. The projections were then corrupted
with 5% Poission and Gaussian noise. A graph G was constructed between the 4096
patches with 15 nearest neighbors (K = 10) and o for the weight matrix was set to the
average distance of the 10-nearest neighbors. For Algorithm 2, we set I = J = 25 and
the convergence parameters 7y, 7o, 73 were set automatically by UNLocBox. The rest
of the simulation setup was exactly the same as Experiment 3.1.

Conclusion

Fig. 3.5 shows the result of reconstructing the standard Torso phantom using various
SER methods. It can be clearly seen that AGTV preserves the edges much more as
compared to CSTV and CSGT. This makes sense because one of non-local connections
between various regions of the image as explained in 3.6. In contrast to experiment 3.1
this experiment uses a relatively larger phantom which comes at the expense of greater
computational run-time, i.e., 3874sec (~64 min) as opposed to 53.7 sec (<1 min) on
an Intel Xeion Machine (E5450 12M Cache, 3.00 GHz, 128GB RAM). The difference is
stark, this is due to the computational complexity associated with graph construction
during every iteration. Further examining Algorithm 2 also reveals that there are a
substantial number of multiplications associated with various operations which drive
the computational time higher. The increase in computational run time is despite
the fact that the nearest neighbor search is reduced to 10 patches and the number
of iterations were reduced (I = J = 25). That said, the result with the proposed
method is still of substantial quality when reconstructing from just 36 projections. If
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Figure 3.4: Comparative analysis of reconstructions and intensity profiles of recon-
structing a Shepp-Logan phantom using various reconstruction methods.
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the similarity matrix is not updated every iteration CSTV often behaves very similar
to CSGT, especially at lower values of K, this effect can be seen from the results.

Experiment 3.3: Effectiveness of AGTV at Various Number of Projections
Aim

To study the ability of AGTV to recover a phantom from less number of projections.
The basic premise of CS-type methods is their ability to recover data using very few
measurements. Being a CS-type method which uses non-local processing and promotes
sparsity in wavelet and graph gradient domains, AGTV should be able to recover
missing data. In order for AGTV to demonstrate superiority over CSTV and CSGT
(or NLTV) it should be able to recover data from few measurements while keeping a
lower error measure as compared to competitive SER methods.

Method

A 128 x 128 Shepp Logan phantom was simulated with varying number equally spaced
projections between 9 and 180 and 6 different sinograms were generated. The pro-
jections were corrupted with 5%, 10% and 20% Poisson Noise, finally generating 18
different sinogram. Each of these 18 sinograms was then reconstructed using FBP (Lin-
early Interpolated, Ram-Lak Filtered), ART (Kaczmarz), SIRT (Cimmino), CS, CSTV,
CSGT (NLTV), ACSGT. Error Norms were calculated against the original phantom
for all 126 reconstructions were calculated using || — x*||,, where z is the result from
a specific method and x* is the original phantom. The two hyper-parameters were
tuned to give the best result for each reconstruction (i.e., almost 5-10 reconstructions
for approximately tuning each individual reconstruction)®.

Conclusion

A graphical comparison of the 126 reconstruction mentioned above is provided in Fig.
3.6. It is clear that AGTV method generally performs better as compared to many
other state-of-the-art methods and follows a similar trend with respect to the number
of projections. It is also interesting to note that the performance of AGTV saturates
after 90 projections for each of the three cases, i.e, the reconstruction error does not
improve if the number of projections are increased. Furthermore, for each of the three
noise cases one can observe that the drop in the reconstruction error from 50 to 90
projections is not significant. Although, the same observation can be made about
CSGT, the error is a always higher than AGTV. All the other methods, perform far
worse than AGTYV. These graphs clearly, lead to the conclusion that AGTYV is a step
towards getting very fine reconstructions from a very small number of projections, via
a scalable method. That said, these reconstruction are with equally spaced missing
data. The effects of the method on continuous missing data will be investigated in the
next experiment.

5Fun fact: This was the longest running image reconstruction simulation in the entire thesis!
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laxation Parameter () = 0.25, Prior: FBP, Stopping Criteria = 100 iterations); SIRT
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= 100 iterations); AGTV (A = 0.5, v = 1, Prior: Patch Graph from FBP updated
every iteration, I and J in Algorithm 2 set to 30).
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Experiment 3.4: AGTV Reconstructions and the Missing Wedge
Aim

To investigate the ability of AGTV to reconstruct components of the missing wedge
and to determine the extent of high frequency components lost during signal recovery
while employing AGTV. We have seen that being a SEIR method AGTV has the ability
to recover components of the missing data. This section will investigate how does the
method behave in a more stark reduced data situation.

Method

The simulation setup for emulating 2D Cryo-ET phantom simulations accurately pre-
sented in Experiment 2.3 was used. The model has the ability to accurately simulate
the missing wedge and problems associated with the alignment of data. A 128 x 128
Shepp-Logan phantom was simulated to produce 71 equally spaced projections with
a —70° < # < +70° missing wedge. The resulting projections were corrupted with
5% Noise, the rest of the simulation setup is according to Experiment 3.3. Besides the
intensity profiles, radially averaged power spectrum explained in Chapter 2 and Fourier
ring correlation were used for frequency and resolution preservation analysis. Fourier
ring correlation is the 2D version of Fourier shell correlation, a metric commonly used
in structural biology to determine the resolution of 3D structures. In this case it will
simply be used to correlate the frequency spectrum of the original Shepp-Logan phan-
tom with various methods. All parameters were individually tuned to achieve best
results.

Conclusion

Fig. 3.7 shows a comparative analysis of reconstructions and intensity profiles in both
directions of the Shepp-Logan phantom using various reconstruction methods at 5%
noise. It can clearly be seen that AGTV behaves better than all other methods, al-
though it does not fully reconstruct the missing wedge it is able to partly reconstruct
it. This is due to the ability of SEIR-based methods to reconstruct from missing and
noisy data which is enhanced by the fact that AGTV promotes sparsity in dual graph
gradient and wavelet domains. Fig. 3.8 shows the Fourier ring correlation of individ-
ual methods with the original Shepp-Logan phantom, this clearly shows that there is
very little loss in resolution in the case of AGTV’. The radially averaged power spec-
trum follows a similar trend whereby AGTV experiences minimum high resolution loss
when compared to CSGT and other methods. Finally Fig. 3.10 shows the 2D FFT
magnitude spectrum and the extent to which the missing wedge can be recovered. The
recovery is attributed to the fact that AGTV uses CS-type reconstruction where by the
reconstruction problem is seen as a compressed image in some unknown sparse bases.
AGTYV is able to harness this idea and recover part of the missing data. It is worth
mentioning that although the Shepp-Logan phantom could be recovered the missing
wedge problem for real data is much more complex since it is much harder to cater to
the sparsity necessary to enable such a recovery specifically for biological experiments.

7An anonymous reviewer deserves to be acknowledged for suggesting the use of FRC.
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Comparative analysis of reconstructions and intensity profiles in both

directions of a Shepp-Logan phantom using various reconstruction methods at 5% noise.
It can clearly be seen that AGTV behaves better than all other methods, although it
does not fully reconstruct the missing wedge it is able to partly reconstruct it.
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Fourier Ring Correlation with Ground Truth
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Figure 3.8: Fourier Ring Correlation of the original Shepp-Logan phantom with
reconstructions from various reconstruction methods. Clearly there is hardly any loss
of resolution in the case of AGTV, mild loss is expected since the method cannot
perfectly reconstruct the missing wedge and all noise cannot be removed.
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Radially Averaged Power Spectrum
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Figure 3.9: Comparative analysis of the radially averaged power spectrums of the
Shepp Logan phantom reconstructed employing various reconstruction methods. It
can be seen that AGTV is the closest to the spectrum of the Shepp-Logan ground
truth.
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Figure 3.10: 2D FFT Magnitude components of the Shepp-Logan phantom, FBP re-
construction clearly showing the missing wedge and the AGTYV reconstruction showing
the extent to which the missing wedge can be recovered. The recovery is attributed to
the CS-type nature of the sparsity exploiting image reconstruction method presented
here.
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Experiment 3.5: Tuning Hyper-parameters (\, v, )

Aim

To study the variability of the three parameters that need to be tuned for every recon-
struction

Methods € Conclusions

The reconstruction model presented has two hyper-parameters, A for tuning the spar-
sity of CS based reconstruction and 7 to tune the amount of smoothing and denoising
in the reconstruction. While, these are model hyper-parameters and need tuning, the
graph parameter K, i.e, the number of nearest neighbors is quite easy to set for our
application. This is shown in Fig. 3.11 where we perform a small experiment corre-
sponding to the reconstruction of a 32 x 32 Shepp-Logan phantom from 36 projections
b € R3% using the pre-tuned parameters A = 0.1,y = 5 for different values of K ranging
from 5 to 50. The results clearly show that the reconstruction is quite robust to the
choice of IC, with a small error variation. Thus, K is easy to set for our application.
As the complexity of our proposed algorithm scales with the number of edges || in
the graph G and |€| ~ Kn?, it is recommended to set K as small as possible. However,
a very small K might lead to many disconnected components in the graph G. On
the other hand, a very large X might increase the time required for the algorithm to
converge and reduce the computational advantage we have over the NLTV method.
Therefore, we choose to set K = 15 for our experiments.

In order to show the variation of reconstruction error with (A, ) grid, we perform
another experiment for the reconstruction of the Shepp-Logan phantom of size 32 x 32
from 36 projections. For this experiment we keep K = 15 and perform the recon-
struction for every pair of parameter values in the tuple (A, ), where A € (0.1,1) and
v € (0.1,10). The reconstruction error grid is shown in Fig. 3.12. The minimum error
0.11 occurs at A = 0.2,y = 0.1. It is also interesting to note that the error increases
gradually with an increase in the parameter values. Similar results were observed for
larger image sizes. However, the best value of the parameters in heavily dependent on
the image being reconstructed and the amount of noise in the projections. There is no
hard and fast rule for tuning these parameters.

Experiment 3.6: AGTV with Real-Data

Aim

To investigate the effectiveness of AGTV with real Cryo-ET data from a biological
specimen.

Method

A Cryo-ET data image was emulated in accordance with Experiment 2.5. A 256 x 256
cryo-ET image from open-sourse EMD database was used and 141 equally spaced and
aligned 1D projections were used. The data was reconstructed using AGTV, in a
simulation that ran for 35572 sec (=~ 9.88 hours).
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Figure 3.11: A small experiment corresponding to the reconstruction of a 32 x 32
Shepp-Logan phantom from 36 projections b € R3¢ using the pre-tuned parameters
A = 0.1,y = 5 for different values of I ranging from 5 to 50. The results clearly show
that the reconstruction is quite robust to the choice of I, with a small error variation.
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Figure 3.12: A small experiment corresponding to the reconstruction of a 32 x 32
Shepp-Logan phantom from 36 projections b € R3¢ using the full parameter gird A =
(0.1,1),y = (0.1, 10) for a fixed value of K = 15. The minimum clustering error occurs
at A = 0.2,y = 0.1. The results clearly show that the reconstruction error increases
smoothly with the parameters.
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FBP AGTV (Proposed)
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Figure 3.13: Figure showing results from FBP, AGTV reconstruction of Cryo-ET
emulated data as well as their RAPS and intensity profiles. Data used is from an
Influenza virus available from opensourse EM-Data-Base Entry: 4067. The image was
reconstructed from 141 1D projections. As compared to sinogram denoising AGTV
preserves more high frequency details.

In this case the ground truth (real result) is not known and the hyper-parameters
can not be determined as accurately as for simulation experiments.

Conclusion

Fig. 3.13 shows the reconstruction, RAPS and the intensity profiles. It can be seen that
when compared to the graph-sinogram denoising method presented in Fig. 2.11. this
method behaves reasonably better. The intensity profiles and RAPS clearly shows that
significantly more high frequency details are preserved. A further detailed analysis of
the method with real data is beyond the scope of this thesis. More extensive parameter
tuning may be required to achieve better results.
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3.8 Shortcomings & Limitations

Complexity and Run-Time

The proposed AGTV method has proven to produce much better reconstructions as
compared to the state-of-the-art CSTV method. Although, the proposed method is
computationally far less cumbersome than the adaptive version of NLTV, it still suffers
from a few problems which we discuss in this section. The computational complexity
of the proposed method is O(I(JKn?*+n?log(n?))). As already presented in Algorithm
2, the method requires a double loop, the outer with I iterations and the inner with J
iterations. For our experiments we usually set to [ = J = 25 or I = J = 50. The main
computational burden is offered by the graph construction, which needs to be performed
every J iterations. Thus, the method still suffers from a high complexity because of
the double loop and regular graph updates. The complexity of graph construction
can be reduced by using a parallel implementation of FLANN which is provided by
the authors [91]. The degree of parallelism can be increased at the cost of increasing
approximation in the estimation of nearest neighbors. As a result of this the graph
G will be different every time the FLANN algorithm is run. However, this does not
effect the quality of the graph and for tomographic applications, negligible loss in the
performance was observed. It is obviously of interest to reduce the number of inner
iterations J and the complexity of the operations in the for loop. The results for the
run-time have been given in Fig. 3.14. It can be seen that 256 x 256 reconstruction
is already prohibitively complex on a rather modern general purpose processor. Any
future work should therefore focus on introducing some approximations in the proposed
algorithm to make it faster. The current setup acts as a proof-of-concept to motivate
future studies along the lines of adaptive SEIR-based image reconstructions.

Hyper-parameter Tuning

Tuning the hyper-parameters is another short-coming of the proposed method. It is
reasonable to set the number of K-nearest neighbors to 10 or 15, however, the sparsity
parameter A and the GTV parameter v need to be tuned properly and are not known
beforehand. The results of the validation experiment from Fig.3.12 show that the error
increases gradually with the parameter values. Any future study should also focus on
finding smart methods to set these parameters automatically for specific tomographic
applications. Parameter selection is a non-trivial problem and is an active research area
among the theoretical computer science and mathematics community. Finding general
methods and rules to tune such parameters is certainly not that simple and is usually
accomplished by trial and error. This can be relatively less complex for tomographic
modalities which image the same or similar object all the time, such as CT, but remains
an integral problem for methods where the subject is significantly different every-time.

The Curse of Adaptivity

With regularization methods updated from data during iterations a major concern is
whether incorrect features can be identified as reliable at some point and then reinforced
thereafter. The possibility of this happening is higher when there is less data such as
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Figure 3.14: Figure showing run-time for AGTV corresponding to 2D tomography
problems reconstructed from 1D data on an Intel Xeion Machine (E5450 12M Cache,
3.00 GHz, 128GB RAM).

when reconstructing from only 9 projections. This is due to the fact that less data
will generate a highly erroneous FBP with many streaking artifacts which can be
propagated to next stages of processing. This can be rectified by using a stronger filter
on the FBP prior so the streaking or other artifacts can be reduced before a graph
is constructed. Since the graph will be updated during every iteration the prior will
continue to refine iteratively.

3.9 Conclusions

Similar to NLTV the proposed method (AGTV) goes beyond spatial similarity between
different regions of an image being reconstructed by establishing a connection between
similar regions in the image regardless of spatial distance. However, the presented ap-
proach is much more scalable and computationally efficient (when compared to adaptive
NLTV-based SEIR methods) because it uses the approximate nearest neighbor search
algorithm for graph construction, making it much more likely to be adapted for a real-
data setting. However, as it stands now this approach is merely a proof-of-concept to
motivate future studies which can make this method more efficient and tune parameters
in a more smart way. The major unique point of the proposed approach is that it is
adaptive. The non-local graph prior is updated every iteration making the connection
between similar regions stronger. Thus improving the overall reconstruction quality
as demonstrated by experiments. Since TV is a special case of graph TV the pro-
posed method can be seen as a generalization of CS and TV methods and can promote
future application specific studies for using CS-type SEIR methods with graph-based
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regularization for tomographic reconstruction from limited, noisy and erroneous data.
Although this study was inspired by the Cryo-ET problem the method is general and
may be adapted to a number of tomographic modalities. The proceeding chapter will
focus on an approach with is much more computationally efficient when compared to
AGTYV and can provide robustness to noise in an intuitive way based on the geometric
representation of data.



Chapter 4

Extended Field-based Noise Removal
from Tomographic Reconstructions

4.1 Chapter Outline

This study® presents and analyses in detail an extended field-based tomographic recon-
struction improvement paradigm. Unlike methods which locally or non-locally manipu-
late individual pixels of an image, extended field is based on the concept that extending
the reconstruction space, which increases the dimensionality of the linear system being
solved during reconstruction, facilitates the separation of signal and noise. A consider-
able amount of the noise associated with collected projection data arises independently
from the geometric constraint of image formation, whereas the solution to the recon-
struction problem must satisfy such geometric constraints. Increasing the dimensional-
ity thereby allows for a redistribution of such noise within the extended reconstruction
space, while the geometrically constrained approximate solution stays in an effectively
lower dimensional subspace. Employing various tomographic reconstruction methods
with regularization capability (ART, SIRT, Tikhonov, and Maximum Entropy Regular-
ization) we performed extensive simulation and testing and we observed that enhanced
dimensionality significantly improves the accuracy of the reconstruction. Through
extensive empirical simulations we explicitly show that extending the reconstruction
space reduces the error at a relatively lower regularization parameter thus allowing a
better fit with the projections and preventing over-smoothing. Although the proposed
method is used in the context of Cryo-ET, the method is general and can be extended
to a variety of other tomographic modalities. This work has been published in [103].

4.1.1 Introduction

As summarized in Chapter one several reconstruction methods have been employed
over the years, but generally they can be divided into two categories: Fourier slice
theorem-based analytical methods and regularizing methods that are often iterative.

Parts of this work specifically pertaining to results with real-data (Fig. 4.16) were completed as
part of my lab rotation in the Structural Cellular Biology Unit at OIST between September-December
2012 before actually starting as an official PhD student in the lab. Parts of this work was also filed
as a patent in 2013 [103].

71
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Analytical algorithms, such as filtered back projection (FBP) [59] have been exten-
sively used for tomographic reconstructions. However, such algorithms usually need a
large number of projections, and it is not possible to incorporate a priori information
and additional constraints into the approximate solution. When dealing with a recon-
struction problem marred by missing and noisy data, regularizing methods are better
suited. Among such methods, the mildly regularizing ART [60], SIRT [61], and its
variants [62, 104] are often classified as Algebraic Reconstruction Methods (ARMs) or
Row Action Methods (RAMs) [7]. Extended Field Iterative Reconstruction Technique
(EFIRT) [105], which is based on ART and was published in 1974, briefly showed that
reconstructing 2D images from 1D projections within an extended field can lead to low
noise in the region of interest (ROI) and fast convergence. However, [105] offers only
limited experimental and empirical evidence of the method. Algebraic methods have
a limited regularization capability. This problem can be addressed by the use of vari-
ational regularization methods such as Tikhonov regularization [106] and Constrained
Maximum Entropy Tomography (COMET) [15] that are equipped with explicit regu-
larization and goodness-of-fit constraints.

COMET is an iterative reconstruction algorithm that performs a deconvolution
of the point spread function (PSF) [12], and enhances the contrast and resolution
specifically for Cryo-ET by increasing the SNR. This was first published in 1996 by
Skoglund et.al. |15, 74], and has extensively been used for structure determination,
e.g. in [107-109]. COMET can improve the fidelity of 3D reconstructions by reducing
the shot noise. It increases (theoretically maximizes) the entropy relative to a prior
obtained in the first iteration step from FBP, while iteratively deconvolving the PSF.
In each iteration step it projects the new density to obtain virtual projections which
are then compared to the original tilts using a Chi-squared goodness-of-fit statistic in
order to find an optimal balance between relative entropy and goodness-of-fit.

Contributions

In 1974 Crowther et.al. [105] observed that extending the reconstruction space during
ART reconstructions allows noise to spread out of the ROI. In this chapter we further
build on this idea by contributing the following:

e With extensive empirical experiments we demonstrate that an extended field can
go beyond ART and can be used to enhance a variety of reconstruction methods.
We reconstructed several 2D phantoms from 1D projections corrupted with noise
using ART (Kaczmarz, Symmetric Kaczmarz, Randomized Kaczmarz), SIRT
(Cimmino, Landweber, DROP), and Tikhonov regularized reconstruction, and
we observed that enhanced dimensionality resulting from a larger reconstruction
space achieved higher correlation with the original phantom in every case.

e We verify how this method works by quantifying the amount of noise removed
corresponding to the amount of noise added during simulations.

e We show that an extended field leads to better results when compared to non-
extended reconstructions at a lower regularization parameter, thus preserving a
better fit with the actual data and preventing over-smoothing.
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e With extensive empirical simulations we demonstrate how extended field behaves
at increasing extension steps.

e We further tested these effects on real Cryo-ET data, reconstructing the structure
of colloidal silica using COMET and observed that an extended field renders low-
noise reconstructions.

e We also explain the limitations of this method.

4.2 Preliminaries & Simulation Experiments

In order to analyze the ill-posed inverse problem of reconstructing data from projec-
tions, it is fundamental to have an accurate formulation of the forward operator, solving
the problem of modeling the process of image formation in the absence of noise and
measurement errors [11]. Mathematically, a discretized and simplified version of the
noise-free forward operator can be described in terms of a linear system where projec-
tions b are collected from object z, given a matrix representation of the imaging device

A (Recall Chapter 1).

Ar=b AeR™" zeR" beR™ (4.1)

The sinogram (.S) represents the tilt series of raw data, i.e., a matrix where each
column represents a projection at a different angle. The vector b is the vectorized
form of S. Each row of A corresponds to a single ray passing through the density
being imaged. Since each ray only passes through a certain number of voxels, matrix
A is usually sparse. The imaging model presented above represents a set of linear
equations such that there is one equation for each ray passing through the object.
Each equation here can be considered as a hyperplane in vector space, which can be
defined as H; = {z | al’x = b;}. In an ideal, noise-free case, these linear equations would
be consistent, and a solution would exist at the intersection of these hyperplanes. For
the purpose of demonstration this has been shown for a system of two linear equations
(Fig. 4.1a). However, in practice this is never the case, since the right hand side of
the linear system is usually marred by noise b = b* + e, where b* is ideal data and e
represents perturbation or data error. This renders the system inconsistent, and for
algebraic techniques an approximate solution is sought within the region enclosed by the
hyperplanes rather than at their intersection. Ill-posed inverse problems are generally
not stable, i.e., small perturbations in data can lead to large errors in the solution
[18]. Hence, regularization methods are required to compute approximate solutions
that are much less sensitive to perturbations in b [18]. Tikhonov regularization is a
classical method of reducing the sensitivity of the solution to perturbations and noise
in acquired data. The Tikhonov solution can be defined as the solution to the following
problem, see [106, 110]:

min{[Az — b5 + X*||/3} (4.2)

|| Az — b||5 measures the goodness-of-fit which essentially measures the effectiveness
of the solution while the second term, ||z||2, measures the regularity of the solution,
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Figure 4.1: a) Consistent System of Equations having an exact solution, showing how
Kaczmarz method approaches the solution starting from an initial guess. b) In case of
an inconsistent noisy system the solution would be in a region bound by hyperplanes
rather than at their intersection.

i.e., it controls the norm of x in order to suppress large noise components. The optimal
balance between the two terms is weighted by the regularization parameter, A. For a
large A, more weight is given to the minimization of the solution norm ||z||5 which then
produces a more regular solution. For small values of A the solution tends to be less
smooth since more weight is given to fitting the noisy data.

4.2.1 Extended Reconstructions

Extended reconstruction essentially means reconstructing within a region larger than
the region of interest (ROI). This region outside the ROI gives extra freedom and flex-
wbility to minimize data discrepancies and to maximize the consistency of the recon-
struction within the ROI, with respect to the projections (Fig. 4.2). Moreover, since
we do not impose a non-negativity constraint in the extra region around the ROI, this
essentially allows an extra degree of freedom when fitting the projections from our
reconstruction to the sinogram. This concept can be better understood by thinking of
noise as being limited by the projections, i.e., the amount of noise associated with a
specific reconstruction problem is constant. While the signal has a redundant occur-
rence, a clear representation, in every projection the noise is much less deterministic.
If the reconstruction region is ’artificially’ increased so as to provide an extra region for
noise to distribute into, since it does not have a bound representation in all projections,
there is a possibility that the noise in the reconstruction problem will be distributed
over the entire reconstruction space thus spreading over the ROI and artificial region
hence reducing the amount of noise in the ROI. This concept will be further explained
in the proceeding sections and can be understood from Fig. 4.2.

4.2.2 ART with Extended Field (EART)

According to ART (Kaczmarz method [111]) the solution to a linear system of equations
can be estimated starting from an initial guess and orthogonally projecting it onto
successive hyperplanes until a stopping criterion is met (Figure 4.1a). However, in
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Figure 4.2: Reconstruction of a binary phantom with an extra region larger than the
ROL. Unconstrained noise is redistributed out of the geometrically constrained ROI.
The extra region gives flexibility to minimize data errors and maximize consistency of
the solution within the ROI.

cases where the solution is inconsistent the introduction of a relaxation parameter ~y
can speed up convergence.
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There are various formulations of Kaczmarz method such as symmetric Kaczmarz
[41] and randomized Kaczmarz [31]. Most of these formulations are based on the way
the rows, 7, of matrix A are accessed. Extended ART performs a reconstruction within
a larger reconstruction space, which is achieved by extending the sinogram .5, either by
choosing a large reconstruction region or via zero-padding. Extending the sinogram via
zero-padding means padding each individual projection with zeros on each side (Fig.
4.4, Step 3). If a sinogram corresponding to a N; x M; phantom is to be extended
to a reconstruction corresponding to Ny X M,, the sinogram is extended by padding
each projection with (/M2 + N2 — \/M? + N?)/2 zeros on each side. Extending the
sinogram from a reconstruction size of N x M to (N +e) x (M + e) corresponds to an
increased dimension of the sinogram from v N2 + M2 xny to /(N + €)2 + (M + €)% x
ny where ny is the number of projections.

Extending the sinogram increases the dimensionality of the linear system Az = b
and makes vector b more sparse. Having an extra region outside the ROI allows in-
consistencies and noise to spread out into the extra region, minimizing the discrepancy
and enabling the solution in the ROI to be more consistent. This means that when re-
constructing with ART, equation 4.3 is applied to not only the required ROI, but to an
extra region outside, thus rendering a large reconstruction where the region of interest
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Figure 4.3: Image showing how the sinogram is extended to achieve an extra region
outside the ROI. If a sinogram corresponding to a N1 X M; phantom is to be extended to
a reconstruction corresponding to Ny X Ms, the sinogram is extended by zero-padding
each projection with (y/MZ + N2 — \/M? + N?)/2 on each side. For example, if the
sinogram of a 64 x 64 phantom is extended to a 128 x 128 phantom the extension on
each side of the sinogram would be 45.

Algorithm 3 ART (Kaczmarz Method)
INPUT: S,k,A, OUTPUT: z*
Vectorize S: b= S(:)
x%=initial vector
for k=1,2,3... do

0
k= ak
fori=1,2,....m do
k41 _ ok bi—af z*
Pt =k 4 V aE Y v € (0,2)
end for
S

end for
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Algorithm 4 Extended ART (Kaczmarz Method)

INPUT: S,k,A,Z OUTPUT: 2
Extend S in both directions: S.iended = S + Z

Vectorize S: b = Septendedl(:)

x9=initial vector

for k=1,2,3... do
2K — ok

for:=1,2,....,m do

k

A vbi[aﬁf a; v €(0,2)
end for ’
P —
end for

is preserved and noise has relatively more room in which to be distributed. On remov-
ing the extra region, inconsistent discrepancies are removed and the consistent solution
is isolated. The density in the extra region originating from inconsistencies, noise, and
fringe effects can be positive or negative; hence, the non-negativity constraint often
used during ART should not be applied in the extra region.

4.2.3 Simulations with EART

Experiment I: To test the procedure defined in the previous subsection a 32 x 32
binary phantom [31]| (z*) was used. A sinogram was created by taking projections at
every 5 degrees starting from 1° to 180° (i.e., # = 1 : 5 : 180) and projections were
corrupted with normalized random noise (relative level = 0.05). This sinogram was then
reconstructed using all three variants of ART. A version with an extended field (EART)
was also reconstructed using all three ART procedures. The EART reconstructions
were performed by increasing the dimensions of the sinogram corresponding to a 64 x 64
reconstruction. The error rate for the k' iteration relative to the original phantom was
calculated using ka — z*||., where z* is the original phantom and z* is the result of

)
the k' iteration of the iter;tive method being used. The SNR for the reconstructions
can be estimated using SNR = [|z*||, / ||«* — 2 ,- It should be noted here that the
error rate or SNR for extended reconstructions is always calculated corresponding to
the ROI excluding the extended region. The complete experimental setup is shown in
Fig. 4.4.

Experiment II: A 64 x 64 Shepp-Logan phantom [26] used to further test the ar-
guments presented at a higher noise level and the projections in the sinogram were
corrupted by normalized noise of relative level 0.1. The EART reconstructions were
performed by increasing the dimensions of the of the sinogram corresponding to a
128 x 128 reconstruction. The rest of the simulation setup is exactly the same as
experiment [.

Traditionally, Kaczmarz method and its variants show a semi-convergence behavior,
where the first few iterations show a sharp decrease in error rate and then slow down,
or in certain cases, diverge from the optimal solution. From the simulations it is
evident that EART follows a similar trend, but tends to achieve a lower error rate
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Step 1: Projections from Phantom (NxM) Using Step 2: Build a Sinogram (S) and
Radon Transform. Add Noise.
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Figure 4.4: Flow diagram showing the simulation setup for various extended field
simulations with several different iterative reconstruction methods. It should be noted
here that in step 3 the sinogram is zero-padded in the direction of the projections i.e.
adding an extra region to each projection.

relatively faster than ART (Figure 4.5). Although EART needs more iterations to
realize its full potential, it gives a lower error at the semi-convergence point of ART.
While ART starts diverging, EART continues to reach semi-convergence in a later
cycle, with a lower error-rate. These two experiments at relatively low and high noise,
respectively, both show similar behavior and indicate that increasing the dimensionality
of the reconstruction problem by increasing the reconstruction space has a direct effect
towards improving reconstruction quality. Fig. 4.6 shows an intensity profile of a single
line through each of the phantoms in experiments I and II. The difference between FBP,
ART, and EART is clearly evident. Simulation results with a much higher error rate
(relative level = 0.20) have been summarized in Table I.

Experiment III: In order to check the effect of the relaxation parameter v, we
performed several ART and EART reconstructions with varying v between 0 < v < 2
(Fig. 4.7). For both phantoms, the error rate is lower for EART reconstructions
than for ART reconstructions, except at very low ~ values, when the relative noise is
relatively high.
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Figure 4.6: a-f)Intensity profiles of a line through the original and reconstructed
binary and Shepp-Logan phantoms using FBP, ART (Kaczmarz) and EART (Extended
Kaczmarz). The EART reconstructions show a relatively better fit to the original
phantom as compared to EART reconstructions.
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Figure 4.7: Comparative analysis of ART and EART with respect to changing relax-
ation parameter +.

Table 4.1: COMPARISON OF ERROR RATES FOR ART AND EART USING VARIOUS
PHANTOMS AT 20% NOISE

Phantom FBP Kaczmarz Ex. Sym. Ex.Sym.  Rand. Ex.Rand.
Kaczmarz Kaczmarz Kaczmarz Kaczmarz Kaczmarz
Smooth 29.13 27.54 25.91 27.03 24.97 25.36 24.23
Shepp-Logan 13.98 10.21 9.78 10.32 9.61 10.16 9.01
Binary 11.04 8.40 7.51 8.98 7.83 8.36 7.12
Four-Phase 19.24 16.31 15.41 19.16 15.39 19.49 14.98
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Figure 4.9: Intensity profiles of a line through the original and reconstructed smooth
and Shepp-Logan phantoms using FBP, SIRT (Cimmino) and ESIRT (Extended Cim-
mino). The ESIRT reconstructions show a better fit to the original phantom as com-
pared to SIRT reconstructions.

Table 4.2: COMPARISON OF ERROR RATES FOR SIRT AND ESIRT USING VARIOUS PHANTOMS

AT 20% NOISE

Phantom FBP Cimmino Ex.Cimmino Landweber Ex.Landweber DROP Ex.DROP
Smooth 29.13 23.26 21.70 23.43 20.11 23.41 20.32
Shepp-Logan 13.98 9.13 8.34 9.13 8.33 8.78 7.82
Binary 11.04 7.18 6.32 7.38 6.34 7.09 6.28
Four-Phase 19.24 13.96 12.44 13.77 12.19 13.63 11.91

Table 4.3: COMPARATIVE ANALYSIS OF ERROR RATES FOR TIKHONOV AND EXTENDED TIKHONOV RECONSTRUCTIONS
AT VARYING RELATIVE NOISE AND NUMBER OF PROJECTIONS.

Phantom Relative Noise 5% 10% 20% 50%
No. of Proj. 36 18 9 36 18 9 36 18 9 36 18 9
Smooth Regular 5.19 | 9.46 | 11.31 | 12.87 | 14.18 | 16.63 | 18.61 | 27.49 | 34.54 | 68.46 | 77.38 | 82.37
Extended 2.06 | 3.13 5.62 | 4.21 456 |5.13 |9.34 10.95 | 12.87 | 19.87 | 23.88 | 26.19
Shepp-Logan | Regular 308|435 | 528 | 478 |7.34 | 894 | 817 | 1046 | 16.56 | 17.74 | 20.71 | 32.84
Extended 3.18 | 3.87 | 4.84 | 4.21 4.50 |5.35 |5.21 5.25 | 5.16 | 6.86 7.07 | 9.04
Binary Regular 3.21 | 4.29 7.18 | 4.67 | 6.11 8.24 7.32 12.45 | 14.91 | 19.20 | 24.12 | 29.11
Extended 2.46 | 298 |3.30 |3.09 |4.12 |4.36 |6.71 |843 |9.88 | 11.61 | 14.28 | 18.29
Four-Phase Regular 8.99 | 10.97 | 12.46 | 10.38 | 16.38 | 19.03 | 12.28 | 22.43 | 27.21 | 38.94 | 44.03 | 49.08
Extended 6.32 | 7.11 840 | 9.11 10.49 | 12.26 | 11.90 | 15.38 | 18.43 | 22.19 | 26.46 | 29.15
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4.2.4 SIRT with Extended Field (ESIRT)

Unlike ART the class of SIRT methods are "simultaneous" which means that all rows
of matrix A are used simultaneously in every iteration [31]. SIRT can thus perform
faster than ART. It also has better regularization properties as compared to ART. The
SIRT class of methods can be generally defined as follows:

" = 2%+  TAT M (b — Az") (4.4)

Here z* and zFt! denote the current and successive iteration respectively. -~y is
the relaxation parameter, and the matrices M and T are symmetric positive definite.
Various methods of SIRT have different M and 7" [112]|[113]. Ideally, the iterations
mentioned in equation 9 converge to a solution z*. However, similar to ART this is
usually not the case and the solution converges to a region and oscillates in this region
over successive iterations. The class of SIRT methods also follow a semi-convergence
behavior as shown in [114, 115]. Similar to EART a version of SIRT can be formulated
by extending the region outside the ROI either by zero-padding or within the region
being reconstructed. This will lead to the enhanced dimensionality of the linear system
being solved and extra reconstruction space, these extra dimensions act as a mechanism
for segregating most of the background noise.

Simulation and testing was performed on three variants of SIRT, i.e., Landwe-
ber, Cimmino and Diagonally Relaxed Orthogonal Projections (DROP). Landweber’s
method [116] simply originates from equation 9 where M = I and T'= I. Cimmino’s
method [62] works on the premise that each iteration is the weighted average of the
projections of the previous iteration on all the hyperplanes:

1 & b, — (a;, x*
xk+1 — xk +7k_zwi 4 < ) >
mizl “alHQ

a;. (4.5)

In terms of equation 9 Cimmino is defined as having M = D and T' = I, where D can

be defined as follows:
D= —dzag(H e > (4.6)
2

DROP is an extension of Cimmino’s original method and incorporates information
about the sparsity of matrix A [29]. When extending the dimensionality by adding
an extra region outside the ROI the vector b is increased and becomes sparse. The
extra region adds additional hyperplanes to the system passing through the origin.
This essentially means that for Cimmino’s method more hyperplanes are averaged to
achieve the output of every iteration which in turn leads to distribution of noise to
extra space. Similar to EART the solution stays in an effectively lower dimensional
sub-space and the noise redistributes to higher dimensions.
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4.2.5 Simulations with ESIRT

A 64 x 64 smooth [31] and Shepp-Logan [26] phantom was reconstructed using FBP,
SIRT, and ESIRT with all three variants mentioned in the previous sub-section. Sino-
grams for these phantoms were created by taking projections every 5 degrees from 1°
to 180° degrees (i.e., # = 1 : 5 : 180) and corrupted with normalized noise relative
level 0.05 for smooth and 0.1 for Shepp-Logan, respectively. ESIRT reconstructions
were performed by increasing dimensions of the sinogram corresponding to a 128 x 128
reconstruction. Both iterative methods were stopped at 100 iterations (k). The er-
ror rate was calculated as mentioned in the previous subsection. Fig. 4.8 shows a
comparative analysis of SIRT and ESIRT methods in detail. Visual inspection of the
reconstructed phantom clearly shows that ESIRT has better regularization properties
than SIRT. It is evident that ESIRT tends to converge faster than SIRT and achieves
a much better correlation with the original phantom. In the case of ESIRT, the di-
vergence from semi-convergence is also slower. Fig. 4.9 shows an intensity profile of a
single line through SIRT and ESIRT phantoms reconstructed using Cimmino’s method
and clearly indicates that ESIRT behaves much better than SIRT. Simulations at a
high noise level (relative level = 0.20) are presented in Table 4.2.

4.2.6 Simulations with Extended Tikhonov Regularization (ETR)

Tikhonov Regularization (TR) has already been explained in earlier. TR has a higher
regularization capability than SIRT and ART and has been extensively used in the
context of various ill-posed inverse problems [18]. We conducted several experiments
to test the effectiveness of an extended field outside the ROI while reconstructing a
density with TR.

We reconstructed a 64 x 64 Smooth phantom (relative noise = 0.05) and a 64 x 64
Shepp-Logan (relative noise = 0.1) using both TR and ETR. ETR simulations were
conducted by zero-padding the sinogram corresponding to a 128 x 128 reconstruction
(Fig. 4.10). In line with our findings for ART and SIRT, ETR performed better
than TR when tested on a variety of phantoms under different noise conditions, as
well as with varying numbers of total projections (Table 4.3). It is evident from these
results that TR regularizes more powerfully than the methods discussed in the previous
sections; hence, in agreement with the underlying heuristics, the improvement due to
the use of extended field technique is also significantly larger.

Additional Experimental Observations

It should be noted here that decreasing the field instead of extending it leads to having a
reconstruction space smaller than corresponding projection size. On simulating several
reconstructions by decreasing the field we observed that it always leads to a more
erroneous reconstructions. This is the case if the error rate is calculated relative to the
original phantom without excluding the region which was reduced by having a smaller
field of view. That said, an extended field does not require an object to be fully enclosed
in the ROI. If the object is not enclosed, i.e., the sinogram is modified to reconstruct a
part of the density the projections still hold information about the removed part and the
reconstruction / regularization method used will treat it as noise. On reconstructing
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Figure 4.11: Experimental design to quantify the noise in the extended field. The
pixels in the reconstructed ROI are set to zero and projections are taken relative to the
ROI and compared with noise added to individual projections of the initial sinogram.

partial densities from four different phantoms at different noise levels we observed that
an extended field always improved the error rate. This is the case if the error rate is
calculated relative to the part of the phantom which was reconstructed. The reason
why FBP has lower error than the starting point of algebraic methods is because the
FBP output is filtered before the error rate is calculated while the unfiltered version is
used as a prior for algebraic methods.

4.3 Quantifying the Amount of Noise Removed

In this section we empirically analyze and quantify the amount of noise that redis-
tributes into the extended region. This is essential to verify the effectiveness of extended
reconstructions and allows us to quantify the amount of noise removed compared to
the amount of noise added.

Experimental Setup: 36 projections were generated from a 64 x 64 Shepp-Logan
Phantom and the projections were corrupted with 15% added normalized random noise.
The noisy sinogram was extended by zero-padding corresponding to a 128 x 128 re-
construction space. The resulting sinogram was reconstructed using ART (Kaczmarz),
SIRT (Cimmino) and Tikhonov using FBP as the starting point. The 64 x 64 ROI in
the resulting 128 x 128 extended reconstruction is set equal to zero (Fig. 4.11). We then
take 36 projections equivalent to the size of the ROI from this matrix (Figure 4.11-b).
This essentially means that we summed up pixel-by-pixel, all the noise removed from
the ROI while leaving out regions that did not contribute to the original projections.
These projections were then compared to the original noise added to each projection
(Figure 4.12).

The good fit between the projected extended field region (blue curve in Figure 4.12)
and the noise added to the projections (red curve in Figure 4.12) shows that most of the
noise was redistributed to the extended region during regularization. Table 4.4 shows

the average correlation between red and the blue signals. The fit for Tikhonov is better
than SIRT and ART and the fit for SIRT is better than ART. This clearly indicates
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Figure 4.13: Comparative analysis of error rates for Tikhonov and Extended
Tikhonov reconstructions at a varying regularization parameter (0.1 < A\ < 3). The
error rates are calculated corresponding to the ROI for Extended Tikhonov reconstruc-
tions. It can be clearly seen that Extended Tikhonov achieves a much better error rate
at a lower A\ than regular Tikhonov.

that Extended Field works more powerfully for methods with a higher regularization
capability. Further results from similar simulations with SIRT, ART and Tikhonov are
elaborated in the supplementary material.

4.4 Enhanced Regularization Using Extended Field

It is evident from experiments with algebraic methods (ART, SIRT and their variants)
as well as with variational regularization (Tikhonov) that the extended field directly en-
hances the effect of regularization. It can also be clearly seen that extended field works
better with stronger regularization methods and at higher noise levels e.g. extended
field with Tikhonov regularization at 50% noise can improve the reconstruction several
folds (Table 4.3, column 4). The distribution of the noise removed from Tikhonov
reconstructions also fits much better with the actual noise added as compared to ART
and SIRT (Table 4.4).

We reconstructed various phantoms using Tikhonov regularization for a changing
regularization parameter (A in equation 3) and observed that extended field recon-
structions can achieve an enhanced regularization effect when compared to regular
reconstructions at a relatively lower A (Fig. 4.13). In accordance with our previous
claims the rationale behind this is the unique ability of an extra region to enhance the
consistency of the solution with respect to the sinogram.

The regularization parameter controls the balance between the fit and the regularity
of the solution. A large A\ produces a strongly regular solution i.e. the solution is
smoother. A lower A\ produces a solution more faithful to the data (projections).
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Since having an extended field reduces the error at a relatively lower regularization
parameter, this means that it can produce a solution which is more faithful to the
data while preventing over-smoothing. The extended region allows for an increased fit
between the projections (sinogram) and the reconstruction by achieving a better error
rate at a lower \.

4.5 Optimal Extension Size

Simulations in the previous sections show how an extended field behaves with a va-
riety of reconstruction methods, at various noise levels and at different number of
projections. We clearly show that extended field can have a promising effect on re-
constructions by lowering the error rate and improving the correlation with the actual
phantom. However, extending the sinogram to achieve an extra reconstruction space
means increasing the size of the reconstruction problem which has a computational
constraint. Keeping this in mind, it is necessary to estimate an optimal extension size
especially when dealing with real data.

We reconstructed 64 x 64 Shepp-Logan and Binary phantoms at varying extension
steps (0,2,4,8,...512) and at different noise levels. Apart from these the experimental
setup is the same as mentioned in the previous section. Fig. 4.14 summarizes these
numerical tests and suggests that all extended reconstructions show a sharp decrease
in the error rate during the first few extension steps followed by a saturation in error
improvement. As the extended field is increased more and more noise can be removed
from the ROI into the extra region. However, the extended field can not continue to
improve the ROI beyond a certain point, this is due to the fact that it can not remedy
the noise and inconsistence originating from missing data (e.g. fewer projections, miss-
ing wedge). It can be clearly seen from the experiments that at higher noise levels the
sharp decline in the error rate during the first few extension steps becomes much more
prominent. Also, error rates for stronger variational regularization methods (Tikhonov)
show a sharper decline when compared to mildly regularizing algebraic methods (ART,
SIRT). After saturation the error rate stabilizes and varies only slightly despite large
extension sizes.

Extremely large extension steps lead to a slight increase in the error rate. For
example extending a 64 x 64 Shepp-Logan phantom corresponding to a 4096 x 4096
reconstruction gives an error of 4.268 as compared to a 256 x 256 reconstruction which
yields an error rate of 4.257. Moreover, the extended field reconstruction of phantoms
with no noise added leads to extremely slight improvements in the error rate, as men-
tioned inconsistencies due to missing data can not be corrected, the slight improvement
comes form the correction of errors originating from the numerical treatment of the
problem.

The optimal extension size certainly depends on the type of raw data, the amount
of noise and the regularization capability of the reconstruction method. As shown by
our experiments a strong regularization method will definitely need a smaller exten-
sion to remove most of the noise from the ROI into the extended region. For instance,
reconstructions in [105] were performed using ART, which has mild regularization ca-
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Figure 4.14:

Extention Size

Extention Size

Extention Size

Comparative analysis of error rates for ART, SIRT and Tikhonov reconstructions at

Extention Size

varying extension steps

0,2,4,8,...512 starting from a 64 x 64 phantom. It can be clearly seen that most of the benefit of an extended field is achieved if
the size of the extension is half the actual reconstruction size. All reconstructions show a sharp improvement during the first few
small extension steps followed by a saturation of error improvement for larger extensions.
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pabilities, and in that specific case twice the reconstruction size may have been needed.
When using Tikhonov regularization an extension of half the size of the actual phantom,
removes approximately 80% of the maximum possible noise redistribution. Contrary
to [105] we observed that extending the reconstruction space twice or more the actual
reconstruction space is not necessary to realize the full potential of an extended field.
The ratio of error improvement to extension size decreases at higher extensions. It is
computationally inefficient to increase the extension size beyond half the size of the
actual reconstruction if powerful enough regularization method is employed, since the
gain in SNR beyond that is not significant.

The number of projections also play a role in determining the most optimal exten-
sion size. This was verified by an additional experiment. We reconstructed a 64 x 64
Shepp-Logan phantom projections corrupted with 15% and 25% random normalized
noise with different number of projections and varying extension sizes using Tikhonov
regularization. The results are shown in Figure 4.13. We can clearly see that a recon-
struction with fewer projections saturates faster when compared to a reconstruction
with more projections. This makes sense because increased number of projection will
need extra variables outside the ROI to satisfy the noise introduced by relatively more
projections.

In short, the optimal and most computationally efficient extension size can be de-
cided depending on the on the type of data being reconstructed, the amount of noise in
the data, the number of projections and more importantly the regularization capabili-
ties of the reconstruction method being used. When dealing with real data this can be
tuned for a specific imaging device and correlated with data collection variables such
as number of projections and the amount of dose used etc.

4.6 Experimental Results from 3D Data

The previous section showed the effect of an extended field when reconstructing sim-
ulated 2D images from 1D projections. This section elaborates the effects of recon-
structing 3D densities from 2D data with an an extra region outside the ROI. In the
3D case, the reconstruction problem generally becomes considerably more complicated.
For real-data, deconvolution of the point spread function (PSF) is required to obtain
accurate reconstructions. Problems due to missing data (missing wedge) are also much
more prominent. We used our in-house constrained maximum entropy tomography
(COMET) reconstruction package [15] for reconstructing from the 2D TEM data, since
it has built-in PSF deconvolution and regularization.

Consider the z-axis to be the direction of the electron beam of the Cryo-Electron
Microscope when the data was collected. Let Zro; be the size of z for which the 3D
reconstruction is desired, ¢.e., the ROIL. For the purpose of testing, COMET-based
reconstructions can be iterated for volumes increasing in the z-direction, such that
7y < Ly < Zg < ... < Zy, resulting in n-many 3D reconstructions. Each successive
reconstruction has an increased volume in the z-direction (Fig. 4.15). Reconstructions
in higher volumes are expected to remove more noise from the ROI and should thus
have a lower RMS and mean value.

Colloidal silica is made of synthetically manufactured Si0O; nanoparticles. Like
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Figure 4.15: Figure showing successive reconstructions on a large volume by increas-
ing in z-direction (i.e., reconstructions with an extended field). The volume may also
be increased by increasing the reconstruction space in y-direction.

large proteins, it has a diameter of 25-70 nm and a density of 1.28 g/cm?, displaying
scattering properties comparable to those of proteins [117]. There are several advan-
tages to using colloidal silica as a test object. Since colloidal silica is an inorganic
sample it suffers minimally from degradation due to electron beam exposure during
data collection. A higher electron dose can be given to such a sample, reducing the
shot noise. The colloidal silica sample used here is typically used in paint: BINDZIL of
grade 40/130 and was kindly provided by Eka Chemicals, Akzo Nobel, Sweden. Data
was collected using a Philips CM200 200keV FEG transmission electron microscope
(TEM). The specimen was tilted between £65° and micrographs were recorded on a
CCD detector (F224, TVIPS Gmbh, Germany) every other degree. Eight 3D COMET
reconstructions were performed starting with grid points 355 x 355 x 255 (i.e., dimen-
sions in x,y and z axis respectively) to 355 x 355 x 605 with Z increasing incrementally
by 50 grid points. Then the common region 355 x 355 x 255 was extracted from all
these reconstructions (Fig. 4.16). Images were adjusted to the same contrast thresh-
old. Here we can also clearly see that the background noise decreases over successive
reconstructions. Fig. 4.17% shows an intensity profile of a single line through a slice of
the 3D reconstruction at two different values of Z. It can be clearly seen that at a higher
value of Z, the signal is much stronger compared to the noise. Similar results can be
achieved by increasing the volume in the y-direction or in both the z- and y-directions.
However, the reconstruction space cannot be increased by increasing the x-direction
since the sample is tilted around this axis.

2Fig. 4.17 was kindly created by Mirt Toots using ‘R’ and is part of our joint publication.
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R, — Extract from 355x355x555 Rg — Extract from 355x355x605

Figure 4.16: Extracted ROIs (355 x 355 x 255) of successive reconstructions of a
colloidal silica sample with increasing z. Reconstructions with an extended field (i.e.
Ry — Rg) have a lower noise within the ROI. The map grid size for one pixel is 5.626A
and the average size of a colloidal silica nano-particle is 31.5nm. The large particle
in the center of the reconstruction has lower density as compared to the smaller par-
ticles because it is water in the form of crystallized ice. Videos can be viewed in the
multimedia supplement with this thesis.
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Intensity of a line at z=255 Intensity of a line at z=605
(COMET Reconstruction) (Extended COMET Rec.)

Intensity

X - Direction

Figure 4.17: Intensity profile of a single line through a slice of the 3D reconstruction
at two different values of z. The peak represents the signal. For a reconstruction with
an extended field the signal within the ROI is significantly stronger as compared to the
noise.

4.7 Limitations and Shortcomings

Limitations of using an extended field can be summarized as follows:

e Extended field does not work with Fourier slice theorem based analytical re-
construction methods such as filtered back projection and its variants. These
methods do not allow for redistribution of noise into an extended region. For
an analytical method having an extended region outside the ROI would simply
mean the same intensity values being distributed along a longer ray path.

e Extended field does not correct for inconsistencies arising from missing data due
to limited number of projections or the missing wedge. Although, noise removal
due to an extended field might aid other methods which can correct for missing
data such as [15].

e The method behaves poorly with weaker regularization methods, better results
can be achieved by using more powerful regularization methods as has been shown
in proceeding experiments.

4.8 Conclusions

In this chapter we show that extending the field during iterative image reconstruc-
tion can render better results when compared to non-extended reconstructions. This
principle was tested with extensive simulations using a variety of reconstruction meth-
ods. We also propose a heuristic model which explains how this method works and
also discusses a limitation of this method. Through extensive empirical simulations
we explicitly show that compared to non-extended reconstructions an extended field



4.8 Conclusions 95

reconstruction allows the solution of a regularization problem to be much more faithful
to the data (projections) by allowing a better fit due to a relatively lower regularization
parameter. We also verify the effectiveness of this method by fitting the noise removed
and noise added during simulations. We further strengthened our claims by testing the
effect using constrained maximum entropy tomography with real cryo-ET data from
colloidal silica. The technique is unique in the sense that it can segregate the sig-
nal from noise without interfering directly with the signal because it does not involve
manipulating individual reconstructed voxels using standard filtering, smoothing, or
post-processing procedures, which remove high-frequency details from the reconstruc-
tion. Moreover, this method is general and can be extended to be used with other
tomographic modalities.






Chapter 5

Algorithm and Architecture
Optimization for 2D Discrete Fourier
Transforms with Simultaneous Edge
Artifact Removal

5.1 Chapter Outline

Two-Dimensional Discrete Fourier Transform (DFT) is a fundamental and computa-
tionally intensive algorithm, with a plethora of applications including tomographic
reconstructions. 2D images are, in general, non-periodic, but are assumed to be peri-
odic while calculating their DF'Ts. This leads to cross-shaped artifacts in the frequency
domain due to spectral leakage. These artifacts can have critical consequences if the
DFTs are being used for further processing, specifically for biomedical applications. In
this chapter we present a novel FPGA-based solution to calculate 2D DFTs with simul-
taneous edge artifact removal for high-performance applications. Standard approaches
for removing these artifacts using apodization functions or mirroring, either involve
removing critical frequencies or necessitate a surge in computation by significantly in-
creasing the image size. In this chapter a periodic plus smooth decomposition-based
approach was used which was optimized to reduce DRAM access and to decrease the
number of 1D FFT invocations. 2D FFTs on FPGAs also suffer from the so called
‘intermediate storage’ or 'memory wall’ problem, which is due to limited on-chip mem-
ory, increasingly large image sizes and strided column-wise external memory access. A
'tile-hopping’ memory mapping scheme is also proposed that significantly improves the
bandwidth of the external memory for column-wise reads. The proposed optimizations
were tested on a PXIe-based Xilinx Kintex 7 FPGA system communicating with a host
PC, which gives the advantage to further expand the design for industrial applications.
The proposed high-performance 2D FFT implementation was then used to accelerate
filtered back-projection for reconstructing tomographic data. Parts of this work has
been published in [118].

97
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5.2 Accelerating Analytical Tomography

Although, this chapter focuses on the architectural development of 2D FFTs with edge
artifact removal, the motivation behind this implementation has a deep link to Cryo-
ET in specific and tomographic applications in general. As mentioned in Chapter 1 2D
FFTs are a fundamental component of the Filtered Back Projection analytical image
reconstruction method. The method itself is hailed for its speed and applicability to a
wide range of problems. FBP acts as a prior for all methods that have been developed
and analyzed in the previous chapters. It is also the cornerstone of AGTV, the method
presented in Chapter 3, since the graph prior is constructed on the FBP which enables
the method to converge. Without such a prior it would not be possible to use non-local
methods for inverse problems. Beyond AGTV, FBP enables the fast convergence of
many optimization-based tomography reconstruction methods (often used in a low-pass
form to prevent propagation of streaking artifacts).

The ROI Reconstruction Problem in Tomography

Microscopes these days produce large size micrographs or 2D projections usually 4096 x
4096. However, computational constraints don’t allow for such large reconstructions to
be conducted. Usually the projections are cropped to extract a region of the aligned
tomogram which is then reconstructed. This leads to information in the extracted
projections which does not belong to the ROI'. This erroneous information in the
projections can lead to artifacts. If these errors are present in the FBP prior they can
be picked up by the iterative method being used for further reconstruction and can be
propagated to subsequent iterations. A 4096x4096 FBP reconstruction can remedy
this because reconstructing the entire tilt series without extraction will reconstruct the
whole tomogram. Then smaller sub-tomograms can be extracted and used as a prior
for a more complex optimization-based method. Large size FBP reconstructions are
computationally intensive and take several hours.

Why was Fourier-based FBP Chosen Over Analytical Back-projection?

Most practical FBP implementations are done in real space whereby each voxel in
the reconstructed density is considered as a sum of the corresponding pixels on the
projections. Although, this approach is widely used since it prevents interpolation in
the Fourier domain it results in slow reconstructions for large data sizes. There are two
major reasons to focus on a 2D FFT-based accelerated FBP FPGA implementation:

e A 2D FFT-based FPGA implementation could be the first step towards imple-
menting a Non-Uniform FFT (NUFFT) [119]. The NUFFT is widely used for
tomographic applications since it does not require the interpolation step during
FBP reconstructions.

e Large amounts of data rearrangement for real-space FBP can be complicated in

1This should not be confused with the ROI problem originating during data collection, reconstruct-
ing the entire image will in no way remedy an ROI problem associated with data collection.
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If Entire Image is
ROl to be Reconstructed
Reconstructed this would not be a
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Figure 5.1: Image showing the ROI reconstruction problem in tomography. Micro-
scopes these days produce large size micrographs (usually 4096 x 4096). However,
computational constraints don’t allow for such large reconstructions to be conducted.
Usually the projections are cropped to extract a region of the aligned tomogram which
is then reconstructed. This leads to information in the extracted projections which
does not belong to the ROI.

a reconfigurable computing setting, specifically when using high-level reconfig-
urable computing tools such as LabView FPGA.

Although the motivating factor to implement the 2D FFTs was analytical FBP,
deeper analysis of FBP on FPGAs is beyond the scope of this thesis. Here it was
only used to check the effectiveness of our 2D FFT implementation explained in the
proceeding sections.

5.3 Introduction to 2D FFTs

Discrete Fourier Transform (DFT) is a commonly used and vitally important function
for a vast variety of applications including, but not limited to digital communica-
tion systems, image processing, computer vision, biomedical imaging and biometrics
[120, 121]. Fourier image analysis simplifies computations by converting complex con-
volution operations in the spatial domain to simple multiplications in the frequency
domain. Due to the fundamental nature of 2D DFTs, they are commonly used in a
variety of image processing applications such as tomographic image reconstruction [59],
non-linear interpolation, texture analysis, tracking, image quality assessment and doc-
ument analysis [122]|. Because of their computational complexity, DFTs often become
a computational constraint for applications requiring high throughput and real-time or
near real-time operations, specifically for machine vision applications [123]. Image sizes
for many of these applications have also increased over the years, further contributing
to the problem.

The Cooley-Tukey Fast Fourier Transform (FFT) algorithm [124], first proposed in
1965, reduces the complexity of DFTs from O(n?) to O(nlogn) for a 1D DFT. However,
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in the case of 2D DFTs, 1D FFTs have to be computed in two-dimensions, increasing
the complexity to O(n?logn), thereby making 2D DFTs a significant bottleneck for
real-time machine vision applications [125]. Recently, there has been substantial effort
to achieve high-performance implementations of multi-dimensional FFTs to overcome
this constraint [118, 123, 125-131|. Due to their inherent parallelism and reconfigura-
bility Field Programmable Gate Arrays (FPGAs) are attractive targets for accelerating
FFT computations. Being a highly flexible platform FPGAs can fully exploit the par-
allel nature of the FFT algorithm. 2D FFTs are generally calculated in stages where
all elements of the first stage must be available before the second stage can be calcu-
lated. This creates the so-called “intermediate storage’ problem associated with strided
external memory access, specifically for large datasets.

While calculating 2D DF'Ts it is assumed that the image is periodic, which is usually
not the case. The non-periodic nature of the image leads to artifacts in the Fourier
transform, usually known as edge artifacts or series termination errors. These artifacts
appear as several crosses of high-amplitude coefficients in the frequency domain, as
seen in {132, 133|. Such edge artifacts can be passed to subsequent stages of processing
and in biomedical applications they may lead to critical misinterpretations of results.
Efficiently removing such artifacts without compromising resolution is a major problem.
Moreover, simultaneously removing these spurious artifacts while calculating the 2D
FFT adds to the existing complexity of the 2D FFT kernel.

5.3.1 Contributions

In this chapter we present solutions for a high-performance 2D DFT with simultaneous
edge artifact removal for applications which require high frame rate 2D FFTs such as
real-time medical imaging systems, machine vision for control etc. This work builds
on our previous work presented in [118]. Major contributions include:

e We propose an algorithmic optimization for Periodic plus Smooth Decomposition
(PSD) for edge artifact removal presented in [122].

e Based on our optimized periodic plus smooth decomposition (OPSD) we propose
an architecture that can reduce the access to DRAM and can decrease the number

of 1D FFT invocations by performing column-by-column operations on the fly
[118].

e Since OPSD is heavily dependent on an efficient FPGA-based 2D FFT implemen-
tation which is limited by DRAM access problems we design a memory mapping
scheme which can reduce row activation overhead while accessing columns of data

from the DRAM.

e We use our implementation as an accelerator for filtered back-projection (FBP),
an analytical tomographic reconstruction method, and show that for large datasets
our 2D FFT with edge artifact removal can significantly improve reconstruction
run time.

The chapter follows FPGA image processing design methodology outlined in 133,
134], which involves carefully profiling the software solution to understand computa-
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tional bottlenecks and overcoming them through careful reformulation of the algorithm
within a parallel hardware framework.

5.4 Background

5.4.1 High Performance 2D FFTs using FPGAs

There are several resource-efficient, high-throughput implementations of multidimen-
sional DFTs on a variety of different platforms. Many of these implementations are
software-based and have been optimized for efficient performance on general-purpose
processors (GPPs), for example Intel MKL [128], FETW [126] and Spiral [127]. Imple-
mentations on GPPs can be readily adapted for a variety of scenarios. However, GPPs
consume more power and are not ideal for real-time embedded applications. Several
Application-Specific Integrated Circuit (ASIC)-based implementations have also been
proposed [135-137|, but since it is not easy to modify ASIC implementations, they are
not cost-effective solutions for rapid prototyping of image processing systems. GPUs on
the other hand can achieve relatively high throughput but are energy inefficient. More-
over, they often have limited bandwidth and limit the mobility of large scale imaging
systems.

Due to their inherent parallelism and reconfigurability, FPGAs are attractive for
accelerating FFT computations, since they fully exploit the parallel nature of the FF'T
algorithm. FPGAs are particularly an attractive target for medical and biomedical
imaging apparatus and instruments such as electron microscopes and tomographic
scanners. Such devices don’t have to be manufactured in bulk to justify application
specific solutions, and require high bandwidth. Moreover, increasing mobility and
portability is a future objective for many medical imaging systems. FPGAs are also
more efficient for prototyping machine vision applications since they are relatively more
fine-grained when compared to GPPs and GPUs and can serve as a bridge between a
general purpose and application specific acceleration solutions.

5.4.2 DRAM Intermediate Storage Problem

There have been several high-throughput 2D FFT FPGA-based implementations over
the past few years. Most of these rely on repeated invocations of 1D FFTs by row
and column decomposition (RCD) with efficient use of memory [123, 125, 129, 138,
139]. RCD makes use of the fact that a 2D Fourier transform is separable and can be
implemented in stages, i.e., a row-by-row 1D FFT can be proceeded by a column-by-
column 1D FFT with intermediate storage (Fig. 5.2). Most of the previous RCD-based
2D FFT FPGA implementations have two major design challenges: 1) The 1D FFT
implementation needs to have a reasonably high-throughput and needs to be resource-
efficient. Moreover, spatial parallelism needs to be exploited by running several 1D
FFTs simultaneously. 2) External DRAM needs to be efficiently addressed and to have
a high bandwidth.

Since the column-by-column 1D FFT requires data from all rows intermediate stor-
age becomes a major problem for large datasets. Many implementations rely on local
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Figure 5.2: a) An overview of Row-Column Decomposition (RCD) for 2D FFT im-
plementation. Intermediate Storage is required because all elements of the row-by-row
operations must be available for column-by-column processing. b) An overview of
strided Column-wise access from DRAM as compared to trivial row-wise access. An
entire row of elements must be read into the row buffer even to access a single element
within a specific row.
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(a) DRAM Hierarchy (b) Single DRAM Bank
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Figure 5.3: a) An overview of the DRAM hierarchy. b) Image showing the structure
of a single DRAM bank. c) Flow chart explaining additional latency introduced when
a new row has to be referred into the row buffer to access a specific element.

memory such as resource-implemented Block RAM for intermediate storage which is
not possible for large datasets [138]. Large datasets have to be offloaded to external
DRAM because only a portion of the dataset that fits on the chip can be operated
on at a given time. For complex image processing applications this means repeated
storage and access to the external memory during every stage of processing.

As shown in Fig. 5.3a DRAM hierarchy from top to bottom is: rank, chip, bank,
row and column. Each DRAM bank (Fig. 5.3b) has a row buffer that holds the most
recently referred row. There is only one row buffer per bank which means only one
row from the data-grid can be accessed at once. Before accessing a row it has to
be activated by transferring the contents from internal capacitor storage into a set of
parallel sense amplifiers. The row buffer is the so-called ’fast buffer’, because when a
row is activated and placed in the buffer, any element can be accessed at random.

If a new row has to be activated and accessed into the row buffer a row buffer miss
occurs and requires a higher latency, A,,;ss (Fig. 5.3¢c). On the contrary if the desired
row is already in the buffer a row buffer hit or page hit occurs and the latency to access
elements is substantially lower, Ay;. This implies A,;ss = Apit + Cr, where C,. is the
overhead associated with accessing a new row to read a specific element (Fig. 2c) [129].
There is also overhead involved in writing the row back to the data-grid (pre-charge),
say Cy. However, both C, and C, can be concealed by interleaving (smart switching
between banks). Since row-wise access is trivial the row-by-row 1D FFT part of RCD-
based 2D FF'T is simple. However, once the row-by-row 1D FFT is stored in the DRAM
in standard row-major order, to access a single column, each row of the DRAM has to
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be accessed into the row buffer rendering the read process extremely inefficient. This is
typically the major bottle neck for high-throughput 2D FFTs (Fig. 5.2b). We address
this problem by designing a custom memory mapping scheme (Section V).

5.4.3 Edge Artifacts

While calculating 2D DFTs it is assumed that the image is periodic, which is usually
not the case. The non-periodic nature of the image leads to artifacts in the Fourier
transform, usually known as edge artifacts or series termination errors. These artifacts
appear as several crosses of high-amplitude coefficients in the frequency domain (Fig.
5.4b). Such edge artifacts can be passed to subsequent stages of processing and in
biomedical applications they may lead to critical misinterpretations of results. No cur-
rent 2D FFT FPGA implementation addresses this problem directly. These artifacts
may be removed during pre-processing, using mirroring, windowing, zero padding or
post-processing, e.g., filtering techniques. These techniques are usually computation-
ally intensive, involve an increase in image size, and also tend to modify the transform.

The most common approach is by ramping the image at corner pixels to slowly at-
tenuate the edges. Ramping is usually accomplished by an apodization function such
as a Tukey (tapered cosine) or a Hamming window, which smoothly reduces the inten-
sity to zero. Such an approach can be implemented on an FPGA as a pre-processing
operation by storing the window function in a Look-up Table (LUT) and multiplying
it with the image stream before calculating the FFT [133|. Although this approach
is not extremely computationally intensive for small images, it inadvertently removes
necessary information from the image. Loss of this information may have serious conse-
quences if the image is being further processed with several other images to reconstruct
a final image that is used for diagnostics or other decision-critical applications. An-
other common method is by mirroring the image from N x N to 2N x 2N. Doing so
makes the image periodic, and reduces edge artifacts. However, this not only increases
the size of the image by 4x, but also makes the transform symmetric, which generates
an inaccurate phase component.

Simultaneously removing the edge artifacts while calculating a 2D FFT imposes
an additional design challenge, regardless of the method used. However, these arti-
facts must be removed in applications where they may be propagated to subsequent
processing levels. An ideal method for removing these artifacts should involve making
the image periodic while removing minimal information from the image. PSD, first
presented by Moisan [122] and used in [140-142], is an ideal method for removing edge
artifacts (specifically for biomedical applications) because it does not directly intervene
with pixels beside those of the boundary and does not increase image size. Moreover,
its inherently parallel nature makes it ideal for a high-throughput, FPGA-based im-
plementation. We have further optimized the original PSD decomposition algorithm
to make the overall implementation much more efficient, by decreasing the number of
required 1D FFT invocations and by reducing external DRAM utilization (Section IV).
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5.4.4 LabView FPGA Semi-High Level Design Environment

A major concern while designing complex image processing hardware accelerators is
how to fully harness the divide-and-conquer approach. Algorithms that have to be
mapped to multiple FPGAs are often marred by communication problems, and cus-
tom FPGA boards reduce flexibility for large-scale and evolving designs. For rapid-
prototyping of our algorithms we used LabView FPGA 2016 (National Instruments), a
robust data-flow-based graphical design environment. LabView FPGA provides inte-
gration with National Instruments (NI) Xilinx-based reconfigurable hardware, allowing
efficient communication with a host PC and high-throughput communication between
multiple FPGAs through a PXIe (PCI eXtentions for Industry Express) bus. LabView
FPGA also enables us to integrate external Hardware Description Language (HDL)
code and gives us the flexibility to expand our design for future processing stages. We
used NI PXIe-7976R FPGA boards that have a Xilinx Kintex 7 FPGA and 2GB high-
bandwidth (10GB/s) external memory. This platform has already been extensively
used for rapid-prototyping of communication standards and protocols before moving
to ASIC designs. The optimizations and designs we present here are scalable to any
reconfigurable computing-based system.

5.5 Periodic Plus Smooth Decomposition (PSD) for
Edge Artifact Removal

Periodic plus smooth decomposition (PSD) involves decomposing the image into a peri-
odic and smooth component to remove edge artifacts with minimal loss of information
from the image [122]|. This section presents an overview of the PSD algorithm and pro-
files the algorithm for possible parallelization and optimization to achieve an efficient
FPGA implementation.

Let us have discrete n by m gray-scale image I on a finite domain 2 = {0,1,...,n—
1} x {0,1,...,m — 1}. The discrete Fourier transform (DFT) of I is defined as

I(s,;t)y= > I(i,j)exp (—m (% + %)) (5.1)

(3,7)€

This is equivalent to a matrix multiplication W IV, where

1 1 1 e 1
1 w w? . wn!
1 2 4 o 2(n—1)
W = v v v (5.2)
1 w2 w2(n72) w(n72)(n71)
1 ! w2(n71) w(nfl)(nfl)

and

2\ * ok
w” = exp (—L—ﬂ-) = exp (—LL) : (5.3)
n n
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Algorithm 5 Periodic Plus Smooth Decomposition (PSD)

INPUT: I(i,j) of size n x m
Step A: Compute the 2D DFT of image I(i,7) :
1(,5) 5 1(s,1)
Step B: Compute periodic border B :
if (i=0Vi=n—1)then
R(Zvj) A I(TL -1- Z)]) - I(Zaj)
else
R(i,j) <0
end if
if (j=0Vj=m—1)then
C(i,j) < I(i,m—1—j) = I(i,])
else
C(i,j) <0
end if
B+ R+C
Step C: Compute the 2D DF'T of B(i,j) :
B(i,j) 5 B(s,1)
Step D: Compute the Smooth Component S(s,t) :
D(s,t) 2 cos 222 + 2 cos 22t — 4
S(s,t) « B(s,t) + D(s,1)
Step E: Compute the Periodic Component P(s,t) :
P(s,t) « I(s,t)— 8(s,t)
OUTPUT: P(s,t), S(s,t)
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(e)

Figure 5.4: 1la) An image with non-periodic boundary. 1b) 2D DFT of 1a. 1c) DFT of
the Smooth Component ,i.e., the removed artifacts from la. 1d) Periodic Component
i.e DFT of la with Edge Artifacts removed. le) Reconstructed Smooth Component.
1f) Reconstructed Periodic Component.

V has the same structure as W but is m-dimensional. Since w* has period n which
means that w* = w*"  Vk,l € N and therefore,

1 1 1 . 1 1
1w w? o wh? ot
1 2 4 o n—4 n—2
1 wan wnf4 w4 w2
1 wnfl wnf2 w2 wl

Since in general I is not (n, m)-periodic, there will be high amplitude edge artifacts
present in the DFT stemming from sharp discontinuities between the opposing edges
of the image as shown in Fig. 5.4b. [122] proposed a decomposition of I into a
periodic component P, that is periodic and captures the essence of the image with
all high frequency details, and a smoothly varying background S, that recreates the
discontinuities at the borders. So, I = P+ S. Periodic plus smooth decomposition can
be computed by first constructing a border image B = R+ C', where R represents the
boundary discontinuities when transitioning row-wise and C' when going column-wise,
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R(i, j) =

0, otherwise

{I@—l—@ﬁ—I@ﬁ,izOmi:n—l

' NI | (5.5)
C(i7j>:{I(Z’m_l_J)_I@’])u ]:OOr]:m_l

0, otherwise

It is obvious that the structure of the border image B is simple with nonzero values
only in the edges as shown below:

b1 big ... bim—1 bim
b21 0 Ce 0 —b21
B=R+C = L . (5.6)
bn—l,l 0 e 0 _bn—l,l
bnl —blg R —b17m_1 —bnm

The DFT of the smooth component S can be then found by the following formula:

A

A B(s,t)
S(s,t) = ’
(%) 2008%—#2008%—4’

(s, t) € Q\{(0,0)}. (5.7)

The DFT of the image I with edge artifacts removed is then P=7-8. Fig.
5.4c and 5.4d show the DFT of the smooth and periodic components, respectively.
Fig. 5.4e and Fig. 5.4f show the reconstructed periodic and smooth components. On
reconstruction, it is evident that there is negligible visual difference between the actual
image and the periodic reconstructed image.

5.5.1 Profiling PSD for FPGA Implementation

Algorithm 5 summarizes the overall PSD implementation. There are several ways of
arranging the algorithm. We have arranged it so that DFTs of the periodic and smooth
components are readily available for further processing stages. For best results, both
the periodic and smooth components should undergo similar processing stages and
should be added back together before displaying the result. However, depending on
the application it might be acceptable to discard the smooth component completely.
For a nxm image step A and C have a complexity of O(nm log(nm)) and steps B and D
have complexity O(m+n) and O(mn) respectively. Computationally the performance
of PSD is limited by step A and C. Fig. 5.5 shows a proposed top-level architecture
where step A and steps B, C and D are completed on separate FPGAs while step E can
be done on the host PC. The overall performance may be limited by FPGA 2 where
most of the serial part of the algorithm lies. There are two major factors which limit
the throughput of such a design:

1. While FPGA 1 and FPGA 2 can run in parallel the result of step A from FPGA 1
has to be stored on the host PC while steps B, C and D are completed on FPGA
2 before step E can be completed on the host PC.

2. The DRAM intermediate storage problem explained in section 5.4.2 and Fig.
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Figure 5.5: A top-level architecture for OPSD using two FPGAs and a host PC
connected over a high-bandwidth bus. The steps are associated with algorithm 5.

5.4.2 has to be addressed since strided access to the DRAM for column-wise
operations can significantly limit throughput.

As for (1) it has been addressed in the next section where we make use of the
inherent symmetry of the boundary image to reduce the time required to compute
the 2D FFT of the boundary image. As for (2) it has been addressed by designing
a semi-custom memory mapping controller which "tiles” the DRAM floor and "hops”
between several tiles so as to minimize strided memory access.

5.6 Optimized Periodic Plus Smooth Decomposition
(OPSD)

In this section we optimize ? the original PSD algorithm so that it can be effectively
configured on an FPGA by reducing the number of 1D FFT invocations, reducing
DRAM access and eliminating column-wise 1D FFT operations.

On inspecting Equation (6) we realize that the boundary image B is symmetrical
in the sense that boundary rows and columns are an algebraic negation of each other.
In total B has n+m — 1 unique elements, with the following relations between corners
with respect to columns and rows:

biir =rutcn
bim = 7Tim —C11
5.8
by = —ritcn (5:8)
bnm = —Tim — Cn1
- bnm = _bll — blm — bnl (59)

2The optimization presented in Equations 5.8-5.16 was suggested and tested on software by Mirt
Toots and is part of our joint publication [118].
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In computing the FFT of B one normally proceeds by first running 1D FFTs
column-by-column and then 1D FFTs row-by-row or vice versa. An FFT of a column
vector v with length n is Wwv, where W' is given in eq. (5.4). The column-wise FFT
of the matrix B is then

B=WB. (5.10)

Let us have a closer look on the first column, denoted by B.;. The 1D FFT of this
vector is

1 1 1 b1
1 w wn ! bo1
. 2 2(n—1)
B L= WB1 _ 1 w w b31
1 ™2 w(n—2)(n—1) bn—l,l
1wt L i DesD o
" (5.11)
Zi:l bil,
> i binw'™
| XL bawY
S -6
Z?:l bilw(n—l)(i—l)
It can be shown that the 1D FFT of the column j € {2,3,...,m — 1} is
1 1 1 by
1 w wn ! 0
~ 2 2(n—1)
B,—WB, - 1 w w 0
1 w2 w(n—2)(n—1) 0
1 wn—l w(n—l)(n—l) —b
& (5.12)
0
1 —wn !
1 — w2
—b1g = ble )
1 —w?
1—w

The 1D FFT of the last column B.,, is

B.,=WB.,, (5.13)
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Table 5.1: Comparing Mirroring, PSD and OPSD

Algorithm DRAM Access DFT
Points Points
Mirroring SNM SNM
P+S Decomposition (PSD) 4NM AN M

Optimized PSD (Proposed) 3NM +N+ M —1 3NM + M

o Z?:l bil
_ Z?:l binw'™! 4 (b11 + bip) (1 — w™ 1)
= Y b w0 4 (b + by (1= w2)

e (5.14)
-y binw ™20 1 (byy + by ) (1 — w2 (1)
-y binw ™= DD 4 (byy 4 by ) (1 — w= D)
B.m = — B.l + (bll + blm)l/ . (515)
So, the column-wise FFT of the matrix B is
B = (_BAl b121/ e bl,m—l’/ —.B.l + (bll + blm)l/) . (516)

To compute the column-by-column 1D FFT of the matrix, B, we only have to
compute the FFT of the first vector and then use the appropriately scaled vector, v,
to derive the remainder of the columns. The row-by-row FFT has to be calculated
in a row burst normal way. Algorithm 6 presents a summary of the shortcut for
calculating B(s, t). The steps presented in Algorithm 6 can replace parts of Algorithm
5. By reducing column-by-column 1D FFT computations for the boundary image,
this method can significantly reduce the number of 1D FFT invocations, reduce the
overall DRAM access and eliminate problematic column-wise strided DRAM access
for an efficient FPGA-based implementation. For column-wise operations a single 1D
FFT of size m is required rather than nm 1D FFTs of size m. Moreover, since one
has to simply store one column of data it can be stored on the on-chip local memory
(BRAM or SRAM). This can be implemented by temporarily storing the initial vector
B and scaling factors by; in the block RAM /register memory, drastically reducing
DRAM access and lowering the number of required 1D FF'T invocations. Performance
evaluation for this has been presented in the results section.

Table 5.1 shows a comparison of Mirroring, PSD and our proposed OPSD with
respect to DRAM access points. Mirroring has been used for comparison purposes
because it is an alternative technique that reduces edge artifacts while maintaining
maximum amplitude information. However, due to replication of the image most of
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Algorithm 6 Proposed Symmetrically Optimized Computation of B (s,t)
INPUT: B(i,j) of size n x m

Frw

2D F(B) & B 2 B., 2 B
Column-by-Column DFT via Symmetrical Short-cut:
B.5 B,
while 1 < j <m do
B.j — ble/
end while
B.m — —B.l + (bll + blm)I/
Bcw + Concatenate B.l B.z B.m_l B.m

Row-by-Row DF'T"

Bew 22 B(s,t)

OUTPUT: B(s,t)

cw: column-wise/column-by-column
rw: row-wise/row-by-row
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Figure 5.6: Graph showing DRAM access (equal to number of DFT points to be com-
puted) with increasing image size for Mirroring, Periodic Plus Smooth Decomposition
(PSD) and our proposed Optimized Period Plus Smooth Decomposition (OPSD).
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the phase information is lost. Fig. 5.6 graphically shows that our OPSD method
significantly reduces reading from external memory and reduces the overall number of
DFT computations required. It should be noted that such optimization is only possible
for either column-wise or row-wise operations because after either of these operations
the output is not symmetrical anymore. Completing the column-wise operation first
prevents strided reading however this results in strided writing to the DRAM before
row-wise traversal can start. This can be minimized by making efficient use of the local
block RAM. Output columns are stored in the block RAM before being written to the
DRAM in patches such that each row buffer access writes elements in several columns.

An alternative way to optimize the algorithm and reduce the resource consumption
is to use equation (5.5) and take individual Fourier transforms of the row and column
components. These can then be added with appropriate scaling terms. This optimiza-
tion will reduce the FPGA resource consumption but will not improve the speed of the
overall process, which is limited by the 2D FFT calculation.

5.7 Tile-Hopping Memory Mapping for 2D FFTs

In this section we propose a tile-hopping external memory access pattern for efficiently
addressing external memory during intermediate storage between row-wise and column-
wise 1D FFT operations to calculate a 2D FFT. As explained in section 5.4.2 and Fig.
5.3, column-wise reads from DRAM can be costly due to the over-head associated with
activating and pre-charing. In the worst case scenario it can limit DRAM bandwidth
up to 80% [143]. This is a problem with all such image processing operations where one
stage of the processing has to be completed on all elements before the next stage can
start. In the past there have been several implementations using local memory, however
with growing demand for larger image sizes external memory has to be used. There
have been several DRAM remapping attempts before such as [123, 130]. They propose
a tile-based approach where a n xn image (input array) is divided into 7 x % tiles where
k is the size of the DRAM row-buffer which allows for very high bandwidth DRAM
access. Although, this method may be ideal to maximize the DRAM performance for
2D FFTs it incurs a high resource cost associated with local memory transposition
and storing large chunks of data (entire row/column of tiles) in the local memory.
Moreover, tiling in the image domain also requires remapping row-by-row operations.
Another approach to reducing strided DRAM access has been presented in [144]|. They
present a 2D decomposition algorithm which decomposes the problem into smaller
sub-block 2D FFTs which can be performed locally. This introduces extra row and
column data exchanges and total number of operations are increased from O(n?logn)
to O(n?(1 +logn)). Other implementations don’t address the external memory issue
in detail.

We propose tile-hopping address mapping which reduces the number of row activa-
tions required to access a single column. Unlike [123| our approach does not require
significant local operations and storage and the row-by-row operations can proceed
normally. The proposed memory mapping controller was designed on top of LabView
FPGA’s existing memory controller which efficiently controls interleaving and issues
activation and pre-charge commands in parallel with data-transfer.
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Figure 5.7: Image showing tile-hopping. a) Image-level view showing tiles. b) DRAM-
level view showing tile placement while writing. ¢) DRAM-level view showing column
reading from the tiles.
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Instead of writing the results of the row-by-row 1D FFT in row-major order we
remap the results in a blocked or tiled pattern as shown in Fig. 5.7. This means that
when accessing an image column several elements of that column can be retrieved from
a single DRAM row access. For a n x n image each row of size n can be divided into h
tiles (i.e., n = h.N(t) where, N(t) is the number of elements in each tile). These tiles
can be remapped onto the DRAM “floor” as shown in Fig. 5.7. If the size of the row is
small enough it may be possible to convert it into a single tile (i.e., h = 1). However,
this is unlikely for realistic image sizes. For a tile of size p X ¢, a single row of the
image is written into the DRAM by transitioning through p.h rows. If k is the size of
the row-buffer there are % distinct tiles represented in each DRAM row and it contains
same number of elements from a single image column. Given regular row-major storage
when accessing column-wise elements one would have to transition through n DRAM
rows to read a single image column. However, with this approach, when accessing an
image column, g elements of that column could be read from a single DRAM row which
has been referred into the row buffer. Although, the cost of writing an image row is
higher when compared to a standard row-major DRAM writing pattern, (i.e., referring
p.h rather than n rows) the number of DRAM row referrals during column-wise read
are reduced to “? which is n.(1 — £) less row referrals for a single column read.

We refer to this method as tile — hopping because it entails mapping data onto
several DRAM tiles and then hopping between the tiles such that several elements of
the image column exist in a DRAM row which has been referred into the row bank.
Although this mapping scheme has been developed for column-wise access required
during 2D FF'T calculation the scheme is general and can be adapted to other appli-
cations. Performance evaluation of this method has been presented in the experiments
section.

5.8 Experimental Results and Analysis

5.8.1 Hardware Configuration and Target Selection

Since 2D DFTs are usually used for simplifying convolution operations in complex
image processing and machine vision systems, we needed to prototype our design on
a system that is expandable for next levels of processing. As mentioned earlier for
rapid-prototyping of our proposed OPSD algorithm and tile-hopping memory mapping
scheme we used a PXlIe-based reconfigurable system. PXle is an industrial extension
of a PCI system with an enhanced bus structure that gives each connected device
dedicated access to the bus with a maximum throughput of 24GB/s. This allows a
high-speed dedicated link between a host PC and several FPGAs. The LabView FPGA
graphical design environment is efficient for rapid-prototyping of complicated signal and
image processing systems. It allows us to effectively integrate external HDL code and
LabView graphical design on a single platform. Moreover, it allows a combination of
high-level synthesis (HLS) and custom logic. Since current HLS tools have limitations
when it comes to complex image and signal processing tasks, LabView FPGA tries to
bridge these gaps by streamlining the design process.

We used FlexRIO (Flexible Reconfigurable I/O) FPGA boards plugged into a PXIe
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Figure 5.8: Block diagram of a PXle based multi-FPGA system with a host PC
controller connected through a high-speed bus on a PXlIe chassis.

chassis. PXIe FlexRIO FPGA boards are adaptable and can be used to achieve high-
throughput, because they allow direct data transfer between multiple FPGAs at rates
as high as 8GB/s. This can significantly simplify multi-FPGA systems, that usually
communicate via a host PC. This feature allows expansion of our system to further
processing stages, making it flexible for a variety of applications. Fig. 5.8 shows a basic
overview of a PXlIe-based, multi-FPGA system with a host PC controller connected
through a high-speed bus on a PXle chassis.

Bandwidth Limitations

We used two NI PXIe-7976R FlexRIO board which have a Kintex 7 FPGA and 2GB
external DRAM with theoretical data bandwidth up to 10GB/s. This FPGA board
was plugged into a PXIe-1085 chassis along with a PXIe-8880 Intel Xeon PC controller.
PXTIe-1085 can hold up to 16 FPGAs and has 8 GB/s per-slot dedicated bandwidth
and an overall system bandwidth of 24 GB/s.

5.8.2 Experimental Setup

As per Algorithms 5 and 6, discussed in previous sections, implementation involves four
stages, A) Calculating the 2D FFT of a image frame. B) Calculating the Boundary
Image. C) Calculating the 2D FFT of the Boundary image. D) Calculating the smooth
component. E) Subtracting the smooth component from the 2D FFT of the original
image to achieve the periodic component. The bottleneck consistently occurs in A and
the serial part of the algorithm (B — C — D). The limitation due to A is reduced
removing the so-called 'memory wall’ by using our proposed tile-hopping-based memory
mapping. The limitations due to the serial part of the algorithm are reduced by using
OPSD rather than PSD.

The data flow presented in Fig. 5.5 was followed. Data-flow is clearly shown
in a graphical programming environment making it easier to visualize how a design
efficiently fits on an FPGA. Highly efficient implementations of 1D FFT were used
from LabView FPGA for parallel row-by-row operations and by integrating Xilinx
LogiCore for column-by-column operations. Each stage of the design was dynamically
tested and benchmarked. The image was streamed from the host PC using a Direct
Memory Access (DMA) FIFO. Eight rows of 1D FFTs are performed in parallel and
stored in the DRAM via local memory in a tiled pattern as explained in the previous
section. This follows reading several rows to extract a single column which is Fourier
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Figure 5.9: Functional block diagram of PXIe based 2D FFT implementation with
simultaneous edge artifact removal using optimized periodic plus smooth decomposi-
tion. The OPSD algorithm is split among two NI-7976R (Kintex-7) FPGA boards with
2GB external memory and a host PC connected over a high-bandwidth bus. The im-
age is streamed from the PC controller to FPGA 1 and FPGA 2. FPGA 1 calculates
the row-by-row 1D FFT followed by column-by-column 1D FFT with intermediate
tile-hopping memory mapping and sends the result back to the host PC. FPGA 2
receives the image, calculates the boundary image and proceeds to calculate the 1D
FFT column-by-column FFT using the shortcut presented in Equation. 16 followed by
row-by-row 1D FFTs and the result is sent back to the host PC.

transformed using Xilinx LogiCore and is sent back to the host PC. If the image is
being streamed directly from an imaging device which scans and provides random or
a non linear sequence of rows it is necessary to store a frame of the image in a buffer.
This can also be accomplished by streaming the image flow from the host PC or using
a smart camera which can delay image delivery by a single frame.

Data between the camera and the FPGA was transferred via the PC controller using
Direct Memory Access (DMA) FIFO. However, it is also possible to directly transfer
data to the FPGA by using a camera-link front-end. Local memory shown in Fig. 5.10
is used to buffer data between external memory and 1D FFT cores. This local memory
is divided into read and write components and is implemented using FPGA slices.
Block RAM (BRAM) is used for temporary storage of vectors required for calculating
the 2D FFT of the boundary image (in the case of FPGA 2). The Control Unit (CU)
organizes scheduling of transferring data between local and external memory. CU
is based on LabView’s existing memory controller and our memory mapping scheme
presented in previous sections.

Step B was accomplished using standard LabView FPGA HLS tools using the
graphical programming environment. In step C the 2D FFT of the boundary im-
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Figure 5.10: Block diagram of 2D FFT showing data transfer between external mem-
ory and local memory scheduled via a Control Unit (CU).

age needs to be calculated by row and column decomposition. However, as shown
mathematically in the previous section, the initial row-wise FFTs can be calculated
by computing the 1D FFT of the first (boundary) vector and the FFTs of remaining
vectors can be computed by appropriate scaling of this vector. We need the boundary
column vector for 1D FFT calculation of the first and last columns. We also need
the boundary row vector for appropriate scaling of v for the 1D FFT of every column
between the first and last columns. Row and column vectors of the boundary image
are stored in block RAM (BRAM). Fig. 5.9 shows a functional block diagram of the
overall 2D FFT with optimized PSD process. Step D and E are performed on the host
PC to minimize memory clashes and to access the periodic and smooth components of
each frame as they become available.

5.8.3 Performance Evaluation

The overall performance of the system was evaluated using the setup presented in
Fig. 5.9. The data was streamed from the host PC; in certain cases high frame
rate videos as well as direct camera input was streamed from the host. All results
presented are for 16-bit fixed point precision. Fig. 5.11a presents the effectiveness of
our proposed tile-hopping memory mapping scheme. It clearly shows the effectiveness
of our proposed memory mapping since it’s closer to the theoretical peak performance.
Fig. 5.11b presents the overall results comparing PSD and OPSD and demonstrating
the effectiveness of our proposed optimization. PSD was also implemented on the same
platform but the optimization presented in section IV was not used this rendered the
serial portion of the algorithm to be the bottleneck which reduced overall performance.
Table II shows a comparison of our implementation in contrast to recent 2D FFT
FPGA implementations and shows that we achieve a better performance even with
simultaneous edge artifact removal. Although, our implementation is tested with 16-
bit fixed point precision which limits the accuracy of the transform, the precision may
be sufficient for a variety of speed critical applications where alternative edge artifact
removal methods (e.g. filtering etc.) may decrease overall system performance.
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with Tile-Hopping Memory Pattern. b) 2D FFTs with Edge Artifact Removal (EAR)
using OPSD. The performance evaluation shows the significance of the two optimiza-

tions proposed. Both axes are on a log scale.
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Table 5.2: Comparison of OPSD! 2D FFT with regular RCD-based im-

plementations
Platform SEAR? Precision Runtime
Yes/No  bits 512(ms) 1024 (ms)
Kintex 7, 28nm (ours) Yes 16 (fixed) 1.5 4.8
Kintex 7, 28nm (ours) No 16 (fixed)  0.94 4.1
Stratix IV [123] No 64 (double) - 6.1
Virtex-5-BEE3, 65nm|[131] No 32 (single)  24.9 102.6
Virtex-E, 180nm [138| No 16 (fixed)  28.6 76.9
ASIC, 180nm No 32 (single)  21.0 -

! Optimized Periodic + Smooth Decomposition (PCD)
2 Simultaneous Edge Artifact Removal

5.8.4 Energy Evaluation

The over-all energy consumption of the custom computing system depends on 1) power
performance of the system components 2) throughput disparity. Throughput disparity
results in idle time for at least one of the components and lowers the overall system
throughput. A throughput-optimized system minimizes instances where certain com-
ponents of the architecture are idle. The proposed optimizations in Section IV and
Section V clearly reduce throughput disparity and minimize the ‘idle-time’ of the sys-
tem. Thus, besides causing delays due to significant overhead standard column-wise
DRAM access also contributes to the overall energy consumption. This is not only
due to high count of DRAM row charges but is also because of energy consumed by
the FPGA in idle state. Ideally, maximizing the DRAM bandwidth limits the amount
of energy consumption. Proposed ’tile-hopping’ memory mapping scheme improves
the DRAM bandwidth as seen in Fig. 10 and hence reduces the over-all energy con-
sumption. The same is true for the proposed OPSD method where reduced DRAM
access and 1D FFT invocations lead to reduced energy consumption. In this section
we analyze the amount to improvement in energy consumption based on the proposed
optimizations.

We estimate the DRAM power consumption for both the baseline (standard, strided
memory access) as well as for the optimized ( tile-hopping” memory access) using MI-
CRON DRAM power calculator. The energy is calculated in nJ for each read, i.e.,
energy per read. This is accomplished by calculating the run-time for a specific 2D
FFT and estimating the amount of energy consumed by the DRAM power calculator.
Table 5.4 depicts the DRAM energy consumption for 2D FFTs before and after the
proposed ’tile-hopping’ optimization for column-wise DRAM access. As mentioned
earlier, row-wise DRAM access is fast and row-buffer size data can be accessed by a
single row-activation. According to Table 5.4 the energy required for DRAM access is
reduced by 42.7%, 48.8% and 52.9% for 1024 x 1024, 2048 x 2048 and 4096 x 4096 size
2D FF'Ts respectively.

The metric used to compare overall energy optimization achieved for 2D FFTs
with EAR is energy per point, i.e., the amount of average energy required to compute
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Table 5.3: DRAM Energy Consumption Baseline vs Tile-Hopping

1024 x 1024 2048 x 2048 4096 x 4096

nJoule nJoule nJoule
EPR* CW° Read
(Baseline) 4.46 5.77 7.12
EPR CW Read
Tile-Hopping 2.54 2.95 3.36
(Proposed)
Reduction (%) 42.7% 48.8% 52.9%

*Energy per read (EPR).
°Column-wise memory access (CW).

Table 5.4: 2D FFT + EAR Energy Consumption Baseline vs Optimized (OPSD-+Tile
Hopping)

1024 x 1024 2048 x 2048 4096 x 4096

nJoule nJoule nJoule
EPP' 2D FFT+EAR
Baseline 36.92 41.25 48.35
2D FFT+EAR (Opt.)
Tile-Hopping+OPSD  15.88 17.06 18.11
(Proposed)
Improvement 2.3% 2.4x 2.8%

"Energy per point (EPP).

the 2D FFT of a single point in an image with simultaneous edge artifact removal.
This was achieved by calculating the energy consumed by Xilinx LogiCORE IP for
1D FFTs, the DRAM and the edge artifact removal part separately. The estimated
energy calculated does not include energy consumed by the PXIe chassis and the host
PC. Essentially, the FPGA-based architecture presented here could be used without
the host controller. The energy consumption incorporates dynamic as well as static
power. The overall energy consumption per point is reduced by 56.9%, 58.6% and 62%
for calculating 1024 x 1024, 2048 x 2048 and 4096 x 4096 size 2D FFTs with EAR
respectively.
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Figure 5.12: Figure showing a thin slice of filtered back-projection results by recon-
structing a 128 x 128 x 128 Shepp-Logan phantom. The 3D density was reconstructed
from 180 equally spaced simulated projections using standard linearly interpolated
FBP and using a ram-lak filter. It can be seen that the results from the FPGA+CPU
solution have some errors this is due to the fact that the 2D FF'T of each projection is
less accurate. The results are good enough to be used as a prior for further optimization
based refinement methods.

5.9 Application: Filtered Back-projection for Tomog-
raphy

In order to further demonstrate the effectiveness of our implementation we use the
created 2D FF'T module as an accelerator for reducing the run-time for filtered back-
projection (FBP). In depth details regarding the basic FBP algorithm have been dis-
cussed in Chapter 1, but can be found in [10, 21|. The method can be used to recon-
struct primitive 3D tomograms from 2D data, which can then be used as a prior for
more complex regularization-based methods such as [15, 67, 145|. The algorithmic flow
is based on the Fourier slice theorem, i.e., 2D Fourier transforms of projections are an
angular component of the 3D Fourier transform of the 3D reconstructed volume. Our
2D FFT accelerator was used to calculate the 2D FETs of the projections as well as
for initial stages of the 3D FFT which was then completed on the host PC. Similar
to the 2D FFT the 3D FFT is separable and can be divided into 2D FFTs and 1D
FFTs. The results have been shown in Table 5.5, it can be seen that the improvement
for smaller size densities is not significant because their FFTs are quite fast on general
purpose CPUs. However, for larger densities the FFT accelerator can give a signifi-
cant improvement. If the remaining components are also implemented on an FPGA,
significant speed increase can be achieved. Results of a thin slice from a 3D simulated
shepp-logan [26] phantom have been shown in Fig. 5.12. It can be seen that the result
from the hardware accelerated FBP are of slightly lower quality. This is due to the fact
that our 2D FFT implementation is less accurate (16 bit, fixed-point) as compared to
the CPU-based implementation (FFTW, double-precision floating). The accelerated
FBP was also tested with real Electron Tomography (ET) data.



5.10 Conclusion 123

Table 5.5: Comparing Filtered Back-projection Runtime

3D Density CPU (i7)  FPGA + Host PC (i7)

Sec Sec

128 x 128 x 128 21.3 sec 19.5 sec
256 x 256 x 256 47.5 sec 42.4 sec
512 x 512 x 512 94.8 sec 81.3 sec
1024 x 1024 x 1024 322.3 sec 275.3 sec
2048 x 2048 x 2048 1687.7 sec  1364.4 sec
4096 x 4096 x 4096 16463.1 sec 12599.4 sec

5.10 Conclusion

2D FF'Ts often become a major bottleneck for high-performance imaging and vision sys-
tems. The inherent computational complexity of the 2D FF'T kernel is further enhanced
if effective removal (using PSD) of spurious artifacts introduced by the non-periodic
nature of real-life images is taken into account. We developed and implemented an
FPGA-based design for calculating high-throughput 2D DFTs with simultaneous edge
artifact removal. Our approach is based on a PSD algorithm that splits the frequency
domain of a 2D image into a smooth component, which contains the high-frequency,
cross-shaped artifacts and can be subtracted from the 2D DFT of the original image
to obtain a periodic component that is artifact free. Since this approach calculates
two 2D DFTs simultaneously, external memory addressing and repeated 1D FFT in-
vocations become problematic. To solve this problem we optimized the original PSD
algorithm to reduce the number of DFT samples to be computed and DRAM access by
24%. Moreover, to reduce strided access from the DRAM during column-wise reads we
presented and analyzed ‘tile-hopping’, a memory mapping scheme which reduces the
number of DRAM row activation when reading a single column of data. This memory
mapping scheme is general and may be used for a variety of other applications.

Our methods were tested using extensive synthesis and benchmarking using a Xilinx
Kintex 7 FPGA communicating with a host PC on a high-speed PXIe bus. Our system
is expandable to support several FPGAs and can be adapted to various large-scale
computer vision and biomedical applications. Despite decomposing the image into
periodic and smooth frequency components our design requires less run-time, compared
to traditional FPGA-based 2D DFT implementations and can be used for a variety of
highly demanding applications. One such application, filtered back-projection was
accelerated using the proposed implementation to achieve better results specifically for
larger size raw tomographic data.






Chapter 6

Conclusions and Future Directions

6.1 Summary and Conclusions

This thesis focused on the problem of refining Cryo-ET reconstructions from an image
reconstruction point of view. Cryo-ET despite being a powerful structure determi-
nation method becomes an ill-posed inverse reconstruction problem, made tedious by
various aspects of data collection constraints. The thesis also focuses on reconfigurable
computing as a medium for accelerating Cryo-ET reconstructions in specific and to-
mographic reconstructions in general.

A review of Cryo-ET methodology and fundamentals of tomography was presented
in Chapter 1. Cryo-ET is a macromolecular structure determination method which
is better than other methods in the sense that it allows samples to be imaged in
their native sates. Due to rapid freezing, and less prominent requirement of averaging
Cryo-ET can preserve information pertaining to the flexibility of the molecule being
imaged giving the possibility to study molecular dynamics. The drawbacks of Cryo-
ET involve lower resolution which can be remedied to some extent by sub-tomogram
averaging. Cryo-ET data collection suffers from a wide variety of problems which stem
from the missing wedge, the notorious dose problem, and detector imperfections etc.
These issues render the inverse reconstruction problem ill-posed, i.e., it lacks a unique
solution and is unstable. Solving such an ill-posed inverse problem can be a challenge
and the problem ties into the field of image reconstruction more specifically iterative
image reconstruction which is an active research area. One of the major objectives of
this thesis was to develop, analyze and study algorithms which could overcome some
of the issues associated with the Cryo-ET reconstruction problem.

In regards to this Chapter 2 presented a sinogram denoising a pre-processing based
method. This method makes use of the fact that the sinogram has structured data due
to high redundancy in the projections since they are collected from the same sample.
Employing non-local graph-based methods it is possible to make use of redundancy in
images since they establish connections between regions of the image which are spatially
far from each other. Since the sinogram has proximal but not necessarily adjacent pixels
which are similar we could reduce the nearest neighbor search parameter. It was shown
via extensive experimentation that it is possible to denoise the sinogram and achieve
better reconstructions using standard reconstruction methods such as FBP, ART and
SIRT etc.
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This non-local graph-based denoising work inspired Chapter 3 where graph-based
non-local denoising was incorporated in the reconstruction method to achieve better
reconstructions. Chapter 3 dives into CS-based SEIR methods which harness the con-
cepts of compressing to acquired data, i.e., these methods treat the acquired data as if
it was a compressed form of data in some sparse bases. Usually CS alone is not enough
to cater for the sparsity required for real problems. Therefore the proposed method
(AGTV) promotes sparsity in the wavelet and graph-gradient domains. AGTV was
extensively tested in different conditions and it was shown that parts of the missing
wedge could be recovered by employing this method. That said, the computational
constraints associated with the method are significant. However, the method is of
immense interest for the image reconstruction community and can be seen as a gener-
alization of the state-of-the-art CSTV and NLTV/CSGT methods. The method acts
as a major proof-of-concept and an inspiration for future studies along these lines.

The computational complexity associated with non-local methods is significant
hence Chapter 4 focuses on a more efficient and intuitive method to denoise tomo-
grams. Extended reconstructions work on the concept that reconstructing a larger ‘ar-
tificial’ region outside the ROI during regularization-based image reconstruction gives
‘lee-way’ for the noise to spread out throughout the reconstruction space while the
much more confined signal stays within the ROI. The signal has a clear representation
in every projection, while this is not the case for noise and inconsistency errors which
can spread to this extra region. This concept was tested with extensive simulation
experiments as well as real Cryo-ET 3D data. Multimedia files related to this method
have been included with this thesis.

Finally, Chapter 5 focuses on reconfigurable computing and FPGA-based acceler-
ation of 2D FFTs with edge artifact removal. This is a fundamental component of
Fourier slice theorem-based image reconstruction methods. From a tomographic point
of view this is interesting because FBP is used as a prior for most iterative image
reconstruction methods and is subject to the ROI problem in tomography. The ROI
problem occurs when an extracted region from a tilt series of projections is used rather
than the entire projections. In this case each extraction has information regarding the
region which is not a part of the ROI. This can partially be reduced by reconstructing
the entire size of the projections. However, this is computationally tedious even for a
primitive method like FBP. This serves the major motivation behind taking the time
and spending the effort to implement high performance 2D FFTs on FPGAs. FBP
has traditionally been implemented in the real-space but for large size implementa-
tions real-space will require a lot of data shuffling something not trivial to accomplish
on semi-high-level FPGA implementation environments. Moreover, 2D FFT FPGA
implementation on an expandable system is only the first step towards a long term
objective of implementing full iterative methods in a reconfigurable computing setting.
Also, the 2D FFT is the first step towards implementing a NUFFT, a method com-
monly used in tomography since it can avoid the requirement of Fourier interpolation.
2D FFTs have a major issue related to edge artifacts which stems from the fact that the
edges of an image are not periodic, the 2D FF'T implementation presented in Chapter
4 incorporates an optimized edge artifact removal scheme with minimal loss of fre-
quency information (which is required for tomographic applications). The architecture
presented in Chapter 4 is general and can be adapted to other types of hardware.
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6.2 Original Contributions

The following original contributions have been made in this thesis:

From an Image Reconstruction Perspective

e The proposition of graph-based non-local sinogram denoising, its analysis and
effectiveness for denoising tomographic reconstruction (Chapter 2).

e The proposition of adaptive graph-based total variation as a compressed sensing-
type method which can simultaneously reconstruct and denoise data. The ability
of the method to reconstruct from missing and noisy data specifically the recovery
of data from the missing wedge. A unique aspect of the method is that it can be
seen as a generalization of CS and TV-type methods, a fact of significance and
interest for the image reconstruction community (Chapter 3).

e Analysis of extended field-based reconstructions as a method that can be applied
to real data and is computationally efficient. Although, the idea of this method
was first presented in [105] in 1974 at that time the method was only applied to
2D datal!. The major contribution in this area was to enable the use of extended
field with a wide variety of methods and to study its properties pertaining to the
extension size and its ability to reduce the regularization parameter (Chapter 5).

From a Reconfigurable Computing Perspective

e Development of an FPGA-based 2D FFT architecture with simultaneous edge
artifact removal for high-performance applications. This was achieved by making
the following contributions.

e Optimizing the existing periodic plus smooth-based edge artifact removal scheme
to reduce the access of DRAM and 1D FFT invocations.

e Designing a custom memory controller to overcome the DRAM column-wise ac-
cess issue which results in reduced memory access speeds while accessing data
stored column-wise in the memory.

6.3 Future Directions

This thesis is a good proof-of-concept and can be seen as an initial study specifically in
the context of non-local graph-based methods for tomographic refinement. However,
there are some questions that have not been addressed by this thesis and many more
that come into mind as result of the studies presented here. The collective aim of
the thesis was the improvement and refinement of tomographic reconstructions. The
following future studies can follow as a result of the developments presented here:

'A fact that I find intriguing is that the 1974 method was computationally complex at the time
for them to test with 3D real data something which is tedious for us today in the case of graph-based
non-local methods.
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e Sinogram denoising presented in Chapter 2 is only an initial proof of concept, the

study can be extended for 3D data by using the recently developed framework
for tensors on graphs [146]. Although, this might not be very simple since the
optimization problem will become increasingly complex and a forward-backward
primal dual-based solver used in the current study may not be applicable.

AGTYV presented in Chapter 3 has several constraints including computational
constraints, hyper-parameter tuning and the curse of adaptivity. Several subse-
quent studies could be designed to reduce the computational complexity of graph
construction and solving the optimization problem. In this regard one approach
could be to move to a Chambolle-Pock [147] Optimization scheme rather than
a proximal forward-backward primal dual-based approach. However, this may
not be very simple since extensive mathematical analysis of the problem may be
required.

A more detailed mathematical analysis of Extended Field-based tomographic
reconstructions may lead to interesting details of how the method can be incor-
porated within the optimization process of variational regularization methods so
as to preserve the fit with the original data.

The 2D FFT architecture presented in Chapter 5 is simply the first step towards
implementing much more complex iterative and optimization-based methods for
tomography in a reconfigurable computing-based setting. The setup has been
created in a way that one can easily extend the PXle system by using more
FPGAs and communicating between them over a high-speed bus. That said, it
is not trivial to accomplish large scale FPGA tasks even within the framework of
semi-high-level design.



Appendix A

Details Regarding Multimedia Files

Multimedia File - I: RealData.mp4

Description: The video shows a 355 x 355 x 255 COMET reconstruction of BENDZIL
colloidal silica and several extended COMET reconstructions ranging from 355 x 355 x
305 to 355 x 355 x 555. Each successive reconstruction is an extract from an extended
reconstruction larger than the ROI. It can clearly be seen that the larger the recon-
struction, more of the noise is redistributed to the extended region rather than the
ROL

Size: 9.7MB

Player Information: The video was created using iMove from video files generated
by screen video capture from 3D visualization software Brick of Bytes (BOB). The
video uses codec H.264 and can be viewed on QuickTime Player on MAC or Windows
Media Player 12 / VCL Player on Windows.

Multimedia File - II: ART-Binary.gif

36 projections were generated from 32 x 32 Binary Phantom and the resulting matrix
of projections (sinogram) was corrupted with 20% added normalized noise. The noise
corrupted sinogram was then extended by zero-padding corresponding to a 64 x 64 re-
construction space. The resulting sinogram was then reconstructed using ART (Kacz-
marz Method). As evident from the multimedia file the resulting reconstruction has
an extra extended region for the anomalous noise to spread into. Kaczmarz method
was run for 100 iterations and achieved semi-convergence at the 15" iteration and had
an error of 7.51. The multimedia file has 15 frames each corresponding to an iteration
of Kaczmarz.

Size: 747TKB

Player Information: The file can be viewed in any web browser.

Multimedia File - I1I: ART-Shepp-Logan.gif
36 projections were generated from 64 x 64 Shepp-Logan Phantom and the resulting
matrix of projections (sinogram) was corrupted with 20% added normalized noise. The
noisy sinogram was then extended by zero-padding corresponding to a 128 x 128 recon-
struction space. The resulting sinogram was then reconstructed using ART (Kaczmarz
Method). As evident from the multimedia file the resulting reconstruction has an extra
extended region for the anomalous noise to spread into. Kaczmarz method was run for
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100 iterations and it achieved semi-convergence at the 5t iteration and had an error of
9.78. The multimedia file has 5 frames each corresponding to an iteration of Kaczmarz.
Size: 290KB

Player Information: The file can be viewed in any web browser.

Multimedia File - IV: SIRT-Smooth.gif
36 projections were generated from 64 x 64 Smooth Phantom and the resulting matrix
of projections (sinogram) was corrupted with 8% added normalized noise. This noisy
sinogram was then extended by zero-padding corresponding to a 128 x 128 reconstruc-
tion space. The resulting sinogram was then reconstructed using SIRT (Cimmino). As
evident from the multimedia file the resulting reconstruction has an extra extended
region for the anomalous noise to spread into. Cimmino’s method was run for 100
iteration and achieved it achieved semi-convergence at the 7" iteration and had an
error of 3.11. The multimedia file has 7 frames each corresponding to an iteration of
Cimmino.
Size: 1.7MB
Player Information: The file can be viewed in any web browser.

Multimedia File - V: SIRT-Shepp-Logan.gif
36 projections were generated from 64 x 64 Binary Phantom and the resulting matrix
of projections (sinogram) was corrupted with 10% added normalized noise. This noisy
sinogram was then extended by zero-padding corresponding to a 128 x 128 reconstruc-
tion space. The resulting sinogram was then reconstructed using SIRT (Cimmino). As
evident from the multimedia file the resulting reconstruction had an extra extended
region for the anomalous noise to spread into. Cimmino’s method was run for 100 iter-
ations and it achieved semi-convergence at the 56! iteration and has an error of 5.94.
The multimedia file has 56 frames each corresponding to an iteration of Cimmino.
Size: 4.4MB
Player Information: The file can be viewed in any web browser.

Multimedia File - VI: 2D FFT - EAR - Demo.mp4
Video showing 320 x 240 2D FFT with simultaneous edge artifact removal of a fractal
pattern.
Size: 3.6MB
Player Information: The video was created using iMove from video files generated
by screen video capture from 3D visualization software Brick of Bytes (BOB). The
video uses codec H.264 and can be viewed on QuickTime Player on MAC or Windows
Media Player 12 / VCL Player on Windows.
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