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Abstract

Control and measurement of non-classical properties of cold atomic
and optical systems

I present the work done during my PhD in the field of quantum gases, metrology, and
thermodynamics, which aims at revealing and controlling non-classical correlations and
features in various systems. First, I have studied two strongly interacting bosons with
synthetic spin-orbit coupling. In this work, I have described the ground state beyond
the mean-field regime and explored the existence of non-classical correlations. In a
second project, I have investigated the dynamical phase transition in a system of cold
atoms trapped in one-dimensional optical lattices. This is the first work to study the
dynamical phase transition in a continuous model, and I have revealed the relation
between the dynamical phase transition and temporal orthogonality. Third, I consider
an impurity coupled to a gas in a two-dimensional lattice. This work has explored
the dynamics of the impurity and proposed an approach to probe the local excitation
spectrum of the gas at the site coupled to the impurity. Next, I present my contribution
to a project on Bayesian estimation with continuous-variable systems. I have examined
what is the best probe state for heterodyne or homodyne detection to estimate a single
parameter. In the last project, I have explored steady states in quantum thermal
machines. As dealing with multi-level and larger numbers of systems quickly becomes
intractable, I have mapped them to lower-dimensional systems by utilising the idea
of virtual qubits so that one can design autonomous quantum machines beyond a few
qubits.
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Chapter 1

Introduction

The state-of-the-art technology of cooling has brought us to the nano-kelvin world
[6, 7]. There, we can play around with ideal bosons and fermions and move them
around by using optical traps to create almost arbitrary spatial arrangements in all
three dimensions [8]. Cooling technology has allowed us to experimentally demonstrate
single particle and small system dynamics described by quantum mechanics. Before
the invention of laser cooling, the example of a particle in a harmonic trap was purely
a theoretical model. Now we can realise such systems and do experiments of isolated
systems precisely [9]. Furthermore, this high controllability has been the beginning of
a new area of technology, quantum technology, which includes quantum simulators [10–
12], quantum computers [13], quantum metrology [14], quantum engines [15, 16], etc.
By taking into account optical systems, the list also contains quantum communication
[17] and quantum cryptography [18–20]. Optical systems can provide not only high
controllability but also elegant mathematical description such as Gaussian states [21,
22]. On the other hand, cooling and controlling a system near absolute zero requires
precise and flexible measurements. Here again, quantum properties help us and can
offer an optimal strategy which gives a path to the Heisenberg limit [14].

For low-temperature systems, a natural but critical question is how thermodynam-
ics is described on nano-kelvin scales [23, 24]. The framework of thermodynamics does
not rely on classical mechanics but assumes the existence of many particles, so-called
thermodynamics limit. How does thermodynamics work within a quantum descrip-
tion? Similarly to relation between thermodynamics and information in the classical
regime, it can be shown that thermodynamics in the quantum regime is strongly con-
nected to quantum information [23]. For example, quantum correlations can be used
for thermodynamic tasks in some cases, and it has been reported that work can be
extracted from correlations [25].

During my PhD, I worked on several topics of strongly interacting bosons, a new
probe scheme for cold atomic lattice systems, a comprehensive study of Bayesian esti-
mation with continuous-variable systems, and a new simplification approach for quan-
tum thermal machines. Although each chapter contains enough information to follow
its contents, I will present some basic ideas about them here. Section 1.1 corresponds
to introduction of cold atomic systems for Chaps. 2, 3, 4. Section 1.2 reviews basic
tools for describing continuous variables used in Chap. 5. Finally, Section 1.3 provides
a brief commentary of quantum thermodynamics and quantum thermal machines, and
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2 Introduction

will become a good starting point for Chap. 6.

1.1 Cold atoms
For systems of ideal bosons, S. Bose and A. Einstein predicted theoretically that if the
temperature is finite but lower than a critical value, the particles macroscopically oc-
cupy the ground state [26]. Such a state is known as a Bose-Einstein condensate (BEC).
In 1938, in a system of liquid 4He at the lambda point, superfluidity was observed and
was expected to have its origin in Bose-Einstein condensation [27]. However, the in-
teractions in the helium system are too strong to regard it as an ideal Bose system,
and so it was questioned that the phenomena in the helium system can be explained
as Bose-Einstein condensation [28]. The realisation of BECs in cold gases with weak
interaction was attempted, and succeeded in 1995 [26, 29, 30] by using the techniques
of laser cooling [31], evaporative cooling [32], magneto-optical trapping [33] and op-
tical traps [34]. Since then, Bose-Einstein condensates of cold atoms have proven to
be useful theoretical and experimental tools to study quantum phenomena stemming
from weak interactions.

In BECs, a significant number of particles occupy the ground state, and the system
can be described by a macroscopic wave-function in the classical mean-field limit. Its
dynamics can be described by the Gross-Pitaevskii equation,

i~
∂Ψ(~r, t)

∂t
=

[
− ~2

2m
∇2 + V (~r) +

g

2
|Ψ(~r, t)|2

]
Ψ(~r, t) , (1.1)

where the first term on the right hand side is the kinetic term, the second one represents
an external trap, and the last one describes interactions between particles and will
be explained in the next section. This equation is so simple that it can be solved
analytically in some regimes and generally possesses numerically tractable solutions
[28]. In addition, systems of cold atoms are so controllable that one can design (i) the
external trap term, (ii) the interaction term [9, 35], and (iii) additional external terms:

(i) The gases in the system can be confined in optical traps [36], and thus one can
change their external geometry to, for example, harmonic potentials or double-
wells. Another important example is periodic lattices [37] that can be described
by Bose-Hubbard model [38] and offer a platform for studying quantum and
dynamical phase transitions [39] and superfluidity [40]. Furthermore, the dimen-
sionality of the system can be also changed by tuning trap frequencies [41].

(ii) Since the particle interaction strength g can be tuned with a Feshbach resonances
[42, 43] as well as the trap frequency, one can cover a wide range of interactions
from the mean-field regime to strong interaction regime.

(iii) By adding magnetic fields [28] or applying lasers such that synthetic spin-orbit
coupling [44] can be realised, one can control the velocities of cold atoms. This
laser-induced spin-orbit coupling is used to make spatial superposition [45] and
simulate exotic states such as topological insulators found in condensed matter
systems that have intrinsic spin-orbit coupling [46, 47].
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Before I discuss the interaction term and its control, let me make more comments
on the favourable features of cold atomic systems. Due to their controllability and
flexibility, one can also design the system to simulate different types of physics such as
condensed matter [35], nuclear physics [48], and high-energy physics [49, 50]. This has
shed light on cold atoms as a promising quantum simulator. Furthermore, since cold
atomic systems are clean and well-isolated from the environment, they are considered
to be useful platforms for understanding non-equilibrium quantum dynamics and finite-
time quantum thermodynamics of closed systems [51].

1.1.1 Effective description of interactions in cold atoms

Interactions in cold atomic systems are weak, and two-body interactions are the most
dominant because the gases are dilute. Due to the low energy of the interactions,
the theoretical description is simplified, and the process of two-body interactions is
dominated by s-wave scattering [28]. One does not need to take into account the
shape of the potential of the short-range interaction, but can instead use an effective
interaction between two particles, which in the mean-field limit is given by

U(~r) = gδ(~r − ~r′). (1.2)

This is called a contact interaction [52]. Even for stronger interactions, in one-dimensional
systems one can still describe the contact interaction with a delta function, and how-
ever, in three-dimensional systems one needs to regularise this delta function if the
systems are not in the mean-field regime [53, 54]. The process of s-wave scattering is
characterised by the scattering length, a, which is given in the Born approximation as
[28]

a =
m

4π~2

∫
d~r U(~r) . (1.3)

This means that the effective interaction coefficient g in Eq. (1.2) is given by

g =
4π~2a

m
. (1.4)

Feshbach resonances allow one to change the scattering length a in experiments to tune
the strength of the interactions, which is a powerful tool of cold atom experiments.
Feshbach resonances usually utilise Zeeman-splitting by an applied external magnetic
field, but can also be created using optical fields [55–57]. In the magnetic case, the
s-wave scattering length can be written as a function of the magnetic field as

a(B) = abg

(
1− ∆

B −B0

)
, (1.5)

where abg is the off-resonant value of the scattering length, ∆ is the resonance width,
and B0 is the resonant magnetic field. Feshbach resonances in cold gases were first
realised in 1998 [42], and it has been shown that the loss of particles can be significant
at the resonance point, as three-body interactions are also enhanced. A more detailed
explanation is given in Ref. [43].
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The discussion above is in three dimensions, but the argument can be applied to
one dimension as well since the effective interaction in one dimension is written as [41]

g1D =
4~2a

mσ2
⊥

1

1− Ca/σ⊥
(1.6)

where C = 1.4602 is a dimensionless value, and the trap potentials along the two
confined dimensions are of the same with frequency ω⊥ with σ⊥ =

√
~/µω⊥. As seen,

by strengthening the confinement σ⊥, one can increase g1D [58].

1.1.2 Exact solution of two interacting particles in a one-dimensional
harmonic trap

In general, it is difficult to theoretically describe particles interacting beyond mean-field
regime. However, some solvable models exist, and I will introduce two one-dimensional
models below. First, I will review the exact solution of two interacting particles in a
harmonic trap [54].

The Hamiltonian of two particles interacting with a point-like potential is given by

H =
2∑
j=1

[
p2
j

2m
+

1

2
mω2x2

j

]
+ gδ(x1 − x2), (1.7)

where m is the mass of each particle, ω is the trap frequency, and g is the interaction
strength. This Hamiltonian can be separated into centre-of-mass and relative motion
as

H(X, x) = Hcom(X) +Hrel(x), (1.8a)

Hcom(X) = − ~2

2m

∂2

∂X2
+

1

2
mω2X2, (1.8b)

Hrel(x) = − ~2

2m

∂2

∂x2
+

1

2
mω2x2 +

g√
2
δ(x), (1.8c)

where the scaled centre-of-mass and relative coordinates are defined as X = (x1 +
x2)/
√

2 and x = (x1 − x2)/
√

2, respectively. The full wave-function is then given by
the product of the eigenstates of Hamiltonians (1.8b) and (1.8c) as

Ψ(X, x) = Φ(X) φ(x) (1.9)

The eigenstates of Hamiltonian (1.8b) correspond to those of a single particle in a
harmonic potential. By introducing the energy unit ~ω and dimensionless variables
X̃ = X/aho and x̃ = x/aho, with the harmonic oscillator length aho =

√
~/mω, the

wave-function for the centre-of-mass motion is written as the harmonic oscillator eigen-
states ψn(X̃) = CnHn(X̃)e−X̃

2/2 with a normalisation constant Cn and the Hermite
polynomials Hn of order n (cf. see Ref. [59]).

To find the eigenstates of Hamiltonian (1.8c), one can expand them in harmonic
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oscillator eigenstates ψn(x̃) as

φ(x̃) =
∞∑
n=0

anψn(x̃) (1.10)

with coefficients an. The eigenstate φ(x̃) can be either an odd or an even function.
When φ(x̃) is an odd function, the contact interaction has no effect as the amplitude
of the eigenstate is zero at the point x̃ = 0 of the interaction potential. Therefore, the
eigenstate φ(x̃) is described by the standard harmonic oscillator solutions as

φ2m+1(x̃) = CH2m+1(x̃)e−
x̃2

2 , (1.11)

where m ≥ 0, and C is the normalisation term. Notice that the index of the eigenstate
φ2m+1(x̃) is an odd number because the eigenstate is an odd function.

If φ(x̃) is an even function, and thus labelled as φ2m(x̃), it is written as

φ2m(x̃) =
∞∑
n=0

a2m
2n ψ2n(x̃) (1.12)

with the harmonic oscillator eigenstates ψ2n(x̃). By inserting Eq. (1.12) intoHrelφ
2m(x̃) =

Ẽ2mφ
2m(x̃) with Ẽ2m being the corresponding dimensionless eingenenergy, one obtains

∞∑
n=0

a2m
2n (ε2n − Ẽ2m)ψ2n(x̃) + g̃δ(x̃)

∞∑
n=0

a2m
2n ψ2n(x̃) = 0, (1.13)

where εn = n + 1/2 are the dimensionless eigenenergies of harmonic oscillator eigen-
states, and g̃ = g/

√
2~ωaho is the dimensionless interaction strength. By multiplying

Eq. (1.13) by the complex conjugate ψ∗k(x̃), one can utilise the orthogonality of the
eigenstates of the Hamiltonian and integrate the whole equation to extract the coeffi-
cient, which leads to

a2m
2k (ε2k − Ẽ2m) + g̃ψ2k(0)

[
∞∑
n=0

a2nψ2n(x̃)

]
x̃→0

= 0. (1.14)

This yields

a2m
2k = C

ψ2k(0)

ε2k − Ẽ2m

(1.15)

with the constant C independent of k. Then, by inserting the coefficient (1.15) into
Eq. (1.14), one obtains

−1

g̃
=

[
∞∑
n=0

ψ2n(0)

ε2n − Ẽ2m

ψ2n(x̃)

]
x̃→0

. (1.16)

By expanding the harmonic oscillator eigenstates as ψ2n(x̃) = e−x̃
2/2L

−1/2
n (x̃2)/

√
πψ2n(0),
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using Laguerre polynomials Lαn(x), Eq. (1.16) becomes

−1

g̃
=

1

2
√
π

[
e−

x̃2

2

∞∑
n=0

L
− 1

2
n (x̃2)

n− ν

]
x̃→0

, (1.17)

with ν = Ẽ2m/2− 1/4. This allows one to use the three following relations [60]

1

n− ν
=

∫ ∞
0

dy
1

(1 + y)2

(
y

1 + y

)n−ν−1

, (1.18a)

∞∑
n=0

znLαn(x̃) = (1− z)−α−1e
x̃z
z−1 , (1.18b)∫ ∞

0

dt
1

(1 + t)a−1−b e
a−1e−zt = Γ(a)U(a, b, z), (1.18c)

where Γ(a) defines the gamma function and U(a, b, z) are the confluent hypergeometric
functions. These reduce Eq. (1.17) to

−1

g̃
=

1

2
√
π

[
e−

x̃2

2 Γ(−ν)U

(
ν,

1

2
, x̃2

)]
x̃→0

. (1.19)

For x̃→ 0, the function U satisfies U(−ν, 1/2, x̃2)→ Γ(1/2)/Γ(−ν + 1/2), which leads
to

−1

g̃
=

Γ(−ν)

2Γ(−ν + 1/2)
. (1.20)

Now, it is clear how the energy is affected by the interaction strength, and it is given
by this relation (1.20). On the other hand, using the relations (1.18) again, the even
eigenstates are given by

φ2m(x̃) =
∞∑
n=0

a2m
2n ψ2n(x̃)

=
C

2
√
π

e−
x̃2

2 Γ(−ν)U

(
−ν, 1

2
, x̃2

)
, (1.21)

where C is the normalisation term, and ν is determined through g̃ by using Eq. (1.20).
The energy of the even eigenstates is given by Ẽ2m = 2ν + 1/2. Note that for g = 0,
ν become integer, i.e. m, and Ẽ2m corresponds to the harmonic oscillator eigenenergy.
Otherwise, ν is non-integer. As a reminder, the energy of the odd eigenstates is written
as Ẽ2m+1 = (2m+ 1) + 1/2 for m ≥ 0 such that an analogy between the even and odd
states is clear. The total energy is described by the sum of centre-of-mass and relative
motion parts as εn + Ẽ2m = n+ 2ν + 1 or εn + Ẽ2m+1 = n+ 2m+ 2.

1.1.3 Tonks-Girardeau gas

In 1960, Girardeau proposed a model for the impenetrable bosons in one dimension
that can be solved exactly, and showed a one-to-one correspondence with a model of
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non-interacting fermions [61]. The system is now called the Tonks-Girardeau (TG) gas,
which I will introduce below. Consider N interacting bosons in one dimension, where
the Hamiltonian describing the system is given by

H(N) =
N∑
i=1

[
−~2

2m

d2

dx2
i

+ V (xi)

]
+ g

N∑
i<j

δ(xi − xj), (1.22)

where m is the mass of each particle, xi is the position of the ith particle, V (xi) is
a potential function, and g is the effective interaction strength between two particles.
In the TG limit, g → ∞, the Bose-Fermi mapping theorem enables one to write the
many-body bosonic wave-function with just single-particle eigenstates. This can be
understood by considering that the hard-core constraint prohibits two particles from
being at the same point in space such that

ΨB(x1, x2, ..., xN) = 0 if |xi − xj| = 0 (1.23)

for i < j. This condition on the wave-function can also be satisfied by taking the
fermionic formulation and utilising the Pauli principle, hence removing interaction
terms. Using a Slater determinant, the fermionic many-body wave-function of the
system can be written as

ΨF(x1, x2, ..., xN) =
1√
N

det[ψn(xi)], (1.24)

where the ψn(xi) are the single-particle eigenstates of the Hamiltonian (1.22) for g = 0.
However, since this fermionic wave-function is an antisymmetric function, it is necessary
to explicitly symmetrise via

ΨB(x1, x2, ..., xN) =
∏
i<j

sgn(xi − xj)ΨF(x1, x2, ..., xN). (1.25)

Particularly for the ground state, the bosonic wave-function is positive everywhere in
space, and thus one can write

ΨGS
B (x1, x2, ..., xN) =

∣∣ΨGS
F (x1, x2, ..., xN)

∣∣. (1.26)

Note that the mapping cannot be expanded to two or three-dimensional systems. That
is because, in one dimension, particles must interact to pass each other, but in higher
dimensions they have enough space to avoid collisions. Therefore, necessary conditions
for the mapping are the hard-core constraint and a one-dimensional system. The
mapping can be applied not only to eigenstates but also to time-evolved states.

A TG gas can be realised by making interactions strong using a Feshbach resonance
or by increasing the traverse trap frequency [58, 62, 63]. Also, a lot of theoretical
research on TG gases has been reported [64–68], some of which consider TG gases in
harmonic potentials [69], TG gases in the presence of a delta-function barrier [70, 71],
and TG gases in optical lattices [40, 72, 73]. Furthermore, the dynamics induced
by rotating a barrier in a ring system has been studied [74–77], which can create a
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macroscopic superposition state with strongly correlated bosons, i.e. a NOON state.
Owing to the mapping, a lot of many-particle quantities can be obtained with the

knowledge of the single-particle states alone, hence decreasing computation time. Here,
I introduce some important examples.

Ground-state fidelity: The ground-state fidelity describes the overlap between the
ground states Φ0 and Ψ0 in two systems, and is defined as

F = |〈Φ0|Ψ0〉|2 (1.27)

In a TG gas, the ground-state fidelity can be described with single-particle eigenstates
φi(x) and ψi(x) of the two systems as [39, 78]

F = |detA|2 (1.28)

with
Aij =

∫
dx φ∗i (x)ψj(x). (1.29)

In transformation from Eq. (1.27) to Eq. (1.28), the unit symmetric operator is removed
when the systems are integrated.

Loschmidt echo: The Loschmidt echo shows the overlap between the initial state
and time-evolved state, and is defined as

L(t) = |〈Ψ(t)|Ψ(0)〉|2, (1.30)

which one can represent with single-particle states in the same way as the ground state
fidelity, i.e.

L(t) = |detA′|2 (1.31)

with
A′ij =

∫
dx ψ∗i (x, t)ψj(x, 0). (1.32)

Momentum distribution: The momentum distribution cannot be derived with only
single-particle states because the momentum operator is affected by the need to sym-
metrise the fermionic many-body wave-function. However, one can compute the mo-
mentum distribution using the reduced single-particle density matrix (RSPDM), which
an efficient algorithm to calculate has been developed in Refs. [66, 79]. In general, the
RSPDM is written as

ρ(x, y) = N

∫
dx2 . . . dxN Ψ∗B(x, x2 . . . xN)ΨB(y, x2 . . . xN), (1.33)

while in a TG gas this reduces to

ρ(x, y) =
N∑

i,j=1

ψ∗i (x)A′′ij(x, y)ψj(y), (1.34)
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where
A′′(x, y) = (P−1)T det[P ] (1.35)

with
Pij = δij − 2

∫ y

x

dx′ ψ∗i (x
′)ψj(x

′). (1.36)

Using the RSPDM, the momentum distribution is given by [69]

n(k) =
1

2π

∫ ∞
−∞
dx

∫ ∞
−∞
dy ρ(x, y)e−ik(x−y). (1.37)

von Neumann entropy: The von Neumann entropy can be calculated using the
eigenvalues of the density matrix as

S = −Tr[ρ log ρ]

= −
∑
j

λj log λj. (1.38)

The eigenstates of the RSPDM are obtained by solving the equation∫
dx ρ(x, y)φj(x) = λjφj(y). (1.39)

This means that one can write the RSPDM with the eigenfunctions φj(x) and eigen-
values λj as

ρ(x, y) =
∑
j

λjφ
∗
j(x)φj(y). (1.40)

Examples where it is interesting to calculate von Neumann entropy in a TG gas include
cases that probe dynamical phase transitions or detect entanglement.

1.1.4 Synthetic spin-orbit coupling

Spin-orbit coupling (SOC), which describes an interaction of spins with their own
motion, is a fundamental property of electrons and well studied in condensed matter
physics [80, 81]. The atoms in gaseous BECs are usually charge neutral, and so systems
of cold atoms do not have SOC naturally. However, by Raman-dressing BECs, one can
simulate a vector potential and SOC [82], which in this case is a coupling between
pseudo-spins and their momentum. A method for creating Raman-coupled BECs in
one dimension for this has been proposed in Refs. [83, 84]. Through the successful
implementation of synthetic magnetic [85] and electric fields [86], SOC has been realised
in spin-1/2 Bose gases [44, 87], spin-1 Bose gases [88, 89] and Fermi gases [46, 47].

SOC in cold atoms can be generated experimentally as described below [44], by
using, for example, 87Rb in optical dipole traps [90]. By applying a homogeneous
magnetic field when the atoms are in an F = 1 state, the energy levels split into
three sublevels mf = 0,±1, due to the linear Zeeman effect. The system can then be
considered as a pseudo-spin-1 system, and removing the third level is required to make
it a pseudo-spin-1/2 system (see Fig. 1.1). This is realised by applying a large magnetic
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Figure 1.1: Hyperfine states for
a F = 1 state, reproduced from
Ref. [44]. A Zeeman shift creates
an energy difference ~ωz between the
states mf = −1 and mf = 0. The
states are coupled by lasers, indi-
cated by the thick lines. The de-
tuning from Raman resonance is de-
noted by δ. The energy gap ~ωq is
so large that the state mf = 1 can
be ignored.

Figure 1.2: A typical experimental
set-up of SOC induced by two Ra-
man lasers that intersect at angle θ,
reproduced from Ref. [90].

field, so that the energy gap between the states mf = −1 and mf = 0 becomes much
larger than the energy gap between the states mf = 0 and mf = 1 due to the quadratic
Zeeman effect. By tuning the frequency of the Raman lasers, one can then selectively
address only the states mf = −1 and mf = 0. The system is then regarded as a
pseudo-spin-1/2 system, or in other words a two-component BEC [28, 91, 92]. The
Raman dressing between the levels is then created by a detuned two photon transition
(see Fig. 1.1), and the Raman coupling is determined by the coupling strengths between
the corresponding states and also the intermediate state.

To introduce the formulation of SOC, consider a two-component BEC driven by
a light field in one dimension. For simple explanation, I do not take interactions
and the external potential into account. The corresponding Hamiltonian for this two-
component BEC is given by [93, 94]

Ĥ0 =


p2
x

2m
+

~δ
2

~Ω

2
ei2kRx

~Ω

2
e−i2kRx

p2
x

2m
− ~δ

2

 , (1.41)

where px = i~(∂/∂x) is the momentum of the BEC, ~Ω is the Raman coupling strength,
~δ is the detuning from resonance, and kR is the projected wave number, defined as
kR = 2π/λ sin(θ/2). Here, λ is the wavelength of the lasers and θ is the angle of
intersection between the two lasers (see Fig. 1.2). The off-diagonal elements in the
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Hamiltonian can be rewritten as 0
~Ω

2
ei2kRx

~Ω

2
e−i2kRx 0

 = eikRxσ̂z
~Ω

2
σ̂xe

−ikRxσ̂z , (1.42)

using eikRxσ̂z = I cos kRx + iσ̂z sin kRx. By applying a unitary transformation, Û =
eikRxσ̂z , to the Hamiltonian (1.41), it is reduced to

Ĥ = Û †Ĥ0Û ,

=
p2
x

2m
Î + γpxσ̂z +

~δ
2
σ̂z +

~Ω

2
σ̂x, (1.43)

where the SOC strength is γ = ~kR/m and some constant terms are ignored for clarity.
The induced SOC term agrees with the equally-weighted combination of Rashba SOC
kxσ̂z−kzσ̂x and Dresselhaus SOC kxσ̂z +kzσ̂x. Note that, as seen in Eq. (1.41), in this
scheme one cannot turn off the Raman coupling completely while keeping the SOC on,
because the SOC shares its origin with the Raman coupling. Here, the pseudo-spin is
coupled to the linear momentum, but it is also possible to generate coupling between
pseudo-spin and angular momentum [95, 96]. Although I will focus on SOC in one
dimension, a scheme for realising SOC in two-dimensional systems has been proposed
[97], and SOC in two-dimensional Fermi gases has been realised recently [98].

Tunable spin-orbit coupling strength: The SOC strength depends on the pro-
jected wave number kR of the Raman lasers. A straightforward way to change kR is to
change the angle θ between the two Raman lasers. However, practically this is hard to
do once an experimental set-up is fixed, and so an alternative way has been proposed
that applies a periodic modulation to the power of the Raman lasers [90, 99]

Ω = Ω0 + Ω̃ cosωt, (1.44)

where the modulation frequency ω is much larger than any other energy scale in the
system, in order to not disturb signals of other energy scales. By using a unitary
transformation to remove the modulation term, the Hamiltonian is given by

Ĥeff =
p2
x

2m
Î +

(
γpx +

~δ
2

)
J0

(
Ω̃

ω

)
σ̂z +

~Ω0

2
σ̂x (1.45)

where J0(x) is the zeroth order Bessel function of the first kind, and high frequency
terms such as the modulation frequency ω are ignored. Here, the tunable SOC strength
can be written as γeff = γJ0(Ω̃/ω), which is now determined by the modulation of the
Raman lasers. Similarly, the effective detuning becomes δeff = δJ0(Ω̃/ω). One can
tune the SOC strength dynamically by changing the modulation amplitude Ω̃, but
the tuning must be slower than the modulation frequency as mentioned above. This
approach has been demonstrated to work in experiments [100]. Although the discussion
above does not take interactions into account, interactions give a nonlinear effect. In
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the case where interactions within one component are different from those within other
component, the SU(2) symmetry of the pseudo-spin is broken, and this approach does
not work anymore.

1.2 Continuous-variable systems
Quantum information technology has been developed over the last three decades. Small
scale quantum computers have been constructed (e.g. IBM Quantum Experience1 and
Google AI Quantum2), and quantum communication via a satellite has been tested
[101]. Already, 50-qubit systems for quantum simulators and computing have been
realised [102–104]. While I have focused on atomic systems in this thesis so far, I will
consider optical systems in this section. They are advantageous for implementations
of quantum communication [17] and quantum cryptography [18–20]. In contrast, It is
nearly impossible to send atoms over long distance while keeping them cool.

To implement devices for quantum information, one can take discrete [13] or con-
tinuous variables [21, 22] to describe quantum states and encoding information on the
quantum states. For quantum optical systems, any state can be represented in the
photon number basis or be rewritten in the description of continuous variables, e.g.
by characterising the state with position and momentum. Which approach should be
taken depends on the experimental setup and what one wants to do. I note that choice
between the use of discrete and continuous variables does not lie in how many particles
are treated. Even if one has a few photons, one can use either discrete or continuous
variables.

I consider continuous variables in my work and thus will give a brief review of Gaus-
sian states and Gaussian transformations, which are important tools for continuous-
variable systems to encode information. Systems in Gaussian states are described by
Gaussian quasi-probability functions in phase space, and Gaussian transformations
map any Gaussian state to some Gaussian state. The next subsections loosely follow
Ref. [22], and for simple notation, I take ~ = 1.

1.2.1 Basics of Gaussian states and Gaussian transformations

A continuous-variable system is a quantum system that is equivalent to a collection
of harmonic oscillators. i.e. a infinite number of bosonic modes. An N harmonic
oscillator system builds a Hilbert space H⊗N =

⊗N
k=1Hk and is associated with N

pairs of bosonic field operators {âk, â†k}Nk=1. Here, âk and â†k are the annihilation and
creation operators, respectively. I represent these operators with a vector

b̂ =
(
â1, â

†
1, . . . , âN , â

†
N

)
, (1.46)

which satisfies the bosonic commutation relations[
b̂i, b̂j

]
= Ωij, (1.47)

1https://www.ibm.com/quantum-computing/
2https://research.google/teams/applied-science/quantum/
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where i, j = 1, . . . , 2N , and Ωij is a component of the symplectic form,

Ω =
N⊕
k=1

(
0 1
−1 0

)
. (1.48)

Note that the Hilbert space of the system is separable because the Hilbert space is
a tensor product of the single-mode Hilbert spaces Hk. The Hilbert space Hk is an
infinite-dimensional space constructed by a Fock state (photon number basis) {|n〉}.
Since this is a set of eigenstates of the number operator n̂ = â†â, one can write

â |0〉 = 0, (1.49a)

â |n+ 1〉 =
√
n+ 1 |n〉 , (1.49b)

â† |n〉 =
√
n+ 1 |n+ 1〉 , (1.49c)

n̂ |n〉 = n |n〉 (1.49d)

for n ≥ 0. Let me introduce other useful field operators, called the quadrature field
operators {q̂k, p̂k}Nk=1. For conveniences, these operators can be arranged in a vector
similar to b̂ as

x̂ = (q̂1, p̂1, , . . . , q̂N , p̂N)T . (1.50)

The quadrature field operators are composed of the bosonic field operators as

q̂k =
1√
2

(
â†k + âk

)
, (1.51a)

p̂k =
i√
2

(
â†k − âk

)
. (1.51b)

They represent dimensionless canonical observables of the system. Since the consid-
ered system is equivalent to N harmonic oscillators, the quadrature field operators
behave like the position and momentum operators of the quantum harmonic oscillator.
Additionally, they satisfy the canonical commutation relations

[x̂i, x̂j] = iΩij. (1.52)

Since the quadrature field operators possess continuous spectra, with q̂ and p̂ the
position and momentum operators, one has

q̂ |q〉 = q |q〉 , (1.53a)
p̂ |p〉 = p |p〉 , (1.53b)
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where q, p ∈ R. These eigenstates {|q〉}q∈R and {|p〉}p∈R are associated with each other
via Fourier transformations as

|q〉 =
1

2
√
π

∫
dp e−iqp |p〉 , (1.54a)

|p〉 =
1

2
√
π

∫
dq eiqp |q〉 . (1.54b)

In general, for N -mode Hilbert space, one can write

x̂T |x〉 = xT |x〉 . (1.55)

with x ∈ R2N and |x〉 = (|x1〉 , . . . , |x2N〉)T . By considering the phase space as below,
the quadrature eigenvalues x can be used for continuous variable representation.

Quantum information processing requires information to be encoded in a quantum
state. A quantum state is generally represented by a density matrix ρ, and any density
matrix can be expressed as a quasi-probability distribution, called a Wigner function,
in a real symplectic space, called phase space. The Wigner characteristic function for
a quantum state ρ is defined as

χ(ξ) = Tr
[
ρD̂(ξ)

]
(1.56)

with the Weyl operator given by

D̂(ξ) = exp
[
ix̂TΩξ

]
(1.57)

with ξ ∈ R2N . The Wigner function is then obtained by performing the Fourier trans-
form,

W (x) =

∫
R2N

d2Nξ

(2π)2N
exp

[
−ixTΩξ

]
χ(ξ), (1.58)

and it is normalised to one. It is often called a quasi-probability distribution because
it can be negative. As seen, any quantum state ρ of an N -mode bosonic system can
be expressed in the form of a Wigner function on a 2N -dimensional phase space.

The primary tools for describing continuous variable systems are statistical mo-
ments of quantum states. The first moment is called the displacement vector and is
written as

x̄ = 〈x̂〉 = Tr [x̂ρ] (1.59)

The second moment is written as

σi,j =
1

2
〈{x̂i − 〈x̂i〉 , x̂j − 〈x̂j〉}〉 , (1.60)

where {, } is the anticommutator. This gives the covariance matrix Γ = 2σ, which
is a real 2N × 2N matrix. Its diagonal elements are the variances of the quadrature
operators Γii = Γ(x̂i) = 〈(∆x̂i)2〉 and provide the Heisenberg relation for position and
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momentum,

Γ(q̂k)Γ(p̂k) ≥
1

4
. (1.61)

Gaussian states are fully and conveniently characterised by their first and second mo-
ments and have the Wigner representation,

W (x) =
exp

[
− (x− x̄)T Γ−1 (x− x̄)

]
πN
√

det[Γ]
. (1.62)

There are simple descriptions of transformations acting on Gaussian states. In
general, a transformation is called a quantum operation if it is a linear map E which
is completely positive with a trace, 0 ≤ Tr[Eρ] ≤ 1 [13]. Gaussian transformations
are quantum operators that keep the Gaussian properties of quantum states, and are
defined as

Û = exp
{
−iĤ

}
, (1.63)

with Ĥ being the Hamiltonian described by at most second-order polynomials in the
field operators. By using annihilation and creation operators â = (â1, . . . , âN)T and
â† = (â†1, . . . , â

†
N), such a Hamiltonian can be written as

Ĥ = i
(
â†α+ â†Fâ+ â†Gâ†T

)
+ h.c., (1.64)

where α ∈ CN , F, and G are complex matrices, and “h.c.” means Hermitian conjugate.
For the quadrature operators x̂, a unitary operator describing a Gaussian transforma-
tion (Gaussian unitary) is simply described by an affine map,

x̂→ Sx̂ + d (1.65)

with d ∈ R2N being a 2N real vector and S being a 2N × 2N real matrix. The first
and second moments are mapped in the same way,

x̄→ Sx̄ + d, (1.66a)
Γ→ SΓST . (1.66b)

1.2.2 Examples of Gaussian states and single-mode Gaussian
transformations

I will introduce some basic Gaussian states and transformations which are widely used
in continuous-variable systems. At the end, I will give the representation of general
single-mode Gaussian state by using them. Here, I restrict myself to pure states, but
it is possible to generalise the formulations I will introduce to mixed states.

Considering multiple modes, one can implement beam splitting and two-mode
squeezing to mix modes and generate mode entanglement. These operations enrich
the continuous-variable systems, particularly for quantum information and metrology
[21, 22]. However, I do not discuss multiple modes because it is outside the scope of
the introduction needed for the work I will present.
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Figure 1.3: Sketch of the cross sections for the Wigner functions of some Gaussian
states such as (a) the vacuum state, (b) a displaced state (coherent state), (c) a squeezed
state, and (d) a phase rotated state. The widths of these Wigner functions show the
variances. The arrows indicate the action of certain Gaussian unitaries on the vacuum
state or a displaced state.

Vacuum state: Admittedly, the simplest Gaussian state is the vacuum state |0〉, which
has no photons (see state (a) in Fig. 1.3). In this case, the first moment is zero, and
the covariance matrix is the identity,

Γ = I (1.67)

which means that the variances of the position and the momentum are minimised in a
balanced way.

Displacement and coherent states: A basic Gaussian transformation is the dis-
placement operator. The Hamiltonian of this operator is written by a linear term of
the field operators and defined as

D̂(α) = exp
[
αâ† − α∗â

]
, (1.68)

which is a complex version of the Weyl operator (1.57) and where α = (q + ip)/
√

2
is the complex amplitude. In the Heisenberg picture, the quadrature operators x̂
are transformed as x̂ → x̂ + d, where d = (

√
2 Re[α],

√
2 Im[α])T . Particularly, by

displacing the vacuum state, a coherent state is created, |α〉 = D(α) |0〉 (see state (b)
in Fig. 1.3). Coherent states are eigenstates of the anihilation operator â such that
â |α〉 = α |α〉, and can be written in the Fock basis as

|α〉 = exp

(
−1

2
|α|2
) ∞∑

n=0

αn√
n!
|n〉 . (1.69)
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A useful fact is that the overlap between two coherent states |α〉 and |β〉 is given by

|〈β|α〉|2 = exp
[
− |β − α|2

]
. (1.70)

Single-mode squeezing: An interaction Hamiltonian that contains terms of quadra-
ture squares â†2 and â2 is called the single-mode squeezing operator, defined by

Ŝ(r) = exp
[r

2

(
â†2 − â2

)]
, (1.71)

where r ∈ R is the squeezing strength. In the Heisenberg picture, the quadrature
operators x̂ = (q̂, p̂)T are transformed as x̂→ S(r)x̂, where

S(r) =

(
er 0
0 e−r

)
. (1.72)

A squeezed vacuum state is written in Fock basis as [105]

|0, r〉 =
1√

cosh r

∞∑
n=0

√
(2n)!

2nn!
(− tanh r)n |2n〉 . (1.73)

The covanriance matrix is written as Γ = SIST = S(2r), where the variance of one
quadrature is reduced below one, while the other goes above one (for r > 0, see state (c)
in Fig. 1.3).

By replacing the real squeezing strength with a complex number, i.e. r → ξ = reiϕ,
the squeezing angle is tuned by changing ϕ. Nevertheless, the role of this angle can be
taken over by a rotation operator which will introduced below.

Phase rotation: A phase rotation is generated by a freely propagating Hamiltonian
Ĥ = θâ†â and defined as

R̂(θ) = exp
[
−iθâ†â

]
(1.74)

In the Heisenberg picture, the quadrature operators transform as x̂→ R(θ)x̂, where

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(1.75)

with θ being a rotation angle (see state (d) in Fig. 1.3).

General single-mode Gaussian state: If the squeezing strength is complex ξ = reiϕ,
where r ≥ 0 and 0 ≤ ϕ < 2π, one can write the map as Ŝ(ξ) = R̂(ϕ/2)Ŝ(r). Any single-
mode Gaussian transformation can be written by applying a map D̂(α)R̂(ϕ/2)Ŝ(r) to
the vacuum state, i.e. imposing a squeezing operator first, then a rotation operator,
and finally displacement operator, and can be given by

|α, ϕ, r〉 = D̂(α)R̂
(ϕ

2

)
Ŝ(r) |0〉 . (1.76)

The first moment is given by d = (
√

2 Re[α],
√

2 Im[α])T , and the covariance matrix is
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given by

Γ = R
(ϕ

2

)
S(2r)R

(ϕ
2

)T
. (1.77)

If the order of these operators is different, the resulting state also differs.

1.3 Quantum thermodynamics

In 1959, Scovil and Schulz-DuBois showed that a three-level maser can be regarded
as a Carnot heat engine [106], where amplified light and population inversion between
the two lower levels were interpreted using the language of thermodynamics, such
as work and heat. This is said to be the first paper to show a connection between
quantum mechanics and heat engines. By noting that operating an engine backwards
leads to refrigeration, Geusic et al. proposed refrigerators by using masers [107] and
lasers [108]. Interestingly, these papers were published before the famous laser cooling
papers [109, 110], which have led to the realisation of atomic Bose-Einstein condensates
and are not related to the thermodynamic discussion of these Refs. [107, 108]. Later,
Alicki and Kosloff independently presented pioneering papers that treat a quantum
open system as a heat engine [111, 112]. However, since there were few experimental
setups and tools to demonstrate and examine quantum systems, these papers did not
attract attention until 2000’s [113].

The invention of laser cooling [6, 109, 110] has led to the experimental realisation
of cold atoms and promoted the study of quantum mechanics. Cold atoms, along with
trapped ions [114, 115], superconducting circuit [116–118], quantum dots [119], and
nitrogen-vacancy (NV) centres [120], can be used to create qubits in clean environ-
ments that do not disturb the system. This enables us to study quantum mechanics
and develop new technology that takes advantage of quantum features. In addition, the
cooling techniques have provided platforms and tools to investigate thermodynamics at
the small scale where the thermodynamic limit cannot be reached and non-classicality
appears. Even though thermodynamics is a macroscopic theory governing processes
such as the conversion between heat and work under constraints on system variables
such as temperature, it is closely connected to quantum mechanics because the macro-
scopic behaviour must emerge from the physics at the microscale. Therefore, the field
of thermodynamics in the quantum regime, quantum thermodynamics, has grown and
attracted attention in recent years. The advent of quantum information theory has
led to a slew of novel approaches and enabled great recent progress [23, 24]. We now
have a much deeper understanding of the foundations of thermodynamics. However,
our knowledge about the fundamental role of quantum effects in thermodynamics is
still incomplete.

A fascinating attempt to study thermodynamic tasks at small scales is to design
autonomous thermal machines [15]. These types of machines operate without external
resources or control, and enable us to truly investigate quantum effects without classical
interruptions. It is known that this class of machines plays many roles such as engines
[15], refrigerators [15], heat pumps [108], clocks [121], thermometers [122], entanglement
generators [123], and thermal transistors [124], and even can perform multiple tasks
[125]. It is interesting to see how quantum features enhance the performance of these
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tasks compared to their classical counterparts and reveal the optimal limit. Simple
autonomous machines such as qubit machines have been well investigated, but multi-
level thermal machines have not yet because the size of larger machines leads to more
complicated steady states and dynamics. However, since it has been reported that
multiple levels have potential to improve thermodynamic properties [126], multi-level
thermal machines should be explored and harnessed.

So far, several theoretical tools have been invented for predicting the qualitative
behaviour of two-level target systems coupled to few-qubit machines and a thermal en-
vironment: virtual qubits [127], collisional models [128, 129], and reset master equations
[130, 131]. For example, considering a virtual qubit for a two-qubit machine provides
the virtual temperature Tv, which has information about which task the target system
in this setup can perform: when Tv is positive and smaller than the temperature of
the baths used for the machine, the machine can cool down the target system; when
Tv is larger, it can warm up the target system; when Tv is negative, the target system
can extract work from the machine [127]. However, simplification beyond simple qubit
systems is still a challenge due to competing effects involved with multiple levels. To
address this issue, in Chap. 6 I will propose a new tool for simplifying multi-level ther-
mal machines. The proposed tool will contribute to the investigation of thermodynamic
properties and design of multi-level thermal machines.
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Chapter 2

Spin-orbit coupling in the presence of
strong atomic correlations

Spin-orbit coupling (SOC) was initially found in systems of charged particles and is
well studied in condensed matter physics [80, 81]. Although BECs generated by cold
atomic systems have no charge, Raman-dressed BECs can be used to simulate a vector
potential and mimic SOC [82]. In this case, the coupling is between a pseudo-spin and
its momentum, while in condensed matter the coupling is an interaction between spins
of electrons and their motion. A method to Raman-couple BECs in one dimension
has been proposed in Refs. [83, 84], and SOC has been realised in spin-1/2 Bose gases
[44, 87], spin-1 Bose gases [88, 89], and Fermi gases [46, 47] (cf. see Sec. 1.1.4).

A lot of research about SOC in cold atomic systems has focused on many-particle
systems such as two-component BECs, for example by imposing the mean-field ap-
proximation and dealing with effective single-particle states. It has been shown that
by changing parameters such as the SOC strength, the Raman coupling strength, and
the contact interaction strength, BECs with SOC can undergo phase transitions be-
tween three phases: the stripe phase, the magnetised phase, and the single minimum
phase [132]. In the stripe phase, the ground state is given by a superposition between
a state with positive momentum and one with negative momentum. The momentum
difference generates an interference pattern in the total density profile, which leads to
a supersolid-like structure. In the magnetised phase, the ground state is degenerate
between the positive-momentum state and the negative-momentum state. In the single
minimum phase, the ground state has no momentum.

I note that the discussion in mean-field regime is limited to the weak contact interac-
tion regime and does not fully explain many-body effects. Nevertheless, it is important
to reveal effects of strong contact interaction because strong interactions are ingredients
of quantum correlations such as entanglement. Moreover, while quantum systems are
described with operators, with the mean-field approximation the systems are simplified
to classical fields, which does not allow one to study quantum correlations. However,
without the mean-field approximation, many-body systems are often difficult to solve,
except fot some special cases [133–135].

Few-particle systems help one address the problems, because these systems enable
one to explore the systems exactly and cover even the strong interaction regime ex-
actly [54, 136–138]. Recently, several studies of few-boson systems with SOC have been
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reported [139–145]. For example, a mapping to an effective spin model has been pro-
posed in a regime of weak Raman coupling [140], and two-particle systems were shown
to acquire a maximally entangled state in the pseudo-spin space for certain parameters
[142].

In this work, I investigate the ground state of a system of two interacting particles
with SOC in one dimension by solving the system exactly for any strengths of the
contact interaction and SOC. These results are then compared to the ground state in
the mean-filed regime to see the unique effects of strong interactions. What I found is
that the competition between the contact interactions and the SOC leads to a lifting
of degeneracies in the energy spectrum. In some parameter regimes, this results in the
appearance of a unique ground state that is not seen within the mean-field regime.
I adopt a harmonic oscillator basis to describe the composition of this ground state,
and show that the ground state can include a contribution from the anti-symmetric
spin state, even though the system is bosonic. This state is therefore called the anti-
symmetric (AS) ground state. The AS ground state does not belong to any of the three
phases existing in the mean-field limit (the stripe phase, magnetised phase, and single
minimum phase). Also the emergence of the AS ground state is signalled by a decay of
entanglement between the real space and the pseudo-spin degrees of freedom. These
results help one bridge a gap between single-particle and many-body states.

This chapter is organised as follows. In Sec. 2.1, I introduce the Hamiltonian
describing the two-particle system in the presence of SOC in real space and expand
the atomic position Hilbert space of the system in harmonic oscillator basis states
associated with the centre of mass and relative motional degrees of freedom. In Sec. 2.2,
I study the effects and competition of the interactions and SOC on the energy spectrum
and the ground states. In particular, I show the emergence of the AS ground state. I
also explore the entanglement in the pseudo-spin degrees of freedom and between the
real space components and the pseudo-spin components. In Sec. 2.3 I conclude and
give an outlook. Details about the systematic representation of the Hamiltonian in
matrix form are given in Appendix A. The code to generate the data presented in this
chapter is available online1.

This project has been accomplished in collaboration with Thomás Fogarty and
Steve Campbell and Simon Gardiner and Thomas Busch. I have been involved in all
discussions and carried out all calculations in this project. The work presented in this
chapter was published in the New Journal of Physics 33, 013050 (2020) [1].

2.1 Formulation

I consider an effective one-dimensional model of two repulsively interacting bosons in
a harmonic trap in the presence of SOC. The Hamiltonian is given by

H =
2∑
j=1

[
p2
j

2m
+

1

2
mω2x2

j +
~ksoc

m
pjσ

(j)
z +

~Ω

2
σ(j)
x +

~∆

2
σ(j)
z

]
+Hint(|x1 − x2|) , (2.1)

1https://doi.org/10.5281/zenodo.3592115
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where m is the mass of each particle, ω is the trap frequency, ksoc is the SOC strength,
Ω is the Raman coupling strength, ∆ is a detuning, and σx,z are Pauli matrices. SOC
is described by the third term, which couples the momentum and pseudo-spin degrees
of freedom. At low temperatures, one can assume that the scattering between the
particles has s-wave character, and particles interact only when they meet at a point,
so that the interaction potentials can be described by a delta function (cf. Sec.1.1.1).
The interaction strengths depend on the internal states of the particles, and so the
interaction term Hint(|x1 − x2|) can be written as

〈x1, ↑;x2, ↑|Hint|x1, ↑;x2, ↑〉 = g↑↑δ(x1 − x2) ,

〈x1, ↑;x2, ↓|Hint|x1, ↑;x2, ↓〉 = g↑↓δ(x1 − x2) = 〈x1, ↓;x2, ↑|Hint|x1, ↓;x2, ↑〉 ,
〈x1, ↓;x2, ↓|Hint|x1, ↓;x2, ↓〉 = g↓↓δ(x1 − x2) . (2.2)

These interaction strengths are given by a function of the respective 3D scattering
lengths, a3D, via gi,j = 4~2a3D/ (1− Ca3D/d⊥)md2

⊥ for i, j =↓, ↑, where d⊥ =
√

~/mω⊥
quantifies the trap width in the transverse direction for a trap of frequency ω⊥, and
the constant C is given by C ≈ 1.4603 [41]. The interaction strengths can be tuned
experimentally by controlling the scattering lengths, a3D, and ω⊥. For simplicity, I
neglect the effects of the detuning by setting ∆ = 0 and restrict myself to the symmetric
situation, g↑↑ = g↓↓ = g, although it is technically straightforward to generalise to
arbitrary values of g↑↑ and g↓↓.

In the absence of Raman coupling, the Hamiltonian (2.1) is diagonal within the
pseudo-spin basis. As discussed in Ref. [139], the solutions are then provided by the
eigenstates of the bare harmonic oscillator Hamiltonian for two interacting particles
with an added momentum boost of

√
2~ksoc originating from the SOC. By using the

two-particle solution shown in the introduction (cf. Eqs. (1.9)(1.21)(1.11)),

Ψ(X, x) = Φm(X)φn(x), (2.3)

the eigenstates of the system are provided by

ψ↑↑(X, x) = e−i
√

2kRXΨ(X, x), (2.4a)

ψ↑↓(X, x) = e−i
√

2kRxΨ(X, x), (2.4b)

ψ↓↑(X, x) = ei
√

2kRxΨ(X, x), (2.4c)

ψ↓↓(X, x) = ei
√

2kRXΨ(X, x), (2.4d)

where the different pseudo-spin configurations gain momentum kicks in either centre-of-
mass (spin up-up and down-down) or relative (spin up-down and down-up) directions.
The eigenvalues of (2.4a) are all the same as Ẽ = ~ω + ~2k2

R/m.
Due to the bosonic nature of the atoms, the system is symmetric under exchange

for particles. To clarify the symmetries inherent in the system, let me introduce scaled
centre-of-mass (COM) and relative coordinates as x± = (x1±x2)/

√
2 and an alternative

pseudo-spin basis given by |↓↓〉, |↑↑〉, |S〉 = (|↓↑〉+|↑↓〉)/
√

2 and |A〉 = (|↓↑〉−|↑↓〉)/
√

2.
The first three states of this basis are symmetric under exchange of pseudo-spins,
and the last one is anti-symmetric. Therefore, the wave-functions of relative motion
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for the three symmetric basis states are symmetric, i.e. an even function of relative
coordinate x−. On the other hand, the wave-functions of the anti-symmetric basis have
to be an odd function of the relative coordinate x−. This restriction on the relative
coordinate component is included when diagonalising the Hamiltonian. Expansion of
the Hamiltonian in the harmonic oscillator basis makes it easier to treat this restriction.
Using this pseudo-spin basis and the harmonic oscillator basis instead of the position
representation, the Hamiltonian can be written as

H = ~ω
(
â†+â+ +

1

2

)
+ ~ω

(
â†−â− +

1

2

)
− iΛ

(
â†+ − â+

)
(|↓↓〉〈↓↓| − |↑↑〉〈↑↑|)− iΛ

(
â†− − â−

)
(|S〉〈A|+ |A〉〈S|)

+ Υ (|S〉〈↓↓|+ |↓↓〉〈S|+ |S〉〈↑↑|+ |↑↑〉〈S|) +Hint , (2.5)

where â†±, â± are the creation and annihilation operators for modes in the COM and
relative coordinate space, Λ = ~ksoc

√
~ω/m and Υ = ~Ω/

√
2. The basis states of this

Hamiltonian are labelled as |n+, n−, η〉 for the quantum numbers n+, n− of the COM
and relative motion and for the pseudo-spin states given by η ∈ {↓↓, S, ↑↑,A}. The
restriction of the symmetry on the wave-functions is rewritten as a restriction on the
quantum number n− of the relative motion, given by

n− =

{
2u for η ∈ {↓↓, S, ↑↑}
2u+ 1 for η ∈ {A}

, (2.6)

for integer u ≥ 0. Thus, the basis states are given by

|n, 2u, ↓↓〉 , |n, 2u, S〉 , |n, 2u, ↑↑〉 , |n, 2u+ 1,A〉 , (2.7)

for integer n ≥ 0. Note that there is no restriction on the COM. The eigenstates of
the Hamiltonian (2.5) can be written as

ψj =
∑

n+,n−,η

a(j)
n+,n−,η |n+, n−, η〉 (2.8)

for {n+, n−, η} ∈ {n, 2u, ↓↓}, {n, 2u, S}, {n, 2u, ↑↑}, {n, 2u+1,A}. The interaction part
of the Hamiltonian can be expanded within this basis and described using the eigen-
states φn(x) of the harmonic oscillator by

〈
n+, n−, η

∣∣Hint

∣∣n′+, n′−, η′〉 = gηδn+,n′+
δη,η′

∫
dx− δ(x1 − x2)φn−(x−)φn′−(x−)

=
gη√

2
δn+,n′+

δη,η′φn−(0)φn′−(0) , (2.9)

where gS = gA = g↑↓. It is worth noting that the states with η = A do not feel
the contact interaction because φn−(0) = 0 for n− being an odd number and that the
interactions in general lead to energy shifts and couplings between different basis states.
In Appendix A, I detail how to systematically construct a matrix representation of this
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Hamiltonian.
The expansion in the harmonic oscillator basis gives a clear and intuitive interpreta-

tion of the coupling between the states. Let me start with non-interacting bosons, where
the basis states can be classified by harmonic oscillator energies (rows in Fig. 2.1(a)).
The SOC terms generate two possible transitions. For states that have the same
pseudo-spins (|↓↓〉, |↑↑〉), the SOC terms couple states that have different COM quan-
tum numbers n+ and the same relative motion quantum number n−, for example,
|m+,m−, ↓↓〉 and |(m+ + 1),m−, ↓↓〉 for integers m+,m− ≥ 0. This leads to momen-
tum kicks for the COM motion of ei

√
2ksocx+ for |↓↓〉 states and e−i

√
2ksocx+ for |↑↑〉 states.

On the other hand, for states that have different pseudo-spins (|S〉, |A〉), the SOC terms
couple states that have the same COM quantum numbers n+ and different relative mo-
tion quantum numbers n−. This leads to momentum kicks for the relative motion of
ei
√

2ksocx− for (|S〉+ |A〉) /
√

2 = |↓↑〉 and e−i
√

2ksocx− for (|S〉 − |A〉) /
√

2 = |↑↓〉. Finally,
the Raman coupling couples symmetric pseudo-spin states, |↓↓〉, |↑↑〉, and |S〉.

Considering finite contact interactions, the interaction terms raise the energy levels
of |↓↓〉 and |↑↑〉 for finite g and those of |S〉 for finite g↑↓ (see Fig. 2.1(b,c)). Notice
that the interaction terms do not affect the |A〉 states as mentioned. These interaction
energy rises can be calculated exactly and are equal to 2ν~ω, where ν is given by
solving

−
√

2~ωaho

gij
=

Γ(−ν))

2Γ(−ν + 1/2)
(2.10)

for i, j =↓, ↑ with harmonic oscillator length aho =
√
~/mω [54]. As 2ν is always

smaller than 1, these interaction energy rises do not lead to level crossings or new
degeneracies.

The contact interaction terms can affect other couplings. It is shown that the
interaction terms cause avoided crossings in Ref. [139]. The generated energy shifts
compete with the SOC, and the resulting effects depend on whether their origin is due to
g or g↑↓ (see Fig. 2.1(b,c)). For non-zero g↑↓, the energy gaps for transitions from |S〉 to
|A〉 shrink, while the energy gaps for transitions from |A〉 to |S〉 grow. (see Fig. 2.1(b)).
On the other hand, for non-zero g, the energies of states with |↓↓〉 and |↑↑〉 all rise by
the same amount, which means that the energy gaps between the coupled states stay
fixed at ~ω (see Fig. 2.1(c)). Therefore, different kinds of contact interactions lead to
different effects depending on the energy-level structure. The consequences of these
will be explored below.

2.2 Results

In this section, I will discuss the ground state and the energy spectrum of the system for
the three cases of no interactions, finite anti-aligned interactions g↑↓, and finite aligned
interactions g. To interpret each of the ground states, I will look at the populations of
the different pseudo-spin states, their momentum and density correlations, and their
entanglement properties. For clarity, I will use scaled parameters for all plots by giving
all energies in units of ~ω, all momenta in units of ~/aho, and all interaction strengths
in units of ~ωaho. However, throughout the text I will work with unscaled variables.
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Figure 2.1: Energy level diagrams for Hamiltonian (2.5), using the harmonic oscillator
basis. The basis states are labelled as |n+, n−, η〉 for the quantum numbers n+, n− of
the COM and relative motion, and the pseudo-spin states given by η ∈ {↓↓, S, ↑↑
,A}. The black arrows represent transitions due to SOC, with full arrows exciting
COM motion and dashed arrows exciting relative motion. The gray dotted arrows
represent transitions due to Raman coupling. In panel (a) there are no interactions,
whereas in panels (b) interactions between different pseudo-spin states exist, and in
panel (c) interactions between the same pseudo-spin states exist. Level shifts due to
the interactions can be seen in panels (b,c).
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Before discussing two interacting bosons, I will introduce the ground state in the
presence of SOC in the mean-field regime, where three different ground state phases
exist [132, 146]: the stripe phase, the magnetised phase, and the single minimum phase.
The stripe phase is named after the fact that an interference pattern appears due to
superposition of positive and negative momenta [146]. In contrast, in the magnetised
phase the gas either fully adopts positive or negative momentum. In the single min-
imum phase, having zero momentum gives the lowest energy, and the spectrum only
possess a single minimum in the momentum. For non-interacting bosons, only the
stripe phase and the single minimum phase exist. In free space, the critical point be-
tween these two phases is given by ~Ωc = 2~2k2

soc/m, and it is known numerically that
for harmonically trapped systems the value of the critical point is lower [142].

2.2.1 Zero interactions (g = g↑↓ = 0)

In the non-interacting limit, the Hamiltonian of SO-coupled systems is analogous to
that of certain collective spin models, namely the Dicke model [147] and the Lipkin-
Meshkov-Glick (LMG) model [148]. The explicit connection between SO-coupled sys-
tems and the Dicke model was established in Refs. [149, 150], and there is a direct
relation between the Dicke and LMG models shown in, for example, Ref. [151]. In
the thermodynamic limit, the LMG model is a paradigmatic example of strongly in-
teracting systems, and the ground state exhibits a second order phase transition at a
critical value of an applied field [152, 153]. This corresponds to the transition between
the stripe phase and the single minimum phase for SO-coupled systems when changing
the Raman coupling strength. This transition in the LMG model is characterised by
a divergence in the second derivative of the ground state energy and is also signalled
by the lifting of existing degeneracies in the spectrum [154]. The LMG model is rep-
resented by a single large N -dimensional spin. In the thermodynamic limit, one phase
is effectively given by a double-well configuration possessing a ground state energy de-
generacy, while in the other phase a gapped spectrum exists. This feature is similar to
the form of the dispersion relation for the stripe phase and the single minimum phase.
Obviously, a two-particle system is far from the thermodynamic limit and therefore
cannot be expected to exhibit all characteristics of the transition, e.g. the discontinu-
ity in the second derivative of the energy [150]. Nevertheless, in the two SO-coupled
particle system, at a value Ω, the degeneracies in the two-particle spectrum are still
lifted (see Fig. 2.2 and cf. Fig. 1 of Ref. [154]). I define the value of Ω at which this
happens as Ωlift.

In the absence of Raman coupling, the ground state of the system is three-fold
degenerate: |↓↓〉 with COM motion eiksocx+ in the positive direction, |↑↑〉 with COM
motion e−iksocx+ in the negative direction, and the combination of |↓↑〉 and |↑↓〉 keeping
the symmetry of pseudo-spin states with finite relative motion. With Raman coupling
present, coherent coupling between the three states reduces the energy. In the strong
Raman coupling limit, Ω� Ωlift, the ground state becomes an equally-weighted super-
position of all pseudo-spin states, ψ ∼ (|↓↓〉 − |↓↑〉 − |↑↓〉+ |↑↑〉) /2.
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Figure 2.2: Energy differences Ej − E0 between the jth excited states (j = 1, 2, ...)
and the ground state, for fixed ksocaho = 5 and g/~ωaho = 0. (a) No interac-
tions, g↑↓/~ωaho = 0; (b) weak interactions, g↑↓/~ωaho = 1; (c) strong interactions,
g↑↓/~ωaho = 10. The dotted lines indicate the points at which the degeneracies are
lifted: (a) Ωlift/ω ' 38 for g↑↓/~ωaho = 0, (b) Ωlift/ω ' 41 for g↑↓/~ωaho = 1, and (c)
Ωlift/ω ' 38 for g↑↓/~ωaho = 10. The points are defined as the point where E0 and E1

start to deviate, (E1 − E0)/~ω & 10−2.

2.2.2 Anti-aligned interactions (g↑↓>0, g=0)

Next, I will consider finite interactions between anti-aligned spins g↑↓ > 0. The energy
level scheme is shown in Fig. 2.1(b), where one can see that the interaction lifts some
degeneracies as the energy of the basis state |S〉 increases. This degeneracy resolution
is also seen in Fig. 2.2(b,c).

I will consider Ω � Ωlift first. Without the interactions, the ground state is com-
posed of three degenerate states. For g↑↓ > 0, the ground state is the symmetric spin
state with positive momentum of the COM motion |↓↓〉 eiksocx+ and negative one of
|↑↑〉 e−iksocx+ . The first excited state is the symmetric superposition of the anti-aligned
states, each of which has non-zero relative motion, ψ ∼ |↓↑〉 eiksocx− + |↑↓〉 e−iksocx− .
The energy shift from the ground state energy is 2ν~ω, where ν is given by solving
Eq. (2.10) and determined by g↑↓. In the strong coupling regime Ω � Ωlift, the effect
of the interactions becomes negligible, and the ground state approaches that of no in-
teractions, which is an equally-weighted superposition of all the pseudo-spin states. In
the crossover regime between weak and strong couplings Ω, the spectrum has higher-
lying avoided crossings [139], and I will focus on this regime below. Note that Ωlift is
only slightly modified by the interactions (see Fig. 2.2(b,c)), due to the fact that the
resulting energy shift can be ∆E=~ω at most, which is small compared to the energy
scales given by the recoil energy ~2k2

soc/2m
2 and the Raman coupling ~Ω.

Let me look at the contribution to the ground state of each pseudo-spin state (see
Fig. 2.3). For weak interaction (g↑↓/~ωaho = 1, see panel (a)) and for weak Raman cou-
pling (Ω/ω . 10), the ground state is given approximately by ψ ∼ (|↓↓〉+ |↑↑〉) /

√
2.

This is reminiscent of the ground state in the stripe phase in BECs with SOC, which
is a single-particle state written as ψ↓(x)eiksocx |↓〉+ψ↑(x)e−iksocx |↑〉 [132]. For increas-
ing Raman coupling strength Ω, a larger component of anti-aligned states emerges in
the ground state, but I note that the symmetric states {|↓↓〉, |S〉, |↑↑〉} are dominant
(see inset in panel (a)). This behaviour is also seen for systems with strong interac-
tions (g↑↓/~ωaho = 10, see panel (b)), but one also can see that components of the
aligned states (|↓↓〉, |↑↑〉) drop quickly for increasing Ω such that the population of
the anti-aligned states (|↓↑〉, |↑↓〉) becomes larger. This occurs around the value of
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Figure 2.3: Population of each pseudo-spin state of the ground state with ksocaho = 5
fixed for (a) weak interactions, g↑↓/~ωaho = 1 and (b) strong interactions, g↑↓/~ωaho =
10. The black dotted lines indicate Ωlift/ω ' 41 in (a) and Ωlift/ω ' 38 in (b). The
insets show the population of the states |S〉 (red line) and |A〉 (pink dotted line) using
the left axis and the interaction energy (black dashed line) using the right axis. (c)
Population difference

∫
dx1

∫
dx2 (|ψ↓↑|2 + |ψ↑↓|2−|ψ↓↓|2−|ψ↑↑|2) of the ground state as

a function of Ω and g↑↓. Only positive values, where the anti-aligned states dominate,
are shown.

Ω = Ωlift. This inversion is seen over a wide range of strong interactions and appears
for g↑↓/~ωaho & 2 (see panel (c)). This is not analogous to any phases in BECs with
SOC in the weakly interacting mean-field regime. Increasing Ω even further, the inver-
sion is getting smaller, and the ground state is becoming close to the ground state of
the single minimum phase.

One may be tempted to think that the ground state contains more interaction
energy when larger contribution of the anti-aligned states |↓↑〉 and |↑↓〉 are present.
However, as shown in the inset in panel (b), the increase in the population from the
anti-aligned states is due to an increase in the population of the anti-symmetric state
|A〉, which does not feel the interaction. As shown in insets in panels (a,b), when the
anti-symmetric state |A〉 emerges, the interaction energy decreases. This population
imbalance inversion is a few-body effect, and one can also see a sign of this in Ref. [140].
Note that the inversion is not seen when treating single-particle states or BECs within
the mean-field approximation. I therefore refer to the unique regime after this inversion
as the AS ground state phase, as the anti-symmetric state is the dominant contribution.

The crossover from the ground state resembling the stripe phase to the AS ground
state is also visible in the overall momentum and density distribution (see Fig. 2.4).
For weak interaction (g↑↓/~ωaho = 1, see Fig. 2.4(a,b)), when the AS state is not seen,
the ground state momentum distribution is dominated by a finite COM momentum
for Ω.Ωlift and Ω&Ωlift both. However, for strong interactions (g↑↓/~ωaho = 10, see
Fig. 2.4(c,d)), the momentum distribution has equal contributions from the COM and
relative momenta for Ω&Ωlift, which means that significant amounts of the anti-aligned
states |↓↑〉 and |↑↓〉 appear. On the other hand, the density distribution exhibits an
interference pattern along the COM coordinate and a bisection due to the contact
interaction at x− = 0 for Ω . Ωlift (see Fig. 2.4(e,g)). Even for increasing Ω, the
interference pattern remains for weak interactions (see panel (f)). However, for strong
interactions, a more pronounced pattern along the relative coordinate appears while
the interference pattern disappears along the COM coordinate (see panel (h)). These
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Figure 2.4: Overall momentum distributions (a-d) and overall density distributions
(e-h) for weak interaction g↑↓/~ωaho = 1 (upper row) and for strong interaction
g↑↓/~ωaho = 10 (lower row) with ksocaho = 5 fixed. In panels (a,c,e,g), Ω/ω = 35,
and in panels (b,d,f,h) Ω/ω = 42, which are below and above the value for which the
inversion occurs.

changes in the density and momentum distributions imply the appearance of the AS
ground state.

Next, I will discuss non-classical correlations in the system. First, I will look at the
concurrence as the entanglement measure of the pseudo-spin degree of freedom, which
is constructed from the density matrix after tracing over the real space components.
Since the wave-function of the ground state is written as |ψ〉 =

∑
χ φχ(x1, x2) |χ〉 for

χ ∈ {↓↓, ↓↑, ↑↓, ↑↑}, the density matrix can be written as ρ = |ψ〉〈ψ|, and the reduced
density matrix after tracing over the position space is given by

ρspin =


θ β β γ
β ε µ β
β µ ε β
γ β β θ

 . (2.11)

The inner products of the two aligned components are given by θ = 〈φ↓↓|φ↓↓〉 =
〈φ↑↑|φ↑↑〉 and γ = 〈φ↓↓|φ↑↑〉 = 〈φ↑↑|φ↓↓〉 due to the symmetry, while the inner prod-
ucts of two anti-aligned components are given by ε = 〈φ↓↑|φ↓↑〉 = 〈φ↑↓|φ↑↓〉 and
µ = 〈φ↓↑|φ↑↓〉 = 〈φ↑↓|φ↓↑〉. The diagonal elements of the density matrix are given
by the population of each pseudo-spin state. Finally, the inner products of one aligned
and one anti-aligned component are all equivalent due to the symmetry and given by
β = 〈φ↓↓|φ↓↑〉 = 〈φ↓↓|φ↑↓〉 = 〈φ↑↑|φ↑↓〉 = 〈φ↑↑|φ↓↑〉 and the same for their Hermitian
conjugates.

The concurrence is given as

Cspin = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} , (2.12)

where the λj are the eigenvalues of ρspin(σy ⊗ σy)ρ
∗
spin(σy ⊗ σy) in descending order

for j = 1, 2, 3, 4 [155, 156]. For separable states, the concurrence is zero, and for
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Figure 2.5: (a) Concurrence and (b) vNE of the ground state for a range of ksocaho

with g↑↓/~ωaho = 10 fixed. The red lines indicate the value of Ωlift for each ksoc, and
in (a) the white area corresponds to Cspin = 0. Even though some values of Cspin = 0
are as small as 10−4, they do not come from numerical errors since the limitation of
the numerically calculation is higher order than 10−4. (c) vNE as a function of Ω for
ksocaho = 5 fixed (black line). The coloured, dotted lines represent the values of the
eigenvalues αj of the reduced density matrix ρspin for j = 1, 2, 3, 4. The black dotted
line indicates Ωlift/ω ' 38.

maximally entangled states it is equal to 1. I plot the concurrence as a function of
Raman coupling Ω and SOC strength ksoc with contact interaction strength fixed as
g↑↑/~ωaho = 10 in Fig. 2.5(a). In the limit of ksoc,Ω→ 0, the ground state is given by
(|↓↓〉+ |↑↑〉) /

√
2, which results in Cspin→1 since the ground state corresponds to the

maximally entangled Bell state. Notice that in this limit the diagonal terms θ and the
off-diagonal terms γ of the reduced density matrix (2.11) go to 1/2, and the rest of the
inner products disappear. The off-diagonal terms γ show the correlation between |↓↓〉
and |↑↑〉. For finite ksoc, the entanglement decays because the momentum provided
by the SOC suppresses the off-diagonal terms γ and kills the correlation. The SOC
term acts as an effective dephasing channel on the pseudo-spin states causing the deco-
herences while the diagonal terms, in other words, the populations remain unaffected.
As a remarkable feature, the entanglement suddenly vanishes. This phenomenon is
sometimes referred to as entanglement sudden death [157]. The red line in Fig. 2.5(a)
indicates the values at which the energy degeneracies are lifted. The behaviour of the
entanglement is not consistent with the red line, in short the pseudo-spin entangle-
ment is not a useful indicator of the population inversion. On the other hand, it is
worth looking at entanglement between the pseudo-spin space and real space as will be
shown below, because the effective dephasing caused by the SOC implies that strong
correlations are established between them.

As the overall state is pure, the von Neumann entropy (vNE) of the reduced density
matrix ρspin can be used as the measure of entanglement between the pseudo-spin space
and real space. It is defined as

S[ρspin] = −Tr [ρspin log2 ρspin]

= −
4∑
j=1

αj log2 αj, (2.13)

where αj is the jth eigenvalue of the reduced density matrix, ρspinφj = αjφj. The be-
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haviour of the vNE can be connected to the populations of the pseudo-spins through the
eigenvalues of ρspin (see Fig. 2.5(c)). The two eigenvalues can be explicitely calculated as
α1 = θ−γ = 〈φ↓↓|φ↓↓〉−〈φ↓↓|φ↑↑〉 (yellow dotted) and α2 = ε−µ = 〈φ↓↑|φ↓↑〉−〈φ↓↑|φ↑↓〉
(orange dotted). Also, noticing that α3 ≈ 0 (blue dotted) allows one to approximate
the last eigenvalue as α4 ≈ θ+ γ + ε+ µ = 〈φ↓↓|φ↓↓〉+ 〈φ↓↓|φ↑↑〉+ 〈φ↓↑|φ↓↑〉+ 〈φ↓↑|φ↑↓〉
(purple dotted). It is interesting to see how the vNE reacts to changes of the Raman
coupling strength Ω. In the limit of Ω� Ωlift, the vNE remains close to 1, which is half
its maximal value (see Fig. 2.5(c)). That is predictable since the |↓↓〉 and |↑↑〉 states
which dominate the system are linked to the COM motion in the positive and negative
directions, respectively, while the other states, |↓↑〉 and |↑↓〉, have lower populations
and do not contribute the correlations. When Ω is close to Ωlift, a kink appears in
the behaviour of the vNE (see Fig. 2.5(c)), which can be linked to the increase of the
population of the anti-symmetric state |A〉. This is also signalled by an increase of the
eigenvalue α2. For Ω & Ωlift, the vNE decreases dramatically (the dotted black line in
Fig. 2.5(c) and the red line in Fig. 2.5(b) indicate Ω = Ωlift). Finally, I plot the vNE
as a function of ksoc (see Fig. 2.5(b)). When the wavelength of the SOC is on the order
of the width of the ground state as

√
2ksoc ∼ 1/aho, the vNE becomes maximal due to

an enhanced coupling between the spin states as a result of the finite system size.

2.2.3 Aligned interaction, g > 0, g↑↓ = 0

In this section, I investigate the case where only the aligned interactions are finite
while the anti-aligned interactions are zero, as shown in Fig. 2.1(c). In this case, the
basis states |↓↓〉 and |↑↑〉 are shifted in energy, while the symmetric |S〉 and anti-
symmetric |A〉 states are unaffected. The energy spectrum is plotted in Fig. 2.6(a,b),
and one can see that the ground state is non-degenerate for all values of Ω. For small
Ω, the ground state is composed mostly of anti-aligned pseudo-spin states, given as
ψ ∼ |↓↑〉 eiksocx−+|↑↓〉 e−iksocx− . The first excited states are composed of two degenerate
states with finite COM momentum, ψ ∼ |↓↓〉 eiksocx+ and ψ ∼ |↑↑〉 e−iksocx+ . This
degeneracy is resolved at a critical point, which is similar to the degeneracy resolution
for the anti-aligned interactions. For weak aligned interactions (g/~ωaho = 0.4, see
the inset in Fig. 2.6(a)), an avoided crossing is seen between the ground state and
the first excited states when Ω/ω ' Ωlift/ω ' 39. The avoided crossing is generated
by the competition between the interaction and Raman coupling, each of which tries
to shift the energy in the opposite directions [139]. For stronger aligned interactions
(g/~ωasoc = 1.5, see Fig. 2.6(b)), the energy gap at the avoided crossing becomes larger
since the contact interactions push the excited states to higher energies. The presence
of the avoided crossing has an impact on the population imbalance after the population
inversion. The inversion from the anti-aligned basis states to the aligned states occurs,
but the behaviour is sharper than the case of finite aligned interactions (see Fig. 2.6(c)).
Although the inversion is driven by the interactions, notice that it appears even for
weak interactions such as g/~ωasoc = 0.5 and decays for increasing g (see Fig. 2.6(d)).
This is a result of the fact that non-zero g shifts energy levels differently from non-zero
g↑↓. For non-zero g↑↓, the |A〉 state does not feel the interactions, and the inversion
occurs and populates the |A〉 state to reduce the interaction energy. For non-zero
g, that is not the case anymore, and the |↓↓〉 and |↑↑〉 states both contribute to the
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Figure 2.6: (a,b) Energy differences Ej − E0 between the jth excited states (j =
1, 2, ...) and the ground state with ksocaho = 5 fixed for g/~ωaho = 0.4, 1.5, respectively.
The dotted lines represent Ωlift/ω ' 39, which is the value of Ωlift/ω where E1 and
E2 starts to deviate, (E2 − E1)/~ω & 10−2. This is very close to the point where
the avoided crossing between the ground state and the first excited state appears. (c)
Population of each pseudo-spin state of the ground state with g/~ωasoc = 0.4 fixed. (d)
Population difference

∫
dx1

∫
dx2 (|ψ↓↑|2 + |ψ↑↓|2 − |ψ↓↓|2 − |ψ↑↑|2) of the ground state

as a function of Ω and g. Only positive values, where the aligned states dominate, are
shown.

interaction energy. Therefore, for larger g, the inversion is no longer favourable and
disappears.

One can also see the effect of the inversion in the overall momentum distribution
(see Fig. 2.7(a,b)). For Ω � Ωlift, the ground state is mostly composed of the anti-
aligned states |↓↑〉 and |↑↓〉, both of which acquire relative momentum due to the SOC.
When Ω ' Ωlift and the population inversion occurs, the ground state loses much of
the relative momentum and obtains COM momentum since there is more population
of |↓↓〉 and |↑↑〉 in the ground state. This sign can be captured in the overall density
distribution exhibiting a reorientation of the interference fringes from the relative to
the COM direction in the crossover region (see Figs. 2.7(c,d)).

The concurrence Cspin and the vNE S[ρspin] are also effected by the inversion
(g/~ωaho = 0.4, where the inversion is large, see Fig. 2.8(a,b)). Similar to the case
of finite anti-aligned interactions, the concurrence does not react to the lifting of the
energy degeneracy, but the vNE drops significantly at Ω ' Ωlift. Furthermore, a sharp
spike shows up in the vNE whenever Ω ' Ωlift (ksocaho = 5, see Fig. 2.8(c)). That
is caused by the avoided crossing shown in Fig. 2.6(a), where the populations of the
|↓↓〉 and |↑↑〉 states suddenly increase and the other components are suppressed (see
Fig. 2.6(c)). This is not seen for finite anti-aligned interactions and shows how the crit-
ical point can enhance correlations between interacting pseudo-spin components due
to the competition between SOC and contact interactions.

2.3 Conclusions

In this work, I have studied two interacting particles with SOC in a harmonic potential.
The finite interactions shift the energy levels and lift some energy degeneracies that are
present in the energy spectrum for no interaction. I have started with finite interactions
between the anti-aligned states and investigated the ground state. In the presence
of the strong interactions, a unique ground state appears which contains the anti-
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Figure 2.7: Overall momentum distributions (a,b) and density distributions (c,d) for
g/~ωaho = 0.4 with ksocaho = 5 fixed. In panels (a,c), Ω/ω = 36, and in panels (c,d)
Ω/ω = 39, which are just below and above the value for which the inversion occurs,
respectively.

Figure 2.8: (a) Concurrence and (b) vNE of the ground state for a range of ksoc

with g/~ωaho = 0.4 fixed. The white domain shows Cspin = 0. The red lines represent
Ωlift/ω. (c) vNE with ksocaho = 5 fixed. The maximal value is given by max[S[ρspin]] =
2. The coloured, dotted lines represent the eigenvalues αj of the reduced density matrix
ρspin for j = 1, 2, 3, 4. The black dotted line indicates Ωlift/ω ' 39.

symmetric spin state. The crossover to this new type of ground state can be observed
though changes in the overall density and momentum distributions but also in the
entanglement between the pseudo-spin and the real space. In the opposite case where
the interactions between aligned states are non-zero, a similar inversion can be seen
although the inversion disappears for strong interactions. In this work, I have studied
a wide range of parameters that significantly extends previous work [140]. Considering
the recent progress in controlling few-particle systems experimentally with high fidelity
[158, 159] and new schemes to measure their momentum distribution [160], I believe
that the observation of these results such as the emergence of the population inversion
is experimentally possible.

I have aimed to bridge the gap between single-particle and many-body systems.
The results have revealed the role of symmetries in the energetic and entanglement
characteristics of the SO-coupled systems. In addition, the analytic results can be
used to investigate non-equilibrium dynamics and will, for example, allow one to sim-
ulate the dynamical generation of entanglement. This work has shown that there is a
trade-off between the loss of entanglement between pseudo-spins and the generation of
entanglement between pseudo-spin and real space due to the SOC. This implies that
SOC can be used to create or distribute entanglement in certain degrees of freedom
and can work as a control parameter of the dynamical process.

While the population inversion originates from strong interactions, it is a question
if the inversion can be still seen for increasing the particle number. Since the existence
of the anti-symmetric state appears for finite anti-aligned interactions, clearly the sym-
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metry of the system in terms of particle exchange is a key point. Thus, it is not clear
whether the population inversion also appears in larger systems which have different
symmetries, and it is not straightforward to make general predictions.

SOC has attracted attention not only for comparison with condensed matter physics
[46, 47] but also for quantum metrology [161–165] and transport. For example, non-
adiabatic transport with spin flips using time-dependent SOC has been proposed [166],
which revealed a possibility that SOC can lead to spatially-separated states due to
coupling between their pseudo-spin and momentum. Since the approach I used here
can treat strong interaction regimes, it would be interesting to study the generation
of strongly spatial-entangled state such as EPR states. For example, one can create
mode entanglement with contact interactions and then tune SOC to move different
modes toward different directions such that the mode entanglement becomes spatial
entanglement. Such spatial entanglement can be used for interferometers [167, 168].
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Chapter 3

Dynamical phase transitions in
one-dimensional ultra-cold quantum
gases: from the continuum to the
lattice

The realisation of isolated system of cold atoms has motivated many investigations
into non-equilibrium phenomena and quantum thermodynamics, which are usually
inaccessible in conventional condensed matter physics [9, 169]. Particularly, the non-
equilibrium dynamics of a one-dimensional Bose gas has attracted strong attention [58]
and inspired work on the thermalisation of observables in closed quantum systems [170–
172]. Greiner et al. performed a pioneering experiment in isolated quantum systems
[37], where the system was driven from a superfluid phase to an insulating phase, and
they observed a dynamical collapse and revival of the interference peaks in momentum
space. In this chapter, I focus on this non-trivial non-equilibrium dynamics and study
its relation with theoretical work that indicates the emergence of dynamical phase tran-
sitions (DPTs) in quenched dynamics. The term DPTs was introduced by Heyl et al. in
Ref. [173], where they investigated quenched dynamics in the paradigmatic transverse
Ising model.

The idea of DPTs is complementary to the phenomenon of equilibrium phase tran-
sitions (EPTs). In investigating EPTs, it is convenient to use the partition function
Z = Tr

[
e−βH

]
, with β = 1/kBT being the inverse temperature. The locations of the

zeros of the partition function Z are known as Fisher zeros. Since the free energy is
defined as f(z) = − limL→∞ (lnZ) /L when taking the system size L to infinity, the
free energy diverges at the Fisher zeros and, this is the indication of a phase transition.
Heyl et al. proposed to expand the β in the partition function into the complex plane
as β → it so that the partition function Z and the free energy f(z) are analogous to
the survival amplitude

G(t) = 〈Ψ0|e−iHt|Ψ0〉 (3.1)

and the rate function
f(t) = − 1

L
lnG(t), (3.2)

37
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Figure 3.1: Quench to drive the system from the superfluid phase to the insulating
phase.

respectively. They considered the one-dimensional transverse-field Ising model and
confirmed that, in changing a characteristic parameter across different phases, critical
times emerge at which the survival amplitude (3.1) becomes zero and the rate func-
tion (3.2) shows non-analytical behaviours. Since the survival amplitude (3.1) can be
interpreted as the overlap between the initial state and the time-evolved state, the phase
transitions triggered by dynamical parameter changes are indicated by the orthogonal-
ity between the initial state and the time-evolved state, and are named dynamical
phase transitions.

The work [173] has connected this non-analyticity with the occurrence of phase
transitions and claimed the connection as the indication of DPT. Since the work was
published, DPTs have been studied in other spin models, however there is still a lack of
generality in research of DPTs. That is, it is necessary to investigate DPTs in systems
that are not spin models but for example continuous models where phase transitions
such as the superfluid to Mott insulator can occur [37, 58].

In this work, I have considered a one-dimensional system of strongly interacting
particles in the Tonks-Girardeau (TG) limit (cf. Sec. 1.1.3). I drive the system to see
non-equilibrium dynamics by suddenly switching on a lattice potential, therefore drive
the initial superfluid gas into an insulating phase via the so-called pinning transition
[38] (see Fig. 3.1). TG gases allow one to map the system onto free fermions using the
Bose-Fermi mapping theorem [61] and describe many-particle quantities using only the
single-particle states.

In Sec. 3.1 I review the basic ideas relating to DPTs and in particular the connection
with dynamical restoration of symmetry. In Sec. 3.2 I present results for the continuum
model and the discrete model, and in Sec. 3.3 I follow this with an in-depth discussion
of the lattice model. Finally, in Sec. 3.4, I conclude with an overall discussion about
some of the issues raised.

This project has been accomplished in collaboration with Thomás Fogarty, Thomas
Busch, Alessandro Silva, and John Goold. I have been involved with comprehensive
discussion about this project and contributed to calculations on the system of TG gas
given in Sec. 3.2.1. The work presented in this chapter has been published in the New
Journal of Physics 19, 113018 (2017) [2].

3.1 Dynamical phase transition
There is an interesting connection between orthogonality and dynamical restoration of
symmetry [174, 175]. Suppose that a system has an Ns-fold symmetry. Symmetry-
related ground states are described as {|Ψj〉} for j = 0, 1, · · · , Ns − 1, and the initial
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state is given by |Ψ0〉. The probability that the time-evolved state remains in the
ground state manifold is defined as

P (t) =
Ns−1∑
j=0

∣∣ 〈Ψj|e−iHt|Ψ0〉
∣∣2 . (3.3)

The probability P (t) has singularities when the system traverses the boundary between
different symmetry sectors. To see this case, let me consider Ns = 2 for simplicity. The
rate functions in the two symmetry sectors are defined through

〈Ψj|e−iHt|Ψ0〉 ≡ e−Lfj(t) (3.4)

for j = 0, 1. To see the amplitude of each term in P (t), let me focus on the real valued
rate function as lj(t) = Re[fj(t)] since the imaginary part shows just phase oscillation.
When l0(t) > l1(t), the terms associated with l1(t) are dominant in P (t), while the
other terms related to l1(t) are dominant when l0(t) < l1(t). At a certain time t∗ when
l0(t) = l1(t), the symmetry is dynamically restored, i.e. the probability that the time-
evolved state is in one of the symmetry sectors is the same as the probability that it is
in the other sector. At the time t∗, cusp singularities appear in P (t), and a connection
between DPTs and standard symmetry breaking in the steady state can be established
[175].

The fact that the time-evolved state is orthogonal to the initial state is, however,
not generally related to the dynamical restoration of symmetry. They only correspond
to each other for certain initial states. Suppose that the initial state is given by a cat
state

|0〉 ≡ 1√
Ns

Ns−1∑
j=0

|Ψj〉 , (3.5)

which is a linear superposition of the symmetry-related ground states. The survival
amplitude is then provided by

G(t) = 〈0|e−iHt|0〉

=
1

Ns

∑
j,k

e−Lfj,k(t), (3.6)

where I define the generic rate function as

〈Ψj|e−iHt|Ψk〉 ≡ e−Lfj,k(t). (3.7)

Note that the above function fj,k(t) is different from the rate function (3.4) since
the initial state is not necessarily |Ψ0〉. In the thermodynamic limit (L → ∞), the
term with the smallest real part of fj,k(t) dominates G(t), and therefore the survival
amplitude corresponds to the probability P (t),

lim
L→∞

|G(t)|2 = P (t), (3.8)



40
Dynamical phase transitions in one-dimensional ultra-cold quantum gases:

from the continuum to the lattice

This means that the return probability of the state given in Eq. (3.5) is equivalent to
the probability that the time-evolved state remains in the groud state manifold in the
thermodynamic limit. In other words, one can confirm the dynamical restoration by
looking at the orthogonality.

An interesting question of symmetries is whether properties such as the orthogonal-
ity and the dynamical restoration are reflected in local measurements or observables.
For example, when the system crosses from one phase to another, the time-evolved
state is orthogonal to the ground state of the initial Hamiltonian. In this case, the
orthogonality is indicated by singularities in G(t) and f(t) (or equivalently l(t)), and
the question is whether such singularities can be detected by local observables. While
previous works have explored the connection between the magnetisation and DPTs
using a spin chain model with long range interactions [176, 177], in this work I will
consider a different approach, using a realistic system of cold atoms where a measurable
observable is their momentum distribution.

3.2 Models

I consider a continuous model and a discrete model both of which exhibit a transition
between a superfluid phase and an insulator phase and are exactly solvable. The first
one is the TG gas [61], a one-dimensional system of strongly interacting bosons, and the
second one is the tight-binding model for a system of hard-core bosons. The continuous
TG is considered in the presence of an optical lattice, whereas the tight-binding model
is considered at half filling with a staggered field.

3.2.1 Continuous model: Tonks-Girardeau gas

The considered system is a one-dimensional gas of N bosons trapped in a box potential.
The Hamiltonian is given by

H =
N∑
j=1

(
−~2

2m

d2

dx2
+ Vb(xj) + V (xj)

)
+ g1D

∑
j>l

δ(xj − xl), (3.9)

where m is the mass of each particle, g1D is the strength of the contact interactions,
and Vb(x) is a box potential of length L. I also add a lattice potential V (x), given by

V (x) = V0 cos2 k0x, (3.10)

where V0 is the depth of the lattice and k0 is the wavevector given by k0 = Mπ/L
with M being the number of wells in the lattice. When the lattice is much deeper
than the recoil energy, V0 � ER = ~2k2

0/(2m), the system can be mapped onto the
Bose-Hubbard model [9]. In the opposite limit, V0 � ER, with strong interaction, the
system can be mapped onto the sine-Gordon model, preserving the transition between
a superfluid phase and an insulator phase when the number of the lattice wells is com-
mensurate with the particle number [178]. This transition is called pinning transition
and has been confirmed experimentally [38].
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It is worth noting that, as will be introduced below, the continuous model provides
some convenient ways to describe the time-evolved state numerically, but few analytical
solutions have been reported. One example of the analytical approaches is introduced
in Ref. [179], which shows the analytical solution of the eigenstates of the pinning
system (3.9) in the TG limit by using the Mathieu functions, although the solution
includes an infinite sum to compute and is not really easy to implement.

To solve the Hamiltonian (3.9) using the mapping theorem, I consider the TG limit,
g1D →∞. In this case, the infinitely strong interaction restricts bosons from occupying
the same space, such that one can demand

Ψ(x1, x2, . . . , xN) = 0, (3.11)

if |xi − xj| = 0 for 1 ≤ i < j ≤ N . This isolates each of bosons in real space, which
leads to a pinning transition for any infinitesimal lattice depth. The condition (3.11) is
equivalent to the Pauli principle for the spinless fermions, allowing one to map the state
of the many-body TG gas to the single-particle states of a fermionic gas (Bose-Fermi
mapping theorem) [61]. The solution that satisfies the constraint (3.11) is therefore
the fermionic wave-function subject to an operator that restores the bosonic symmetry
under particle exchange:

Ψ(x1, x2, . . . , xN) =
∏

1≤i<j≤N

sgn(xi − xj)ΨF(x1, x2, . . . , xN), (3.12)

where
ΨF(x1, x2, . . . , xN) =

1√
N !

N

det
n,j

[ψn(xj)] (3.13)

is the Slater determinant of the single-particle states. An advantage of the mapping
theorem is that one can describe the many-body system using only single-particle states
(cf. 1.1.3).

The mapping theorem also works when the wave-functions have time-dependence,
and provides a convenient formulation of the rate function l(t), which is provided by

l(t) = − 1

L
ln
[∣∣ 〈Ψ0|e−iHf t|Ψ0〉

∣∣2]
= − 1

L
ln
[
det |Amn(t)|2

]
(3.14)

with
Amn(t) =

∫
dx ψ∗m(x, 0)ψn(x, t) (3.15)

being the matrix elements of the overlap between single-particle states of the initial
state and the quenched state. The mapping theorem therefore allows one to not deal
with many-body wave-functions but with single-particle states instead, making it easy
to compute l(t) for large particle number. It is worth noting that similar quantities to
Eq. (3.14) have been used to characterise the tunnelling decay in a TG gas [180, 181].

Another quantity I will use to characterise the quenched dynamics is the momentum
distribution n(p, t), which is defined as the Fourier transform of the reduced single-
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particle density matrix (RSPDM),

n(p, t) =
1

2π

∫
dxdx′ eip(x−x

′)ρ(x, x′, t), (3.16)

where the RSPDM is defined as

ρ(x, x′, t) = N

∫
dx2, . . . , dxN Ψ∗(x, x2, . . . , xN , t)Ψ(x′, x2, . . . , xN , t). (3.17)

The mapping theorem also gives a convenient way to calculate the RSPDM ρ(x, x′, t)
[66]. Since the many-body wave-function can be written as in Eq. (3.12), the RSPDM
can be described as

ρ(x, x′, t) =
N∑

i,j=1

ψ∗i (x, t)Aij(x, x
′, t)ψj(x

′, t), (3.18)

where the matrix A is written as

A(x, x′, t) =
(
P−1

)T
detP (3.19)

with

Pij(x, x
′, t) = δi,j − 2

∫ x′

x

dy ψ∗i (y, t)ψj(y, t), (3.20)

where one assumes x < x′ without loss of generality. Since the momentum distribution
is commonly measured in experiments, I use n(p, t) as the physical observable to capture
singularities which occur due to the dynamical orthogonality.

I consider three types of quenches: switching the lattice on, switching the lattice
off, and changing the sign of the lattice strength. In quenching the lattice on, if the
the number of the lattice wells coincides with the particle number, M = N , one sees
temporal orthogonality between a superfluid phase and an insulating phase. In fact,
switching the lattice on to a depth of Vf = ER, non-analytical behaviours appear in
the rate function l(t) at t/TR = 1/2 + α with α being a non-negative integer and
TR = 4π/Vf being the time period (see Fig. 3.2(a)). The momentum distribution
shows initially a sharp peak at p = 0 (see Fig. 3.2(c)), which is a feature of the TG
gas in an infinite well [182] and a characteristic of the superfluid-like phase. The peak
then disappears at some later time (see Fig. 3.2(b,c)), and the momentum distribution
broadens overall, which shows the transition to the insulating phase. The peak then
oscillates as the system oscillates between the superfluid and the insulating phases.
Note that the peak reaches the minimum point earlier than the first non-analytical
point (see the behabiour at the solid and dashed vertical lines in Fig. 3.2(b)). This
difference in time gets more significant at later times, which means that, while the non-
analytical behaviour of l(t) signalling the orthogonality and the collapse/revival cycle
of the momentum distribution have a similar oscillation, they do not have the same
periodicity. When quenching to a deeper lattice, the oscillations in the two quantities
are more synchronised, as will be discussed in Sec. 3.2.2.

Next, I focus on switching the lattice off, i.e. from Vi > 0 to Vf = 0, and calculate
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Figure 3.2: Quenched dynamics starting with a conducting phase Vi = 0 to an
insulating phase Vf = ER in a system of N = 100. In (a) the rate function l(t) is shown
and in (b) the peak of the momentum distribution n(p, t) at p = 0 is represented with
time scaled by the periodic time TR = 4π/Vf . The solid vertical lines clarify when l(t)
shows non-analytical behaviours, and the dashed vertical lines clarify when l(t) shows
minima. For the times marked by symbols in (a,b), the momentum distribution n(p, t)
is plotted in (c). The black solid lines show n(p, t) when the peak of the momentum has
minima or maxima in (b), and the red dotted lines show n(p, t) when l(t) has minima
or maxima in (a). The gray solid lines are the momentum distribution in the insulating
phase in equilibrium.
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the rate function l(t) for different particle numbers N (see Fig. 3.3). I rescale time
t with the revival time Nπ/2ER, and a revival in time can be seen at t = 1/2 + α
with α being a non-negative integer. The behaviour of the revival seems non-analytic,
however, this does not indicate the existence of DPTs. Rather, this is because the
density waves propagate and interfere at the centre, which is well studied in the same
model as the dynamical de-pinning effect [179]. This effect is the result of the finite
system size and disappears in the thermodynamic limit (L → ∞), suggesting that
DPTs do not occur in the transition to the superfluid phase. I discuss this more in
Sec. 3.2.2.

Lastly, I look into cases where the sign of the lattice strength changes, i.e. from
Vi = V to Vf = −V . This means that the system is going through the superfluid phase
at V = 0. In this case, the dynamics is not governed by a time-scale realted to the
lattice depth |V |. The rate function l(t) and the peak of the momentum distribution
are decaying more quickly than the other two cases and do not show any obvious
relation between non-analytical behaviours of l(t) and the momentum distribution (see
Fig. 3.4(a,b)).

3.2.2 Discrete model: Tight-binding model

The model I consider next is composed of N hard-core bosons in a staggered onsite
potential, for which the Hamiltonian is given by

H = J
N∑
j=1

(
b†jbj+1 + h.c.

)
+

N∑
j=1

V (−1)jb†jbj, (3.21)

where bj (b†j) is the annihilation (creation) operator of bosons at site j, J is the tun-
nelling strength, N is the particle number, and V is the strength of the onsite potential.
This discrete model contains essentially the same physics as the continuous model (TG
gas), but an advantage over the TG gas is that this discrete model can be solved
analytically.

The solution is given by a Jordan-Wigner transformation b†j = eiπ
∑
l<j a

†
l aja†j and

using Fourier transformed variables aj =
∑

k eikjak/
√
N [183]. The Hamiltonian is

given by
H =

∑
|k|<π/2

Ψ†kĤkΨk, (3.22)

where k = π(2n + 1)/N with n = 0, . . . , N/4 − 1, Ψk = (ak, ak+π)T , and Ĥk =
2J cos kσz +V σy, with σj being Pauli matrices. The Hamiltonian can be diagonalised
in terms of the variables Γk = eiθkσ

y
Ψk with tan 2θk = V/(2 cos k). The energy spec-

trum is characterised by the dispersion relation εk =
√

(2J cos k)2 + V 2. It is worth
noting that this model can be also solved when an external flux is present [184]. I
consider half filling, where the spectrum is gapped if V 6= 0 and otherwise the gap
closes at k = ±π/2. In other words, for V 6= 0 the system belongs to an insulating
charge density wave phase, and for V = 0 the system belongs to a superfluid phase. I
consider the three cases investigated in Sec. 3.2.1: transition from the superfluid phase
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Figure 3.3: The rate function l(t) during a quenched dynamics from an insulating
phase (Vi = ER) to a superfluid phase (Vi = 0) for different particle number N =
40, 100, 200. The time is rescaled by the revival time in the box, Nπ/2ER.

Figure 3.4: (a) The rate function l(t) and (b) the peak of the momentum distribution
n(p, t) at p = 0 during a quenched dynamics from an insulating phase Vt = 2ER to
an insulating phase Vt = −2ER for particle number N = 100. The time t is scaled
by the periodic time TR = 4π/Vf . The solid vertical lines clarify when non-analytical
behaviours in l(t) come out, and the dashed vertical lines indicate the minimum of l(t).
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to the insulator phase, transition to the insulator phase from the superfluid phase, and
transition within the insulating phase. Below I consider J = 1 for simplicity.

The survival amplitude (3.1) can be computed using the Bogoliubov rotation which
connects the old quasiparticles to the new ones, Γk(Vf) = ei∆θkσyΓk(Vi), where ∆θk =
θk(Vf)− θk(Vi). I write the ground state in a potential of depth Vi as

|0〉Vi =
1

N

∏
|k|<π/2

(
1 + tan ∆θkγ

†
+(k)γ†−(k)

)
|0〉Vf . (3.23)

Computing the time evolution, one obtains the survival amplitude, given by

G(z) =
∏
|k|<π/2

1 + tan2 ∆θke
2iεk(Vfz)

1 + tan2 ∆θk
, (3.24)

and by solving G(zk) = 0, the Fisher zeros are provided by

zk =
(2n+ 1)π

2εk
+

i

εk
log (tan ∆θk) . (3.25)

For quenches to an insulating phase (Vf > 0), the Fisher zeros cross the real axis, for
example when ∆θk = θk(Vf) − θk(Vi) = π/4, according to Eq. (3.25). In the case of
∆θk = θk(Vf)− θk(Vi) = π/4, one has tan 2∆θk = (2 cos k(Vf − Vi))/(4 cos2 k + VfVi)→
∞. This indicates that the Fisher zeros zk are observed for momenta

k∗ = arccos

[√
−VfVi

4

]
. (3.26)

A singurarity at k = k∗ corresponds to a singularity in the rate function l(t) with a
period,

TR =
π√

Vf(Vf − Vi)
. (3.27)

On the other hand, for quenches to a superfluid phase (Vf = 0), Eq. (3.25) always has a
nonzero imaginary part, and therefore there is no singularity in the rate function l(t).
Nevertheless, by keeping the system size finite and rescaling the time with the system
size and particle number, one can observe collapse and revival (see Fig. 3.5), in the
same way as Fig. 3.3.

3.3 Orthogonality and observables

In the continuous model, I showed that the rate function has singularities when the
time-evolved state is orthogonal to the initial state and that the period is connected
to the period of the peak of the momentum distribution for deep quenches only. From
the discrete model, it is possible to gain further understanding of this mismatch as the
periodicity of the system’s revivals can be computed exactly. The overlap between the
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Figure 3.5: The rate function l(t) for a quench from an insulator phase (Vi = 0.3) to
a superfluid phase (Vf = 0) for different particle numbers N . The time axis is rescaled
with the particle number N .

ground states of different strength Vi and Vf of the potential is given by

〈ΨVf |ΨVi〉 = exp

[
−N

2π

∫ π/2

−π/2
dk log

(
1 + tan2 θk

)]
, (3.28)

which tells one that the overlap reaches zero in the thermodynamic limit N → ∞. It
implies that, for quenches from the superfluid to the insulator phase, the dynamics
shows collapses and revivals of the superfluid and insulator phases, and thus the or-
thogonality with the initial state may be established in the system when the system
collapses to the insulator phase completely. This is true if the system has dissipation
so that the time-evolved state can reach the ground state. However, since I consider
unitary dynamics and no dissipation, the time-evolved state maintains excited states
of the quenched Hamiltonian. Only in the thermodynamic limit, the system collapses
to the insulator phase and attains the orthogonality. However, deep quenches make
the dynamics different as shown below.

To distinguish between the superfluid phase and the insulating phase, I use the
parity operator, which is experimentally accessible and is an observable characterising
charge density wave order, given by

M =
1

N

∑
i

(−1)ib†ibi. (3.29)

In the fermionic representation, the parity operator is provided by

M =
1

N

∑
|k|<π/2

Ψ̂†(k)σkΨ̂(k). (3.30)
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The average 〈M(t)〉 of the parity operator can be calculated to be

〈M(t)〉 = − 1

N

∑
|k|<π/2

sin 2θk(Vf) cos 2∆θk +
1

N

∑
|k|<π/2

cos 2θk(Vf) sin 2∆θk cos 2εk(Vf)t.

(3.31)
In general, this quantity oscillates as well as the rate function l(t), but they do not
have the same period (see Fig. 3.6). However, these oscillations synchronise in a deep
quench (Vf/J � 1) (see Fig. 3.7), whereby l(t) shows non-analytic cusps when 〈M(t)〉
drops to the minimum value. I note that the period of 〈M(t)〉 is TM = π/

√
V 2

f + (2J)2.
Recalling that the period of l(t) is given by Eq. (3.27), these periods are close when
Vf � Vi. In this case, since εk =

√
(2J cos k)2 + V 2, the dispersion is constant. This

means that all k-modes oscillate with the same frequency characterised by Vf . Thus,
the oscillation of the order parameter 〈M(t)〉 appears to coincide with the one of l(t)
only for deep quenches. One may argue that a different operator can be used to better
observe dynamical orthogonality. For example, choosing the kinetic energy operator,

K =
1

N

∑
j

b†jbj+1 + h.c., (3.32)

the average of which is given by

〈K(t)〉 = − 1

N

∑
|k|<π/2

2 cos k (cos 2θk cos 2∆θk + sin θk sin θk cos 2εkt) , (3.33)

which shows similar behaviour as 〈M(t)〉 (see Eq. (3.31)).

3.4 Conclusions

I have discussed DPTs in systems that have a superfluid to insulator transition. Con-
sidering the continuous model (TG gas), I have calculated numerically the rate function
and the momentum distribution for quenches from the superfluid phase to the insu-
lating phase, vice versa, and for quenches within the same phase. Even though the
rate function displays non-analytical cusps, which signal temporal orthogonality with
the initial state, these non-analyticities have slightly different behaviour from the dy-
namics of a local observable. Only for deep quenches, they are connected. Also, in
the discrete model (tight-binding model), I have studied analytically the dynamics
of the rate function and the parity operator chosen as the order parameter. These
quantities show behaviours similar to the continuous model and help one understand
why the orthogonality is related to the observable only for deep quenches. As known
from state discrimination protocols in quantum information, it is difficult to observe
global orthogonality from local measurements on pure states [185], and it is generally
impossible for mixed states [186]. Considering this fact and the results obtained here,
I conclude that it is in general difficult to detect orthogonality in many-body states
from local observables, i.e. it is hard to observe signals from non-analyticities in the
rate function in the dynamics of local observables alone. However, there is some unex-
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Figure 3.6: The rate function l(t) and the average 〈M(t)〉 of the parity operator in a
quenched dynamics from Vi = −1/6 to Vf = 3 for the particle number N = 100. The
oscillation in these quantities do not coincide.

Figure 3.7: The rate function l(t) and the average 〈M(t)〉 of the parity operator in
a quenched dynamics from Vi = 0 to Vf = 10 for the particle number N = 100. The
oscillation in these quantities synchronise at the beginning.
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plored possibility to detect the non-analyticilties through non-trivial order parameters
[187] or by extending ancilla based interferometry schemes which have been proposed
[188–191] and experimentally implemented in local quenches in Fermi gases [192].

As future work, it would be interesting to observe the relation itself between the
rate function and local observables in other critical models that can have a superfluid to
insulator transition. Since this work was published, this relation have been investigated
in several models. In Ref. [193], it is observed that in Bose-Hubbard model the peak
of the momentum distribution and the rate function reach maxima at slightly different
times. This agrees with the results shown here. In Ref. [194], it is shown that in a
three-dimensional model the emergence of non-analytical behaviours is linked to the
dynamical transition in the order parameter.

In general, quantum criticality in strongly correlated many-body systems is known
to be sensitive to temperature [195–197]. Thus, this phenomenon has the potential to
be a good thermometer [198]. As seen in this chapter, the TG system enables one to
compute many-body quantities to characterise the quantum criticality. Although zero
temperature is assumed in the system in this work, one can consider finite temperatures
in the TG gas [199]. Therefore, one could investigate pinning transition in the TG gas
at finite temperature from the perspective of thermometry.



Chapter 4

Quantum probe spectroscopy for cold
atomic systems

By taking advantage of the properties and techniques of cold atoms, simulating con-
densed matter systems with atomic systems has become an attractive research field.
For instance, by utilising the lower Fermi energies of fermions in atomic gases com-
pared to those of electrons in a metal, investigation of low energy excitations near the
Fermi surface has become possible [192]. Another example is that impurity dynamics
in Bose-Einstein condensates enables one to simulate a condensed matter system and
allows one to study quasiparticles called Bose polarons for longer times than in the
condensed matter system [200, 201]. Furthermore, atomic gases trapped in optical
lattices provide a good platform for quantum simulations of strongly correlated phases
of matter [12, 202]. A powerful tool to examine lattice systems is the quantum gas
microscope [203–210], which enables high-fidelity control and measurement of atoms
with single-site resolution through a high resolution optical imaging systems.

To simulate other physical systems with atomic systems, it is necessary to develop a
wide range of techniques to characterise and probe for instance densities, multi-particle
correlations, temperature, or the excitation spectra. The progress in control and mea-
surement methods at the single-atom level provides an approach utilising quantum
impurities (e.g. single atoms in a different internal state or belonging to an entirely
distinct atomic species) as nondestructive quantum probes of many-body quantum sys-
tems [211–231]. Impurities coupled to an atomic gas can extract information about
the wave-function of the gas by manipulating the internal states of the impurities via
a Ramsey interferometric scheme.

Below I will consider bosons in atomic gases trapped by lattice systems and show
how impurities can be used to measure a wide range of the excitation energies of
the gases. By embedding a two-level impurity into a lattice system and monitoring
its dynamics, one can robustly detect energy gaps over a broad energy range in the
spectrum of the system with the lower resolution limit being determined by the probe’s
dephasing rate. This protocol provides a new tool to characterise cold atomic systems
in optical lattices.

In Sec. 4.1, I describe the model of a lattice system and present the proposed
protocol. In Sec. 4.2, I explain the mechanism of the protocol together with an analytic
description of the evolution of the probe. To show the robustness of the proposed
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protocol against dephasing, in Sec. 4.3 I implement exact numerical simulations of
the protocol, considering two scenarios for the quantum probe: isolated or subject to
dephasing. Lastly, in Sec. 4.4 I summarise the findings and give an outlook.

This project has been accomplished in collaboration with Berislav Buča and Jordi
Mur-Petit. I have been involved with comprehensive discussion about this project and
carried out the analytical and numerical calculations of the von Neumann equation.
The work presented in this chapter was published in the New Journal of Physics 20,
103006 (2018) [3].

4.1 Description of model and protocol

I consider bosons trapped in a lattice system as the target system to be examined and
add a qubit as an impurity. In this section, I introduce the description of the lattice
system as well as the description of the impurity. After that, I will explain the protocol
to extract the eigenenergies of the lattice.

4.1.1 Model

I consider a tight-binding model for N atoms in a finite two-dimensional lattice with
L sites. The Hamiltonian describing the system is given by

Hlatt =
∑
l,m

Jl,m c
†
l cm +

∑
l

εl c
†
l cl, (4.1)

where Jl,m represents the hopping rate between nearest-neighbouring sites m and l,
εl represents the single-site energy at site l, and cl, c†l are the particle annihilation
and creation operators of bosons at site l, respectively. This model is not limited
to cold atoms in optical lattices [202] but can describe various experimental setups,
for example, arrays of superconducting circuits [232, 233], photonic waveguides [234],
microwave cavity arrays [235], and optomechanical setups [236].

The spectral properties of this Hamiltonian are known to show regular or chaotic
features [237], depending on the geometry of the lattice system. For example, on
a Lx × Ly square lattice, the Hamiltonian (4.1) shows a regular spectrum, which is
described by a Poisson distribution of energy gaps, PPoisson(s) = e−s, with s the suitably
normalised energy-level spacing [238]. On the other hand, in a system shaped like
an athletic field (a Bunimovich stadium, e.g. see Fig. 4.3(c)), the Hamiltonian (4.1)
exhibits a chaotic spectrum, which is characterised by level repulsion, i.e. no two levels
are close in the energy spectrum [237]. I will discuss whether the differences between
these types of energy spectra affect the protocol to extract the eigenenergies later.
The flexibility of this model provides a useful testing ground to evaluate the energy
resolution of a spectroscopy protocol.

When considering an impurity coupled to a Bose gas, a probe formed by two internal
degrees is more susceptible to dephasing than a probe comprised by two spatial degrees
[239]. Therefore, I choose a localised two-level system or qubit represented by two
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Figure 4.1: (a) Sketch of the composite system: particles can hop at a rate J (blue
arrow) between nearest-neighbouring sites on a lattice of Lx × Ly sites (light blue
spheres). An energy level of a quantum probe (dark orange sphere) is coupled locally
to the lattice site xpr with strength κ (red line). (b) Probing protocol: the probe is
initialised in its ground state, |↓〉, and follows a Ramsey sequence, interacting with the
lattice for a time t before being measured in the {|↑〉 , |↓〉} basis.

internal states (|↑〉, |↓〉). The corresponding Hamiltonian is given by

Hqubit =
1

2
~ωqubitσz, (4.2)

with the energy gap ~ωqubit and Pauli matrix σz = |↑〉 〈↑|−|↓〉 〈↓|. The qubit is coupled
locally to a single lattice site xpr, as shown in Fig. 4.1(a).

The Hamiltonian of the composite system is given by

H = 1qubit ⊗Hlatt +Hqubit ⊗ 1latt +Hint. (4.3)

The interaction term Hint describes a state-dependent contact interaction and is given
by

Hint = (κ↑ |↑〉 〈↑|+ κ↓ |↓〉 〈↓|)⊗ n̂latt(xpr), (4.4)

where each internal state couples to the density n̂latt(xpr) = c†xprcxpr at site xpr with
different strengths κ↑, κ↓. For example, one can realise this type of interaction with an
impurity in a cold atomic system by exploiting a Feshbach resonance. For simplicity, I
set κ↑(t) = κ, κ↓(t) = 0, i.e. only one internal state is coupled to the lattice gas.
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4.1.2 Quantum probing protocol

For weak coupling κ � J, ωqubit, according to perturbation theory, the interaction
Hamiltonian (4.4) shifts the energy of the qubit as

E↑.↓ 7→ E↑.↓ + κ↑.↓nlatt, (4.5)

where nlatt = Tr [ρlattn̂latt(xpr)] is the density at the coupled site xpr. To measure the
density nlatt or extract information on the spectrum of the lattice Hamiltonian, one
can initialise the qubit in a pure state and observe the time evolution of its internal
states (see Fig. 4.1(b)). The full protocol is as follows:

1. Initialise the qubit probe as |↓〉. The composite system is initially uncorrelated,
ρ(t = 0) = ρqubit ⊗ ρlatt, with ρqubit = |↓〉 〈↓|, and ρlatt the lattice state.

2. Apply a Hadamard gate to the qubit probe

UHad =
1√
2

(
1 1
1 −1

)
, (4.6)

in the basis {|↓〉 , |↑〉} so that the qubit is in a superposition (|↓〉+ |↑〉)/
√

2. This
gate can be generated by π/2-pulse. It is not necessarily requried for the qubit
to be in an equally-weighted superposition, but it is favoured in order to extract
maximal information of the lattice dynamics.

3. At t = 0, couple the qubit to the lattice and let the composite system time-evolve.
For κ 6= 0, the |↑〉 state accumulates a phase dependent on nlatt.

4. At t = tfin, apply a Hadamard gate to the qubit and measure the qubit in the
basis {|↑〉 , |↓〉}.

As in a standard Ramsey sequence, the last step of the protocol transforms the relative
phases accumulated by the internal states into different populations of the internal
states. Below for simplicity I set Jl,m = J so that the hopping rate is uniform over the
lattice.

4.2 Dynamics of the impurity

To describe the time evolution of the composite system through the protocol, I solve
the von Neumann equation for the density matrix,

i~
∂

∂t
ρ = [H, ρ] . (4.7)

In the following, I will present details of calculations to obtain the dynamics of the
qubit, and in Sec. 4.2.2, explain how the eigenenergies of the lattice are observed.
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4.2.1 Solving the von Neumann equation for the probe

I start with the time evolution of step 3 in the protocol and express the von Neumann
equation (4.7) in a matrix element form as,

i~
∂

∂t
ρs,α;k,β =

∑
r,σ

[Hs,α;r,σρr,σ;k,β − ρs,α;r,σHr,σ;k,β] , (4.8)

where ρs,α;k,β = 〈s, α|ρ|k, β〉 are the elements of the density matrix and Hs,α;k,β =
〈s, α|H|k, β〉. I use Roman indices s, k, r to refer to probe eigenstates and Greek
indices α, β, σ for lattice states. By tracing out the lattice states, the left hand side
(l.h.s) of Eq. (4.8) can be recast in the form∑

α,β

(l.h.s.)δα,β =

(
i~
∂ρ̃s,k
∂t

+ ~ (ωs − ωk) ρ̃s,k
)

e−i(ωs−ωk)t (4.9)

with the probe eigenenergies ωs(k) and ρs,k(t) = ρ̃s,k(t)e
−i(ωs−ωk)t.

While in general the qubit and the lattice become entangled due to the interaction,
here I assume that the interaction is weak enough that the density matrix is separable
at all times, ρ(t) = ρqubit(t)⊗ ρlatt(t), which allows one to simplify some of the matrix
elements in Eq. (4.8) as

〈s, α| (1qubit ⊗Hlatt)ρ |k, β〉 = 〈s|ρqubit|k〉 〈α|Hlattρlatt |β〉 , (4.10a)
〈s, α| (Hqubit ⊗ 1latt)ρ |k, β〉 = 〈s|Hqubitρqubit|k〉 〈α|ρlatt|β〉 . (4.10b)

I call this assumption as the separability assumption.
After tracing over the lattice system on the right hand side (r.h.s) of Eq. (4.8), one

obtains∑
α,β

(r.h.s.)δα,β = ~ (ωs − ωk) ρs,k +
∑
α,r,σ

(
Hs,α;r,σ

int ρr,σ;k,α − ρs,α;r,σH
r,σ;k,α
int

)
. (4.11)

For the contact interaction (4.4), the matrix elements of the interaction Hamiltonian are
Hs,α;k,β

int = 〈s, α|Hint |k, β〉 = κ δs,k δs,↑ 〈α|xpr〉 〈xpr|β〉, with 〈xpr|β〉 being the amplitude
of the lattice eigenstate |β〉 at site xpr and 〈α|xpr〉 = 〈xpr|α〉∗. I substitute this result
into Eq. (4.11), apply the separability assumption again, and finally combine it with
Eq. (4.9) to rewrite Eq. (4.8) as

i~
∂

∂t

(
ρ̃↑↑ ρ̃↑↓
ρ̃↓↑ ρ̃↓↓

)
=

(
0 M(t)ρ̃↑↓

−M(t)ρ̃↓↑ 0

)
, (4.12)

with
M(t) =

∑
α

κAαα +
∑
α<σ

2κAασ cos {(ωα − ωσ)t+ φασ} , (4.13)

where Aασeiφασ = 〈α|xpr〉〈xpr|σ〉ρ̃σα with real numbers Aασ > 0 and φασ. The first
summation in Eq. (4.13) runs over all lattice eigenstates, while the second one runs
over all pairs of eigenstates. Physically, the factors 〈α|xpr〉 and 〈xpr|σ〉 guarantee that
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only eigenstates that are populated at xpr contribute to the time evolution of the probe’s
off-diagonal terms. It is worth noting that in this derivation the initial lattice state
does not need to be a pure state but could be a general mixed density matrix, which
implies that the protocol can be applied likewise to quantum gases with a nonzero
thermal component [188].

From Eq. (4.12) it follows that only the off-diagonal elements evolve, which is
consistent with the fact that the interaction Hamiltonian describes the dephasing of
the probe state. This requires the initial state to have non-zero off-diagonal elements,
and so the optimal choice is an equally-weighted superposition such as (|↓〉+ |↑〉)/

√
2

(see Ref. [240]).
In step 4 of the protocol, a second Hadamard gate is applied, and the qubit state

is given by

ρqubit(t) =

(
ρ↑↑qubit ρ↑↓qubit

ρ↓↑qubit ρ↓↓qubit

)
=

1

2

(
1 + cos θ(t) i sin θ(t)
−i sin θ(t) 1− cos θ(t)

)
, (4.14)

with

θ(t) =

(
ωqubit +

∑
α

κAαα
~

)
t+
∑
α<σ

2κAασ
~Ωα,σ

[sin (Ωα,σt+ φασ)− sinφασ] . (4.15)

For compactness, I rewrite this as,

θ(t) = ω̃t+
∑
α<σ

[cα,σ sin Ωα,σt+ dα,σ (cos Ωα,σt− 1)] , (4.16)

where

ω̃ = ωqubit +
κ

~
∑
α

Aαα , (4.17a)

Ωα,σ = ωα − ωσ , ηα,σ =
2κAασ
~Ωα,σ

, (4.17b)

cα,σ = ηα,σ cosφασ , dα,σ = ηα,σ sin(φασ) . (4.17c)

The summation runs over all pairs of lattice eigenstates occupying the site xpr, and
Ωασ = ωα − ωσ is the difference between the corresponding eigenenergies. The coef-
ficients cασ, dασ are functions of Ωασ, the local density nlatt, and the relative phase
between eigenstates at the site xpr.

4.2.2 Extraction of information about the lattice system from
the qubit

If there is no particle at the coupled site xpr, one obtains cασ = dασ = 0 and ω̃ = ωqubit,
and the qubit evolves freely. If there is only one lattice eigenstate at the site xpr, one
sees cασ = dασ = 0 and ω̃ = ωqubit +κnlatt/~. This case allows one to probe the density
nlatt at the site xpr through measurements of ω̃.
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If the coupled site xpr is occupied by more eigenstates than one, the population of
the qubit Ps(t) = 〈s|ρqubit(t)|s〉 for s ∈ {↑, ↓} informs one about the spacings between
lattice energy levels Ωασ of the states present at xpr. Let me focus first on the case
where there is no degeneracy, and discuss the degenerate case at the end of this section.
For simplicity, I consider the case in which two eigenstates are at the site xpr and so
there is only one non-zero frequency difference Ω21 = ω2−ω1 > 0. The time dependence
in the density matrix of the qubit (4.14) is then given by

cos θ(t) = cos [ω̃t+ c1 sin Ω21t+ d1 (cos Ω21t− 1)]

= cos (ω̃t− d1)
{

cos(c1 sin Ω21t) cos(d1 cos Ω21t)

− sin(c1 sin Ω21t) sin(d1 cos Ω21t)
}

− sin (ω̃t− d1)
{

sin(c1 sin Ω21t) cos(d1 cos Ω21t)

+ cos(c1 sin Ω21t) sin(d1 cos Ω21t)
}
. (4.18)

Trigonometric functions containing trigonometric functions such as cos (c1 sin Ω21t) can
be expanded with the Jacobi-Anger expansion [241] as

cos(z cosφ) = J0(z) + 2
∞∑
k=1

(−1)kJ2k(z) cos(2kφ), (4.19a)

cos(z sinφ) = J0(z) + 2
∞∑
k=1

J2k(z) cos(2kφ), (4.19b)

sin(z cosφ) = 2
∞∑
k=0

(−1)kJ2k+1(z) cos[(2k + 1)φ], (4.19c)

sin(z sinφ) = 2
∞∑
k=0

J2k+1(z) sin[(2k + 1)φ], (4.19d)

where the Jk(z) are the Bessel functions of first kind and of order k. Thus, the func-
tion (4.18) can be decomposed into frequency-dependent terms ω̃±mΩ21, with m ≥ 0
integer. It is straightforward to generalise this case to an arbitrary number of lattice
states, where the function (4.18) contains components of ω̃±mΩασ with m ≥ 0 integer
and α, σ running over all pairs of lattice states. This situation is analogous to a system
of trapped ions where the internal state of the ion is coupled to its motional states
in the trap [242]. In this context, the qubit represents the trapped ion, and the pairs
of lattice eigenstates play the role of the motional state. The qubit eigenfrequencies
ω̃ ±mΩασ for m > 0 corresponds to the motional sidebands of the trapped ion.

Finally, I consider a lattice system with energy degeneracy between eigenstate s1

and s2. The dynamics of the probe follows Eq. (4.12), with M(t) given by

M(t) =
∑
α

κAαα + 2κAs1s2 cosφs1s2 +
∑
α<σ

α,σ 6=s1,s2

2κAασ cos {(ωα − ωσ)t+ φασ} . (4.20)

One can see that the second term originates from the degeneracy by comparing it with
the non-degeneracy case given in Eq. (4.13). As seen, the level degeneracy shifts the
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frequency ω̃ (see Eq. (4.17a)) but does not disturb the observation of the lattice energy
levels.

4.3 Performance of the protocol

I have derived the dynamics of the probe by assuming the coupling to be weak enough
for the separability assumption. In this section, to argue the reliability of the protocol,
I will compare this analytical result with exact numerical calculations. First, I consider
two types of lattices whose spectra show regular and chaotic features, respectively, as
explained in Sec. 4.1, and see how this difference affects the protocol. Later, to consider
a more realistic situation and see how robust the protocol is, I assume that the qubit
is subject to an environment which leads to an extra dephasing effect.

4.3.1 Non-dephasing quantum probe

I performed numerical calculations to evaluate the probe scheme in a finite lattice
showing regular or chaotic spectra, and will compare the results with the analytical
ones (4.14). I set as the energy unit the hopping rate amplitute J = 1 and assume
small interaction strengths κ < 1, which is consistent with the case of the analytical
calculation.

First, I consider a 5×5 square lattice on a rectangular domain (see Fig. 4.2(c)) and
add small diagonal disorder, given by on-site energies taken from a uniform random
distribution εk ∈ [−0.3, 0.3]. This noise lifts the level degeneracies due to the high
symmetry of the square lattice. I also set the qubit level splitting to ωqubit = 5. As the
initial lattice state, I take an equally-weighted superposition of the four lower-energy
eigenstates, which are labelled as 1, 2, 3, 4. According to the analytical results, the
time evolution of the qubit contains six first-order (m = 1) sidebands in frequency
space, given by ω̃ ± Ωασ for α, σ ∈ {1, 2, 3, 4}.

I plot the time evolution of the population of the |↑〉 state for different coupled
sites xpr in Fig. 4.2(a) and each Fourier transform in Fig. 4.2(b). Each of the signals
shows a significant peak at ω̃ = ωqubit + κnlatt ' ωqubit because κnlatt is small (nlatt .
0.1). Also, there are another 12 peaks distributed symmetrically around the dominant
peak. The frequencies of the peaks agree with the first-order sidebands at ω̃±Ωασ for
α, σ ∈ {1, . . . , 4} considering the frequency resolution δω ' 0.1 in Fig. 4.2 (b). The
higher-order sidebands ω̃ ±mΩασ disappear for m ≥ 2, because the amplitude of the
peaks is proportional to the Bessel function Jm(cασ) or Jm(dασ) with cασ, cασ ∝ κnlatt.
Considering κnlatt . 10−2, the Bessel functions are Jm(cασ), Jm(dασ) . 10−4 for m ≥ 2,
which is beyond the resolution in Fig. 4.2(b). To acquire enough resolution to allow
the observation of the first sidebands, one has to perform measurements for a long
time. I will discuss practical requirements on the measurement to achieve the required
frequency resolution in Sec. 4.3.3.

Also, one can observe that coupling to different sites xpr results in slightly different
signals (see Fig. 4.2(b)). For example, for xpr = 5, there are two distinct peaks at
ω ∼ 4.3. For xpr = 6, there are three similarly intense peaks around the same frequency,
while for xpr = 7 only one large peak is observed. These variations come from the spatial
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Figure 4.2: (a) Time evolution of population P↑(t) of the |↑〉 state of the qubit, when
coupled to the lattice site xpr = 8, 7, 6, 5 (from top to bottom) of a square lattice on a
5× 5 rectangular domain with diagonal disorder. (b) Fourier transform of the signals
in (a), displaced vertically for clarity with the same ordering. The full circle at the
bottom indicates ωqubit, while the crosses are the expected frequencies ω̃ ± Ωασ, with
the states α, σ ∈ {1, 2, 3, 4} indicated in the boxes. In these simulations, ωqubit = 5.0
and κ = 0.3, with the hopping rate as the energy unit, J = 1. (c) Schematic of the
square lattice with # 5, # 6, # 7, # 8 labelling the sites to which the probe is coupled.
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dependence of the various eigenstates, such as their local densities at the coupled site.
This result indicates that the protocol can reveal the different energy spacings in the
spectrum of a lattice system in a position-dependent way, from which the local density
can be reconstructed.

To see if the lattice type affects the protocol, I switch the lattice system to a
stadium-shaped system, which possesses a chaotic spectrum [238]. I have calculated the
time evolution of the qubit coupled to a stadium lattice with 27 sites (see Fig. 4.3(c)).
Here, I set an equally-weighted superposition of three eigenstates as the initial lattice
state. The analytical results indicate six first-order sidebands around ω = ωqubit such
that ω̃ ± Ωασ for α, σ ∈ {1, 2, 3}.

I plot the time evolution of the population P↑(t) of the |↑〉 state when the qubit
is coupled to xpr = 15 (see the top panel in Fig. 4.3(a)), where all three eigenstates
are populated. As expected, the Fourier transform of the signal shows six peaks corre-
sponding to ω̃ ± Ωασ for α, σ ∈ {1, 2, 3} as well as a dominant peak at ω ' ωqubit, like
in the square lattice case (see Fig. 4.3(b)). This suggests that the protocol is powerful
enough to reveal chaotic energy spectra.

As a final check, I consider the qubit coupled to the site xpr = 2 (see the bottom
panel in Fig. 4.3(a)), where none of the three eigenstates are populated. As expected,
the Fourier transform of the resulting signal shows only one peak at ω ' ωqubit (see
Fig. 4.3(b)).

4.3.2 Effect of dephasing on the quantum probe

As it is inevitable that the probe is also disturbed by the environment, I will next
investigate how the accuracy of the protocol is affected by noise. If the lattice is
realised by cold atoms in an optical lattice, and the qubit probe corresponds to an
atom trapped in another optical lattice or optical tweezers, one can expect that the
qubit is exposed to dephasing due to the trapping and ambient electromagnetic fields
[243]. This can be described by the standard Markovian approach to open quantum
systems [244], and the time evolution of the density matrix of the composite system is
given by

~
∂

∂t
ρ(t) = −i [H, ρ(t)] + γ

(
2Lρ(t)L† −

{
L†L, ρ(t)

})
, (4.21)

where the Lindblad operator L = σz represents the dephasing of the probe in the z
direction (i.e. the population of ↑ and ↓), and γ is the dephasing rate.

Figure 4.4 displays the time evolution of the joint system of the lattice and the
qubit with dephasing noise in a square and a stadium lattice, and presents the Fourier
transform of the qubit signals. The panel (a) shows a 5×5 square lattice with disorder
and dephasing γ = 0.01, 0.06, 0.08. Although for a small dephasing rate such as γ '
0.01 there is no notable change, larger dephasing rates make the resolution poorer
so that the peaks cannot be distinguished. For example, see the two merging peaks
around ω ∼ 5.7 for γ & 0.06. For γ & 0.08, all peaks are hard to observe. In case that
the dephasing rate is comparable to or larger than the energy/frequency differences
between neighbouring peaks, one cannot detect the two individual peaks.

Certainly, the dephasing effect weakens the strength of the peaks in a stadium
lattice as well. However, the protocol is more robust against dephasing due to the



4.3 Performance of the protocol 61

Figure 4.3: (a) Time evolution of population P↑(t) of the |↑〉 state of the qubit, when
coupled to an occupied (top panel, xpr = 15) or empty (bottom panel, xpr = 2) site of
a stadium lattice 5× 7. (b) Fourier transform of the signals in (a). The crosses at the
bottom represent the expected frequencies ω̃ ± Ωασ for α, σ ∈ {1, 2, 3}, while the full
circle is at ω = ωqubit. In these simulations, ωqubit = 5.0 and κ = 0.3, with the hopping
rate as the energy unit, J = 1. (c) Schematic of the stadium lattice with # 2, # 15
labelling the sites to which the probe is coupled. Due to the symmetry of the lattice
shape, considering a quarter of the shape together with periodic condition is enough
to simulate the dynamics.
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Figure 4.4: (a) Fourier transform of the signals for a probe coupled to site #5 of the
5 × 5 square lattice with disorder, and subject to dephasing with various dephasing
rates γ = 0.01, 0.06, 0.08; other parameters and symbols are the same as in Fig. 4.2.
(b) Fourier transform of the signals for a probe coupled to site #15 of the 5 × 7
stadium lattice with disorder, and subject to dephasing with various dephasing rates
γ = 0.05, 0.1, 0.2; other parameters and symbols are the same as in Fig. 4.3. In both
panels, the different traces are displaced vertically for clarity.

level repulsion. The time evolution of the qubit is illustrated in the panel (b), where
a 5× 7 stadium lattice is used. By increasing the dephasing rate γ, the amplitudes of
the peaks become smaller. However, the peaks are not merged since all peaks are well
separated, which is a feature of the chaotic spectrum.

In general, the peaks for both regular and chaotic spectra can be distinguished if
one can control the dephasing rate to be below a threshold which depends on how
close the neighbouring peaks are. I clarify that there is no energy exchange between
the probe state and the source of the environment noise, which guarantees that the
noise does not affect the energy/frequency of the Fourier peaks. In the presence of
dissipative noise, this does not hold.

4.3.3 Measurement time and frequency uncertainty

I evaluate the required time duration to monitor the probe in order to extract spectral
information about the lattice system, especially when the probe is subject to large
dephasing rates such as γ & 0.1. The trade-off between frequency and observation time
that follows from the Fourier transform can be explained with the Wiener-Heisenberg
relation between angular frequency resolution ∆ω and measurement time tfin [245, 246]

∆ω tfin ≥
1

2
. (4.22)

For cold atoms in optical lattices, a typical hopping rate is J/~ ∼ 1 − 100 Hz. The
typical system lifetime is limited by three-body losses to ∼ 10− 70 s [247, 248], which
would enable one to resolve peaks down to ∆ω & 10−2−10−1 Hz. This appears sufficient
to observe the peaks in the most demanding situation, i.e. in the simulations shown
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above: nearby peaks in the disordered square lattice are separated by ' 10−2J/~, which
corresponds to ∼ 10−2 − 1 Hz, depending on J . In an experiment published in 2020
where impurities were interacting with an atomic bath, the lifetime of the impurities
can be up to 1.5 s [249]. It is therefore possible to monitor the impurity dynamics
enough long to see signals of the lattice.

4.4 Discussion and Conclusions
In this work, I have studied the time evolution of a qubit probe locally coupled to a
lattice system. I have shown that the dynamics of the probe can encode information
about the lattice system, and proposed a nondestructive protocol to measure the ex-
citation spectrum of the lattice by using state-dependent interactions for the probe.
The numerical calculations I have presented support the applicability of the protocol
to investigate lattices having regular or chaotic spectra.

I will describe advantages of this protocol in the following.

(i) One selling point is that ingredients of the protocol are simple: a two level probe
and a local density-density coupling to the system of interest. This protocol
allows one to monitor the dynamics of the probe more easily than with a recently
proposed scheme [250], where the probe is composed of a harmonic oscillator to
measure the spectral density of a large structured environment. The density-
density coupling to the lattice system reveals if particles exist at the coupled site.
This approach is applicable to bosonic and fermionic many-body lattice systems
[211–231].

(ii) Another advantage of the protocol is that it is nondestructive. It encodes the
excitation spectrum into the population of the probe through a Ramsey sequence
with measurements in the |↑〉, |↓〉 basis. This protocol has lower experimental
requirements than other protocols to determine the structure or internal couplings
of spin networks [251–253], which require full state tomography.

(iii) Finally, the protocol does not rely on a resonant coupling between the probe and
the lattice system [222]. This advantage enables one to observe various spectral
gaps simultaneously, even if the probe is subject to dephasing.

Due to these low experimental requirements, the protocol will provide a powerful tool
to characterise the spectrum of systems composed of cold atoms in optical lattices.
I believe that this work will help the development of new measurement techniques
[213, 217, 220–226, 228, 254] utilising atomic impurities to characterise cold atomic
quantum simulators [218, 227, 229–231, 255] and to study quantum chaos in finite
optical lattices [238, 256].

While for this work I used the tight-binding model as a lattice system to be exam-
ined, one can also consider other models and use other interaction terms or external
fields to test the versatility of the protocol. In principle, an impurity coupled to a
system is obviously influenced by the system and extracts some sort of information
about the system. Questions to address are how to obtain the information and how
not to disturb the system. The Ramsey sequence together with weak interaction is a
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common method for nondestructive probing as used for this work, and for example has
enabled one to observe the dynamics of a fermionic many-body system [192]. Besides
weak interactions, spin-exchange collisions between a bath system and impurities can
be utilised and for example used to probe the temperature of the bath system even
before the system reaches equilibrium [249]. Applying pump pulses is also useful and
allows one to monitor the dynamics of impurities in Bose-Einstein condensate, leading
to the observation of the formation of Bose polarons [257].



Chapter 5

Bayesian parameter estimation using
Gaussian states and measurements

Quantum sensing devices have the potential to outperform classical counterparts, as
they can provide a fundamental increase in precision. If N is the number of probes, in
ideal scenarios, the estimation precision can scale at the Heisenberg limit (HL) as 1/N .
On the other hand, classical strategies are limited by a slower scaling, the standard
quantum limit, as 1/

√
N .

In quantum optical systems, which I am interested in here, the number of probes
is not well-defined due to the uncertainty of the photon number. Therefore, the preci-
sion scaling is usually represented as a function of the mean photon number or mean
energy of the probe. It has been demonstrated that some quantum strategies lead to
a quadratic scaling in the mean photon number, which corresponds to the HL in this
context, and outperform strategies exploiting classical resource. However, implementa-
tion of such strategies is not always easy. Preparing desired probe states and carrying
out the corresponding measurements can be complicated, and the resulting imperfect
nature of the probe states may reduce the expected benefits. Moreover, uncorrelated
noise can prevent an advantageous increase in the scaling and stop the increase [258–
260], although some ways to cope with noise have been proposed [261, 262]. Thus,
it is practically important to consider feasible and robust experimental setups while
identifying better estimation strategies than classical ones. For parameter estimation
in continuous variable (CV) systems, Gaussian states and measurements are generally
implementable. It is known that CV systems can reach the HL within many local
estimation scenarios [263–270].

A useful tool for indicating optimal scaling is the Cramér-Rao bound (CRB). The
CRB uses unbiased estimators and provides a lower bound for the variance of the pre-
cision via the inverse Fisher information (FI). However, preparing unbiased estimators
requires precise prior information on the estimated parameters. Therefore, the local
estimation is well-justified only when one has many independent probes such that the
CRB gives the asymptotically achievable limit on scaling. When the number of probe
state is not enough, the local approach results in deviant behaviours, for example,
better scaling than the HL [271, 272] or infinite FI with finite resource [273].

This motivates the study of Bayesian estimation approaches for quantum sensing.
In Bayesian estimation scenarios, the prior knowledge of the parameter to be esti-

65
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mated is described by a probability distribution, and the probability is updated as a
measurement outcome is obtained. Bayesian estimation does not demand prior infor-
mation and is valid for any number of probes. In this sense, Bayesian estimation is
more rigorous than local estimation. On the other hand, with growing measurement
data, the prior knowledge affects the estimation less. Thus, one can use a hybrid ap-
proach: At the beginning, Bayesian estimation is applied, and later local estimation is
employed as enough data is accumulated to narrow down the range of the parameter
to be estimated.

In this chapter, I consider Bayesian estimation scenarios for quantum optical CV
systems. In local approaches, much progress has been made for CV systems, for exam-
ple, the calculations of quantum Fisher information (QFI) [263–270] and the associated
optimal strategies achieving the CRB [14, 274–278] have been presented. In compari-
son, Bayesian estimation in CV systems has not yet been explored, even though there
are some recent reports giving insights into Bayesian estimation for discrete [279] and
CV states [280, 280–285]. Identifying efficient and feasible Bayesian approaches helps
the development of quantum sensing technology.

In quantum optical CV systems it is advantageous to use Gaussian states and Gaus-
sian measurements [22]. Gaussian states not only allow one to use an elegant mathe-
matical description in phase space, but they are also relatively easy to implement and
commonly used [286, 287]. Gaussian measurements such as homodyne and heterodyne
detections have been shown to outperform number detection for repetitions [281] and
to be more robust against noise than photon number detection and “on/off” detection,
which distinguishes between the absence and presence of photons [276, 288, 289].

To broadly examine the performance of Gaussian states and measurements in
Bayesian metrology, I explore three paradigmatic estimation problems: the estima-
tion of phase-space displacement, of the phase, and of single-mode squeezing. For
each task, I provide feasible strategies using single-mode Gaussian states and employ-
ing homodyne or heterodyne detection. In Sec. 5.1, I briefly review the procedures of
Bayesian estimation and the relevant concepts of Gaussian quantum optics. In Sec. 5.2,
I investigate the estimation of displacement and show analytical calculations for the
achievable precision. In Secs. 5.3 and 5.4, I proceed with the same analysis for phase es-
timation and squeezing strength estimation, respectively. Finally, I discuss the results,
and present conclusions and an outlook in Sec. 5.5.

This project has been accomplished in collaboration with Simon Morelli, Elizabeth
Agudelo, and Nicolai Friis. I have been involved in comprehensive discussion about
this project and performed all the calculations for the Bayesian phase estimation. The
work presented in this chapter has been submitted to Quantum Science and Technology
and is available on arXiv:2009.03709 [4].

5.1 Framework

I will give an overview over the formulation of Bayesian estimation and Gaussian states.
For a comprehensive reviews of classical Bayesian estimation, see Refs [290–292]. For
details of local and Bayesian estimations in quantum scenarios, see the Appendix of
Ref. [293]. For basic ideas of Gaussian states, see Sec. 1.2 and Ref. [22].
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5.1.1 Bayesian estimation scenario

The basic idea of Bayesian estimation is to update knowledge one has initially, based
on new measurement results. Suppose that one aims to estimate a parameter θ. The
initial knowledge about the parameter θ is encoded in a probability distribution p(θ),
which is called the prior distribution (or “prior” for short). The prior distribution
covers all the beliefs, e.g. system properties, expertise, and information such as prior
experimental data. When a measurement is performed, one obtains the probability
p(m|θ) of the measurement outcome m given a parameter θ, which is called likelihood,
from the model describing the system and measurement. Combined with the prior
p(θ), the probability to obtain an outcome m is

p(m) =

∫
dθ p(m|θ)p(θ), (5.1)

where the integral is to be understood as a sum in case of discrete systems. The
conditional probability of the parameter θ given measurement outcome m is calculated
via Bayes’ law as

p(θ|m) =
p(m|θ)p(θ)
p(m)

, (5.2)

which is called the posterior distribution because one has updated the initial knowledge
p(θ) with the measurement results. By repeating this updating procedure as illustrated
in Fig. 5.1, where the posterior of the previous step serves as the prior at the next step,
one obtains a more accurate value of the parameter θ.

After some measurements, the posterior distribution describes all available infor-
mation about the parameter. Nevertheless, it is useful to look at the estimator and the
variance of the posterior in order to evaluate the property of the posterior at a glance.
The estimator provides a value for the parameter and is given by the mean value of
the posterior

θ̂(m) = 〈θ〉

=

∫
dθ p(θ|m) θ.

(5.3)

The variance shows the uncertainty in the estimation and stands for the confidence in
the estimation, given by

Vpost(m) =

∫
dθ p(θ|m)

(
θ − θ̂(m)

)2

. (5.4)

Smaller variance indicates more precision in the estimation. Since the variance depends
on measurement outcomes as seen in Eq. (5.4), a good figure of merit for the posterior
is the average variance

V̄post =

∫
dm p(m)Vpost(m), (5.5)

which I will use to evaluate strategies in each estimation task. Note that here the mean
value and the mean square error variance are defined by assuming that the parameter to
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Figure 5.1: A overview of Bayesian quantum parameter estimation. In Bayesian
estimation scenarios, the initial knowledge is encoded in the prior distribution p(θ),
which is updated based on measurement results m, leading to a posterior distribution.
Since one treats quantum systems, the measurement procedure includes preparing a
probe state ρ into which the parameter θ is encoded. The measurement consists of
a positive-operator valued measurement (POVM) with elements Em ≥ 0 satisfying∫
dm Em = 1, representing the possible outcome by m.
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be estimated is distributed in the real number space [−∞,∞]. However, for example,
in phase estimation, the parameter to be estimated follows a circular distribution, and
hence these integrals are taken within the periodicity of phase, e.g. [−π, π].

The precision of the estimation procedure depends on the form of the prior, which
can be taken as any complicated distribution. Broad priors generally influence the
outcome less than narrow priors. Therefore, it is important to take care of how much
information is encoded in the prior. However, repetition of the estimation proce-
dure decreases the influence of the prior, and the influence disappears asymptotically,
cf. Chap. 13 in Ref. [290]. Consequently, it is convenient to encode one’s knowledge
approximately using a family of probability distributions with a few degrees of freedom.
A good example is a Gaussian distribution.

A class of probability distributions is said to be conjugate to a given likelihood
function, if priors within this class result in posterior distributions that belong to the
same class. Therefore, by choosing the prior to be conjugate to the likelihood in this
way, the updating process becomes easier since only a few characteristic parameters of
the prior distribution are required to obtain the posterior distribution instead of a new
full calculation in order to determine the posterior distribution. Gaussian distributions
are self-conjugate with respect to the mean. For example, for Gaussian likelihood
functions that encode the estimated parameter in their mean, the class of conjugate
priors is Gaussian distributions. The following proposition is well known in statistical
theory [290–292, 294] and will be used particularly in Sec. 5.2:

Proposition: Let the likelihood be Gaussian distributed, p(m|θ) = Nm
(
m̄(θ), σ̃2

)
∝

Nθ
(
θ̄(m), σ2

)
, where θ̄(m) is the mean of the distribution of the parameter θ to be

estimated. Then, a Gaussian prior is the natural conjugate, i.e. if the prior is Gaussian
distributed with p(θ) = Nθ(µ0, σ

2
0), the posterior distribution p(θ|m) is also Gaussian

with mean value µp =
[
σ2µ0 + σ2

0 θ̄(m)
]
/(σ2

0 + σ2) and variance σ2
p = (σ2σ2

0)/(σ2
0 + σ2).

5.1.2 Bayesian parameter estimation using quantum systems

One can apply the framework of Bayesian estimation to a quantum system. The
parameter θ to be estimated is encoded into a probe state, given by a density operator
ρ, by a transformation that is a completely positive and trace-preserving (CPTP) map.
I consider that the transformation is a unitary operator Uθ, and the resulting state is
written as UθρU †θ . The measurement of the encoded state can be represented by a
positive operator-valued measure (POVM) with elements Em ≥ 0, whose integral on
the Hilbert space of the probe gives the identity,

∫
dm Em = 1. In this case, the

likelihood is given by
p(m|θ) = Tr [Emρ(θ)] . (5.6)

In local estimation scenarios with unbiased estimators θ̂, the variance V (θ̂) of the
estimator is bounded by CRB as

V (θ̂) ≥ 1

I (p(m|θ))
, (5.7)
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where I (p(m|θ)) is the FI of the likelihood p(m|θ) and is described by

I (p(m|θ)) =

∫
dm p(m|θ)

(
∂

∂θ
log (p(m|θ))

)2

. (5.8)

Note that p(m|θ) is composed of the density matrix ρ of the probe and the measurement
results as shown Eq. (5.6). With the sample number infinite, the CRB (5.7) is always
tight since it is saturated by the maximum likelihood estimator. Thus, local estimation
problems can be interpreted as finding an estimation strategy with a likelihood p(m|θ)
leading to a FI as large as possible. In the quantum setting, this corresponds to the
task of determining suitable probe states ρ and measurements {Em}. It is possible
to optimise the FI analytically over all PVOMs, leading to the QFI I (p(m|θ)) and
Quantum CRB

V (θ̂) ≥ 1

I (p(θ))
. (5.9)

The QFI can be described in terms of the Uhlmann fidelity F(ρ1, ρ2) =
(
Tr
√√

ρ1ρ2
√
ρ1

)2

by

I (ρ(θ)) = lim
dθ→0

8
1−

√
F(ρ(θ), ρ(θ + dθ))

dθ2
. (5.10)

Bayesian estimation scenarios have a counterpart of the CRB, which is called the
Van Trees inequality and which bounds the average variance of the posterior as

V̄post ≥
1

I(p(θ)) + Ī(p(m|θ))
, (5.11)

where I(p(θ)) is the FI of the prior p(θ), and Ī(p(m|θ)) =
∫
dθ I(p(m|θ))p(θ) is the

average FI of the likelihood [295, 296]. This bound is often called Bayesian CRB [297].
A big difference from the CRB for local estimation scenarios is that this bound may
not be tight, and there may be no way to achieve the equality.

For Bayesian quantum estimation problems, the Van Trees inequality can be modi-
fied to the Bayesian version of the quantum CRB by noting that the FI is bounded from
above by the QFI: I(ρ(θ)) ≥ I(p(m|θ)). In additon, the QFI, I(ρ(θ)), is independent
of θ if the encoding transformation Uθ is a unitary transformation. Consequently, one
obtains I(ρ(θ)) ≥ Ī(p(m|θ)). Thus, the Bayesian quantum CRB is given by

V̄post ≥
1

I(p(θ)) + I(ρ(θ))
, (5.12)

which is the lower bound of the average variance for all possible POVMs [293]. This
bound may not be tight, similar to the Van Trees inequality (5.11).

While local estimation scenarios have some methods to construct optimal POVMs
for fixed probe states, Bayesian estimation scenarios do not. Thus, optimisation of
probes and measurements for Bayesian estimation has to be carried out on a case-by-
case basis and is typically challenging. Moreover, even if one has an optimal set of a
probe state and measurements for a given prior, a procedure to prepare the set may need
complicated setups. Also, generally optimal sets of probe states and measurements are
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no longer optimal after even a single update. Thus, it is worth devising strategies for
Bayesian estimation which give good performance and can be realised easily. In this
work, I provide such strategies for a range of estimation problems in quantum optical
setups.

5.1.3 Gaussian quantum optics

The scenario of interest is that the probe states are composed of the electromagnetic
field. The goal of this work is to reveal the performance of Gaussian states in the frame
of Bayesian estimation strategies. To set these states for this investigation, I briefly
review some relevant concepts of Gaussian quantum optics below and loosely follow
Ref. [22].

Multi-mode optical fields can be described as collection of bosonic modes. CV
systems consist of N bosonic modes, i.e. N harmonic oscillators. I label each mode as
k and represent a pair of annihilation and creation operators as {âk, â†k}. These mode
operators satisfy the bosonic commutation relation [b̂i, b̂

†
j] = Ωij, where

b̂ = (â1, â
†
1, . . . , âN , â

†
N)T and Ω =

N⊕
k=1

(
0 1
−1 0

)
, (5.13)

which is the symplectic form [298]. The mode operators can be translated into the
quadrature operators, q̂k = (â†k + âk)/

√
2 and p̂k = i(â†k − âk)/

√
2. These operators

correspond to generalised position and momentum observables for the mode k, and
have continuous spectra and eigenstates, {|q〉}q∈R and {|p〉}p∈R, respectively. In the
phase space picture, let me write the quadrature operators as one single vector x̂ =
(q̂1, p̂1, . . . , q̂N , p̂N)T .

On one hand, any state of such a N -mode system is represented by a density
operator ρ ∈ D(H⊗N). On the other hand, any state can also be described by its Wigner
functionW (x) [299]. The characteristic function is defined by χ(x) = Tr[ρD(x)], where
D(x) = exp

(
i
√

2 x̂T Ω x
)
is the Weyl displacement operator. By Fourier transforming

the characteristic function χ(x), the Wigner function W (x) is obtained, cf. Sec. 1.2.1.

Gaussian states: A state is called a Gaussian state if its Wigner function is given
by a multivariate Gaussian distribution,

W (x) =
exp

(
−(x− x̄)TΓ−1(x− x̄)

)
πN
√

det[Γ]
. (5.14)

Gaussian states can be determined by their first moment x̄ = 〈x〉 and the covariance
matrix σ = (σi,j) = Γ/2. The real and symmetric 2N × 2N covariance matrix collects
the second moments σij = 〈{x̂i − 〈x̂i〉, x̂j − 〈x̂j〉}〉/2. This Gaussian state description
with only the first moment and the covariance matrix allows one to compactly treat
the states expanding in an infinite-dimensional Hilbert space with a finite number of
degrees of freedom.

As reviewed in Sec. 1.2.2, single-mode Gaussian states include coherent states and
squeezed states as well as the vacuum state. Coherent states are eigenstates of the
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annihilation operator âk such that âk |α〉k = α |α〉k. These states can be described by
applying the displacement operator of the coherent amplitude α ∈ C,

D̂k(α) = exp
[
αâ†k − α

∗âk

]
, (5.15)

to the vacuum state |0〉k such that |α〉k = D̂k(α) |0〉k. For a single-mode coherent state
|α〉k, the first moment is x̄ =

√
2(Re[α], Im[α])T . Also, the second moment corresponds

to the identity matrix divided by 2, which means that the variance in q̂k and p̂k is 1/2
and saturates the uncertainty relation in a balanced way. Note that all coherent states
have the same covariance matrices as the vacuum state (see Fig. 5.2).

There is another type of states saturating the uncertainty relation but in an im-
balanced way, which is squeezed states. One-mode squeezing literally squeezes a state
in the phase space and changes the covariance matrix but leaves its determinant the
same (see Fig. 5.2). Squeezed states are generated by applying the following squeezing
operator with squeezing parameter ξ = r eiϕ,

Ŝk(ξ) = exp

[
ξ∗â2

k − ξâ
†2
k

2

]
(5.16)

to the vacuum state |0〉k or displaced states. For the parameter ξ = r eiϕ, r ∈ R is the
squeezing strength and ϕ ∈ [0, 2π] is the squeezing angle.

Every pure Gaussian state can be generated by these two operators from the vacuum
state [22]. Such states are characterised by the displacement parameter α ∈ C, the
squeezing amplitude r ∈ R, and the squeezing angle ϕ ∈ [0, 2π]. If one restricts the
squeezing amplitude to real values, it is necessary to apply a phase rotation

R̂k(θ) = exp
[
−iθâ†kâk

]
(5.17)

in order to describe the general pure single-mode Gaussian state such that

|α, reiϕ〉 = D̂(α)Ŝ(reiϕ) |0〉 = D̂(α)R̂(ϕ/2)Ŝ(r) |0〉 . (5.18)

Note that the order of the operators is restricted, otherwise the first moment may de-
pend on the squeezing strength and angle. The first moment is x̄ =

√
2(Re(α), Im(α))T ,

and the covariance matrix is

σ =
1

2

(
cosh(2r)− sinh(2r) cosϕ sinh(2r) sinϕ

sinh(2r) sinϕ cosh(2r) + sinh(2r) cosϕ

)
. (5.19)

A unitary transformation is called a Gaussian transformation, if it maps all Gaussian
states into Gaussian states. This class of unitary operations is created by Hamiltonians
composed of (at most) second order polynomials of the mode operators. It is worth
noting that every single-mode Gaussian unitary operation can be decomposed into
displacement, rotation, squeezing operators, as shown in Eq. (5.18). Gaussian states
and transformations are easy to treat theoretically and implement experimentally [286,
287].
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Figure 5.2: Plots of the Wigner functions for a coherent state and a squeezed state.
The Wigner functions are given by the Gaussian distribution given in Eq. (5.14) and
characterised with a displacement parameter α, a squeezing strength r, and a squeezing
angle ϕ = 2θ.

Gaussian measurements: Any measurement can be represented by a POVM, i.e.
a set of positive operators {Em} which sum to the identity. For measurement schemes
of CV systems, it is common to use continuous POVMs, which give a continuous set of
operators and of measurement outcomes. A measurement is called Gaussian if it gives
a Gaussian distribution of the outcomes when it is applied to a Gaussian state. The
most commonly used Gaussian POVMs are heterodyne and homodyne detections. For
the heterodyne detection, the POVM is composed of coherent states 1

π
{|β〉 〈β|}β∈C.

The homodyne detection measures one mode of the quadrature, for example q̂, and is
composed of projectors of the quadrature {|q〉 〈q|}q∈R.

5.2 Displacement estimation

Here, I explore Bayesian estimation strategies for the displacement by using Gaussian
probe states and Gaussian measurements, i.e. I suppose that a displacement operator
D̂(α) acts on a CV system where the initial state is a Gaussian state and that one
wants to estimate the unknown displacement α = αR + iαI with αR, αI ∈ R. As
measurement schemes, I use heterodyne or homodyne detection and compare their
results. These measurements are covariant under the action of displacement since
the probability distribution of applying D̂(α) to the probe state provides the same
distribution translated by the displacement parameter α [300]. Thus, I set a squeezed
vacuum state |ξ〉 = Ŝ(ξ) |0〉 as the initial probe state instead of using the general single-
mode Gaussian state D̂(α)Ŝ(ξ) |0〉. Furtheremore, I assume that the prior information
of the displacement is encoded in a Gaussian distribution with the width σ0 and the
centre α0 forming a prior distribution written as

p(α) =
1

2πσ2
0

exp

[
−|α− α0|2

2σ2
0

]
. (5.20)
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In the following, I investigate the performance of the estimation strategies based on
heterodyne and homodyne detections, and consider cases of finite resource for probe
states.

5.2.1 Heterodyne measurement

I first focus on estimation strategies based on heterodyne detection, where the measure-
ment is described by the POVM 1

π
{|β〉 〈β|}β∈C. The set of coherent states |β〉 forms an

overcomplete basis1 with the completeness relation 1
π

∫
dβ |β〉〈β| = 1. The liklihood

to obtain the measurement outcome β given a displacement of α is represented by
the fidelity between the coherent state |β〉〈β| and the probe state after applying the
displacement operator, and is given by

p(β|α) =
1

π
Tr
[
|β〉〈β| D̂(α) |ξ〉〈ξ| D̂†(α)

]
=

1

π
Tr [|β − α〉〈β − α| |ξ〉〈ξ|]

=
1

π
F (|β − α〉〈β − α| , |ξ〉〈ξ|)

=
1

π
|〈β − α|ξ〉|2 . (5.21)

Here, F(ρ1, ρ2) =
(
Tr
[√√

ρ1ρ2
√
ρ2

])2 is the Uhlmann’s fidelity of the states ρ1 and ρ2,
which corresponds to F(|ψ〉 , |φ〉) = | 〈ψ|φ〉 |2 for pure states. For the overlap between
two Gaussian states, the form can be simplified and written in terms of the respective
first moments x̄1,2 and the second moments 2σ1,2 = Γ1,2 (cf. Ref. [264]) as

F(ρ1, ρ2) =
2 exp

[
−(x̄1 − x̄2)T (Γ1 + Γ2)−1(x̄1 − x̄2)

]√
|Γ1 + Γ2|+ (1− |Γ1|)(1− |Γ2|)−

√
(1− |Γ1|)(1− |Γ2|)

. (5.22)

For simplicity, the probe state is squeezed only along one fixed direction, ϕ = 0. This
simplifies the following calculation significantly. Specifically, this lets me write the like-
lihood p(β|α) and the posterior distribution as products of the respective distributions
for the real αR and the imaginary part αR of the displacement. On the other hand, for
an arbitrary squeezing angle ϕ, the resulting formulas are unwieldy and complicated,
although quantitatively the formulas give the same behaviour as for ϕ = 0. Therefore,
I stick to the case of ϕ = 0.

To use Eq. (5.22), I write ρ1 = |β − α〉〈β − α| and ρ2 = |ξ〉〈ξ|, for which the first
moments are

x̄β−α =
√

2

(
Re[β − α]
Im[β − α]

)
=
√

2

(
βR − αR

βI − αI

)
and x̄ξ =

(
0
0

)
(5.23)

1“An overcomplete basis” in this context means that even if a coherent state such as {|β〉 〈β|}β=1

is taken off from the POVM 1
π{|β〉 〈β|}β∈C, the POVM still maintains the completeness relation

1
π

∫
dβ |β〉〈β| = 1. It may help one understand this, thinking that the vacancy of the coher-

ent state {|β〉 〈β|}β=1 is filled up by neighbouring coherent states such as {|β〉 〈β|}β=1.0000... and
{|β〉 〈β|}β=0.9999....
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and the second moments are

Γβ−α =

(
1 0
0 1

)
and Γξ =

(
e−2r 0

0 e2r

)
. (5.24)

As a result, the likelihood p(β|α) is written as

p(β|α) =
1

π cosh r
exp

[
−e+r(βR − αR)2 + e−r(βI − αI)

2

cosh r

]
= p(βR|αR) p(βI|αI), (5.25)

where the distributions p(βi|αi) for i = R, I are given by

p(βi|αi) =

√
2 exp

[
−2(βi−αi)2

1+e∓2r

]
√
π(1 + e∓2r)

. (5.26)

The upper and lower signs in ∓ correspond to the subscripts i = R and i = I, respec-
tively.

By using the likelihood and the prior, Bayes’ law (5.2) informs one about the pos-
terior distribution and the estimator. This allows one to evaluate the average variance
of the posterior. However, these calculations can be simpler in the case where the prior
and likelihood both are Gaussian. The proposition mentioned in Sec. 5.1.1 tells one
that the posterior is also Gaussian, and its mean and variance can be represented by
those of the likelihood and the prior. Notice in the representation used in the propo-
sition, σ = (1 + e±2r)/4, µ0 = α0,i, and θ̄(m) = βi, where the subscripts i = R, I
correspond to +,−, respectively. Therefore, the means are

α̂i(βi) =
4βiσ

2
0 + α0,i(1 + e∓2r)

4σ2
0 + 1 + e∓2r

, (5.27)

which are the estimators for the real and imaginary parts of the parameter α, and the
variances are

Var[p(αi|βi)] =

[
1

σ2
0

+ 2(1± tanh r)

]−1

. (5.28)

Here, I define the total variance of the posterior p(α|β) for the complex parameter α
as

Var[p(α|β)] =

∫
dα p(α|β) |α− α̂(β)|2. (5.29)

Since the real and imaginary parts of the posterior are independent, this total vari-
ance can be described by the sum of the variances of the two independent estimation



76Bayesian parameter estimation using Gaussian states and measurements

parameters as

Var[p(α|β)] = Var[p(αR|βR)] + Var[p(αI|βI)]

=

[
1

σ2
0

+ 2(1 + tanh r)

]−1

+

[
1

σ2
0

+ 2(1− tanh r)

]−1

. (5.30)

I note that the average total variance corresponds to the total variance given in
Eq. (5.30), because Eq. (5.30) is independent of β.

The average total variance of the posterior depends only on the variance σ0 of the
prior and the squeezing strength r. For a fixed prior (with σ0 fixed), the total average
variance V̄post is minimised for r = 0 (no squeezing), as

V̄post(r) ≥ V̄post(r = 0) =
2σ2

0

1 + 2σ2
0

. (5.31)

Regardless of the squeezing, the variances in both coordinates decrease with respect
to the prior, but slowly, i.e. not exponentially. If one is interested in only one coor-
dinate for the estimation, e.g. αR, the squeezing is useful and reduces the variance
monotonically for increasing r. For r →∞, the variance for estimation of αR given in
Eq. (5.30) reaches (σ−2

0 + 4)−1, which originates from the intrinsic uncertainty of the
coherent state basis associated with the POVM representing the heterodyne detection.
In other words, regardless of the measurement outcome, the precision in the estimation
is limited by the variance of the coherent state used for the measurement.

This result signals the advantage of homodyne detection as shown below. Coherent
states minimise the product of uncertainties. However, if one has a desired coordinate,
e.g. αR, it is better to use a squeezed state basis which has a smaller variance in
the desired coordinate. The homodyne detection, which will be discussed in the next
section, can be thought of as a special case of a measurement in a basis of infinitely
squeezed coherent states.

5.2.2 Homodyne measurement

I switch to estimation strategies using homodyne detection, which is described by the
POVM {|q〉〈q|}q∈R. As before, I use a squeezed state as the probe state to estimate the
displacement α, and use the Gaussian distribution (5.20) as the prior. The likelihood
to obtain the outcome q given the displacement α is provided by

p(q|α) = Tr
[
|q〉〈q| D̂(α) |ξ〉〈ξ| D̂†(α)

]
=
∣∣∣ 〈q|D̂(α)|ξ〉

∣∣∣2
=

∫ ∞
−∞
dp W (q, p), (5.32)



5.2 Displacement estimation 77

where W (q, p) is the Wigner function of the Gaussian state D̂(α) |ξ〉. Here, I use the
fact that the Wigner function of any Gaussian state is given by

W (x, p) = W (x̄ρ,Γρ)

=

exp

[
−
((

q
p

)
− x̄ρ

)T
Γ−1
ρ

((
q
p

)
− x̄ρ

)]
π
√
|Γρ|

. (5.33)

Therefore, the likelihood p(q|α) can be written as

p(q|α) =

exp

[
−

2(αR− q√
2

)2

cosh 2r−cosϕ sinh 2r

]
√
π(cosh 2r − cosϕ sinh 2r)

. (5.34)

Notice that the likelihood p(q|α) does not depend on the imaginary part αI of the
displacement. That is because homodyne detection in one quadrature is completely
blind to the orthogonal quadrature. Thus, the knowledge of the imaginary part αI

is not updated from the prior, and I focus on the real part αR. Since the likelihood
is a Gaussian distribution and can be written as a Gaussian distribution with the
mean 〈αR〉 = q/

√
2 and the variance σ2 = (cosh 2r − cosϕ sinh 2r)/4, the proposition

mentioned in Sec. 5.1.1 ensures that the posterior is a Gaussian distribution with the
mean

α̂R =
2
√

2σ2
0q + α0,R(cosh 2r − cosϕ sinh 2r)

4σ2
0 + cosh 2r − cosϕ sinh 2r

, (5.35)

and the variance

Var[p(αR|q)] =
σ2

0(cosh 2r − cosϕ sinh 2r)

4σ2
0 + cosh 2r − cosϕ sinh 2r

. (5.36)

The variance depends on the squeezing strength r and angle ϕ, and is minimised for
ϕ = 2nπ. Without loss of generality, I take ϕ = 0. In this case, the average variance
of the posterior for the chosen coordinate q is given by

V̄ q̂
post = Var[p(αR|q)]

ϕ=0
=
( 1

σ2
0

+ 4e2r
)−1

, (5.37)

whereas the average total variance is

V̄post = V̄ q̂
post + σ2

0

=
( 1

σ2
0

+ 4e2r
)−1

+ σ2
0. (5.38)

Figure 5.3 displays the posterior distributions for different squeezed probe states. While
the marginal probability in the coordinate p remains unchanged, the marginal proba-
bility in the coordinate q becomes narrow.
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Figure 5.3: Displacement estimation using heterodyne and homodyne detection. The
images show the same Gaussian prior (green) with initial standard deviation σ0 = 0.5,
and posterior distributions obtained for heterodyne (blue) and homodyne detection
(orange) for different squeezing strengths of the probe state.

5.2.3 Comparison of measurement strategies

Let me now compare the results for the displacement estimation with heterodyne and
homodyne measurements. For homodyne detection, squeezing decreases the average
total variance in one quadrature exponentially as shown in Eq. (5.37), while squeezing
does not affect the variance in the orthogonal quadrature. In the limit of r → ∞,
limr→∞ V̄

homodyne

post = σ2
0. Comparing this with the result (5.31) for heterodyne detection,

for priors with variance σ2
0 ≥ 1/2, one observes V̄ homodyne

post (r) ≥ V̄ heterodyne

post (r = 0). This
shows that the homodyne detection scenario loses against the heterodyne detection
scenario in this case regardless of how much the probe is squeezed for homodye detec-
tion. However, for more narrow priors, such as σ2

0 < 1/2, where more knowledge is
obtained, homodyne detection can outperform heterodyne detection if the squeezing is
strong such as r > −1

2
ln(1− 2σ2

0).
If one knows the direction of the displacement and focuses on the estimation of

the amplitude, e.g. focuses on one quadrature q, then homodyne detection outper-
forms heterodyne detection for all prior widths and for all squeezing strength. The
variance (5.28) of the heterodyne detection in the limit of r → ∞ corresponds to the
variance (5.37) of homodyne detection for r = 0, thus the one obtains,

V̄ q̂, homodyne

post ≤ σ2
0

1 + 4σ2
0

≤ V̄ q̂, heterodyne

post . (5.39)

I compare these results with the optimal limit obtained from the Bayesian quantum
CRB (5.12). For a Gaussian prior in a single parameter, the FI of the prior is I[p(αR)] =
1/σ2

0 according to Eq. (5.8). The QFI for a single-mode Gaussian state is bounded by
I(ρ) ≤ 4e2r (cf. Eq. (15) and subsequent text in Ref. [264]). Therefore, the Bayesian
quantum CRB reads

V̄ q̂

post ≥
(

1

σ2
0

+ 4e2r

)−1

. (5.40)



5.3 Phase estimation 79

Comparison between this and Eq. (5.37) tells one that the homodyne detection with a
squeezed probe state is the optimal strategy to estimate one coordinate of displacement
or amplitude with known direction for a single-mode Gaussian state.

Finally, I consider repeating measurements and updating procedures, which can
be implemented within the framework of conjugate priors. As shown, the posterior
takes the same form as the prior. Since the posterior is used as the prior for the next
measurement round, the recursive formula for the average variance is given by

σ2
m+1 =

σ2
m Var[p(q|α)]

σ2
m + Var[p(q|α)]

, (5.41)

where σm is the variance for round m. By noting that Var[p(q|α)] = e2r/4 depends on
the squeezing but not the measurement round, the recursive equation can be solved,
and the variance for round m is given by

σ2
m =

(
1

σ2
0

+ 4m e2r

)−1

. (5.42)

For example, by repeating measurements, one can use a sequential measurement strat-
egy providing both the real and imaginary parts of the displacement. For instance, one
tunes the squeezing in the probe state and the direction of the homodyne detection to
estimate the real part at the beginning, and then switch to estimation of the imaginary
part.

5.3 Phase estimation

In this section, I discuss phase estimation employing Gaussian states and measure-
ments in the framework of Bayesian estimation. Historically, phase estimation has
been associated with interferometry [301], but nowadays, it is used broadly. Particu-
larly, Bayesian phase estimation has been studied for various applications [302, 303]
such as quantum error correction [304]. While there are some studies that identify the
optimal settings in Gaussian environments [277, 305, 306], their focus is on the local
estimation scenario, and thus they do not work in the framework of Bayesian phase
estimation.

Here, I focus on situations where there is no prior information on the estimated
parameter and hence local estimation cannot be employed in a meaningful way. The
aim of this Bayesian phase estimation strategy is to identify the parameter precisely
until local estimation can take over the rest of the estimation. One can use a circu-
lar Gaussian distributions (cf. Ref.[293]) for a more flexible prior and generalise the
discussion below although these distributions entail mathematical complexity.

I consider scenarios where a phase rotation operator (5.17) is applied to a Gaussian
state. The phase θ is completely unknown, and its range is [−π, π). Thus, the prior is
written as

p(θ) =
1

2π
(5.43)
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so that it is normalised as
∫ π
−πdθ p(θ) = 1. Below, I study the performance of heterodyne

and homodyne measurements in this scenario. It is worth nothing that although the
optical probe state (at fixed average energy) for local phase estimation is a single-mode
squeezed state, this is not the case for Bayesian phase estimation, as will be seen below.

5.3.1 Heterodyne measurement

I consider probe states which are squeezed with strength r = |ξ| before being displaced,
described as D̂(α)Ŝ(reiϕ) |0〉 with r ≥ 0 and 0 ≤ ϕ < 2π. While any Gaussian state can
be described in this form with arbitrary complex numbers α and ξ = reiϕ, some freedom
of the probe state can be removed without loss of generality. Since displacement
and squeezing can be given with arbitrary strengths along arbitrary directions, the
rotational symmetry of the phase estimation problem permits one to fix one of these
directions. Therefore, I take positive values for α and also do not consider α = 0.
That is because for cases of α = 0, the probe is a squeezed vacuum state and does not
distinguish between rotations around θ and θ + π due to rotational invariance.

While the squeezing direction can be taken freely, I choose the optimal one, which
is ϕ = π (thus, ξ = −r) and where the probe state is squeezed along the quadrature p
(its Wigner function spreads along the q̂-quadrature; see Fig. 5.2). It can be intuitively
understood that this is the optimal direction as the initial probe state is like a clock
hand hitting three due to α > 0. The more squeezed the initial probe state is, the
clearer it is that the probe shows θ = 0, and hence this also makes it clearer which
direction the encoded probe turns. In the remainder of this section, I consider the
probe state D̂(α)Ŝ(−r) |0〉.

Since calculations for arbitrary values of r are complicated and unwieldy, I start
with displaced probe states (coherent states) D̂(α) |0〉 and switch to squeezed displaced
probe states D̂(α)Ŝ(−r) |0〉 later.

Coherent probe state & heterodyne detection: The initial probe state is given
by D̂(α) |0〉 with α > 0. The phase rotation is represented by Eq. (5.17), and thus the
encoded probe state is described as R̂(θ) |α〉 = |e−iθα〉. Therefore, the likelihood to
obtain an outcome β ∈ C, given the phase θ, reads

p(β |θ) = 1
π
| 〈 β | e−iθα 〉 |2

= 1
π
| 〈 eiθβ |α 〉 |2

= 1
π
e−|e

iθβ−α|2 , (5.44)

where |eiθβ − α|2 = α2 + |β|2 − 2α|β| cos(θ − φβ) with β = |β|e−iφβ . I express the
unconditional probability to obtain β as

p(β) =

∫ π

−π
dθ p(θ) p(β |θ)

=
e−(α2+|β|2)

π
I0(2α|β|), (5.45)

where I0(x) is the modified Bessel function of the first kind. Using Bayes’ law (5.2),
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the posterior is given by

p(θ|β) =
p(θ) p(β |θ)

p(β)

=
e2α|β| cos(θ−φβ)

2π I0(2α|β|)
. (5.46)

The phase range is considered as [−π, π), and the points ±π are identical. Therefore, I
take estimators and variances which are invariant under shifts by 2π. For the estimator,
I choose θ̂(β) = arg〈eiθ〉p(θ |β), where

〈eiθ〉p(θ |β) =

∫ π

−π
dθ p(θ|β)eiθ

=

∫ π

−π
dθ

e2α|β| cos(θ−φβ)

2π I0(2α|β|)
eiθ

= eiφβ
∫ π

−π
dθ

e2α|β| cos(θ−φβ)

2π I0(2α|β|)
ei(θ−φβ). (5.47)

Since ∫ π

−π
dθ e2α|β| cos(θ−φβ) sin(θ − φβ) = 0, (5.48)

I have

〈eiθ〉p(θ |β) = eiφβ Re

[∫ π

−π
dθ

e2α|β| cos(θ−φβ)

2π I0(2α|β|)
ei(θ−φβ)

]
. (5.49)

This leads to the estimator

θ̂(β) = arg
[∫ π

−π
dθ p(θ|β)eiθ

]
= φβ, (5.50)

which corresponds to the phase φβ of the measurement outcome β.

To evaluate the performance of this estimation strategy, I calculate the average
variance of the posterior as done in the above sections. Considering invariance under
shifts by 2π, I choose the average of sin2[θ− θ̂(β)] instead of the average of (θ− θ̂(β))2.
Specifically, the variance is given by

Vpost(β) =

∫ π

−π
dθ p(θ|β) sin2

[
θ − θ̂(β)

]
=

0F1(2;α2|β|2)

2 I0(2α|β|) Γ(2)
, (5.51)

where 0F1(a; z) is the confluent hypergeometric function and Γ(z) is the Gamma func-
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tion. Notice that the chosen variance form is also invariant under shifts of the estimator
by integer multiples of π, not just shift by even multiples of π. In principle, to quantify
the width of the distribution, one can also use the Holevo variance [307], which are inde-
pendent of shifts of the estimator. The reason I choose the average of sin2[θ− θ̂(β)] is to
have better comparision with the homodyne detection scenario discussed in Sec. 5.3.2,
where the phase range is [0, π] and the interval is π.

As a result, the average variance is

V̄post =

∫
d2β p(β)Vpost(β)

=
e−α

2

2π Γ(2)

∫ ∞
0

d|β|
∫ π

−π
dφβ |β| e−|β|

2

0F1(2;α2|β|2)

=
e−α

2

Γ(2)

∫ ∞
0

d|β| |β| e−|β|2 0F1(2;α2|β|2)

=
1− e−|α|

2

2 |α|2
. (5.52)

By rewriting this result in terms of the average photon number n = |α|2, it is observed
that for n → ∞ the average variance scales as 1/n, which is the same scale of the
quantum standard limit.

Displaced squeezed states & heterodyne detection: Here, I consider squeezing
the probe state before displacing it, which is described as D̂(α)Ŝ(−r) |0〉 with α > 0
and r ≥ 0. For the heterodyne measurement, the likelihood to obtain the outcome β
given the phase θ is

p(β |θ) =
1

π
| 〈β| R̂(θ)D̂(α)Ŝ(−r) |0〉 |2

=
1

π
| 〈 eiθβ |α,−r 〉 |2

=
1

π
F
(
|eiθβ〉 , |α,−r〉

)
. (5.53)

According to Eq. (5.22), the fidelity between these two Gaussian states ρ1 =
∣∣eiθβ〉〈eiθβ∣∣

and ρ2 = |α,−r〉〈α,−r| is provided by their first moments and second moments. Their
first moments are

x̄1 =
√

2

(
Re(eiθβ)
Im(eiθβ)

)
and x̄2 =

(
Re(α)
Im(α)

)
, (5.54)

and their second moments are

Γ1 =

(
1 0
0 1

)
and Γ2 =

(
e−2r 0

0 e2r

)
. (5.55)
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Since det Γ1 = det Γ2 = 1 and det(Γ1 + Γ2) = 4 cosh2 r, the likelihood turns out to be

p(β |θ) =
1

π cosh r
exp
[
−

e−rRe2
[
eiθβ − α

]
+ er Im2

[
eiθβ − α

]
cosh r

]
=

e−α
2(1−tanh r)−|β|2

π cosh r
exp
[
2α|β| cos (θ − φβ) + |β|2 tanh r cos [2(θ − φβ)]

]
× exp

[
−2α|β| tanh r cos (θ − φβ)

]
. (5.56)

I use the Jacobi-Anger expansion in terms of the modified Bessel functions of the first
kind, i.e.

ex cos θ =
∞∑

n=−∞

In(x)einθ, (5.57)

which is a useful tool for the calculations performed in this section. The unconditional
probability to obtain β is

p(β) =
1

2π

∫ π

−π
dθ p(β |θ)

=
∞∑

n,m1,m2=−∞

∫ π

−π
dθ ei(n+2m1+m2)(θ−φβ) e−α

2(1−tanh r)−|β|2

2π2 cosh r
ei(n+m1+m2)π In(−2α|β|)

× Im1(−|β|2 tanh r) Im2(2α|β| tanh r). (5.58)

I then make use of an identity∫ π

−π
dθ ei(n+2m1+m2)(θ−φβ) =

{
2π if n = −2m1 −m2

0 otherwise
, (5.59)

such that I obtain

p(β) =
e−α

2(1−tanh r)−|β|2

π cosh r

×
∞∑

m1,m2=−∞
(−1)m2I2m1+m2(2α|β|)Im1(|β|2 tanh r) Im2(2α|β| tanh r), (5.60)

where I use In(x) = I−n(x) and In(−x) = (−1)nIn(x). Using Bayes’ law (5.2), the
posterior is obtained as p(θ|β) = p(β|θ)/2πp(β). To obtain the estimator θ̂(β) =
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arg〈eiθ〉p(θ|β), I calculate

〈eiθ〉p(θ |β) =

∫ π

−π
dθ p(θ|β) eiθ

=
1

2πK

∞∑
n1,n2,n3=−∞

ei(n1+n2+n3)πIn1(−2α |β|) In2(−|β|2 tanh r) In3(2α|β| tanh r)

×
∫ π

−π
dθ eiθei(n1+2n2+n3)(θ−φβ), (5.61)

where

K =
∞∑

m1,m2=−∞

(−1)m2I2m1+m2(2α |β|)Im1(−|β|2 tanh r)Im2(2α|β| tanh r). (5.62)

Here, I make use of an identity similar to Eq. (5.59),∫ π

−π
dθ eiθei(n1+2n2+n3)(θ−φβ) =

{
2π eiφβ if n1 = −2n2 − n3 − 1

0 otherwise,
(5.63)

such that I obtain

〈eiθ〉p(θ |β) = e
iφβ

K

∞∑
n2,n3=−∞

(−1)n3I2n2+n3+1(2α |β|)In2(|β|2 tanh r)In3(2α|β| tanh r).

(5.64)

It is to be noted that K ≥ 0, since K is a component of the probability p(β), whose
probability factor is non-negative. The remaining sum is real but may take positive
and negative values. If the sum part is positive, the estimator corresponds to the phase
of the outcome, θ̂(β) = arg〈eiθ〉p(θ|β) = φβ, whereas the estimator is shifted by π, i.e.
θ̂(β) = φβ + π, if it is negative.

Below, I calculate the variance of the posterior as done in the previous sections
to see the performance of the heterodyne scenario. While it is unknown whether the
estimator θ̂(β) is φβ or φβ + π, the value of the estimator θ̂(β) does not affect the
variance of the posterior, as shown below, particularly in Eq. (5.66). I take the average
of sin2[θ − θ̂(β)] and find

Vpost(β) =

∫ π

−π
dθ p(θ|β) sin2

[
θ − θ̂(β)

]
=

1

2πK

∞∑
n1,n2,n3

=−∞

In1(−2α |β|)In2(−|β|2 tanh r)In3(2α|β| tanh r)ei(n1+n2+n3)π

∫ π

−π
dθ ei(n1+2n2+n3)(θ−φβ) sin2[θ − θ̂(β)]. (5.65)
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Again, I make use of an identity similar to the ones in Eqs. (5.59) and (5.63),

∫ π

−π
dθ ei(n1+2n2+n3)(θ−φβ) sin2[θ − θ̂(β)] =


π if n1 = −2n2 − n3

−π
2

if n1 = −2n2 − n3 ± 2

0 otherwise,
(5.66)

such that I obtain

Vpost(β) =
1

2K

∞∑
n1,n2,n3=−∞

(−1)n1+n2+n3In1(−2α |β|)In2(−|β|2 tanh r)In3(2α|β| tanh r)

×
(
δn1,−2n2−n3+2

−1

2
+ δn1,−2n2−n3 + δn1,−2n2−n3−2

−1

2

)
. (5.67)

To obtain the average variance of the posterior, I use polar coordinates β = |β|e−iφβ ,
such that

V̄post =

∫
d2β p(β)Vpost(β)

=

∫ ∞
0

d|β|
∫ π

−π
dφβ

e−α
2(1−tanh r)

2π cosh r

∞∑
n2,n3
=−∞

|β| e−|β|2In2(−|β|2 tanh r)In3(2α|β| tanh r)

× 1

2
(−1)n2

[
2I−2n2−n3(−2α |β|)− I2−2n2−n3(−2α |β|)− I−2−2n2−n3(−2α |β|)

]
=

e−α
2(1−tanh r)

cosh r

∞∑
n2,n3
=−∞

∫ ∞
0

d|β| |β| e−|β|2 In2(|β|2 tanh r) In3(2α|β| tanh r)
1

2

×
[
2I−2n2−n3(−2α |β|)− I2−2n2−n3(−2α |β|)− I−2−2n2−n3(−2α |β|)

]
, (5.68)

Finding an analytical expression for the above integeral is difficult, hence I have evalu-
ated it numerically. On a side note, to check my analytical calculations until Eq. (5.68),
I have confirmed that some values of Eq. (5.68) agree with full numerical results of V̄post

using Eq. (5.56).

I plot the average variance V̄post for different squeezing strengths as a function of
the square of displacement |α|2 (see Fig. 5.4(a)). One can see that squeezing improves
the estimation precision. This result agrees with the intuition provided by the Wigner
function: the probe state spreads along the q̂-quadrature and displaces along the q̂ axis,
and rotating the probe around the origin by the phase rotation operator is virtually like
spinning a clock hand. Squeezing narrows the width of the clock hand, which makes
the measurement outcomes β match the phase precisely.

However, when considering a fixed average energy of the probe state, which is
represented by n = |α|2 + sinh2 r, squeezing is beneficial only in certain regimes (see
Fig. 5.4(b)). For relatively strong squeezing such as r = 1 and r = 1.25, the average
variance is larger for squeezed displaced states than for purely displaced states with the
same photon number (see the purple (r = 1) and brown lines (r = 1.25), and compare
them to the blue line (r = 0).) For smaller squeezing such as r = 0.75, there is a regime
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Figure 5.4: Bayesian phase estimation with single-mode Gaussian probes and het-
erodyne measurements. (a) The average variance V̄post from Eq. (5.68) is shown for
different values of α ≥ 0 and r ≥ 0 as a function of |α|2. The line on the top represents
the average variance for purely displaced probe states (r = 0) from Eq. (5.52). The
lines below indicate results of numerically evaluating Eq. (5.68) when changing α for
fixed values of r from r = 0.25 to r = 1.25 (top to bottom, starting at the second line
from the top). (b) The average variance V̄post is shown as a function of the average
photon number n = |α|2 + sinh2 r. The lines do not start at n = 0 because the nonzero
values of r give rise to non-zero average energies even for α = 0. The inset shows how
the lines for r = 0, r = 0.25, and r = 0.5 continue as n increases.
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of small n where combination of squeezing and displacement for probes outperforms
displaced probes (see the red line (r = 0.75)). These results indicate that the ratio
between displacement and squeezing strength matters in terms of usefulness of the
squeezing. On one hand, for even smaller values of r such as r = 0.5, purely coherent
probe states are more efficient again for a regime of large n (see the green line (r = 0.5)
in the inset). On the other hand, for slight squeezing r = 0.25, the squeezed probe
states outperform pure coherent states for the entire regime I investigated numerically
(see the orange line (r = 0.25) in the inset).

I point out that the advantage obtained from small squeezing r = 0.25, 0.5 is at
least an order of magnitude smaller than the average variance for r = 0 achieved in the
explored parameter range, and hence the advantage does not contribute significantly
the phase estimation.

5.3.2 Homodyne measurement

Here, I switch to scenarios using homodyne detection. Since this measurement gives
information about the q̂-quadrature but does not do anything to the orthogonal p̂-
quadrature, one cannot distinguish between phases shifted by integer multiples of π.
Therefore, the range of the phase is considered to be [0, π], and the prior distribution
is given by

p(θ) =
1

π
. (5.69)

Coherent states & homodyne detection: As in the previous section, I start with
the simple case where the probe state is a coherent state D̂(α) |0〉 = |α〉 for α > 0.
The likelihood to obtain the outcome q given θ becomes

p(q|θ) = |〈q|R(θ)|α〉|2

= |〈q|e−iθα〉|2

=

∫ ∞
−∞
dpW (q, p) , (5.70)

where W (q, p) is the Wigner function of the rotated coherent state |e−iθα〉. By using
Eq. (5.33) and noting that Γe−iθα = 12 and x̄e−iθα =

√
2α(cos θ,− sin θ)T , the likelihood

is given by

p(q|θ) =
1√
π

e−(q−
√

2α cos θ)
2

. (5.71)



88Bayesian parameter estimation using Gaussian states and measurements

Similarly, the unconditional probability to obtain q is expressed as

p(q) =

∫ π

0

dθ p(θ) p(q|θ)

=
1

π
√
π

e−q
2−α2

∫ π

0

dθ e2
√

2qα cos θe−α
2 cos (2θ)

=
e−q

2−α2

π
√
π

∫ π

0

dθ
[
I0(2
√

2qα)I0(−α2) + 2 I0(−α2)
∞∑
n=1

In(2
√

2qα) cos (nθ) (5.72)

+ 2 I0(2
√

2qα)
∞∑
m=1

Im(−α2) cos (2mθ)

+ 4
∞∑

m,n=1

Im(−α2)In(2
√

2qα) cos (nθ) cos (2mθ)
]
, (5.73)

where I use the Jacobi-Anger expression (5.57) in a real representation, expressed as

ex cos θ = I0(x) + 2
∞∑
n=1

In(x) cos (nθ), (5.74)

due to In(x) = I−n(x). I make use of the indentities
∫ π

0
dθ cosnθ = 0 for any n ≥ 1

and ∫ π

0

dθ cos (n θ) cos (2mθ) =

{
π
2

if n = 2m

0 otherwise.
(5.75)

As a result, the unconditional probability p(q) is written as

p(q) =
e−q

2−α2

√
π

[
I0(2
√

2qα)I0(−α2) + 2
∞∑
m=1

I2m(2
√

2qα)Im(−α2)
]

=
e−q

2−α2

√
π

M, (5.76)

where

M =
∞∑

m=−∞

I2m(2
√

2qα)Im(−α2). (5.77)

Using Bayes’ law (5.2), the posterior p(θ|q) is obtained as p(q|θ)/π p(q).
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To determine the estimator θ̂(q) = arg〈eiθ〉p(θ |q), I calculate

〈eiθ〉p(θ |q) =

∫ π

0

dθ p(θ|q) eiθ

=
1

M

1

π

∫ π

0

dθ
[
I0(2
√

2qα)I0(−α2)eiθ + 2I0(−α2)
∞∑
n=1

In(2
√

2qα) cos (nθ)eiθ

+ 2I0(2
√

2qα)
∞∑
m=1

Im(−α2) cos (2mθ)eiθ

+ 4
∞∑

m,n=1

In(2
√

2qα)Im(−α2) cos (nθ) cos (2mθ)eiθ
]
. (5.78)

I make use of the identities
∫ π

0
dθ eiθ = 2i,

∫ π

0

dθ cos (nθ) eiθ =


π
2

if n = 1
i(1+(−1)n)

1−n2 if n ≥ 2

0 otherwise,

(5.79)

and∫ π

0

dθ cos (nθ) cos (2mθ)eiθ =

{
π
4

if n = 2m± 1
i(1+(−1)n)(1−4m2−n2)

(n−2m−1)(n−2m+1)(n+2m+1)(n+2m−1)
otherwise.

(5.80)
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At the end, I obtain

〈eiθ〉p(θ |q) =
1

πM

{
2iI0(2

√
2qα)

[
I0(−α2) +

∞∑
m=1

Im(−α2)
2

1− 4m2

]
+ 2I0(−α2)

[
π
2
I1(2
√

2qα) +
∞∑
n=2

In(2
√

2qα) i(1+(−1)n)
1−n2

]
+ 4

∞∑
m=1

Im(−α2)
[
π
4
I2m−1(2

√
2qα) + π

4
I2m+1(2

√
2qα)

+
∞∑
n=1

n6=2m±1

In(2
√

2qα) i(1+(−1)n)(1−4m2−n2)
(n−2m−1)(n−2m+1)(n+2m+1)(n+2m−1)

]}

=
i

πM

{ ∞∑
n=1

4
1−4n2

[
I0(−α2)I2n(2

√
2qα)+In(−α2)I0(2

√
2qα)

]
+ 2I0(2

√
2qα)I0(−α2) + 8

∞∑
m=1

∞∑
n=1

I2n(2
√

2qα)Im(−α2)

× 1− 4m2 − 4n2

(2n− 2m− 1)(2n− 2m+ 1)(2n+ 2m+ 1)(2n+ 2m− 1)

}
+

1

M

{
I0(−α2)I1(2

√
2qα) +

∞∑
n=1

In(−α2)
[
I2n−1(2

√
2qα) + I2n+1(2

√
2qα)

]}
.

(5.81)

To obtain the phase of 〈eiθ〉p(θ |q), I express the real and imaginary parts of 〈eiθ〉p(θ |q) as

Re[〈eiθ〉p(θ |q)] =

∑∞
n=−∞ I2n+1(2

√
2qα)In(−α2)∑∞

m=−∞ I2m(2
√

2qα)Im(−α2)
(5.82)

and

Im[〈eiθ〉p(θ |q)] =
2

π

∑∞
m,n=−∞ I2n(2

√
2qα)Im(−α2)∑∞

k=−∞ I2k(2
√

2qα)Ik(−α2)
(5.83)

× 1− 4m2 − 4n2

(2n− 2m− 1)(2n− 2m+ 1)(2n+ 2m+ 1)(2n+ 2m− 1)
,

respectively, where I utilise the functions Cn,m which are invariant under the exchanges
n→ −n and m→ −m and satisfy

∞∑
n=1

Cn,m =
1

2

(
∞∑

n=−∞

Cn,m − C0,m

)
(5.84)
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and

∞∑
m,n=1

Cn,m =
1

4

(
∞∑

m,n=−∞

Cn,m −
∞∑

m=−∞

C0,m −
∞∑

n=−∞

Cn,0 + C0,0

)
. (5.85)

Therefore, the estimator is obtained from Eqs. (5.82) and (5.83) as

θ̂(q) = arctan

(
Im[〈eiθ〉]
Re[〈eiθ〉]

)
. (5.86)

As can be seen, the form of the estimator looks even more complicated than its coun-
terpart (5.52) in case of the heterodyne detection scenario. Therefore, I resort to
numerical calculations of the variance and the average variance of the posterior. The
results of the average variance are plotted as a function of |α|2 in Fig. 5.5, which will
be discussed in the next section. On a side note, to check my analytical calculations
until Eqs. (5.82) and (5.83), I have confirmed that some values of Eqs. (5.82) and (5.83)
agree with full numerical results of Re[〈eiθ〉] and Im[〈eiθ〉] using Eq. (5.71).

Squeezed displaced states & homodyne detection: Now, I consider squeez-
ing the probe before displacing it as before, and the probe state is described as
D̂(α)Ŝ(reiϕ) |0〉 for α ≥ 0 and 0 ≤ ϕ < 2π. Although in the heterodyne detection
scenario I found the optimal squeezing direction to be ϕ = π, the optimal squeezing
direction for homodyne detection depends on the phase θ as shown below. Since the
homodyne detection measures the value of the q̂-quadrature, the squeezing direction
of the probe state is optimal when the rotated probe state R̂(θ)D̂(α)Ŝ(reiϕ) |0〉 =
R̂(θ)D̂(α)R̂(ϕ/2)Ŝ(r) |0〉 is squeezed along the q̂-quadrature so that the Wigner func-
tion is vertical to the q axis. Therefore, for any fixed θ the optimal squeezing direction
satisfies θ + ϕ

2
= mπ for m ∈ Z, i.e. ϕ = 2(mπ − θ). However, since I consider a

flat prior, i.e. no initial information on θ, the optimal direction cannot be determined.
Therefore, I leave the squeezing direction as a variable for the following calculations.

The likelihood to obtain the outcome q given θ can be obtained as before from the
first moment of the probe state, which is x̄ =

√
2α(cos θ,− sin θ)T and the covariance

matrix, which is given in Eq. (5.19) with replacement ϕ→ ϕ+ 2θ. As a result, I have

p(q|θ) = |〈q|R(θ)D̂(α)Ŝ(reiϕ)|0〉|2

=
exp
[
−(x−

√
2α cos θ)

2

Γqq(r,ϕ+2θ)

]
√
πΓqq(r, ϕ+ 2θ)

, (5.87)

where Γqq(r, ϕ) = cosh(2r) − cos(ϕ) sinh(2r). The unconditional probability p(q) to
obtain q is obtained from p(q) =

∫ π
0
dθ p(θ) p(q|θ) as done in the previous sections.

However, the integration containing p(q) turns out to be a formidable obstacle, and
it seems difficult to find a closed analytical expression for it. Therefore, I proceed
by numerically evaluating the unconditional probability, the posterior, the estimator,
the variance of the posterior, and the average variance. I plot the resulting average
variance V̄post as a function of |α|2 and as a function of the average photon number
n = |α|2 + sinh2 r in Figs. 5.5(a) and (b), respectively.
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Figure 5.5: Bayesian phase estimation with single-mode Gaussian probes and ho-
modyne measurements. (a) The average variance V̄post is shown as a function of |α|2.
Each curve corresponds to varying values of α ≥ 0, but fixed squeezing strength r from
r = 0 (blue), over r = 0.5 (green), to r = 1 (purple), and fixed squeezing angle ϕ, from
ϕ = 0 (solid), over ϕ = π/2 (dashed), to ϕ = π (dotted). Curves for ϕ = 3π/2 are
identical to those for ϕ = π/2 and hence are not plotted. (b) The average variance
V̄post is shown as a function of the average photon number n = |α|2 + sinh2 r of the
probe state. The colour-coding is the same as in (a), but the lines do not start at
n = 0 because the nonzero values of r give rise to non-zero average energies even for
α = 0. In addition, (a) shows V̄post for a coherent probe state (r = 0) and heterodyne
detection from Eq. (5.52) as a blue dashed-dotted curve.
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Certainly, squeezing improves the estimation to some extent, but for non-zero dis-
placement, squeezing is less beneficial than pure displaced states with the same α (see
Fig. 5.5(a)). When comparing probe states at fixed average energy, it is clearer that
squeezed probe states show worse performance than displaced probe states, except for
a regime of small α (see Fig. 5.5(b)). Furthermore, comparison with the result of het-
erodyne detection displays that homodyne detection perform better for coherent probe
states. Thus, sets of coherent probe state and homodyne measurement are recom-
mended to be used for Bayesian phase estimation. However, note that the homodyne
detection covers only the range [0, π]. If one wishes to explore the overall range of
phases, heterodyne detection should be chosen.

5.4 Squeezing strength estimation

Lastly, I will discuss estimation of the squeezing strength r of the squeezing operation
Ŝ(ξ) with ξ = reiϕ. Note that I assume the squeezing angle ϕ is known in order
to restrict myself to single-parameter Bayesian estimation. Also, estimation problems
of the squeezing angle can come down to phase estimation problems due to Ŝ(ξ) =
R̂(ϕ/2)Ŝ(r).

While optimal measurement strategies for a variation of the squeezing strength es-
timation have been studied in Refs. [308, 309], these optimal measurement schemes
could be difficult to realise in practice. Thus, I consider Gaussian measurements as
done above. Furthermore, I focus on homodyne detection and do not study hetero-
dyne detection. That is because some previous works [263, 309] show that homodyne
detection works better than heterodyne detection for this estimation problem due to
reduced variances of strongly squeezed states associated with outcomes of homodyne
detection and normal variances of coherent states associated with outcomes of hetero-
dyne detection. This is also discussed in the displacement estimation section 5.2.2.
Let me recall that not only the displacement estimation but also the phase estimation
(Sec. 5.3.2) can work better with homodyne detection than heterodyne detection.

5.4.1 Homodyne detection

I take a general single pure Gaussian probe state, |ξ〉 = D̂(α)Ŝ(χ) |0〉, as a probe,
where the displacement is complex as α = αR+iαI for αR, αI ∈ R, and the presqueezing
parameter is written as χ = s eiψ (let me call squeezing the probe state before encoding
the parameter to be estimated as “presqueezing”). The parameter r to be estimated is
applied to the probe as Ŝ(r) |ξ〉 = Ŝ(r)D̂(α)Ŝ(χ) |0〉. The squeezing transformation to
be estimated changes the first moment x̄ and covariance matrix σ into x̄ 7→ M x̄ and
σ 7→MσMT with a symplectic matrix of the form

M =

(
cosh r − cosϕ sinh r sinϕ sinh r

sinϕ sinh r cosh r + cosϕ sinh r

)
. (5.88)

Since the squeezing angle ϕ is assumed to be known, one can choose the reference frame
accordingly, and therefore I choose ϕ = 0 and r ∈ R without loss of generality.
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Figure 5.6: Sketch of the cross sections for the Wigner functions of a presqueezed
vacuum state (the red circle) and its encoded state (the blue circle). The widths of
these Wigner functions show the variances. The overlap between the two states is
represented by the green area.

As done in the previous sections, the likelihood p(q|r) is given by

p(q|r) = 〈q|Ŝ(r)|ξ〉

=
exp
(
−e2r(

√
2αRe−r−q)2

cosh 2s−cosψ sinh 2s

)
e−r
√
π(cosh 2s− cosψ sinh 2s)

, (5.89)

where the parameter r to be estimated is included in not only the mean but also the
variance of p(q|r). Treating a non-elementary function such as exp[exp(r)] makes it
hard to analytically deal with this problem and obtain the posterior. Therefore, I will
show numerical results for the squeezing estimation problem in this section.

In the next subsections, I will consider coherent probe states and presqueezed dis-
placed probe states, and exclude presqueezed vacuum states since these states work
poorly. That is because these probe states do not change the first moment but only
the covariance matrix as illustrated in Fig. 5.6. The measurement outcomes of the
overlap between the probe state and the encoded probe state (the green area depicted
in Fig. 5.6) do not give information about the squeezing strength r. Thus, some of the
measurement outcomes will be useless. However, the story is different in cases of dis-
placed probe states. The transformation by the parameter to be estimated also affects
the displacement of the probe state, which helps one with the squeezing estimation
problem and will be discussed in the next section. In the following, I explore coherent
probe states first and then presqueezed displaced probe states.

Coherent probe states: As seen in Eq. (5.89), the parameter to be estimated changes
not only the covariance matrix but also the first moment. As illustrated in Fig. 5.7,
the first moment follows hyperbolic trajectories in the phase space. Here, for simplicity
I focus on trajectories along the q axis, where the displacement of the probe is purely
real so that α = αR, i.e. I focus on states whose Wigner functions are depicted as
blue ovals in Fig. 5.7. Since the mean of the probe changes along the q axis, it is
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Figure 5.7: Cross sections of the Wigner functions of some coherent probe states after
squeezing transformation. The ovals represent those Wigner functions with displace-
ments α = 5 (blue), α = 5 eiπ/4 (orange) and α = 5 eiπ/2 (green) after the encoding
(squeezing) with strength r = (−1, −0.7, −0.4, −0.1, 0.1, 0.4, 0.7, 1) is applied.
While the shape of the Wigner function changes with varying squeezing strengths, the
mean values 〈q̂〉 and 〈p̂〉 move along hyperbolic trajectories depicted by grey lines.

Figure 5.8: Bayesian squeezing strength estimation with coherent probe state. The
ratios between the average variance of the posterior and the variance of the prior are
plotted as a function of square of displacements of the probe state. Colours correspond
to different prior variances. The prior is a Gaussian distribution with mean r0 = 1 and
variance σ2

0.

convenient to use the homodyne measurements on q. To evaluate the performance of
this strategy, I show numerical results of the average variance of the posterior in Fig.
5.8. One can see a reduction of the average variance for increasing displacement of the
probe as expected.
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Figure 5.9: Cross sections of the Wigner functions of a unpresqueezed state and a
presqueezed state. The blue oval in the left side represents an unpresqueezed probe
(s = 0), and the blue ones in the right side are encoded states with strength (r =
−0.9,−1.0,−1.1). The orange oval on the left side represents a presqueezed probe
(s = 0.5), and the orange ones in the right side show states after encoding with the
same strength as the unpresqueezed state.

Presqueezed displaced probe states: Here, I discuss the benefit from combining
displacing and presqueezing the probe. For simplicity, I restrict the parameter to be
estimated to negative values, i.e. r < 0, where the uncertainty in the p̂-quadrature
direction is reduced. Therefore, I presqueeze the probe states in a way to reduce the
uncertainty in the opposite direction to that of the estimated squeezing, i.e. the q̂-
quadrature direction (see Fig. 5.9). That is, I restrict the presqueezing strength to
positive values so that χ = s > 0. As shown in Fig. 5.9, presqueezed probes spreading
along the p axis are more distinguishable after encoding than unpresqueezed probes
(s = 0). This indicates the advantages of presqueezing along the opposite direction to
the squeezing to be estimated.

To confirm the advantages, I plot the average variance of the posterior for changes
of presqueezing and displacement of probe states in Fig. 5.10. As seen in the panel (a),
stronger presqueezing works better for the estimation. Furthermore, the panel (b)
shows that the minimum points of V̄post can be achieved with presqueezing and dis-
placement both being non-zero (see the black dots). Combining presqueezing and
displacement is therefore beneficial for this estimation.

5.5 Conclusions

In this chapter, I have presented a comprehensive study of Bayesian parameter esti-
mation by applying single-mode Gaussian probe states and feasible Gaussian measure-
ments. Bayesian estimation strategies permit one to have any prior uncertainty for the
parameter to be estimated, e.g. one can start with flat priors and perform a small num-
ber of measurements, which local estimation strategies cannot handle. The focus of this
study has not been on finding optimal probe states and measurement schemes whose
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(a)

(b)

Figure 5.10: Bayesian squeezing strength estimation with presqueezed displaced
probe states. The average variance of the posterior in presqueezed and displaced probe
states is displayed. In (a), the average variance is plotted as a function of the square
of displacement |α|2 for four values of s. In (b), the average variance is plotted as a
function of presqueezing s and the square of displacement |α|2. The grey curves rep-
resent lines of constant photon number n = |α|2 + sinh2(s), while the black dots mark
the points where the average variance is minimised for a given photon number. The
four curves from (a) are shown in the same color-coding. The prior used is a normal
distribution with mean r0 = −0.5 and variance σ2

0 = 1.



98Bayesian parameter estimation using Gaussian states and measurements

precision reaches the HL, but I have aimed to reveal the precision limit with feasible
ingredients (Gaussian states) and setups (heterodyne and homodyne detection).

In this work, I have considered three exemplary cases for CV quantum metrology.
A summary of the findings for each case is as follows:

(i) Displacement estimation. I have displayed a full analytical expression for this
estimation strategy. Importantly, I have shown that a set of a Gaussian probe and
a Gaussian measurement is optimal according to Bayesian quantum CRB (5.12):
squeezing a vacuum probe in the direction of the displacement to be estimated
and implementing homodyne detection.

(ii) Phase estimation. Since probability distributions for phase are circular distribu-
tions, the mathematical treatment of this problem becomes complicated. Thus, I
choose a flat prior, where one has no prior information of the parameter to be esti-
mated and which is not suitable for local phase estimation. I have given a closed
expression for the average variance of the posterior in cases of coherent probe
states and heterodyne detection, while numerical treatment was given for other
scenarios. I have shown that homodyne detection outperforms heterodyne detec-
tion although the phase range for the homodyne detection is half, i.e. θ ∈ [0, π].
In case of using homodyne detection, it is the most efficient to concentrate on
displaced probe states.

(iii) Single-mode squeezing strength estimation. Due to the complicated form of the
likelihood, all treatments of this problem were performed numerically. However,
the findings of the analysis are clear and show that it is the most efficient to
make use of presqueezing and displacement both for the probe, in addition to
implementing homodyne detection.

This comprehensive investigation shown here provides key references for Bayesian pa-
rameter estimations and will help further explorations for more complicated setups.
Examples include identifying optimal setups which may be non-Gaussian but feasible
[305] and investigating multi-mode Gaussian probe states which can have two-mode
squeezing, i.e mode entanglement, and can bring another quantum feature not explored
here [310]. Another example is multi-parameter estimation [311–314]. If the measure-
ment basis for a parameter estimation is not orthogonal to that for another parameter
estimation, these two estimations influence each other. It would be interesting to ex-
plore methods to avoid or weaken such influences.



Chapter 6

Simplifying multi-level thermal
machines using virtual qubits

Investigating the control of thermal machines in the quantum regime allows one to
explore the fundamental limits of thermodynamic tasks [23, 315–321], e.g. extracting
work from correlation [25]. To study such processes, it is common to consider a few
quantum-mechanical degrees of freedom interacting with a large environment, which
one does not have detailed control over [322–327]. Higher-dimensional machines are
harder to simulate exactly, and hence much of the focus is on models that are simple
enough to be treatable by master equations, such as a few qubits. One important
concept in this context is the framework of a virtual qubit [127, 130, 131]. This idea
allows one to reduce the complexity of predicting relevant machine behaviours to re-
veal steady states and even transient dynamics of a two-level transition of interest by
considering an effective two-level system involved with the transition. This framework
has led to simplifying approaches and both quantitative and qualitative understand-
ing [121, 126, 328, 329]. However, expanding the target system to multi-level systems
beyond qubits is still a challenge.

In this work, I address this problem for three-level systems (qutrit), as well as
arbitrary-level systems (qudits), coherently interacting with several virtual qubits in
the context of reset master equations [130]. I investigate the steady state solution
for three-level systems coupled to virtual qubits and compare it with an optical mas-
ter equation approach to identify universal features, which both models predict, and
identify properties of multi-level thermal machines. In this chapter, I start with the in-
troduction of virtual qubits before presenting the findings of this work. I then propose
a method to enhance the performance of the paradigmatic three-level maser/laser [106]
to show advantages of the results obtained from this work. Throughout this work, I
take ~ = 1 and kB = 1.

This project has been accomplished in collaboration with Wolfgang Niedenzu and
Marcus Huber. I have been involved with comprehensive discussion and performed all
analytical calculations as well as numerical treatment of the full reset master equa-
tion. The work presented in this chapter is submitted to Quantum and is available on
arXiv:2009.03832 [5].

99
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Figure 6.1: Sketch of a virtual qubit [127]. Left: a target qubit coupled to a two-qubit
machine, where ω1 − ω0 = Ω1 − Ω2. Right: the target qubit effectively coupled to a
virtual qubit, where ωv − ω0 = Ω1 − Ω2 and Tv is given by Eq. (6.1). The dotted lines
represent the coherent interactions given in Eq. (6.3). The wavy lines represent contact
with baths whose temperatures are Ten,1,2.

6.1 Two-qubit machine as a virtual qubit

First let me review the idea of virtual qubits, which has been proposed in Ref. [127].
Suppose that one has two qubits with energy spacings Ω1 and Ω2. Also assume that
the qubits coherently interact with each other and are in contact with baths at tem-
peratures T1 and T2, respectively. I refer to this set of qubits as a two-qubit machine
composed of eigenstates |0〉1 |0〉2, |0〉1 |1〉2, |1〉1 |0〉2, and |1〉1 |1〉2. Here, I focus on
|0〉1 |1〉2 and |1〉1 |0〉2, which are involved with the coherent interaction (cf. Fig. 6.1).
Without loss of generality, I take Ω1 > Ω2 so that the ground state of the virtual qubit
is given by |0〉1 |1〉2 and the excited state is given by |1〉1 |0〉2 with the energy spacing
Ω1 − Ω2. The temperature of this virtual qubit, the so-called virtual temperature, is
provided by the ratio between the ground state and the excited state, and is written
as

Tv =
Ω1 − Ω2

Ω1/T1 − Ω2/T2

. (6.1)

Note that Tv can be negative, leading to population inversion, since it is not a real
temperature. The virtual qubit decreases the Hilbert space effectively and helps one
understand what role the two-qubit machine plays physically: Tv < T1,2,en means that
the machine can cool down a target system; Tv > T1,2,en means that the machine can
warm up a target system; Tv < 0 means that a target system can extract work from
the machine.

Here, I add another physical qubit with energy spacing ω1−ω0 = Ω1−Ω2 as a target
system and coherently couple it to the two-qubit machine (see Fig. 6.1). Assuming that
the target is subjected to the environment at temperature Ten, the reset master equation
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(RME) describing this composite system is provided by [130, 131]

∂ρtot

∂t
= −i [H, ρtot] +Qen (τen ⊗ Trtar[ρtot]− ρtot)

+Q1 (τ1 ⊗ Tr1[ρtot]− ρtot)

+Q2 (τ2 ⊗ Tr2[ρtot]− ρtot) , (6.2)

where ρtot is the density matrix of the composite system. I define the thermalisation
rates corresponding to the environment or each bath in contact with the two-qubit
machine as Qen,1,2, respectively. The density matrices τen,1,2 are thermal states corre-
sponding to the real temperatures Ten, T1, and T2. The partial traces over the target
qubit or the machine’s constitutes are represented by Trtar,1,2, respectively. The Hamil-
tonian is given by

H =
1∑

k=0

ωk |k〉〈k|+
∑
i∈{1,2}

Ωiσ
+
i σ
−
i + g |0〉〈1|σ+

1 σ
−
2 + h.c., (6.3)

with σ+
i = |1〉i 〈0|i and g being the coupling strength. There, “h.c.” means Hermitian

conjugate. If the target qubit is cut off from the environment, the target is thermalised
at the virtual temperature (6.1) regardless of Q1,2. The steady state of the RME (6.3)
has been calculated in Eq. (7) in Ref. [131]. However, there are some typographical
errors in this paper, and so I show the form of the steady state here correctly, which is
given by

ρss = τen +
qγ

Γen

Zen

=

(
τ g

en + qγ/Γen 0
0 τ e

en − qγ/Γen

)
, (6.4)

where I write τ g,e
en for the ground / excited state of thermal state τen,

q = Γ1 + Γ2 + Γen, (6.5)

Zen = |0〉 〈0| − |1〉 〈1| =
(

1 0
0 −1

)
, (6.6)

and
γ =

−τ g
enτ

e
1τ

g
2 + τ e

enτ
g
1 τ

e
2

2 + (Γ1 + Γ2 + Γen)2 /2g2 +
∑

i qi +
∑

jkQjkΩjk

. (6.7)

Here, qi = Γi/(q − Γi) leads to∑
i

qi =
Γen

Γ1 + Γ2

+
Γ1

Γ2 + Γen

+
Γ2

Γen + Γ1

. (6.8)
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Also, I have

Qjk =
Γjqk + Γkqj
q − Γj − Γk

= Qkj (6.9)

and

Ωjk = r′j r̄
′
k + r̄′jr

′
k = Ωkj, (6.10)

where ri = τ g
i , r̄i = τ e

i , and r′i = r̄i for i = α, otherwise r′i = ri. This results in∑
jk

QjkΩjk = Qen,1Ωen,1 +Q1,2Ω1,2 +Qen,2Ωen,2

=
Γenq1 + Γ1qen

Γ2

(τ g
enτ

e
1 + τ e

enτ
g
1 ) +

Γ1q2 + Γ2q1

Γen

(τ g
1 τ

e
2 + τ e

1τ
g
2 )

+
Γenq2 + Γ2qen

Γ1

(τ g
enτ

g
2 + τ e

enτ
e
2) . (6.11)

Although this is the full analytical steady-state solution, this form looks complicated,
and it is hard to interpret what role each parameter plays physically.

In general, the two-qubit machine is disturbed by interaction with the environment
through the target qubit, and hence the virtual temperature (6.1) is not valid any-
more. However, if the qubits inside the two-qubit machine are thermalised at the bath
temperatures T1,2 so quickly that Q1,2 � Qen, g, the virtual temperature (6.1) is still
a valid concept. Assuming this regime, I replace the two-qubit machine with a bath
at the virtual temperature (6.1) in the reset model, which results in constructing an
effective reset master equation (effRME) of the target system, given by

∂ρ

∂t
= Qen (τen − ρ) + qvir (τvir − ρ) , (6.12)

where qvir is the effective thermalisation rate of the virtual qubit and τvir is a thermal
state at the virtual temperature (6.1). Note that the density matrix ρ spans only the
Hilbert space of the target system as {|0〉 , |1〉}. The second term displays effective
thermalisation performed by the virtual qubit. The steady state obtained from this
effRME is given by

ρss = C (Qenτen + qvirτvir) , (6.13)

with the normalisation C = (Qen + qvir)
−1. Comparison with the exact form (6.4) of

the steady state leads to the derivation of the effective thermalisation rate qvir of the
virtual qubit, which is given by (note Q1,2 � Qen, g)

qvir =
2g2

Q1 +Q2

(τ g
1 τ

e
2 + τ e

1τ
g
2 ) . (6.14)

It it worth discussing the temperature dependency. Note that the the ground state and
the excited state of the virtual qubit are |0〉1 |1〉2 and |1〉1 |0〉2, respectively, therefore I
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denote the norm of the virtual qubit,

nvir = τ g
1 τ

e
2 + τ e

1τ
g
2 . (6.15)

In other words, the temperature dependency of qvir originates from the norm nvir.
This is expected since the space of the virtual qubit is traced out when deriving the
effRME (6.12) from the original RME (6.2).

6.2 Three-level system coupled to three two-qubit ma-
chines

In this section, I simplify a higher-dimensional system by applying the idea of the
virtual qubit. Let me consider a three-level system with the energy spacing ω0,1,2

as a target system, while I study n-level systems at the end of this chapter. The
target system is coupled to a few two-qubit machines, each of which can be regarded
as a virtual qubit. With one machine coupled to the target system, the situation is
essentially the same as the qubit target case shown in Fig. 6.1 and discussed in the
previous section. With two machines coupled, two thermalisation processes exist at
different levels in the target system, and the steady state turns out not to become
a Gibbs state unless both of the virtual temperature are the same. For instance, if a
machine with virtual temperature Tv1 is coupled to the levels of |0〉 and |1〉, and another
one with virtual temperature Tv2 is coupled to the levels of |0〉 and |2〉, the steady
state is written as ρss = C

(
|0〉〈0|+ e−(ω1−ω0)/Tv1 |1〉〈1|+ e−(ω2−ω0)/Tv2 |2〉〈2|

)
, with the

normalisation C = (1+e−(ω1−ω0)/Tv1+e−(ω2−ω0)/Tv2)−1. As seen, these two thermalisation
processes do not compete, and the population in each level is characterised by each of
the virtual temperatures Tv1 and Tv2. On the other hand, with all the levels occupied
by three machines as shown in the right panel in Fig. 6.2, the three thermalisation
processes compete unless all the virtual temperatures are equal.

Below, I use the idea of the virtual qubit to build an effRME as done for the
qubit target system. To explore the parameter dependency of the effective rates, I
discuss the steady state of the effRME and compare it with that of the full RME and
the Gorini-Kossakowski-Lindblad-Sudarshan master equation (GKLSME) as two non-
exclusive physical models for corresponding machine setup. At the end of this section,
I study these models’ relations to the effRME.

6.2.1 Effective reset master equation (effRME)

I consider a three-level system, called qutrit, coherently coupled to three pairs of two
physical qubits, as represented in Fig. 6.2. I label as “A” the pair coupled to the levels
of |0〉 and |1〉, as “B” the pair coupled to the levels of |0〉 and |2〉, and as “C” the pair
coupled to the levels of |1〉 and |2〉. Each of the pairs contains two qubits with energy
spacings Ωj1 and Ωj2, and the qubits are in contact with baths whose temperatures
are Tj1 and Tj2, respectively, for j ∈ {A,B,C}. Also, because of energy conservation,
the energy spacings are restricted as ω1 − ω0 = ΩA1 − ΩA2, ω2 − ω0 = ΩB1 − ΩB2, and
ω2 − ω1 = ΩC1 − ΩC2.
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Figure 6.2: Simplification of two-qubit machines by using virtual qubits. Left: a
qutrit coupled to three two-qubit machines. The dotted lines represent coherent inter-
actions. Right: the qutrit with all the two-qubit machines simplified to be baths at
their virtual temperatures.

Here, I assume that the thermalisation of the qubits inside the two-qubit machines
is fast enough that the concept of the virtual temperatures is valid. The effRME of
the target system is then given by

∂ρ

∂t
=

∑
j∈{A,B,C}

qj (τj ⊗ Trj[ρ]− ρ) , (6.16)

where qA,B,C is the effective thermalisation rate and TrA,B,C represents partial tracing
out the space of the qubit pair A, B, C. The states τA,B,C represent thermal states at
the virtual temperatures TvA,vB,vC, respectively, each of which is given by

Tvj =
Ωj1 − Ωj2

Ωj1/Tj1 − Ωj2/T2

. (6.17)

The thermal states τA,B,C are written as τA = τ g
A |0〉〈0| + τ e

A |1〉〈1|, τB = τ g
B |0〉〈0| +

τ e
B |2〉〈2|, and τC = τ g

C |1〉〈1|+ τ e
C |2〉〈2|, respectively, where τ

g,e
j are the population of the

ground and excited states. By solving the effRME (6.16) for ∂ρ/∂t = 0, the steady
state of the target system can be found as

ρss = C (qAqBτAB + qBqCτBC + qCqAτCA) , (6.18)

where the normalisation is C = (qAqBTr[τAB] + qBqCTr[τBC] + qCqATr[τCA])−1, and
τAB,BC,CA are the steady states with only two of the coherent couplings. They are
written as

τAB = τ g
Aτ

g
B |0〉〈0|+ τ e

Aτ
g
B |1〉〈1|+ τ g

Aτ
e
B |2〉〈2| , (6.19a)

τBC = τ g
Bτ

e
C |0〉〈0|+ τ e

Bτ
g
C |1〉〈1|+ τ e

Bτ
e
C |2〉〈2| , (6.19b)

τCA = τ g
Cτ

g
A |0〉〈0|+ τ g

Cτ
e
A |1〉〈1|+ τ e

Cτ
e
A |2〉〈2| . (6.19c)

Note that the above states are not normalised on purpose, i.e. Tr[τAB] 6= 1, Tr[τBC] 6= 1,
and Tr[τCA] 6= 1. It is worth clarifying that the steady state (6.18) is a combination of
the steady states in cases where only two of the coherent couplings are present.
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6.2.2 Reset master equation (RME)

Below I discuss the RME and compare the steady state of this model with the steady
state (6.18) of the effRME. The RME describing the whole system is provided by

∂ρtot

∂t
= −i [H, ρtot] +

∑
j∈J

Qj (τj ⊗ Trj[ρtot]− ρtot) (6.20)

with Qj being the thermalisation rate for J = {A1,A2,B1,B2,C1,C2}. The Hamil-
tonian is given by

H =
2∑

k=0

ωk |k〉〈k|+
∑
j∈J

Ωjσ
+
j σ
−
j

+
[
gA |0〉〈1|σ+

A1σ
−
A2 + gB |0〉〈2|σ+

B1σ
−
B2 + gC |1〉〈2|σ+

C1σ
−
C2 + h.c.

]
(6.21)

with gA,B,C being the coupling strengths to each of the subsystems and the qubit
frequencies being ΩA2 = ΩA1−(ω1−ω0), ΩB2 = ΩB1−(ω2−ω0), ΩC2 = ΩC1−(ω2−ω1).
Although the solution of ∂ρtot/∂t = 0 describes the steady state of the whole system,
it is difficult to find an analytical solution due to the size of the system, which is
3×22×22×22 = 192. Note that the RME takes the joint system into account, whereas
the effRME considers only the target system. Certainly, it is possible to numerically
solve ∂ρtot/∂t = 0, but it is hard to understand what feature the steady state displays
physically and what kind of parameters characterise the steady state. Therefore, the
effRME is a useful tool to study such complicated systems.

To characterise the effective thermalisation rates qA,B,C, I numerically calculate
the steady-state solution of the RME (6.20). Here, ω0 = 0 is taken, and the energy
unit is set as half of the energy gap between the ground and first excited states of
the qutrit, (ω1 − ω0)/2 = ω1/2 = 1. Also, a parameter regime is considered where
the thermalisation rates {Qi} are larger than any other energy scales such that the
virtual temperatures are effectively valid. By finding the population at each level in
the RME solution corresponding to the effRME solution (6.18), I have obtained the
parameter dependency of the effective thermalisation rates qA,B,C. Assuming that all
the two-qubit machines have the same set of the bath temperatures so that Tj1 = Th

and Tj2 = Tc for j ∈ {A,B,C} in the numerical simulations, I plot the ratios of the
effective thermalisation rates qA,B,C as a function of the coherent interaction strength
gB and the hot bath temperature Th (see Fig. 6.3). It is observed that the ratio qi/qj
is in proportion to g2

i /g
2
j for i, j ∈ {A,B,C} and that the Th-dependency of the ratio

qi/qj agrees with the norm of the virtual qubits, similar to what was done in Eq. (6.15),
which allows me to write

nj = τ g
j1τ

e
j2 + τ e

j1τ
g
j2. (6.22)

These parameter dependencies are consistent with the effective thermalisation rate (6.14)
in the cases of the qubit target.
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Figure 6.3: Optimal coupling coefficient rates between the target qutrit and the
auxiliary qubits for which the state (6.18) is the steady-state solution of the RME (6.20)
as a function of coherent interaction strength gB (upper panel) and bath temperature
Tj1 = Th (lower panel). In the upper panel, the ratio qA/qB is proportional to 1/g2

B,
and the ratio qB/qC is proportional to g2

B. In the lower panel, the ratios qi/qj are
proportional to the ratios ni/nj of the norms (6.22) of the virtual qubits for i, j ∈
{A,B,C}. I take ω0 = 0, and the energy unit is set as (ω1 − ω0)/2 = ω1/2 = 1. Both
plots use the same parameter set, except for Tj1 = Th = 3.1 in the upper panel and
gB = 1.5 in the lower panel. Apart from the two parameters, the following is used:
ω2 = 3, ΩA1 = 2.5, ΩB1 = 4.5, ΩC1 = 1.3, gA = 1.2, gC = 1.8, Tj1 = Th = 3.1,
Tj2 = Tc = 1.2, Qj1 = 70, and Qj2 = 50 for j ∈ {A,B,C}.
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6.2.3 Gorini-Kossakowski-Lindblad-Sudarshan master equation
(GKLSME)

In the preceding sections, the idea of the virtual qubit is used to replace the full
RME (6.20), which governs the composite system composed of the target qutrit and
the six physical qubits (plus the thermalisation rates {Qj}), with an effRME (6.16)
which spans only the space of the target system, i.e. simply Eq. (6.20) is replaced
with Eq. (6.16). In general, the mapping of the rates {Qj} 7→ {qj} is complicated.
Nevertheless, it is found that the analytical relation (6.14) for the case of a target qubit,
such as the dependency on interaction g and the hot temperature Th, is reproduced for
the case of a target qutrit as seen in Fig. 6.3.

The description of the physical system which the effRME (6.20) provides is not
unique but dependent on the concrete physical setup. Also, the RME (6.20) is rather
an ah-hoc model in a sense that it does not describe some physical interaction with
the environment but rather a probabilistic swapping with a thermal state whose tem-
perature corresponds to that of the environment [130]. Nevertheless, due to its CPTP
(completely positive and trace-preserving) behaviour, the RME can be mapped into a
GKLSME, known from conventional thermalisation models [244, 330, 331]. Generally,
this mapping is an intricate function of the parameters such as the bath temperatures
and can be explicitly derived in some special cases [332]. Furthermore, it is shown that
by implementing the mapping from the RME to a GKLSME, the spontaneous emission
rates Γj in the GKLSME (see below) must have a temperature-dependence. This is a
feature that is not usually seen in GKLSMEs [244].

On the other hand, one can take the mapping the other way around, i.e. formulate
the original system in terms of a GKLSME with independent rates Γj and cast it onto
a “full” RME. Therefore, the rates Qj in the RME become functions of the parameters.
Thus, the temperature dependence of the effective rates qj in the effRME does not
correspond to the norm of the virtual qubits but contains additional terms. A question
of which model is favourable, RME or GKLSME, depends on what parameters can be
tuned in an actual system. I will come back to this discussion in the next section. In
this section, I start with the GKLSME and reveal the dependency of the qj on the
parameters.

The GKLSME where a target qutrit is coupled to six physical qubits can be written
as

ρ̇tot = −i[H, ρtot] +
∑
j∈J

Ljρtot, (6.23)

with the Hamiltonian (6.21) and the qubits J = {A1,A2,B1,B2,C1,C2}. The Liou-
villian

Ljρ = Γj(n̄(Ωj, Tj) + 1)D[σ−j ] + Γjn̄(Ωj, Tj)D[σ+
j ], (6.24)

describes the dissipative interaction of the jth auxiliary qubit with its bath (see also
Fig. 6.1) at temperature Tj1 = Th and Tj2 = Tc for j ∈ {A,B,C}, respectively. Also, Γj
is the jth qubit’s spontaneous emission rate. I define the thermal population n̄(ω, T ) =
[exp(ω/T )−1]−1 of the bosonic bath and the dissipator D[A] = 2AρA†−A†Aρ−ρA†A.
Here, I consider mapping this equation to the effRME (6.16) and discuss how the
effective rates qA, qB, qC are related to the parameters of the GKLSME (6.23). To this
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end, one can integrate the GKLSME (6.23) for given parameters and set the analytical
steady-state solution (6.18) as the initial state of the target state, while the qubits
inside the machines are initialised to their respective thermal states. One can repeat
this integration to minimise the Frobenius norm ‖ρ(t) − ρ(0)‖ between the reduced
density matrix of the qutrit at time t and the initial one for a sufficiently large fixed
time t > 0. The Frobenius norm is given by

‖ρ(t)− ρ(0)‖ =
√

Tr [(ρ(t)− ρ(0))∗ (ρ(t)− ρ(0))], (6.25)

and quantifies the deviation of the time-evolved state and the initial state. Since the
initial state is given by the steady state (6.18) and characterised with the effective
rates {qA, qB, qC}, one can find the optimal parameter set {qopt

A , qopt
B , qopt

C } where the
steady state (6.18) becomes the steady state solution of the RME (6.20) when the
Frobenius norm ‖ρ(t)− ρ(0)‖ is close to zero. Figure 6.4 shows the dependence of the
effective rates qj made by repeating this procedure for different hot temperatures Th

and interaction strengths gB.
As shown in the upper panel in Fig. 6.4, the effective rates have the quadratic

relation to the interaction strength,

qopt
i

qopt
j

∝ g2
i

g2
j

for i, j ∈ {A,B,C}, (6.26)

which is also observed in the RME (see Fig. 6.3). One can confirm the same behaviour
for varying gA or gC. Furthermore, as expected, the temperature dependence does not
agree with the norm of the virtual qubits, which will be discussed more in the next
section.

The simulations shown in Fig. 6.3 were implemented with the QuantumOptics.jl [333]
Julia framework, and Optim.jl [334] was used for the numerical optimisation procedure.

6.2.4 Discussion and identifying the “knobs”

The system setup considered has an excess of parameters that characterise the system.
Therefore, it is a question how the parameters influence the steady-state solution of
the target qutrit. What Secs. 6.2.2 and 6.2.3 have shown is that the temperature
dependence of the effective rates differs in the description of the system. In the RME,
the temperature dependence corresponds to the norm of the virtual qubits, while in
the GKLSME it does not. I address a question of why this occurs in the rest of this
section.

First, note that in the RME the thermalisation rates Qj for the physical qubits
are supposed to be independent parameters, and the temperature dependence in the
effective rates qopt

j comes from the norm (6.15) only. Therefore, the mapped GKLSME
from the RME has temperature-dependent spontaneous emission rates. On the other
hand, in Sec. 6.2.3, I considered independent spontaneous emission rates. Thus, the
temperature dependence differs in Figs. 6.3 and 6.4.

Surely, the RME can be cast onto the GKLSME form, but the parameter depen-
dency in the mapped GKLSME form is not the same as for the usual GKLSMEs. More
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Figure 6.4: Optimal rates of the effRME (6.16) for which the state (6.18) is the
steady-state solution of the GKLSME (6.23) as a function of the coherent coupling
strength gB (upper panel) and the hot bath temperature Th (lower panel). I take
ω0 = 0, and the energy unit is set as (ω1 − ω0)/2 = ω1/2 = 1. In the upper panel,
Th = 3.1 is used, and in the lower panel, gB = 1.5 is used while the other parameters
are the same: ω0 = 0, ω1 = 2, ω2 = 3, gA = 1.2, gC = 1.8, ΩA1 = 2.5, ΩB1 = 4.5,
ΩC1 = 1.3, Tc = 1.2, Γj2 = 50 and Γj1 = 70 for j ∈ {A,B,C}, and t = 10.
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specifically, the decay rates Γj do not depend on the temperatures [244], but the rates
in the mapped GKLSME from the RME do, similar to Ref. [332]. Thus, the tempera-
ture dependence in the steady-state solution is determined by whether the {Qj} or the
{Γj} are defined as a set of independent parameters. I note that although the {Γj} in
the GKLSME description depend on the frequencies of the system [244], I still assume
the {Γj} to be independent since the dependency can be cancelled, e.g. by tuning the
dipole moment of the qubit. In contrast, the same interaction dependence is seen in
both of the models, the RME and the GKLSME, as shown in Figs. 6.3 and 6.4.

Let me re-emphasise what is discussed above. It is crucial to distinguish between
the two models,

• RME with “free” Qj

• GKLSME with “free” Γj

and also which mapping is used, from the RME to the GKLSME or the other way
around. Therefore, the “knobs” to control the system are determined by which de-
scription governs the system. Both of the models have their respective pros and cons,
depending on the actual setups.

6.3 Implementation: Improving a laser with popula-
tion inversion

As an example of an application using the findings of this work, I propose a scheme to
increase the output of a three-level laser by coupling it with two two-qubit machines.
First, let me show a typical lasing mechanism [106, 335, 336] (see Fig. 6.5(a)). The laser
consists of a three-level system in contact with a hot bath at temperature Th and cold
bath at temperature Tc. As the outcome of the laser is determined by the population
ratio between the levels |1〉 and |0〉, one wants to increase the hot-bath temperature Th

and decrease the cold-bath temperature Tc in order to increase the population ratio:
the optimal set is Th → ∞ and Tc → 0. Below, I show that the population ratio can
be increased by using two-qubit machines containing the hot and cold baths instead of
attaching the baths directly to the three-level system.

First, I replace the hot bath coupled to the three-level system with a two-qubit
machine whose virtual temperature is given by (cf. Eq. (6.17))

TvB =
ΩB1 − ΩB2

ΩB1/Th − ΩB2/Tc

, (6.27)

where ΩB2 = ΩB1 − (ω2 − ω0). Here, for a fair comparison, the hot- and cold-bath
temperatures Th,c used for the laser are also used for the two-qubit machine. For
Th > (ΩB1/ΩB2)Tc, the virtual temperature TvB is negative and causes population
inversion between the levels |2〉 and |0〉 (see Fig. 6.5(b)), which is never observed by
attaching real baths. This population inversion results in an increase of the population
ratio between |1〉 and |0〉, and leads to better performance of the laser.
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Figure 6.5: Sketches of (a) a typical laser mechanism with Th being the hot-bath
temperature and Tc being the cold-bath temperature, and (b) the proposed scheme im-
proved by virtual temperatures, where TvB [Eq. (6.27)] is negative and TvC [Eq. (6.28)]
is smaller than Tc. The oval on each qutrit level represents this level’s population. The
lasing transition is also coupled to an environment at temperature Ten.



112 Simplifying multi-level thermal machines using virtual qubits

Furthermore, the laser can be better by replacing the cold bath with another two-
qubit machine whose virtual temperature is given by

TvC =
ΩC1 − ΩC2

ΩC1/Tc − ΩC2/Th

. (6.28)

Note that the hot- and cold-bath temperatures are switched in comparison with TvB

in Eq. (6.27). Since Th > Tc and ΩC2 = ΩC1 − (ω2 − ω1), TvC is always lower than Tc.

Therefore, the ratio between the population p1 at |1〉 and p0 at |0〉 can be larger
than that of the typical laser for Th > (ΩB1/ΩB2)Tc. This is shown in Fig. 6.6, where
the population ratio p1/p0 is plotted as a function of Th for a chosen parameter set
(see the dashed lines). For the ideal cases where the lasing transition is not disturbed
by environments (let me call these cases “lossless”), the optimal population inversion
occurs for TvB → −0 and TvC → +0. Recall that the optimal parameter set for the
typical laser is Th → ∞ and Tc → 0. By tuning the bath temperatures as well as
the energy spacings ΩB1,C1, the virtual temperatures TvB,vC can approach the optimal
values.

Let me next consider more realistic cases where photon losses are caused through
an additional environment at temperature Ten. This environment disturbs the lasing
transition, and the additional coupling Qen to the environment competes with the
effective rates of the machines. That is, the steady state of the three-level system
depends on the effective rates and the additional coupling. Thus, the optimal parameter
set in this case is not the same as the lossless case anymore. Let me show this in details.
By analogy with Eq. (6.18), the steady state of the three-level system in the proposed
scheme is written as

ρss ∝ (Qen qB τenB + qB qC τBC + qC Qen τCen) . (6.29)

The states τenB,BC,Cen are obtained on analogy to Eqs. (6.19). As shown in Figs. 6.3
and 6.4, the effective rates qB,C depend on the parameters involved with the two-qubit
machines. Thus, for example by tuning the bath temperatures Th,c to adjust the virtual
temperatures TvB,vC, the effective rates qB,C also change. On the other hand, for the
typical laser setup where the hot and cold baths are attached directly, the steady state
becomes

ρss ∝ (Qen Qh τenh +Qh Qc τhc +QcQen τcen) , (6.30)

where it is assumed that Qen,h,c are independent parameters.

To demonstrate that the proposed scheme can work better than the typical laser
setup even in the realistic case (let me call it “lossy”), I show the dependence of the
population ratio p1/p0 obtained from Eqs. (6.29) and (6.30) when changing the hot-
bath temperature Th with the other parameters fixed. For a fair comparison between
the typical laser and the proposed scheme, I relate the couplings Qh,c,en and the effective
rates qB,C as

qB = QhnB (6.31a)
qC = QcnC, (6.31b)
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Figure 6.6: Population ratios p1/p0 of the levels |1〉 and |0〉 of the qutrit in the
typical laser and in the proposed scheme when changing the hot temperature Th. The
population ratio p1/p0 is displayed in cases of the typical laser (directly coupled to
the heat baths) and the proposed scheme (indirectly coupled to the baths via two-
qubit machines that give rise to virtual temperatures) with and without photon loss.
The dotted black line represents the lasing threshold p1/p0 = 1. “Lossless” (“lossy”)
means no (non-zero) photon loss. The inset zooms in on a regime that the proposed
scheme with photon loss considered outperforms the lossless typical laser. The bath
temperature and the thermalisation rate associated with loss of the laser output are
assumed to be Ten = 7.2 and Qen = 0.1. For the actual thermalisation rates, Qh = 2
and Qc = 1.5 are taken. The other parameters are the same as Figs. 6.3 and 6.4:
ω0 = 0, ω1 = 2, ω2 = 3, ΩB1 = 4.5, ΩC1 = 1.3, Tc = 1.2.
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where the nB,C are the norms (6.22) of the virtual qubits, since, as shown in Sec. 6.2.2,
the temperature dependency of the effective rates are determined by the norms in the
RME model. In other words, I assume that the details of the two-qubit machines can
be described simply as Eqs. (6.31). Figure 6.6 shows that the setup containing the
virtual qubits increases the lasing transition more than the typical laser (see the solid
lines). For the chosen parameter set, the scheme considering photon loss outperforms
the typical laser outcome even in the ideal case for Th & 32 (see the inset). While I
change Th and fix the other parameters such as the qubit frequencies ΩB1,C1, the lasing
transition can be improved efficiently if the other parameters are also controlled.

6.4 Higher-dimensional target systems

Here, I move on to cases of higher-dimensional target systems. First, I reveal the
steady-state solution of the effRME for n-level target systems. After that, I show
details of the steady-state solution for n = 4 as an example.

6.4.1 Steady-state solution of n-level target system in the ef-
fRME

I discuss the steady state when a multi-level system is coupled to some two-qubit
machines. For simplicity, let me stick to cases where all levels of the target are coupled
to the machines without duplication. In these cases, for n-level target systems the
number of the couplings is given by

(
n
2

)
= n(n− 1)/2.

I generalise the effRME to n-level system cases. For distinct representation, I
introduce a different notation of the coupling strength from that in Fig. 6.2. By defining
qk.l as the thermalisation rate of the kth and lth levels (k < l), where the indices A,
B, C in Fig. 6.2 correspond to q0,1, q0,2, and q1,2, respectively, the effRME for n-level
target system is described as

∂ρ

∂t
=

n−1∑
l=1

l−1∑
k=0

qk,l (τk,l ⊗ Trk,l[ρ]− ρ) , (6.32)

where τk,l is a thermal state at the virtual temperature associated with the kth and lth
levels, and Trk,l traces out the space of the kth and lth levels. Here, off-diagonal terms
in the density matrix can be ignored since in this model coherence cannot be created.
Then, I simplify the equation as

∂ρ

∂t
=

n−1∑
l=1

l−1∑
k=0

qk,l
(
−τ e

k,lρ
(k) + τ g

k,lρ
(l)
)

(|k〉〈k| − |l〉〈l|) , (6.33)

with ρ(k) = 〈k|ρ|k〉 and always k < l. To obtain the steady-state solution, I solve
∂ρ/∂t = 0, i.e.

n−1∑
l=1

l−1∑
k=0

Ck,l (|k〉〈k| − |l〉〈l|) = 0, (6.34)
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where Ck,l = qk,l
(
−τ e

k,lρ
(k) + τ g

k,lρ
(l)
)
.

First, let me split the equation into two parts,

n−1∑
l=1

l−1∑
k=0

Ck,l |k〉〈k| −
n−1∑
l=1

l−1∑
k=0

Ck,l |l〉〈l| = 0. (6.35)

The first term can be written in a different form such as

n−1∑
l=1

l−1∑
k=0

Ck,l |k〉〈k| =
n−1∑
l=1

C0,l |0〉〈0|+
n−1∑
l=2

C1,l |1〉〈1|+ · · ·+
n−1∑
l=n−1

Cn−2,l |n− 2〉〈n− 2|

=
n−2∑
s=0

n−1∑
l=s+1

Cs,l |s〉〈s|

=
n−1∑
l=1

C0,l |0〉〈0|+
n−2∑
s=1

n−1∑
l=s+1

Cs,l |s〉〈s| , (6.36)

and the second term can be rewritten as

n−1∑
l=1

l−1∑
k=0

Ck,l |l〉〈l| =
n−2∑
l=1

l−1∑
k=0

Ck,l |l〉〈l|+
n−2∑
k=0

Ck,n−1 |n− 1〉〈n− 1| . (6.37)

Therefore, the left hand side (l.h.s) of Eq. (6.35) is rewritten as

(l.h.s) =
n−1∑
l=1

C0,l |0〉〈0| −
n−2∑
k=0

Ck,n−1 |n− 1〉〈n− 1|

+
n−2∑
s=1

n−1∑
l=s+1

Cs,l |s〉〈s| −
n−2∑
l=1

l−1∑
k=0

Ck,l |l〉〈l|

=
n−1∑
l=1

C0,l |0〉〈0| −
n−2∑
k=0

Ck,n−1 |n− 1〉〈n− 1|

+
n−2∑
s=1

(
n−1∑
l=s+1

Cs,l −
s−1∑
k=0

Ck,s

)
|s〉〈s| . (6.38)

Since all the terms in Eq. (6.35) are zero, n equations are obtained,

n−1∑
l=s+1

Cs,l −
s−1∑
k=0

Ck,s = 0, for {1 ≤ k ≤ n− 2 : ∀k ∈ Z} , (6.39a)

n−1∑
l=1

C0,l = 0, (6.39b)

n−2∑
k=0

Ck,n−1 = 0. (6.39c)
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The above equations can be written in a matrix form as

Mn~ρss = ~0 (6.40)

where ~ρss = (ρ
(0)
ss , ρ

(1)
ss , . . . , ρ

(n−1)
ss )T and Mn is a n-by-n matrix given by

M =



M0,0 q0,1τ
g
0,1 q0,2τ

g
0,2 · · · q0,n−2τ

g
0,n−2 q0,n−1τ

g
0,n−1

q0,1τ
e
0,1 M1,1 q1,2τ

g
1,2 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . . . . . ...
...

...
...

...
...

...
... . . . . . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · qn−3,n−2τ

e
n−3,n−2 Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−3,n−1τ

e
n−3,n−1 qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1


. (6.41)

The diagonal terms are given by

M0,0 = −
n−1∑
s=1

q0,sτ
e
0,s , (6.42a)

Mk,k = −

(
k−1∑
s=0

qs,kτ
g
s,k +

n−1∑
s=k+1

qk,sτ
e
k,s

)
for 1 ≤ k ≤ n− 2, (6.42b)

Mn−1,n−1 = −
n−2∑
s=0

qs,n−1τ
g
s,n−1 . (6.42c)

Here, I add the normalisation constraint, Tr[ρss] = 1, into this simultaneous equa-
tion (6.40), and hence the total number of equations involved in the simultaneous
equation is (n + 1). However, the number of the variables in ~ρss is n. This implies
that there is one excess equation in the simultaneous equation. In fact, any equation
written in Eq. (6.40) is dependent of other equations, (i.e. can be constructed from
the rest of the equations). For example, the equation described by the first row in the
matrix M is reproduced by taking a sum of the equations given by all other rows due
to Eqs. (6.42) and multipying it by minus sign. Therefore, the removal of the first row
from the matrix M poses no problem for solving the simultaneous equation. As below,
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I remove the first row and then add the normalisation constraint Tr[ρss] = 1:

Mn~ρss =



M0,0 q0,1τ
g
0,1 · · · q0,n−2τ

g
0,n−2 q0,n−1τ

g
0,n−1

q0,1τ
e
0,1 M1,1 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . . ...
...

...
...

...
...

...
... . . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1





ρ
(0)
ss

ρ
(1)
ss

...

...

...

...
ρ

(n−1)
ss



→



0 0 · · · 0 0
q0,1τ

e
0,1 M1,1 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . . ...
...

...
...

...
...

...
... . . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1





ρ
(0)
ss

ρ
(1)
ss

...

...

...

...
ρ

(n−1)
ss



→



1 1 · · · 1 1
q0,1τ

e
0,1 M1,1 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . . ...
...

...
...

...
...

...
... . . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1





ρ
(0)
ss

ρ
(1)
ss

...

...

...

...
ρ

(n−1)
ss


.

(6.43)

As a result, the full simultaneous equation becomes

M


ρ

(0)
ss

ρ
(1)
ss

...
ρ

(n−1)
ss

 =


1
0
...
0

 , (6.44)
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where the matrix M is now redefined as

M =



1 1 1 · · · 1 1
q0,1τ

e
0,1 M1,1 q1,2τ

g
1,2 · · · q1,n−2τ

g
1,n−2 q1,n−1τ

g
1,n−1

q0,2τ
e
0,2 q1,2τ

e
1,2

. . . . . . ...
...

...
...

...
...

...
... . . . . . . qn−3,n−2τ

g
n−3,n−2 qn−3,n−1τ

g
n−3,n−1

q0,n−2τ
e
0,n−2 q1,n−2τ

e
1,n−2 · · · qn−3,n−2τ

e
n−3,n−2 Mn−2,n−2 qn−2,n−1τ

g
n−2,n−1

q0,n−1τ
e
0,n−1 q1,n−1τ

e
1,n−1 · · · qn−3,n−1τ

e
n−3,n−1 qn−2,n−1τ

e
n−2,n−1 Mn−1,n−1


, (6.45)

and the diagonal elements are given by Eqs. (6.42b) and (6.42c).

Let me distinguish the two cases where the matrix M is invertible and where it
is not. In the latter case, the steady-state solution cannot be determined with the
conditions I have. However, this issue can be avoided. For example, physically, this
corresponds to the case where one machine is coupled to the levels |0〉 and |1〉 in a three-
level system, and the population ratios between the levels |0〉 and |2〉 and between the
levels |1〉 and |2〉 are not determined. In this case, the steady state cannot be defined
rigorously, and this leads to nonexistence of inverse matrix of M. If one sees this
three-level system as a two-level system composed of the levels |0〉 and |1〉, the matrix
M can become an invertible matrix.

Assuming that the matrix M is invertible, the solution ~ρss is given by

~ρss = M−1


1
0
...
0

 . (6.46)

According to Cramer’s rule, the inverse matrix can be written as

M−1 =
1

det[M]
adj [M] , (6.47)

where adj[M] is the adjugate of M, given by adj[M] = [{∆i,j}1≤i,j≤n]T , i.e.

adj[M] =


∆1,1 ∆2,1 · · · ∆n,1

∆1,2 ∆2,2 · · · ∆n,2
...

... . . . ...
∆1,n ∆2,n · · · ∆n,n

 . (6.48)
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Here, ∆i,j is a set of the cofactors of the matrix M and is defined as

∆i,j = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣

M0,0 · · · M0,j−1 M0,j+1 · · · M0,n−1
...

...
...

...
...

...
Mi−1,0 · · · Mi−1,j−1 Mi−1,j+1 · · · Mi−1,n−1

Mi+1,0 · · · Mi+1,j−1 Mi+1,j+1 · · · Mi+1,n−1
...

...
...

...
...

...
Mn−1,0 · · · Mn−1,j−1 Mn−1,j+1 · · · Mn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (6.49)

Furthermore, because of the mathematical properties of the determinant, one gets
det[M] =

∑n
s=1 ∆1,s. The solution ~ρss then becomes

~ρss =
1∑n

s=1 ∆1,s


∆1,1

∆1,2
...

∆1,n

 , (6.50)

which is normalised as
∑n

j=1 ρ
(j)
ss = 1 with ρ(j)

ss being an element of the density matrix.
In case of n = 2, the solution provides the thermal state associated with the virtual
temperature, ρss = (τ g

0,1, τ
e
0,1)T as expected. In case of n = 3, the solution corresponds

to Eq. (6.18).

6.4.2 Steady-state solution for n = 4

As an example, I consider cases of a four-level system being the target system and
reveal what the steady state is. I note that the steady state (6.18) in the case of a
qutrit being the target system is combined with another steady states where two pairs
of levels are characterised by different temperatures, weighted with the effective rates
qj. Even for higher-dimensional systems, the same feature is observed as shown below.
I imagine that one has a four-level system where each pair of energy levels is coupled to
a two-qubit machine (in total the system is coupled to six machines). The steady-state
solution turns out to be
ρss

C
= q3

0q
3
1q

3
2 τ

333
012

+ q3
0q

3
1q

2
0 τ

332
010 + q3

0q
3
1q

2
1 τ

332
011 + q3

0q
3
2q

1
0 τ

331
020 + q3

0q
3
2q

2
1 τ

332
021 + q3

1q
3
2q

1
0 τ

331
120 + q3

1q
3
2q

2
0 τ

332
120

+ q3
0q

1
0q

2
0 τ

312
000 + q3

0q
1
0q

2
1 τ

312
001 + q3

0q
2
0q

2
1 τ

322
001 + q3

1q
1
0q

2
0 τ

312
100 + q3

1q
1
0q

2
1 τ

312
101 + q3

1q
2
0q

2
1 τ

322
101

+ q3
2q

1
0q

2
0 τ

312
200 + q3

2q
1
0q

2
1 τ

312
201 + q3

2q
2
0q

2
1 τ

322
201 , (6.51)

where the normalisation C is given by the inverse of trace of the right hand side of
Eq. (6.51), and 16 states such as τ 333

012 in the solution are steady states in case of only
three of the coherent couplings being present. For example,

τ 333
012 = τ g

0,3τ
e
1,3τ

e
2,3 |0〉〈0|+ τ e

0,3τ
g
1,3τ

e
2,3 |1〉〈1|+ τ e

0,3τ
e
1,3τ

g
2,3 |2〉〈2|+ τ e

0,3τ
e
1,3τ

e
2,3 |3〉〈3| , (6.52)
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which is not normalised on purpose similar to Eq. (6.19), i.e. Tr[τ 333
012 ] 6= 1. In this

state, three pair of the levels are characterised with different virtual temperatures.
The steady state (6.51) is composed of another 16 steady states where three of the

couplings are active (e.g τ 333
012 ). However, notice that the steady state (6.51) does not

include all the possible steady states with three couplings present. For example, a case
is excluded where three machines are coupled to the transitions |0〉 and |1〉, |0〉 and
|3〉, and |1〉 and |3〉. There are some differences between the excluded cases and the
included cases. In the excluded cases, one level is free. For the above example, the
level |2〉 does not interact with any of the machines. Furthermore, the excluded cases
essentially correspond to the situation shown in Fig. 6.2, where the three thermalisation
processes compete. As studied in Sec. 6.2.1, this type of steady states cannot simply
be written with the virtual temperatures, but effective rates are required in contrast to
Eq. (6.52). In brief, the steady-state solution (6.51) is formed of 16 steady states that
coherently interact with three machines, where the thermalisation processes caused by
the machines do not compete against each other.

6.5 Conclusions
Treating multiple thermal machines in the quantum regime is difficult due to the large
size of the systems. In this work, I have considered virtual qubits to effectively simplify
the steady state of an arbitrary-level target system coupled with different two-qubit
machines. By means of reset-type master equations, an analytical solution for n-level
target systems has been derived. In particular, I have investigated details of three-
level target systems and compared their analytical solution with numerical results of
the full reset-type master equation and an optical (GKLS) master equation. It has been
shown that these two models show the same behaviour for interaction-dependence and
a different one for temperature-dependence. Nevertheless, these models help one to
design machines and reveal important properties of the target system. As an example
of utility of the findings obtained here, I have shown that the lasing transition in a
three-level laser can be improved by utilising population inversion brought by negative
temperatures.

In further studies, I could use this simplification method to investigate thermody-
namic properties in multi-level machines, where even three-level systems have not been
well investigated yet. Furthermore, the exploration of four-level machines is interest-
ing since they include two-qubit machines as a special case but allow for more general
coherent transitions and bath interactions [15]. It is an interesting question whether
this additional freedom allows for improvements in efficiency and power. In addition,
while I focused on the steady-state regime in this work, taking into account the tran-
sient regime would make our proposed method more powerful. This can be done by
taking off-diagonal terms related to coherent interactions between the target system
and machines. An approach expanded to the transient regime would help one to study
coherent / entanglement generation in multi-level thermal machines [337, 338].



Chapter 7

Conclusion

In this thesis, I have described different topics in cold atomic systems, metrology, and
quantum thermodynamics. For completeness, I will briefly summarise these topics and
give an outlook for each of them.

Chapter 2. Spin-orbit coupling in the presence of strong
atomic correlations

In this project, I have studied a one-dimensional system of two interacting particles in
the presence of spin-orbit coupling (SOC) in a harmonic trap. SOC in many-particle
systems of cold and neutral atoms, where two different internal states are regarded as
pseudo-spin states and coupling between these pseudo-spin degrees and the momentum
of atoms is induced by lasers, has been well studied. A typical treatment is to apply the
mean-field approximation to describe the system using a macroscopic wave-function. In
the mean-field regime, the ground state is classified into three types: the stripe phase,
the magnetised phase, and the single minimum phase [132]. However, the ground state
beyond the mean-field regime is hardly explored. To implement an exact treatment for
SOC in the presence of strong interactions, I have considered two interacting particles
in a harmonic trap and found that in this regime, a new type of ground state appears
which includes the anti-symmetric pseudo-spin state. This is interesting since the anti-
symmetric pseudo-spin state is usually not seen in the ground states of bosonic systems.
The emergence of this ground state can be observed by measuring the total density
and momentum distributions as well as the entanglement between pseudo-spins and
the real space (position/momentum). This work has been published in New Journal of
Physics 22 01305 (2020).

In this work, I have shown that there is a trade-off between pseudo-spin entanglement
and entanglement between pseudo-spin and real-space. This indicates that SOC can
work as a control parameter to dynamically generate or distribute entanglement in
certain degrees of freedoms. An idea for further exploration of SOC is to use SOC
to convert from mode-entanglement to spatial entanglement. Non-adiabatic transport
involving spin flips using time-dependent SOC has been proposed [166], which shows
the usefulness of SOC in terms of spatial separation. By utilising SOC for transport,

121



122 Conclusion

one could create spatial entanglement: first create pseudo-spin entanglement in cold
atomic systems by tuning contact interactions, and then add SOC to move different
pseudo-spin states in different directions so that the initial entanglement becomes spa-
tial entanglement (it is also possible to use magnetic fields for transport [339]). To
create strongly entangled states, strong contact interactions are required, and hence
the knowledge obtained in this work will be helpful.

Chapter 3. Dynamical phase transitions in one-dimensional
ultra-cold quantum gases: from the continuum to the
lattice

In this work, I have investigated two models of one-dimensional bosonic systems that
have a superfluid to insulator transition in order to study the relation between dy-
namical orthogonality and dynamical phase transitions. First, I considered a Tonks-
Girardeau (TG) gas trapped in a box potential as a continuous model. After suddenly
switching on a lattice potential, the system responds with non-equilibrium dynamics,
and I have calculated numerically the rate function and the momentum distribution.
Indeed, the rate function shows non-analytical cusps, which indicates dynamical or-
thogonality with the initial state, however these non-analyticities have a different pe-
riod from that of a typical physical observable (the peak of momentum distribution).
Furthermore, as a discrete model, I have considered the tight binding model. The
dynamics of the rate function and the parity operator, which was selected as the order
parameter, were investigated. While these quantities display similar behaviour to the
continuous model, they are helpful to understand why the orthogonality is connected
to the observable only for deep quenches. Considering the results obtained for this
work and the fact that it is hard or impossible to observe global orthogonality from
local measurements on pure [185] or mixed states [186], I conclude that it is generally
difficult to detect orthogonality from many-body local observables with current knowl-
edge and technologies. However, it may be possible in some special cases of spin models
such as in Ref. [173], and also some tools to detect orthogonality exist, for example
the extension of ancilla based interferometery schemes [188–191]. This work has been
published in New Journal of Physics 19 113018 (2017).

It is known that strongly correlated many-body systems are sensitive to temperature
[195–197], and therefore it is interesting to study the interplay between quantum criti-
cality and thermometry [198]. As shown in this chapter, the TG gas is a good platform
to study non-equilibrium phenomena in many-body systems since the system enables
one to compute many-body quantities with single-particle states. In this work, I as-
sumed zero temperature, but it is possible to take finite temperatures into account
[199]. While it is theoretically interesting to observe drastic change in a phase tran-
sition with finite temperature, experimentally the system always has non-zero tem-
perature. Therefore, considering finite temperature is necessary beyond theoretical
interest. Furthermore, it is fascinating to evaluate thermodynamic properties of the
pinning transition in the TG gas. There, one could investigate the existence of critical
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scaling as described by the Kibble-Zurek (KZ) mechanism [340, 341], which charac-
terises correlation lengths and relaxation times while the system is crossing over to
another phase. There are some report studying the KZ mechanism in weakly interact-
ing bosons, i.e. in the mean-field regime [342], but strongly interacting bosons have
been little studied in this regard.

Chapter 4. Quantum probe spectroscopy for cold atomic
systems

In this work, I have considered coupling a qubit to a single site in a lattice system and
proposed an approach to extract information about the lattice filling by monitoring
the qubit. Since the coupling is assumed to be weak enough to not disturb the lattice
system, the probing process can be done in a non-destructive way. I have shown
that the energy spectrum of the lattice can be obtained from the Fourier transformed
signal of the probe. Although it is expected that the probe dynamics is affected by
the energy characteristics of the lattice, in this work I have shown explicitly how the
energy spectrum can be probed by its influence on the impurity dynamics described
with Bessel functions. Furthermore, I have considered a realistic model that takes
into account a dephasing effect, described by a Lindblad formalism, and demonstrated
that the proposed approach still works within a certain regime of dephasing. Since
feasible systems and probes are considered, as well as parameter regimes, I believe that
the proposed approach can be realised and contribute to developing new measurement
techniques for cold atomic systems. This work has been published in New Journal of
Physics 20 103006 (2018).

By taking advantages of techniques available in cold atomic systems, simulating other
physical systems such as condensed matter systems has been attracting attention. In
this work, I have considered a tight binding model and proposed an approach to extract
the energy spectrum of the system. On the other hand, it is also interesting to consider
different models such as the Bose-Hubbard model, where finite interactions can be
taken into account, and probe various quantities. An interesting research direction
of impurity dynamics is to embed an impurity in a many-body system and probe
the temperature of the system [198, 343]. Temperature is a characteristic quantity
of many-body systems, and demand for thermometry is ubiquitous. For example, for
Bose-Hubbard models in cold atoms, controlling the tunnelling rate requires one to
know the temperature of the lattice. In particular, there has been growing attention
to the temperature of cold atoms due to the demand for high parameter controllability
to study quantum phase transitions at finite temperature [195, 196, 344] as well as
quantum simulations [10–12]. One could consider non-destructive thermometers, based
on the work shown in the chapter.
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Chapter 5. Bayesian parameter estimation using Gaus-
sian states and measurements

In this work, I have investigated Bayesian parameter estimation scenarios by using
single-mode Gaussian probe states and Gaussian measurements. Bayesian estimation
strategies allow one to assume any prior distribution of the parameter to be estimated,
unlike local estimation strategies. This work has not focused on revealing optimal sets
of probe state and measurement schemes whose precision achieves the Heisenberg limit.
Rather, this work has aimed to analyse the precision limit in feasible environments. As a
comprehensive study, it gives important references for Bayesian parameter estimations
and will be a good basis for advanced investigation into more complicated setups.

I have studied three paradigmatic parameter estimation scenarios: (i) displacement,
(ii) phase, and (iii) squeezing strength. (i) For displacement estimation, I have dis-
played that a set of squeezed vacuum probe states and homodyne detection is optimal
and agrees with the Bayesian quantum Cramér-Rao bound. (ii) For phase estimation,
assuming flat prior, I have shown that homodyne detection leads to more accurate
estimation than heterodyne detection, while one should be aware that the phase range
concerned by homodyne detection is half of the range which heterodyne detection can
deal with. (iii) For squeezing strength estimation, I have exhibited that by imple-
menting homodyne detection, a combination of presqueezing and displacement for the
probes provides the most efficient strategy. This work has been submitted to Quantum
Science and Technology and is available as arXiv:2009.03709.

The findings of this work are helpful to explore Bayesian parameter estimation more
deeply. An option for future work is to construct optimal or nearly optimal measure-
ments by combining Gaussian measurements [305]. The resulting measurements could
be non-Gaussian measurements but should still be feasible. Another option is to con-
sider two-mode Gaussian probe states using the same framework as this work, such
that two-mode entanglement can be considered [310]. It can be expected that this
allows one to uncover aspects not considered in this work. Furthermore, one could
consider multi-parameter estimation [311–314] in the framework of Bayesian scenarios.
In reality, there are many situations where one wants to estimate more than a single
parameter. For example, in cases where the earth’s magnetic field strength is to be
estimated, it is described as a 2D-vector. I note that before going into this research di-
rection, it is necessary to figure out which set of multiple parameters are experimentally
interesting or even possible to be estimated at the same time by carefully considering
experimental setups. If the measurement basis for one parameter estimation is not
orthogonal to that of another parameter, these two measurements conflict, and one
has a trade-off between the accuracy of these two measurement outcomes. It would be
a key point to choose probe states and measurements that have none or little of this
conflict.
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Chapter 6. Simplifying multi-level thermal machines
using virtual qubits

Recently, thermodynamics in the quantum regime has been studied experimentally
[322–327]; therefore, designing quantum thermal machines has become more interest-
ing. While there are some studies about few-qubit machines [23, 315–321], there are
few about larger systems, i.e. multi-level machines, due to complexity of such large
systems. Here, I have addressed the issue of this complexity by using the idea of a
virtual qubit [127] and have proposed an approach for simplifying the master equa-
tion describing a multi-level system composed of several qubit-machines. By using
reset-type master equations, an analytical steady-state solution for n-level target sys-
tems was found. Particularly, I have focused on three-level systems whose energy gaps
all coherently interact with three two-qubit machines, and compared their analytical
steady-state solution to numerical results of the full reset-type master equation and
an optical (GKLS) master equation. I have found that these models show the same
behaviour for interaction-dependence and a different one for temperature-dependence.
Nevertheless, these models are still helpful for designing thermal machines and reveal-
ing the parameter dependence of the target system. As a paradigmatic example of this
approach being useful, I have shown that the lasing transition in a three-level laser can
be enhanced by population inversion of a virtual qubit. This work is planned to be
submitted to Quantum and is available on arXiv:2009.03832.

Based on the proposed approach, one could explore thermodynamic properties of multi-
level machines. First, it would be a good starting point to investigate three-level
machines and four-level machines. Especially, four-level machines include two-qubit
machines as a special case but allow for more coherent transitions of bath interactions
[15]. These additional freedom could improve the efficiency and power of the machines
[126]. Furthermore, while this work focused on the steady-state regime, it would be
interesting to consider the transient regime, i.e. study the dynamics before the target
state becomes time-independent. Although for the steady-state regime the off-diagonal
terms of the density matrix of the target state were not important, in the transient
regime these terms become more critical to characterise the time-evolved state. Since
it is known that more coherence and entanglement are observed in the transient regime
[337, 338], an approach that covers the transient regime would help one to design better
thermal machines that utilise more quantum resources.

Overall conclusion

I have explored different systems such as cold atoms trapped in a harmonic trap or
lattice and optical systems throughout my PhD to reveal non-classicality from different
perspectives. Strong interactions in quantum systems are key ingredients for entan-
glement and lead to interesting, non-classical features. Nevertheless, certain situations
require to weaken the interactions, e.g. when probing a target system, where strong
interactions between the probe and the target could destroy information encoded in
the target or even the target system itself. In addition, I have shown that not only
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entanglement but also squeezing in phase space can be benefical and contribute to
achieving non-classical limits for precision for parameter estimation. As future work
that utilises my knowledge obtained in all these projects, it would be interesting to
explore the roles of non-classicality in interacting systems from a thermodynamic per-
spective [345, 346]. The tunable contact interactions of cold atoms allow one to explore
correlations in many-particle systems [347], and these quantum correlations have the
potential to not only enhance the performance of thermodynamic machines compared
to single-particle machines [348] but also to be converted to work or heat [25]. Also,
by taking advantages of the controllability of cold atoms, the realisation of a simple
but powerful model, the quantum Szilard engines [349], which demonstrate a connec-
tion between thermodynamics and information, has been proposed [350]. Therefore, it
would be interesting to investigate effects of strong interactions not only in heat-based
engines but also in information-consuming engines [351].
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Appendix A

Matrix representation of the
Hamiltonian (2.5)

In this appendix, I give details of the matrix representation of the Hamiltonian (2.5)
for two interacting bosons trapped in a harmonic trap in the presence of SOC, used
for the calculations in Chap. 2. Starting by ordering the basis states of the harmonic
oscillator according to their total energy and the value of n+,

|0, 0, ↓↓〉 , |0, 0, S〉 , |0, 0, ↑↑〉 , |0, 1,A〉 ,
|1, 0, ↓↓〉 , |1, 0, S〉 , |1, 0, ↑↑〉 , |1, 1,A〉 ,
|0, 2, ↓↓〉 , |0, 2, S〉 , |0, 2, ↑↑〉 , |0, 3,A〉 ,
|2, 0, ↓↓〉 , |2, 0, S〉 , |2, 0, ↑↑〉 , |2, 1,A〉 ,
|1, 2, ↓↓〉 , |1, 2, S〉 , |1, 2, ↑↑〉 , |1, 3,A〉 ,
|3, 0, ↓↓〉 , |3, 0, S〉 , |3, 0, ↑↑〉 , |3, 1,A〉 , · · · ,

one can produce a matrix representation of the Hamiltonian without the interaction
term Hint as

H −Hint =



A0,0 B1 C2 0 0 0 0 0 0 · · ·
B†1 A1,0 0 B2 C2 0 0 0 0 · · ·
C†2 0 A0,2 0 B1 0 C4 0 0 · · ·
0 B†2 0 A2,0 0 B3 0 C2 0 · · ·
0 C†2 B†1 0 A1,2 0 0 B2 0 · · ·
0 0 0 B†3 0 A3,0 0 0 B4 · · ·
0 0 C†4 0 0 0 A0,4 0 0 · · ·
0 0 0 C†2 B†2 0 0 A2,2 0 · · ·
0 0 0 0 0 B†4 0 0 A4,0 · · ·
...

...
...

...
...

...
...

...
... . . .


, (A.1)
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where each element is a 4× 4 matrix such that

An,2u =


n+ 2u+ 1 Υ 0 0

Υ n+ 2u+ 1 Υ iΛ
√

2u+ 1
0 Υ n+ 2u+ 1 0
0 −iΛ

√
2u+ 1 0 n+ 2u+ 2

 , (A.2)

Bn =


iΛ
√
n 0 0 0

0 0 0 0
0 0 −iΛ

√
n 0

0 0 0 0

 , (A.3)

C2u =


0 0 0 0
0 0 0 0
0 0 0 0

0 iΛ
√

2u 0 0

 (A.4)

for integer n, u ≥ 0. A more compact representation, which also makes the structure
of the matrix elements clear, is given by

H −Hint =



A0 B1 C2 0 0 0 · · ·
B†1 A1 B2 C2 0 0 · · ·
C†2 B†2 A2 B3 C4 0 · · ·
0 C†2 B†3 A3 B4 C4 · · ·
0 0 C†4 B†4 A4 B5 · · ·
0 0 0 C†4 B†5 A5 · · ·
...

...
...

...
...

... . . .


, (A.5)

where for even and odd indices

A2N =


A0,2N 0 · · · 0 0

0 A2,2(N−1) · · · 0 0
...

... . . . ...
...

0 0 · · · A2(N−1),2 0
0 0 · · · 0 A2N,0

 , (A.6)

A2N+1 =


A1,2N 0 · · · 0 0

0 A3,2(N−1) · · · 0 0
...

... . . . ...
...

0 0 · · · A2(N−1)+1,2 0
0 0 · · · 0 A2N+1,0

 , (A.7)
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B2N =


0 B2 0 · · · 0 0
0 0 B3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · B2(N−1) 0
0 0 0 · · · 0 B2N

 , (A.8)

B2N+1 =


B1 0 · · · 0 0
0 B3 · · · 0 0
...

... . . . ...
...

0 0 · · · B2(N−1)+1 0
0 0 · · · 0 B2N+1

 , (A.9)

C2N =


C2N 0 · · · 0 0 0

0 C2(N−1) · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · C4 0 0
0 0 · · · 0 C2 0

 . (A.10)

The terms containing the delta-function type interactions are given by

Hint = [g |↓↓〉〈↓↓|+ g↑↓ (|S〉〈S|+ |A〉〈A|) + g |↑↑〉〈↑↑|] δ(|x1 − x2|)

=
1√
2

[g |↓↓〉〈↓↓|+ g↑↓ (|S〉〈S|+ |A〉〈A|) + g |↑↑〉〈↑↑|] δ(x−). (A.11)

As the interactions do not affect the COM degree of freedom or the pseudo-spin degrees,
the interaction energy matrix elements are given by

〈m, 2u, ↓↓|Hint|n, 2ν, ↓↓〉 =
g√
2
δm,n

∫
dx− φ2u(x−)φ2ν(x−) δ(x−)

=
g√
2
δm,nφ2u(0)φ2ν(0), (A.12a)

〈m, 2u, S|Hint|n, 2ν, S〉 =
g↑↓√

2
δm,nφ2u(0)φ2ν(0), (A.12b)

〈m, 2u, ↑↑|Hint|n, 2ν, ↑↑〉 =
g√
2
δm,nφ2u(0)φ2ν(0), (A.12c)

〈m, 2u+ 1,A|Hint|n, 2ν + 1,A〉 =
g↑↓√

2
δm,nφ2u+1(0)φ2ν+1(0) = 0, (A.12d)

where the φn(x) are the eigenstates of harmonic oscillator in the position representation
and

1√
2
φ2u(0)φ2ν(0) =

1√
2π

(
−1

2

)u+ν
√

(2u)!(2ν)!

u!ν!

≡ fu,ν = fν,u. (A.13)
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u=0
u=1
u=2

0 20 40 60 80 100
ν-u

0.2

0.4

0.6

0.8

1.0
fu,ν/fu,u

Figure A.1: Plot of the ratios fu,ν/fu,u, each of which is given by (A.13). The off-
diagonal term fu,ν quantifies the strength of coupling caused by the contact interactions.
The ratio is decaying to zero proportionally to 1/(ν − u), i.e. not exponentially, which
requires one to consider sufficient energy levels to ensure convergence within the system.
This is reflected by the fact that it is difficult to describe non-smooth behaviour due to
finite interactions with smooth functions composed of the eigenstates of the harmonic
oscillator. However, a speed-up method for describing the non-smooth behaviours with
some artificial non-smooth functions exists [352].

Note that the off-diagonal terms fu,ν for u < ν are smaller than the diagonal terms
fu,u and disappear for increasing difference |ν−u| (see Fig. A.1). The interaction term
Hint can then be represented using fu,ν as

Hint =
∞∑
n=0

∞∑
u=0

∞∑
ν=0

fu,ν
(
g |n, 2u, ↓↓〉〈n, 2ν, ↓↓|+ g↑↓ |n, 2u, S〉〈n, 2ν, S|

+ g |n, 2u, ↑↑〉〈n, 2ν, ↑↑|
)

(A.14)

and expressed in a matrix form as

Hint =



F0,0 0 F0,1 0 0 0 F0,2 0 0 · · ·
0 F0,0 0 0 F0,1 0 0 0 0 · · ·
F1,0 0 F1,1 0 0 0 F1,2 0 0 · · ·

0 0 0 F0,0 0 0 0 F0,1 0 · · ·
0 F1,0 0 0 F1,1 0 0 0 0 · · ·
0 0 0 0 0 F0,0 0 0 0 · · ·
F2,0 0 F2,1 0 0 0 F2,2 0 0 · · ·

0 0 0 F1,0 0 0 0 F1,1 0 · · ·
0 0 0 0 0 0 0 0 F0,0 · · ·
...

...
...

...
...

...
...

...
... . . .


, (A.15)



157

where each element is a 4× 4 matrix such that

Fu,ν =


fu,νg 0 0 0

0 fu,ν 0 0
0 0 fu,ν 0
0 0 0 0


= Fν,u. (A.16)

Similar to Eq. (A.5), it can be written in a compact form as

Hint =



F0,0 0 F0,1 0 F0,2 0 · · ·
0 F0,0 0 F0,1 0 F0,2 · · ·
F †0,1 0 F1,1 0 F1,2 0 · · ·

0 F †0,1 0 F1,1 0 F1,2 · · ·
F †0,2 0 F †1,2 0 F2,2 0 · · ·

0 F †0,2 0 F †1,2 0 F2,2 · · ·
...

...
...

...
...

... . . .


, (A.17)

where for N ≤ M the matrix elements are given by the 4 × 4 matrices in Eq. (A.16)
and the additional M −N columns are filled with zeros

FN,M =


FN,M 0 · · · 0 0 0 · · · 0

0 FN−1,M−1 · · · 0 0 0 · · · 0
...

... . . . ...
...

... · · · ...
0 0 · · · F1,M−N+1 0 0 · · · 0
0 0 0 0 F0,M−N ︸ ︷︷ ︸

M −N

0 · · · 0

 . (A.18)

The full Hamiltonian can then finally be expressed in a compact form as

H =



A0 + F0,0 B1 C2 + F0,1 0 F0,2 0 · · ·
B†1 A1 + F0,0 B2 C2 + F0,1 0 F0,2 · · ·

C†2 + F †0,1 B†2 A2 + F1,1 B3 C4 + F1,2 0 · · ·
0 C†2 + F †0,1 B†3 A3 + F1,1 B4 C4 + F1,2 · · ·
F †0,2 0 C†4 + F †1,2 B†4 A4 + F2,2 B5 · · ·

0 F †0,2 0 C†4 + F †1,2 B†5 A5 + F2,2 · · ·
...

...
...

...
...

... . . .


.

(A.19)
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