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Abstract

Exploring the Potential of Cryo-Electron Tomography on Pro-
tein Nanocrystals for Molecular Structure Determination

The three-dimensional structure of a protein molecule, challenging to determine and
close to impossible to predict, plays a key role in understanding protein function and
has implications in drug design. When it comes to structure determination, there exist
many complementary methods, each with their specific advantages and disadvantages.
Most of those methods rely on a combined signal from thousands of individuals and
cannot be used for directly reconstructing an actual 3d volume as it appears inside the
sample.

This thesis focuses on developing the methodology and providing proof of con-
cept for a novel approach in structure determination by reconstructing small protein
nanocrystals via cryo-electron tomography. Real-space imaging gets past the phase
problem that is a challenging companion of conventional diffraction-based methods.
With electron tomography we can reconstruct and visualize a 3d nanocrystal in its
entirety and study the properties of small biological crystal from a new perspective.

Being a relatively unexplored territory, nanocrystal tomography sets several chal-
lenges, such as creating nanocrystals small enough for imaging with transmission elec-
tron microscope and developing algorithms for going from a tilt-series to a 3d structure.
For a proof of concept we create, image and reconstruct nanocrystals of hen egg white
lysozyme that, having molecular weight of only 15 kDa, is generally considered unfea-
sible for electron tomography. Nanocrystals make finding and determining the relative
orientations of the individual molecules possible, symmetry relations help reduce the
effects of missing information, and by averaging we are able to reconstruct a molecular
structure at a medium resolution of around 13Å. Using Fourier Transform (FFT) we
get a direct objective measure of the resolution of details within the reconstruction
in the form of a diffraction pattern and show that in specific directions the resolution
reaches as high as 7Å in a single tomogram.

Additionally, this work explores two other tightly related ideas. First, we study
the concept of extended field and show with extensive simulations that extending the
reconstruction space in various regularized iterative reconstruction procedures helps
reduce the overall error and prevent over-smoothing. Second, calculating FFT of an
image comes at a computational cost, and when the image is not periodic, the discon-
tinuity of the opposing edges causes undesirable strong artifacts in the FFT that could
obstruct important details. In this project we implemented a simultaneous 2d FFT
and edge artifact removal for real-time applications on a Field Programmable Gate
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Array (FPGA) reconfigurable computing system.
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Introduction

Figure 1 |An illustration of tomography. Rendered with Blender.

The world is full of living organisms inhabiting an astounding variety of environments
from acidic hydrothermal vents deep under the sea, through warm and moist rain forests
to cold and windy mountain tops. Despite the huge variety of the living systems they
all share the same fundamental principles necessary to support life. A class of biological
macromolecules known as proteins are responsible for most of their functions.

Proteins are biological molecules that are constructed inside a cell from amino acids.
A single protein molecule is a chain with up to several thousand amino acids linked
together in a linear fashion, but describing proteins by this sequence alone does not
capture their biological significance.

In its natural hydrated environment a protein chain folds into a characteristic three-
dimensional form due to a combination of forces acting on the amino acid chain, like
the electrostatic force, the hydrogen bonds, the disulfide bridges, van der Waals force
and the forces caused by the hydrophobicity and hydrophilicity. The resulting spe-
cific structure in general has different larger functional domains connected by smaller
flexible linkers that are in perpetual movement around equilibrium due to the thermo-
dynamic collisions of the surrounding molecules. This flexibility and constant change
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2 Introduction

in conformation gives proteins the ability to function in a highly specific manner [1].
These observations motivate many questions about the nature of those molecules.

If a dissolved protein is not a rigid structure then how does it move? What are the
statistics of its dynamics? What is the extent of its vibrations? In its natural environ-
ment, what is the time distribution of its different conformations? Can we estimate the
time distribution of one molecule by studying ensemble distribution of many molecules
at a single time instant? How much does the structure of a protein packed in a crystal
differ from the dissolved protein? Does a protein remain active in a crystalline form
and to what extent are its movements reduced? How does that freedom vary within
the crystal?

Being able to answer any of these questions will take us closer to understanding
the living world around us. Knowledge about the structure and dynamics of proteins
will lead us to more accurate and reliable computer simulations that will aid in the
development of new drugs in particular, but also understanding the nature in general.

Over the past one hundred years a variety of methods have been developed whose
main goal is to determine the 3d structure of various biological molecules. These include
x-ray crystallography of large well-ordered 3d crystals and serial femtosecond crystal-
lography of small 3d crystals, electron crystallography of 2d and 3d crystals, electron
tomography and sub-tomogram averaging of individual particles, electron microscopy
using single particle reconstruction or helical reconstruction of tubular molecules, nu-
clear magnetic resonance imaging and nuclear scattering of 3d crystals. Each one of
these techniques have certain strong suits and bottle-necks and the nature of the sci-
entific question driving the experiment determines which method is optimal. All of
the previously mentioned methods with the exception of electron tomography rely on
averaging many molecules that can greatly enhance the signal and suppress the noise,
but it inevitably brings forth the loss of individuality.

An approach to structure determination, that has for various reasons been less
pursued, is using electron tomography on small protein nanocrystals, where one would
have the option to average particles over a well-defined lattice while retaining the
possibility of investigating the crystal also without averaging. In this thesis we set the
goal to explore this avenue further, and attempt to develop a methodology that could
determine the structure of a single molecule as well as provide insights about proteins
in the context of small biological crystals.

Goals and Outline of the Thesis

The major goal of the current thesis is to extend the method of cryo-electron tomog-
raphy to a previously little explored territory of using 3d protein nanocrystals for
molecular structure investigations. Electron tomography, a comparatively low reso-
lution method, is the only method that can reconstruct a part of a 3d volume as it
appears inside the sample without any explicit need for averaging, which makes it an
ideal candidate in the pursuit of knowledge about the individuality of molecules.

In the thesis we develop the methodology and show as a proof of concept using
lysozyme that electron tomography is not only a feasible solution for at least medium
resolution structure determination, but can also be effectively used to investigate the
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nature of 3d protein nanocrystals. In tomography we have a real image of the crystal
y taking advantage of a mathematical method called Fourier transform we can switch
at will between real and reciprocal space representations, thereby allowing the incor-
poration of well developed crystallographic methodology without being stymied by the
phase problem.

Motivation

There are several reasons to motivate the usage of nanocrystals and why it could be a
lucrative approach.

• When embedded in amorphous ice, small organic molecules provide little contrast,
which makes them hard to find. Crystals, consisting of thousands of molecules
aligned on a lattice, generate plenty of contrast at specific directions. The lattice
can also serve as a road map that leads towards the molecules, by looking for
periodicity in the reconstruction.

• Averaging many (i.e. thousands) single particles that are floating freely in the
ice layer is the conventional approach, but the relative orientations of small
monomeric molecules are hard to determine, which makes the procedure chal-
lenging and error-prone. Inside a crystal the molecules are naturally aligned and
related to each other by well-defined symmetry operations. only things that
have to be determined are the crystallographic parameters - lattice vectors, sym-
metry group and the positions of the symmetry elements, given that the crystal
is well ordered.

• Large well-ordered crystals, that are suitable for conventional x-ray diffraction
studies, are notoriously difficult to obtain. It is believed, and backed up by recent
research [2], that the production of nanocrystals is feasible for many molecules
that otherwise resist growing into large crystals.

• Electron crystallography on 3d nanocrystals has recently seen daylight and is pro-
ducing spectacular results [3, 4]. To get a good diffraction pattern that is suitable
for crystallographic analysis a well ordered nanocrystal is necessary. Electron to-
mography in principle can deal with a nanocrystal of any quality and averaging
can be done over only the parts that show good order, given that we can iden-
tify those. Moreover, only a single crystal in a single dataset might be all that
is necessary, whereas in electron crystallography generally several crystals are
needed. The compromise is that electron tomography will probably not provide
similar resolution as is the norm these days for electron crystallography and other
structure determination methods.

• In addition to an averaged structure, tomography offers an opportunity to directly
image and reconstruct an actual part of a volume in the sample. This gives a
chance to study protein nanocrystals as a separate system, giving us information
about the structure of the whole crystal itself, the disorder within, molecule pack-
ing and mosaicity. It might be even possible, dependent on the quality and SNR
of the data, to analyze every single molecule individually since we can pinpoint
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their locations in the nanocrystal. Molecules in a nanocrystal are potentially
less tightly packed than in a large crystal, therefore having greater flexibility and
freedom of movement. This could serve as an ideal system for extracting a whole
gallery of the molecules to provide statistics about the conformational dynamics.

While we certainly cannot address in this thesis every point that is discussed in the
preceding list, we nevertheless explore the paradigm of nanocrystal tomography from
many of those aspects.

Outline of the Thesis

In addition to the main overarching theme of nanocrystal tomography, the thesis also
touches upon two tightly related problems to tomography and signal processing in
general. The three projects, all unified under a common theme, are the following

• Speeding up fast Fourier Transform by harnessing hardware, at the same time
handling the edge artifacts when transforming a non-periodic image.

• The concept of extending the size of a tomographic reconstruction beyond the
region of interest and its effects on the reconstruction.

• The explorations in reconstructing 3d protein nanocrystals, extracting a single
molecule structure and studying the crystalline order.

In Chapter 1 we first give an overview of some of the background of imaging in
structural biology, electron microscopy, relevant details regarding image formation and
the mathematics of 3d reconstruction. We also discuss the basics of the signal pro-
cessing technique called Fourier transform, keeping it short on the theoretical side and
putting more emphasis on the practicalities.

Chapter 2 is devoted to the discussion about the computational intricacies of 2d
Fourier transform, a specific approach to edge-artifact removal in a non-periodic image,
and implementing it all on hardware using field programmable gate array technology
(FPGA).

In Chapter 3 we take a look at the extend field iterative reconstruction technique
and compare it to its non-extended analogues. A rigorous theoretical treatment is
left for the future developments, but a thorough simulation study using various iter-
ative reconstruction procedures with regularizing capability shows its effectiveness in
separating signal from the noise and in facilitating better fit with the projections.

Finally, Chapter 4 presents the core project of this thesis. We discuss the methods
we used for growing 3d lysozyme nanocrystals and the subsequent imaging in transmis-
sion electron microscope. We talk about the upsides and downsides of this approach
to molecular structure determination and show how medium resolution structure of
lysozyme was determined from just a handful of unit cells. The last section of this
paragraph explains the work-flow and the algorithmic details of the programs that
were developed for crystalline image processing task.



Chapter 1

Background

1.1 Imaging in Structural Biology

X-ray Crystallography and Protein Crystallization

In structural biology the conventional method for structure determination has histor-
ically been X-ray crystallography (XRC) [5, 6]. In 1958 Kendrew et al. solved the
structure of a sperm whale myoglobin by XRC [7]. This was the first ever protein
structure determined by this method and served as a major milestone in structural
biology. It showed to the world that the structures of proteins are in complexity far
beyond what any theory had so far predicted [7].

A major obstacle in XRC is achieving protein crystals of the necessary size and
quality for diffraction [8], with insoluble, flexible and otherwise unstable membrane
proteins being notoriously difficult to crystallize [9]. It has been estimated that in
most organisms around 25% of all genes encode for membrane proteins [10] whereas in
the protein data bank (PDB) [11] out of more than 100 000 structures solved to date
only ∼2% are those of membrane proteins. In spite of the difficulties associated with
crystallizing membrane proteins they serve as attractive research objects since about
60% of the current drug targets are located on the cell surface [12].

X-ray Free Electron Lasers and Nanocrystallization

Until recently nanometer sized crystals were unfit for diffraction studies using conven-
tional X-ray sources because of the radiation damage caused by the prolonged exposure
[13]. This changed with the advent of x-ray free electron lasers (XFEL) that intro-
duced an incredibly tightly focused beam that is a billion times more brilliant than
what the so-called third generation synchrotron was able to deliver [14]. A paradigm
shift dawned when it was realized that rather than trying to fight the inevitable ra-
diation damage one might instead accept the destruction of the crystal as long as the
diffraction pattern can be recorded [15]. “Diffraction before destruction” approach uses
super intense and a mere femtosecond long XFEL pulses on protein nanocrystals to
“outrun” the destruction process and record the diffraction pattern before the onset of
the radiation damage [16].

In serial femtosecond x-ray crystallography (SFX) [15] millions of randomly oriented

5
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nanocrystals are passing through the pulsating electron beam in a narrow stream,
partial diffraction patterns are recorded and later combined to fill the reciprocal space
[17]. Because of the restrictions set by the nanocrystal delivery system to the XFEL
beam SFX can in general handle crystals in the range of 100 nm to 1 µm and each
recorded diffraction pattern needs to have at least 10-16 identifiable diffraction spots
for it to be useful [18]. The structure of a membrane protein Photosystem I (PSI) was
solved using nano and microcrystals ranging from 200 nm to 2 µm [15].

This new application for protein nanocrystals ignited a demand for reliable and
reproducible nanocrystallization methods. One approach is offered by microfluidic
devices, that were also used to crystallize and sort the PSI crystals [19, 20]. Since
optimal crystal growth conditions occur in the metastable zone yet the nucleation
takes place in the supersaturation region [21], fine control over the system’s trajectory
through the phase space is necessary and offered by precisely tuned microfluidic devices.

Detecting nanocrystals in solution is a nontrivial matter as they are not resolvable
to bright field light microscopy. Dynamic light scattering, fluorescence microscopy and
second-order nonlinear imaging of chiral crystals have been used as a characterization
method for sample crystallinity [2, 20]. Recently, it has been shown that complexes that
are otherwise hard to crystallize for XRC, such as membrane proteins and multiprotein
complexes, still might form nanocrystals in a crystallization drop [2]. Stevenson et
al. demonstrated by using uranyl acetate stained samples and transmission electron
microscope that nanocrystals with discernible crystal lattice were commonly observed
. Another successful approach to producing nanocrystals is to grow large crystals the
conventional way and later fractionate them using sonication, vortexing or vigorous
pipetting to break larger crystals into small single crystals [3]. Crystals obtained this
way are often free of the many imperfections that more frequently accompany large
crystals, such as twinning, and are thus well suited for electron crystallography.

Electron Crystallography

Nanocrystals in the order of 100 nm can also be analyzed in transmission electron mi-
croscope. When an electron beam hits a crystalline sample, the electrons are scattered
and a diffraction pattern can be recorded on the back focal plane of the objective
electromagnetic lens.

In 2d electron crystallography 2d protein crystals are needed [22]. The structure of
aquaporin (AQP0) membrane protein was solved to resolution 1.9Å from 2d crystals
by combining diffraction patterns from several hundred different crystals [23]. The
downside of 2d electron crystallography is that growing and handling 2d crystals can be
incredibly tricky [24]. Also with 3d protein crystallography there are several challenges
that have to be overcome. The foremost is the fragility and beam sensitivity of protein
crystals, which prevents tilting and collecting multiple exposures from the same crystal
[25]. Thus, low SNR is always present because long exposure by the electron beam may
destroy the crystals.

Recently, with the advent of direct electron detectors a technique called microED
has seen daylight [4]. By using ultra low accumulated electron dose of ∼9 e−/Å2 [26], or
sometimes even lower like∼5 e−/Å2 [27], microED is capable of taking several exposures
from different tilts by continuously rotating the same 3d nanocrystal covering a large
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angular wedge. In a proof of principle study Shi et al. were able to refine the
structure of lysozyme up to 2.9Å [26], . Recently structures of many more small
biological molecules have been solved to high resolution [28, 29]. When the diffraction
spots reach 1.2Å direct methods can be used for phasing [28]. When the peaks do not
quite reach that resolution, then isomorphous replacement and other more challenging
techniques need to be employed to solve the phase problem.

Single Particle Reconstruction

In single particle reconstruction (SPR), the particles of interest do not have to be in
crystalline order and are usually scattered around the sample in random orientations.
Treating the differently oriented particles as different views of the same particle allows
for reconstructing a single 3d image from thousands of 2d projections. Many high
resolution structures have been obtained by SPR, such as mammalian transient receptor
potential TRPV1 ion channel to a resolution of 3.4Å, breaking the side-chain resolution
barrier for a membrane protein without crystallization [30], and cytoplasmic polyhedron
virus to 3.88Å resolution [31] by exploiting the icosahedral symmetry of a virus capsid
[32, 33]. More recently SPR has also reached even higher resolution of 2.2Å on β-
galactosidase [34] .

A helical structure being highly symmetric contains many different views of the
repeating unit and therefore makes reconstruction possible from only a single image
[35]. Optical filtering to filter out non-repeating structures have been demonstrated on
the helical tail of bacteriophage T4 [36].

A combination of electron crystallography and single particle analysis was demon-
strated on nanocrystals in [37]. In a proof of concept study Nederlof et al. imaged
less than 100 nm thick flash-frozen samples containing lysozyme nanocrystals. By us-
ing optimal Wiener filtering for lattice enhancement and single particle techniques on
around 200 crystals they showed that nanocrystals can be imaged to high resolution
with electron microscope.

Electron Tomography and 3d Reconstruction

Crystallography and SPR are both ingenious and incredibly useful methods for obtain-
ing the structure of a protein molecule to high resolution, but when it comes to the
study of cellular processes, they fall short on several important aspects. Firstly, the
resulting structure is always obtained as a combination of a large amount of molecules,
therefore losing the information about the individuality of each molecule. In SPR
a classification of the images into particles in different conformations is possible and
commonly done, but the particles need to be relatively large and there is a significant
threat of model bias [38]. . Secondly, only rarely can specific biological functions be at-
tributed to individual molecules. Majority of the functions in the crowded environment
of the cell are taking place as a carefully coordinated balance between several molec-
ular assemblies and their functional domains. Therefore, knowing the exact structure
of a protein that is packed tightly inside a crystal will probably not provide us with a
complete picture of its dynamics inside the cell [1].

Cryo-electron tomography (CET) can in principle overcome these shortcomings.
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With the advance of cryo-techniques for sample preparation and the availability of
powerful computers, CET has become increasingly useful to fill the niche that other
structure determination methods are unable to provide. Even though CET as of yet
can not provide a structure with as high a resolution as XRC or SPR, it has the
advantage of reconstructing an actual part of volume inside a sample, allowing three
dimensional imaging of any electron-transparent biological matter without the need for
averaging. With CET, therefore, one can image individual molecules in their natural
environment [39, 40]. In the context of the current work, with CET we can image pro-
tein nanocrystals of sufficiently small size and obtain information about each individual
molecule.

In CET a series of images of the same sample are collected with transmission elec-
tron microscope (TEM) by tilting the sample around an axis perpendicular to the
electron beam. As the focal depth of TEM is more than 100 nm the projections can
be regarded as line integrals of the scattering potential of the sample. A 3d image is
thereafter reconstructed by projecting the 2d images in tilt-series back to the 3d space
via an operation referred to as back-projection [41, 42].

CET sets no particular constraints on the type of sample as long as it is thin
enough to make it transparent for electrons. For a microscope operating at 300 keV
an acceptable thickness of the sample is in the order of 100 nm, thicker samples can be
sliced using cryo-microtome [43]. In cryo-electron microscopy the biological structures
are preserved by either flash-freezing by plunging them into liquid ethane [44] or high
pressure freezing [45] so that the water inside the sample gets vitrified, thus forming a
glass-like amorphous ice instead of crystalline ice. A sample prepared in this way has
to be kept below the recrystallization temperature at all times in order to avoid losing
the amorphousness of the ice.

Combination of XRC and CET was performed in [39] where immunoglobulin G
(IgG) molecules in many different conformations were successfully imaged using CET.
After assembling a gallery of different conformations the high resolution XRC structures
were individually fit into IgG domains. Thus, rigid XRC high resolution structures can
be augmented with information about the dynamics of different domains by using low
resolution CET [46].

Cryo-electron tomography of biological samples operates in an ultra low dose regime
where a fixed total dose, that is already low, has to be distributed over all individual
tilts. In such a setting images are dominated by shot noise, the signal to noise ratio
(SNR) is in the order of 0.1, images are devoid of contrast, hard to align with each
other and small proteins are difficult to find.

Image reconstruction in electron tomography is in itself an ill-posed mathematical
problem stemming from the limitations of the data collection scheme, i.e. tilting at
discrete steps and not covering the whole 180◦ range. The additional challenges caused
by the low dose only make things more severe. Therefore, in order to cast an unsolvable
ill-posed problem into a neighboring well-posed problem some prior information has
to be included in the form of a regularizer. Several regularization schemes have been
tried out on electron tomography reconstructions like Tikhonov regularization, total
variation minimization [47], compressed sensing [48], shape based [49] and model based
regularization, and many more.

One particular regularizing method that is used in the current work is constrained



1.2 Technical Background 9

maximum entropy tomography (COMET) [50]. COMET is an iterative tomographic
reconstruction procedure with maximum entropy based regularization [51]. It finds a
solution to the tomographic reconstruction problem as an interplay between two mea-
sures - data discrepancy characteristic, that pushes the solution towards better fit with
the observations, and an entropy term, that smooths out the details not conclusively
backed up by the data. In COMET, a low resolution version of a filtered back-projection
structure is used as prior information, since we can be fairly certain in the correctness
of the low resolution details. Maximizing entropy guarantees that no possible solution
of the reconstruction problem is overlooked and at the same time staying maximally
unbiased towards any particular one [52]. In terms of electron tomography this means
that the resulting reconstruction includes only those high resolution details whose ex-
istence can be backed up by the observed data, i.e. the tilts. In [53] it was concluded,
based on [54], that starting from certain axioms that a reconstruction method should
satisfy, such as consistency, distinctness and continuity, it can be shown that the en-
tropy regularization is the only method consistent with the axioms when the signal to
be reconstructed is positive and real valued. .

Sub-tomogram Averaging and Symmetrization

The technique of averaging individual 3d reconstructions of supposedly identical parti-
cles is called sub-tomogram averaging. It is essentially a combination of cryo-electron
tomography and single particle reconstruction [55]. Since in each reconstruction the
particle is potentially in a different orientation and possibly also conformation, the
reconstructions have to be classified and aligned prior to averaging together.

In [56] a least-squares refinement procedure is presented that performs alignment
and averaging of individual 3d images. The method is an iterative procedure based on
maximizing the correlation coefficient between the average structure and each recon-
struction within a suitably chosen envelope, producing an average that is minimally
biased with respect to the order of the inclusion of the structures.

One of the first cases of sub-tomogram averaging was done by combining four indi-
vidual pre-messenger rhibonucleoprotein particles [57].

More modern examples of sub-tomogram averaging are based on the Bayesian view
where a single object is not in one particular orientation, but instead its orientation is
described by a probability distribution. Upon averaging, each particles is included in
every possible orientation weighted according to its probability [3].

In the thesis project our goal is to reconstruct a 3d image of a protein nanocrystal
using electron tomography. For a crystal the asymmetric units are already approxi-
mately aligned to each other according to a certain crystallographic symmetry group,
so ideally no alignment search is necessary.

1.2 Technical Background

1.2.1 Fourier Transform

Probably one of the most commonly used techniques in signal processing in general, and
in this work in particular, is the one called Fourier transform. With Fourier transform
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we can represent any (reasonably well-behaved) function as an appropriately scaled
infinite sum of sines and cosines.

Fourier transform F of a function f : Rn → C, denoted by Ff or with a small hat
on top f̂ : Rn → C, can be defined as

f̂(q) = Ff(q) =

∫
Rn
f(x)ei2πx·qdx (1.1)

and, conversely, the inverse Fourier transform as

f(x) = F−1f̂(x) =

∫
Rn
f̂(q)e−i2πx·qdq . (1.2)

The question whether the integral converges or not is not a concern when the
function to be transformed is a measured physical quantity. That is a valid sufficient
condition for the existence of the Fourier transform, so in the context of imaging such
mathematical details can be ignored [58].

When the function f(t) is 1-dimensional and its argument represents the time do-
main, then the domain of its Fourier transform is temporal frequency. For a 2d and
3d signal f(x) that measures some physical quantity over the spatial domain, such
as 2d micrographs or 3d tomograms, the domain of their Fourier transform is spatial
frequency. This conveniently allows the decomposition of a signal into its frequency
spectrum, allowing the analysis and processing of the frequency components individ-
ually. The Fourier space is often also called the reciprocal space, a terminology which
we will use throughout this thesis.

1.2.2 The Convolution Theorem

A convolution is a mathematical operation where one function is modified by another
function, resulting in a third function that has the characteristics of both of the func-
tions involved. The convolution of two functions f(x) and g(x) is defined as

(f ◦ g)(x) =

∫
Rn
f(y)g(x− y)dy . (1.3)

It is easy to show, using the definition of the Fourier transform and a change of
variables, that the convolution of f and g is equivalent to a multiplication of their
respective Fourier transforms followed by an inverse Fourier transform. So, the Fourier
transform of f ◦ g is equal to the product of the Fourier transforms of f and g

F(f ◦ g)(q) = Ff(q)Fg(q) . (1.4)

The opposite is also true. The Fourier transform of a product of two functions fg
is equal to the convolution of their Fourier transforms

F(fg)(q) = Ff(q) ◦ Fg(q) . (1.5)

This convolution-multiplication duality allows us to write down elegant forms for
filtering, calculating cross-correlation and expanding a motif into a repeating pattern
by convolving it with a lattice.
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1.2.3 Cross-correlation

The cross-correlation function C of two functions f(x) : Rn → R and g(x) : Rn → R
is a measure of similarity between the two. Let us define the cross-correlation between
f(x) and g(x) as

C(x) =

∫
Rn
f(y)g(y + x)dy . (1.6)

The definition of C is similar to a convolution, therefore it is expected that we can
conveniently make use of the Fourier transform for its calculation. The difference from
convolution is that one of the functions is not flipped in the cross-correlation case. It
can be shown that

FC(q) = F
{∫

Rn
f(y)g(x+ y)dy

}
(q)

= Ff ∗(q)Fg(q) ,

(1.7)

where ∗ denotes the complex conjugate and is necessary for the imaginary parts of the
transforms to also give a positive contribution to the correlation.

1.2.4 Unit Cell, Lattice and Crystal

Next let us define some of the concepts that come up when talking about crystals. In
crystallography a unit cell is the smallest building block, also called themotif, that when
periodically replicated in space generates the whole crystal. The unit cell itself can
contain several identical pieces, called the asymmetric unit, which can all be mapped
into each other by using symmetry operations, such as rotations and translations.

In 3 dimensions the shape of a unit cell is a general parallelepiped and completely
specified by its 3 lattice vectors a, b, c ∈ R3.

Figure 1.1 |Lattice is defined by the three vectors a, b and c. The unit cell is
depicted in blue. α, β and γ are angles between lattice vectors.
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Infinite Lattice and Infinite Crystal

To talk about crystals we have to define a lattice. A lattice can be thought of as a grid
representing discrete translational symmetry in as many directions as the dimension-
ality of the space. In three dimensions an infinite lattice L(x), x ∈ R3 can be defined
as

L(x) =
∑
n1∈Z

∑
n2∈Z

∑
n3∈Z

δ(x− n1a− n2b− n3c), (1.8)

where δ(x) is the Dirac delta function

δ(x) =

{
1 if x = 0 ,

0 otherwise
and

∫
R3

δ(x) dx = 1 . (1.9)

The Fourier transform of the infinite lattice can be shown to be

L̂(q) =
∑
n1∈Z

∑
n2∈Z

∑
n3∈Z

δ(q − n1a
′ − n2b

′ − n3c
′), (1.10)

where a′, b′ and c′ are the reciprocal lattice vectors. As we can see, the Fourier
transform of a real space lattice is in itself another lattice, a reciprocal lattice.

Let ρ0(x), x ∈ R3 represent the electron density of one unit cell, and ρ̂0(q), q ∈ R3

its Fourier transform. An infinite crystal ρ∞(x) can then be constructed by convolving
the unit cell ρ0 with the infinite lattice L

ρ∞(x) = L(x) ◦ ρ0(x) =

∫
R3

L(y)ρ0(x− y)dy (1.11)

and by the convolution theorem the Fourier transform of ρ∞ is equivalent to the
product of the transforms of ρ0 and L

ρ̂∞ = ρ̂0L̂ . (1.12)

Creating an infinite crystal from a motif is effectively equivalent to sampling the
Fourier transform of the motif at the points corresponding to the reciprocal lattice.
These relations in two dimensions are visualized on Figure 1.2
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Figure 1.2 |A motif convolved with an infinite lattice produces an infinite
crystal. It is equivalent to a multiplication in the reciprocal space. The infinitude
of the crystal is conveyed by making the real images exactly periodic over the image
boundaries.

Finite Lattice and Finite Crystal

In practice we do not have infinite crystals. Especially, when imaging a large crystal at
a magnification where the periodic nature becomes visible, we are limited to capture
only a small square-shaped view of the whole field. In the case of imaging nanocrystals
the situation becomes even more interesting when the actual irregular shape of the
crystal itself enters the equation.

A crystal must therefore be finite and bounded by some shape S ⊂ R3. Let us
define the indicator function of the shape S (Figure 1.3)

χS(x) =

{
1 if x ∈ S ,
0 if x 6∈ S .

(1.13)

The finite lattice is obtained by multiplying the infinite lattice with the shape as
visualized on Figure 1.3.
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Figure 1.3 | Infinite lattice multiplied by a shape produces a finite lattice.
The spots in the Fourier space are no longer crisp but a smeared out version instead.
The smearing is defined by the Fourier transform of the shape.

A finite nanocrystal ρ(x) of shape S is equal to convolving the motif ρ0 with the
finite lattice, and a finite lattice is equal to an infinite lattice times the shape. Thus,

ρ(x) = (χS(x)L(x)) ◦ ρ0(x) (1.14)

and its Fourier transform by the convolution theorem is

ρ̂(q) =
(
χ̂S(q) ◦ L̂(q)

)
ρ̂0(q) . (1.15)

The Fourier transform of the finite lattice does not show crisp diffraction spots
anymore but are instead a smeared out version of the infinite reciprocal lattice.

As a conclusion, we see on Figure 1.4 that the effect of a finite crystal is that
the diffraction spots on the Fourier transform are getting convolved with the shape
function. On top of that, for real images, the edges of the image itself are non-periodic
and this adds one more square-shaped shape transform to the mix which manifests
itself in the Fourier transform as additional spikes aligned with the coordinate axes.
The artifacts produced by the latter shape-function can be alleviated as the shape
of the image is known to be a square. By using various tricks the discontinuities at
the image boundaries can be made softer which greatly reduces their impact. These
techniques are explored in chapter 2.
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Figure 1.4 |Constructing a finite crystal from the motif, infinite lattice and
the shape.

The takeaway message from this section is that the finiteness of the crystal produces
artifacts that can interfere with the lattice detection and calculations in the Fourier
domain.

1.3 Electron Microscopy and Image Formation

1.3.1 Electron optics

In a transmission electron microscope (TEM), a source emits electrons that are acceler-
ated through a high voltage potential (e.g. 300 kV) and condensed onto the specimen
via the condenser lens system. After transmitting through the specimen, the elec-
tron wave is focused by the optical system, consisting of a series of electromagnetic
lenses, onto the image plane, where the detector records the illumination intensity. As
an approximation, it is convenient to consider the electrons leaving the source as a
monochromatic electron plane wave that is traveling parallel to the optical axis.

Since the electrostatic potential of he specimen does not change with time, it is
sufficient to only consider standing wave solution to the Schrödinger equation governing
the electron-specimen interaction [53].

The complex electron wave emerging from the source can be written as

Ψ(r) = A(r)e−iα(r) , (1.16)

where A(r) is the amplitude of the wave at position r and α(r) is the phase.
When passing through the specimen, some of the electrons will be scattered. If the

object is really thin, the scattered beam will experience a phase shift of π/2 radians and
a massive reduction in amplitude, when compared to the unscattered beam. Since the



16 Background

electron beam is coherent, the scattered and unscattered waves, Ψus and Ψsc, interfere.
The total emerging wave is then a sum

Ψ(r) = Ψus(r) + Ψsc(r)

= (1− δ)A(r)e−iα(r) + δA(r)e−i(α(r)+π
2 ) ,

(1.17)

where δ << 1 is the proportion of scattered electrons.

1.3.2 Formation of an Image

On the image plane we record the illumination intensity, which is equal to the wave
function multiplied by its complex conjugate.

I = ΨΨ∗ . (1.18)

In bright field imaging mode of organic specimens, the two main contrast creating
mechanisms are

1. amplitude contrast - arises from including or excluding certain electrons from
the imaging system. Electrons that are scattered at a high angle will be blocked
out by the objective aperture which causes amplitude contrast. The amount of
contrast depends on the density of the specimen, the acceleration voltage of the
microscope and the size of the cut-off aperture. This is the main contrast creating
mechanism for heavy atom staining, but plays smaller role in cryo-EM.

2. phase contrast - arises from electron-specimen interaction where the electron
wave is advanced or delayed with respect to the direct beam. The contrast
depends on the interference between the scattered electrons and the direct un-
scattered beam. This is the main contrast creating mechanism in biological cryo-
cooled vitrified specimens. To image the phase objects we take advantage of the
aberrations of the microscope that add an extra phase shift to the scattered wave.

In an ideal microscope the exit wave just behind the specimen plane is identical to
that on the image plane, therefore what we record on the detector is

I(r) = Ψ(r)Ψ∗(r) = A2(r)
(
(1− δ)2 + δ2

)
≈ A2(r) . (1.19)

We see that imaging exactly at focus gives no contrast as the phase information is lost
and we record only the variations in the amplitude. Imaging at a defocus makes the
electron wave go through another frequency dependent phase shift that converts parts
of the phase variation into amplitude variation.

1.3.3 The Specimen Transfer Function

To see how the phase contrast is created let us start from the beginning. Let us denote
the 3d electrostatic potential of our specimen as

ρ(x, y, z) (1.20)
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and the projected potential in z-direction as

ρt(x, y) =

∫
ρ(x, y, z) dz , (1.21)

where t in ρt(x, y) stands for thickness.
It can be shown that the specimen caused phase shift dα depends only on the

potential that the electron “sees” when it is transmitting through the specimen, i.e.
only on the thickness of the specimen ρt(x, y) at (x, y) [59].

dα =
π

λE
ρt(x, y) = σρt(x, y) , (1.22)

where λ is the relativistic wave length of the electron and E its energy. σ can be
thought of as an interaction constant.

The specimen can be modeled as a transfer function that modifies the incoming
planar electron wave. Let us take the amplitude of the incoming wave to be equal to
1. The exit wave function right after the specimen is then

Ψ(x, y) = e−iσρt(x,y)−µ(x,y) , (1.23)

where µ is an absorption factor.
By assumption the specimen is thin, which implies that ρt(x, y) << 1, so we can use

the weak phase object approximation. By expanding the exponential into Taylor series,
neglecting the absorption µ and the higher order terms, we arrive at the following
simplified expression

Ψ(x, y) = 1− iσρt(x, y) . (1.24)

1.3.4 The Contrast Transfer Function

Going through the optical system of the TEM, the wave function will be modified by
the contrast transfer function (CTF). On the back focal plane of the objective lens,
the wave function is equal to the Fourier transform of Ψ times the aberration function
of the lens, usually expressed as a complex function eiχ(q)

ΨF (q) = F [Ψ(q)]eiχ(q) . (1.25)

On the image plane the wave will be an inverse Fourier transform of ΨF

ΨI(x) = F−1[ΨF ](x) = Ψ(x) ◦ F−1[eiχ(q)] = Ψ(x) ◦ h(x) , (1.26)

that says that on the image plane the wave function is convolved with the point spread
function which is an inverse Fourier transform of the CTF, denoted by h(x). Since h is
a complex function we can decompose it to real and imaginary parts as h = hRe+ ihIm.
Multiplying the wave by its complex conjugate and neglecting the terms with σ2, the
illumination intensity can be worked out to be the following,

I(x) = ΨI(x)Ψ∗I(x)

= 1 + 2σhIm(x) .
(1.27)
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So we see that in the weak phase object approximation only the imaginary part of the
CTF function eiχ(q) contributes to the illumination intensity, that is sinχ(q) by Euler’s
equation.

It can be shown that the CTF as a function of spatial frequency q can be written
as

sinχ(q) = sin
(
π∆fλq2 +

π

2
Csλ

3q4
)
, (1.28)

where ∆f is the defocus, λ relativistic wave length of the electrons, and Cs the spherical
aberration constant [60].

1.3.5 Conclusion of the Image Formation

So, to conclude, going through the optical system of the electron microscope, the
planar electron wave is first modified by the transfer function of the specimen and
then by the transfer function of the objective lens. On top of the phase-modifying
aberrations, various other parameters also contribute to the final shape of the CTF,
such as chromatic aberration and energy spread to name a few, whose effect can be
taken into account as an envelope that dampens the high resolution details.

Spatial frequencies, where the CTF is 0, are completely missing from the recorded
image, and the frequencies, where the CTF is negative, are represented in the image
with inverted contrast. The fact that the CTF is an oscillating function repeatedly
passing through 0, makes the deconvolution process challenging. But without decon-
volution we would have trouble interpreting the high resolution details as the contrast
would be garbled.

1.4 Tomographic Reconstruction

1.4.1 Ill-posed Problems

Going from a given 3d object to 2d projected images is a forward problem, where
the formation of the images is modeled by a forward model and is easy to compute.
Tomographic reconstruction of the 3d object from the 2d projections, on the other
hand, is an inverse problem, that is challenging to solve and usually ill-posed.

Problems are ill-posed (in the Hadamard sense) if at least one of the following is
true

• The problem does not have a solution at all.

• The problem does not have a unique solution.

• The solution does not depend continuously on data - small perturbations in the
data can lead to however large changes in the solution.

In electron tomography the data is commonly incomplete and very noisy, due to the
limited electron dose to avoid radiation damage. This leads to an inconsistent problem
where the 3d structure is not fully determined - there exists and infinite number of
solutions that all fit the observed data. With the help of regularization we can solve a
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nearby well-posed problem instead by using some prior information about the specimen
and hope that this solution is not far from the truth. Some reasonable assumptions
about the specimen that can be used as prior information are that the reconstructed
density is positive and relatively smooth.

1.4.2 Data Acquisition

Let us denote our specimen as a 3d function ρ : R3 → R. ρ can be thought of as
the electrostatic potential of the biological matter encapsulated in vitreous ice. In the
following, for simplicity, we will write the equations for a 2d case. Generalization to
three dimensions is straightforward.

The schematic of the data acquisition geometry in tomography is depicted in Fig-
ure 1.5 Let us denote the angle of the projection by ϕ ∈ [−π/2, π/2]. A unit vector in
the direction of the projection is then (− sinϕ, cosϕ) and a unit vector perpendicular
to the projection direction is (cosϕ, sinϕ) For a tilt angle ϕ a straight line, also called
a ray, going through a point (r cosϕ, r sinϕ), r ∈ R, can be parametrized by a variable
s ∈ R as

lϕ,r = {(r cosϕ− s sinϕ, r sinϕ+ s cosϕ) : s ∈ R} . (1.29)

The parallel ray projection Pϕ(r) is then integral over the line

Pϕ(r) =

∫ ∞
−∞

ρ(r cosϕ− s sinϕ, r sinϕ+ s cosϕ)ds (1.30)

In electron tomography we are generally restricted to a limited range of angles at
which the data can be collected. Several different schemes have been devised to collect
data from various directions. The most used ones are perhaps

• single-axis tilt - the specimen is tilted only around a single axis,

• dual-axis tilt - the specimen is tilted first around one axis, then returned to its
original position, and then tilted around a second axis,

• conical tilt - the specimen is tilted by changing the angles around two axes
simultaneously, so that the normal vector to the specimen plane draws a circle
on the unit sphere.

Single-axis scheme is possibly the most common one in cryo-ET, so let us from now on
focus only on that. In general we cannot cover the whole angular wedge from −90◦ to
90◦ due to restriction set by the electron microscope hardware. The range of possible
tilt angles are generally between −60◦ and 60◦, sometimes even higher such as −70◦

and 70◦, but in this work (described in Methods section in chapter 4) the tilt range
was from −67◦ to 67◦.
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Figure 1.5 |Data acquisition geometry in 2d. An object in 2d is projected via
parallel ray transform to 1d at an angle ϕ along the rays lϕ,r(s), r ∈ R.

1.4.3 Generalized Ray Transform

When illuminating a large field of view, using a straight line approximation for the
electron trajectories breaks down, and the parallel ray transform must be replaced by
a generalized ray transform that integrates over curved electron paths [61]. In [53]
it is claimed that the generalized ray transform becomes important when the field of
view extends more than 8 µm. In this thesis the TEM imaging was done at a nominal
magnification of 37k where the whole field of view captured by the detector is about
4096 ∗ 0.226 nm = 926.1 nm. The extracts from the tilt series that were actually used
for 3d reconstructions were less than 1400 ∗ 0.226 nm = 316.5 nm, which is far below
8 µm. In the current case then approximating the rays with straight lines should not
pose a significant source of error, at least not before other more serious sources have
been eliminated.

1.4.4 Projection-Slice Theorem

The back-bone of the analytical tomographic reconstruction methods is the projection-
slice theorem, that says that a Fourier transform of a parallel projection of a 3d object
is equal to a 2d slice in the Fourier transform of the 3d object, that is perpendicular
to the direction of the projection and passing through the origin.
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In 2d the projection-slice theorem then states the following

P̂ϕ(r′) = ρ̂(r′ cosϕ, r′ sinϕ) , (1.31)

where r′ is a spatial frequency.

1.4.5 Reconstruction methods

The reconstruction methods in electron tomography can be largely divided into two
classes [62]

• Algebraic methods - arise naturally from the discretization of the ray transform
integral (1.30), which leads to a linear equation system Ax = y, where A is the
matrix describing the imaging device, x is the object and y the projection data.
The reconstruction is obtained by solving the equation system for x.

• Analytical methods - based on the projection-slice theorem. The reciprocal
space is filled with the Fourier transforms of the projections and the reconstruc-
tion is obtained via 3d inverse Fourier transform.

1.4.6 Filtered Back-projection

The projection-slice theorem gives a direct approach to reconstruction - fill the Fourier
space with the Fourier transformed projections and retrieve the reconstruction by in-
verse Fourier transform. In practice there is a problem due to uneven sampling of the
Fourier space. Therefore certain adjustments need to be made.

3d reconstruction from single-axis tilt series can be carried out as a series of 2d
reconstructions, slice-by-slice, where each slice is orthogonal to the tilt axis. In the
following we will derive an expression that relates the projected data to the original
specimen ρ.

From the definition of the Fourier transform the following is trivially true

ρ(x, y) =

∫ ∞
−∞

∫ ∞
−∞

ρ̂(u, v)e−i2π(ux+vy)dudv . (1.32)

The variables u and v are on a regular Cartesian grid. We would like to perform
the integration over polar coordinates and that implies a change of variables, replacing
u and v with functions of r and ϕ. In polar coordinates u and v can be expressed as

u = r cosϕ and v = r sinϕ . (1.33)

The differentials du and dv change then accordingly to

dudv = |r|drdϕ, r ∈ R . (1.34)

Substituting the changes into equation 1.32 yields

ρ(x, y) =

∫ π

0

∫ ∞
−∞

ρ̂(r cosϕ, r sinϕ)e−i2πr(x cos(ϕ)+y sin(ϕ))|r|drdϕ . (1.35)
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According to projection-slice theorem the term ρ̂(r cosϕ, r sinϕ) is the Fourier
transform of the projection at angle ϕ. So we can write

ρ(x, y) =

∫ π

0

∫ ∞
−∞
P̂ϕ(r)|r|e−i2πr(x cos(ϕ)+y sin(ϕ))drdϕ . (1.36)

Now it is apparent that the original function ρ(x, y) can be retrieved from the
projections when their Fourier transforms are weighted by a factor |r|. This r-weighting
accounts for the fact that during data acquisition the low resolution components are
more finely sampled in the Fourier space than the high resolution components, and thus
should be down-weighted. This method is called the filtered back-projection (FBP) or
also the weighted back-projection.

1.4.7 Iterative Methods

The working principle of all iterative reconstruction methods in electron tomography
is to generate an iterative sequence that converges to the least squares solution of the
inverse problem [53]. Different schemes for splitting the large reconstruction problem
into smaller sub-problems lead to different versions of iterative reconstruction methods,
such as algebraic reconstruction technique (ART), which is a special case of a more
general Kaczmarz’s method, simultaneous iterative reconstruction technique (SIRT) and
simultaneous algebraic reconstruction technique (SART).

In iterative methods the number of iterations becomes a regularization parameter
as the initial iterates recover the low resolution details [53]. Assuming that noise
in the data affects only the high resolution details, early stopping then avoids the
reconstruction getting weakened by noise.

1.4.8 COMET

A particular iterative regularization method for 3d tomographic reconstruction, that
has been also used in this thesis, is COnstrained Maximum Entropy Tomography
(COMET) [50], where entropy is used as a regularizer that penalizes complexity of
the solution.

Minimizing least squares needs little justification, whereas the question of why
entropy maximization might be a good idea usually needs more motivation. Starting
from certain axioms that a reconstruction method should satisfy, such as consistency,
distinctness and continuity, it can been shown that the entropy regularization is the
only method consistent with the axioms when the signal to be reconstructed is positive
and real valued [53].

In COMET the objective is to find a solution that maximizes the entropy relative
to a prior, at the same time aiming to improve the least squares fit to the observed
data. The entropy functional to be maximized is

S(ρ) = −
∫
ρ(x) ln

ρ(x)

m(x)
dx , x ∈ R3 (1.37)

where ρ(x) is the current density estimation and m(x) a prior, generally obtained as
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a low-pass filtered FBP reconstruction, that is normalized to integral 1 and describes
the prior belief about the electrostatic potential.

The iterations proceed by successively updating the current solution as a linear
combination of the changes that the goodness of fit measure and the entropy measure
suggest

ρnew(x) = ρold(x) + αu(x) + βv(x) , (1.38)

where α and β are coefficients determining the step size in the directions given by the
goodness of fit gradient u and the entropy gradient v. The result is theoretically an
unbiased map that only includes features that are backed up by the data.

1.4.9 Missing Wedge

The limited angular coverage of the projections makes a gap in our knowledge about
certain spatial frequencies. After filling in the 3d Fourier space with the Fourier trans-
forms of the projections a characteristic wedge-shaped gap forms that represents the
lack of frequency information mainly in the z-direction. The implication of this lack of
information is that the reconstructions have anisotropic resolution where the resolution
in z-direction can be much lower than in x and y.

In the general case the missing wedge cannot be filled because the frequency infor-
mation is simply not present in the data. But when certain things are assumed about
the specimen or when many identical but differently oriented particles are composed
together, then the effects of the missing wedge can be alleviated or practically removed.
For instance, when the object is assumed to consist of simple shapes, such as an atomic
resolution image where the atoms are approximated by spheres, then this prior infor-
mation can fill the missing wedge. Certain graph-based methods have demonstrated
wedge-filling capabilities by locating similar patches in the image. Another example is
sub-tomogram averaging and single particle reconstruction where the missing wedge is
filled in by aligning and averaging many particles that are lying in random orientations
covering all angles. In the current work, the usage of symmetries partly evens out the
resolution in different directions (see section 4.4.5).





Chapter 2

2d FFT with Edge Artifact Removal

This chapter describes the work done by M. Toots in collaboration with F. Mahmood.
Though the core of the project is outside the scope of this thesis, the application and
the algorithmic development done by M. Toots is relevant to electron tomography. For
more details the interested reader is kindly referred to [63].

2.1 Introduction

Fast Fourier transform (FFT) is one of the most widely used techniques in image
processing, allowing for transforming the image from a physical space representation
to a spatial frequency domain. As there is no inherent reason why images in general
should be periodic, the sharp discontinuities at the opposing edges of an image cause
intense cross-shaped streaking artifacts in the transform. This can become problematic
and lead to errors when the transforms are used for further analysis or processing.

Several methods exist that try to alleviate the edge artifacts, such as mirroring
the original image in each direction or tapering off the edges with a suitable window
function. The former leads to a 4-fold (2d case) or an 8-fold (3d case) increase in the
image size, which could become prohibitively large, and the latter involves altering the
pixels and removing image information.

A more analytical approach, called Periodic+Smooth (P+S) decomposition, pro-
posed in [64], attempts to decompose the original image into two - a periodic compo-
nent, that captures the high-frequency details and is continuous over the edges, and
a slowly varying smooth component, that recreates the background level and the edge
discontinuities.

Though highly optimized, the computational complexity O(n2 log n) of the 2d FFT
can still become a computational burden in applications that require close to real-time
operations. The tendency today towards higher resolution images has only increased
the amount of data transport. Adding the need for simultaneous handling of the
edge artifacts leads to a situation where the computational requirements and memory
bandwidth will become a bottle neck for conventional serial processing and that might
not be sufficient for high throughput applications, such as machine vision and control.

A suitable target for tackling these challenges is reconfigurable Field Programmable
Gate Array (FPGA) based technology. FPGAs are composed of parallel programmable
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logic blocks connected by programmable routing switches (interconnects) that can im-
plement arbitrary logic functions. FPGAs are inherently parallel, retaining the flex-
ibility of software while gaining the speed of hardware. Compared to software, the
downside of designing an algorithm for FPGA is that it is difficult, time consuming
and hard to debug, but in time-critical applications the upsides far outweigh the down-
sides.

This chapter gives an overview of a part of the work that is fully elaborated in [63],
as most of it is outside the scope of the thesis. In the paper we present a novel FPGA-
based solution for 2d FFT calculation with simultaneous P+S edge-artifact removal
for usage in high-performance applications. Since for the algorithm two 2d FFTs have
to be calculated simultaneously, the external memory addressing can become a bottle
neck.

In the following section we describe the P+S edge-artifact removal algorithm itself
and a specific optimization that enables for the hardware architecture with reduced
external memory access. The reduction is achieved by decreasing the number of neces-
sary 1d FFT invocations. We also design a memory mapping scheme that can reduce
row activation overhead while accessing columns of data from the external memory.
This second optimization can be read about in [63]. The results presented here build
on our previous work published in [65].

2.2 Credits and Contributions

Märt Toots developed the optimization of the P+S edge artifact removal algorithm that
facilitates reduced external memory access for 1d FFTs. Faisal Mahmood developed
and implemented an FPGA-based design for the optimized P+S algorithm and for the
tile-hopping memory optimization for efficient data access from the external memory.

2.3 Periodic + Smooth decomposition

In this section we will describe the theory behind P+S decomposition edge artifact
removal algorithm and demonstrate its effect on a non-periodic electron micrograph. A
more theoretical mathematical treatment including proofs can be found in the original
publication [64].

Let us have a discrete n by m gray-scale image I on a finite domain

Ω = {0, 1, . . . , n− 1} × {0, 1, . . . ,m− 1} . (2.1)

The discrete Fourier transform of I is defined as

Î(s, t) = F(I)(s, t) =
∑

(i,j)∈Ω

I(i, j) exp

(
−ı2π

(
si

n
+
tj

m

))
(2.2)

P+S decomposition attempts to separate the original image I into two components
- first, a periodic component P , that captures the high-resolution details and is contin-
uous over the edges, and second, a slowly varying smooth component S, that recreates
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the background level and the edge discontinuities, so that

I = P + S . (2.3)

The smooth component can be found by solving a Poisson equation

∇2S = B . (2.4)

This equation has a slowly varying unique solution S that can be found using Fourier
transform (proof in [64]). Here B represents the boundary discontinuities that occur
when crossing the edges of the image and is calculated as shown below. LetR represent
the boundary differences when transitioning the edges of I row-wise and C represent
the column-wise differences.

R(i, j) =

{
I(n− 1− i, j)− I(i, j), i = 0 or i = n− 1

0, otherwise

C(i, j) =

{
I(i,m− 1− j)− I(i, j), j = 0 or j = m− 1

0, otherwise

(2.5)

The boundary image B is then defined as

B = R+C . (2.6)

It turns out that the Fourier transform of the solution to the Eq. 2.4 can be calculated
by the following formula

Ŝ(s, t) =


B̂(s, t)

2 cos

(
2πs

n

)
+ 2 cos

(
2πt

m

)
− 4

, ∀(s, t) ∈ Ω\{(0, 0)}

0 (s, t) = (0, 0) .

(2.7)

Setting the 0th order term of Ŝ equal to 0 ensures that the smooth component sums
to 0. The Fourier transform of the periodic component is therefore

P̂ = Î − Ŝ . (2.8)

Figure 2.1 gives a visual interpretation to P+S decomposition. A crop of an image
from a tilt-series of a lysozyme nanocrystal is shown on Figure 2.1a. The corresponding
periodic component P can be seen on Figure 2.1b and the smooth component S on
Figure 2.1c. The amplitudes of the FFTs of the triad are presented on Figure 2.1d-f.
It is notable that the periodic component has no visual differences from the original
image other than the background level and barely noticeable attenuation of the edge
pixels to make the edges periodic. All of the high resolution information is intact and
the Fourier transform shows diffraction spots without the obstructing edge artifacts.

On Figure 2.2 the original image I and the periodic component P have been repli-
cated twice in two directions to further illustrate the effect of making the image peri-
odic. While the original has sharp discontinuities at the edges, the periodic component
transitions smoothly.
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Figure 2.1 |FFT and P+S FFT of a non-periodic electron microscopy image.
a - Electron microscopy image of a lysozyme nanocrystal, with a linear background
level gradient (artificially induced). b - Smooth component of a obtained by P+S
decomposition. c - Periodic component of a obtained by P+S decomposition. d-f -
FFT amplitudes of a-c, respectively. The Fourier transforms have 0-order coefficient
blanked and the intensity is on the square root scale to better bring out the important
details in the visualization.
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Figure 2.2 |Original and periodic version of the same image replicated to
illustrate the periodicity of the periodic component. a - Original image from
Figure 2.1a. b - Periodic component from Figure 2.1c.

2.4 Optimized Periodic + Smooth Decomposition

In this section we develop an optimization to computing the 2d FFT of the smooth
component (Eq. 2.7). The result of the optimization is a reduced number of 1d FFT
invocations necessary for calculating the 2d FFT ofB by taking advantage of its simple
structure.

Due to its decomposability a 2d FFT can be computed as a series of 1d FFTs,
transforming first every row of an image followed by transforming every column. 2d
FFT of I is equivalent to a matrix multiplication WnIWm, where

Wn =


1 1 1 . . . 1
1 w w2 . . . wn−1

1 w2 w4 . . . w2(n−1)

. . . . . . . . . . . . . . .
1 wn−2 w2(n−2) . . . w(n−2)(n−1)

1 wn−1 w2(n−1) . . . w(n−1)(n−1)

 (2.9)

and

wk = exp

(
−ι2π

n

)k
= exp

(
−ι2πk

n

)
. (2.10)

Since wk has period n, meaning that wk = wk+ln , ∀k, l ∈ N, the expression for Wn can
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be simplified,

Wn =


1 1 1 . . . 1 1
1 w w2 . . . wn−2 wn−1

1 w2 w4 . . . wn−4 wn−2

. . . . . . . . . . . . . . . . . .
1 wn−2 wn−4 . . . w4 w2

1 wn−1 wn−2 . . . w2 w

 . (2.11)

The structure of the border imageB is simple with nonzero values only in the edges

B = C +R =


b11 b12 b13 . . . b1,m−1 b1m

b21 0 0 . . . 0 −b21

. . . . . . . . . . . . . . . . . .
bn−1,1 0 0 . . . 0 −bn−1,1

bn1 −b12 −b13 . . . −b1,m−1 −bnm

 . (2.12)

In total, B has n + m − 1 unique elements, with the following relations between
the corners

b11 = r11 + c11 ,

b1m = r1m − c11 ,

bn1 = − r11 + cn1 ,

bnm = − r1m − cn1 = −b11 − b1m − bn1 .

(2.13)

In computing the 2d FFT of B one normally proceeds by first running 1d FFTs
column-by-column and then 1d FFT’s row-by-row (or vice versa). A 1d FFT of a
column vector v with length n is W v, where W is given in eq. (2.11). The column-
wise FFT of the matrix B is then

B̂ = WB. (2.14)

It turns out that the structure of B̂ is also relatively simple.
Let us have a closer look on the first column, denoted by B·1. The 1d FFT of this

vector is

B̂·1 = WB·1 =


1 1 1 . . . 1
1 w w2 . . . wn−1

1 w2 w4 . . . w2(n−1)

. . . . . . . . . . . . . . .
1 wn−2 w2(n−2) . . . w(n−2)(n−1)

1 wn−1 w2(n−1) . . . w(n−1)(n−1)




b11

b21

b31

. . .
bn−1,1

bn1



=



∑n
i=1 bi1∑n

i=1 bi1w
i−1∑n

i=1 bi1w
2(i−1)

. . .∑n
i=1 bi1w

(n−2)(i−1)∑n
i=1 bi1w

(n−1)(i−1)



(2.15)
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The 1d FFT of column j ∈ {2, 3, . . . , n− 1} is

B̂·j = WB·j =


1 1 1 . . . 1
1 w w2 . . . wn−1

1 w2 w4 . . . w2(n−1)

. . . . . . . . . . . . . . .
1 wn−2 w2(n−2) . . . w(n−2)(n−1)

1 wn−1 w2(n−1) . . . w(n−1)(n−1)




b1j

0
0
. . .
0
−b1j



=


0

b1j − b1jw
n−1

b1j − b1jw
2(n−1)

. . .
b1j − b1jw

(n−2)(n−1)

b1j − b1jw
(n−1)(n−1)

 =


0

b1j(1− wn−1)
b1j(1− w2(n−1))

. . .
b1j(1− w(n−2)(n−1))
b1j(1− w(n−1)(n−1))



=b1j


0

1− wn−1

1− w2(n−1)

. . .
1− w(n−2)(n−1)

1− w(n−1)(n−1)

 = b1j


0

1− wn−1

1− wn−2

. . .
1− w2

1− w

 = b1jν ,

(2.16)

where

ν =


0

1− wn−1

1− wn−2

. . .
1− w2

1− w

 (2.17)
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The 1D FFT of the last column B·m is

B̂·m = WB·m =


1 1 1 . . . 1
1 w w2 . . . wn−1

1 w2 w4 . . . w2(n−1)

. . . . . . . . . . . . . . .
1 wn−2 w2(n−2) . . . w(n−2)(n−1)

1 wn−1 w2(n−1) . . . w(n−1)(n−1)




b1m

−b21

−b31

. . .
−bn−1,1

−b11 − bn1 − b1m



=



b1m −
∑n−1

i=1 bi1 − b11 − bn1 − b1m

b1m −
∑n−1

i=1 bi1w
i−1 − (b11 − bn1 − b1m)wn−1

b1m −
∑n−1

i=1 bi1w
2(i−1) − (b11 − bn1 − b1m)w2(n−1)

. . .

b1m −
∑n−1

i=1 bi1w
(n−2)(i−1) − (b11 − bn1 − b1m)w(n−2)(n−1)

b1m −
∑n−1

i=1 bi1w
(n−1)(i−1) − (b11 − bn1 − b1m)w(n−1)(n−1)



=


−
∑n

i=1 bi1
−
∑n

i=1 bi1w
i−1 + b11 − b11w

n−1 + b1m − b1mw
n−1

−
∑n

i=1 bi1w
2(i−1) + b11 − b11w

2(n−1) + b1m − b1mw
2(n−1)

. . .
−
∑n

i=1 bi1w
(n−2)(i−1) + b11 − b11w

(n−2)(n−1) + b1m − b1mw
(n−2)(n−1)

−
∑n

i=1 bi1w
(n−1)(i−1) + b11 − b11w

(n−1)(n−1) + b1m − b1mw
(n−1)(n−1)



=


−
∑n

i=1 bi1
−
∑n

i=1 bi1w
i−1 + (b11 + b1m)(1− wn−1)

−
∑n

i=1 bi1w
2(i−1) + (b11 + b1m)(1− w2(n−1))

. . .
−
∑n

i=1 bi1w
(n−2)(i−1) + (b11 + b1m)(1− w(n−2)(n−1))

−
∑n

i=1 bi1w
(n−1)(i−1) + (b11 + b1m)(1− w(n−1)(n−1))


=− B̂·1 + (b11 + b1m)ν .

(2.18)
So, the column-wise FFT of the matrix B is

B̂ =
(
B̂·1 b12ν b13ν . . . b1,n−1ν −B̂·1 + (b11 + b1m)ν

)
. (2.19)

To conclude, to calculate column-by-column 1d FFTs of the matrix B we have to
only compute the FFT of the first column and then use the appropriately scaled vector
ν to get the rest of the FFTs of the rest of the columns. To complete the whole 2d FFT
of B the row-by-row 1d FFTs are then computed in a normal way. The implication
of this optimization is that it can reduce significantly the number of 1d FFTs, thereby
reducing the amount of external input/output.

2.5 Conclusion
Most implementations of 2d FFT rely on the row and column decomposition (RCD)
of the algorithm, where the 2d FFT operation is performed by repeated invocations
of row-by-row 1d FFTs followed by column-by-column invocations. We developed an
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FPGA-based design for 2d FFT with simultaneous edge artifact removal using P+S
decomposition, and optimized it to reduce the number of needed 1d FFTs, thereby
reducing external memory access by 24%.

The optimization leads to a reduction in resources, computational time and external
memory access. Before the optimization, the bottle-neck of the system was in the edge
artifact removal part, whereas after the optimization, the bottle-neck has moved back
to the calculation of the FFT itself. P+S could be further optimized, which could
probably give a further reduction in the resources, but as the bottle-neck is still the
FFT, it would not make the whole pipeline any faster.

The standard way of storing an image in DRAM is in a row-major order, so the
row-wise access is fast. Reading a single column, however, is inefficient, since it needs
one element from each row requiring each row to be first read into the row buffer. This
is the major bottle neck for high-throughput 2d FFTs. To address this inefficiency we
developed a second optimization that facilitates an efficient external memory access
during column-wise data reads.

The essence of the proposed tile-hopping address mapping optimization lies in the
way the results of row-wise 1d FFTs are written to DRAM. Instead of writing the results
of a row-by-row 1d FFT in row-major order we remap the results in a tiled pattern,
so that when later a column has to be retrieved, several elements of that column can
be accessed by a single DRAM row access. Since the details of this design are outside
the scope of this thesis, the interested reader is kindly referred to [63] (submitted) for
further details. The memory mapping scheme is completely general, can be used for
various applications and greatly reduces the run-time of 2d FFT even together with
the optimized P+S edge artifact removal.

For test application we used the created 2d FFT FPGA module as an accelerator for
calculating a 3d filtered back-projection (FBP) based on the projection-slice theorem.
All of the 2d FFT calculations were offloaded on the FPGA, the rest was computed
on a host PC. The results of reconstructing a 3d Shepp-Logan phantom of various size
from 2d projections are shown on Table 2.1.

We can see that for small volumes the improvements are marginal as the price
paid for losing time on data transport from the host PC to FPGA is not worth the
computational speed gained from FPGA. But as the size of the problem grows, having
2d FFT implemented on FPGA becomes more and more attractive. Ultimately, having
also the other components implemented on FPGA would give significant increases in
speed.
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3d Density CPU (i7) FPGA + Host PC (i7)

seconds seconds

128× 128× 128 21.3 19.5 (92%)
256× 256× 256 47.5 42.4 (89%)
512× 512× 512 94.8 81.3 (86%)
1024× 1024× 1024 322.3 275.3 (85%)
2048× 2048× 2048 1687.7 1364.4 (81%)
4096× 4096× 4096 16463.1 12599.4 (77%)

Table 2.1 |Comparison of filtered back-projection run time. Credits: Faisal Mahmood



Chapter 3

Extended Field Iterative
Reconstruction Technique

3.1 Introduction

This chapter presents a general procedure called extended field (EF) reconstruction
that can be used to enhance the reconstruction quality of many of the iterative recon-
struction algorithms.

The basic idea behind extended field is that by reconstructing a volume that is
larger than the initial region of interest (ROI), there is a chance that the measurement
noise, which is not geometrically constrained, will be spread out over a larger volume,
whereas the geometrically constrained signal will remain in the ROI.

The approach was originally explored in the 70s by Crowther and Klug [66] and was
shown to improve the reconstruction of a 2d object from 1d projections. They used
the extended field with ART and showed empirically how extending the reconstruction
space can lead to faster convergence and lower noise in the ROI as some of the noise
was observed to have crept out to the extended region.

We took this idea further and carried out a comprehensive simulation study to in-
vestigate the effects of extending the reconstruction field in 2d tomographic setting. We
experimented with various levels on noise in the data, various types of phantoms and
with many different iterative reconstruction methods. Simulations, using reconstruc-
tion methods with regularization capability, such as algebraic reconstruction technique
(ART), simultaneous iterative reconstruction technique (SIRT), Tikhonov regulariza-
tion and maximum entropy iterative reconstruction technique (COMET), show the
effectiveness of this approach and that it significantly improves the accuracy of the
reconstruction.

We also provide a heuristic model to the mechanics of EF reconstruction and derive
some theoretical results for a minimalistic case when reconstructing a single pixel using
Tikhonov regularization. Developing a rigorous theoretical treatment of the working
principles of EF is left for the future, but simulations on 2d phantoms as well as on 3d
electron tomography data clearly demonstrate its effectiveness in decreasing the noise
in the reconstructions.

The core of the method has been published in [67] and a simulation study investigat-
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ing the effectiveness of EF in conjunction with many different iterative regularization
schemes has been submitted for publishing. In this thesis, the author will present
only the main concepts and results of the simulation study, as this was work mostly
done by Faisal Mahmood, and provide an analytical treatment for the simplest possi-
ble reconstruction scenario - reconstructing a single pixel from two noisy projections
(Figure 3.3). For a whole story the interested reader is kindly referred to the articles.

3.2 Credits and Contributions

Märt Toots developed scripts for automated EF-reconstruction for electron tomogra-
phy, wrote the section about single pixel reconstruction, and participated in discussions.
Faisal Mahmood did the simulations with 2d phantoms.

3.3 Background

In a practical tomographic setting both the projections and the image area/volume to
be reconstructed have to be discretized to pixels/voxels. By discretizing the parallel
ray projection the imaging can be mathematically described as the following linear
equation system

Ax = b , (3.1)

whereA ∈ Rm×n is the matrix representing the imaging device, x ∈ Rn is the vectorized
form of an image to be reconstructed, and b ∈ Rm is the vectorized form of the collected
data, i.e. the projections.

Every row of A corresponds to a single ray going through the density being imaged.
The values in A could be interpreted as the attenuation coefficients of the density at
the given pixels of the object. Since each ray only interacts with a small number of
pixels, the matrix A is usually highly sparse.

The system cannot generally be solved directly via matrix inversion, asA is singular
or poorly conditioned. Instead some iterative scheme is employed that starts from an
initial guess and updates the solution on every iteration until some stopping criteria is
met.

In an imperfect world, however, a measurement is always accompanied by noise
from various sources, and some of it arises independently from the geometric constraints
associated with the signal. The measurement vector b then becomes equal to b∗ + ε,
where b∗ is the true value, which we do not know, and ε stands for the noise. Having
noise in the system makes the linear equations inconsistent, so we set to solve it in the
least square sense instead.

x∗ = argmin
x
||Ax− b||22 (3.2)

Ill-posed inverse problems are generally unstable - small perturbations in the data
lead to large perturbations in the solution [68]. For that reason regularization methods
are preferred, that inject some prior knowledge into the system in form of a regularizer.
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One widely known regularization method is Tikhonov regularization, where the
error function to be minimized is

||Ax− b||22 + λ||x||22 . (3.3)

The prior knowledge in this case is that the solution must have a “reasonable”
L2 norm. The term ||x||22 keeps the solution from diverging and suppresses large co-
efficients in x. The parameter λ ∈ R+ controls the balance between the fit to the
projections and the smoothness of the solution. For λ = 0 we are back at the orig-
inal non-regularized problem where we only try to maximize the fit to the collected
data and therefore also to the noise. As λ gets larger the more the goodness of fit
term is down-weighted and the more emphasis is put on having a regular solution with
small values in x. Tikhonov regularization generally leads to smoother solutions and
responds less to perturbations in the data.

3.4 Results

3.4.1 Extended Field

In the extended field paradigm we increase the dimensionality of the linear equation
system A, add new extended variables to x and pad the projections with 0-s, causing
multiple 0-s to appear then at the respective positions in b. The scheme of extending
the field (for the simulation purposes) is illustrated in Figure 3.1.

The padding step might seem trivial at first, but the effect is that it causes the
effective reconstructed area to extend, and the 0-s become constraints for the extended
region to sum up to 0, so they would not diverge too far. Simulations showed that
the profile of the added noise in the virtual projection creation process (Figure 3.1
Step 2) matched well with the profile of the noise that crept out to the extended
region in respective directions (in the submitted article Figure 10), thereby assuring
the sensibility of the EF reconstruction.
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Step 1: Projections from Phantom (NxM) Using 
Radon Transform.

Step 2: Build a Sinogram (S) and 
Add Noise.

Step 3: Extend the Sinogram by padding 
zeros to each projection.

Step 4: Reconstruction using regularizing 
iterative image reconstruction methods using 

FBP as Starting Point. 
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Step 5: Extract the ROI and discard the 
extended region. 

Step 6: Comparison of the extracted ROI�
with the original phantom.
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Figure 3.1 |The flow diagram of the extended field process used for the
simulations. A 2d phantom is Radon transformed (Step 1) resulting in a sinogram
that we impair with noise (Step 2). To create the extension of the field, the sinogram
is padded with 0-s by adding trivial rows of only 0-s to the beginning of S and to the
end, thereby increasing the number of rows (Step 3). After 0-padding the extended
phantom is reconstructed (Step 4), the ROI extracted (Step 5), and finally the error
with the original phantom computed (Step 6). Image credit: Faisal Mahmood.
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Figure 3.2 shows some of the results of the simulations with two different phantoms,
binary and Shepp-Logan, and 3 different methods, FBP, Tikhonov regularization and
extended Tikhonov regularization. The EF reconstruction gives clearly the best results
with the smallest error for both of the phantoms. Also, a line profile through the
reconstruction shows how the extended field creates better fitting result.

Binary (32 x 32)�

Filtered BP
         Error = 2.46         Error = 3.21

        Error = 4.78           Error = 4.21

Ext. TikhonovTikhonovPhantom

FBP Error = 6.53

Shepp-Logan (64 x 64)� FBP Error = 6.93
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Figure 3.2 |Extend Field reconstruction results on simulations using
Tikhonov regularization. The phantoms to be reconstructed are the binary phan-
tom (first row) and the Shepp-Logan phantom. The relative magnitudes of added
measurement error are 0.05 (first row) and 0.1(second row). The reconstruction er-
ror achieved with regularization is less than with filtered back-projection. Extended
field Tikhonov regularization achieves even smaller error. The intensity profiles show
that the extended Tikhonov performs the best and has higher regularization capability.
Image credit: Faisal Mahmood.

3.4.2 Single Pixel Reconstruction

It is difficult to explain the effects of the extended field theoretically, as closed form
solutions to the corresponding regularization problems, as far as we can derive, get
quickly unwieldy beyond the most trivial cases. In the following we will attempt to
solve analytically what is probably the simplest conceivable tomographic reconstruction
problem, far from the complexity of a realistic tomographic problem, but mathemati-
cally tractable to provide insight into the extended field process.

Consider a tomographic reconstruction problem with the geometry given in Fig-
ure 3.3. Let us have a single pixel with density D ∈ R+, and two projections - one
vertical and another horizontal. From the “experiment” we have two noisy measure-
ments D + e1 and D + e2, where e1, e2 ∈ R.
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Figure 3.3 |Scheme for single pixel reconstruction with extended field. Single
pixel reconstruction with a - two projections, no extended pixels, b - two projections
and two extended pixels, c - two projections, three extended pixels and two extra
conditions for the extended pixels.

We attempt to solve the reconstruction problem using Tikhonov regularization and
three different strategies, two of them involving extending the field.

1. Non-extended reconstruction (Figure 3.3a). We do nothing additional and pro-
ceed in a conventional way.

2. EF reconstruction with no additional conditions (Figure 3.3b). We extend the
field, but add no conditions for the extended voxels.

3. EF reconstruction with additional conditions for the extended voxels that they
should sum to 0, i.e. we zero-pad the sinogram (Figure 3.3c).

Reconstruction

The least squares solution x∗ to the minimization problem 3.3 can be derived analyti-
cally

x∗ = (ATA+ λIn)−1ATb , (3.4)

where In is n by n identity matrix.

• Non-extended reconstruction

A =

(
1
1

)
, x = x and b =

(
D + e1

D + e2

)
. (3.5)

In this case (
ATA+ λI1

)−1
=

1

2 + λ
(3.6)

and

x∗ = (2D + e1 + e2)
1

2 + λ
=

2D +
∑
ei

2 + λ
(3.7)
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• Extended Field with No Extra Conditions Now let us extend the dimension-
ality of the problem by extending the field in both directions of the projections by
a single pixel, as depicted in Figure 3.3b. Extending creates two extra variables
x2 and x3, adds the corresponding coefficients to A, but causes no changes in b.

A =

(
1 0 1
0 1 1

)
, x =

x1

x2

x3

 and b =

(
D + e1

D + e2

)
. (3.8)

Then

ATA+ λI3 =

1 + λ 0 1
0 1 + λ 1
1 1 2 + λ

 (3.9)

and its inverse is

1 + λ 0 1
0 1 + λ 1
1 1 2 + λ

−1

=
1

λ2 + 3λ


λ2 + 3λ+ 1

λ+ 1

1

λ+ 1
−1

1

λ+ 1

λ2 + 3λ+ 1

λ+ 1
−1

−1 −1 λ+ 1


(3.10)

Since we are interested in the reconstruction of only the third pixel, we need only
the third row of the previous inverse. The solution to the reconstruction problem
is

x∗3 =
[
(ATA+ λI3)−1ATb

]
3·

=

(
−1

λ2 + 3λ

−1

λ2 + 3λ

λ+ 1

λ2 + 3λ

) D + e1

D + e2

2D + e1 + e2


=
−(D + e1)− (D + e2) + (λ+ 1)(2D + e1 + e2)

λ2 + 3λ

= (2D + e1 + e2)
1

3 + λ

=
2D +

∑
ei

3 + λ

(3.11)

• Extended Field with Extra Conditions In the third case, as depicted in
Figure 3.3c, we increase the dimensionality of the problem by one more variable
and add two extra conditions that the extended pixels should sum up to 0. The
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pixel to be reconstructed is x4.

A =


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

 , x =


x1

x2

x3

x4

 and b =


0

D + e1

0
D + e2

 . (3.12)

Now

(ATA+ λI4)−1 =


2 + λ 1 1 0

1 2 + λ 0 1
1 0 2 + λ 1
0 1 1 2 + λ


−1

=
1

λ2 + 4λ



λ2 + 4λ+ 2

λ+ 2
−1 −1

2

λ+ 2

−1
λ2 + 4λ+ 2

λ+ 2

2

λ+ 2
−1

−1
2

λ+ 2

λ2 + 4λ+ 2

λ+ 2
−1

2

λ+ 2
−1 −1

λ2 + 4λ+ 2

λ+ 2



(3.13)

Here we are interested only in the reconstruction value of the 4th pixel, x∗4. The
solution to the reconstruction problem is getting increasingly more complex but
it can be worked out to be

x∗4 =
[
(ATA+ λI4)−1ATb

]
4·

=

(
2

λ(λ+ 4)(λ+ 2)

−(λ+ 2)

λ(λ+ 4)(λ+ 2)

−(λ+ 2)

λ(λ+ 4)(λ+ 2)

λ2 + 4λ+ 2

λ(λ+ 4)(λ+ 2)

)
·(

0 D + e1 D + e2 2D + e1 + e2

)T
= (2D + e1 + e2)

(λ+ 3)

(λ+ 4)(λ+ 2)

=
(2D +

∑
ei) (λ+ 3)

(λ+ 4)(λ+ 2)
(3.14)

The shape of the solution is similar for each of the three cases - a data depen-
dent term, including the sum of measurement error, times a regularization parameter
dependent term

• Method 1: Non-extended reconstruction
x∗ = (2D +

∑
ei)

1

λ+ 2
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• Method 2: Extended field with no extra constraints
x∗ = (2D +

∑
ei)

1

λ+ 3

• Method 3: Extended field with extra hyperplanes

x∗ = (2D +
∑
ei)

λ+ 3

(λ+ 4)(λ+ 2)

A Perfect Reconstruction

Next, let us investigate for each of the three cases which regularization parameter
λ ∈ R+ will produce a prefect reconstruction equal to D. To do that, we equate x∗
with D and solve for λ. Also, to make the problem independent of the density D, let
us express the sum of the measurement errors as a fraction of D and denote it by α

α =
∑

ei/D . (3.15)

• Method 1: Non-extended reconstruction

2D + αD

λ+ 2
= D ⇒ λ = α (3.16)

From λ > 0 it follows that α > 0.

• Method 2: Extended Field with No Extra Conditions

2D + αD

λ+ 3
= D ⇒ λ = α− 1 (3.17)

From λ > 0 it follows that α > 1.

• Method 3: Extended Field with Extra Conditions

(2D + αD) (λ+ 3)

(λ+ 4) (λ+ 2)
= D ⇒ λ =

α

2
− 2 +

√(α
2

)2

+ α + 2 (3.18)

From λ > 0 it follows (after some straightforward algebra) that α > 2/3.

Since the regularization parameter λ is non-negative by definition, we get that each
of those three methods can produce the correct results only in the cases when the sum
of error is non-negative. Moreover, for the method 2 the sum of error needs to at least
match the density in magnitude, and for the method 3 the sum of errors has to be
more than 66% of the density. That is to achieve a reconstruction with 0 error.



44 Extended Field Iterative Reconstruction Technique

Relative Error

Finally, let us examine the reconstruction errors relative to the density D. In the
following we are omitting method 2 from the discussion, as it is the worst-performing,
and does not correspond to the strategy chosen in the simulations.

Let us define the relative error as

ε =

∣∣∣∣x∗ −DD

∣∣∣∣ . (3.19)

The relative errors for the methods 1 and 3 are then

ε1 =

∣∣∣∣2D + αD

λ+ 2
−D

∣∣∣∣
D

=

∣∣∣∣∣α− λλ+ 2

∣∣∣∣∣ (3.20)

and

ε3 =

∣∣∣∣(2D + αD) (λ+ 3)

(λ+ 2) (λ+ 4)
−D

∣∣∣∣
D

=

∣∣∣∣(2 + α) (λ+ 3)

(λ+ 2) (λ+ 4)
− 1

∣∣∣∣ (3.21)

The relations between α and λ that give relative error 0 are derived above when
finding the conditions for getting a perfect reconstruction.

Another interesting question is that for which α and λ are the two methods equiva-
lent, i.e. giving equal error, and in which regions does one outperform the other. This
can be found out by solving ε1 = ε3 for λ

ε1 = ε3 ⇒ λ =
1

2

(√
α2 + 6α + 12 + α− 4

)
. (3.22)

The above relations are visually represented on Figure 3.4 for methods 1 and 3.
The graph shows only the cases where the sum of measurement errors is a positive
fraction of the true density, because in the negative part neither one of the methods is
able to reach 0 error. We see that when α > 2/7 then extended field gives a smaller
relative error at the same regularization parameter value.
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Figure 3.4 |Relative reconstruction error for non-extended field and ex-
tended field with extra constraints. This graph illustrates the difference in relative
reconstruction error between non-extended reconstruction (ε1) and the extended recon-
struction (ε3). In the purple region ε1 < ε3 and the opposite is true for the red area.
Respective lines where either of the errors is 0 and where the errors are equal are
depicted with black lines.

Conclusions from the Single Pixel Reconstruction

This simple exercise has shown that there are cases where it makes sense to use ex-
tended field reconstruction. We saw that for the simple single pixel reconstruction with
Tikhonov regularization extended field offers an advantage in the cases where the total
measurement error is positive and equal to a relatively large fraction of the true density.
In such cases, even though the non-extended reconstruction scheme can obtain 0 error,
it does so at a larger regularization parameter λ than the extended field reconstruction.

Another point worth mentioning is that here we have not used the prior knowledge
that the density to be reconstructed must be positive. In the simulations with more
complex reconstruction problems we imposed the positivity constraint to the region of
interest only, whereas the extended pixels were free to take negative values.

Getting closed form solutions for any larger reconstruction problems are laborious
and the equations become quickly unwieldy. At this point it is unclear how these
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derivations could be generalized to more complex problems. More thorough theoretical
treatment of a general reconstruction problem with extended field method remains for
the future.

3.4.3 The Essence

Consider again the single pixel reconstruction from the previous section and as depicted
on Figure 3.3. In each of the cases we are looking for a least squares solution to the
linear equation system Ax = b. The equation system for the extended case was the
following

A′ =


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

 , x′ =


x1

x2

x3

x4

 and b′ =


0

D + e1

0
D + e2

 . (3.23)

Notice that we can always rearrange the elements in x′ and b′ so that the first
elements correspond to the non-extended field and the last elements to the extended
field. To leave the system itself identical we also have to reshuffle the rows and columns
of the matrix A′ accordingly, which we can always do. In this case the reordered
equation system looks the following

A′′x′′ = b′′ ⇒


1 0 1 0
1 0 0 1
0 1 0 1
0 1 1 0



x4

x1

x2

x3

 =


D + e1

D + e2

0
0


⇒
(
A A12

0 A22

)(
x
xex

)
=

(
b
0

)
.

(3.24)

After reordering it becomes clear what the effect of the extended field could be. We
see that after extending the field we still have the original equation system embedded in
a larger system, with the modification that for every linear condition we add a couple
of new variables, that serve as a garbage bin for dumping noise. The last rows of
A′′ concern only the extended variables as the coefficients corresponding to the ROI
variables are all 0. These rows set the constraints that various linear combinations of
the extended variables should add to 0.

This makes intuitively sense - for each condition (row in original A) that cannot
be satisfied exactly due to added noise, we give some extra variables in a hope that
the noise would propagate to those extended variables, and then say that the extended
variables should actually sum to 0 as they are assumed to be Gaussian with mean 0.
In the iterative reconstruction schemes we can take advantage of the prior knowledge
that the reconstructed density in the ROI should be positive. This condition, however,
is not enforced on the extended pixels that are therefore free to take negative values.

In this light we can generalize the extended field principle away from the geometric
interpretation and construct however elaborate schemes for assigning extra variables
to each condition and then constraining the extra variables in turn.

Consider the following, perhaps the simplest, scheme



3.5 Conclusions 47

• For each row in original A let us give a single extra variable.

• For the extra variables add just a single constraint that the sum of all of them
should be zero.

The extended version of a matrix A with n rows and m columns is then

A′′ =

(
A diag(n)
0m 1n

)
, (3.25)

where 0m and 1n are vectors consisting of only 0s and 1s with lengths m and n,
respectively.

3.5 Conclusions
More thorough theoretical investigation of the extended system could shed some light
what the effects on the solution are with respect to the original non-extended system,
but this work is left for the future. The final conclusion is that the extended field seems
to be more general than initially thought and could serve useful in certain scenarios.





Chapter 4

Nanocrystal Cryo-ET

4.1 Introduction

The main goal of this project was to explore the feasibility of and provide a proof of
concept for determining the structure of a protein molecule using cryo-electron tomog-
raphy of nanocrystals. In addition to molecular structure, tomographic reconstruction
of a protein crystal is an interesting object in its own right as it provides a perspective
into the world of small biological crystals that is not perhaps often seen. The second
major goal then was to develop the tools and methodology that would enable the anal-
ysis of the nanocrystal itself, its lattice order and possible crystalline imperfections. As
protein nanocrystallization, tomographic imaging of the crystals and the subsequent
structure determination by harnessing symmetry is relatively unstudied in the litera-
ture, it was unclear in the beginning how many obstacles would be encountered on the
road.

The Choice of a Target Protein

When developing a new method it is always a good idea to have something to validate
the outcome against. That is the main reason why we decided to use hen egg white
lysozyme (HEWL) as the first experimental target and did not opt for a perhaps
more interesting protein with hitherto unknown structure. HEW lysozyme was the
first enzyme and the second protein ever to have its structure determined via x-ray
diffraction in 1965 [69], and is thereafter exceptionally well studied in the literature,
making it an ideal model system. Doing a search for lysozyme in PDB results in
1785 structures from various organisms, solved using various methods, and in a large
variety of different space groups. Lysozyme is easy to crystallize to large well-diffracting
crystals, but also several protocols for creating nanocrystals can be found. Lastly, but
importantly, lysozyme is cheap and there is easy access to large amounts.

The Challenges

The first challenges were how to create nanocrystals so small that they would be visible
under 300 keV electron beam and would fit entirely into the field of view. In principle,
as long as the crystals are thin enough, they do not necessarily have to fit entirely into
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the field of view, especially so for electron diffraction. But in our case, getting a 3d
reconstruction of a whole crystal became a separate goal in order to study the shape
and the interface of the crystal. Therefore, needle-shaped crystals that have only two
dimensions properly nano-sized and the third one much longer, as imaged in [37] for
example, were not suitable for our goals.

Getting a high SNR image of a biological sample is notoriously challenging. When
the molecule under scrutiny is large, it can be seen more easily and even individual
molecules could be picked out from a processed tomogram. Lysozyme, being only
15 kDa heavy, belongs to the small end of the size spectrum and is generally considered
too small for cryo-ET and single particle reconstruction (SPR).

Initially, there was a concern whether lysozyme is indeed too small for tomography.
The experiments, however, showed that the size of the molecule did not become a limi-
tation and instead gave an extra quality to the project. Namely, in a 3d reconstruction,
the outline of the crystal, as opposed to the outline of an individual molecule, is almost
always visible, which gives good indication as to where to look for the molecules. When
investigating low SNR tomograms the question of whether one is looking at a random
blob of intensity or electron density actually belonging to a molecule, is ever-present. In
a crystal, the molecule makes its appearance periodically at fixed intervals, so looking
for something periodic helps in locating the individuals.

The biggest challenge, perhaps, was to develop the software suite for nanocrystal
analysis. The programs had to be robust to noisy data, able to identify symmetries
and use that information to deliver a symmetrized and averaged version of the recon-
struction. The curse of symmetrization is that after forcefully imposing symmetry on
any image, the outcome always conforms perfectly to that symmetry, and the higher
the symmetry, the “better” and aesthetically pleasing the end result looks. Whether
the result actually makes sense and is a correct representation of the underlying signal
is a separate question. So, proper sanity checking and validation of the software and
the outcome becomes incredibly important.

4.2 Outline

In this Chapter we present the central project of the thesis.
Methods: In Section 4.3 we discuss the obstacle-laden road and the eventual path

to successful preparation of samples containing tiny lysozyme nanocrystals in the size
range of 100 nm. We also detail the evaluation of the intermediate non-optimal samples
by direct imaging with TEM, and finally show images of some of the best examples of
small nanocrystals and locations where the tomographic data collection was performed.

Results: Section 4.4 presents the results of the 3d reconstructions and much more.
We first examine the steps taken from tilt-series to a back-projected reconstruction.
After that we discuss and show the results from the lattice detection task, segmenting
out the crystal and averaging of the unit cells. The section ends with showing indi-
vidual as well as averaged molecular structures extracted from a larger reconstruction,
discussions on the resolution, and various visualizations of the nanocrystals. We also
explore the lattice order by looking at the distribution of lattice vectors, the symmetry
origin and attempt to classify the unit cells into homogeneous clusters.
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Programs: Section 4.5 details the algorithmic side of the methodology and the
programs developed specifically for going from a general 3d reconstruction to a sym-
metrized version of it. Additionally, some other tools for visualization are discussed.
In the final part of this section we validate the programs on simulated datasets.

4.3 Methods

Creating protein crystals in a wet-lab environment is sometimes considered more of
an art than science, as conditions that work for one object of interest might prove
useless or irrelevant for others. It is not uncommon for a researcher to spend years
trying to grow a large well-ordered crystal from their protein of interest. Lysozyme is
one of the easiest proteins to crystallize and has therefore been used extensively as a
model system for research as well as for classroom experimentation. But less is known
about how to produce nanocrystals suitable for electron microscopy at the same time
avoiding the formation of large electron-opaque crystals. Some general principles, that
favor the growth of many small crystals over few large ones, are a high concentration
of dissolved protein that is made to fall out of solution relatively fast.

4.3.1 Nanocrystallization

The Trials

For our experiments we used commercially available hen egg white lysozyme purchased
from Sigma Aldrich in a lyophilyzed powder form. To observe a sample in cryo-electron
microscope, it has to be first deposited on an electron microscopy grid, and then flash-
frozen to fix the biological material and slow all thermodynamic activity down to a
halt. Unlike in a conventional approach, where the crystallization drop is prepared
separately on a crystallization tray and let sit untouched for some time to give the
crystals chance to form in peace, we used a different method.

Since, depending on the conditions, lysozyme crystals grow relatively quickly, and
nanocrystals form effectively in an instant, a precise control over the timing of the steps
was needed. The first strategy was to let the crystals grow on a crystallization tray for
a certain amount of time and then try to carefully pipette out the remaining solution,
all the while trying to avoid sucking in large crystals in the hope that the captured
liquid will contain smaller crystals. Doing it this way it was difficult to completely
avoid large crystals and the result was almost totally clogged grid which was effectively
electron-opaque when observed under TEM. On top of that, we were not sure that
there even were nanocrystals floating between the large ones. Also the time it took to
transfer the material from crystallization tray to a grid and then freeze took too long
to provide exact control over the crystallization time. Another concern was that the
nanocrystals might be fragile and otherwise unstable so all excess manipulation should
be minimized.

Since the crystallization process became quicker as the concentrations of protein
and the precipitant increased, and for lysozyme it seemed to be a question of seconds,
we decided to eliminate as many extraneous steps as possible, and grow the crystals
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directly on a plasma-cleaned carbon-coated microscopy grid mounted in the flash-
freezing device (FEI Vitrobot). This, at least, provided perfect control over timing.
Crystallizing lysozyme directly on the grid was also easier for the human operator,
but after many unsuccessful attempts, due to either a too thick of a sample, or the
inability to find any crystals, the growing concerns were that the high concentration of
the components makes the material too dense to allow for high resolution imaging.

In several cases it was visible to the naked eye, that upon lifting the frozen grid
from the liquid ethane container into a cryo-box inside liquid nitrogen, a white layer
instantly formed on the grid, which was suspected to be solidified ethane. A general
belief is, that the ethane contamination will quickly sublimate in the vacuum of the
electron microscope column, but this did not happen in our experience and, most
importantly, did not help us get rid of the electron-opaqueness of the sample, which
became a major head ache. As a remedy, a range of automatic and manual blotting
conditions to wick away even the leftover liquid ethane were tested, but to no avail.

Another thought was that the nanocrystals needed more time to be able to settle on
the grid and adhere to the surface, so perhaps longer waiting times were still necessary.
This led to experimenting with a range of waiting times between the start of the
crystallization and the flash freezing, from 5 s to 5 min.

Fortunately, it was noticed that sometimes, in spite of all the uncertainties, the
grids turned out just fine, were perfectly transparent, and a large amount of protein
crystals were immediately discernible. Cryo-sample preparation procedure is long,
laborious and arduous, and takes time to master, so it cannot be excluded that the main
source of the bad grids was in fact poor sample handling. The overall conclusion was,
though, that certain combination of parameters made successful sample preparation
more probable and by just persevering good grids would eventually appear.

The Final Protocol

The final crystals were produced by the following protocol.
A solution of 200 mm HEWL with 50 mm NaAc was prepared. 1 µL drop of 10 nm

Au beads suspended in 50 mm NaAc was applied directly on a plasma-cleaned (Gatan
Solarus) Quantifoil R2/1 grid, mounted in FEI Vitrobot at 100% humidity and tem-
perature 4◦ Celsius. 3 µL of lysozyme was applied on top of the Au drop, after which
the grid was gently touched with a drop of 3.0 m NaCl and 50 mm NaAc solution,
which ignited a visible precipitation front and a suspected intense crystallization pro-
cess. The grid was immediately blotted twice for 5 s, blotting force 4, and plunged into
liquid ethane to flash-freeze the sample and encapsulate the crystals in amorphous ice.
The frozen grids were directly transferred to electron microscope for imaging.

4.3.2 Cryo-Electron Tomography

The transmission electron microscope used for imaging was an FEI Titan Krios oper-
ating a field emission gun at an acceleration voltage of 300 kV and using a FEI Falcon
II detector. In this study we did not use any post-column energy filters that are useful
for filtering out inelastically scattered electrons.
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Initially, having no idea about exactly what to look for in the samples, locating
the protein crystals was challenging. The problem was that together with protein
crystals the samples most probably contained also salt crystals and ice contamination
and having no prior experience in the field made it difficult to distinguish between
those. It also happened from time to time that the sample appeared to have no protein
crystals at all.

For electron tomography it is crucial to get the sample as thin as possible to reduce
background coming from inelastic scattering. Some of the first crystals that we saw
were too large (See Figure 4.1). These crystals were a couple of micrometers in length
covering an entire hole in the carbon support film. Crystals of that size are hopelessly
large for electron tomography. Also the overall sample thickness near the crystals was
too thick for good quality data.

Figure 4.1 |Examples of too thick samples containing lysozyme microcrys-
tals. The crystals are obvious but are too large for tomography and the sample is too
thick for good quality imaging. These crystals can not be classified as nanocrystals
anymore as they are several micrometers in size.

After some failed attempts, frustration, and reflecting on what might have gone
wrong, necessary changes were introduced to the sample preparation protocol and
eventually better quality samples started appearing. On Figures 4.2 and 4.3 obvious
protein nanocrystals are seen, as judged by the direct observation of the lattice, and
backed up by the visible long distances between the diffraction spots in the FFT, that
cannot belong to a mineral crystal.

Micrographs on Figures 4.2 and 4.3 are taken at higher magnification, than what
was used for electron tomography, and at a much higher electron dose, when compared
to a what can be used for a single image in a tilt-series. This means, that once the
images are taken, the crystals are destroyed, and no further data collection there is
possible. Also, the crystals themselves with side length of around 700 nm are still on
the large side, as compared to what we would ideally like for tomography.
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Figure 4.2 |Examples of medium sized lysozyme nanocrystals. a and b show
examples of large nanocrystals. Both of the crystals are about 500 nm across. We
cannot easily tell the thickness from these images, but with high likelihood they would
be too large for tomography. There is no question whether these are protein crystals
as we can directly see the lattice. Also, the diffraction patterns on the FFT (c and
d) reveal the cell spacing to be too large for mineral crystals. The crystal on a has
perhaps too much gold, that could derail a reconstruction algorithm and shadow the
interesting details. The scale bar is 80 nm on both images.
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Figure 4.3 |Example of a medium sized lysozyme nanocrystal. a and b show
two different views of a 700 nm lysozyme nanocrystal, that is slightly too thick for
tomography. The scale bar is 250 nm.

Gradually, we managed to make the nanocrystals smaller and smaller, and the eye
got trained to quickly tell lysozyme crystals apart from other uninteresting features
already at low magnification. Figure 4.4 shows an overview image of a location where
320 nm and larger square-shaped lysozyme nanocrystals are scattered over a large area.
This image is taken as part of the search process for potential locations for data collec-
tion, at a magnification of 2200x, binning the pixels twice, at an underfocus of 100 µm
to boost the contrast of low resolution details, and all the while staying conservative
with electrons not to damage the crystals.
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Figure 4.4 |Larger view of the grid showing plenty of nanocrystals in the size
range of 350 nm and larger. a and b show two low magnification images featuring
lots of lysozyme crystals. These positions were used for tilt-series recording and the
images were taken as a part of the search process, taking care to minimize electron
exposure. The scale bar is 2 µm on both images.

Finally, on Figure 4.5 two small nanocrystals are visible, named D16 and D18, with
side lengths of around 130 nm and 200 nm. These locations led to acceptable datasets
that were used for further processing and analysis. In general, the smaller the crystals
got, the better quality tilt-series they produced.

The best dataset was collected at a location visible on Figure 4.6 that features a
crystal roughly 130 nm in length and 100 nm thick. The following analysis is mostly
done on this crystal, named D17.
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Figure 4.5 |Low magnification view of the grid featuring 130 nm and 200 nm
lysozyme crystals. These positions were used for tilt-series recording and the images
were taken as part of the search process, taking care to minimize electron exposure.
The insets show a close-up of the crystal and have a slightly increased contrast for
visualization purposes. The scale bar is 1 µm on both images.

Figure 4.6 |Low magnification view of the grid featuring a 100 nm nanocrys-
tal and one single tilt from the collected series. a, Shows one of the smallest
nanocrystals we were able to find and record tilt-series of. Its side length is around
100 nm. The thickness of the crystal, as measured from the tomogram, is also about
100 nm. b a single projection from the collected tilt-series at a 17◦ angle. The lattice
is clearly visible. The scale bar is 1 µm.
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The tilt-series were collected at a magnification of 37000x covering an angular range
from −67◦ to 67◦ by 1◦ increments, making in total 135 images. The cryo-EM stage
could have been tilted up to 70◦ on each side, but due to obstructions on the sample
itself the highest tilts had to be omitted. At a magnification of 37000 the size of one
pixel is 2.26Å.

The total accumulated electron dose over the whole tilt-series was estimated to be
around 40 e−/Å2. Dividing it by the number of images in the tilt series and multiplying
by the area of one pixel gives 40 ∗ 2.262/138 = 1.48 electrons per pixel per image. At
this low dose individual tilts are almost entirely devoid of contrast. But at certain tilt
angles the molecules in a crystal all line up and the lattice, albeit noisy, becomes easily
discernible (Figure 4.6b), which is the beauty of working with protein nanocrystals.
While individual molecules are challenging to see in the unprocessed images, especially
true for molecules as small as lysozyme, the nanocrystals can be easily found in the
original sample as well as in the recorded tilt-series.

On Figure 4.7 we can see three different views from a tilt-series of a 130 nm nanocrys-
talD16. At some views (Figure 4.7b and c) the molecules line up perfectly and generate
enough contrast to make the crystal lattice discernible. On a tilt just 2◦ away ( Fig-
ure 4.7b ) the lattice has completely disappeared and even the outline of the crystal is
just barely distinguishable.

Figure 4.7 | 3 different views from the tilt-series D16 featuring a 130 nm
lysozyme nanocrystal. a - view number 68 exactly in the middle of the series at a
0◦ tilt shows clear lattice. b - view number 70, just a 2◦ tilt from a, but the lattice has
almost completely disappeared, and the crystal outline is just barely distinguishable.
c - at a higher tilt angle of 16◦ the lattice becomes visible again. The black spot on all
of the images is the same 10 nm gold bead.

Imaging parameters

4.3.3 Conclusion

As concluding remarks to the methods section, we saw that growing and imaging
lysozyme nanocrystals is possible and feasible. The recent interest into nanocrystal-
lization techniques, triggered by the success of serial femtosecond crystallography and
the 3d electron crystallography of protein nanocrystals, is bound to make the process



4.4 Results 59

even more well-defined, reliable and reproducible. The supply of the nanocrystals is
not therefore going be the limiting step of nanocrystal tomography.

4.4 Results

Our recorded tilt-series consisted of 135 images from −67◦ to 67◦, each 4096 by 4096
pixels. In this section we provide details about the process from the raw data to a
molecular structure, by taking advantage of the symmetry and the programs that were
developed this specific task in mind. The algorithmic details of the programs are given
in the next section.

4.4.1 Tomographic Reconstruction

Going from a tilt-series to high quality 3d reconstruction is a long and difficult journey.
Owing to the popularity of the field, the modern software tools, and the increase in
the raw computing power, the process is becoming increasingly easier. Nevertheless,
almost every step involves tuning some parameters, whose direct effect might be hard
to understand, and the feedback loop can be long and sometimes not so obvious.

The general reconstruction process could be divided into the following broad steps

• Aligning the tilt-series and determining geometry.

• Back-projecting the individual views to a 3d reconstruction.

• Regularizing the reconstruction and deconvolving the contrast transfer function
(CTF).

On Figure 4.8 4 different tilts from the tilt-series of the crystal D17 are shown.
From certain angles the crystallographic lattice becomes visible. In the following we
are going to reconstruct that nanocrystal.
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Figure 4.8 | 4 view of a D17 tilt-series 4 particular views of a tilt-series containing
the crystal D17. From some angles the lattice is visible, while from others almost the
whole crystal has disappeared.

Aligning the Series

Two of the conventional approaches for aligning the tilt-series are by cross-correlation,
that gives a coarse alignment and involves only translational shifts, and a fine alignment
by tracking gold markers. In the cross-correlation approach first the cross-correlation
function between consecutive tilts is computed, a peak in the function detected, and one
of the images shifted accordingly. This method seems to work fine for high-contrast
images such as stained samples. On low-dose cryo-ET images the cross-correlation
function can often be misleading and a peak poorly defined, so the suggested shifts
become unstable and inaccurate.

The second approach, that is conventional for cryo-EM, and was also employed
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here, is to take advantage of gold nano-beads. Gold, being almost entirely electron-
opaque, can usually be easily seen in the individual images and therefore serves as a
good marker for determining the geometry. The gold markers are picked on each image
either manually or by using some automatic gold picking algorithm. Provided the gold
markers have not moved individually, the positions of the markers then tell how the
sample itself as a whole has moved during the imaging. The coordinates of the gold
markers are then used for aligning the images to a common reference frame and for
solving for parameters that determine the overall image acquisition geometry.

In general, the more gold markers we have, the higher the possibility for getting a
good alignment of the images as the individual errors will be averaged out. On the
other hand, too many gold markers (such as for example in Figure 4.2) will cast heavy
shadows, as they are almost impenetrable to electrons, and might interfere unfavorably
with reconstruction algorithms. It is also undesirable to have any gold beads in the
reconstruction region of interest, unless, of course, the gold bead itself is the target of
the study. In most of the datasets that we collected there were very few golds, and
on some tilt-series the golds were missing altogether. The tilt-series D17 had two gold
markers. This would probably not be enough for older electron microscopes where
tilting the specimen is done manually.

Modern TEMs like FEI Titan Krios have accurate built-in machinery, that, together
with fully automatized data collection procedure, constant tracking and compensation
for shifts, can deliver consistent tilt-series. In that case, accurate alignments are achiev-
able even with just a few gold beads. In addition, several of the geometry unknowns,
such as change in magnification and the tilting angle, can be fixed, and thereby the
number of variables to solve for reduced.

Picking the gold markers and solving for the geometry was done manually using
in-house software. The average error in the alignment of the tilt-series D17 was 8Å.
Though the alignment error may seem large, it should be stressed that it is only the
average error over all of the tilts and coming from mostly the poorly aligned high-tilt
views that affect the resolution in z direction, i.e. parallel to the electron beam. The
alignment is also improved during the reconstruction that further increases the overall
achievable resolution. By unlocking the specimen rotation parameter, the alignment
error went down to 2Å, but this is likely an overfit, since with two gold beads there
are too few data points to estimate that many variables.

3d Reconstruction

3d reconstruction of the tilt-series was done using 80Å filtered back-projection re-
construction as a prior information to the COMET reconstruction algorithm [50]. The
prior information is treated as a knowledge we believe to be true, and a back-projection
to that low resolution is probably close to correct. In this method the CTF is decon-
volved as part of the reconstruction procedure, as opposed to deconvolving the images
in the tilt-series directly.

We define the CTF by making an estimation of the parameters such as the defocus
and the fraction of amplitude contrast and apply it as a part of the forward operator.
The defocus imaging was set to be −2.2 µm, . In the literature one can find several
attempts to estimate the value of the fraction of amplitude contrast for various types of
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biological specimens. For example, in [70] the fraction was estimated to be 0.027±0.01
for a bacterial flagellar filament in vitreous ice, and 0.058±0.018 for amorphous carbon,
at acceleration voltage of 300 keV and without electron energy filtering. It was also
found there that using energy filtering markedly improves amplitude contrast, but we
did not use it with our data.

We also perform local geometry correction during regularization, which means that
on each iteration the algorithm tries to slightly shift and rotate the images in order to
further optimize the target function.

At a binning 1, making the voxel size 2.261Å identical to the pixel size in the indi-
vidual tilts, the size of the whole reconstructed volume that captured the nanocrystal
was 1024 x 1024 x 800 voxels. On a modern iMac computer with, 32Gb of RAM and
3.5GHz 8 core processor, the reconstruction took 17 hours.
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Figure 4.9 | Solid rendering of the whole 3d reconstruction of a lysozyme
nanocrystal (D17). In the reconstruction the crystal together with a lattice is visible
(red arrows in the top left corner). The rest of the lattice lines are not visible due to
perspective projection. The lattice lines perpendicular to the indicated ones were not
as clearly visible. The strong edge through the lower left corner is the edge of a hole
in the carbon support film.
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Figure 4.10 |Solid rendering of the whole 3d reconstruction of a lysozyme
nanocrystal (D17) thin slice in z. The lower left corner of the crystal is missing
and the edge is not as well defined as for the other straight edges.

The image on Figure 4.9 shows solid rendering of the whole tomogram, including
background-containing non-crystalline sections above and below the object. The lattice
is partly visible, but in general the contrast is weak. The image on Figure 4.10 is
a thin z-slice through the reconstruction. Here the lattice is slightly better visible.
Segmenting out the crystalline part of the image with a smooth envelope (how it was
achieved is described in section 4.4.4) and calculating the FFT paints a clearer picture
(Figure 4.11). The strong peaks in the frequency spectrum reaffirm that there is indeed
a periodic aspect to the density.



4.4 Results 65

Figure 4.11 | 3d FFT of a lysozyme nanocrystal reconstruction. Fourier trans-
form of the reconstruction on Figure 4.9 that has been first segmented out with a
smooth envelope. The 3d image is viewed from the z direction (electron beam direc-
tion).

Shape of the Fourier Transform

It is a general assumption, consistent with empirical observation, that the high resolu-
tion details are the first to disappear due to accumulation of electron dose. In [71], in a
subtomogram averaging setting, the authors have used a modified 3d CTF model that
includes a tilt-dependent damping factor, that attempts to account for the loss of high
resolution details. As the data collection for tomography proceeds, more and more
electron dose is accumulated and therefore the high resolution end on the later tilts
should be damped more than on the earlier tilts. Using such weighted CTF function
improved the resolution in the final averaged structure from 10.2Å to 9.2Å [71].

In the current work we have not done such tilt-dependent CTF modification, but we
can directly observe the same phenomenon at work looking at the frequency spectrum.
Our data collection scheme was to first tilt the specimen through angles 0◦ to 67◦,
then return to 0◦, and finally image the tilts from −1◦ through −67◦. The Fourier
transform on Figure 4.12, viewed along the tilt axis, clearly shows that there is not
an equal amount of high resolution signal in the later tilts. The number of observable
reflections considerably lower in the top left and bottom right quadrants, and the whole
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diffraction pattern appears skewed. Looking at the diffraction pattern perpendicular
to the tilt axis shows no such tendencies (Figure 4.13).

The loss of resolution caused by the radiation damage together with the decrease
in resolution in the beam direction caused by the missing wedge is problematic for
the data processing. Even though the high symmetry in the data set can and will
alleviate the missing information, it makes the determination of unit cell vectors and
the crystallographic origin much less certain, as further investigated in the sections to
come.

Figure 4.12 |FFT of D17 viewed along the tilt-axis (x-axis). The beam direc-
tion (z-axis) is vertical and y-axis is horizontal. This image demonstrates the skewness
of the signal. The high resolution spots extend much further out on the first half of
the tilt series than the second. The white cross over the image is not an artifact but
drawn deliberately to aid the eye in seeing the difference in the number of spots in the
respective quadrants.
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Figure 4.13 |FFT of D17 viewed along y-axis. The beam direction (z-axis) is
vertical and x-axis horizontal. We see no no unevenness of the diffraction pattern (as
in Figure 4.12) from this angle.

4.4.2 Peak Detection

To harness the replication of information in a crystal to our advantage we have to
first figure out what the lattice of the crystal is. The lattice, defined by 3 vectors
in 3 dimensions, gives the knowledge in which direction and at which step sizes the
translational symmetry occurs. The Fourier transform of an image that has some
feature repeating over and over again at a fixed distance will show an intense peak at
a point that corresponds to the given spatial frequency. So the strategy becomes clear
- to determine the lattice we have to first Fourier transform the whole image, detect
the diffraction spots and find 3 such vectors that will form a basis in which the lattice
points all have integer coordinates.

In our approach the lattice was determined from a filtered back-projection map re-
constructed to full Nyquist spatial frequency, which in this case corresponds to 4.522Å,
i.e. twice the voxel size of 2.261Å. The map was subsequently Fourier transformed us-
ing periodic+smooth decomposition [64] to alleviate the edge artifacts stemming from
the discontinuities at the borders of the 3d image. Scattered density and the lack of
low resolution information in such a map provided clear diffraction peaks in the FFT
which were easier for the peak detection algorithm to pick up. The background of FFT
was reduced by subtracting a low-pass filtered version of the transform (inspired by
[72]), then thresholded and finally the diffraction peaks were identified by considering
local intensity maximum within a spherical neighbourhood.

It should be noted that even though back-projection does not have the CTF effects
removed, this does not alter the location of peaks but just their intensity as the peaks
could lie close to where the CTF zero-crossings are. Moreover, there is a possibility
that due to each image in the tilt-series having a slightly different defocus, many of the
diffraction spots would show up, however faintly, even when the average CTF would
suppress such peaks.
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However refined the approach, in a low-dose cryo-ET setting the peak detection
inevitably leads to a large amount of falsely detected noisy peaks along with the true
lattice (Figure 4.14 top left). By setting the threshold for cutting out the background
too high, we detect only the central low resolution peaks, and by thresholding lower,
we detect most of the true lattice peaks, but along with it we have to somehow deal
with getting rid of the noisy ones. So, to be of any use in the general case, a lattice
determination method that is robust to noise is therefore crucial.

4.4.3 Lattice Vector Determination

To clean up the cloud of peaks and extract the underlying lattice we experimented with
various ideas but eventually the one proving the most robust was to repeatedly apply
Fourier transform on the cloud of peaks. The lattice detection algorithm iterates the
following steps

1. Create a binary map with 1 where a peak was detected and 0 elsewhere

2. Calculate the amplitudes of the FFT of the binary map

3. Take the coordinates of m most intense voxels as new peaks

4. Repeat

At every iteration this approach gets rid of non-periodic peaks and usually after 2
iterations only the periodic component from the noisy cloud of peaks, i.e the lattice, is
all that remains. Our approach proved to be incredibly robust and often works even
when the majority of the initially detected peaks were noise. As long as there are
enough points repeating in space at a fixed interval the underlying lattice will surface.

On Figure 4.14 the lattice determination algorithm from a cloud of peaks is pre-
sented graphically. The algorithm starts from a list of peak coordinates, and then
iterates the previously described steps a fixed number of times. We can see that in
the current case the algorithm has performed marvelously. To be fair, in this example
the input list of peaks is much noisier than could have been produced by background
subtraction and thresholding in a more careful way. But it was decided to take a partic-
ularly bad scenario to clearly demonstrate the power and robustness of this approach.
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Figure 4.14 |Lattice determination from a cloud of peaks A graphical depiction
of the algorithm at work.

After the lattice determination algorithm has finished and returned a good first
guess about the 3 lattice vectors, a refinement of the result has to be performed. The
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refinement is necessary since due to the discrete nature of the problem, the vectors are
confined to have integer coordinates. In reality, a better solution probably always exists,
and to find that, we perform a refinement step (further elaborated in the programs
section 4.5). After the refinement, we have 3 real space vectors a, b and c that describe
the average periodicity in the reconstruction.

The final determined unit cell vectors were with lengths a = 79.25Å, b = 80.28Å,
c = 39.60Å, and angles α = 90.77, β = 90.70, and γ = 89.36, which are approximately
in concordance with the tetragonal form and space group P43212, as commonly found
in the literature.The fact that lattice vectors a and b are not exactly equal and that the
angles between the three are not exactly 90◦, as required by the P43212 space group,
could be attributed to the broadening of the lattice orientation and spacing distribution
during flash freezing [73], so the crystal could be under stress and the found lattice only
reflects the average. The correctness of the lattice detection algorithm was validated
on a dataset simulated from a PDB file (reference 1DPX) where the derived lattice
vectors were correct within a fraction of an Ångstrom (described in section 4.6.3).

4.4.4 Averaging and Symmetrization

Averaging

Once the lattice vectors are determined, the averaging of the unit cells can begin.
Initially, having no idea about the crystallographic space group, the obvious first step
is to assume space group P1, i.e. just translational symmetry in the crystal with an
arbitrary origin. By placing the origin of the lattice at the origin of the reconstructed
volume coordinate system, we extract and averaged every single unit-cell-sized piece of
the volume that fits entirely into the reconstructed volume (Figure 4.15).

Figure 4.15 |Schematic of the averaging over lattice. All unit cells that fit en-
tirely into the reconstruction volume are extracted and one total average is retrieved.
At this point the crystal is not yet segmented out so the average includes the back-
ground as well as the crystal.
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As the crystal has not yet been segmented out from the background, the total
average includes everything, even the non-crystalline parts of the reconstruction (Fig-
ure 4.16a). In the next step we calculate the correlation coefficient between the total
average and each individual extraction. The rationale is that the background does
not conform to the lattice and therefore its total contribution to the average is just a
background blur. The crystalline part, on the other hand, will get reinforced by the
P1 averaging, and some characteristic details of the real unit cell will hopefully raise
above the background level.

Figure 4.16 |Averaged and symmetrized unit cells differing by the subset of
unit cells used. a and d - all possible non-overlapping unit-cell-sized subvolumes,
that also includes the background, averaged and symmetrized. The result is blurry,
but with the lattice-like repetition clearly visible. b and e - the unit cells that roughly
constitute the crystal, and probably do not have any unit cells from the outside in-
cluded, as the segmentation at 0.07 correlation level is on the conservative side. c
and f - the unit cells that correlated most highly with the total average on a. The
non-symmetrized image (c) gets increasingly more scattered and harder to interpret,
whereas the symmetrized version (f) looks clean with the individual molecules nicely
visible. The molecules are less well separated in the c direction (coming out of the
plane of the paper).
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Figure 4.17 |Averaged and symmetrized unit cells. Comparison of electron
density maps between real data and simulated data from the x-ray structure (pdb code
1DPX). The non-filtered simulated crystal has details up to Nyquist frequency whereas
real data has much lower resolution. Low-pass filtering both of the maps to 13Å shows
that the maps are indeed quite similar.

If we plot the obtained correlation coefficients on a histogram then usually two
modes emerge (Figure 4.18a) - one mode at a correlation value slightly above zero,
corresponding to the cells from the background, and the other mode at some higher
level, corresponding to the crystal. Some aspects to note about the correlation his-
togram is that, first, the correlation values are quite low, and, second, the background
mode is not centered exactly around zero but instead around a slightly higher value.
The former, we suppose, is due to the inhomogeneities in the crystal, and the varia-
tion of the intensity levels and the slight inhomogeneities in the crystal. The latter
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aspect could be explained by the fact that since each cell contributes something to the
average, then it is expected that each cell also has a small positive correlation value
with the total average. For a perfect virtual crystal, that was used for validation, the
correlation values are all close to 1.

Figure 4.18 |Histogram of the correlations and the values mapped back to
3d. a, All unit cells in the whole reconstructed volume correlated against their aver-
age. The correlation profile is bimodal with the first mode close to 0 representing the
background and the second mode at around 0.12 representing the crystal. Setting an
arbitrary threshold at 0.07 selects ∼ 5000 unit cells from ∼ 24000 that roughly segment
out the crystal from the background at a unit cell level accuracy. A higher threshold of
0.1432 leaves just 28 unit cells that are well aligned with each other and are later used
for lysozyme molecular structure determination. The insets show the unit cells kept
after selecting only the cells above respective correlation thresholds. b, Visualization
of the correlation distribution of the crystal obtained by interpolating a 3d correlation
function from the sampled points at unit cell centers. The black outline represents
0.07 level that draws out the approximate shape of the crystal. The color gradient is
obtained by mapping correlation level 0.12 to blue, 0.13 to yellow and maximum level
at around 0.15 to red. For visualization purposes the orientation of this image differs
slightly from the crystal shape on a.

Segmentation of the crystal can be performed by selecting only the unit cells, that
have a correlation value on the right side of the “valley”, threshold chosen to be here
at 0.07 (Figure 4.18a). The average over only those 5000 unit cells is visible on Fig-
ure 4.16b. An even higher threshold at 0.143, that leaves a mere 30 unit cells for
averaging, obtains the average structure visible on Figure 4.16c. So a general trend
was noted - the smaller the number of unit cells that go into the average, the higher
the apparent resolution in the image, up to the point, where there are too few unit
cells that the noise starts to dominate again.
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Symmetrization

Assuming space group P43212 we can make use of the additional symmetries present
in the crystal (Figure 4.19). A unit cell in such a case has 8-fold redundancy of
information. To take advantage of this redundancy an important parameter has to be
determined - namely, the symmetry origin. When we performed only the translational
averaging over the lattice, then it did not matter where the origin was placed, whereas
for applying rotations it is crucial to pinpoint the locations of the rotation axes with
high accuracy.

The programs section (section 4.5) describes the details of the symmetry origin
finding algorithm, but the essence of the algorithm can be described as follows. In
theory, the 8 symmetrically related points within the unit cell are all identical, whereas
in practice there are probably variations. We look exhaustively through the whole
unit cell for the best place where to put the symmetry origin, so that the discrepancy
between the 8 symmetrically related points would be minimized.

The algorithm is not perfect and fails when the signal is too week. Another weak
point is that since the resolution in the reconstruction is much lower in the z-directions,
the best place for the symmetry origin might not be well determined. This shortcoming
is further explored in the section about the unit cell distribution (section 4.4.9).

In the current case we did the symmetry origin search on the average unit cell of the
whole segmented crystal (Figure 4.16b). Applying the symmetry relations on top of
the translational average over the lattice obtains the maps depicted on Figure 4.16d-f.
A single molecule from Figure 4.16f was then sculpted out and the surface rendering
was compared to a low-passed x-ray structure on Figure 4.25.

Figure 4.19 |P43212 space group diagram. A unit cell following P43212 space
group, features 4-fold and 2-fold screw axes, that replicate one molecule 8 times.

Segmentation

To segment out the entire crystal, we can create a binary 3d envelope that selects the
unit cells with correlation above 0.07, and multiply it with the reconstructed volume.
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This will render what we consider to be the background to become equal to 0. While
this is usable to simply look at the segmented volume, it will become a burden when we
want to do something in the Fourier space. The shape transform of the sharp envelope
will completely dominate the Fourier transform (discussed in section 1.2.1). To get
rid of this problem we low-pass filter the mask by a large amount, which will obtain a
smooth segmentation (Figure 4.20).

Figure 4.20 | Segmentation of the crystal D17 by correlation thresholding.
a, Unit cells showing correlation > 0.07 with the total average. b, Low-passed version
of a. c, Different view of a. d, Low-passed version of c.

Before the segmentation, the FFT of the reconstructed map showed some visible
diffraction peaks, but it was difficult to see the higher order ones as they had very low
intensity. Now, with the background removed, the FFT is striking (Figure 4.21. FFT
of the FBP map reconstructed to full Nyquist frequency without any low-passing is
full of diffraction spots. As the non-crystalline background has been suppressed, many
of the faintest spots become visible. There is still some noise in the lower frequencies
but it is of less nuisance now.



76 Nanocrystal Cryo-ET

Usually, in tomography, it is difficult to say something certain about the resolution
in the map. Proxies, like Fourier shell correlation, are often used in single particle
reconstruction, but the question of where exactly should the FSC curve be cut remains.
With crystals, the fact that diffraction spots appear far out in the spectrum, is a
direct indication that there are details with a given spatial frequency present in the
reconstruction.

4.4.5 Resolution

Figure 4.21 |FFT of FBP of segmented crystal D17. The transform shows
reflections to at least 10th order and even two 12th order spots.

In electron tomography the question about the resolution in the data is always tricky
to answer, because there are many resolution-altering factors acting isotropically or
anisotropically in various directions, such as

• The missing wedge of information - decreases resolution in the electron beam
direction

• Sample drift during imaging decreases resolution in the drift direction

• Radiation damage from long electron exposure decreases resolution in all di-
rections, starting from the fine detail.

• Improper CTF deconvolution inverts contrast wrongly in the high end of the
spectrum, and if the tilts each have individual defocus values, then the net effect
of using one average defocus value is that the high frequencies will be damped.

• CTF zero-crossings removes resolution at specific frequencies.
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• One or more interpolation steps decreases resolution in all directions.

Often there is also a lack of an objective reference structure against which to com-
pare the results. For resolution assessment in averaging-based methods the Fourier
Shell Correlation (FSC) has been traditionally used. FSC is applicable when many
supposedly identical objects are averaged together, such as in single particle recon-
struction and subtomogram averaging. In FSC the total pool of objects to be averaged
are split randomly into two, then each of the splits is averaged independently, their
respective Fourier transforms are divided into shells corresponding to resolution in-
tervals, and finally the corresponding shells are correlated against each other. This
usually results in a downward sloping curve indicating that the low resolution details
of the structures are in good agreement, but the smaller the details get, the lower
the agreement becomes, until after some resolution the details are effectively random.
Eventually, there is a question of where to draw the line. Usually the resolution is as-
sessed by setting a threshold, say 1/2 or 1/7, and observing at which spatial frequency
the correlation drops below that value. This method has a certain dose of arbitrariness
built in and is not applicable when the final result is just a single reconstruction.

In the nanocrystal case the Fourier shell correlation is definitely applicable as here,
too, many unit cells and molecules are averaged together. But in addition to FSC a
more direct and objective measure exists. The diffraction spots in the Fourier transform
of the original non-averaged reconstruction are a clear indication of the resolution in
various directions.

The original reconstruction includes large amounts of non-crystalline volume that
manifests as intense background in the FFT that obstructs the view and drowns the
spots. FFT of the segmented crystal, on the other hand, has greatly increased clarity
and an interpretable lattice (Figure 4.21). It is remarkable that there is evidence of
such high resolution details. In various dimensions the resolution reaches around 8.5Å
and some of the highest peaks go up to the 10th order, corresponding to 7.6Å. On
D17 there even exists a 12th order peak, corresponding to 6.52Å, and some faint, but
distinguishable if contoured properly, 11th order peaks.

It must be noted that this high resolution is roughly only present in the x-y direc-
tions while the resolution in z-direction is greatly reduced, mainly due to the missing
wedge. Thanks to the high symmetry in the crystal and the fact that the symmetry
axes do not coincide with the laboratory coordinate axes, the rotation operations can
fill in a large portion of the diffraction pattern that is missing, thereby making the
resolution more isotropic.

A particular weak point in our algorithms is that, if we have one object with low
resolution where another object has high resolution, and high resolution on the first
object where the other has low resolution, then their average will be uniformly medium
resolution. This is the way our programs are implemented currently and this is reflected
also in the FFT of the symmetrized map, where after symmetrization the resolution has
become much more even in all directions, but we have lost the high end of the spectrum
(Figure 4.22). The solution would be to, instead of naive averaging, use some kind of
smart composition that would retain the high resolution from each image. This has
yet to be implemented.

On Figure 4.22 we also see how the missing wedge gets partly filled in by sym-
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metrization, at the expense of loosing high resolution information elsewhere. This
could and should be avoided in the future implementations.

Figure 4.22 |FFT of back-projection locally averaged and symmetrized. The
averaging is done locally only over 2 neighboring unit cells in each direction. The
symmetrization is done using the same symmetry origin for all unit cells. The tilt-axis
in data collection was x, therefore the missing wedge is visible when looking from x-
direction. Red arrows indicating data that has gone missing. a Averaged only, view
from z-direction. b Averaged + symmetrized, view from z-direction. c Averaged only,
view from x-direction. d Averaged + symmetrized, view from x-direction.

4.4.6 Lysozyme Structure

Non-averaged reconstructions of the crystals in general have too low SNR and contrast
to distinguish individual molecules. One major advantage of a nanocrystal is that
it acts as a powerful guide leading directly to the molecular densities. If we take a
look inside the crystal then we can identify many chunks of density that upon closer
inspection strongly resemble a protein molecule. As the atomic structure of lysozyme
is known, many of the found individual molecules resemble the topology of the atomic
structure to a staggering degree. Possibly some reference based automatic algorithm
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could extract out hundreds of individual molecules, each deformed in its own way due
to various reconstruction artifacts, anisotropic resolution, radiation damage, as well as
conformational variability. Distinguishing between those sources of error is difficult.

After selecting for the most highly correlating unit cells, averaging, and symmetriza-
tion, we arrive at a rather clean looking unit cell from where a single molecule can easily
be seen and extracted. The general problem is that even though the molecule can be
seen, when it is packed tightly in a crystal, it is hard to tell where exactly does one start
and end, and which densities belong already to the neighboring molecule. Therefore,
unless the resolution is really high, or the molecule is large (unlike lysozyme), or has
a favorable and easily identified shape, the chance for interpretation error cannot be
neglected.

The structure appears to be at a medium resolution of around 13Å as judged by
visual comparison with the simulated electron density from atomic coordinates. The
reasons for not being able to obtain as high resolution as evident from the processed
diffraction pattern (Figure 4.21) are probably the following

• The high resolution diffraction spots were present only at certain specific di-
rections. Most notably, the direction parallel to the optical axis of the electron
microscope has strongly decreased resolution, and therefore a simple symmetriza-
tion can only achieve resolutions somewhere in between.

• Regularization is a compromise - we lose some resolution, but gain on contrast
and the interpretability of the density map.

• Each individual tilt in the tilt-series is likely imaged at a slightly varying defocus,
therefore convolved with a different CTF. On top of that, there is a defocus
gradient through a relatively thick sample, and even more so in an image taken
at a higher tilt angle. Our regularization and CTF deconvolution procedure is not
taking this variation into account. It assumes one particular CTF, determined by
the input parameters, and deconvolves that. Clearly this is not optimal, but is
certainly less computation-heavy. Implementing the above-mentioned additions
are planned in the future developments of the procedure.

Structure from the Back-projection

It is well known that the image reconstructed by back-projection alone can be inter-
preted only to a relatively low resolution of around 40Å, because of the CTF-caused
contrast reversal at higher resolutions, the dominance of noise, and the inaccurate
molecular volumes due to spread out density. Nevertheless, for educational purposes
we went ahead and took FBP map reconstructed to the Nyquist frequency, picked
out highly correlating unit cells, averaged, and subsequently symmetrized them (Fig-
ure 4.23).
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Figure 4.23 | 3x3x3 averaged and symmetrized unit cells of FBP map. left -
average of the highest correlating unit cells. right - symmetrized version of left.

On Figure 4.24 we can see a single molecule picked out from the symmetrized unit
cell (in green) side-by-side with the density representation of an x-ray structure (in
red). The back-projection structure has been scaled up to match the size of the model.
Even though some of the important details are missing, the overall similarity is there.
The missing structural elements are presumably due to the CTF effects.
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Figure 4.24 |Averaged and symmetrized lysozyme structure from back-
projection. 4 different views, each 90◦ apart, of a suspected true structure of lysozyme
(taken from PDB code 1DPX) in red color and the one reconstructed form back-
projected map with no contrast function deconvolution in green. The resolution is
high but some obvious details are missing, presumably due to CTF effects. Also, the
reconstructed structure was much smaller but has been scaled up here to match the
size of the model.

Structure with CTF deconvolution

Figure 4.25 shows a surface rendering of an individual molecule extracted from Fig-
ure 4.16f. As compared to the structure from back-projection alone (Figure 4.24), the
current structure had correct volume and seems to be more complete. It however still
does not agree fully with the x-ray structure even at this medium resolution level. Any
number of reasons could explain the differences

• Radiation damage

• Reconstruction errors, including errors in the CTF parameters
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• Errors in the symmetrization procedure

• Errors in the lattice and the symmetry origin

• The molecules are actually different

Figure 4.25 |Averaged and symmetrized lysozyme structure from 28 highest
correlating unit cells. 4 different views, each 90◦ apart, of a suspected true structure
of lysozyme (taken from PDB code 1DPX) in red color and the one reconstructed form
real data in blue. This structure matched the scale well. Although the similarity
between the two is noticeable, there are definitely several mismatches which could be
attributed to number of reasons.

4.4.7 Local Symmetrization

We tried to get a glimpse of the variation in the lysozyme nanocrystal by not averaging
and symmetrizing over the whole crystal, because that would result in a less interesting
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global replication of a single average unit cell, but instead average and symmetrize
locally. Replacing every unit cell in the large reconstruction with the average of its
neighbours and applying symmetry operations gave a great enhancement in the signal,
reduction in noise, and brought out the differences as they propagate over the crystal.

On Figure 4.26 we can see 3 different views through a nanocrystal, that has been
locally averaged and symmetrized over 125 unit cells, that is 2 neighbors in each direc-
tion for each unit cell. The symmetry origin, however, is the same for each unit cell.
We can definitely see some variation in intensity and variation in structure, presumably
due to the fact that the average lattice parameters used here are not ideal locally, so
the crystal goes in and out of sync with the average lattice.

Figure 4.26 |Locally averaged and symmetrized crystal. Left - top view from
c direction. Center - side view from b direction. Right - side view from a direction.

4.4.8 Cluster analysis

When averaging many objects, it is crucial to make sure that only similar ones get
averaged together. Failing to achieve that, might result in an object that does not make
sense physically, or might lead to wrong conclusions, depending on the magnitude of
variation.

For the crystal D17 there was a growing suspicion that it might be composed of
compartments of varying morphology. As evident from the previous sections, the less
unit cells we included into the final average, the sharper the average image seemingly
got, up to the point where the structure broke down, because too few unit cells in the
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average did not suppress enough noise. A cluster analysis should be able to detect
blocks of identical morphology, provided they exist.

The idea was to do clustering at a unit cell level, as it fits in nicely with the rest of
the analysis framework we have developed. The previously determined lattice vectors
were used to define the shape of the unit cell and the correlation-based segmentation
gave the rough shape of the crystal.

We cut out 5104 unit cells, each of them consisting of 21880 voxels. Placing the
objects into a data frameX thus gives a matrix with 5104 rows and 21880 columns. To
say anything meaningful about the similarity of the objects, the dimensionality of the
problem has to be reduced, because in high dimensional space odd things can happen
and almost everything is equally distant from each other. A conventional method for
dimensionality reduction is using principal component analysis (PCA).

Principal Component Analysis

The essence of PCA is to derive new features (principal components) as linear combina-
tions of the existing ones (voxels), with the requirement that each component captures
as much variation in the data as possible and the components themselves would be
mutually uncorrelated. The matrixX in this case was still small enough to not require
any clever treatment for computing PCA on a desktop computer, or a truncated PCA
that would only try to retrieve the k first principal components.

Full PCA was computed using statistical computing environment R, and it took
around 30 min to complete. The pairwise scatter plots of 5 of the first components
showed just a random cloud of points, no hints of clustering or structure, and mapping
the values of those components back to 3d reconstruction space showed no identifi-
able pattern. The suspicion was that the signal in the images was too weak to find
meaningful principal components.

Locally Averaged Unit Cells

The next idea was to do some pre-averaging prior to PCA. Just like before, we assume
that the neighboring unit cells do not differ from each other too much, and therefore
it makes sense to average them. So, instead of extracting each unit cell individually,
we performed local averaging at the unit cell level, by replacing each unit cell with the
average of its immediate neighbors. Each unit cell thus became the average of 27 unit
cells in its immediate neighborhood, including itself.

After local averaging the signal in the dataset was stronger, but the concern was that
the objects were not independent anymore, which might introduce artificial similarities
between the unit cells. To remedy this, we found the largest such subset of unit cells
that have at least two unit cells between each member (Figure 4.27). In other words,
we selected only the unit cells with hkl indices (0, 0, 0), (0, 0, 3), (0, 3, 0), . . . so that all
of the objects in the dataset were independent ones and none of them shared neighbors.
This left 197 averaged unit cells into the analysis.
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PCA After Local Averaging

Figure 4.27 | Independent unit cells that were used for PCA. The red dots
show the unit cells centers that were used for performing principal component analysis.
The red grid has exactly two lattice points between each point and allows enough
space to do local averaging in the immediate neighbourhood without creating artificial
dependencies between the unit cells. a - View from c direction. b - View from a
direction.

Calculating the principal components now took only seconds. The explanatory power
of the derived principal components is illustrated on Figure 4.28. On the scree plot
(Figure 4.28a) we see that there is a slight “elbow” at the 10th principal component.
This observation is sometimes used as a selection rule as to how many components
should be kept for further analysis. In the current case the first 10 components cu-
mulatively explain only around 16% of the total variance in the data, which might
not be enough. We decided to continue the analysis with 100 first components, that
cumulatively explain 72.5%.
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Figure 4.28 |Variance explained by the principal components. a - shows the so
called scree plot of the principal components. The height of the bar shows the absolute
variance explained by each of the principal components. There is a slight “elbow”
at around the 10th components, whereupon the height of the bars starts decreasing
slower. b - shows the cumulative proportion of variance explained by the principal
components. We see that the first 10 components explain only around 16% of the total
variance in the data.

As a sanity check, we do a quick k-means clustering of the independent 197 unit
cells into 3 classes using just the 10 first principal components. We have not used any
information about the physical location of the unit cells in our calculations so far. If
the clusters obtained by considering just the pixel values of the independent 197 unit
cells are also continuous in physical 3d space, then it reassures that we are on the right
track. The picture that emerges by coloring the unit cells by the k-means assigned
clusters (Figure 4.29) confirms that the clusters are indeed continuous.
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Figure 4.29 |Clustering of the independent unit cells into 3 classes using
k-means on the 10 first principal components. The classes appear continuous in
the physical space.

But since we are interested in classifying all of the unit cells, not only the indepen-
dent ones, we project the rest of the unit cells to the same principal component space.
The pairwise plots of the first 5 components from all of the unit cells are visible on
Figure 4.30
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Figure 4.30 |Pairwise scatter plots of principal components. To avoid over-
plotting the points have been hexagonally binned. The lighter the color the higher
the number of the points in a particular bin. Principal component 1 describes largest
portion of the variance and plotting it against other components appears to draw out
some structure.

Further Dimensionality Reduction with tSNE

Since no really clear clusters were forming in the first 2 or 3 principal components,
we opted to experiment with some non-linear method that would map the first 100
principal components of each object into just 2 dimensions and hoped to obtain a
sensible clustering and gain an idea about the number of clusters.

The method of choice was t-distributed Stochastic Neighbor Embedding (tSNE) [74].
It is a modern method that has been successfully used for visualizing high-dimensional
data in numerous cases and it appears to be superior to many other non-linear mapping
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techniques [74]. tSNE tries to find a low-dimensional embedding to high-dimensional
data that would retain the nearest neighbor graph as faithfully as possible. The number
of neighbors to consider is a tuning parameter.

The downside of tSNE is that the low-dimensional embedding is non-parametric,
meaning that it cannot be directly applied to new data points, which rules out the
strategy of using just the 197 independent unit cells for figuring out the mapping, and
then using that mapping to map the rest of the unit cells down to 2 dimensions. So
we had to run tSNE directly on all of the 5104 unit cells.

Figure 4.31 | tSNE embedding of the first 100 principal components in 2
dimensions. The first 100 components in 2 dimensions seem slightly clustered, but it
is hard to tell where exactly the cluster borders run.

The results of tSNE are plotted on Figure 4.31. There seems to be some definite
structure to the data, but it is hard to tell whether it is true structure and where
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exactly the cluster borders run. The clusters borders are very complex, so k-means
clustering would do no good here, as it can only find spherical clusters. To somehow
assign the points into clusters we used single linkage hierarchical clustering.

Single Linkage Hierarchical Clustering

Single linkage clustering works by joining the closest two points on each step, until all
points are merged into one cluster. By setting a distance threshold we can stop the
procedure early when no connections shorter than the threshold remain. As a result
the method reports the clusters that have formed by then. Single linkage clustering
sounds simple, but it can be surprisingly powerful in cases where the clusters have
strange shapes, just like in the current case.
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Figure 4.32 |TSNE embedding of 100 first principal components in 2 dimen-
sions, clustered by single linkage. The 49 clusters formed by single linkage hierar-
chical clustering are depicted with varying colors. Some clusters are large, while others
have only 1 or 2 points. The axes here represent the coordinates in the low-dimensional
embedding and have no physical meaning. The clustering may seem arbitrary on the
first look but in 3 physical dimensions the same clusters are mostly continuous, giving
assurance that the grouping makes sense.

The 49 clusters formed by single linkage hierarchical clustering are visible on Fig-
ure 4.32. The clusters may look slightly arbitrary, but looking at the same clusters in
the physical three dimensions on Figure 4.33, we see that they remain mostly contin-
uous. The same truth is perhaps better seen on Figures 4.34-4.36 where the clusters
are depicted as unit cells in 3d.
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Figure 4.33 |TSNE embedding of 100 first principal components in 2 dimen-
sions, clustered by single linkage, in 3 physical dimensions. The same clus-
tering as in Figure 4.32 but points mapped into 3 physical dimensions. Z-coordinate
is mapped to the size of the dot and alpha value to increase the depth perception, so
smaller and fainter dots have smaller z value and appear “further away”.
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Figure 4.34
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Figure 4.35
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Figure 4.36 |Averaging an symmetrization within clusters. Averaged map (left)
and symmetrized map (right) side-by-side. The number is a cluster indicator. The
last map “all” includes unit cells from all clusters. The symmetry origin used for
symmetrization is the same on all maps and was determined from the “all” map. The
contouring level for the non-symmetrized maps (left map) is the same for each cluster,
but it varies for the symmetrized maps (right map), because depending on how well the
symmetry origin fits, the maps are more or less blurred out and therefore the gray-scale
values are not directly comparable.

Conclusion

The conclusion from the cluster analysis is that the crystal is definitely not homoge-
neous throughout. We see a variety of different forms and shapes when dividing the
crystal into clusters and averaging and symmetrizing within the clusters independently.
In the current approach the number of unit cells per cluster varied considerably, from
just 1 up to 538. The symmetry origin was determined on the average map, that in-
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cluded all 5104 unit cells. The choice of the symmetry origin is probably suboptimal
for some of the unit cells, because some clusters appear to have a shift in the origin,
but using the same symmetry origin everywhere illustrates the differences between the
clusters.

The question whether the variability in morphology is true variability, or it is an
artifact of the reconstruction due to the defocus gradient through the reconstruction,
defocus variation over the tilts or misaligned tilt-series, remains to be answered. It is
remarkable, however, that the clusters formed by considering only the voxel values of
the reconstruction, are continuous also in the physical 3d space. This demonstrates
that there are indeed spatially varying differences between parts of the crystal.

As we will explore later in the section regarding the symmetry origin, the major
problem with the current data set is that the origin can be accurately located in the
a-b plane, but is hard to pinpoint its coordinate on the c axis. The result is that
the 4-fold screw axis stacks are well separated from each other, but the molecules the
stacks are blurred together (Figure 4.34-4.36). This is currently the major obstacle,
and better, more clever algorithms are needed to reliably solve this issue.

One final note is that using a different clustering method, or varying the number
of tuning parameters, obtains different classes. However, the clusters themselves are
almost always continuous in the physical space. A potential critique against this ap-
proach could be that the seen clusters are only there because we used local averaging
and artificially created similarities between neighboring cells. However, this can be
countered by pointing out that even when we clustered the 197 independent unit cells
that shared no common neighbors we still saw continuity in the formed clusters. The
question whether the classification reflects something about the mosaicity of the crystal
cannot be conclusively answered at this point and has to be studied further.

4.4.9 Exploring Unit Cell Distribution

Despite the many challenges of cryo-electron tomography the most amazing upside
is that the reconstructed 3d density is a nanoscopic chunk from the actual natural
world. Most other methods used in structural biology rely one way or another on
averaging which makes the study of objects that are truly unique or have a continuum of
conformations difficult. While molecules inside the crystal are supposedly all identical,
the whole crystal itself as a higher order structure is unique.

It has been observed that flash freezing protein crystals to cryogenic temperatures
increases the mosaicity, defined here as the broadening of the lattice orientation and
spacing distribution [73]. In this section we try to examine the distribution of unit cell
vector orientations and lengths within a protein nanocrystal by harnessing cryo-electron
tomography.

Coherently illuminating small crystals with x-rays makes it possible to reconstruct
crystal morphology and strain field. In [75] they used Bragg Coherent Diffraction
Imaging (BCDI) on 1.25 µm sized calcite crystals to visualize a network of dislocations
in 3d. In [76, 77] electron tomography was used on nanoparticles to obtain an atomic
resolution description of the dislocations in various materials.
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The Approach

Our approach to investigate the lattice disorder is the following

1. Take a large 3d reconstruction of a protein crystal

2. Divide the reconstruction into smaller volumes, referred from here on as chunks

3. For each chunk calculate FFT, perform peak search and determine lattice vectors

On Figure 4.37 a 3d depiction of all of the positions where the chunks were extracted
are shown as black dots. Each chunk in this case is 256×256×256 voxels large. Ideally,
we would have liked to use smaller chunks because chunks that large encapsulate a
fairly large portion of the entire crystal, thereby losing the local information. The
signal in chunks smaller than 256 cubed was too weak to for the algorithms to reliably
determine the lattice vectors. The gray surface on Figure 4.37 is a convex hull around
all of the lattice points that correlated with the averaged unit cell higher than a certain
threshold, which approximately outlines the crystal. Based on visual inspection the
crystal actually extends slightly further out than the convex hull, but the shape is
approximately the same.

As there are hundreds of small chunks that each need processing the procedure
would be labor intensive if performed manually. Automatic treatment needs robust or
adaptive programs because each individual chunk is different and might need separate
parameter tuning. Fortunately, our peak-detection and lattice determination programs
are robust enough, that for a large number of chunks the automatic determination
worked well and parameter tuning had to be performed only once in the beginning of
the procedure. After the first round of lattice determination, we selected all chunks
that gave obviously wrong results, and submitted those to the second round of the same
procedure, but this time with a different set of parameters. Two rounds was enough to
cover most of the crystal.
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Figure 4.37 |Positions where the unit cell was determined. Black dots represent
positions where a 256 × 256 × 256 voxels chunk (red cube) was extracted. The gray
surface is a rough segmentation of the crystal. a is a tilted view, b is a view along
z-axis, c is a view along y-axis and d is a view along x-axis.

The distribution

For 286 of the partially overlapping chunks the automatic lattice detection algorithm
was able to retrieve unit cell vectors that made sense. As we expect the crystal to be
in a space group P43212 with unit cell vectors lengths around 80Å, 80Å and 40Å we
decided to keep only those vectors that were not further than 5Å from those values.
The locations of the chunks that gave results out of those boundaries were mostly at
the periphery of the crystal thereby including a large portion of the non-crystalline
background or completely outside of crystal. The fact that the lattice angles are not
all exactly 90◦ suggests that the crystal is actually in a triclinic form rather than
tetragonal, but the molecules seem to nevertheless approximately follow the P43212
space group.

Figure 4.38 shows a 3d visualization of the unit cell vector distribution. The heavy
colored lines represent the mean vector for each crystallographic direction. We can see
that the c vector is the most stable while a and b vary noticeably. The variation is
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mostly, but not exactly, in the z-direction. This suggests that the variation could just
be from the lower spacial resolution in the z direction, caused by the missing wedge.
However, that can not be the only source of variation. In some of the later visualization
we see that there is also variation in the unit cell parameters dependent on x and y
directions.

Figure 4.38 |All determined unit cell vectors plotted together. left - All
vectors drawn together. The average vector of each bundle is drawn in color. right -
All vectors depicted as unit cells with common center point. The unit cells are drawn
partly transparent.

Distributions of coordinates

It is instructive to study which coordinates vary together, independently, or none at
all. On Figure 4.39 all pairwise scatter plots as well as non-parametric density curves
for each coordinate can be seen.

An interesting aspect is that several of the distributions, but especially the y-
coordinate of the c vector, appears to be bimodal. The positions belonging to one
mode are relatively more constant whereas the position close to the second mode seem
to be more variable. It would be interesting to see how this characteristic is distributed
within the crystal itself. The distribution of the y coordinate of c axis is mapped into
3d on Figure 4.40.
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Figure 4.39 |All pairwise scatter plots of the coordinates of the unit cell
vectors.
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Figure 4.40 |Distribution of y-coordinate of c vector. The distribution of y-
coordinate of c vector is split into two modes and the result is mapped into 3 dimen-
sions. It appears that the y-coordinate of the c vector is more stable at one side of the
crystal, and varies more at smaller y values and at the periphery of the crystal.

Distribution of cell parameters

The pairwise scatter plots of the unit cell parameters a, b, c, α, β and γ can be seen
on 4.41. Again we can see how the length of the c vector seems to be more stable and
shows a sharp peak around 39.5Å, while a and b vary relatively more.
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Figure 4.41 |Nonparametric density curves of the unit cell parameters.

Figure 4.42 shows the same information as on the main diagonal of Figure 4.41 but
the relevant density curves have been placed on the same graph for better compari-
son. In a P43212 space group all angles between the unit vectors should be 90◦. On
Figure 4.42a we see that only in very few cases the angles are exactly 90◦ and in most
cases they are below, fluctuating around 88◦. This might suggest that the crystal has
been subjected to some external forces during the sample preparation and flash-freezing
phase and is probably under some stress. In our method of crystallization, in order to
avoid the formation of large crystals, we flash-froze the specimen almost immediately
after the start of intense salting out. Perhaps, for future reference, the crystallization
method should be altered if a more perfect crystal is desired.

Figure 4.43 shows also the co-distribution of the angles from a third perspective. We
see yet again that most of the angles are below 90◦. While it is possible to find positions
in the crystal where the unit cell angles α and β, or α and γ, were simultaneously 90◦,
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there is no such position where it would hold for γ and β, and obviously then also for
all of the three angles together, reflected on the 3d scatter plot.

Figure 4.42 |Nonparametric density estimation of unit cell parameters.
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Figure 4.43 |Distribution of angles between unit cell vectors. The hexagonally
binned scatter plots a - c show the pairwise joint distribution of the angles between the
unit cell vectors. We see that most of the angles are less than 90◦ which suggests that
the crystal, that was expected to be of a tetragonal system, is slightly sheared. e - On
the 3d scatter plot of the angles the red spot depicts the (90◦, 90◦, 90◦) point. We see
that none of the vector triplets are perfectly orthogonal. d - Histogram of Euclidean
distance between the angles and a point (90◦, 90◦, 90◦).

On Figure 4.44 the relationship between the reference frame coordinates and two
unit cell properties have been plotted. Figure 4.44a shows the variation in the length
of the vector a + b + c, i.e. the vector pointing from the origin of the unit cell to
its furthest corner. We see that there is little to no dependence in x, the length is
longer for smaller y and has a quadratic dependence on z. This suggests that the unit
cells are slightly more stretched out in the center of the reconstruction than at the
bottom or at the top. Interestingly, when the unit cell gets stretched in the center of
z, there is no such dependence on the volume, which seems to remain almost constant
(Figure 4.44b).
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Figure 4.44 |Relationship between laboratory coordinates and the unit cell
size.

4.4.10 Symmetry Origin

Knowing the lattice vectors makes possible averaging the reconstruction in P1 space
group, i.e. taking advantage only of the translational symmetry. For P1 the origin
of the lattice can be arbitrary. For any other symmetry operation, we need to know
the exact locations of the symmetry elements. For a space group P43212, we have
8 equivalent molecules within the unit cell, all mapped to each other via symmetry
operations. The positions of the symmetry elements are determined once an origin is
fixed.

In addition to being able to actually apply the symmetry it was an interesting
question to us, whether there is a change in the relative position of the symmetry
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elements over the whole crystal or does it remain constant. This information could
serve as a proxy for studying dislocations or other imperfections. We already know
from looking at the diffraction pattern on the Fourier transform of the large crystal
that it looks like that of a single crystal.

To perform that analysis we took the same grid of positions shown on Figure 4.37.
Then, taking each grid point as the center, we calculated the average of the surrounding
5× 5× 5 unit cells. So altogether 125 unit cell sized chunks were averaged at each grid
point.

Then for each averaged unit cell we performed the symmetry origin search and
investigated whether there is any relative change in the origin. The results can be seen
on Figure 4.45. The points are plotted in fractional coordinates, i.e. fractions of the
unit cell vectors.

Figure 4.45 |Distribution of symmetry origins over all crystal. The coordinates
are fractions of crystallographic vectors. the origin is relatively well determined on a-
b-plane, but extremely poorly along the c-axis. The color coding for the 3d scatter
plot in the bottom right corner is according to c value.

Looking at the plot a couple of curious and eye-opening circumstances are revealed.
First, it becomes immediately apparent that our resolution and certainty in the c-
direction is not good. The crystallographic origins are without exaggeration spread
through-out the unit cell along the c-axis. The c-axis for the current dataset is just at
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a 17.3◦ angle with the z-coordinate, so the spread could be due to our lack of knowledge
about the details in that direction. Another explanation is that there is true variation in
the c-direction. Since there is little evidence to back up this claim, the first explanation
is more likely.

The position of the origin is well-determined on the a-b plane. The reason for
having two clusters is that per our current definition, the origin of symmetry lies on
a 4-fold axis. P43212 space group has two of those, so it’s probably a random pick
between those two by the algorithm (Figure 4.46). The same is true for the origin
along c-axis. So altogether we have 4 equivalent points for the symmetry origin and
looking closely at Figure 4.45 we see that there indeed are 4 clusters of points.

Figure 4.46 |The diagram of P43212 space group.

Let us split the points into 4 classes. The easiest is to perhaps first split along b
and say that points less than 0.5 belong to class 1 and points greater than 0.5 to class
2. Let us observe the distribution along c for the two classes separately.
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Figure 4.47 |The distribution of origin along vector c grouped by b < 0.5.

On Figure 4.47 we can see that the symmetry origin along vector c has two quite
prominent modes for each class. To translate all points to the same interpretation we
can translate all origins in fractional coordinates into the first quadrant of the unit cell
by subtracting 0.5 from all coordinates that are greater than 0.5. Doing that allows
us to take the median of the origins and get a reasonable estimate for the symmetry
origin that will also become the new definition for the lattice origin. We take the
median instead of mean to have less influence of the outliers. The median origin in
fractional coordinates is then (0.190, 0.195, 0.295). This number on its own carries
little information as it depends on where we placed the origin previously for P1, but
it describes the shift of the lattice so that the unit cell lattice vectors would coincide
with the symmetry axes.
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Figure 4.48 |Distribution of the symmetry origins over whole crystal. The
coordinates are fractions of crystallographic vectors. The color coding for the 3d scatter
plot in the bottom right corner is according to c value.

4.4.11 Shortcomings and Discussion Points

The method of nanocrystal cryo-ET being still far from maturity has its share of
shortcomings that should be addressed in the future. Not all of them can be known at
the time of writing, but some more important ones are being discussed in the following.
The first shortcomings are more general and related to any tomographic reconstruction
attempt. The later points are more specific and have to do with technicalities of
nanocrystals ET.

1. Aligning the tilt-series. The quality of the alignment of images in the tilt-series
sets an upper bound to the achievable resolution. When the gold nano-beads are
scarce the chance for getting a good alignment drop. In the data sets used in
the analysis in the preceding paragraphs, we had only two gold beads in the tilt-
series. Though in this case we managed to get a decent alignment, in general it
might not be enough. The more gold beads available for tracking, the higher the
certainty of the alignment and potentially more parameters such as the distortion
in the images could be solved for.
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2. Proper CTF deconvolution is crucial. For a correct CTF model we have
to know several parameters such as the defocus, fraction of amplitude contrast,
chromatic and spherical aberration constants and various damping factors. It is
not always easy to estimate those and, moreover, the defocus can vary substan-
tially between the images, as well as within a single image of a thick specimen,
or one that is at a high tilt. With nanocrystals we generally reconstruct a large
volume that ideally includes the whole crystal. Failing to deconvolve the CTF
has the potential to improperly flip the high resolution details and when the
variation in the defocus is large, but only a single defocus is assumed, then it
has the effect of canceling the high end of the spectrum. We saw in the filtered
back-projection how the molecules largely resembled the true structure yet had
important details missing and lower volume than expected.

3. Lattice determination. When determining the lattice, at the first step, we
can only obtain an average lattice, while in actuality the crystal could have
slight variations and deformations throughout. In the current implementation
we basically use correlation to throw out all unit cells that do not conform well
with the average unit cell that is derived from the average lattice assumption.
The results are not always convincing and need some amount of luck to work.
Some other ideas for better results are

• Use the average unit cell as reference and try to align every other extraction
into that, a sort of subtomogram averaging approach.

• Extract all unit cells based on the average lattice and use clustering tech-
niques to find groups with similar morphology.

• Generalize the crystal unbending technique, that is used for 2d crystal im-
ages, to 3d images.

4. Determining the symmetry group. In this thesis we made no attempt to
implement the symmetry group detection algorithm. In principle, after getting
a decent 3d diffraction pattern then a lattice simulation approach could work,
where all possible space groups are generated and the reflection conditions of
every potential space group checked.

5. Finding symmetry origin. Finding the symmetry origin, as implemented now,
is slow and reliable when the signal is strong. The speed and accuracy could be
improved by doing a coarse search first, followed by a search on a finer grid.
Another approach could be to do the search in the Fourier space.

6. Validation. Finally, and perhaps most importantly, the validation of the struc-
ture is something that can not be answered easily. In our proof of principle we
knew the structure of lysozyme to atomic details and could use this as a reference
to let us know when we have derailed. For a new structure it is obviously not as
simple.
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4.5 Programs

Historically, 3d crystals have been analyzed using diffraction based methods, which
means that the amount of software tools available is heavily biased towards working
with a diffraction pattern, where only the diffraction amplitudes are known instead
of a real image of a crystal. The current work is dealing with a general tomographic
reconstruction problem. Therefore, the plethora of tools developed for (cryo) electron
tomography have been useful also in this context. The tools which are missing though,
because of a presumed lack of need, are the ones that for a crystalline image would
combine the methods developed for 3d diffraction pattern analysis in reciprocal space
with methods developed for a real image processing in real space.

Starting the analysis from a real image gives the advantage of avoiding the crystallo-
graphic phase problem. Harnessing the power of Fourier transform we can hop between
the two representations and though low-resolution tomography does not provide high
resolution diffraction peaks, at least the phases are known for the ones we do see. In
order to carry this project to its natural conclusion we had to go ahead and develop
the programs that marry crystallographic approach with a real space image process-
ing. This section describes the theoretical basis and the implementation details of the
programs necessary for going from a tilt-series of a crystalline sample to a structure of
a single molecule.

In the following we are going into the details of the programs that were specifically
developed for handling tomograms that contain 3d crystals. The main flow of the
involved procedure is the following

• Reconstruct a 3d volume

• Fourier transform the volume

• Find peaks

• Determine lattice vectors that define the unit cell

• Compute the average unit cell

• Use the average as a reference to segment out the crystal

• Compute average unit cell of the crystal

• Use the second average as a reference to select for specific parts of the crystal

• Compute average unit cell of the selected parts

• Find crystallographic symmetry origin

• Compute the third average again, this time applying also the symmetry opera-
tions

• Visualize and investigate the results
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4.5.1 Peak Finder

To find the crystallographic lattice vectors, we first have to detect the high intensity
peaks from within the Fourier transform. This is perhaps not as straightforward as it
may sound, because in general we are dealing with maps that have very low SNR and
relatively high varying background level.

The peak detection can be done directly on the Fourier transform itself, or it can be
done on a processed version of it. In [25] a lattice detection algorithm was proposed for
usage in electron crystallography of 3d protein nanocrystals. There the starting point
is a 2d image, showing a diffraction pattern, and they propose that by calculating an
auto-correlation function (ACF) of this pattern, the positions of the diffraction spots
will remain unchanged, the missing peaks due to the systematic absences of a specific
space group will become visible, the shadow cast by the backstop that blocks away the
intense undiffracted direct beam will disappear, and the pattern will become centered
by definition. The ACF is defined as follows

ACF (f) = F−1(F(f)F(f)∗) , (4.1)

where ∗ represents the complex conjugate operation.
The ACF still has a varying background level which is much stronger in the low

resolution area, and therefore directly setting an intensity threshold removes also the
weaker high resolution diffraction peaks. In [72] they propose to do adaptive background
removal, which amounts to subtracting a low-pass filtered version of the ACF from the
ACF itself to remove the uneven background.

In [78] a more elaborate peak finding scheme is described, that is implemented in
the software package 2dx. The paper goes into details how to detect peaks in a Fourier
transform of a 2d crystal image. They taper off the edges of the original image to
lessen the edge artifacts in the transform followed by further masking of the streaking
artifacts, masking out the very high resolution with the average gray value, and then
doing a peak search by identifying local maxima. After that they shift they center
the diffraction pattern image to each identified peak, sum the sifted images weighted
by the intensity of the respective peak, and do one more peak search in the averaged
pattern.

In the current work we also generalized these methods to 3d case, but eventually
found that much of it was not needed for our data sets. Instead, we accept a noisy
list of peaks, as long as it included the underlying lattice, and subjected this list to
the lattice determination program that uses a robust algorithm that can handle a large
amount of noise (described in section 4.5.2).

To perform a peak detection a custom software was written called peak_finder. It
takes as input a 3d map, be it a modulus of a calculated FFT, or an ACF of that,
or either one of those having the background adaptively removed, blanks out the part
of the map that is below a certain threshold, and returns a list of voxel indices that
have the highest intensity in their given neighborhood. To calculate the FFT we
implemented the periodic + smooth edge artifact removal algorithm proposed in [64],
that dampens a significant portion of the edge artifacts.
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Implementation

Let us have a 3d map ρ(x) with the dimensions of nx, ny and nz. Let us define the set
of all voxel coordinates as I

I = {1, . . . , nx} × {1, . . . , ny} × {1, . . . , nz} (4.2)

The flow of the program is the following

1. Define the radius of the neighborhood r ∈ N, and the type of the neighborhood
(cube or a sphere). For a voxel with index h the neighborhood is defined as

• Cube.
Nh = {h+ k : k ∈ {−r, . . . , r}3} , (4.3)

• Sphere.
Nh = {h+ k : k ∈ {−r, . . . , r}3, ‖k‖2 ≤ r} . (4.4)

2. Loop over all of the voxels in ρ, and consider those voxels peaks which have the
highest intensity value in their neighborhood. In this implementation we are not
considering peaks that are too close to the volume boundary. Therefore, let us
define the reduced set of voxels Ir that excludes all of the voxels closer to the
boundary than neighborhood radius r

Ir = {1 + r, . . . , nx − r} × {1 + r, . . . , ny − r} × {1 + r, . . . , nz − r} . (4.5)

The set of peaks is thus defined as

P =

{
h ∈ Ir : max

k∈Nh

{ρ(k)} = rho(h)

}
. (4.6)

3. The peaks in P are all necessarily integers by the nature of discrete sampling. In
the general case, where the lattice frequency is not a multiple of the fundamental
frequency, the vectors do not end up exactly on the integer coordinates. The
center points of the true peaks would be real numbers. Peak_finder does a non-
linear curve fitting in 3d as implemented in intel mkl library to refine the center
points of the peaks. In the current implementation we fit a 3d Gaussian curve f
to the peak that has its intensity leaked out into the neighbouring voxels

f(x|k,µ,Σ) = k exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
, (4.7)

where k is a scaling factor,

µ = (µ1, µ2, µ3)T , Σ =

σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 (4.8)

are the mean and variance of the Gaussian. Here we have taken the covariance
terms in Σ to be 0, so we are fitting a spherical Gaussian function.
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For each peak pi in P the procedure consists of solving a nonlinear system of
equations in the least squares sense. In the optimization we have 7 unknowns
θ = (k, µ1, µ2, µ3, σ

2
1, σ

2
2, σ

2
3) and |Npi | equations. So, we have a system

f(xj|θ) = ρ(xj) , xj ∈ Npi (4.9)

and we are looking for θ that minimizes the difference

∑
xj∈Npi

(f(xj|θ)− ρ(xj))
2 . (4.10)

Once the fit is done, µ is chosen as the refined location of the peak. In simulations
this sort of curve fitting improved the results, the peaks were lying much closer
to a lattice line, and were less scattered around. For the real data the gain of
doing the curve fitting was negligible, so it was seldom used. Since the Intel’s mkl
library is highly optimized there is not much computational cost on a modern
machine.

4. Instead of Gaussian curve fitting the user can also choose to calculate the weighted
average over the neighbourhood with weights being the intensity values. The
refined position of a peak pi is then

∑
xj∈Npi

xjρ(xj)∑
xj∈Npi

ρ(xj)
. (4.11)

For experimental data, considering all of the other sources of error, locating the
center points of the peaks in exactly did not appear to affect the end result
significantly.

5. Finally, the program outputs a list of peaks and a list of refined peaks

Experimental

We first Fourier transformed the back-projection map. The FFT did not show strong
background at low resolutions and the background removal procedures did not give any
benefit, therefore only the modulus of the Fourier transform of the image was input
directly to the peak detection algorithm. The algorithm picked out around 600 peaks
that clearly included the lattice but also a high amount of false positives (Fig 4.49)
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Figure 4.49 |The detected cloud of peaks. A true lattice is hidden within the noise,
visible for a human eye but slightly more challenging to pick out for a computer algo-
rithm.

4.5.2 From Peaks to Lattice

The program peaks2lattice is used to find the reciprocal lattice vectors based on a list of
peaks. In [78] an algorithm for lattice vector determination from the FFT of electron
micrographs of 2d protein crystals is described. In [25] they propose an algorithm for
determining 2d lattice from a 2d measured electron diffraction pattern of 3d crystals.
In both cases the search is only for two 2d vectors, whereas in this project we have a
3d calculated diffraction pattern of a 3d crystal and hence need three 3d vectors.

Here we present an algorithm where iteratively applying FFT, and at each step
retaining only the brightest peaks, we manage to clear up a noisy cloud of peaks and
bring out the underlying lattice.

Let us have a list of peaks P as returned by the previous program peak_finder.
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To go from this list of peaks to three 3d vectors we progress as follows

1. The origin p0 is determined as the peak in P which has the highest intensity
value in the calculated FFT. This is always the 0-th order peak and is in the
center of the FFT by definition

p0 = argmax
p∈P

{ρ(p)} . (4.12)

2. The following is repeated a set number of iterations. Usually 2 iterations will
suffice.

(a) Create a new binary map, with dimensions identical to the input map, place
1 where there is an identified peak and 0 elsewhere.

(b) Calculate the inverse FFT of the binary map. This will take us to the real
space.

(c) Sort the resulting voxels based on their intensity.

(d) Pick out a fixed number (around 103 or more, if the list of peaks is very
noisy) of highest intensity voxels from the sorted list, and create a new
binary map similarly to the first step.

(e) FFT this new binary map and therefore go back to reciprocal space.

(f) Sort the resulting voxels based on their intensity.

(g) Pick out a fixed number of highest voxels from the sorted list.

(h) repeat from (a)

3. On a final FFT of a binary map that goes from real to reciprocal space, a clean
lattice has hopefully formed. Usually, the lattice does not have single distinct
points but rather small blobs at the approximate location of the lattice points.
The program takes the weighted average of the blob as a lattice point.

With this algorithm the result is either a perfectly clean lattice or a clearly
identifiable nonsense. There is no midway such as lattice points together with
some amount of noisy peaks, because if there were, then one or more iterations
would quickly take us to the mentioned two extremes. If the result is nonsense,
then either the number of the kept highest intensity voxels has to be increased
or the peak detection parameters fine-tuned in order to start with a cleaner set
of peaks. Based on experience, if a human eye can see a lattice in the FFT then
the algorithm will eventually find it, it’s just a matter of optimizing program
parameters

4. The goal of this step is to pick a set of 3 vectors, a, b and c, such that they would
form a right-handed basis that gives integer coordinates to the lattice points. We
take the center of the lattice as origin and sort the rest of the vectors according
to length (distance from the origin). It is important to note that the following
algorithm works only when the result of the previous step is a perfect lattice.

(a) Take the shortest vector as a.
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(b) Take the next shortest vector as b that is not approximately collinear with
a. The collinearity is decided by looking at the angle γ between a and b.

γ = cos−1 a · b
|a||b|

. (4.13)

Accept b if γ ∈ [30◦, 150◦]. The choice of the limits 30◦ and 150◦ is somewhat
arbitrary and can be manipulated as a parameter.

(c) Take the next shortest vector as c that is not approximately coplanar with
a and b. The coplanarity is decided by looking at the ratio between the
third and the first singular value from the singular value decomposition of
a matrix A, where

A =

ax bx cx
ay by cy
az bz cz

 . (4.14)

The singular value decomposition decomposes matrix A into a product of
three matrices

A = UΣV T . (4.15)

Matrices U and V are rotation matrices and Σ is a rectangular diagonal
matrix with nonnegative real numbers σ1, σ2 and σ3 on the diagonal, which
are called the singular values. Singular values represent scaling along the
coordinate axes and are ordered from largest to smallest.
The idea is that if a, b and c are approximately coplanar, the third singular
value σ3 will be close to 0 or very small when compared to σ1, because
the first two vectors already span about the same subspace as all the three
would. Therefore, if the ratio σ3/σ1 is smaller than a certain threshold ε,
the vectors a, b and c are considered approximately coplanar and the search
continues. Otherwise, output the matrix A

Discussion and shortcomings

• The vectors a, b and c have integer coordinates by definition which is not nec-
essarily optimal. This will be dealt with by the next program that attempts to
refine the lattice.

• The directions of the reciprocal vectors in the calculated FFT depend on the
dimensions of the Fourier transformed volume. If the dimensions are not equal
then even vectors that are all perfectly orthogonal in the real space will become
skewed in the Fourier transform. In such cases it would be optimal perhaps during
the vector search to transform the trial vectors to the real space and check the
collinearity/coplanarity there.

Experimental example

A list of peaks from the peak_finder (Figure 4.49) is input to the lattice vector finder
program. Figure 4.50 shows the proceeding of the lattice cleanup algorithm. Already
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after the first iteration the noisy list of peaks has been filtered out so that only the
periodic part remains. Figure 4.51 shows the final detected lattice overlaid on the
initial noisy set of peaks.

a) b)

c) d)

Figure 4.50 |Left column - 1st iteration. Right column - 2nd iteration. Top row -
peaks in real space. Bottom row - peaks in reciprocal space. During the first iteration
the peaks in real space are still slightly messy even though clear lattice structure is
easily observable. Going back to reciprocal space after the 1st iteration leaves us with
a perfect lattice. Second iteration in this case is unnecessary but is included here for
illustrative purpose.

Figure 4.51 | (Left) detected peaks with red and (right) the reconstructed lattice with
blue. The lattice appears to agree accurately with the detected peaks
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4.5.3 Lattice Refining

As mentioned in the shortcomings of the lattice determination program, the returned
lattice vectors have integer coordinates by definition. As such they give perfect integer
coordinates to the first order lattice points, but will be more and more off when going
further in the spectrum. The program refine_lattice is used to refine such lattice
vectors to give an optimal fit in the least square sense to all of the peaks belonging to
a lattice.

The program takes a list of peaks as an input, denoted by P , that could be either
the list of peaks from peak_finder, or the list of lattice points from peaks2lattice. The
triplet of vectors returned by the lattice determination program peaks2lattice, denoted
here by A0, are used as an initial solution. The model for the i-th peak is

P i = AX i + ei , (4.16)

where X i are integer coordinates and ei is an error term. The goal is to minimize the
total weighted error in the least squares sense and take the minimizer A∗ as our refined
solution

A∗ = argmin
A

n∑
i=1

wie
2
i = argmin

A

n∑
i=1

wi (P i −AX i)
2 . (4.17)

Let t = {1, 2, . . . nit}. For the t-th iteration do:

1. Calculate the coordinates X of each peak in the basis of lattice vectors At−1

by multiplying the list of peaks P by the inverse of At−1 and rounding to the
nearest integer

X = round
(
P
(
A−1
t−1

)T) ∈ Zn×3 . (4.18)

2. Calculate the residual for the i-th peak as the maximum absolute distance from
the nearest integer over the three coordinates

Ri = max
j=1,2,3

∣∣∣(A−1
t−1P i

)
j
−X ij

∣∣∣ . (4.19)

3. Assign weights to each peak by the following rules

W i =

0 , if Ri > 0.25
1

max {Ri, δ}
, otherwise ,

(4.20)

where δ is a small number and used to avoid dividing by 0. The rationale for
taking weight equal to 0 when Ri > 0.25 is that the initial lattice vectors A0 are
expected to be close to the optimal. If a peak is further than 0.25 lattice vector
lengths from its expected position then it is probably noise.

4. Calculate the next solution as a weighted least squares estimator

At =
(
XTWX

)−1
XTW−1P . (4.21)
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5. If
‖At −At−1‖ < ε (4.22)

or t = nit end the program and take

A∗ = At , (4.23)

otherwise go to the next iteration.

4.5.4 From Reciprocal Lattice to Real Lattice

The program rec2real is short, simple, and meant to do just one task. Namely, to con-
vert the reciprocal lattice vectors to the real space lattice vectors. Let A′ = (a′, b′, c′)
be the reciprocal lattice vectors and A = (a, b, c) be the real space vectors. Let the
dimensions of the reconstructed volume ρ be nx, ny and nz. Let s be the sampling rate,
e.g. 2.261Å per voxel. Then the real space vectors can be computed as crossproducts
between the properly scaled reciprocal vectors.

Let M be the scaled reciprocal vectors

M =


1

nx
0 0

0
1

ny
0

0 0
1

nz

A′ . (4.24)

The real space vectors in voxels are then

a =
M·2 ×M·3

|M |
, b =

M·1 ×M·3

|M |
, c =

M·1 ×M·2

|M |
. (4.25)

The lengths in Ångstrom are |as|, |bs| and |cs| and the angles α, β, γ are

α = cos−1 b · c
|b||c|

, β = cos−1 a · c
|a||c|

, γ = cos−1 a · b
|a||b|

. (4.26)

4.5.5 Average Unit Cell

Once the lattice vectors are known, the next step is to calculate the average unit cell.
The averaging of the unit cells can be done in three ways

1. Averaging all of the unit cells

2. Averaging only those cells that correspond to certain criteria, e.g. correlating
highly with a reference

3. Steps 1 or 2 together with the application of symmetrization operations

The first step in the work-flow is to average over the whole reconstructed volume,
because initially the segmentation of the crystal and information about its symmetry
group and symmetry origin are not known. Averaging over the whole crystal then
necessarily includes parts that conform to the determined periodicity, and parts that
belong to the background outside of crystal and contribute noise.
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Finding the unit cells

Inputs to the averaging program are the reconstructed map ρ, its dimensions, and the
3 real space lattice vectors. The first question to be answered is: what combinations
of the lattice vectors are actually within the reconstructed volume? Since the vectors
are pointing in an arbitrary direction. when compared to the coordinate system of
the volume, it is not immediately obvious which combinations we need to take in
order to find all unit cells that are actually withing the volume, and not miss any. A
naive solution would be to start generating the lattice indices from the smallest order
and successively going higher until we have found an order that does not include any
lattice points that are within the volume. This can be expensive in 3d, as we would
also be looking through lattice points that are entirely in the wrong quadrant, whereas
the volume is completely within the first quadrant of the coordinate system. A less
expensive solution is visualized on Figure 4.52 and goes as follows

Figure 4.52 | Scheme of the process for finding every and not missing any
unit cells within the reconstructed volume.



122 Nanocrystal Cryo-ET

Let A be a 3x3 matrix with the lattice vectors in columns and let us have a recon-
structed volume ρ with dimensions (nx, ny, nz). The vectors A define a right-handed
basis that represents an oblique coordinate system (Figure 4.52a). Let C be the coor-
dinates of the corners of the volume

CT =

1 1 1 1 nx nx nx nx
1 1 ny ny 1 1 ny ny
1 nz 1 nz 1 nz 1 nz

 (4.27)

Next let us transform the corner coordinates into the A coordinate system (multi-
plication with the inverse of A), find the floor of the minimum and the ceiling of the
maximum of every coordinate, and use those as limits for the lattice vector combina-
tions (Figure 4.52b).

C ′ = C(A−1)T (4.28)

and

amin = bmin{C ′·1}c , amax = dmax{C ′·1}e
bmin = bmin{C ′·2}c , bmax = dmax{C ′·2}e
cmin = bmin{C ′·3}c , cmax = dmax{C ′·3}e .

(4.29)

Now we only have to loop through all of the combinations of integers that are
between the found limits. Calculating the linear combinations of A columns with
given coefficients gives a potential lattice point, that is either withing the reconstructed
volume or not very far off. Then we check whether a rectangular box surrounding a
unit cell at that give lattice point is entirely within the volume, or not (Figure 4.52c).
If not, then discard the lattice point. This procedure will filter out a list of positions
where a unique unit cell can be extracted and that is entirely within the reconstructed
volume.

Averaging over the volume

Having found the lattice points coordinates from the previous step, the rest of the
averaging is straightforward. We create a small volume with the dimensions that can
exactly accommodate a desired number of unit cells. We then loop through every
voxel in the small volume and replace it with the average of all of the voxels in the
large volume ρ that correspond to this point in the unit cell. The lattice vectors are not
necessarily whole numbers, therefore the lattice points are also real values which means
we have to employ some interpolation. Every interpolation reduces the resolution so
care has to be taken to avoid unnecessary interpolations and, as much as possible, refer
back to the original non-interpolated data whenever processing further.

Averaging within a subregion

Similar to averaging over the whole volume, the list of possible lattice points can be
filtered according to any criteria to include only a select group of unit cells in the
average. Generally, the filtering occurs based on a correlation value. We can correlate
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the overall average with each of the unit cells individually, obtain a distribution of
correlation coefficients, and then select only the most highly correlating points.

Symmetrization

One of the bottle necks of the current approach is the symmetry origin determination.
To find the symmetry origin we do an exhaustive search on as fine or coarse a grid
as desired, to pinpoint a point in the unit cell that, when symmetry origin is placed
there, gives the smallest average discrepancy measure between all of the other points
that should in theory be equivalent due to symmetry relations. When the data is noisy
the best point is not well defined and several local optima exist, which makes this
approach slightly error prone. Due to high symmetry, even wrongly symmetrized unit
cell looks mesmerizingly beautiful, even though the density itself might not make any
sense. In our experience though, we could usually tell when the symmetry origin was
far from correct, by noticing how well the individual molecules were separated and how
continuous the density was.

4.5.6 Finding the Symmetry Origin

Finding the symmetry origin is one of the backbones of the whole software package.
Without it only symmetrization in the P1 space group involving only translational
symmetry would be possible, as the origin here is arbitrary. For every other space
group the precise locations of the symmetry elements, such as the axes of rotation,
have to be determined. These are uniquely defined knowing the origin and the lattice
vectors.

In our software package the search for symmetry origin is done in a naive way and
is currently one of the weak points. Improving the approach should be addressed in
the future.

Currently the flow of the program is the following:

1. Input: lattice vectors a, b and c, and a P1 averaged unit cell ρ.

2. Divide the unit cell into a grid. The parameter k controls how fine the grid
is

G(k) =

{
p : p = φaa+ φbb+ φcc, φv ∈

{
0

k|v|
,

1

k|v|
, . . . , 1

}}
, (4.30)

where | · | denotes the length of a vector in pixels.

3. Loop over the grid. For each grid point p, place the symmetry origin at p
and calculate the associated error metric ε(p). The error ε(p) is calculated in
the following way

(a) Loop over the unit cell ρ

(b) For each voxel calculate the equivalent symmetrically related points, take
their average and calculate the average squared difference.

(c) Finally, sum the averages together.
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ε(p) =
∑
x

√√√√ 1

nsym

nsym∑
i=1

(Siρ(x)− µx)2 , where µx =
1

nsym

nsym∑
i=1

Siρ(x) , (4.31)

where Si stands for the i-th symmetry operation, that depends also on the sym-
metry origin p and takes care of the interpolation.

4. Output: The symmetry origin is chosen to be the point p∗ that minimizes ε(p)

p∗ = argmin
p

ε(p) . (4.32)

For a high signal to noise ratio map this approach works perfectly, as is evident
from the validation (section 4.6.3). For a low SNR map the approach often fails, as
evident in the section describing the distribution of the symmetry origin and specifically
on Figure 4.45. We see that the resolution is good in the a-b plane and the origin
distribution is narrowly peaked. Along the c-axis, however, the distribution is spread
out and the uncertainty about the true location of the origin is high.

4.6 Simulations
Important part of method development is having test cases and validation data, where
the algorithm can be tested against a result that is known beforehand. In electron mi-
croscopy, validation data is not always available, especially so when studying something
with a novel structure. Protein data bank features over 116000 high resolution models
of various molecules from various organisms in many different compounds determined
by various methods, which serves as a good reference for testing lower resolution to-
mography reconstructions. Provided that the molecules in a non-crystalline state or
in a nanocrystal look approximately identical to the structures derived by analyzing
large crystals we can use x-ray models as a reference.

The availability of TEM simulators makes it possible to construct a virtual sample
from known atomic coordinates, feed it into the simulator and generate tilt-series under
conditions similar to real world data collection. More can be read at [79] about the
TEM simulator that was used in this work.

In this work we are not really concerned with a general tomographic reconstruction
problem but rather with image processing methods that are further down the pipeline
after the reconstruction. Therefore, we are using the simulator to only construct a
perfect 3d electron density representation of the sample, serving as the ground truth
reconstruction.

4.6.1 Generating Virtual Crystals

To generate a virtual crystal, the 3d coordinates of each atom in the molecule are
needed. These are easily obtained from the protein databank (PDB) in the form of
a pdb file. Since we were working with lysozyme molecule, we picked a random hen
egg white lysozyme structure solved in P43212 space group (code 1DPX), from the
more than 1000 structure deposited. In addition to atomic coordinates, the pdb file
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includes much more information, including the symmetry operations, crystallographic
parameters and details about the experimental conditions.

For the purpose or rebuilding a nanocrystal, we wrote a short program in Fortran
that takes a pdb file as input, extracts the atomic coordinates and the symmetry
operations, and replicates the coordinates in 3d space according to the desired number
of unit cells. Once the configuration file is generated, it can be fed into the simulator
and subsequently used to generate either a realistic tomographic tilt-series or just a
ground truth 3d electron density map of a perfect crystal. A 10x10x10 unit cells large
virtual crystal is shown on Figure 4.53.

Alternatively, it was discovered later that the pdb file can also be read into the 3d
visualization software Chimera that handles pdb files elegantly and can recreate the
crystal by replicating the pdb structure according to the symmetry specified within it.
It can also easily generate the electron density representation of a model to a desired
resolution, rendering our reimplementation useless.
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Figure 4.53 |Simulated perfect lysozyme crystals extending 10 unit cells in
each crystallographic direction. The image is taken looking down the real space c
axis, which coincides with the direction of the 4-fold screw axis. The 4-fold rotational
symmetry is visible in the image.

4.6.2 Finding Lattice Vectors on Simulated Data

The simulated image on Fig 4.53 is tilted with respect to the coordinate axes to make
the scenario more general. But because it is perfect and there is no background noise,
the Fourier transform on Fig 4.54 is unrealistically clean. On a real crystal, on the
other hand, the boundaries are never as sharp and well defined as in the simulated case
and therefore show much weaker edge artifacts that manifest on Fig 4.54 as strong
cross-shaped features, corresponding to the FFT of the shape function of the crystal.
Nevertheless, it provides a useful different test case for the peak-detection algorithm.
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Figure 4.54 | 3d Fourier transform of the simulated perfect crystal. Strong
edge artifacts are visible but no background noise.

The results after running the peak and lattice detection programs on the FFT of the
simulated crystals are presented on Fig 4.55. The found crystallographic parameters
are accurate to a tenth of an Ångstrom and are shown on Table 4.1.

Case a b c α β γ
Determined 77.056 77.023 37.231 90.037 90.014 89.991
True 77.050 77.050 37.210 90.000 90.000 90.000

Table 4.1 |Comparison of determined unit cell parameters and the true unit cell pa-
rameters. The determined parameters are accurate to at least a tenth of an Ångstrom.
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Figure 4.55 |Peak detection and lattice vector determination. a - The detected
peaks from Fig 4.54. Some spurious peaks can be seen, but the overall result is near
perfect. b - The first iteration of the lattice detection algorithm. The image shows the
lattice in real space. c - The second step of the first iteration, now back in reciprocal
space. The spurious peaks visible on a are now gone. d - The same as c with the
determined lattice vectors added.

4.6.3 Averaging and Symmetrization on Simulated Data

After unit cell parameters are determined, a total averaged over all of the non-overlapping
unit-cell-sized blocks from the density map Fig 4.53 is computed, including the back-
ground. The average unit cell looks identical to the original map Fig 4.56a. Next step
is to cross-correlate this average to all of the extracted blocks and calculate the average
again by throwing out blocks with low correlation. The result on Fig 4.56b is again
identical to the original map, because in our perfect crystal case the background is
identically 0.

Finally, a symmetry origin search is performed on Fig 4.56b assuming crystallo-
graphic space group P43212. Symmetry origin defines the positions of the symmetry
elements and upon applying the symmetry operations we observe no changes and ar-
rive yet again back at the original starting map as expected Fig 4.56c. This concludes
the validation of the programs. Note that some loss of resolution is inevitable be-
cause the simulated map was sampled at a Nyquist frequency and the averaging and
symmetrization steps include linear interpolation.



4.6 Simulations 129

Figure 4.56 |Averaged and symmetrized unit cells. a - The total average of
every unit-cell-sized block from the density map, including the background (which is
identically 0 in this case). b - The average unit cell over only the crystal, excluding
the background. The result is identical. c - Same as b but with applied symmetry
operations. As the crystal was perfect to begin with there is no changes after the
averaging and symmetrization, which serves as a validation test for the algorithms.

Local averaging

The local averaging and symmetrization program also passed the validation test with-
out problems. The results are shown on Figure 4.57.
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Figure 4.57 | Solid rendering of the simulated perfect lysozyme crystal. a -
Cut-out of the center piece from a large simulated crystal (Fig 4.53). The symmetry
is perfect. b - Locally averaged version of a according to the determined unit cell
vectors, where each unit cell is replaced with the average of its immediate neighbours.
The symmetry remains perfect. As the map in a is sampled at a Nyquist frequency, a
small loss of resolution in the subsequent image processing steps due to interpolation
is inevitable. Part of the density appears to have stronger intensity and the reason is
that the moving average of the unit cells was done without segmenting the crystal. The
unit cells closer to the edge of the crystal have cells that consist entirely of the blank
background included in the average. c - Same as b but now the symmetry operations
of the space group P43212 have also been applied. The symmetry origin is determined
by the find_symmetry_origin program. The symmetry still remains perfect, but the
resolution has decreased due to linear interpolation.

Conclusions from the Validations

Testing the algorithms on simulated perfect crystal with known molecular structure
demonstrated that our algorithms work well at the medium level of resolution that we
strove for. It shows that the results from peak detection and lattice vector determina-
tion are reliable and there is a hope that the symmetry origin searching algorithm will
pick up the correct point. The necessity to interpolate brings forth a loss of resolution,
but we have given our best to keep the interpolation steps at minimum and always
refer back to the original data when possible.
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Protein 3d structure determination is a challenge no matter the method used. Electron
tomography of protein nanocrystals is certainly no magic bullet, but as a complemen-
tary method to the preexisting ones it has a great potential for providing information
about much more than just the structure of the repeating unit. It has applications
ranging from medium resolution structural information, that might prove useful for
other, possibly diffraction based, methods in the attempt to achieve high resolution,
to studying the crystals in general and getting information about the morphology and
disorder. Electron tomography has the power to retain such information.

In the thesis we approached the structural analysis of lysozyme nanocrystals from
various angles. We harnessed Fourier transform to get information about the periodic-
ity, the size and shape of the unit cell, and the average structure. We used correlation
based methods as well as dimensionality reduction and clustering methods to find sim-
ilar unit cells, that would give information about the order and organization within
the crystal. We investigated the distribution of the unit cell vectors by dividing the
large reconstruction into many subvolumes and processing each one independently.
We studied the distribution of symmetry origin and saw it was well determined in two
dimensions, but poorly in the third dimension.

The undertaken project showed that without perfect data there are many hurdles
one has to jump over before the structure can be obtained. For a perfect crystal the
process was straightforward and no tuning of the programs and parameters was needed,
as was evidenced from the validation of the methods with artificial data.

The structure of the molecule was not the only goal we were chasing, because
after all, the structure of lysozyme has been known for ages. If the high resolution
structure is what is really desired, then investing lots of effort into sample preparation
and data collection will surely pay off and yield crystals with superior quality that are
not hampered by the same data-dependent issues. Much is already known about the
structure of lysozyme down to atomic details, but here we developed tools that gave
information about its life within a not so well ordered nanocrystal. The imperfections
of real data might sometimes prove interesting in their own right. While each result
individually might have errors in them, all the results together are probably a reliable
indication that there was indeed variation in the data and the crystal under scrutiny
was not uniform throughout.

When in a general case it is difficult to say anything about the resolution in a tomo-
gram, then for a nanocrystal the periodicity-caused spots in the Fourier space provided
a clear indication of the maximum resolution. We saw that in specific directions the
resolution was incredibly high, in fact higher than we anticipated, but unfortunately
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not all directions were created equal. Plausibly, due to radiation damage, and defi-
nitely, due to the missing wedge in the beam direction, the resolution was significantly
decreased in certain other directions. Taking advantage of the high symmetry of the
particular space group, however, helped to fill in the missing information gaps and even
out the resolution, at the expense of losing the high end of the spectrum. This is one
of the obvious goals for the future - to enhance the symmetrization algorithms in order
to retain the high resolution in all directions.

Right now the protein nanocrystal tomography as a method is still far from maturity
and there are dozens of obstacles that need to be overcome to make the method more
usable and reliable. Some of those include

• Improvements in the sample preparation techniques.

• More accurate tomographic reconstruction and CTF modeling, taking into ac-
count the decrease of resolution caused by the radiation damage in the later tilts,
the gradient of defocus through the volume, as well as the variation of defocus
over the tilts. Being able to nail down the CTF deconvolution related aspects
perfectly will definitely increase resolution and interpretability of the map.

• In the current thesis we knew the structure of lysozyme beforehand which helped
to guide the decisions and let us know when we have reached a good reconstruc-
tion. For a protein with unknown structure it will not be so obvious. We also
could guess with a high probability of success that the space group of the crystal
was P43212, as it is one of the most common one in the literature, and the ob-
served data seemed to confirm it. Again, for a new protein, the question of the
space group will have to be investigated further.

• Better classification methods would make the grouping of mosaic blocks more
reliable, and the averaging could be done by taking these deviations into account.
It would be akin to 3d unbending then, the 2d version of which is commonly used
in processing 2d protein crystals.

• Currently the search for the exact location of the symmetry origin was unreli-
able for the real experimental data, mainly because of the lower resolution in
z-direction. The method worked perfectly, however, for the simulated ideal noise
free data. To make the method more reliable, the symmetry origin determination
should be improved.

Time and more data will tell what the future holds for the method of protein
nanocrystal tomography, and to what extent the issues we faced in the current project
were data dependent or intrinsic to the paradigm. As it stands now, we saw that high
resolution exists in the tomogram, but we were unable to use it to its full extent. Per-
fecting the methods will unquestionably bring forth an increase in the overall resolution
and help shed light to the aspects of the world around us that have so far evaded us.
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