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Abstract

Higher-spin holography in de Sitter space: horizon modes,
black holes, and the boundary partition function
Higher-spin holographic realizations of quantum gravity on de Sitter spacetimes is a
promising model for addressing quantum gravity in an universe with positive cosmolog-
ical constant. In this body of work we focus on issues related to (i) cosmological horizon
modes, (ii) higher-spin black hole worldlines, and (iii) the boundary partition function.
(i) We introduce a spinor-helicity formalism to encode the data of massless fields of
arbitrary spin on a cosmological horizon. The evolution of free fields between past and
future horizons reduces to a simple Fourier transform in terms of these variables. We
show how this arises, by decomposing the problem into a pair of horizon-to-twistor
problems. (ii) We decompose the boundary partition function Z in terms of spherical
modes in the spinor-helicity basis. Even though the correlators agree, we observe a per-
sistent discrepancy between the higher-spin-algebraic calculation of Z and the result of
a direct CFT calculation. This suggests a failure of locality in higher-spin theory, even
on the boundary. (iii) We show that the linearized version of the Didenko–Vasiliev
black hole solves the Fronsdal field equations with a particle-like source. These fields
are precisely the linearized bulk higher-spin fields corresponding to a bilocal source on
the boundary. We show that the boundary correlator of two bilocal operators agrees
with the bulk action describing the corresponding particles interacting in the bulk.
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Introduction

Lord Kelvin (disputedly) claimed in 1900 that “there is nothing new to be discovered in
physics now; all that remains is more and more precise measurement.” In spite of this,
the 20th century has seen the development of two great conceptual schemes of modern
theoretical physics: on one hand quantum mechanics and quantum field theory, on the
other hand, general relativity. The latest quest has been to unify these two grand yet
stubbornly contradicting theories into a single framework.

General Relativity, through Einstein’s equations, describes a world model consist-
ing of a spacetime manifold with a metric, whose curvature is constrained by the
stress-energy-momentum of energy and matter distributions; physical quantities are
classical, as in they have definite real values. Our fundamental theories of matter
and energy, however, are all quantum theories. In general, physical quantities are de-
scribed by quantum states which give probability distributions over a range of values,
and canonically conjugate properties have inversely related specificities as expressed
by Heisenberg’s Uncertainty Principle.

In the naïve attempt to follow the model of, say, quantum electrodynamics and
quantize the gravitational field similar to the way in which the electromagnetic field
was quantized, various serious difficulties arise. In a sense, these are technical diffi-
culties: the gravitational interaction is non-renormalizable and thus the perturbative
methods that have been successfully employed in ordinary quantum field theories prove
ineffective. At the conceptual level, these difficulties arise from the nature of the gravi-
tational interaction, as a property of spacetime itself, rather than as a field propagating
on top of a static spacetime background. Given the uncertainty principle and the prob-
abilistic nature of quantum theory, the geometry of spacetime itself is fluctuating, but
ordinary quantum theory presupposes a well-defined classical background against which
to define these fluctuations.

One can argue that the two theories differ on an ontological level [1]: general
relativity discards the fixed kinematical structure of spacetime so that localization is
rendered relational, however, quantum field theory requires a fixed flat background in
its construction, which is used to derive standard features of the theory. Moreover,
quantum field theory involves quantum fluctuations at arbitrarily short distances in
the vicinity of a point, while general relativity involves the use of smooth geometry.

In a strict sense, it could be said that the problem of quantum gravity has been
solved: string theory, through the AdS/CFT correspondence, offers an account of the
problem if questions are restricted to the spatial infinity of a universe with negative
cosmological constant.

The idea behind string theory is to replace the point particles of ordinary quantum
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2 Introduction

field theory with one-dimensional extended objects called strings. In the early devel-
opment of the theory, it was recognized that the construction of a consistent quantum
theory of strings requires a higher number of spatial dimensions; in fact, supersym-
metric string theories must be formulated in 9+1 dimensions. Strings can be open
or closed, and have a characteristic tension and hence vibrational spectrum, with the
various modes of vibration corresponding to various particles, one of which is the spin-
2 graviton. One of the advantages of such theories is that they are perturbatively
renormalizable.

The AdS/CFT correspondence [2–4] was introduced as the statement that observ-
able properties of a particular string theory defined on anti-de Sitter (AdS) spacetime
are equivalent to those of a conformal field theory (CFT) on the conformal bound-
ary of AdS. This is a concrete example of the more general holographic principle [5–7],
which states that a gravitational theory over a bulk spacetime region can be completely
described by a theory defined on the lower-dimensional boundary of the bulk region.

We are interested in formulating a theory of quantum gravity over spacetimes with a
positive cosmological constant where an observer only has access to partial information.
One of the reasons why such questions are interesting is the astronomical observations
[8, 9] which indicate that the cosmological constant in our universe is in fact positive.

De Sitter (dS) space is a natural toy model to describe quantum gravity over finite
regions as it is the maximally symmetric spacetime of positive cosmological constant
containing horizons; however, descriptions of de Sitter are currently unavailable or
difficult to address within the context of string theory. The de Sitter vacua that
have been found in string theory turn out to be metastable [10–12], (that is, they
exhibit a non-zero probability of decay to a different vacuum state of lower energy),
and moreover are difficult to work with. One reason for this situation is the lack of
supersymmetry. Due to its thermal nature, de Sitter space cannot be supersymmetric,
namely, the thermal distribution function at finite temperature breaks supersymmetry.
More formally, de Sitter space is inconsistent with supersymmetry in the sense there
is no supergroup that includes the dS isometries and has unitary representations [13].
It has further been argued that even metastable de Sitter vacua might belong to the
string swampland, i.e. unrealizable in string theory [14].

Descriptions of Sitter space may be connected to those on AdS via analytic con-
tinuation, which suggests that one may be able to import the holographic language
from the negative cosmological constant case; thus, the achievements of the AdS/CFT
correspondence have lead to the idea of dS/CFT. This duality has been conjectured
before [15–17], but until recently [18] there has been no non-trivial proposition on how
to realize it. The system that will be discussed in this body of work has as its bulk
the Vasiliev bosonic higher-spin theory [19–21], while on CFT side we have a Sp(2N)
vector model. Importantly, due to the different causal structures of the two spaces,
the holographic dictionary between bulk and boundary needs to change, and with it
the physical interpretation of mathematical quantities. It is worth noting that while in
AdS the radial direction emerges through holography, in dS the time direction would
emerge holographically.

One approach to dS /CFT is to consider the Lorentzian bulk physics of global de
Sitter space, where the CFT partition function is used to define a Hartle–Hawking
wavefunction [17, 18, 22]. This approach is suitable to describe temporary de Sitter
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phases, as is the case for cosmological inflation, where the would-be future boundary
of dS4 is rendered observable.

In contrast, we consider truly asymptotically de Sitter spacetime, where the future
boundary is unobservable, and one must focus on the causal patch defined by a pair of
cosmological horizons. In particular, we will explore some of the questions encountered
in the course of constructing suitable descriptions of higher-spin fields in de Sitter, their
corresponding boundary data on the cosmological horizons, and non-local dictionaries
with the unobservable boundary. Although the final aim of the described approach is to
construct a full holographic description of quantum gravity within the causal patch of
a de Sitter observer, it will be convenient to consider some of the above questions over
spacetimes of Euclidean signatures, namely Euclidean anti-de Sitter; these descriptions
can be analytically continued to those over de Sitter space.

In this body of work we focus on issues related to (i) cosmological horizon modes, (ii)
higher-spin black holes from boundary bilocals, and (iii) the boundary CFT partition
function.

(i) We introduce [23] a spinor-helicity formalism to encode the data of massless
fields of arbitrary spin on a cosmological horizon in de Sitter space. The evolution of
free fields between past and future horizons (what might be called the free S-matrix
in an observers causal patch) reduces to a simple Fourier transform in terms of these
variables. We show how this arises via twistor theory, by decomposing the horizon-to-
horizon problem into a pair of (more symmetric) horizon-to-twistor problems.

(ii) We investigate [24] the decomposition of the boundary CFT partition func-
tion in terms of spherical modes in the spinor-helicity basis. Further, even though the
n-point correlators agree, we observe a discrepancy between the higher-spin-algebraic
calculation of the partition function and the result of a direct calculation in the bound-
ary CFT [25]; this disagreement persists even when considering the Legendre transform
of the local action and accounting for contact pieces. This paradox suggests a failure
of locality in higher-spin theory, even on the boundary. A way forward from here
is to introduce spin-locality as a replacement for spacetime locality, echoing recent
developments in the bulk theory.

(iii) We show that the linearized version of the Didenko–Vasiliev black hole [26]
solves the Fronsdal field equations with a particle-like source. Furthermore, these
fields are precisely the linearized bulk higher-spin fields corresponding to a bilocal
source on the boundary. We will also show that the boundary correlator of such two
bilocal operators agrees with the bulk action describing the two corresponding particles
interacting in the bulk.
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Chapter 1

Background

1.1 Space-time and twistor geometry

1.1.1 De Sitter space

We model de Sitter space dSd as the hyperboloid of spacelike directions in flat d + 1-
dimensional Minkowski space R1,d

dSd =
{
xµ ∈ R1,d

∣∣xµxµ = l2
}

(1.1)

where l is a parameter of unit length called the de Sitter radius. We use indices
(µ, ν, . . .) for vectors in R1,d, which are raised and lowered the ηµν metric of signature
(−,+, . . . ,+). The isometries of de Sitter space are given by the Lorentz group O(1, d).
Hence, the metric has d(d+1)/2 independent Killing vector fields, thus it is maximally
symmetric and of constant curvature. Its curvature is given by the Riemann tensor

Rρσµν =
1

l2
(gρµgσν − gρνgσµ) .

Note that the Ricci tensor is proportional to the metric

Rµν =
d− 1

l2
gµν ,

making de Sitter an Einstein manifold. It further follows that de Sitter space is a
vacuum solution to the Einstein equations with positive cosmological constant

Λ =
(d− 2)(d− 1)

2l2

and scalar curvature
R =

d(d− 1)

l2
=

2d

d− 2
Λ .

Hereafter we specialize to de Sitter space with radius l = 1.
Besides the embedded R1,d description one can introduce a number of coordinate

systems on dSd that provide different insights into the structure of this space. Of

5



6 Background

I−

•
p̄iI+ •

p̄f
•

pi
•

pf

D

Hi

Hf

Figure 1.1: A Penrose diagram of dS4. Past and future infinity are denoted by I−
and I+ respectively. The boundary points pi ∈ I− and pf ∈ I+ define light cones
Hi and Hf , respectively, which divide the spacetime into four distinct quadrants; in
particular D is the causal patch. The antipodes of pi and pf are denoted by p̄i and p̄f ,
respectively.

immediate interest are the conformal coordinates (T, θi), which relate to the embedded
flat coordinates as

X0 = sinh τ , cosh τ =
1

cosT
,

so that T ∈ (π/2, π/2) and the θi’s parametrize spherical coordinates on Sd−1, with
usual metric dΩ2

d−1. In these coordinates the metric becomes

ds2 =
1

cos2 T

(
−dT 2 + dΩ2

d−1

)
. (1.2)

This enables us to better understand the causal structure of de Sitter, since null
geodesics with respect to the conformal metric (1.2) will also be null with respect
to the conformally related metric

ds̃ = cos2 Tds2 = −dT 2 + dΩ2
d−1 .

The Penrose diagram (Fig. 1.1) contains all the information regarding the causal
structure of dSd, with each point representing a Sd−2 sphere, except for the points
that lie on the left and right edges. The boundaries of dSd can be identified with the
asymptotes of the hyperboloid (1.1). These are the spaces of future-pointing and past-
pointing null directions in R1,d respectively, which are identified with future infinity I+
and past infinity I−. They are the surfaces where all null and timelike geodesics origi-
nate and terminate, and have the geometry of a spacelike conformal d− 1-dimensional
sphere, i.e. the O(1, d) symmetry group reduces to the conformal symmetry of the
boundary. We represent the boundary as the set of null vectors `µ, up to the identifi-
cation `µ ∼= λ`µ.

One for the peculiarities of de Sitter space is that no observer can access the entire
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spacetime, which can be problematic when trying to construct a theory of quantum
gravity. An observer in de Sitter can be identified with a pair of non-antipodally
related boundary points pi ∈ I− and pf ∈ I+ which we think of as the past and future
endpoints of an observer’s worldline, respectively. These points cast ligthcones Hi and
Hf , respectively, into the bulk, which are the past and future horizons of the observer,
and they divide de Sitter space into four disjoint quadrants. Note that the immortal
observer can only receive signals from the half-spacetime in the past of pf , hence a
description of the entire space goes beyond what can be physically measured. This is
qualitatively different from Minkowski space, where a timelike observer will eventually
have access to the entire history of the universe in her light cone. Similarly, the observer
can only send signals in the half-spacetime lying to the future of pi. Thus the largest
possible observable region is the causal patch D that lies in the common interior of Hi

and Hf , also known as a static patch.
Further, note that every point in de Sitter has an antipodal point. In the embedding

spacetime picture (1.1) the antipodal map is given by xµ → −xµ, which is invariant
under the O(1, d) isometry group. Antipodal points in the bulk are spacelike separated,
however, when extended to the boundary, antipodal points ±`µ ∈ I± are, in fact,
connected by null-geodesics1. This causal connection relating points on I− to those on
I+ breaks the two copies of the conformal group down to a single copy. This naively
suggests that, when trying to construct holographic theories, the CFT dual lives on a
single euclidean sphere.

It is thus natural to (topologically) identify antipodal points in de Sitter space,
idea that goes back to Schrödinger [28]. This identification results in the quotient
space dSd /Z2 referred to as the elliptic2 de Sitter space. Like dSd, this is maximally
symmetric, with isometry group O(1, d)/Z2 = SO(1, d), where Z2 is generated by the
antipodal map. As hinted at in the previous paragraph, the asymptotic boundary
becomes single Sd−1 sphere I with conformal geometry, i.e. the identification of the
I− and I+ boundaries. Alternatively, one could identify antipodal points solely on the
boundaries I± of dS, leaving the bulk intact; this results in the compactified de Sitter
space.

In addition to the real four-dimensional spacetime dS4, we will also consider complex
de Sitter space dS4,C, the set of points in flat five-dimensional complex space xµ ∈ C5

satisfying xµxµ = 1. As before we identify antipodal points, which gives us dS4,C /Z2.
Now identifying the complex infinities leads to the complexified infinity IC, which
we can view as the set of complex directions in C5. Of particular interests are the
imaginary future and past slices of dS4,C

H± =
{
xµ ∈ dS4,C |Rex0 = 0, Imx0 ≷ 0

}
, (1.3)

which are isomorphic to hyperbolic space H4.

1Considering null rays as degenerate spatial geodesics that bounce off null infinity, then all such
light rays leaving a point converge, or refocus, onto the antipodal point. This, in fact, can be seen in
the Greens functions of dS quantum fields, at the level of singularity structures. [15, 27]

2The term “elliptic” refers to the fact that the antipodally identified points are spacelike separated,
i.e. related by elliptic generators, as opposed to being timelike (read hyperbolically) or null (read
parabolically) separated.



8 Background

Vectors at a point xµ ∈ dS4 are defined as elements vµ of the tangent space at
that point, i.e. vµxµ = 0. Further, the metric at this point can be identified with the
tangent space projector

qµν(x) = ηµν − xµxν . (1.4)
The covariant derivative is defined as the flat R1,4 derivate projected onto the dS4

hyperboloid, namely
∇µvν = qρµ(x)q

σ
ν (x)∂ρvσ .

In addition to the ambient picture, it will also be useful to consider the Poincaré
coordinates

xµ(z, r) = −1

z

(
r2 − z2 + 1

2
,
r2 − z2 − 1

r
, r

)
(1.5)

with r a flat 3d coordinate and metric

ds2 =
−dz2 + dr2

z2
.

Note that in Poincaré coordinates the antipodal map reads as the operation z → −z;
this was invoked in some of the recent discussions of higher-spin holography [29].

One fixes a conformal frame on the boundary by choosing a section of the lightcone
in the embedding R1,4. The simplest, flat sections have R3 geometry and can be
obtained by choosing a particular point nµ on the conformal boundary; this will play
the role of the “point at infinity”. The flat section is then found by intersecting the R1,4

lightcone and the null hyperplane defined by ` · n = −1
2
. One particular convenient

choice of flat frame is given by nµ =
(
1
2
, 1
2
,0
)
:

`µ(r) =

(
r2 + 1

2
,
r2 − 1

2
, r

)
. (1.6)

This can be viewed as the bulk-to-boundary or extreme boost limit xµ → `µ

z
as z → 0

of the Poincaré coordinates (1.5).

1.1.2 Twistor geometry
The twistor theory of Penrose [30, 31] was originally devised as a framework for quan-
tum General Relativity. One effectively changes the fundamental principle from lo-
cality to causality, making away with spacetime by replacing points with twistors, the
“maximally lightlike” extended objects in spacetime. Recently, twistor theory has been
usefully employed for scattering amplitude calculations in supergravity [32] and max-
imally supersymmetric Yang–Mills theories [33, 34]. Moreover, these objects are well
suited for describing massless fields and, as it will be described in Section 1.3, they are
essential in the formulation of higher-spin theories.

We introduce the twistor space T of dS4 as the space of 4-component Dirac spinors
of the isometry group SO(1, 4). We will label twistor indices as (a, b, . . .). The twistor
space T is endowed with a symplectic metric Iab (also known as the infinity twistor)
which raises and lowers indices as Ua = IabU

b, Ua = UbI
ba. In particular Iab and Iab

are lowered/raised-index analogues, i.e. IacIbc = δba.



1.1 Space-time and twistor geometry 9

We can map between tensor and twistor indices via the gamma matrices (γµ)
a
b;

these are the Clifford algebra generators in the embedding space R1,4, i.e. γ(µγν) =
−ηµν . One particular realisation of the gamma matrices (γµ)

a
b and twistor metric Iab

that will be useful throughout the rest of this body of work reads as, in matrix block
notation,

(γ0)
a
b =

[
0 1
1 0

]
, (γ4)

a
b =

[
0 −1
1 0

]
, (γk)

a
b =

[
−i
(
σk
)β

α
0

0 i
(
σk
)α

β

]
, (1.7)

where, for k = 1, 2, 3, σk are the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
.

In particular
Iab =

[
0 −δαβ
δβα 0

]
. (1.8)

One can see that the matrices γµab are traceless, and, by lowering indices, that they
are antisymmetric in their ab twistor indices; moreover, they convert between traceless
bitwistors and 4+1d vectors as ξab = γabµ ξ

µ, ξµ = −1
4
γµabξ

ab.

Further, we define the antisymmetric product γµνab = γ
[µ
acγν]cb. These matrices are

traceless, symmetric in their twistor indices, and can be used to convert between bivec-
tors and symmetric twistor matrices fab = 1

2
γabµνf

µν , fµν = 1
4
γµνab f

ab.
Note that the set of matrices {14, γ

µ, γµν} spans the space of 4 × 4 matrices; in
particular, the six matrices {Iab, γµab} span the antisymmetric subspace, whereas the
ten matrices γµνab span the symmetric one.

It is useful to also note that γ[abµ γ
cd]
ν = 1

3
ηµνε

abcd, where εabcd is the totally anti-
symmetric symbol with inverse εabcd = 3I[abIcd] normalized so that εabcdεabcd = 4!. The
form Iab has unit determinant with respect to εabcd and so we use εabcd to introduce a
measure on T

d4U =
εabcd

4!(2π)2
dUadU bdU cdUd. (1.9)

For calculational simplicity we will occasionally employ the index free notation of
[35] for products in R1,4 and twistor space: index-free products should be read as
bottom-to-top index contractions. Namely, for twistors Ua, V a and vectors `µ, xµ we
write

` · x ≡ `µx
µ ; (xU)a ≡ (xµγµ)

a
bU

b ;

UV ≡ UaV
a = −IabUaV b ;

U`xU ≡ Ua`
a
bx
b
cU

c = −`µxνγµνab U
aU b.

(1.10)

In the following calculations, integral over complex twistor space are required. Thus
one needs to worry about choices of contour. However, certain integrals, such as the
delta function on twistors and the Gaussian described below, can be defined analogously
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to real-line integrals. Formally, we write∫
d4U δ(U)f(U) = f(0) , (1.11)

where we define the twistor delta function as

δ(U) =

∫
d4V eiV U . (1.12)

We also note the Gaussian integral reads∫
d4U e

1
2
UAU =

±1√
detA

, (1.13)

where detA = 1
8
(trA2)

2 − 1
4
trA4 and Aab is a symmetric twistor matrix .

The square root in (1.13) introduces a sign ambiguity which depends on the analyt-
ical continuation from the real contour. Note that this sign ambiguity is also reflected
in the delta function (1.12): its integral definition can be regularised by introducing a
Gaussian into the integrand. However, as previously noted, the result of the Gaussian
integral has a sign ambiguity, therefore, while the composition with δ(U) (1.11) is well
defined, the object itself is only defined as a limit of functions up to a sign. We will
encounter such sign ambiguities throughout the following discussions that involve the
twistor formalism.

1.1.3 Spinor decomposition
At a fixed point in de Sitter space xµ the twistor space T, which we introduced as
the Dirac spinors of SO(1, 4), is in fact the Dirac spinor representation of the Lorentz
group SO(1, 3) at that point. Further, this representation decomposes into right- and
left-handed Weyl spinors, with corresponding projectors

P±
a
b(x) =

1

2

(
δab ± ixµγµab

)
(1.14)

or equivalently
P ab
± =

1

2

(
Iab ± ixµγabµ

)
.

The matrices P±
a
b sum to unity and they act as projectors onto implicitly defined

subspaces P±(x), as they satisfy

P±
a
cP±

c
b = P±

a
b , P±

a
cP∓

c
b = 0 ,

where the latter equation implies that P±(x) are indeed orthogonal. In fact, these
function as x-dependent versions of the chiral projectors in R1,3. Also note that the
antipodal map xµ → −xµ interchanges P+ and P−. Given a twistor Ua, we denote its
right-handed and left-handed Weyl spinor components at x as ua± = P±

a
b(x)U

b, where
we use (a, b, . . .) indices for both the Dirac spinors of SO(1, 4) and SO(1, 3). The
projectors P±

ab can then be employed as spinor metrics on the right- and left-handed
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Weyl spinor subspaces, respectively.
Moreover, the symplectic metric of a two-dimensional spinor space can also act as

a measure, defined as

d2u± ≡
P±
ab

2(2π)
dUadU b . (1.15)

The twistor measure (1.9) can then be written as a product of the two chiral spinor
measures, namely d4U = d2u−d

2u+. For a bulk point xµ, the measure (1.15) can be
rewritten as

d2u± =
P±
ab

4π
dua±du

b
± . (1.16)

Since twistors are flat they can be transported freely between points in dS4; what
changes at different points is the decomposition into left- and right-handed spinors.
This property can be used when constructing the covariant derivative of a Weyl spinor
in dS4: first, take the flat R1,4 derivative of an embedding twistor and then project
the result onto the relevant spinor subspace. For a right-handed spinor field ψa+(x), its
derivative reads

∇µψ
a
+(x) = qµ

ν(x)P+
a
b∂νψ

b
+(x) .

In particular, for a spacetime-independent twistor Y , its spinor components y±(x) have
derivatives

∇µy
a
± = ±1

2
(γµ)

a
by
b
∓ .

This is the Penrose twistor equation on spacetimes with cosmological constant [30].
On the boundary, at a point `µ, the twistor decomposition is qualitatively different,

as the two subspaces degenerate into a single spinor subspace P (`) via projector

P ab(`) =
1

2
`ab

which is totally null with respect to twistor metric Iab. The metric and measure du2
on P (`) is defined analogously to the bulk definition (1.16)

duadub

2π
≡ P ab(`)d2u .

Note that P (`) is the space of cospinors at boundary point `, whereas contravariant
spinors live in the quotient space of twistors modulo elements of P (`), i.e.

P ∗(`) =
{
u∗a ∼= u∗a + ua

∣∣ua ∈ P (`)} .
The cospinor space P ∗(`) is endowed with spinor metric P ab(`) = 1

2
`ab and the integra-

tion measure (1.15) becomes

d2u∗ ≡ Pab(`)

4π
du∗adu∗b , d4U = −d2u∗d2u .

By fixing a second boundary point `′µ we can bypass the introduction of quotient
spaces, as the elements of one spinor space will act as canonical representatives of
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equivalence classes in the other spinor space. Their measures are related as

d2u = − 2

` · `′
d2u∗ = −`

′
abdu

adub

4π(` · `′)
.

We also define a measure on the space as the inverse of the spinor metric

duadub

2π
= P ab(`)d2u .

For the purpose of calculational brevity, it will be useful to treat both bulk and
boundary spinor decomposition spaces on the same footing. In fact, the spinor spaces
P±(x), P (`) are spanned by relevant twistor matrices P±

a
b(x), P

a
b(`). These are special

cases of a generic twistor matrix

P a
b(ξ) =

1

2

(√
−ξ · ξ δba + ξab

)
with ξµ ∈ R1,4 a null or timelike vector. In particular, for ξµ = `µ we recover the
boundary spinor space P (`) and for ξµ = ±ixµ we have P (ξ) = P±(x), respectively.
As before, we equip the spinor space P (ξ) with metric and measure given as

duadub

2π
= P ab(ξ)d2u .

Similar to (1.12) we can use the above metric to introduce analogue of the twistor
delta function integral over the twistor space P (ξ) as

δξ(U) =

∫
P (ξ)

d2v eivU . (1.17)

In the particular cases of bulk spinors ξµ = ±xµ we will denote the delta function
as δξ(U) = δ±x (U). It will be useful to consider the integral of δξ over a spinor space
associated with a different spacetime point ξ′. This reads∫

P (ξ′)

d2u δξ(u)f(u) =
2√

(ξ · ξ)(ξ′ · ξ′)− ξ · ξ′
f(0) . (1.18)

In a similar fashion to (1.13), the Gaussian integral over P (ξ), for symmetric twistor
matrix Aab is written as ∫

P (ξ)

d2u e
1
2
uAu =

±1√
detξ(A)

,

where the determinant reduces to detξ(A) = −1
2
tr (P (ξ)A)2.

1.1.4 Euclidean de Sitter space
Throughout this body of work, and as is common in the literature, we will also consider
spacetimes of Euclidean signature, namely Euclidean anti-de Sitter (EAdS4) space.
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Similarly, to our construction of dS4 (1.1), we define EAdS4 as the hyperboloid of unit
future-point spacelike vectors embedded in R1,4

EAdS4 =
{
xµ ∈ R1,4

∣∣xµxµ = −1, x0 > 0
}
. (1.19)

Note that EAdS4 is usually identified with the positive branch H+ of (1.3), and thus
with hyperbolic space H4. As before, a vector in EAdS4 is a vector in the ambient space
that is tangent to the hyperboloid (1.19), and its covariant derivative is defined as its
flat R1,4 derivative projected back onto the hyperboloid. Note however, in contrast
with (1.4), the EAdS4 projector reads

qµν(x) = ηµν + xµxν .

More generally, we will be able to analytically continue spacetime dependent quantities
from dS4 to EAdS4 via ixµ → xµ, as can be seen from the hyperboloid definitions (1.1,
1.19) and their respective projectors.

dS4

H+

H−

Hf

Hi

Figure 1.2: (EA)dS hyperboloids in embedding space R1,4 with two of the spacelike
directions projected out. dS4 is represented as the one-sheeted hyperboloid, whereas
H± are represented as the two-sheeted hyperboloid. EAdS4 is usually identified with
H+. The asymptotes of the hyperboloids are constituted by horizons Hf and Hi.

As for de Sitter, we identify the boundary of EAdS4 with the asymptote of the
hyperboloid (1.19). This has spherical topology S3 and we represent its elements as
the set of null vectors `µ, up to the identification `µ ∼= λ`µ.

The isometry group of EAdS4 is the same SO(1, 4) and thus we can define twistor
space as we did for dS4 in Section 1.1.2. Note however that the spinor projectors (1.14)
now read

P±
a
b(x) =

1

2

(
δab ± xµγµab

)
.

Lastly, note that in Euclidean signature the antipodal map xµ → −xµ sends the
hyperboloid (1.19) to its x0 < 0 counterpart.
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1.2 Gauge fields in dS4

Let φµ1ν1µ2ν2...µsνs(x) be spin-s gauge field-strength, that is, a rank-2s tensor, antisym-
metric within pairs of indices µiνi, but symmetric under pair exchange. Moreover, it
is traceless and it vanishes upon antisymmetrizing any three indices.

At s = 0 we will consider a conformally massless scalar field as an honorary gauge
field. The s = 1 case corresponds to the familiar Maxwell field strength Fµν , whereas
for s = 2 we recognize the linearized Weyl curvature tensor Cµ1ν1µ2ν2 . In general, for
s > 0, the field-strength decomposes into a left-handed and right-handed piece, which
are anti-self-dual and self-dual, respectively, in every µiνi pair of indices.

The scalar field φ(x) satisfies the Klein–Gordon equation

�φ− 2φ = 0 , (1.20)

which is the field equation for a massless conformally coupled scalar in dS4.
At s = 1 we recall the Maxwell equations

∇µφµν = 0 ; ∇[ρφµν] = 0 .

For spin s ≥ 2 only the transverse equation is required

∇µ1φµ1ν1...µsνs = 0 . (1.21)

To describe interacting fields we introduce gauge potentials [36] as totally symmetric
rank-s tensors hµ1µ2...µs(x), double-traceless for s ≥ 4, gµ1µ2gµ3µ4hµ1...µs = 0.

For the scalar case we define the potential to coincide with the above field strength,
h(x) = φ(x). At s = 1, as before, we retrieve the Maxwell potential Aµ, while for s = 2
we recognize the metric perturbation tensor hµν .

For any spin s the potential hµ1µ2...µs(x) satisfies the Fronsdal field equation [37](
�+ (s2 − 2s− 2)

)
hµ1µ2...µs − s∇(µ1∇νh|ν|µ2...µs)+

+
s(s− 1)

2
∇(µ1∇µ2h

ν
|ν|µ3...µs) + s(s− 1)g(µ1µ2h

ν
|ν|µ3...µs) = 0 . (1.22)

Note that this admits a gauge symmetry of the form δhµ1...µs = ∇(µ1θµ2...µs) for arbitrary
totally symmetric and traceless θµ2...µs . One can consistently define the field-strength
φµ1ν1...µsνs as the s-derivative gauge invariant quantity given by ∇µ1 · · ·∇µshν1...νs an-
tisymmetrized over all index pairs µiνi and with removed traces. Note that, up to
normalizations, this agrees with the standard terminology in the s = 1, 2 cases. Cru-
cially, when the potential hµ1µ2...µs satisfies (1.22) the field-strength φµ1ν1...µsνs so-defined
satisfies the field equation (1.21).

We will also be interested in constructing boundary data for the field equations
above. For the scalar case, the value of the field on, say, the final horizonHf , constitutes
good boundary data for the scalar field equation (1.20). For general spin, one constructs
good boundary data out of two complex-conjugate scalar components for the left-
handed and right-handed helicities, respectively. The standard construction has been
given in [38–40], while [41] provides a general discussion in terms of field strengths.
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1.3 Higher-spin gravity
Higher-spin gravity [19, 20] is a theory describing the interaction of an infinite number
of massless fields with arbitrary spin; in its minimal version, there is an infinite tower of
fields, one of each even integer spin. This infinite set of fields has a corresponding gauge
symmetry, the infinite-dimensional higher-spin symmetry, which acts as an extension of
the usual spacetime symmetry of General Relativity. The spin-2 graviton is joined by
massless fields of spin s > 2, leading to higher-spin interactions among all of the fields,
all at once, and at all orders in derivatives, which is very different from interactions in
GR.

Higher-spin theory is formally defined through a set of non-pertubative equations of
motion, which are invariant under the higher-spin algebra and diffeomorphisms. It can
be formulated over curved spacetime with cosmological constant Λ > 0 and without
requiring higher than four dimensions.

Similar to string theory, higher-spin theory has been brought into (A)dS/CFT
dualities, as the bulk dual of vector models [18, 42]. Throughout this work we will not
be directly talking about the non-linear bulk theory; in fact, assuming the holographic
duality, one can bypass some of the difficulties of solving the bulk equations by leaving
the non-linearity to the holographic dual. In particular, this can be done for the
interaction vertices in the bulk theory, which have been reconstructed from the n-point
functions of the boundary CFT [43]. In [44, 45] this was done for the quartic scalar
vertex.

We will now proceed to described the linearized version of higher-spin theory.

1.3.1 Higher-spin algebra
In addition to spacetime coordinates xµ, higher-spin theory is formulated over spacetime-
independent twistor coordinates Y a. We will be employing Penrose-style twistors, as
introduced in Section 1.1.2; within higher-spin theory Penrose-style twistors and the
Penrose transform were introduced in [46–48]. This is in contrast with standard higher-
spin literature, where the “twistor” is used to refer to a pair of local spinors at a
particular spacetime point, rather than a global geometric object in spacetime.

Twistor coordinates are acted upon by the non-commutative star product

Y a ? Y b = Y aY b + iIab . (1.23)

By associativity, this extends to a product on polynomial functions of Y

f(Y ) ? g(Y ) = f exp

(
iIab
←−−
∂

∂Y a

−−→
∂

∂Y b

)
g

and also to products of non-polynomial functions, via an integral formula

f(Y ) ? g(Y ) =

∫
d4Ud4V f(Y + U)g(Y + V )e−iUV . (1.24)

The higher-spin algebra is the infinite dimensional algebra of even functions f(Y ),
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i.e. of integer-spin, with associative product (1.24). It contains as a subalgebra the
generators Mµν of SO(1, 4), the isometry group of dS4; in index-free notation they read
as

Mµν =
1

8
Y γµνY , (1.25)

with commutator
[Mµν ,Mρσ]? = 4δ

[µ
[ρM

ν]
σ] . (1.26)

Since the infinitesimal rotations of O(1, 4) are generated by twistor products YaYb,
finite rotations will be generated, through exponentiation, by Gaussian integrals (1.13).
Recall however that such objects are defined only up to sign; it turns out that in the
context of higher-spin symmetry, the sign ambiguity is crucial for consistent topology
and cannot be fixed globally.

Further, one can define a trace operation tr? on twistor functions f(Y ) by evaluation
at Y = 0, namely

tr? f(Y ) = f(0) . (1.27)
Indeed, this respects the star product

tr?(f ? g) =

∫
d4Ud4V f(U)g(V )eiUV = tr? (g ? f) (1.28)

by virtue of the fact that f and g are even functions of Y .
Taking the star product with the twistor delta function (1.12) performs a twistor

Fourier transform

f(Y ) ? δ(Y ) =

∫
d4Uf(U)eiUY ;

δ(Y ) ? f(Y ) =

∫
d4Uf(U)e−iUY .

(1.29)

In particular
δ(Y ) ? δ(Y ) = 1 ; δ(Y ) ? f(Y ) ? δ(Y ) = f(−Y ) . (1.30)

These properties establish δ(Y ) as the Klein operator [49] of the higher-spin algebra
(1.24), since it commutes with even twistor functions, and anti-commutes with odd
ones. Thus, δ(Y ) is invariant in the adjoint representation of the higher-spin symmetry
group.

The star product (1.24), the star-trace (1.27), and the Klein operator (1.12) are
in fact the only structures that preserve higher-spin symmetry. Note however that
the action of δ(Y ) is subtle, due to the contour ambiguities that arise in the integral
construction (1.24) of higher-spin algebra with non-polynomial twistor functions. In
particular, recall from Section 1.1.2 that even in the usual cases of delta functions
(1.12) and Gaussians (1.13) sign ambiguities arise. Hence, one needs to be careful
when interpreting the sign of δ(Y ) or Fourier transforms (1.29).

Recall from Section 1.1.3 that choosing a point x in the bulk of dS4 breaks the
isometry group SO(1, 4) down to SO(3). In the star product formalism, the action of
the symmetry group on the left and right-handed subspaces is generated by bilinears
of the form ya+y

b
+ and ya−y

b
−, where we decomposed the twistor Y into Weyl spinors at
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x as Y a = ya− + ya+. Explicitly, the star product (1.23) decomposes as

ya± ? y
b
± = ya±y

b
± + iP ab

± , ya− ? y
b
+ = ya+ ? y

b
− = ya−y

b
+ ,

recalling that the projectors P± and the Weyl spinors y± depend on the point x.
The role of the twistor delta function is played by the spinor delta functions with

respect to y± as defined in (1.17), namely they are Klein operators for the right-
and left-handed higher-spin subalgebras. Note that these chiral delta functions δ±x (Y )
depend on the twistor Y only through the spinor component y±.

The boundary decomposition is a bit more subtle, but one can easily define a
boundary spinor delta function δ`(Y ). In fact, both bulk and boundary delta functions
are special cases of (1.17)

δξ(Y ) =

∫
P (ξ)

d2u eiuY . (1.31)

Similar to the Fourier-like identities (1.29) and (1.30) implemented through star
products with δ(Y ), the spinor deltas δξ(Y ) give us

f(Y ) ? δξ(Y ) =

∫
P (ξ)

d2u f(Y + u)eiuY ,

δξ(Y ) ? f(Y ) =

∫
P (ξ)

d2u f(Y + u)e−iuY .

(1.32)

In particular
δξ(Y ) ? δ(Y ) = δ(Y ) ? δξ(Y ) = δ−ξ(Y ) .

At a bulk point x we have

δ±x (Y ) ? f(Y ) ? δ±x (Y ) = f(∓xY ) ,

where, in the index-free notation of (1.10), we read xY ≡ (xµγµ)
a
bY

b; however, prod-
ucts of chiral delta function are x-independent

δ±x (Y ) ? δ±x (Y ) = 1 ,

δ±x (Y ) ? δ∓x (Y ) = δ−x (Y )δ+x (Y ) = δ(Y ) .

To further investigate the x-dependence of δ±x (Y ) we want to consider the x-
derivative of the integral expression (1.31); such calculations are subtle, since the rel-
evant domains of integration P±(x) are themselves functions of x. A useful technique
is to consider a change of variable, e.g. u+ = P+(x)u

′
+ where u′+ is integrated over the

spinor space P+(x
′) at an arbitrary fixed point x′. This method leads to

∇µδ
±
x = − i

4
(Y γµxY ) ? δ±x =

i

4
δ±x ? (Y γµxY ) . (1.33)

It will be useful to consider the star product of a pair of delta-functions at separated
points. Using (1.18, 1.32) and related techniques of manipulating spinor spaces this
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reads

δξ(Y ) ? δξ′(Y ) =
2√

(ξ · ξ)(ξ′ · ξ′)− ξ · ξ′
exp

1

2

−iY ξξ′Y√
(ξ · ξ)(ξ′ · ξ′)− ξ · ξ′

. (1.34)

Further star products with δ-functions will continue to result in Gaussian integrals. In
particular, specializing to boundary points `µ, `′µ, . . . the delta-star-products simplify
to

δ`(Y ) ? δ`′(Y ) = − 2

` · `′
exp

iY ``′Y

2` · `′
, (1.35)

δ`(Y ) ? δ`′(Y ) ? δ`′′(Y ) = ±i

√
− ` · `′′
2(` · `′)(`′ · `′′)

δ`(Y ) ? δ`′′(Y ) . (1.36)

Note that the three-point product (1.36) was reduced to the two-point one, and is
imaginary; it also carries an ambiguous sign, as it has been performed as a Gaussian
integral over a complex spinor space. Using (1.36) recursively, we can immediately
derive an expression for the n-point function

δ`1(Y ) ? · · · ? δ`n(Y ) =
4(±i)n−2√∏n
i=1 (−2`i · `i+1)

exp
iY `1`nY

2`1 · `n
, (1.37)

where, in the last term of the product, `n+1 = `1.

1.3.2 Linearized higher-spin gravity and the Penrose trans-
form

In its linearized limit, higher-spin theory describes a tower of free massless fields, one
for every even spin. We describe a field of spin s > 0 by the self-dual and anti-self-dual
parts of the field strength, as discussed in Section 1.2, which now we encode in purely
left- and right-handed totally symmetric spinors with 2s indices. Explicitly, we write
the field content as

spin 0 : C(0,0) , spin 1 : C
(2,0)
αβ , C

(0,2)

α̇β̇
, spin 2 : C

(4,0)
αβγδ , C

(0,4)

α̇β̇γ̇δ̇
, etc. (1.38)

where the bracketed upper index indicates the number of left- and right-handed spinor
indices. The indices (α, β, . . .) and (α̇, β̇, . . .) are temporarily introduced to designate
left- and right-handed spinor indices at a point x in the bulk; they correspond to the
relevant twistor indices (a, b, . . .) with implied P±(x) chiral projections.

The above field strengths satisfy field equations as follows: the scalar C(0,0)(x) =
h(x) obeys the wave equation of a conformally coupled massless field (1.20)

∇µ∇µC(0,0) = −2C(0,0), (1.39)

whereas the s > 0 field strengths satisfy the free massless equations (1.21)

∇α1
β̇ C

(2s,0)
α1α2...α2s

= 0 , ∇β
α̇1 C

(0,2s)
α̇1α̇2...α̇2s

= 0 . (1.40)
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The Penrose transform [30, 31] is a closed form solution to the field equations (1.39,
1.40) in terms of an arbitrary even holomorphic twistor function F (Y ). Specifically,
each separate helicity of the field content (1.38) is represented by a twistor function of
homogeneity −2 ± 2s. Thus, a general even function F (Y ) encodes one free massless
field of every helicity, and hence the entire multiplet (1.38).

In the current formalism, the Penrose transform [35] reads

C(2s,0)
α1α2...α2s

= i

∫
P+(x)

d2u+
∂sF+(u− + u+)

∂uα1
− . . . ∂uα2s

−

∣∣∣∣
u−=0

,

C α̇1α̇2...α̇2s

(0,2s) = i(−1)s
∫
P+(x)

d2u+ u
α̇1
+ . . . uα̇2s

+ F+(u+) ,

(1.41)

where the numerical prefactors are added for later convenience and F+(Y ) is an ar-
bitrary twistor function; the subscript ·+ refers to the domain of integration P+(x);
equivalently, one can write the transform with respect to P−(x). The scalar field C(0,0)

represents a special case, namely

C(0,0) = i

∫
P+(x)

d2u+ F+(u+) . (1.42)

Showing that the fields (1.41, 1.42) are solutions to the field equations (1.39, 1.40) is
a fairly straightforward exercise upon changing variables so to shift the x-dependence
from the domain of integration into the integrand (as described above for the derivation
of (1.33)).

As previously discussed, the integral relations (1.41, 1.42) exhibit contour ambi-
guities. This is inherited from analogous ambiguity of the integral form (1.24) of the
higher-spin algebra. The Penrose transform can be rigorously defined in terms of sheaf
cohomologies [31, 50]. For the rest of the discussion in this work however we will
keep in line with the current higher-spin literature and continue working in this naive
formalism, keeping the ambiguity in mind.

A powerful tool at our disposal of the Vasiliev construction is the unfolded formalism
of the field dynamics. First, we consider the full set of inequivalent on-shell derivatives
of the fields (1.41) with spin s ≥ 0(

C(2s+k,k)
)
α1...α2sβ1...βk

β̇1...β̇k
= ∇(β1

(β̇1 . . .∇βk
β̇k)C

(2s,0)
α1α2...α2s)

,(
C(k,2s+k)

)β1...βk
β̇1...β̇kα1...α2s

= ∇(β1
(β̇1
. . .∇βk

β̇k)
C

(0,2s)
α̇1α̇2...α̇2s)

.
(1.43)

Thus, for every pair of integers m + n ∈ 2Z, we have a field C(m,n), i.e. one for every
integer-spin representation of the bulk rotation group. We can package the above into
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a unique scalar master field C(x;Y ) as follows

C(x;Y ) =
∑
m,n

1

m!n!
C

(m,n)
α1...αmα̇1...α̇n

yα1
− . . . yαm

− yα̇1
+ . . . yα̇n

+ ,

C
(m,n)
α1...αmα̇1...α̇n

= (P−)
a1
α1
. . . (P−)

am
αm

(P+)
am+1

α̇1
. . . (P+)

am+n

α̇n

∂m+nC

∂Y a1 . . . ∂Y am+n

∣∣∣∣
Y=0

,

(1.44)

where y± = P±(x)Y are, as before, the chiral components of the twistor Y at the point
x. The field equations (1.39, 1.40) and the definitions (1.43) can be encapsulated into
the following unfolded equation

∇µC =
i

4
C ? (Y γµxY ) .

This form makes it immediate to recognize that, by virtue of (1.33), the chiral delta
function δ±x (Y ) are solutions of the master field equation. Moreover, we can write a
general solution as

C(x;Y ) = ±F±(Y ) ? iδ±x (Y ) . (1.45)
In particular, using (1.32) and shifting the integration variable, we can read (1.45) as
a Fourier transform in one of the right-handed spinor variable at xµ, namely

C(x;Y ) = i

∫
P+(x)

d2u+ F (u+ + y−) e
iu+y+ . (1.46)

The spacetime-independent functions F±(Y ) are the Penrose transforms of the free
massless solution encoded by C(x;Y ). In fact, they Fourier transform into each other,
namely

F+(Y ) = −F−(Y ) ? δ(Y ) .

Recall that the chiral delta functions δ±x (Y ) square to one; hence, we can relate the
value master field at two points x and x′ as

C(x′;Y ) = C(x;Y ) ? δ+x (Y ) ? δ+x′(Y ) , (1.47)

where the general two-point product is given by the Gaussian (1.34). The fact that we
can deduce the master field at an arbitrary point x′ from its value at a different point
x is a feature of the unfolded formalism.

We are particularly interested in master fields with antipodal symmetry

C(−x;Y ) = ±C(x;Y ) . (1.48)

To see how this is realized in terms of spacetime-independent twistor functions, one
can plug in the identity δ−x (Y ) = δ+−x(x) into the form of the general solution (1.45).
It thus follows that antipodal symmetry (1.48) is equivalent to the following

F−(Y ) = ∓F+(Y ) ⇔ F±(Y ) ? δ(Y ) = ±F±(Y ) .
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After performing a Penrose transform on the above identity, the antipodal symmetry
is re-expressed as a star-product symmetry at a point x, namely

C(x;Y ) ? δ(Y ) = ±C(x;Y ) .

1.4 The holographic dual
As mentioned in the Introduction, the success of the AdS/CFT correspondence suggest
that a similar approach could be taken to construct holography in de Sitter space via
a dS/CFT correspondence. Some first insight into this construction was found in the
context of dS3 [15]. First, one notices that asymptotic symmetry of the dS3 boundary
is the conformal group SL(2,C), as we mentioned in Section 1.1.1. Then, using the
Brown–York prescription one can define the stress tensor associated with the boundary
of a spacetime; its asymptotic behavior then allows one to associate a central charge
to dS3.

This was taken forward through a conjectured duality between type-A higher-spin
gravity in dS4 and a free vector model on the three-dimensional boundary at infinity
[18]; this was constructed by flipping the sign of Λ in the corresponding higher-spin
AdS/CFT model [42].

In this section we will describe the boundary theory corresponding to the linerized
bulk higher-spin theory as expressed using the Penrose transform, in a fashion that
keeps the effects of the interaction in a higher-spin organized form.

1.4.1 Boundary theory
In this section we will construct the partition function of the boundary free vector model
in twistor language in a way that makes higher-spin conformal invariance manifest;
this is achieved through the so-called “holographic dual” of the Penrose transform [35].
Recall that we will represent boundary points on the conformal three-sphere by null
vectors `µ, up to the identification `µ ∼= λ`µ.

The usual local action of N free massless scalars in the fundamental representation
of an internal U(N) symmetry [42] takes the form

SCFT = −
∫
d3` φ̄I�φ

I , (1.49)

where I = 1, . . . , N is an internal index, φI and their complex conjugates φ̄I are
dynamical fields of conformal weight ∆ = 1

2
, and with � the conformal Laplacian

operator. In the case of dS4 the fields φI , φ̄I have Fermi statistics, and restriction to
even-spin reduces us to the Sp(2N) model.

The single-trace primaries of this theory consist of an infinite tower of conserved
currents J (s). In the three-dimensional flat section (1.6) with spatial indices (i, j, k, . . . )
the spin-s currents read [51, 52]

J
(s)
k1...ks

=
1

is
φ̄I

(
s∑

m=0

(−1)m
(
2s

2m

)
←−
∂ (k1 . . .

←−
∂ km

−→
∂ km+1 . . .

−→
∂ ks) − traces

)
φI , (1.50)
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where the “traces” terms contain contractions of one or more pairs of the ki indices.
Note that this formulation includes an honorary scalar “current” J (0) = φ̄Iφ

I , the
spin-1 current J (1)

i = 1
i
φ̄I
←→
∂ iφ

I as the ordinary U(1) charge, and a spin-2 current
proportional to the stress-energy tensor J (2)

ij = 8Tij.
The sources for the operators (1.50) are spin-s gauge potentials A(s)

µ1...µs ; adding
linear couplings to such external sources, the action (1.49) becomes

SCFT = −
∫
d3` φ̄I�φ

I −
∫
d3`

∞∑
s=0

A(s)
µ1...µs

(`)Jµ1...µs(s) (`) , (1.51)

where we can use the R1,4 indices (µ, ν, . . . ) for the currents since we are not using the
explicit form (1.50) with its flat three-dimensional derivatives.

The bilocal formulation [35, 53, 54] is a convenient rewriting of the theory upon
noticing that the local primaries J (s)

k1...ks
are a cumbersome Taylor expansion of the

two-point inner product φI(`)φ̄I(`′). Replacing J (s) with bilocal operators O(`, `′) ≡
φI(`)φ̄I(`

′) which couple to bilocal sources Π(`′, `) allows for the CFT to be rewritten
as

SCFT = −
∫
d3` φ̄I�φ

I −
∫
d3`′d3` φ̄I(`

′)Π(`′, `)φI(`) . (1.52)

In this formulation the partition function3 of the theory can be easily obtained. First,
rewrite the action in matrix-like notation

SCFT [Π(`′, `)] = −φ̄I (�+Π)φI ,

where φ(`) can be viewed as an infinite dimensional vector with dual φ̄(`), and � and
Π as matrices/Hilbert space operators. The Gaussian path integral over φ and φ̄ gives

ZCFT [Π(`
′, `)] =

∫
DφDφ̄ e−SCFT = (det (�+Π))N ∼

∼ (det (1 +GΠ))N = exp (N tr ln (1 +GΠ)) , (1.53)

where we define detM = exp tr lnM and lnM formally via a Taylor expansions. The
operator G = �−1 = − 1

4πr
is the boundary-to-boundary propagator and can be written

covariantly as
G(`, `′) = − 1

4π
√
−2` · `′

. (1.54)

This is computed as G(r, r′) = − 1

4π
√

−2|r−r′| in the flat frame (1.6).

1.4.2 Holographic dual of the Penrose transform
To translate the CFT partition function into higher-spin-algebraic language, one re-
places CFT sources with elements of the higher-spin algebra, namely twistor function,

3We will be discussing the partition function in more detail in Chapter 3; in this section we will
be interested ZCFT as the generating functional of correlation functions, and in particular we will use
it to extract the expectation value of a boundary bilocal operator.
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which then are combined into higher-spin invariants. This approach has been under-
taken both from the boundary [55, 56] and the bulk side [57–59]. In the framework of
[35] the so-called “holographic dual” of the Penrose transform is obtained by packaging
the bilocal source Π(`′, `) into a twistor function

F (Y ) =

∫
d3`′d3` K(`, `′;Y )Π(`′, `) , (1.55)

where the bilocal kernel (or “twistor-boundary-boundary propagator”) is given by

K(`, `′;Y ) =

√
−2` · `′
4π

δ`(Y ) ? δ`′(Y ) =
1

π
√
−2` · `′

exp
iY ``′Y

2` · `′
, (1.56)

and we used the boundary specialization of the two-point Gaussian (1.35).
It turns out that the twistor function F (Y ) as constructed above is in fact an

arbitrary function of Y , i.e. the kernels K(`, `′;Y ), as a set, span the higher-spin
algebra. Moreover, the twistor encoding (1.55) of the CFT sources is complete, it
captures the gauge-invariant information in an optimal sense (it is free of higher-spin
gauge redundancy), and it is constraint free, up to contour choice subtleties.

The rewriting of the partition function in terms of twistor functions relies on the
following identities

K(`1, `
′
1;Y ) ? K(`2, `

′
2;Y ) = G(`2, `

′
1)K(`1, `

′
2;Y ) , (1.57)

tr?K(`, `′;Y ) = −4G(`, `′) . (1.58)

These identities can be derived from the properties of two- and three-point products
of spinor delta functions (1.35,1.36).

The single-trace products involved in the construction of ZCFT can be written as

tr(GΠ)n =
1

4
tr? (F (Y ) ? F (Y ) ? · · · ? F (Y ))

where F (Y ) appears n times. Thus, the entire partition function (1.53) can be rewritten
in higher-spin language as

ZCFT [F (Y )] = exp

(
−N

4
tr? ln? [1 + F (Y )]

)
= (det? [1 + F (Y )])

N
4 . (1.59)

As before ln? [1 + F (Y )] is defined formally by substituting star products into the
Taylor expansion and we define the star determinant as det?f = exp tr? ln? f .

From (1.59) one can read the expectation value of the bilocal operator φI(`)φ̄I(`′)
as

〈φI(`)φ̄I(`′)〉 =
N

4
tr?
(
K(`, `′;Y ) ?

(
1− F (Y ) +O(F 2)

))
. (1.60)

The main achievement of [35] was to show that both the bulk and boundary pictures
are encoded by the same twistor function F (Y ), up to discrete symmetries subtleties.
Specifically, it was shown that, away from sources, the asymptotic boundary data of
the linearised bulk solution (1.45) (as given by the Penrose transform of F (Y )) repro-
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duces the linearised expectation values (1.60) of the CFT operators, upon translating
them into local currents. Thus, the two-bilocal correlators of the CFT partition func-
tion (1.59) are in direct relation with the linearised bulk solution. Then, higher-point
functions of (1.59) can be viewed as encoding bulk interactions.



Chapter 2

Spinor-helicity variables for
cosmological horizons

In the quest of constructing static patch dS /CFT holography, one must contend with
the fact that the boundary is unobservable; since the causal patch and the boundary
only intersect at two points (the endpoints of the eternal observer’s worldline) the
holographic dictionary must be non-local.

One can encode boundary fields as functions of two spinors (Σα,∆α) located at the
boundary endpoint nµ of the static patch, in a way that is compatible with higher-spin
symmetry. This language has been developed before as the on-shell version [60–62] of
the bilocal description of the boundary vector model [53]. As will be described below,
these spinors act as the square roots of boundary on-shell momenta pµ = Σnγµ∆,
and thus will be called spinor-helicity variables, mirroring the Minkowski construction
[63, 64]. A similar formalism has been developed in [29, 55]. Further, in our embedding
twistor formalism, these spinor variables appear in a Wigner–Weyl transform between
twistor functions as functions on phase space and operators in the quantum theory of
the boundary particle [46]

F (Y ) =

∫
d2Σd2∆ f(Σ,∆)ei∆Y δ(Y − Σ) . (2.1)

It becomes a natural question to ask what are these boundary quantities correspond
to in the bulk. Such spinor-helicity variables were first introduced for the Poincaré
patch in [65] (see [66, 67] for similar AdS constructions). We will show that the basis
coefficients f(Σ,∆) correspond to the boundary limit of the free bulk master field
encoded in (2.1).

Further, since nµ is the endpoint of the future horizon Hf of the static patch ob-
server, we will investigate the corresponding bulk field modes on this horizon and
determine their symplectic structure. It turns out that f(Σ,∆) also serve as a pre-
scription to encode field data on the horizon. Furthermore, when two such horizons are
specified (eg. by a second boundary point n′µ, antipodally related to the initial end-
point of the observers’ worldline, and with spinor-helicity basis coefficient f ′(Ξ,Λ)), the
spinor-helicity basis coefficients on the two horizons are related by a Fourier transform

25
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(2.38) in the relevant spinor variables

f(Σ,∆) =
1

2πi

∫
d2Ξd2Λ eΣΞ−∆Hf ′(Ξ,Λ) .

Lastly, we will use this result to construct the de Sitter S-matrix, mapping between
null final Φ(xµ) and null initial data Ψ(x′µ) on the two horizons. This will generalize
the scalar result; at general spin-s this will read

Φ(s,0)(xµ) =
2s

πu2s+1

∫
S2

d2r′ (1− rµr′µ)s
∂

∂v
Ψ(s,0)(x′µ)

∣∣∣∣
uv=2(rµr′µ−1)

. (2.47)

This will constitute the main result of this chapter and has been published, albeit in a
more straight-forward fashion, in [23]. In the present formalism, the bulk-to-boundary
limit of the spinor basis coefficients has also been presented in [24].

2.1 Spinor-helicity variables

2.1.1 Boundary decomposition
Descending from the more abstract description of the boundary theory in terms of
twistor variables, the spinor-helicity approach aims to describe it in terms of a plane
waves basis. Such description requires choosing a particular flat conformal frame, which
can be achieved by picking out a point nµ on the S3 boundary, to be thought of as
“the point at infinity”. Furthermore, in order to fix the phases of such plane-waves
basis elements, we can choose a second boundary point n′µ which amounts to choosing
a “origin” of this flat frame. Recall that choosing such two boundary points amounts
to choosing a bulk dS4 observer, where we identify the past and future endpoints of
this observer’s worldline with −n′µ and nµ, respectively.

Namely, without loss of generality, we fix an observer with

nµ =

(
1

2
,
1

2
,0

)
; n′µ =

(
1

2
,−1

2
,0

)
. (2.2)

We can coordinatize the horizons corresponding to these boundary points as

future horizon Hf : xµ = unµ + (0, 0, r) ; (2.3)
past horizon Hi : x′µ = vn′µ + (0, 0, r) , (2.4)

where u, v ∈ R are affine null times, and r is a three-dimensional unit vector on the
S2 horizon section. The causal patch of the observer is the region enclosed between Hi

with v < 0 and Hf with u > 0. We can parameterize these half-horizons by replacing
null times u, v with an observer time t

Hf : xµ = etnµ + (0, 0, r) ;

Hi : x′µ = −e−tn′µ + (0, 0, r) .
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Note that the choice of this two points breaks the O(1, 4) dS4 symmetry down to
SO(1, 1)×O(3). Thus, a twistor Y a decomposes into SO(3) spinors as follows:

Y a =

(
y′α
yα

)
; Ya =

(
−yα
y′α

)
This decomposition is consistent with the previously introduced realizations of gamma
matrices (1.7) and twistor metric (1.8).

Note that our boundary points (2.2) admit twistor matrix formulations:

nab =
1

2
(γ0 + γ4)

a
b =

[
0 0
−εαβ 0

]
; n′a

b =
1

2
(γ0 − γ4)ab =

[
0 εαβ
0 0

]
,

where εαβ is the antisymmetric spinor metric and εαβ its inverse, εαγεβγ = δαβ . Thus,
in this decomposition, the twistor subspace spanned by nab contains the upper-index
spinors yα, whose “squares” form the boundary vectors of the R3 conformal frame
associated with the point nµ. Similarly, the n′ab subspace contain “primed” lower-
index spinors y′α, which square to covectors in the R3 frame.

Further, under this twistor decomposition, the higher-spin algebra (1.23) reduces
to

y′α ? y
′
β = y′αy

′
β ;

yα ? yβ = yαyβ ;

y′α ? y
β = y′αy

β − iδβα ;

yα ? y′β = yαy′β + iδαβ .

To clarify the physical meaning of these spinor variables, consider the way in which
the O(1, 4) symmetry generators Y aY b decompose:

y′αy
′
β R3 translations, broken by choice of “origin” n′µ ;

yαyβ special conformal transformation,
broken by choice of “point at infinity” nµ ;

y′αy
α dilations corresponding to time translations t→ t+ τ ,

Y a = (y′α, y
α)→

(
e−

τ
2 y′α, e

+ τ
2 yα
)
, unbroken;

traceless part of y′αyβ SO(3) rotations, unbroken.
Thus, since the translation generator y′αy′β, i.e. the boundary momentum can be written
as the square of a spinor variable, we denote this variable y′α as a “momentum spinor”.
Similarly, yα squares into the generator of spatial conformal transformations, that is,
the momentum with respect to the inverted R3 frame upon interchanging nµ and n′µ.

To see this more accurately, recall the O(1, 4) generators Mµν as expressed in (1.25,
1.26). As Mµν is a simple, totally null bivector, its “direction” defines a totally null
2-plane through the origin of R1,4, that is, a projective lightray. Hence, we are left
with the “magnitude” of Mµν to parameterise the magnitude of the null momentum.
Concretely, at each point `µ on the flat section (1.6) defined by ` · n = −1

2
, we encode

the null momentum as a vector

pµ = 2Mµνn
ν (2.5)
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which is consistent with the bracket in (1.26). Further, recall that generators Mµν can
be expressed in terms of twistor variables

Mµν =
1

8
Y γµνY . (1.25)

Thus, isolating the spatial components of the momentum (2.5)

pk = 2Mkνn
ν =

1

4
Y γknY =

i

4
(σk)

αβ y′αy
′
β =

i

4
y′σky

′ . (2.6)

Thus we have established the direct relation between momentum spinor y′α and flat
section momentum pk.

Now, on a horizon, say the future horizon Hf (2.3), rotations act on the S2 section
in the usual way, dilations rescale null time u, while translations along a vector v shifts
u→ u− 2v · r. A fixed momentum p with respect to these translations describes two
modes on the horizon

δ2
(
r,± p

|p|

)
e∓

iu
2
|p| (2.7)

of positive and negative frequency, respectively: waves with frequency ± |p|
2

with respect
to null time u, with support on antipodal pair of light rays r = ± p

|p| .

2.1.2 Boundary quantum mechanics
We can use the above description to identify HS algebra with the quantum mechanics
operator algebra in the quantum mechanics of a free massless particle in a 2 + 1-
dimensional boundary spacetime. This has been realized before in [21, 68, 69], while
[46] presents a version of the construction using twistor language.

Since the theory describing a free massless particle is conformal, we identify its
three-dimensional Lorentzian spacetime as the projective lightcone in an embedding
R2,d. Every point in the original spacetime is identified with a lightray passing through
the origin of the embedding R2,d, while a lightray becomes a totally null plane. Ac-
counting for the particle’s energy, we find ourselves in the situation outlined in the
previous section: identifying the phase space of the particle with totally null bivectors
Mµν which encodes the energy-momentum of the particle as in (2.5).

Recall that the Poisson brackets of the generatorsMµν read {Mµν ,Mρσ} = 4δ
[µ
[νM

ν]
σ]

. This form is fixed by conformal symmetry up to a normalization constant, which has
been chosen as to make (2.5) the translation generator [46]. Recall from (1.25) that a
totally null bivector Mµν can be written as the square of a twistor Y a; this new phase
space variable will have Poisson bracket

{
Y a, Y b

}
= 2Iab, which is again fixed by con-

formal symmetry and normalized to match (1.25). This implies that the symplectic
form reads Ωab = −1

2
Iab .

To quantize the boundary particle, we upgrade the Poisson bracket of the twistor
phase space variable Y a into the commutator

[
Ŷ a, Ŷ b

]
= 2iIab. A quantum opera-

tor f̂ is represented as a twistor function f(Y ), noting that the product Y a1 · · ·Y an

corresponds to the product of operators
(
Ŷ a1 , . . . , Ŷ an

)
symmetrized over all indices.
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Further, the product of two general operators f̂ ĝ corresponds to the Moyal star prod-
uct f(Y ) ? g(Y ) [46]; this is in fact the higher-spin algebra star product (1.23,1.24).
Thus, higher-spin algebra is identified with the algebra of operators in the quantum
mechanics of the boundary particle.

The trace operations on the two algebras are not identical, but proportional to each
other

tr f̂ =
1

4

∫
d4Y f(Y ) =

1

4

∫
tr? (f(Y ) ? δ(Y )) , (2.8)

where the proportionality constant arises from the ratio of the twistor measure d4Y
constructed directly from Iab and from the symplectic form Ωab.

Having identified twistor space as a phase space we can see that the spinors compo-
nents (y′α, y

α) of a twistor Y a play the role of configuration and momentum variables;
in particular recall from (2.6) that we can identify the square of y′α as the momentum in
the flat frame defined by nµ. Thus, pure states in the theory of the boundary particle
will be expressed as wave functions ψ(y′α).

This formalism can be expressed through a Wigner–Weyl transform [70], relating
the representation of an operator F̂ in the boundary quantum mechanics as a phase
space function F (Y ) and as matrix elements f̃(λα, µα) between states y′α = λα and
y′α = µα.

Even though this has been developed for a Lorentzian boundary, changing to Eu-
clidean signature introduces little change: the phase space coordinates Y a and con-
figuration variables y′α become complexified, and the relation (2.8) gains a minus sign
which can be traced back to the measure d4Y changing sign.

Finally, the Wigner–Weyl transform reads

F (Y ) =

∫
P (n′)

d2λd2µK(λα, µα;Y )f̃(λα, µα) (2.9)

with kernel
K(λα, µα;Y ) = δ

(
y′α −

λα + µα
2

)
e

i
2
(λα−µα)yα . (2.10)

Following [46], we impose a reality condition µα = ±iλ̄α on our spinor variables,
where the orientation of this real contour corresponds to positive and negative frequency
modes (2.7), respectively. Note that, since the transformation kernel (2.10) satisfies

K(λα, µα;Y ) = −K(iµα, iλα; iY ) ,

the Wigner–Weyl transform implies the following equivalence

f̃(λα, µα) = f̃(iµα, iλα)⇐⇒ F (Y ) = −F (iY ) . (2.11)

The left-hand side of (2.11) is enough to ensure the reality and positivity of the Her-
mitian norm on the boundary theory, while the discrete symmetry introduced by the
right-hand side will restrict us to even bulk spins. One can further argue the naturalness
of this reality condition by noting that, in terms of boundary momenta p,p′ it simply
corresponds to p′ = −p̄, while the symmetry introduced by (2.11) interchanges mo-
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menta and flips their signs: (p,p′)→ (−p′,−p). Were our three-dimensional boundary
Lorentzian, we would identify this with a CPT reflection. Hence, restricting to even
bulk spins is equivalent to restricting to CPT-invariant boundary operators.

It will be convenient to work in redefined spinor variables

Σα =
λα + µα

2
; ∆α =

λα − µα
2

, (2.12)

in terms of which the kernel (2.10) can be written as

K(Σα +∆α,Σα −∆α;Y ) = δ(y′α − Σα) e
i∆αyα , (2.13)

and f̃(λα, µα) =
1
4
f(Σα,∆α), so that (2.9) becomes

F (Y ) =

∫
P (n′)

d2Σd2∆ δ(y′α − Σα) e
i∆αyαf(Σα,∆α) . (2.14)

Note that we can perform the Σα spinor integral to be left with

F (Y ) =

∫
P (n′)

d2∆ f(y,∆α) e
i∆αyα .

This last form can be easily inverted as a Fourier transform to give

f(Σ,∆) =

∫
P (n)

d2y F (y + Σα) e
−i∆αyα . (2.15)

2.2 Bulk interpretation

We will consider the bulk master field (1.45, 1.46) constructed from (2.13). First, we
will show that the spinor function f(Σ,∆) can be interpreted as the boundary limit of
these bulk master fields. This limiting procedure, in standard higher-spin formalism,
was first introduced in [29]. Next, we will specialize to a cosmological horizon, where
we will conduct the Penrose transform explicitly.

To make the ensuing discussion more legible, we will mostly use the index free
notation (1.10), unless indices are required for clarity. Similarly, where spinor indices
are employed, we will use the equivalent twistor indices.

2.2.1 Boundary limit

A physical interpretation of the modes f(Σ,∆) can be seen by investigating the bound-
ary limit of bulk master-field corresponding to the twistor function (2.14). Namely, the
bulk Penrose transform (1.46) of F (Y ) reads, for twistor U = (u′, u),

C(x;U) = i

∫
P+(x)

d2wF (w + u′) eiwu . (2.16)
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Considering the limit in which the bulk point x approaches the boundary at n, along
the geodesic connected to n′, we let

xµ = lim
z→0

(
1

z
nµ + zn′µ

)
.

The corresponding projector (1.14) reads

P±
a
b(x) =

1

2

(
±1

z
nab + δab ± zn′a

b

)
.

Performing a change of variables

w = 2P (x)y = (1 + zn′)y ,

u = P+(x)∆ =
1

2

(
1 +

1

z
n

)
∆ ,

u′ = P−(x)Σ =
1

2

(
1− 1

z
n

)
Σ ,

the integration measure (1.16) transforms as

d2w =
P+
abdw

adwb

4π
=
P+
abdy

adyb

π
=
zn′

ab

2π
= zd2y . (2.17)

Thus, the master field (2.16) asymptotes to

C(x;U) ∼ iz

∫
P+(n)

d2y F

(
y + zn′y − 1

2z
nΣ +

1

2
Σ

)
eiy∆ as z → 0 .

To simplify the form of the argument, we shift the integration variable y → y + 1
2z
nΣ

so to write

C(x;U) ∼ ize
iΣy∆
2z

∫
P+(n)

d2y F (y + Σ) eiy∆ as z → 0

∼ ize
iΣy∆
2z f(Σ,∆) as z → 0 ,

where in the last line we have identified the boundary basis coefficients (2.15), which
hence can be see boundary limit of the free bulk master field (2.16).

2.2.2 Horizon modes
Let us restrict for now to positive frequency modes, by choosing to the real contour
µα = iλ̄α. Thus the redefined variables (2.12) become

Σα =
λα + iλ̄α

2
; ∆α =

λα − iλ̄α
2

= −iΣ̄α . (2.18)

Further, we specialize to the future horizon Hf , which we parametrize according
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to (2.3) as xµ = unµ + rµ, with null-time u > 0 and rµ parameterizing the S2 horizon
section. Further, we can introduce spinors φa, φ′

a and so that

rab = i
[
4φ[aφ

′
b] − (φ′φ)Iab

]
.

Since r2 = (φ′φ)2 we choose normalization φ′φ = 1. Furthermore, we introduce complex
conjugate spinors (φ̄, φ̄′), in terms of which can write nab = 2φ[aφ̄b], n′

ab = 2φ′
[aφ̄

′
b], and

Iab = 2
(
φ[aφ

′
b] + φ̄[aφ̄

′
b]

)
.

In this notation, the twistor matrix for the position variable becomes

xab = unab + 4iφ[aφ
′
b] − iIab

with projector on the left spinor subspace

P−ab(x) =
1

2
(Iab − ixab) = −

iu

2
nab + 2φ[aφ

′
b] = −iuφ[aφ̄b] + 2φ[aφ

′
b] = 2φ[aUb] , (2.19)

where U = − iu
2
φ̄+ φ′ =

(
1− iu

2
n
)
φ′. Similarly, for the right spinor subspace

P+ab(x) = Iab − P−ab(x) = 2φ̄[aφ̄
′
b] − iuφ̄[aφb] = 2φ̄[aŪb] (2.20)

with Ū = φ̄′ − iu
2
φ.

Scalar modes

To determine the field strengths encoded by the twistor function F (Y ) we perform the
Penrose transform (1.46) at a horizon point xµ. At scalar level this reads

Φ(0)(x) =

∫
P±(x)

d2Y F (Y )

=

∫
P±(x)

d2Y

∫
P (n′)

d2λd2µK(λ, µ Y )f(λ, µ)

= i

∫
P (n′)

d2Σd2Σ̄C(0)(Σ, Σ̄;x)f(Σ, Σ̄). (2.21)

where we will denote by C(0)(Σ, Σ̄;x) the scalar Penrose-transformed Wigner–Weyl
kernel (2.10). This takes the form

C(0)(Σ, Σ̄;x) =

∫
P−(x)

d2W δ(Σ− w′)eΣ̄w. (2.22)

Any twistorW in the P−(x) subspace (2.19) can be written asW = Aφ+B
(
1− iu

2
n
)
φ′,

with A and B complex numbers; in spinor decomposition this becomes W = (w,w′) =(
Aφ−B iu

2
nφ′, Bφ′), with differential dW = (dA)φ+(dB)

(
1− iu

2
n
)
φ′, and hence mea-

sure
d2W =

dW dW

2(2π)
=
dAdB

2π

(
φ

(
1− iu

2
n

)
φ′
)

= −dAdB
2π

.
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Now, we can compute our Penrose-transformed kernel (2.22) as follows

C(0)(Σ, Σ̄;x) =

∫
P−(x)

d2W eΣ̄wδ(Σ− w′)

= − 1

2π

∫
dAdB eΣ̄

(
Aφ−B iu

2
nφ′

)
δ (Bφ′ − Σ) . (2.23)

Decomposing Σ in the spinor basis
(
φ′, φ̄′) as Σa =

(
Σbφb

)
φ′a +

(
Σbφ̄b

)
φ̄′a we can

rewrite the spinor delta function in the integrand as a product of single component
delta functions

δ(Bφ′ − Σ) =
1

φ′
aφ

a
δ
(
B − Σbφb

)
δ
(
Σbφ̄b

)
so to perform the B-integral in (2.23) as follows

C(0)(Σ, Σ̄;x) = − 1

2π
e−Σ̄a

(
iu
2
Σbφbφ̄

a
)
δ
(
Σbφ̄b

) ∫
dA eAΣ̄φ

= −ie
iu
2
(Σφ)

(
Σ̄φ̄

)
δ
(
Σφ̄
)
δ
(
Σ̄φ
)
. (2.24)

Spin-s modes

For left-handed and right-handed field strengths of arbitrary spin-s we use the following
formulations of the Penrose transform cf. (1.41), respectively

C(2s,0)
a1...a2s

= −i(−1)s
∫
P−(x)

d2wWa1 ...Wa2sF (W ) , (2.25)

C(0,2s)
a1...a2s

= −i
∫
P−(x)

d2w
∂sF (W )

∂W a1 ...∂W a2s

∣∣∣∣
W=w

. (2.26)

Recall the left-handed field strength C
(2s,0)
a1...a2s is symmetric in its 2s spinor indices

and thus has 2s+1 independent components. Since the left-handed spinor space (2.19)
is spanned by φa and Ua, we can recover the independent components of C(2s,0)

a1...a2s via
contraction of the form C

(2s,0)
a1...ajaj+1...a2sφ

a1 ...φajUaj+1 ...Ua2s , for 0 ≤ j ≤ 2s. We will
focus on the contraction C(2s,0)

a1...a2sφ
a1 ...φa2s as it is the one playing the role of null initial.

The discussion for the spin-s right-handed field-strength is identical and leads us to
consider C(0,2s)

a1...a2sφ̄
a1 ...φ̄a2s .

For the left-handed fields, the Penrose transform is a straight-forward generalization
of the scalar case. Explicitly, for a single twistor index

C(1,0)
a1

=

∫
d2w (wa1 + w′

a1) e
Σ̄wδ (w′ − Σ)

= − 1

2π

∫
dAdB

(
Aφa1 −B

iu

2
φ̄a1 +Bφ′

a1

)
eΣ̄

(
Aφ−B iu

2
φ̄
)
δ (Bφ′ − Σ) ,



34 Spinor-helicity variables for cosmological horizons

recalling that W a = wa + w′a. Contracting along null-direction left-handed spinor φa1

C(1,0)
a1

φa1 = − 1

2π

∫
dAdB B

(
φ′
a1
φa1
)
eAΣ̄φ−B

iu
2

(
Σ̄φ̄

)
δ(B − Σφ)δ

(
Σφ̄
)

= − 1

2π
(Σφ) e

iu
2
(Σφ)

(
Σ̄φ̄

)
δ
(
Σφ̄
) ∫

dA eAΣ̄φ

= − (Σφ) e
iu
2
(Σφ)

(
Σ̄φ̄

)
δ
(
Σφ̄
)
δ
(
Σ̄φ
)
.

This can be straight-forwardly generalized to arbitrary spin as

C(2s,0)
a1...a2s

φa1 · · ·φa2s = i(−1)s+1 (Σφ)2s e
iu
2
(Σφ)

(
Σ̄φ̄

)
δ
(
Σφ̄
)
δ
(
Σ̄φ
)
. (2.27)

Recall that the full field strength is given by integrating (2.27) against the spinor-
helicity basis coefficients f(Σ, Σ̄), namely

Φ(2s,0) = Φ(2s,0)
a1...a2s

φa1 · · ·φa2s =
∫
d2Σd2Σ̄C(2s,0)

a1...a2s
φa1 · · ·φa2sf(Σ, Σ̄) . (2.28)

Further, decomposing Σ as Σa =
(
Σbφb

)
φ′a +

(
Σbφ̄b

)
φ̄′a = σφ′a + τ φ̄′a, with σ and

τ complex numbers, a typical integral can be performed as follows∫
d2Σd2Σ̄h(Σ) δ

(
Σφ̄
)
= − 1

(2π)2

∫
d2σd2τ h

(
σφ′ + τ φ̄′) δ(τ) = − 1

(2π)2

∫
d2σ h(σφ′) .

Hence we can write (2.27)

C(2s,0)
a1...a2s

φa1 · · ·φa2s = i(−1)s+1σ2se
iu
2
σσ̄δ (τ) δ (−τ̄) ,

and thus (2.28) becomes

Φ(2s,0) = − 1

(2π2)

∫
d2σ i(−1)s+1σ2se

iu
2
σσ̄f(σφ′, σ̄φ̄) .

Let us find the field potentials H(2s,0) = H
(2s,0)
a1...a2sφ

a1 · · ·φa2s by integrating with respect
the null-time u. First note∫

dsuC(2s,0)
a1...a2s

φa1 · · ·φa2s = −i(2i)s
(σ
σ̄

)s
e

iu
2
σσ̄δ (τ) δ (−τ̄) ,

and thus
H(2s,0) =

1

(2π2)

∫
d2σ i(2i)s

(σ
σ̄

)s
e

iu
2
σσ̄f(σφ′, σ̄φ̄) . (2.29)

For the right-handed field strength calculation we first decompose our twistor vari-
able in terms of both left- and right-handed spinor variables, namely W = w− + w+

where w− = Aφ + BU , as before, and w+ = Sφ̄ + TŪ with A,B, S, and T complex
variables. Note that w+φ̄ =

(
1− iu

2

)
T and w+Ū = −

(
1− iu

2

)
S, and hence we can
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write a general w+ spinor derivative as

∂

∂wa+
=

1

1− iu
2

Ūa∂S −
1

1− iu
2

φ̄a∂T .

This allows us to write the integrand of (2.26), for a single index, as follows

∂

∂wa+

[
δ (w′ − Σ) eΣ̄w

]∣∣∣∣
w+=0

=

=
1

1− iu
2

(
Ūa∂S − φ̄a∂T

) [
δ
(
Bφ′ + T φ̄′ − Σ

)
eΣ̄

(
Aφ− iu

2
Bφ̄+Sφ̄− iu

2
Tφ

)] ∣∣∣∣
S=0, T=0

.

As before, we decompose Σ in the spinor basis
(
φ′, φ̄′), so that

δ
(
Bφ′ + T φ̄′ − Σ

)
= δ (B − Σφ) δ

(
T − Σφ̄

)
and hence

∂

∂wa+

[
δ(w′ − Σ) eΣ̄w

]∣∣∣∣
w+=0

=

=
1

1− iu
2

[
−δ(B − Σφ) δ

(
T − Σφ̄

) (
Σ̄φ̄
)
eΣ̄

(
Aφ− iu

2
Bφ̄+Sφ̄− iu

2
Tφ

)
Ūa+

+δ(B − Σφ)

(
δ′
(
T − Σφ̄

)
− iu

2

(
Σ̄φ
)
δ
(
T − Σφ̄

))
eΣ̄

(
Aφ− iu

2
Bφ̄+Sφ̄− iu

2
Tφ

)
φ̄a

] ∣∣∣∣∣
S=0, T=0

=
1

1− iu
2

δ(B − Σφ) eΣ̄
(
Aφ− iu

2
Bφ̄+Sφ̄− iu

2
Tφ

)
×

×
[
−δ
(
T − Σφ̄

) (
Σ̄φ̄
)
Ūa +

(
δ′
(
T − Σφ̄

)
− iu

2

(
Σ̄φ
)
δ
(
T − Σφ̄

))
φ̄a

] ∣∣∣∣∣
S=0, T=0

= δ(B − Σφ) eΣ̄
(
Aφ− iu

2
Bφ̄

) [
δ
(
Σφ̄
) (

Σ̄φ̄
)
Ūa +

(
−δ′
(
Σφ̄
)
+
iu

2

(
Σ̄φ
)
δ
(
Σφ̄
))

φ̄a

]
.

Now, contracting along null-direction right-handed spinor φ̄a1 , and integrating over the
left-handed spinor subspace, the above reduces to

C(0,1)
a1

φ̄a1 =
i

2π

∫
dAdB δ(B − Σφ) δ

(
Σφ̄
) (

Σ̄φ̄
)
eΣ̄

(
Aφ− iu

2
Bφ̄

)

= i
(
Σ̄φ̄
)
e

iu
2
(Σφ)

(
Σ̄φ̄

)
δ
(
Σφ̄
)
δ
(
Σ̄φ
)
.

This can be straight-forwardly generalized to arbitrary spin

C(0,2s)
a1...a2s

φ̄a1 ...φ̄a2s = i
(
Σ̄φ̄
)2s

e
iu
2
(Σφ)

(
Σ̄φ̄

)
δ
(
Σφ̄
)
δ
(
Σ̄φ
)
. (2.30)
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As for the left-handed fields, we can write (2.30) as

C(0,2s)
a1...a2s

φ̄a1 ...φ̄a2s = iσ̄2se
iu
2
σσ̄δ (τ) δ (−τ̄) .

Thus the right-handed field strengths

Φ(0,2s) = Φ(0,2s)
a1...a2s

φ̄a1 · · · φ̄a2s =
∫
d2Σd2Σ̄C(0,2s)

a1...a2s
φ̄a1 ...φ̄a2sf(Σ, Σ̄) (2.31)

evaluate to
Φ(0,2s) = − 1

(2π2)

∫
d2σ iσ̄2se

iu
2
σσ̄f(σφ′, σ̄φ̄) ,

while the field potentials H(0,2s) = H
(0,2s)
a1...a2sφ̄

a1 · · · φ̄a2s read

H(0,2s) =

∫
d2σ i(−2i)s

( σ̄
σ

)s
e

iu
2
σσ̄f(σφ′, σ̄φ̄) . (2.32)

2.3 Horizon symplectic form

Scalar component

We will compute the symplectic form on the future horizon Hf (2.3), which, for scalar
field-strengths Φ

(0)
1 (xµ) and Φ

(0)
2 (xµ), reads

Ω
(
Φ

(0)
1 ,Φ

(0)
2

)
=

∫
Hf

dud2rΦ
(0)
1

←→
∂uΦ

(0)
2 . (2.33)

We want to considering Φ
(0)
1 and Φ

(0)
2 of positive-frequency and negative-frequency,

respectively, with respect to null-time u. Recall from the construction of Section 2.2.2
that positive frequency modes correspond to choice of real contour µ = iλ̄ in the original
spinor-helicity spinor variables. Thus, for the negative-frequency modes we will choose
contour µ = −iλ̄; this corresponds to an exchange in the redefined variables (2.18),
Σ↔ ∆.

Thus, expressing field-strengths via the Penrose transformed Wigner–Weyl trans-
form (2.21), the symplectic form (2.33) reads

Ω
(
Φ

(0)
1 ,Φ

(0)
2

)
=

= −
∫
dud2r

(∫
d2Σd2Σ̄C(0)(Σ, Σ̄;x)f1(Σ, Σ̄)

)
←→
∂u

(∫
d2Σd2Σ̄C(0)(Σ̄,Σ;x)f2(Σ̄,Σ)

)
= −

∫
dud2r

∫
d2Σ1d

2Σ̄1d
2Σ2d

2Σ̄2C
(0)(Σ1, Σ̄1;x)f1(Σ1, Σ̄1)

←→
∂uC

(0)(Σ̄2,Σ2;x)f2(Σ̄2,Σ2) .
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Using the appropriate scalar Penrose-transformed kernel (2.24)

Ω
(
Φ

(0)
1 ,Φ

(0)
2

)
=

∫
dud2r

∫
d8Σ

[
δ
(
Σ1φ̄

)
δ
(
Σ̄1φ

)
e

iu
2
(Σ1φ)

(
Σ̄1φ̄

)
f1(Σ1, Σ̄1)×

× δ
(
Σ2φ̄

)
δ
(
Σ̄2φ

) i
2
(Σ2φ)

(
Σ̄2φ̄

)
e−

iu
2
(Σ2φ)

(
Σ̄2φ̄

)
f2(Σ̄2,Σ2)− {1↔ 2}

]
(2.34)

where, for notational brevity, we abuse notation by denoting the combined spinor
measures as d8Σ = d2Σ1d

2Σ̄1d
2Σ2d

2Σ̄2. We then use the delta-functions to reduce the
Σ-integrals as follows; decomposing Σi as Σa

i =
(
Σb
iφb
)
φ′a +

(
Σb
i φ̄b
)
φ̄′a = σφ′a + τ φ̄′a,

with σ and τ complex numbers, the symplectic form becomes

Ω
(
Φ

(0)
1 ,Φ

(0)
2

)
=

1

(2π)4

∫
dud2r

∫
d2σ1d

2σ2 e
iu
2
σ1σ̄1f1

(
σ1φ

′, σ̄1φ̄
′)×

× i

2
(σ2σ̄2) e

− iu
2
σ2σ̄2f2

(
σ̄2φ̄

′, σ2φ
′)− {1↔ 2} .

Performing the u-integral in each of the above summands and packing the result into
a single integral

Ω
(
Φ

(0)
1 ,Φ

(0)
2

)
=

i

16π3

∫
d2rd2σ1d

2σ2 δ(σ1σ̄1 − σ2σ̄2) (σ2σ̄2 + σ1σ̄1)×

× f1
(
σ1φ

′, σ̄1φ̄
′) f2(σ̄2φ̄′, σ2φ

′) .
Considering the complex σ integrals over circular contours σj = ρje

iθj and σ̄j = ρje
−iθj ,

for arbitrary radii ρj,

Ω
(
Φ

(0)
1 ,Φ

(0)
2

)
=

i

16π3

∫
d2rdρ1dρ2dθ1dθ2 ρ

2
1ρ

2
2δ
(
ρ21 − ρ22

) (
ρ21 + ρ22

)
×

× f1
(
ρ1e

iθ1φ′, ρ1e
−iθ1φ̄′) f2 (ρ2e−iθ2φ̄′, ρ2e

iθ2φ′) .
Note that the integrand only has support on ρ1 = ρ2 = ρ. Thus, performing one of the
ρ-integrals

Ω
(
Φ

(0)
1 ,Φ

(0)
2

)
=

i

8π3

∫
d2rdρdθ1dθ2 ρ

3f1
(
ρeiθ1φ′, ρe−iθ1φ̄′) f2 (ρe−iθ2φ̄′, ρeiθ2φ′) .

Recall rab = i
[
4φ[aφ

′
b] − Iab

]
and thus we can parametrize the unit sphere using spinors

λa = ρeiθ1φa and λ̄a so that d2λd2λ̄ = 1
2π
ρ3d2rdρdθ1; letting θ2 − θ1 = θ we write, up

to variable redefinitions,

Ω
(
Φ

(0)
1 ,Φ

(0)
2

)
=

i

4π2

∫
d2λd2λ̄dθ f1

(
λ, λ̄
)
f2
(
e−iθλ̄, eiθλ

)
(2.35)
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Spin-s component

We proceed in a similar manner for field-strengths that carry spinor indices. In this
case the relevant variables are the field potentials H(2s,0) (2.29) and H(0,2s) (2.29), and
their conjugates ∂uH(2s,0) and ∂uH

(0,2s), respectively. For left-handed field strengths,
the symplectic form reads

Ω
(
H

(2s,0)
1 , H

(2s,0)
2

)
=

∫
Hf

dud2rH
(2s,0)
1

←→
∂uH

(2s,0)
2 .

Plugging in (2.29) and using the same formalism as for the scalar case, this becomes

Ω
(
H

(2s,0)
1 , H

(2s,0)
2

)
=

i

16π3

∫
d2rd2σ1d

2σ2 (−i)2(2i)2s
(
σ1
σ̄1

)s(
σ2
σ̄2

)s
×

× δ(σ1σ̄1 − σ2σ̄2) (σ2σ̄2 + σ1σ̄1) f1
(
σ1φ

′, σ̄1φ̄
′) f2 (σ̄2φ̄′, σ2φ

′) .
Evaluating over the same complex contours as in the scalar case, this integral reduces
to

Ω
(
H

(2s,0)
1 , H

(2s,0)
2

)
=
i22s−2

π2

∫
d2λd2λ̄dθ e2siθf1

(
λ, λ̄
)
f2
(
e−iθλ̄, eiθλ

)
. (2.36)

For right-handed fields, a similar computation leads to

Ω
(
H

(0,2s)
1 , H

(0,2s)
2

)
=
i22s−2

π2

∫
d2λd2λ̄dθ e−2siθf1

(
λ, λ̄
)
f2
(
e−iθλ̄, eiθλ

)
. (2.37)

Note that this reduces to the scalar result (2.35) when setting s = 0. Furthermore,
the above symplectic forms (2.35, 2.36, 2.37) vanish due to the periodicity in θ of
the integrands, unless the functions have the right helicity, namely, under a phase
transformation λ → eiθλ, f(λ̄, λ) → e±siθf(λ̄, λ), where ±s is the left(right)-handed
spin of f .

2.4 S-matrix
In field theories on flat spacetime the scattering matrix (S-matrix) between past and
future infinity is a fundamental object of study. The spinor-helicity formalism is an
ideal language to study the S-matrix for massless theories such as Yang-Mills and
General Relativity.

In the context of de Sitter space we are interested to study the “S-matrix” in the
static patch, with an observer’s past and future horizons playing the roles of past/future
infinity. Thus, the de Sitter S-matrix problem is to relate the gauge-invariant field data
Φ(xµ) on the final horizon Hf to the corresponding data Ψ(xµ) on the initial horizon
Hi. (This statement is more general than what is generally referred to as the S-matrix.
Usually, one relates the quantum states obtained by acting with the fields on some
vacuum state; however, by considering just the fields themselves, we avoid choosing a
particular vacuum state.) We will only consider the “hard part” of the S-matrix, as
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we will be ignoring subtleties related to zero-frequency modes (related to the horizons’
lower-dimensional boundaries).

At the core of our calculation of the S-matrix lies the realization that the spinor
functions that encode the field data on the final and initial horizons, f(Σ, Σ̄) and
f ′(Ξ, Ξ̄), respectively, are simply related by a Fourier transform in our spinor variables,
where (Ξ, Ξ̄) play the same role as (Σ, Σ̄) on the past horizon Hi. Namely, we claim
that

f(Σ, Σ̄) =
1

2πi

∫
d2Ξd2Ξ̄ eΣΞ−Σ̄Ξ̄f ′(Ξ, Ξ̄) . (2.38)

To convince ourselves that this is true, plug the above into the Wigner–Weyl trans-
form (2.14)

F (Y ) = i

∫
d2Σd2Σ̄ δ(y′ − Σ)eΣ̄yf(Σ, Σ̄)

=
1

2π

∫
d2Σd2Σ̄d2Ξd2Ξ̄ δ(y′ − Σ)eΣ̄yeΣΞ−Σ̄Ξ̄f ′(Ξ, Ξ̄)

= − 1

2π

∫
d2Σd2Σ̄d2Ξd2Ξ̄ δ(y′ − Σ)eiΣ̄(−iy+iΞ̄)eΣΞf ′(Ξ, Ξ̄)

= i

∫
d2Ξd2Ξ̄ δ(y − Ξ̄)eΞ̄y

′
f ′(Ξ, Ξ̄)

= F ′(Y )

where in the last line we have constructed twistor function F ′(Y ) through the Wigner–
Weyl transform on the initial horizon Hi. Since the two twistor functions encode the
same bulk field dynamics, F ′(Y ) = F (Y ), which concludes our argument for (2.38).

Scalar component

We encode scalar field data as before

Φ(0)(x) = i

∫
d2Σd2Σ̄C(0)(Σ, Σ̄;x)f(Σ, Σ̄) , (2.21)

Ψ(0)(x′) = i

∫
d2Ξd2Ξ̄C(0)(Ξ, Ξ̄;x′)f ′(Ξ, Ξ̄) , (2.39)

where the second horizon Hi, with coordinates (0, v, r), is parameterized as x′µ =

vn′µ + r′µ, while the spherical horizon section reads r′ab = i
[
4ψ[aψ

′
b] − Iab

]
for spinors

ψ, ψ′ normalized so that ψ′ψ = 1.

Using (2.38), we can express Φ(0)(xµ) in terms of the spinor-helicity basis coefficient
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f(Ξ, Ξ̄) on the other horizon:

Φ(0)(x) = i

∫
d2Σd2Σ̄C0(Σ, Σ̄;xµ)f(Σ, Σ̄)

=

∫
d2Σd2Σ̄ e

iu
2
(Σφ)(Σ̄φ̄)δ(Σφ̄)δ(Σ̄φ)f(Σ, Σ̄)

=
1

2πi

∫
d2Σd2Σ̄d2Ξd2Ξ̄ e

iu
2
(Σφ)(Σ̄φ̄)δ(Σφ̄)δ(Σ̄φ)eΣΞ−Σ̄Ξ̄f ′(Ξ, Ξ̄) .

As before, we decompose Σ as Σa =
(
Σbφb

)
φ′a+

(
Σbφ̄b

)
φ̄′a = σφ′a+τ φ̄′a and, similarly,

Ξa =
(
−Ξbφ′

b

)
φa +

(
−Ξbφ̄b

)
φ̄a = ξφa + χφ̄a; thus the spinor measures read d2Σd2Σ̄ =

− 1
(2π)2

d2σd2τ and d2Ξd2Ξ̄ = − 1
(2π)2

d2ξd2χ. This allows us to perform the above delta-
function integrals as follows

Φ(0)(x) = − 1

(2π)3i

∫
d2σd2τd2Ξd2Ξ̄ e

iu
2
σσ̄δ(τ)δ(τ̄)eσξ+τχ−σ̄ξ̄−τ̄ χ̄f ′(Ξ, Ξ̄)

= − 1

(2π)3i

∫
d2σd2Ξd2Ξ̄ e

iu
2
σσ̄eσξ−σ̄ξ̄f ′(Ξ, Ξ̄) .

Further, we regroup exponential terms

Φ(0)(x) = − 1

(2π)3i

∫
dσdσ̄d2Ξd2Ξ̄ eiσ

(
u
2
σ̄−iξ

)
e−σ̄ξ̄f ′(Ξ, Ξ̄)

and, noting that
∫
dσeiσ(

u
2
σ̄−iξ) = 2πδ

(
u
2
σ̄ − iξ

)
along real line contour and we use this

to perform the σ̄ integral as

Φ(0)(x) = − 1

(2π)2i

∫
dσ̄d2Ξd2Ξ̄ δ

(u
2
σ̄ − iξ

)
e−σ̄ξ̄f ′(Ξ, Ξ̄)

= − 1

2π2iu

∫
d2Ξd2Ξ̄ e−

2i
u
ξξ̄f ′(Ξ, Ξ̄)

= − 1

2π2iu

∫
d2Ξd2Ξ̄ e−

2i
u
(Ξφ′)(Ξ̄φ̄′)f ′(Ξ, Ξ̄) .

Having expressed Φ(0)(xµ) in terms of spinor function f ′(Ξ, Ξ̄), we will invert (2.39) as
a Fourier transform in horizon time coordinate v, to write f ′(Ξ, Ξ̄) in terms of Ψ(0).
For positive frequency modes

Ψ
(0)
+ (x′) = i

∫
d2Ξd2Ξ̄C(0)(Ξ, Ξ̄;x)f ′(Ξ, Ξ̄)

=

∫
d2Ξd2Ξ̄ e

iv
2
(Ξψ′)(Ξ̄ψ̄′)δ(Ξψ̄′)δ(Ξ̄ψ′)f ′(Ξ, Ξ̄)

= − 1

(2π)2

∫
d2ξ′ e

iv
2
ξ′ξ̄′f ′(Ξ, Ξ̄) , (2.40)

where ξ′ = Ξψ′. Considering the complex ξ′ integrals over circular contours ξ′ = ρeiθ,
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the measure becomes d2ξ′ = iρdρdθ. Further, letting ξ′ξ̄′ = ρ2 = η, (2.40) becomes

Ψ
(0)
+ (x′) = − i

2π

∫ ∞

0

dη e
iv
2
ηf ′(Ξ, Ξ̄)

where we performed the θ integral. Similarly for negative frequency modes, a similar
calculation leads to

Ψ
(0)
− (x′) = − i

2π

∫ ∞

0

dη e−
iv
2
ηf ′(Ξ, Ξ̄) .

We can combine the two integrals to cover the whole real line, as

Ψ(0)(x′) = − i

2π

∫ ∞

−∞
dη e−

iv
2
ηf ′(Ξ, Ξ̄) .

Thus we can invert to obtain

f(Ξ, Ξ̄) = − 2π

2i(2πi)

∫
dv eivξ

′ξ̄′Ψ(0)(x′) =
1

2

∫
dv e−iv(Ξψ

′)(Ξ̄ψ̄′)Ψ(0)(x′) .

Now, the relation between the field-strengths on the two horizons becomes

Φ(0)(x) = − 1

4π2iu

∫
dvd2Ξd2Ξ̄ e−

2i
u
(Ξφ′)(Ξ̄φ̄′)eiv(Ξψ

′)(Ξ̄ψ̄′)Ψ(0)(x′) .

Recall from (2.40) that the delta-function integrals specialize us to spinor variables
Ξ parallel to ψ; hence we parametrize Ξa = ρeiθψa; the spinor measure becomes

d2Ξd2Ξ̄ =
1

2π
ρ3d2r′dρdθ

and Ξφ̄ = ρeiθψφ̄. Thus the above integral reads

Φ(0)(x) = − 1

8π3iu

∫
dvd2r′dρdθ ρ3e−

2i
u
ρ2(ψφ′)(ψ̄φ̄′)eivρ

2

Ψ(x′)

= − 1

4π2iu

∫
dvd2r′dρ ρ3eiρ

2
(
− 2

u
(ψφ′)(ψ̄φ̄′)+v

)
Ψ(0)(x′) (2.41)

where we performed the integral over the spinor phase θ to obtain an overall 2π factor.
Now, note that the ρ-dependent part of (2.41) has the following general form∫

eiρ
2(?)ρ3 dρ .

Changing the integration variables to η = ρ2, this becomes

1

2

∫
eiη(?)η dη = −πiδ′(?) .

The above integral requires η to be continued to the whole real line, and although we
constructed η to be positive, we recover negative η from the Φ(0)(x) negative-frequency
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modes, as discussed above. Thus, (2.41) becomes

Φ(0)(x) =
1

4πu

∫
dvd2r′ δ′

(
v − 2

u
(ψφ′)(ψ̄φ̄′)

)
Ψ(0)(x′)

=
u

π

∫
dvd2r′ δ′

(
uv − 2(ψφ′)(ψ̄φ̄′)

)
Ψ(0)(x′). (2.42)

Now recall, in our notation, rµ = −1
4
γµabr

ab, where rab = i
[
4φ[aφ

′
b] − Iab

]
. Thus

rµr
′µ =

1

16
γabµ rabγ

µ
cdr

′cd =
1

16

(
IabIcd − 4δ

[a
[c δ

b]
d]

)
rabr

′cd = −1

4
rabr

′ab .

Further, we can show from direct calculation that

rµr
′µ − 1 = 2(ψφ′)(ψ̄φ̄′) (2.43)

Hence, we can express field-data relation (2.42) as

Φ(x) =
u

π

∫
dvd2r′ δ′(uv − 2(rµr

′µ − 1))Ψ(x′)

Performing the integral over v

Φ(x) =
1

πu

∫
S2

d2r′
∂

∂v
Ψ(x′)

∣∣∣∣
uv=2(rµr′µ−1)

. (2.44)

Note this result can be obtained directly from the more general formula

Φ(x) =

∫
dvd2r′Ψ(x′)

←→
∂

∂v
G(x, x′)

where
G(x, x′) = − 1

4π
δ(xµx

′µ − 1)Θ(x0 − x′0)

is the causal Green’s function in dS4. This acts as a sanity check for spinor-variable
based calculation of the scalar S-matrix in dS4 which now can be generalized to general
fields.

Spin-s component

To generalize the S-matrix calculation to field strengths of general spin, we follow the
same procedure, noting that the relevant Penrose-transformed kernels are (2.27) and
(2.30) for left- and right-handed spin-s field strengths, respectively.

We encode the spin-s left-handed field strengths on the future horizon as in (2.31),
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keeping track of the correct helicity of the spinor-helicity basis coefficients:

Φ(s,0)(x) = i

∫
d2Σd2Σ̄C(2s,0)(Σ, Σ̄;x)f (2s,0)(Σ, Σ̄) ,

Ψ(s,0)(x′) = i

∫
d2Ξd2Ξ̄C(2s,0)(Ξ, Ξ̄;x′)f ′(2s,0)(Ξ, Ξ̄) ,

where we are using the corresponding Wigner–Weyl kernel (2.27) and, for notational
brevity, the contraction along null-direction spinors,

C(2s,0)(Σ, Σ̄;x) = C(2s,0)
a1...a2s

(Σ, Σ̄;x)φa1 ...φa2s

is understood. Spelling things out and performing the Fourier transform between
horizons

Φ(s,0)(x) = (−1)s
∫
d2Σd2Σ̄ (Σφ)2se

iu
2
(Σφ)(Σ̄φ̄)δ(Σφ̄)δ(Σ̄φ)f (2s,0)(Σ, Σ̄)

=
1

(2π)3i
(−1)s+1

∫
dσdσ̄d2Ξd2Ξ̄σ2se

iu
2
σσ̄eσξ−σ̄ξ̄f ′(2s,0)(Ξ, Ξ̄) .

As before we compute the σ-integral along the real line to obtain a δ-function∫
dσ σ2seiσ

(
u
2
σ̄−iξ

)
= 2π(−i)2s

(
2

u

)2s+1

δ(2s)
(
σ̄ − 2i

u
ξ

)
so that

Φ(s,0)(x) = − 22s−1

π2iu2s+1

∫
dσ̄d2Ξd2Ξ̄σ2sδ(2s)

(
σ̄ − 2i

u
ξ

)
e−σ̄ξ̄f ′(2s,0)(Ξ, Ξ̄)

= − 22s−1

π2iu2s+1

∫
d2Ξd2Ξ̄ ξ2se−

2i
u
ξξ̄f ′(2s,0)(Ξ, Ξ̄)

= − 22s−1

π2iu2s+1

∫
d2Ξd2Ξ̄ (Ξφ′)

2s
e−

2i
u
(Ξφ′)(Ξ̄φ̄′)f ′(2s,0)(Ξ, Ξ̄) . (2.45)

On the second horizon, the spin-s′ left-handed field strength reads

Ψ(s′,0)(x′) = i

∫
d2Ξd2Ξ̄C(2s,0)(Ξ, Ξ̄;x′)f ′(2s′,0)(Ξ, Ξ̄)

=
(−1)s′+1

(2π)2

∫
d2ξ ξ2s

′
e

iv
2
ξξ̄f ′(2s,0)(Ξ, Ξ̄) .

As in the scalar case, we invert the Fourier transform to obtain

f ′(2s,0)(Ξ, Ξ̄) =
1

2
(−1)s′ξ−2s′

∫
dv eivξξ̄Ψ(s′,0)(x′)

=
1

2
(−1)s′(Ξψ′)−2s′

∫
dv eiv(Ξψ

′)(Ξ̄ψ̄′)Ψ(s′,0)(x′) .
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Using the above in (2.45)

Φ(s,0)(x) =
22s−2

π2iu2s+1
(−1)s′+1

∫
dvd2Ξd2Ξ̄ (Ξφ′)2s(Ξψ′)−2s′e−

2i
u
(Ξφ′)(Ξ̄φ̄′)eiv(Ξψ

′)(Ξ̄ψ̄′)Ψ(s′,0)(x′) .

As before, letting Ξa = ρeiθψa

Φ(s,0)(x) =
22s−3

π3iu2s+1
(−1)s′+1

∫
dvd2r′dρdθ ρ3ρ2s−2s′(ψφ′)2se2iθ(s−s

′)eiρ
2
(
v− 2

u
(ψφ′)(ψ̄φ̄′)

)
Ψ(s′,0)(x′) .

Note that the θ-integral fixes s = s′ and hence

Φ(s,0)(x) =
22s−2

π2iu2s+1
(−1)s+1

∫
dvd2r′dρ ρ3(ψφ′)2seiρ

2
(
v− 2

u
(ψφ′)(ψ̄φ̄′)

)
Ψ(s,0)(x′) ,

which, as before, can be integrated over ρ as

Φ(s,0)(x) =
22s−2

πu2s+1
(−1)s

∫
dvd2r′ (ψφ′)2sδ′

(
v − 2

u
(ψφ′)(ψ̄φ̄′)

)
Ψ(s,0)(x′)

=
22s

πu2s−1
(−1)s

∫
dvd2r′ (ψφ′)2sδ′(uv − 2(rµr

′µ − 1))Ψ(s,0)(x′) . (2.46)

Note that we have the freedom to fix the relative phase of the the spinor spaces
spanned by φa, φ′

b and ψa, ψ
′
b; in particular choosing ψφ′ = ψ̄φ̄′, and, using (2.43),

(ψφ′)2s =
(
(ψφ′)(ψ̄φ̄′)

)s
=

(
rµr

′µ − 1

2

)s
=

(−1)s

2s
(1− rµr′µ)2

and hence, finally,

Φ(s,0)(x) =
2s

πu2s+1

∫
S2

d2r′ (1− rµr′µ)s
∂

∂v
Ψ(s,0)(x′)

∣∣∣∣
uv=2(rµr′µ−1)

. (2.47)

This is the more general version of our scalar result (2.44), with a similar result holding
for spin-s right-handed fields. These act as an effective S-matrix for spin-s data between
cosmological horizons in dS4.



Chapter 3

Boundary partition function

We investigate the decomposition of the boundary CFT partition function in terms of
spherical modes in the spinor-helicity basis. Further, we observe a discrepancy between
the higher-spin-algebraic calculation of the partition function and the result of the usual
CFT partition function calculation.

Following [24] we will consider boundary correlators derived from the local and
bilocal descriptions of the boundary theory. This will be consistent with the results we
presented in Section 1.4.1 and it will allow us to probe the disagreement between the
local and HS-algebraic partition functions.

We attempted to resolve the disagreement by modifying the local partition function,
namely by considering the Legendre transform of the local action and accounting for
contact pieces. Unfortunately, the disagreement persists even in these circumstances.
We will discuss some reasons for this disagreement, as well as some of the consequences.

3.1 Correlators and boundary modes
Recall the free vector model action (1.51) we introduced in Section 1.4.1

SCFT = −
∫
d3` φ̄I�φ

I −
∫
d3`

∞∑
s=0

A(s)
µ1...µs

(`)Jµ1...µs(s) (`) ,

for currents J (s) (1.50)

J
(s)
k1...ks

=
1

is
φ̄I

(
s∑

m=0

(−1)m
(
2s

2m

)
←−
∂ (k1 . . .

←−
∂ km

−→
∂ km+1 . . .

−→
∂ ks) − traces

)
φI .

For notational simplicity in the upcoming discussion we will consider the scalar null
contraction of the above currents

J (s)(λ, `) = λµ1 · · ·λµsJ (s)
µ1...µs

(`) , (3.1)

where λµ is a null boundary vector, such that λ · ` = 0.
The n-point correlation functions of the currents J (s)

µ1...µs are some of the most basic
object of study in a CFT and can be extracted from the CFT partition function ZCFT =

45
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∫
DφDφ̄ e−SCFT as its derivative at zero with respect to sources inserted at n distinct

points (`1, . . . , `n). For the free vector model (1.51) the connected part of the n-point
correlators for the scalar operator J (0) = φ̄Iφ

I are given in terms of 1-loop Feynman
diagrams in coordinate space

〈J (0)(`1) · · · J (0)(`n)〉connected = N(−1)n
∑
σ∈S̃n

n∏
i=1

G
(
`σ(i), `σ(i+1)

)
, (3.2)

where we recall the propagator

G(`, `′) = − 1

4π
√
−2` · `′

. (1.54)

The product (3.2) is cyclic and the sum is understood over the set S̃n of cyclically
inequivalent permutations of the points (`1, . . . , `n).

For currents of non-zero spin s, the correlators are best encapsulated by the bilocal
formalism (1.52). For the bilocal scalar operators O(`, `′) ≡ φI(`)φ̄I(`

′) the correlators
become

〈O(`1, `′1) · · · O(`n, `′n)〉connected = N(−1)n
∑
σ∈S̃n

n∏
i=1

G
(
`′σ(i), `σ(i+1)

)
. (3.3)

From this we can covariantly unpack the correlators for local spin-s currents via
(1.50,3.1) as a differential operator

J (s)(`, λ) = D(s) [O(`, `′)] ≡

≡ isλµ1 · · ·λµs
s∑

m=0

(−1)m
(
2s

2m

)
∂(µ1 . . . ∂µm∂

′
µm+1

. . . ∂′µs)O(`, `
′)
∣∣∣
`′=`

, (3.4)

where we can legitimately employ the R1,4 flat derivatives ∂µ = ∂
∂`µ

since the directional
derivative λµ∂µ do not take `, `′ off the horizon and (3.4) is in fact invariant under
arbitrary translations of λµ along `.

3.1.1 Local description
As discussed in Section 1.4.2, the aim is to replace CFT sources with twistor function,
which will then allow for the correlators to be written in higher-spin-algebraic language.
In this section we will complement the bilocal picture of Section 1.4.2, by presenting a
dictionary between local boundary sources and twistor language. The aim will be to
find the twistor functions corresponding to boundary-to-bulk propagators, which will
then be related to boundary sources.

We can expect the twistor function corresponding to scalar operator at a boundary
point ` to be proportional to δ`(Y ), since this is the unique twistor function depending
solely on `. Thus, let

κ(0)(`;Y ) = ± i

4π
δ`(Y ) . (3.5)
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Using the delta-star-product formula (1.37), we can write the unique higher-spin-
invariant trance by considering a sequence of such twistor functions:

tr?
(
κ(0)(`1;Y ) ? · · · ? κ(0)(`n;Y )

)
= −4

n∏
i=1

G(`i, `i+1) . (3.6)

This reproduces the terms of the correlator (3.2); the prefactor in (3.5) is chosen so
that there are no n-dependent prefactors in (3.6). We can read off the related bulk-field
by taking the Penrose transform (1.45) and using (1.34) as

tr?
(
iκ(0)(`; y) ? δx(Y )

)
= ± 1

2π` · x

which is proportional to the boundary-to-bulk propagator for the conformally massless
scalar C(0)(x).

One can easily recover the results of the bilocal approach from this local con-
struction. Note that the terms in the bilocal correlator (3.3) with n bilocal operator
insertions correspond to terms in local correlator (3.2) with 2n local scalar operator
insertions but with n propagators of the form G(`i, `

′
i) removed. Thus we can write

the twistor kernel corresponding to bilocal sources as

K(`, `′;Y ) =
1

G(`, `′)
κ(0)(`;Y ) ? κ(0)(`′;Y ) ,

which directly reproduces (1.56). Thus bilocal correlators (3.3) take the following form

〈O(`1, `′1) · · · O(`n, `′n)〉connected =

=
N

4
(−1)n+1

∑
σ∈S̃n

tr?
(
K(`σ(1), `

′
σ(1);Y ) ? · · · ? K(`σ(n), `

′
σ(n);Y )

)
. (3.7)

Recall that the local correlators for currents of general spin can be computed from
bilocal ones via a differential operator (3.4). Thus the n-point correlator of the repack-
aged currents J (s)(`, λ) can be written in higher-spin-algebraic fashion as

〈J (s1)(`1, λ1) · · · J (sn)(`n, λn)〉connected =

=
N

4
(−1)n+1

∑
σ∈S̃n

tr?
(
κσ(1)(`σ(1), λσ(1);Y ) ? · · · ? κσ(n)(`σ(n), λσ(n);Y )

)
, (3.8)

for κ(s)(`, λ;Y ) the twistor function corresponding to a spin-s insertion J (s)(`, λ),
namely

κ(s)(`, λ;Y ) = D(s)[K(`, `′;Y )] . (3.9)
Direct computation of (3.9) is made difficult by the singular limit lim

`′→`
K(`, `′;Y ). Thus

this has been computed [24] by first Penrose-transforming K(`, `′;Y ) into the bulk,
where it is easier to apply the D(s) operator, and transforming the resulting fields
back into twistor space. Here we will just quote the result of this calculation for later
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convenience. (Note that we will encounter the bulk field corresponding to K(`, `′;Y )
in its full form in Chapter 4 as the bilocal master field (4.1).) The twistor functions
(3.9) read

κ(s)(`, λ;Y ) = ±iM
a1 · · ·Ma2s

8πs!

(
Ya1 · · ·Ya2s + (−1)s ∂2s

∂Y a1 · · · ∂Y a2s

)
δ`(Y ) , (3.10)

where the polarization twistor Ma satisfies (`M)a(`M)b = γabµν`
µλν .

3.1.2 Constructing the partition functions

Having written the correlation functions in a higher-spin-algebraic manner it would be
natural to use them to construct the relevant partition function. Note that we will be
ignoring contact corrections in our construction since in the following we will restrict
ourselves to spin-0 modes; we will remark on this later.

Using the standard CFT construction, we can build the CFT partition function as
a functional of sources A(s)

µ1...µs(`), namely

Zlocal[A
(s)(`)] = exp

[ ∞∑
n=2

1

n!

∫
d3`1

∞∑
s1=0

A(s1)
µ1...µs1

(`1) · · ·
∫
d3`n

∞∑
s1=0

A(sn)
µ1...µsn

(`n)

〈Jµ1...µs1(s1)
(`1) · · · Jµ1...µsn(sn)

(`n)〉connected

]
. (3.11)

where the subscript “local” indicates that the partition function was build from the local
correlators (3.8). For the free vector model, the partition function can be expressed as
a functional determinant; for a scalar source σ(`) it reads

Zlocal[σ(`)] = (det(�+ σ))−N ∼ (det(1 + σG))−N , (3.12)

where G is the usual propagator (1.54) for the fundamental field φI , G = �−1 = − 1
4πr

.
Recall from Section 1.4.1 that the sources of all spins are concisely captured by the
bilocal formalism, from which gives a similarly compact expression (1.53)

Zbilocal [Π(`
′, `)] = (det (�+Π))−N ∼ (det (1 +GΠ))−N

from which the local partition function (3.11) can be obtained as a limit.
Now, we have seen in Section 1.4.1 how the twistor kernel K(`, `′;Y ) can be used

to package the bilocal sources into a twistor function and thus upgrade the bilocal
partition function into its higher-spin-algebraic form (1.59). A similar process can be
deployed for the local spin-s insertion twistor functions κ(s)(`, λ;Y ) given in (3.10).
Specifically, unraveling polarization indices

κ(s)(`, λ;Y ) ≡ λµ1 · · ·λµsκ
µ1...µs
(s) (`;Y )
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and packaging finite sources A(s)
µ1...µs(`) into the twistor function

F (Y ) =

∫
d3`

∞∑
s=0

A(s)
µ1...µs

(`)κµ1...µs(s) (`;Y ) (3.13)

one can integrate local higher-spin-algebraic correlators (3.8) and sum into the Taylor
series (3.11) to obtain the higher-spin-algebraic partition function

ZHS [F (Y )] = exp

N
4

∞∑
n=1

(−1)n+1

n
tr?

(
F (Y ) ? · · · ? F (Y )︸ ︷︷ ︸

n terms

) (3.14)

which reproduces the previous result

ZHS [F (Y )] = exp

(
N

4
tr? ln? [1 + F (Y )]

)
= (det? [1 + F (Y )])

N
4 . (1.59)

3.1.3 Boundary modes

Having expressed the partitions in higher-spin-algebraic language we can forgo sources
A

(s)
µ1···µs in favor of twistor function source distributions. In this section we will consider

two related twistor bases for the twistor function argument of partition function (1.59).

Spinor-helicity modes

Recall the spinor-helicity formalism that was introduced in Section 2.1 for field data
on the cosmological horizon determined by a boundary point `. In slightly different
notation (u+ = Σ, u− = ∆, ` = n, `′ = n′) the basis functions (2.13) read

K(u+, u−;Y ) = eiu−Y δ`(Y − u+) . (3.15)

Considering again the scalar boundary insertion (3.5) proportional to δ`(Y ), we can
read the basis (3.15) as a four-parameter basis extending the single twistor function
δ`(Y ). This combines the generators δ`(Y −M) and eiMY δ`(Y ), with Ma ∈ P ∗(`), of the
right-handed and left-handed parts of the general spin-s boundary-to-bulk propagators,
respectively. In our notation, spinor parameters u+ and u− indicate the right- and left-
handedness of the aforementioned propagators, respectively. Recall from our earlier
discussion in Section 1.1.3, that when fixing two boundary points, we can take both
u+, u− ∈ P (`′).

Thus, as in (2.14), we decompose our twistor function F (Y ) into basis coefficients
f(u+, u−) as

F (Y ) = −i
∫
P (`′)

d2u+d
2u− f(u+, u−) e

iu−Y δ`(Y − u+) , (3.16)

where we have introduced the prefactor −i for later convenience. Note that we can
perform the u+ spinor integral to be left with
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F (Y ) = −i
∫
P (`′)

d2u+ f(y, u−) e
iu−y ,

where the twistor Y is decomposed into spinors as Y = y + y′ with y ∈ P (`) and
y′ ∈ P (`′). This last form can be easily inverted as a Fourier transform to give

f(u+, u−) = i

∫
P (`)

d2y F (y + u+) e
iyu− . (3.17)

Recall from our construction of the Wigner–Weyl transform in Section 2.1.2 that
this was originally introduced in terms of variables u = u++u− and ū = u+−u−. Here
we will take u and ū independent, and not related by complex conjugation; we will
come back to the issue of choosing real contours at the end of this section. In terms of
these variables the modes decomposition (3.16) becomes

F (Y ) =

∫
P (`′)

d2ud2ū f̃(u, ū) k(u, ū;Y ) . (3.18)

with modes coefficients and kernel reading

f̃(u, ū) = − i
4
f

(
u+ ū

2
,
u− ū
2

)
, (3.19)

k(u, ū;Y ) = exp

(
i
u− ū
2

Y

)
δ`

(
Y − u+ ū

2

)
, (3.20)

where the numerical factors have been chosen for convenience. One of the advantages of
using this basis is its behavior under the star product. Namely, using the star-product
integral formula (1.24),

k(u, ū;Y ) ? k(v, v̄;Y ) =

∫
d4Xd4Z k(u, ū;Y +X) k(v, v̄;Y + Z) e−iXZ

=

∫
d4Xd4Z exp (iu−(Y +X)) δ`((Y +X)− u+)

exp (iv−(Y + Z)) δ`((Y + Z)− v+) e−iXZ .

Expressing the two delta-function as integrals over spinor subspace P (`), the above
becomes

k(u, ū;Y ) ? k(v, v̄;Y ) =

=

∫
d4Xd4Z

∫
P (`)

d2ζd2η eiu−(Y+X)eiζ(Y+X−u+)eiv−(Y+Z)eiη(Y+Z−v+)e−iXZ

Regrouping the exponentials as
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k(u, ū;Y ) ? k(v, v̄;Y ) =

=

∫
d4Xd4Z

∫
P (`)

d2ζd2η ei(u−+v−)Y eiζ(Y−u+)eiη(Y−v+)ei(u−+ζ+Z)Xei(v−+η)Z

allows us to rewrite the X-integral as a δ-function, using (1.12), as

∫
dX4 ei(u−+ζ+Z)X = δ(u− + ζ + Z)

and thus, performing the Z-integral,

k(u, ū;Y ) ? k(v, v̄;Y ) =

∫
P (`)

d2ζd2η ei(u−+v−)Y eiζ(Y−u+)eiη(Y−v+)e−i(v−+η)(u−+ζ) .

Now, changing to new spinor variables φ = ζ + η and ψ = ζ − η the above integral
rearranges itself as

k(u, ū;Y ) ? k(v, v̄;Y ) =

∫
P (`)

d2φd2ψ eiφ
(
Y−u+v̄

2

)
eiψ

v−ū
2 ei(u−+v−)Y e−i(v−u−+φψ)

which, upon noting that ei(u−+v−)Y = e
i
2
(u−v̄)Y e

i
2
(ū−v)Y , can be reexpressed as

k(u, ū;Y ) ? k(v, v̄;Y ) = δ`(ū− v)e
i
2
(u−v̄)Y δ`

(
Y − 1

2
(u+ v̄)

)
.

Now, recalling the form of the spinor kernel (3.20), the above is simply

k(u, ū;Y ) ? k(v, v̄;Y ) = δ`(ū− v) k(u, v̄;Y ) . (3.21)

Further, taking the trace in (3.20),

tr? k(u, ū;Y ) = 4δ`(u+ ū) . (3.22)

Thus, we note that the kernels k(u, ū;Y ) have the an analogous algebraic structure
to that of the bilocal kernels K(`, `′;Y ) (1.57,1.58)that were used to construct the
twistor-partition function (1.59). It is then tempting to attempt a similar construction.
First note that in the (u, ū) decomposition (3.18) the star product becomes a product
modes coefficients
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F (Y ) ? F (Y ) =

∫
P (`′)

d2ud2ūd2vd2v̄ f̃(u, ū)f̃(v, v̄)k(u, ū;Y ) ? k(v, v̄;Y )

=

∫
P (`′)

d2ud2ūd2vd2v̄ f̃(u, ū)f̃(v, v̄)δ`(ū− v) k(u, v̄;Y )

=

∫
P (`′)

d2ud2v̄ d2ū f̃(u, ū)f̃(ū, v̄) k(u, v̄;Y ) , (3.23)

whereas taking the trace gives

tr? F (Y ) = 4

∫
P (`′)

d2u f̃(u,−u) . (3.24)

Note that in (3.23) we obtain a correspondence between an operator product on the
right-hand-side and a star product on the left-hand side, as we mentioned in Section
2.1.2 when discussing the Moyal star product.

Thus, the traced star-products that constitute the higher-spin algebraic partition
function (3.14) become

tr?

(
F (Y ) ? · · · ? F (Y )︸ ︷︷ ︸

n terms

)
= 4

∫
P (`′)

d2u1 · · · d2un f̃(u1, u2)f̃(u2, u3) · · · f̃(un,−u1) .

(3.25)
Even though the above looks like a promising way of explicitly computing the

partition function (3.14), this formulation is troubled by the complex nature of spinor
spaces P (`) and P (`′) on the Euclidean three-dimensional boundary. Specifically, the
delta-functions appearing in (3.21, 3.22) do not have well-defined support. A similar
issue appears when we consider the products of basis coefficients in (3.25) — the
required spinor integrals are over contours in the complex plane. For the n = 2 case
one can specify such contours, since the spinor variables can be related by complex
conjugation; however this is not as straightforward for general n.

One solution is to change signature to Lorentzian AdS4 where spinors and twistors
are real, and issues pertaining to contours and converges have been studied [55]. How-
ever, remaining in EAdS4 we can circumvent the contour ambiguities by considering
the S3 boundary conformal frame instead of the flat, R3 one, which has the advantage
of being compact and thus modes in this frame are discrete. In the next section we
will adapt our spinor-helicity variables to such a spherical conformal frame.

Spherical modes

To construct a S3 conformal frame for the boundary, we first choose a bulk point
xµ ∈ EAdS4, which singles out a timelike direction in the embedding space. The
spin-weighted spherical harmonics (the natural modes in this frame) are arranged into
integer-spin irreducible representations of the residual SO(4). Namely, for a scalar
source the modes are spherical harmonics of angular momentum j. This matches the
structure of a linearized master field C(x;Y ): the corresponding master field can be
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spanned by monomials C(x;Y ) = (m+y+)
j(m−y−)

j, where the polarization spinors
m± ∈ P (±x). This generalizes to spin-s modes as unbalanced monomials C(x;Y ) =
(m+y+)

2s+j(m−y−)
j and C(x;Y ) = (m+y+)

j(m−y−)
2s+j. All of these modes can be

arranged as the Taylor expansion of a single master field C(x;Y ) = eiMY , where
the polarization spinors are combined as Ma = ma

+ + ma
−. Finally, we obtain the

corresponding twistor function by taking the inverse Penrose transform as

κx(M ;Y ) = −ieiMY ? δx(Y ) = −ieiMY δx(Y −M) = −ieim−y−δx(y+ −m+) . (3.26)

Now, we could take the star-products of the above modes directly, however we will
take a detour and consider the above modes on the boundary. This is how these modes
were conceived off originally; further, they enable us to choose a reality condition and
can act as a consistency check between the two mode bases.

We will want to further restrict the polarization vectors by introducing a “reality
condition”. In order to do so, we break down further the spacetime symmetry by
choosing a bulk direction at xµ, i.e. a spacelike unit vector vµ ∈ R1,4, x · v = 0. The
residual symmetry is SO(3) and we can set m− ∝ vm̄+.

Note that choosing bulk direction vµ is equivalent to choosing a geodesic passing
through xµ, with endpoints

`µ =
1

2
(xµ + vµ) ; `′

µ
=

1

2
(xµ − vµ) .

Using these two points we can proceed to construct a spinor-helicity modes as we did
earlier in this section. Decomposing (3.26) into modes (3.17)

f(u+, u−) = 4 exp (iu−`u+ + im(u+ + u−) + im′`(u− − u+) + im′m) ,

where m,m′ are the decompositions of M in the P (`), P (`′) subspaces. In terms of our
preferred variables (u, ū) this becomes

f̃(u, ū) = −i exp
(
1

2
iu`ū+ imu− im′`ū+ im′m

)
. (3.27)

Thus we can compute star products that appear in the partition function (3.14) using
the matrix-product-like formula (3.25). The single star-product (3.23) reads

F1(Y ) ? F2(Y ) =

∫
P (`′)

d2u1d
2u2d

2u3 f̃1(u1, u2)f̃2(u2, u3) k(u1, u3;Y ) .

For our modes (3.27) parameterized by polarization spinors m1,m2, the inner most
integral becomes∫

P (`′)

d2u2 f̃1(u1, u2)f̃2(u2, u3) =

=

∫
P (`′)

d2u2 (−i)2e
1
2
iu1`u2+im1u1−im′

1`u2+im
′
1m1e

1
2
iu2`u3+im2u2−im′

2`u3+im
′
2m2 .
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Grouping multiples of u2 allows us to perform this integral as a delta-function, namely∫
P (`′)

d2u2 f̃1(u1, u2)f̃2(u2, u3) =

= −δ`′
(
−1

2
`u1 +

1

2
`u3 + `m′

1 +m2

)
exp (im1u1 + i`m′

2u3 + im′
1m1 + im′

2m2) .

Now, as in (3.22, 3.24), taking the trace of the star-product (3.1.3) introduces a delta-
function with respect to the out-most integration variables

tr? (F1(Y ) ? F2(Y )) = 4

∫
P (`′)

d2u1d
2u2d

2u3 f̃1(u1, u2)f̃2(u2, u3) δ`(u1 + u3)

= −4
∫
P (`′)

d2u δ`′(−`u+ `m′
1 +m2) exp (im1u+ i`m′

2u+ im′
1m1 + im′

2m2)

= −4 exp(im1`
′m2 + im′

1`m
′
2) .

In the case of a double star-product, a similar calculation leads us to

tr? (F1(Y ) ? F2(Y ) ? F3(Y )) =

= 4(−i)3δ`′(−m1−m′
1+m2+m

′
2−m3−m′

3) exp

(
i
∑

1≤p<q≤3

(
mp`

′mq + (−1)q−pm′
p`m

′
q

))

noting that the delta-function arises from the fact that there is an even number of
integrals to perform in the calculation, as opposed to an odd number in the previous
case. The general result reads

tr?

(
F (Y ) ? · · · ? F (Y )︸ ︷︷ ︸

n terms

)
=

= 4(−i)n exp

(
i
∑

1≤p<q≤n

(
mp`

′mq + (−1)q−pm′
p`m

′
q

))
×

δ`′
(

n∑
p=1

(−1)pMp

)
n odd;

1 n even.
(3.28)

While the even case is well-behaved, we have to treat the odd case more carefully,
since the the δ-function is not well-defined. However, as argued in [24], this contribution
can be shown to vanish by symmetry consideration. Letting m̃ =

n∑
p=1

(−1)pmp note the

we formally obtain the delta-functions in the last step of computing (3.28), when taking
the overall trace; thus let us write the delta-function as

δ`′(m̃) = tr? δ`′(Y + m̃) =
∞∑
k=0

1

k!
m̃a1 · · · m̃an tr? (∂a1 · · · ∂anδ`′(Y )) , (3.29)

where in the last equality we consider the Taylor expansion of the traced δ-function
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and we denote ∂ai = ∂

∂Y ai
. Note that the non-zero k terms must vanish by rotational

symmetry; the zeroth-order term, tr? δ`′(Y ), can be shown to vanish by considering
discrete symmetries, either complex conjugation or spin parity. By complex conju-
gation symmetry tr? δ`′(Y ) should be a real quantity, however were it nonzero, the
partition function would be complex due to the (−i)n prefactor in (3.28). Alterna-
tively, recall that higher-spin algebra separates even from odd spins; moreover, even
spins correspond to twistor function F (Y ) of homogeneity degree deghom F (Y ) = 2
mod 4, whereas odd spins have corresponding twistor functions with deghom F (Y ) = 0
mod 4. Now, deghom δ`′(Y ) = −2, as expected for a scalar quantity; however, the trace
operation tr? F (Y ) = F (0) picks out the zero-homogeneity component of F (Y ). Hence,
we conclude that the zeroth-order contribution to the Taylor series (3.29) also vanishes.

Lastly, re-expressing (3.28) in terms of polarization spinors m± ∈ P (±x), the traces
(3.28) read

tr?

(
F (Y ) ? · · · ? F (Y )︸ ︷︷ ︸

n terms

)
=

= 4(−i)n exp

(
i
∑

1≤p<q≤n

(
m−
pm

−
q + (−1)q−pmx

pm
x
q

))
×

{
0 n odd;
1 n even.

(3.30)

The aim of calculating the above traces was to compute the higher-spin algebraic
partition function as in (3.14). In particular, if we set all polarization twistors equal
to each other, say Mn ≡M , the M dependence in (3.30) becomes trivial, namely

tr?

(
F (Y ) ? · · · ? F (Y )︸ ︷︷ ︸

n terms

)
= 4(−i)n

{
0 n odd;
1 n even.

Thus, we can easily evaluate the partition function ZHS on a single mode of the form
(3.26), F (Y ) = cκx(M ;Y ), where c is a scalar coefficient setting the magnitude of the
mode. Using (3.14),

ZHS[F (Y )] = exp

(
N

4

∞∑
n=1

(−1)2n+1

2n
(−ic)2n

)
= (1 + c2)

N
8 . (3.31)

Note that we have performed this calculation over a single scalar mode, and hence it was
indeed valid to ignore contact corrections when construction the partition functions.

3.2 Partition function disagreement
We want to compare the higher-spin-algebraic partition function (3.31) with the stan-
dard local construction of the boundary CFT. We focus to the case of a scalar source,
for which local correlators do not require contact correction. Further, we specialize
to a scalar source σ, which we choose to be constant in a S3 conformal frame. This
corresponds to a twistor function F (Y ) ∝ −iδx(Y ), that is, the M = 0 element of
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the spherical basis (3.26). To fix the normalization, recall from (3.5) that we wrote
the local insertion of the scalar operator as a twistor function κ(0)(`;Y ) = ± i

4π
δ`(Y ).

Thus, for constant source σ,

F (Y ) =

∫
S3

d3` κ(0)(`;Y ) = ± iσ
4π

∫
S3

d3` δ`(Y ) .

Since it is unclear how to calculate the last integral directly, we will perform it
by considering the corresponding bulk fields at a point x. The Penrose transform of
κ(0)(`;Y ) can be read off from the star product (1.34) as

iκ(0)(`;Y ) ? δx(Y ) = ∓ 1

4π
δ`(Y ) ? δx(Y ) = ± 1

2π(` · x)
exp

iY `xY

2(` · x)
= ∓ 1

2π
exp

Y `xY

2i
.

Now, by spherical symmetry, integrating the above over boundary point ` ∈ S3,
makes away with all non-zero powers of Y a, order by order, leaving only a Y -independent
contribution of ∓1

2
. Hence, the Penrose transform of F (Y ) reads

iF (Y ) ? δx(Y ) = ∓πσ ,

which can be immediately inverted to give

F (Y ) = ±iπσδx(Y ) = ∓πσκx(0;Y ) . (3.32)

Finally, the higher-spin-algebraic partition function (3.31) becomes

ZHS = (1 + π2σ2)N/8 . (3.33)

We perform the corresponding local CFT calculation, following [24, 25]. Recall
from (3.12) that the local partition function Zlocal can be expressed as a functional
determinant. Taking σ to be a constant, this becomes the S3 partition function for N
free scalar fields of mass m2 = −σ. Recalling that formally detM = exp tr lnM and
removing the low-order divergent terms, we write

lnZlocal = −N tr
[
ln
(
1 +

σ

�

)
− σ

�

]
. (3.34)

Next we decompose the scalar fields into S3 spherical harmonics φj of angular momen-
tum j, i.e. the

(
j
2
, j
2

)
SO(4) representations, which have dimension (j + 1)2. On these

harmonics the conformal Laplacian � has eigenvalues

�φj =

(
∇2 − 3

4

)
φj =

(
−j(j + 2)− 3

4

)
φj =

(
−(j + 1)2 +

1

4

)
φj .
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Hence, the local partition function (3.34) becomes

lnZlocal =
∞∑
j=0

(j + 1)2
[
ln

(
1− σ

(j + 1)2 − 1
4

)
+

σ

(j + 1)2 − 1
4

]

= −N
∞∑
k=1

k2
[
ln

(
1− σ

k2 − 1
4

)
+

σ

k2 − 1
4

]
.

This can be expressed in integral form as

lnZlocal = −
Nπ

8

√
1+4σ∫
1

dt t2 cot
πt

2
, (3.35)

which was further evaluated [25] in terms of polylogarithm functions as

lnZlocal = −
N

48π2

(
6π2(1 + 4σ) ln

(
1− e−iπ(1+4σ)

)
+ 12Li3

(
e−iπ(1+4σ)

)
+

+ iπ
√
1 + 4σ

(
π2(1 + 4σ) + 12Li2

(
e−iπ(1+4σ)

))
− 3π2 ln 4 + 9ζ(3)

)
. (3.36)

Beyond the explicit form (3.36) of the local partition function, the main observation
is that it differs from the higher-spin-algebraic one (3.33). To make this apparent,
consider the Taylor series expansions of lnZ with respect to source σ

lnZHS =
Nπ2

8

(
σ2 − π2

2
σ4 +

π4

3
σ6 +O

(
σ8
))

; (3.37)

lnZlocal =
Nπ2

8

(
σ2 +

2

3
σ3 +

(
π2

6
− 1

)
σ4 − 2

(
π2

15
− 1

)
σ5 +O

(
σ6
))

. (3.38)

3.3 Attempts at resolving the disagreement
In this section we will briefly describe some attempts at resolving the disagreement
between ZHS and Zlocal, by modifying the latter. Unfortunately, these attempts have
not proven fruitful.

First, note that since in twistor language, we construct ZHS in terms of gauge
invariant structures, it makes sense to look at Zlocal in terms of gauge invariant cur-
rent expectations rather than the fields themselves. Thus we consider the Legendre
transformed action

Z̃[ρ] =

∫
Dσ elnZlocal[σ]+iρσ (3.39)

where we introduce the conjugate variable ρ the vacuum expectation value of φ̄(`)φ(`).
By virtue of the Legendre transform, this action encodes the same physical information
as the original description. The factor of i in the Legendre transform (3.39) is unusual,
however it was introduced so that the signs in the expansion of (3.39) match those of
the higher-spin calculation order by order. This approach does manage to reproduce
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the highest powers of π at each order, but the lowest powers of π still do not agree.
The next attempt was to consider the effect of contact pieces; as we will outline

below, we noted that the third order term in (3.38), which is missing in (3.37), is in
fact a pure contact term. This led to the idea that the difference between the two
descriptions might be in fact contact pieces.

To investigate this we will construct the first couple of n-point correlators of the
theory. First, by expanding lnZ[σ] as

lnZ[σ] =
∞∑
n=2

1

n!

∫
d3`1 · · · d3`n σ(`1) · · ·σ(`n)Kn(`1, . . . , `n) (3.40)

we can extract the n-point connected correlation functions order-by-order as

lnZ
∣∣∣
nth order

=
1

n!

∫
d`31 · · · d`3nKn(`1, . . . , `n) =

1

2n

∫
d`31 · · · d`3n

. . .

.

The two-point kernel reads K2(x1, x2) =
1

32π2|`1−`2|2 which can be inverted to give
the propagator K−1

2 (r) = − 16
π2r4

, where r = |`1 − `2|. We will take this as an effective
propagator for σ; this follows as an operator of conformal weight 2. Thus we can
establish Feynman rules1 as follows:

φ propagator −G(r) = 1
4πr

σ propagator −K−1
2 (r) = 16

π2r4

vertex −1

ρ insertion × i

We can see that the internal propagator G(r) is correctly normalized by comparing
with the two-point function as read-off from the expansion (3.38). Specializing to a
flat conformal frame, we can write the distance between two arbitrary points as

|r1 − r2|2 = `1 · `2 = (1,n1) · (1,n2) = 1− n1 · n2 = 1− cos θ ,

where n1,n2 are directions normal to the sphere and θ their relative angle. Thus, we
parameterize the distance r = |r1 − r2| = 2 sin θ

2
, for θ ∈ [0, π].

Thus, we can compute the first-loop Feynman diagram as

N

2

∫
S3

− 1
4πr

− 1
4πr

−1 −1 =
N

2(−4π)2
(2π2)2 =

π2N

8
,

1Feynman diagrams are drawn using the TikZ-Feynman package [71].
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which agrees with the coefficient of σ2 in (3.38). We are accounting for symmetry
factors in the integral prefactor. Also note that one of the 2π2 factors comes from a
surface integral, while the second results from integrating 1

r2
over the sphere∫

S3

d3x
1

r2
=

∫ π

0

dθ 4π2 sin2 θ

4 sin2 θ
2

= 4π2

∫ π

0

dθ cos2
θ

2
= 2π2 .

We will want to know the value of of the external leg −K−1
2 (r) integrated over our

boundary sphere. Employing dimensional regularization techniques, we compute the
integral of k(r) = 1

r4
over the d-dimensional sphere Sd as∫
Sd

dxd k(r) =

∫
Sd

dΩd−1

∫ π

0

dθ
sind−1 θ(
2 sin θ

2

)4
=

2d−4π
d
2

Γ
(
d
2

) ∫ π

0

dθ sind−5 θ

2
cosd−1 θ

2
.

Changing integration variable to ξ = sin2 θ
2

the above becomes∫
Sd

dxd k(r) =
2d−4π

d
2

Γ
(
d
2

) ∫ 1

0

dξ ξ
d
2
−3 (1− ξ)

d
2
−1

= 2d−4π
d
2
Γ
(
d
2
− 2
)

Γ (d− 2)
,

where in the last line we note that the integral evaluates to a Beta function B
(
d
2
− 2, d

2

)
.

Thus, for our three-dimensional boundary, this gives∫
S3

dx3
1

r4
= −π2 .

Now, the external leg can be integrated over the sphere to give∫
S3

dx3K−1
2 (r) = −16 .

From partition function (3.38) at third-order∫
S3

=
π2

4
(3.41)

and thus the three-point function reads

N

6

∫
S3

=
N

6
i3(−16)3(−1)3π

2

4
= −i2

9

3
Nπ2 . (3.42)
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Independently, it can be shown that the integrand of (3.42) is proportional to a term
δ(`1 − `2)δ(`2 − `3), where `1, `2, `3 are the three external insertions, that is, a pure
contact term.

Since this third-order term does not appear in ZHS, we will investigate at higher
order whether ZHS is in fact blind to contact pieces; as expressed earlier, this was
hoped to provide an account for the difference between ZHS and Zlocal.

From here onwards we will neglect factors of N coming from loops in the Feyn-
man diagrams, for computational simplicity. They can however be accounted for by
redefining the external leg K−1

2 (r).
It will be useful to consider the triangular diagram with one internal vertex

∫
S3

= (−16)3(−1)3π
2

4

1

2π2
= 29 .

Proceeding to forth order, we have two contributions: a one-loop that we read off
from the partition function, and a two-loop contribution coming from gluing to copies
of the diagram in (3.42).

From partition function (3.38) at fourth-order∫
S3

=
π2

2

(
π2

6
− 1

)
(3.43)

and hence

1

8

∫
S3

=
1

8
i4(−16)4(−1)4π

2

2

(
π2

6
− 1

)
= 212π2

(
π2

6
− 1

)
. (3.44)

Next,

1

8

∫
S3

=
1

8
i4(−16)2π

2

4
29(−1)3 = −212π2, (3.45)

which unfortunately has the wrong sign to remove the lowest powers of π in (3.45). To
take into account contact pieces, we will first consider the following generic diagram,
with two external insertions

∫
S3

= i2
π2

4
(−16)3(−1)3 = −210π2 . (3.46)
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The contact piece corresponding to (3.46) can be computed in momentum space, by
taking the infinite momentum limit on the internal leg connected to both external
insertions. This limit extracts a term proportional to a spacetime function δ(`1 − `2)
with `1, `2 the external insertions. This term is independent of the momentum on the
internal leg and thus we take it is a contact piece. We can describe this as an effective
vertex in spacetime, labeled by an empty circle; we calibrate its value by comparing it
to (3.46): ∫

S3

= β
16

π2
(−π2)

1

(4π)2
(2π2)2(−1) = 4βπ2 .

Thus we can read the proportionality coefficient as β = −28. Now the contact piece
corresponding to the four-point correlator (3.44) reads as follows

1

2

∫
S3

=
1

2
i2(−16)2π

2

4
(−1)2(−28) = 213π2 ;

Note, however, that we have to subtract the following contact piece which we have
double counted

1

4

∫
S3

=
1

4
(−28)2π

2

4
= 212π2 .

Thus, the total contribution from contact pieces reads 212π2 which cancels the diagram
(3.45); hence, it does not account for the lowest order in π in (3.44).

At fifth-order the single-loop diagram reads

∫
S3

= −(−1)5i5(−16)54!
2

π2

4

(
π2

15
− 1

)
= i218π2

(
4

5
π2 − 12

)
.

(3.47)
We also consider the contributions of composite loop diagrams

1

4

∫
S3

=
1

4
i5(−1)429(−16)3π

2

2

(
π2

6
− 1

)
= −i218π2

(
π2

6
− 1

)
;

(3.48)
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1

8

∫
S3

=
1

8
i5(−1)3(29)2π

2

4
(−16) = i217π2 . (3.49)

The contact piece of the single-loop diagram (3.47) reads

1

2

∫
S3

=
1

2
i3(−1)3(−16)3π

2

2

(
π2

6
− 1

)
(−28) = i218π2

(
π2

6
− 1

)
, (3.50)

where we have double counted the term

1

2

∫
S3

=
1

2
i(−16)π

2

4
(−1)(−28)2 = i217π2 . (3.51)

Thus note that at fifth order, the contact piece (3.50) cancels the contribution of
composite diagram (3.48), whereas the double counted (3.51), as it has to be subtracted,
will cancel (3.49). Hence, contact piece do not account for the lowest powers of π in
(3.47).

The same situation is encountered at sixth order: contact pieces of diagrams that
do not contain triangular components (which are contact pieces themselves) cancel out
the composite loop diagrams, and do not alter the lowest power of π in the correlator.

Thus we conclude that the disagreement between Zlocal and ZHS persists despite
our best efforts and must be understood on its own terms.

3.4 Conflict resolution

Having understood that the local and higher-spin-algebraic partition functions gen-
uinely differ, even though they are constructed from the same correlators, we would
like to better understand how this arises and what implications this might have. These
issues have been explored in detail in [24]; in this section we will present a brief sum-
mary, including technical and ontological explanations for the disagreement, and an
argument for choosing ZHS over its local counterpart and spin-locality over locality as
the new guiding principle for constructing the boundary theory. We refer the interested
reader to [24] for the full discussion.
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3.4.1 Understanding the disagreement

Technical aspects

Complex conjugation and spin-parity are discrete symmetries obeyed by the high-spin
algebra when acting on polynomial twistor functions, and formally can be extended to
general functions and distributions.

Note that under twistor complex conjugation, since gamma matrices (γµ)ab are real,
so are the spinor space projectors Pab(`), P±

ab(x) and corresponding δ-functions δ`(Y ),
δ±x(Y ). Thus the local scalar boundary insertion (3.5) proportional to iδ`(Y ), and
spherical mode function (3.32) proportional to iδ±x(Y ) are in fact imaginary quanti-
ties; the same holds true for their non-zero spin analogues. Further, since the star
product (1.23) (up to a sign in non-commutative term) and the trace operation (1.27)
are also preserved by complex conjugation, one can see that the higher-spin-algebraic
correlators (3.8) at an odd number of points, and the odd part of the partition function
ZHS should be purely imaginary. In the S3 basis for example, ZHS indeed obeys this
symmetry since it vanishes at odd orders. However the local correlators and related
partition function Zlocal fail to do so; notably, the non-vanishing three-point correlator
is real, and the local partition function (3.35) for constant scalar source is also real,
but neither even nor odd. This is due to a spontaneous breaking of symmetry induced
by the sign ambiguity in the three-point star product (1.36), where the symmetrized
left-hand-side is real, while the right-hand-side is imaginary. This is enabled by the
sign ambiguity of the RHS which is imaginary, however it vanishes upon averaging the
two possible signs.

Even without invoking complex conjugation, we witness a similar phenomenon when
considering spin parity. Under higher-spin algebra the space of even-spin twistor func-
tions is closed under commutation (hence the legitimacy of the even-spin truncation
of higher-spin gravity). However in the correlators (3.8) and partition function (3.14)
we are dealing with anti-commutators, which map even-spin twistor functions into odd
ones. This problem manifests itself, again, at odd orders. Similarly to before, by
spin-parity we would expect that correlators (3.8) to vanish for even spins and odd n,
and that ZHS should be even at even sources. This is indeed the case for ZHS in the
spherical basis, but fails to hold for local correlators. This mismatch can, again, be
traced back to the sign ambiguity of the three-point star product (1.36).

It is worth nothing that the sign ambiguity in (1.36), which seems to be the culprit
of the partition function disagreement, is the result of performing a Gaussian integral
over a complex spinor space. This can usually be avoided by a change of signature to
Lorentzian AdS4, where twistors and boundary spinors have in fact a real structure,
and thus the spinor and twistor integrals within star product do not suffer from contour
ambiguities. However, even though in such a setup the sign ambiguity no longer appear,
the disagreement between Zlocal and ZHS persists. It can be shown [24] that higher-
spin-algebraic correlators have signs that are different from those required to correctly
reproduce the CFT ones.



64 Boundary partition function

Ontological aspects

Beyond the technical aspects that we have explored in the previous section, one can
understand the disagreement between Zlocal and ZHS at a different level. Namely, the
CFT path integral is concerned with off-shell boundary particles, whereas higher-spin
algebra deals with on-shell ones.

At an algebraic level we can see that an equality between the local partition function
(3.12), restricted to scalar sources, and the higher-spin-algebraic one (3.14) would
amount to an isomorphism between the algebra of infinite-dimensional Π(`, `′) over the
space of boundary fields φI(`) and the the higher-algebra of twistor functions F (Y ),
with linear mapping (3.13) reading, for scalar sources,

F (Y ) =

∫
d3` σ(`)κ(0)(`;Y ) .

Note that we can restrict to scalar sources without loss of generality, since the entire
algebra of bilocal insertions can be retrieved by considering pairs of scalar ones.

However, by counting degrees of freedom, we can see that the bilocal algebra consists
of functions Π(`, `′) of 6 spacetime coordinates, whereas higher-spin algebra consists
of functions F (Y ) of 4 twistor components. Hence, this makes the disagreement seem
rather natural, as the underlying algebras have different dimensions.

Further, the dimensional mismatch itself is an issue of guage redundancy: succinctly
put, the twistor function F (Y ) contains only physical degrees of freedom, whereas the
sources A(s)

µ1···µs(`) for s > 0 and hence the bilocal sources Π(`, `′) are gauge-redundant,
due to the conservation of associated currents.

We can understand this mismatch in an equivalent way, but considering again
the boundary with Lorentzian signature. There higher-spin algebra can be identified
as the operator algebra of a free massless particle in the 2+1d boundary spacetime
[21, 46, 68, 69]. We this perspective, we can see that, while Zlocal and ZHS are similar in
the sense of both calculating functional determinants over boundary fields, the higher-
spin algebra sees on-shell boundary fields, i.e. solutions to the homogeneous field
equations �φ = 0, describing states of the free boundary particle. On the other hand,
the CFT path integral is performed over off-shell fields, using propagators G = �−1,
i.e. solutions to the inhomogeneous field equation �G(`, `′) = δ(`, `′).

3.4.2 Picking a side
Spin-locality

Having described and understood the origins of the disagreement between Zlocal and
ZHS, one is left with a genuine choice between the two: one can stay with Zlocal and
keep the connection to the local boundary theory, or go with ZHS and gain manifest
global higher-spin symmetry. In this section we will sketch an argument for choosing
the latter.

The orthodox choice from the perspective of holography is to choose Zlocal since the
CFT is supposed to provide the very definition of a theory of quantum gravity in the
bulk. However usual arguments for the locality of the boundary theory in AdS/CFT
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do not obviously apply in the context of higher-spin gravity, since it remains non-local
at all scales [45]. Furthermore, in the context of pure dS4, if we consider its causal
structure, the boundary is not observable within the causal patch, and therefore its
locality not of utmost relevance.

Forgoing locality is not without consequence, however. One must accept the most
general form of the partition function compatible with higher-spin symmetry, namely,
replacing the higher-spin-algebraic partition function (3.14) with

ZHS [F (Y )] = exp

 ∞∑
n=1

cn tr?

(
F (Y ) ? · · · ? F (Y )︸ ︷︷ ︸

n terms

) ,

for arbitrary coefficients cn. However, this is rather problematic, since, although re-
strictive, higher-spin symmetry leaves enough freedom to non-linearly redefine F (Y )
so to arbitrarily modify coefficients cn, rendering the theory empty. This is similar to
the situation outlined in [45] for bulk fields.

As a way out of this impasse, we can use spin-locality in place of spacetime locality
to control the freedom of redefinitions, mirroring recent developments in the bulk theory
[72–75].

In bulk language, spin-locality refers to locality with respect to spinor arguments
y± ∈ P (±x), Y = y−+ y+ of the master field C(x;Y ) = C(x; y+, y−). Now, recall from
our construction of the spinor-helicity modes in Section 2.2.1 that, in the boundary
limit, the master field C(x;Y ) = C(x; y+, y−) corresponds to functions f(u+, u−) of
boundary spinors u± ∈ P (`′). Hence, we will take the boundary version of spin-
locality to be locality with respect to these spinor variables u±, or equivalently, their
linear combinations u, ū.

In turns out that the restrictions of spin-locality allow for the higher-spin-algebraic
partition function (3.14) to be reproduced from first principle, modulo some subtle sign
choices that have to be made by hand.

dS/CFT

In the context of the problem of quantum gravity in de Sitter space, the partition
function of the either past or future boundary CFT has been interpreted [17, 18] as
the Hartle–Hawking wavefunction [76] of quantum higher-spin gravity in dS4. For this
to make sense, the partition function should have a global maximum on empty de
Sitter space, namely when the sources vanish. However the partition function of the
boundary theory (3.11) has a local minimum at the origin. A proposed solution [18]
was to change the fundamental fields of the boundary vector model from commuting
φI(`) with internal O(2N) symmetry group, to anti-commuting ones with internal
Sp(2N) symmetry group. Upon restricting to even fields, this indeed flips the sign of
the effective action and gives the partition function the required local maximum.

However, it was further shown [25] that this maximum is not global. Specifically,
for a constant scalar source σ on S3, as reviewed in Section 3.1.3, the result is as given
in (3.38), with flipped overall sign as discussed above. For this partition function, the
local maximum at σ = 0 is joined by a series of higher-valued maxima.
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There have been new foundations proposed for dS/CFT that would produce a well-
behaved boundary partition function [22, 77]; we believe that our construction of ZHS
also provides a resolution to this problem. For a constant scalar source since, upon
careful flipping of the sign in the exponent, (3.33) becomes

ΨHartle–Hawking[σ] = ZHS[σ] =
1

(1 + π2σ2)
N
8

,

which has a global maximum at σ = 0 as required.



Chapter 4

Higher-spin black hole from
boundary bilocals

Finding solutions in higher-spin theory is notoriously difficult, in part due to the highly
non-local behavior of the field equations in twistor space, which is translated to space-
time non-locality. Since higher-spin theory is an extension of General Relativity, the
natural question arises if there exists counterparts to black hole solutions in higher-spin
gravity. In fact, various black-hole-like solutions to the Vasiliev equations have been
constructed [26, 78–81] over AdS backgrounds, however their precise physical nature
(presence of horizons, physicality of curvature singularity, thermodynamic properties,
etc.) is difficult to discern.

In this chapter we will show that the linearized version of the Didenko–Vasiliev
black hole solves the Fronsdal field equations with a particle-like source. Furthermore,
these fields are precisely the linearized bulk higher-spin fields corresponding to a bilocal
source on the boundary. We will also show that the boundary correlator of such two
bilocal operators agrees with the bulk action describing the two corresponding particles
interacting in the bulk. These results are currently being prepared for publication [82].

Let us start by noting that the holographic boundary bilocal sources employed in
the bilocal formulation of the CFT, as described in Section 1.4.2 have the property
that they are local in the bulk. In particular, for a bilocal pair of sources located at `
and `′, Π(l, l′) = δ

5
2
, 1
2 (l, `)δ

5
2
, 1
2 (l′, `′) the master field at a point x in EAdS4 is calculated

[35] to be

C(x;Y ) =
1

π
√

2 [` · `′ + 2(` · x)(`′ · x)]
exp

iY [``′ + 2(`′ · x)`x]Y
2 [` · `′ + 2(` · x)(`′ · x)]

. (4.1)

From this master field we want to extract the field strength and find related potentials
for each spin s around the singular world line determined by boundary points `, `′.

At scalar level, the field strength is simply

C(0,0)(x) = C(x; 0) =
1

π
√
2 [` · `′ + 2(` · x)(`′ · x)]

.

Specializing to lightcone coordinates in embedding space xµ = (u, v, r) with line element
ds2 = −du dv + dr2 and picking, without loss of generality, `µ = (0, 1,0) and `′µ =

67
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(1, 0,0), then
r = |r| =

√
4(x · `)(x · `′)− 1 , (4.2)

along the geodesic determined by boundary points `, `′. Thus scalar field strength
becomes C(0,0)(x) = 1

πr
, as expected.

For non-zero spins, one computes the field strengths by taking appropriately pro-
jected Y -derivatives of the master field (4.1) and evaluate them at Y = 0. For instance,
the left-handed spin-1 field strength is

C
(2,0)
ab (x) =

1

πr3
(``′ + (`′ · x)`x− (` · x)`′x− i``′x)ab .

Summing left and right-handed components, the potential Aν for the spin-1 field
strength has to satisfy

∇[µAν] =
1

πr3
(
`[µ`′ν] + (`′ · x)`[µxν] − (` · x)`′[µxν]

)
=

1

πr3
(
`[ρ`′µxν]xρ

)
.

Note that the simpler, “radial” part of the equation

∇[µA0
ν] = `[ρ`′µxν]xρ

is solved by
Aν0 = `ν(`′ · x)− `′ν(` · x) . (4.3)

By considering ansatz of the form Aν = f(r)Aν0, a general solution is found to be

Aν =
1

πr
(`ν(`′ · x)− `′ν(` · x)) .

The aim was to generalize this procedure to find the higher spin s ≥ 2 potentials.
As mentioned before, the linear field strengths as derived above for each spin are the
same as the linear solutions to the Didenko–Vasiliev black hole in 4d higher-spin theory
[26].

4.1 Kerr–Schild formalism
The Didenko–Vasiliev “black hole” [26] (generalized in [79]) is a spherically symmetric
solution of the Vasiliev equation. Its construction is similar to the Kerr–Schild pro-
cedure for arriving at the Kerr black hole. As mentioned in the introduction of this
chapter, it is not clear whether the similarity to General Relativity black holes goes
beyond this formal construction.

The metric of a black hole of mass m admits the Kerr-Schild metric form

gµν = ηµν +
2m

r
kµkν ,

in both flat [83] and curved backgrounds [84], where ηµν is the background metric and
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kµ, the so-called the Kerr–Schild vector, satisfies

kµk
ν = 0 , kµ∇µkν = 0 . (4.4)

It was shown [26, 78] that the Kerr–Schild AdS4 black hole solution admits a higher-
spin black hole generalization for massless bosonic fields of any spin s

φµ1...µs(x) =
2m

r
kµ1 . . . kµs (4.5)

which satisfies the linearized spin-s Fronsdal equation (1.22) away from sources

Fµ1...µs ≡
(
�− (s2 − 2s− 2)

)
φµ1...µs − s∇(µ1∇νφµ2...µs)ν = 0 . (4.6)

Formalizing the preamble discussion, we will construct the linearized version of the
Didenko–Vasiliev black hole and show that it satisfies the Fronsdal field equation with
a particle-like source.

Similar to the construction of Aµ0 (4.3), consider the “time-like” vector quantity

T µ =
1

2

(
`′µ

x · `′
− `µ

x · `

)
(4.7)

with norm TµT
µ = 1

1+r2
. Further, note that

∇µTν = −2R(µTν) ,

where we define the “radial” vector

Rµ = xµ +
1

2

(
`µ

x · `
+

`′µ

x · `′

)
. (4.8)

This vector has norm RµR
µ = r2

1+r2
and it is tangent to the world-line (4.2) since

∇µr =
1 + r2

r
Rµ .

Further, note that these two vectors are orthogonal, RµT
ν = 0. Thus, we can now

construct the null linear combination

kµ =
1

2

(
T µ +

i

r
Rµ

)
. (4.9)

We will use this vector to construct a Kerr–Schild type solution (4.5) in EAdS4. We
will obtain the explicit form of the Fronsdal operator (4.6) by rewriting all covariant
derivatives of the field (4.5) in terms of Rµ, T µ, and kµ. First note

∇µRν = gµν − TµTν −RµRν

= gµν − 4kµkν +
4i

r
k(µRν) +

1− r2

r2
RµRν
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and thus
∇µkν =

i

2r
gµν −

2i

r
kµkν − 2

1 + r2

r2
k(µRν). (4.10)

Hence, noting that kµRµ = ir
2(1−r2) , it follows that kν∇νk

µ = 0, as required.

We can now proceed to show that the field φµ1...µs(x) (4.5) constructed from such
a vector kµ indeed satisfies the linearized Fronsdal equation (4.6), away from sources.
For simplicity, we will set m = 1 without loss of generality.

At spin s = 0 the Frosndal operator becomes F = (�− 2)φ, for φ(x) = 2
r
. Since

∇µ
1
r
= 1−r2

r3
Rµ it follows that �φ = ∇ν∇νφ = 2

r
and thus F = 0 away from r = 0.

For spin s = 1 the Frosndal operator reads Fµ = (�− 3)φµ−∇µ∇νφν for a spin-1
field φν(x) =

2
r
kν . In particular, �φµ = �

(
2
r

)
kµ + 2∇ν

(
2
r

)
∇νkµ +

2
r
�kµ. Noting the

following identities, ∇ν
(
1
r

)
∇νkµ = 1

r
kµ, �kµ = −3kµ − i1−r

2

r3
Rµ, and ∇µ

(
1
r
kµ
)
= i

2r2
,

it follows that Fµ = 0 away from r = 0.

For spin s ≥ 2 the calculation follows in a similar matter, noting that the sym-
metrization factors have to be treated carefully. First, the field reads φµ1...µs(x) =
2
r
kµ1 · · · kµs and note that

1

2
�φµ1...µs = �

1

r
kµ1 · · · kµs + 2∇ν

1

r
kµ1 · · ·∇νkµi · · · kµs︸ ︷︷ ︸

s

+

+
1

r
kµ1 · · ·�kµi · · · kµs︸ ︷︷ ︸

s

+
1

r
kµ1 · · ·∇νkµi∇νkµj · · · kµs︸ ︷︷ ︸

s(s−1)

,

where the subindices i, j run from 1 to s and the underbraced indicates the number of
terms of each type. Noting that ∇νkµi∇νkµj = − 1

4r2
gµiµj +

1+r2

r2
kµikµj − i1+r

2

r3
k(µ1kµj),

the above reduces to

1

2
�φµ1...µs =

(
−2 + s

r
+ s(s− 1)

1 + r2

r3

)
kµ1 . . . kµs+

− is21 + r2

r4
R(µ1kµ2 . . . kµs) −

s(s− 1)

4r2
g(µ1µ2kµ3 . . . kµs) .

Similarly, since ∇µk
µ = i

r
, and 1

2
∇νφµ2···µsν =

i
2r2
kµ2 . . . kµs , it follows that

∇(µ1∇νφµ2...µs)ν =
2(s− 1)

r3
kµ1 · · · kµs+

− 2is
1 + r2

r4
R(µ1kµ2 · · · kµs) −

s− 1

2r3
g(µ1µ2kµ3 · · · kµs) .

Hence, putting everything together, we can see that the various contributions cancel
so that the full Fronsdal operator Fµ1...µs = 0 away from r = 0, for any spin s.

To account for the source term at r = 0 we integrate the full Fronsdal operator (4.6)
over a sphere centered at origin and of infinitesimal radius r. Thus, by the divergence
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theorem, at leading order in r,

Fµ1...µs = δ(r)

∫
S2

dS rRν
(
∇νφµ1...µs − s∇(µ1φµ2...µs)ν

)
. (4.11)

Then, term-wise, the integrand reads

Rν∇νφµ1...µs = −
(
1 + s

r2

1 + r2

)
φµ1...µs ,

and hence, denoting by qµν = gµν − TµTν the metric on a spatial slice,

Rν∇(µ1φµ2...µs)ν =
r2

1 + r2
φµ1...µs − i

(
2
s− 1

1 + r2
+

1

r2

)
R(µ1kµ2 · · · kµs)+

− s− 1

1− r2

(
1

2r
q(µ1µ2kµ3 · · · kµs) −

1 + 2r2

2r3
R(µ1Rµ2 · · · kµs)

)
.

Finally, at leading order in r,

rRν
(
∇νφµ1...µs − s∇(µ1φµ2...µs)ν

)
= −rφµ1...µs+

is

r
R(µ1kµ2 · · · kµs)+

s(s− 1)

2
Ω(µ1µ2kµ3 · · · kµs) ,

(4.12)
where Ωµ1µ2 = qµ1µ2 − 1

r2
Rµ1Rµ2 is the spherical metric tensor.

Recall that the integral (4.11) is performed over a the sphere and thus any contri-
bution from terms in the integrand proportional to odd powers of Rµi will vanish since
they are odd. We claim that the even contributions to the integral will be of the form∫

S2

dS nµ1 · · ·nµ2i = Ai q(µ1µ2 · · · qµ2i−1µ2i) (4.13)

where we denote ni = Ri

r
as the normal direction to the sphere. The tensor structure on

the right-hand side of (4.13) follows from symmetry considerations: since the left-hand
side integral is spherically symmetric and symmetric in its indices the spatial metric
provides the only compatible tensor structure. To fix the over-all numerical factor,
note that for i = 0 the above reduces to the area of a unit sphere, and hence A0 = 4π.
For i = 1, (4.13) reduces to ∫

S2

dS nµ1nµ2 = A2 qµ1µ2

and thus, taking the trace on both sides, A1 =
4π
3

. Proceeding by induction, at order
i+ 1, (4.13) reads∫

S2

dS nµ1 · · ·nµ2inµ2i+1
nµ2i+2

= Ai+1 q(µ1µ2 · · · qµ2i−1µ2iqµ2i+1µ2i+2) . (4.14)

Contracting indices µ2i+1 and µ2i+2, the left-hand side is given by (4.13), whereas on
the right-hand side, due to the symmetrization of the indices, we count the following
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possible contributions: 2(i + 1) terms in which the indices are contracted within the
same metric tensor; 4i(i + 1) cases in which the indices contract two different metric
tensors. Accounting for the three-dimensional trace and overall symmetrization factors,
(4.14) becomes

Ai q(µ1µ2 . . . qµ2i−1µ2i) = 2(2i+ 3)(i+ 1)
(2i)!

(2i+ 2)!
Ai+1 q(µ1µ2 . . . qµ2i−1µ2i) ,

and thus
(2i+ 1)Ai = (2i+ 3)Ai+1 .

Accounting for the base cases, we read the overall numerical factor in (4.13) to be

Ai =
4π

2i+ 1
.

Hence, performing (4.11) order-by-order in powers of Rµi and grouping the result order-
by-order in powers of qµν we claim that

Fµ1...µs = −4πδ(r)
1

2s−1

⌊
s
2

⌋∑
i=0

(
s

2i

)
q(µ1µ2 · · · qµ2i−1µ2iTµ2i+1

· · ·Tµs) . (4.15)

To zero-order in qµν , the only contribution comes from the −rφµ1...µs term in the
integrand (4.12); recalling that φµ1...µs = 2

r
kµ1 · · · kµs and that kµ = 1

2
(Tµ + inµ), this

contribution reads
F̃ (0)
µ1...µs

= − 4π

2s−1
Tµ1 · · ·Tµs .

To first-order in qµν we count a contribution considering the qµ1µ2Tµ3 · · ·Tµs factor
from the last term in the integrand and contributions from all the terms in integrand
considering factors proportional to nµ1nµ2Tµ3 · · ·Tµs . Accounting for symmetrization
factors, this becomes

F̃ (1)
µ1...µs

=

[
− 4π

2s−1
+

4π

3

(
− 1

2s−1

(
s

2

)
+ 2

s(s− 1)

2s−1

)]
q(µ1µ2Tµ3 · · ·Tµs) .

The combinatorial prefactors combine rather elegantly to give

F̃ (1)
µ1...µs

= − 4π

2s−1

(
s

2

)
q(µ1µ2Tµ3 · · ·Tµs) .

Similarly, at a general order i in qµν , we count the same contributions as above: one
contribution from the qµ1µ2nµ3 · · ·nµ2iTµ2i+1

· · ·Tµs factor in the last term of the inte-
grand, and a further three contributions from the nµ1 · · ·nµ2iTµ2i+1

· · ·Tµs proportional
terms. Namely,

F̃ (i)
µ1...µs

=
1

2s−1

[
−s(s−1)

(
s− 2

2i− 2

)
4π

2i− 3
+

4π

2i+ 1

(
−
(
s

2i

)
+s

(
s− 1

2i− 1

)
+s(s−1)

(
s− 2

2i− 2

))]
×

× q(µ1µ2 · · · qµ2i−1µ2iTµ2i+1
· · ·Tµs) .
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As before, the prefactors simplify beautifully to give

F̃ (i)
µ1...µs

= − 4π

2s−1

(
s

2i

)
q(µ1µ2 · · · qµ2i−1µ2iTµ2i+1

· · ·Tµs) .

Summing the above results order-by-order we obtain the full form (4.15), as claimed.

In our upcoming calculations will be interested in the following tensor

Gµ1...µs = Fµ1...µs −
s(s− 1)

4
g(µ1µ2F

ν
µ3...µs)ν . (4.16)

This is constructed for doubly traceless fields as a generalization of the Einstein tensor;
note its divergence is pure trace trace. For the Fronsdal operator (4.15), this reduces
to

Gµ1...µs = −4πδ(r) [Tµ1· · ·Tµs − double traces] , (4.17)
where by double traces we refer to terms proportional to g(µ1µ2 · · · gµ2i−1µ2iTµ2i+1

· · ·Tµs)
for 0 < i <

⌊
s
2

⌋
which will be irrelevant in upcoming calculations.

Now, we claim that the field strengths C̃µ1ν1...µsνs derived from the antisymmetrized,
traceless part of ∇µ1 . . .∇µsφν1···νs , read

C̃µ1ν1...µsνs = (−1)s (2s)!
s!

1

r2s+1
Sµ1ν1 · · ·Sµsνs − traces , (4.18)

where we define
Sµν = (1 + r2)R[µkν] . (4.19)

At spin s = 1, recall φρ(x) = 2
r
kρ; since

∇µφρ = −2
1 + r2

r3
Rµkν +

2

r
∇µφρ

and noting from (4.10) that ∇µφρ is a symmetric quantity,

C̃µρ = ∇[µφρ] = −
2

r3
Sµρ .

For spin s = 2, φρσ(x) = 2
r
kρkσ, and thus

∇[µφρ]σ = − 4

r3
Sµρkσ +

1

r2
k[ρgµ]σ .

It then follows that

C̃νµρσ = gνλgστ∇[λ∇[µφρ]
τ ] =

12

r5
SµρSνσ − traces

where the traces terms are proportional to K[νgσ][µKρ], R[νgσ][µKρ], and δ[ν [µδρ]
ν].

For general spin s > 2, we can then proceed by induction on the number of pairs
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on antisymmetrized indices to show that

C̃µ1ν1...µsνs = (−1)s (2s− 1)!

(s− 1)!

2

r2s+1
Sµ1ν1 · · ·Sµsνs − traces

= (−1)s (2s)!
s!

1

r2s+1
Sµ1ν1 · · ·Sµsνs − traces (4.20)

Recall the original bi-local master field (4.1) reads

C(x;Y ) =
1

πr
exp

iY [``′ − 2(`′ · x)`x]Y
2r2

,

where we have identified the radial amplitude r as in (4.2). Now recall that Sµν =
(1 + r2)R[µkν], as defined in (4.9). Using the explicit expressions of T µ and Rµ, (4.7)
and (4.8) respectively, we can see that

Sµν = −`[µ`′ν] − (x · `′)x[µ`ν] + (x · `)x[µ`′ν]

and hence

C(x;Y ) =
1

πr
exp

iY (−γµνSµν)Y
r2

exp
iY [−(`′ · x)`x− (` · x)`′x]Y

r2
. (4.21)

In particular, the spin-s component reads

Cµ1ν1...µsνs =
(2i)s(2s)!

πs! r2s+1
Sµ1ν1 · · ·Sµsνs − traces , (4.22)

where the first exponential term in (4.21) gives the first term in (4.22), while the
second exponential contributes with traces terms due to the direct x-dependence in
the exponential.

Thus note by comparing (4.21) with (4.20) we can identify the bulk field corre-
sponding to the boundary bilocal sources and the field of a particle source moving
along a geodesic.

4.2 Fixing the normalization
The solutions that we have described above are constructed up to an overall constant.
To fix this normalization constant let us look at the easy case of field strengths encoded
in terms of local boundary sources, as in [85]. Antipodally even spin-s boundary-to-
bulk propagators can be encoded in terms of a boundary point `µ and a symmetric and
traceless polarization tensor on I+; without loss of generality, this tensor can be taken
to have the form λµ1 . . . λµs , for λµ a null complex vector on I+ orthogonal to `µ. We
can encode this data as a totally null bivector Mµν = 2`[µλν].

The propagators were originally described for EAdS4 in [86] and adapted to the
current framework in [85]. They read

ϕµ1...µs(x; `,M) =
1

(x · `)2s+1
Mµ1 · · ·Mµs ,
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where Mµ =Mµνx
ν . This has corresponding scalar field strengths

Cµ1ν1...µsνs =
(2s− 1)!!

2(x · `)2s+1
M⊥

µ1ν1
· · ·M⊥

µsνs − traces , (4.23)

where M⊥
µν =Mµν − 2M[µxν] = −∇µMν and (2s− 1)!! = 1 · 3 · 5 · . . . · (2s− 1).

To make contact with the bi-local picture, we send the the bulk point xµ to a
boundary point `′µ as an extreme boost limit xµ → 1

z
`′µ as z → 0. In this limit the

polarization vector reads Mµ → 1
z
mµ where mµ = (`′ · λ)`µ − (` · `′)λµ, while the

propagator becomes, to leading order,

ϕµ1...µs → z2−sAµ1...µs + zs+1Jµ1...µs + · · · ,

where the field potential and current terms read

Aµ1...µs = −
2π2(2s− 3)!!

s!
δ(` · `′)λµ1 · · ·λµs ; Jµ1...µs =

mµ1 · · ·mµs

(` · `′)2s+1
.

Thus, noting that mµλ
′µ = −1

2
MµνM

′µν , the action reads [48]

S = −2s− 1

2
Aµ1...µsJ

′µ1...µs =

{
2π2

`·`′ , s = 0

(−1)s π
2(2s−1)!!
2ss!

(MµνM ′µν)s

(`·`′)2s+1 , s > 0
.

For the scalar case, the relevant local twistor function is simply the spin-0 insertion
F (Y ) = iδ`(Y ) which gives rise to master-field C(x;Y ) = − 2

x·`e
iY `xY
2`·x . The scalar

component of the master-field reads simply as the bulk-to-boundary scalar propagator
C(x; 0) = − 2

x·` . Thus a scalar field

ϕ(x) = A0C(x; 0) = −
2A0

x · `

will induce an action
S = −8π2A2

0

` · `′
.

On the other side, we can also read the action from the boundary bilocal encoding,
namely

S = −N
8
tr? (F ? F ′) =

N

8

∫
d4Y δ`(Y ) ? δ`′(Y ) = −N

2
.

Thus, given that for our particular choice of boundary points ` · `′ = −1
2
, we can fix

the proportionality constant, for scalar fields, to be A0 =
√
N

4π
√
2
.

For spin s > 0, we introduce twistor functions δ`(Y − M) and eiMY δ`(Y ), with
Ma ∈ P ∗(`); these functions generate, respectively, the left- and right-handed parts of
the spin s > 0 boundary-to-bulk propagators. We thus consider

F (Y ) =
1

2
(δ`(Y −M) + δ`(Y +M)) +

1

2
δ`(Y )

(
eiMY + e−iMY

)
(4.24)



76 Higher-spin black hole from boundary bilocals

which transforms into the master-field

C(x;Y ) = − 2

x · `
e

iY `xY
2`·x

(
cos

M`PxY

x · `
+ cos

M`P−xY

x · `

)
.

In twistor notation

Mµν =
1

4
γabµν(`M)a(`M)b ; MµνM

′µν =
1

2
(M ′`′`M)

2

and thus, at spin s > 0, the field strengths read

C̃µ1ν1...µsνs =
2(−1)s+1

(x · `)2s+1
M⊥

µ1ν1
. . .M⊥

µsνs − traces .

Thus, comparing with (4.23), since the appropriately normalized field-strength should
have the form C̃µ1ν1...µsνs = AsCµ1ν1...µsνs , it follows that the corresponding field potential
reads

ϕµ1...µs =
4(−1)s+1

(2s− 1)!!

As
(x · `)2s+1

Mµ1 . . .Mµs .

Hence, the spin-s contribution to the action, can be computed as

S(s) = (−1)s 16π2

(2s− 1)!! s! 2s
A2
s

(` · `′)2s+1

(
MµνM

′µν)s . (4.25)

From the twistor picture, as before, the action reads S = −N
8
tr?(F ? F ′); in par-

ticular, for twistor function (4.24), this becomes

S = −N
32

[
tr?

(
δ`(Y ±M) ? δ`′(Y ±M ′)

)
+ tr?

(
δ`(Y )e±iMY ? δ`′(Y )e±iM

′Y
)
+

+ tr?

(
δ`(Y ±M) ? δ`′(Y )e±iM

′Y
)
+ tr?

(
δ`(Y )e±iMY ? δ`′(Y ±M ′)

)]
where, for notational convenience, we each ± is understood independently, i.e. there
are four star-trace terms of each kind. Using star-product and spinor-delta formulae
(1.31), and (1.32) we compute the above to

S = −N (cos(M ′`′`M) + 1) =
N

2` · `′

(
cos

(
M ′`′`M

2` · `′

)
+ 1

)
(4.26)

where in the last term we introduced the relative normalization ` · `′ = −1
2

in order to
facilitate comparison with (4.25).

The spin-s contribution to the action (4.26) reads

S(s) =
(−1)sN
22s(2s)!

(M ′`′`M)2s

(` · `′)2s+1
=

(−1)sN
22s(2s)!

(M ′
µνM

µν)2s

(` · `′)2s+1
.

Thus, by direct comparison with (4.25) we can determine the proportionality constant
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as
As =

1

4π
√
2

√
N

2s
(4.27)

in direct generalization of the scalar result.
Thus, taking into account the proportionality constants As we can finally arrive at

correct normalization of our solutions (4.5) to the Fronsdal field equations with source:

φµ1...µs(x) =

√
2sN

2
√
2π2

(−i)s

r
kµ1 · · · kµs , (4.28)

with the scalar case reading

φ(x) =

√
N

4
√
2π2r

. (4.29)

4.3 The worldline action

In this section we will consider two boundary bilocal sources, localized at `1, `′1 and
`2, `

′
2, respectively. We will show that the CFT correlators of these operators reproduce

the action of the two corresponding bulk particles, as described in the previous section,
interacting via their higher-spin gauge fields. The bulk action for a particle moving in
the field sourced by a second particle reads

S12 =
1

2

∫
dx4

∞∑
s=0

φ1µ1...µsG2
µ1...µs . (4.30)

The object that acts as a source is in fact the generalized Einstein tensor (4.16), which
reads, for the correctly normalized scalar field φ(xµ) (4.29) and spin-s fields φµ1...µs(xµ)
(4.28), respectively,

G(xµ) = −
√
N√
2π
δ(r) ;

Gµ1···µs(x
µ) = −(−i)s

√
2sN√

2π
δ(r) (Tµ1 · · ·Tµs − double traces) .

Thus, the bulk action (4.30) becomes

S12 = −
1

2

∫
dx4 δ(r)

(
N

8π3r
+

N

4π3r

∞∑
s=1

(−1)s2s (k1 · T2)s
)

=
N

8π3

∫
dη

1

r

(
1

2
− 1

1 + 2k1 · T2

)
(4.31)

for worldline affine parameter η ∈ R.
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We will parametrize our boundary points as

`1 · `′1 = `2 · `′2 = `1 · `2 = `′1 · `2 = −
1

2
,

`1 · `′2 = −
a2

2
, `′1 · `′2 = −

b2

2
,

(4.32)

so that, along the worldline with endpoint `2, `′2,

xµ =
√
ab eη `µ2 +

1√
ab
e−η `′2

µ
.

In this parameterization, the minimum separation between the worldlines rmin is achieved
at η = 0, where xµmin =

√
ab `µ2 +

1√
ab
`′2
µ. In particular,

r2min = 4 (`1 · xmin) (`
′
1 · xmin)− 1 = (a+ b)2 − 1 .

Similarly, at a general point,

r2 = a2 + b2 + ab
(
e2η + e−2η

)
− 1 = (a+ b)2 − 1 + 4ab sh2 η . (4.33)

In this parameterization, at minimal separation,

T1 · T2
∣∣∣
rmin

=
1

4

(
`′1
µ

xmin · `′1
− `µ1
xmin · `1

)(
`′2µ

xmin · `′2
− `2µ
xmin · `2

)
=
a− b
a+ b

=
a2 − b2

r2min + 1
,

and similarly, at a general point,

T1 · T2 =
a2 − b2

a2 + b2 + ab (e2η + e−2η)
=
a2 − b2

r2 + 1
.

Analogously, from direct calculation we see that

R1 · T2 =
2ab sinh(2η)

r2 + 1
.

The full action is obtained by symmetrizing with respect to the two worldlines,
which in the current construction is equivalent to taking the real part of S12. The full
action thus reads

S =
N

16π3

∫
dη

1

r

(
1− 1

1 + 2k1 · T2
− 1

1 + 2k̄1 · T2

)
, (4.34)

where

k1 · T2 =
1

2

(
T1 · T2 +

i

r
R1 · T2

)
=

1

2

(
a2 − b2

r2 + 1
+
i

r

2ab sinh(2η)

r2 + 1

)
.

While the integral (4.34) might not be fully tractable, to gain some insight into the
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above expression, consider the restriction to scalar contribution

S̃(0) =

∫
dη

1

r
. (4.35)

Rewriting the relative radial distance (4.33) as

r2 = (a+ b)2 − 1 + 4ab sinh2 η

=
(
(a+ b)2 − 1

)
cosh2 η −

(
(a− b)2 − 1

)
sinh2 η

and thus the scalar contribution to the action (4.35) becomes

S̃(0) =

∞∫
−∞

dη
1

ch η
√

(a+ b)2 − 1− ((a− b)2 − 1) th2 η
. (4.36)

Further, introducing integration variable φ ∈
(
−π

2
, π
2

)
so that th η = sinφ, ch η = 1

cosφ
,

and sh η = tanφ, with line element dφ = dη
ch η

, the action (4.36) becomes

S̃(0) =

∫ π
2

−π
2

dφ
1√

(a+ b)2 − 1− ((a− b)2 − 1) sin2 φ
=

2

(a+ b)2 − 1
K

(
(a− b)2 − 1

(a+ b)2 − 1

)
(4.37)

where K(κ) is the complete elliptic integral of the first kind

K(κ) =

∫ π
2

0

dφ
1√

1− κ2 sin2 φ
,

noting that the integrand in (4.37) is even, and thus the integration range can be
reduced to the positive half-interval.

For the full action integral (4.34), even though we have not been able to make
progress analytically, as announced, we expect it to agree with the correlator of the
boundary bilocals, which reads

Sbnd = −N
2

1

(4π)2
1√

−2`′1 · `2
√
−2`1 · `′2

,

In our parametrization (4.32), this becomes

Sbnd = − N

32π2a
. (4.38)

By numerical integration we have seen evidence that indeed the full action (4.34) agrees
with the expected (4.38). In figure 4.1 we plot the difference S − Sbnd for the range of
parameters a, b ∈ (0, 4).
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Figure 4.1: Numerical integration of S−Sbnd for parameters in the range a, b ∈ (0, 4),
discretized over an array of size 100× 100.



Conclusion

This body of work was motivated by the quest of constructing a theory of quantum
gravity inside the cosmological horizons of an observer. A way forward is to consider a
holographic duality between higher-spin theory in the bulk of dS4 and a vector model
on the conformal boundary.

The causal structure of dS4 implies that the boundary is unobservable from the
causal patch and it only intersects it at two points (the endpoints of the eternal ob-
server’s worldline). Thus we were led to consider variables living at these two points
that could be used to construct the non-local holographic dictionary between bulk and
boundary theories. These spinor-helicity variables were used to encode null data on the
cosmological horizons, and hence we were able to write a simple expression for the free
field “S-matrix” between two such cosmological horizons. There is hope that this could
be used to construct perturbation theory for interacting fields in the causal patch.

Further, the spinor-helicity variables were used to describe the boundary theory.
This led to the observation that there exists a persistent disagreement between the
higher-spin-algebraic construction of the boundary partition function and the result of
the result of a direct CFT calculation. A way out of this impasse is to make away with
locality as the guiding principle for constructing the boundary theory and consider
instead spin-locality, similar to recent developments in the higher-spin literature. This
higher-spin-algebraic, spin-local construction of the boundary partition function also
provides a better-behaved Hartle–Hawking wave function.

Lastly, we realized that the linearized bulk higher-spin corresponding to a bilocal
boundary source are essentially the same as the linearized version of the Didenko–
Vasiliev black hole; moreover these fields solve the Fronsdal field equations with a
source that takes the form of a massive particle traveling along the geodesic determined
by pair of boundary points of the bilocal source. If we consider two such particles, we
saw that their interaction the bulk is reproduced by the boundary CFT correlator of
the corresponding bilocals. All of this makes Didenko–Vasiliev black hole a potential
higher-spin gravity analog of D-branes, objects that were fundamental in the devel-
opment of string theory and necessary for the theory’s consistency. This might raise
interesting opportunities in the development of higher-spin theory.
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