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Species distribution models (SDMs) are widely used in ecology, biogeography and 
conservation biology to estimate relationships between environmental variables and 
species occurrence data and make predictions of how their distributions vary in space 
and time. During the past two decades, the field has increasingly made use of machine 
learning approaches for constructing and validating SDMs. Model accuracy has 
steadily increased as a result, but the interpretability of the fitted models, for example 
the relative importance of predictor variables or their causal effects on focal species, 
has not always kept pace. Here we draw attention to an emerging subdiscipline of 
artificial intelligence, explainable AI (xAI), as a toolbox for better interpreting SDMs. 
xAI aims at deciphering the behavior of complex statistical or machine learning models 
(e.g. neural networks, random forests, boosted regression trees), and can produce more 
transparent and understandable SDM predictions. We describe the rationale behind 
xAI and provide a list of tools that can be used to help ecological modelers better 
understand complex model behavior at different scales. As an example, we perform 
a reproducible SDM analysis in R on the African elephant and showcase some xAI 
tools such as local interpretable model-agnostic explanation (LIME) to help interpret 
local-scale behavior of the model. We conclude with what we see as the benefits and 
caveats of these techniques and advocate for their use to improve the interpretability 
of machine learning SDMs.

Keywords: ecological modeling, explainable artificial intelligence, habitat suitability 
modeling, interpretable machine learning, species distribution model, xAI

Explaining and predicting where and why species occur in space and time is central to 
ecology, biogeography and conservation biology (Pecl et al. 2017, Araújo et al. 2019). 
Species distribution models (SDMs) are currently the most widely used approach for 
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this purpose. SDMs estimate relationships between species 
occurrence data and environmental variables such as land use 
and climatic factors. These models can be used to identify 
factors that predict species’ presence or habitat suitability and 
to project distributional shifts in response to environmental 
change (Elith and Leathwick 2009, Booth et al. 2014).

Since the first SDM applications in the early 1980s (Box 
1981, Booth et al. 2014, Booth 2018), the field has steadily 
moved from simple statistical models (e.g. logistic regres-
sions) to more complex statistical methods, often adopting 
principles or algorithms from the field of machine learning 
(Phillips et al. 2006, Elith and Leathwick 2009). Moreover, 
the community has put substantial efforts into making SDMs 
more easy-to-use by streamlining the model-building and 
analytical processes through various software packages, for 
example, graphical user interfaces (Scachetti-Pereira 2002, 
Phillips et al. 2006, de Souza Muñoz et al. 2011, Kass et al. 
2018) and programming frameworks (cf. > 10 R packages 
available for SDMs as reviewed in Angelov 2019). With these 
developments, SDMs have matured into a widely applied 
ecological modeling tool that has resulted in more than 6000 
studies using or referencing them in the past two decades 
(Araújo et al. 2019).

Whereas the wide availability of complex machine learning 
algorithms has allowed users to build more accurate SDMs, 
it has not necessarily enhanced their understanding of the 
resulting models. How and why machine learning algorithms 
make their predictions is often difficult to understand, which 
is why they are frequently referred to as ‘black-box’ models. 
In general, there is a trade-off between the accuracy and inter-
pretability of statistical models (Breiman 2001a). Achieving 
both simultaneously is challenging (Guisan and Thuiller 
2005), but most researchers would agree that an ideal SDM 
should be both accurate and easy to interpret (Phillips et al. 
2004, Austin 2007, Merow  et  al. 2014, Halvorsen  et  al. 
2015). It is reasonable to ask whether ecologists should sacri-
fice interpretability by using excessively complex algorithms 
for constructing SDMs in order to procure slight advantages 
in predictive accuracy (Qiao et al. 2015, Araújo et al. 2019).

The dilemma of gaining accuracy only at the expense of 
interpretability is not unique to ecology. Fields as diverse as 
financial risk assessment, medicine or criminal justice have 
recently also realized that, although machine learning algo-
rithms have desirable properties for making accurate predic-
tions, it is difficult to understand the rationale underlying 
these predictions. The lack of interpretability makes these 
models less reliable or acceptable for scientists and stakehold-
ers alike (Ribeiro et al. 2016, Meske and Bunde 2020). This 
problem has led to the emerging research area of explain-
able artificial intelligence (xAI), a subfield of AI also termed 
interpretable machine learning (Murdoch et al. 2019), that 
aims at developing tools for enhancing the interpretability of 
complex algorithms (Carvalho et al. 2019). The field of xAI 
has been developing quickly in recent years, and many new 
methods have been proposed, reviewed and applied in vari-
ous scientific fields recently (Molnar 2019, Murdoch  et  al. 
2019, Boehmke and Greenwell 2020, Lucas 2020).

The purposes of this forum article are to provide a brief 
introduction to the field and several techniques of xAI and 
to suggest for the first time its potential applicability to SDM 
research (Fig. 1). This work builds upon previous studies and 
software that improved accessibility and understanding for 
novel ML tools in ecology (Cutler  et  al. 2007, Elith  et  al. 
2008, 2011, Olden  et  al. 2008, Elith and Graham 2009, 
Merow et al. 2013, Ryo and Rillig 2017, Kass et al. 2018). 
We acknowledge that some of these methods are already 
routinely used, and substantial efforts have already been 
made to improve the interpretation of fitted machine learn-
ing models in SDM research and ecology, independently of 
the emergence of xAI: e.g. bootstrap approach for key vari-
able detection (Olden and Jackson 2002), novel higher-
order interaction discovery (Ryo et al. 2018), and Maxent’s 
‘Explain’ tool and multiple variable importance metrics 
(Phillips 2017). However, these efforts are now being rapidly 
synthesized and expanded in the scientific domain of xAI, 
and several tools are readily available. Thus, we call for atten-
tion to the tools and principles developed in this field for 
ecological applications.

Following the classification in Murdoch  et  al. (2019), 
interpretability methods are largely categorized into model-
based interpretability and post-hoc (i.e. after model fitting) 
interpretability (Fig. 1; note that different terminology may 
also be used for method classification in other studies because 
the xAI domain is still at emergence and dynamic). Model-
based methods employ relatively simple algorithms so that 
the model architecture is more easily understandable for the 
user (e.g. decision tree), while post-hoc methods analyzes 
the behaviors of fitted complex models (e.g. random forests) 
and explains, for example, which variables are important for 
predictions and how predictor variables are associated with 
response variables. Many post-hoc methods are applicable 
for analyzing any kind of complex model (model-agnostic), 
although some of them are only for particular models (model-
specific) (Adadi and Berrada 2018, Molnar 2019). Post-hoc 
methods are used for understanding what the model learned 
from the dataset (global level) or for understanding the ratio-
nales that the model gives for each prediction (local level). 
In Table 1, we introduce several post-hoc model-agnostic 
methods at the global and local levels. These methods are not 
mutually exclusive, and thus can be used jointly for interpret-
ing the same model for different purposes.

As an example from these methods, we describe the mech-
anistic details of the local interpretable model-agnostic expla-
nation (LIME), a post-hoc interpretation method proposed 
by Ribeiro  et  al. (2016), because it has gained substantial 
attention in the AI scientific community and contributed to 
increase the popularity of xAI. The aim of LIME is to explain 
how the fitted complex model creates a prediction for a given 
instance (i.e. a grid cell or other local neighborhood). To this 
end, for each instance, LIME fits a ‘local surrogate’ model (a 
simple model; e.g. a logistic regression or decision tree) that 
approximates the behavior of the complex model for a limited 
area of the n-dimensional space defined by the predictor vari-
ables. Searching for the local surrogate model is formulated 
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Figure 1. The role of explainable artificial intelligence (xAI) in species distribution modeling. Interpretable machine learning methods either target 
a direct understanding of model architecture (i.e. model-based interpretability) or interpret the model by analyzing the model behavior (post-hoc 
interpretability). Post-hoc interpretability methods are either model-specific (used for a specific model) or model-agnostic, meaning that they can 
be used for any model. Moreover, post-hoc interpretability methods are classified according to scale, global or local (global: for interpreting what 
the model learned from the entire variable space; local: for interpreting how each prediction is made based on the values at the instance).

Table 1. Model-agnostic post-hoc methods in explainable artificial intelligence (xAI), their approaches and potential use for species distribu-
tion models (SDMs). Model-agnostic means that they can be used for any model. Note that the list may not fully cover all available methods. 
For the ‘level’ column, ‘local’ means that the method is applicable for understanding how each prediction is made, while ‘global’ means 
that it is used for understanding the model learned from the dataset.

Level Method Approach Utility for SDM modellers Ref.

Local Local interpretable  
model-agnostic  
explanation

Explains how the model predicts  
at a given instance with a  
simple parametric or machine  
learning model

Inspects which features are 
important for the prediction  
at a given location. 

(Ribeiro et al. 2016)

Local Shapley values Explains the relative contribution  
of each feature to the prediction 
at a given instance, based on 
cooperative game theory

Inspects which features are 
important for the prediction  
at a given location. 

(Lundberg and Lee 
2017)

Local Anchors Builds if-then rules with some  
features and their thresholds  
such that the model does not  
change the prediction at a  
given instance 

Identifies which features are 
important and how sensitive  
the prediction is against changes 
in the selected features at a given 
location.

(Ribeiro et al. 2018)

Local iBreakDown Identifies interactions and  
measures their contributions

Inspects which feature interactions 
are important for the prediction 
at a given location.

(Gosiewska and 
Biecek 2020)

Global Permutation importance; 
multi-level block 
permutation

Measures the relative contribution 
of each feature to the model 
accuracy. The latter accounts for 
the covariance structure.

Quantifies which variables are 
important, including the mean 
and confidence intervals, for the 
accuracy of the model.

(Winkler et al. 
2015)

Global Partial dependence plot; 
individual conditional 
expectation plot; 
accumulated local  
effects plot

Shows the marginal effects of  
features on the prediction

Visualizes how the associations 
between the features and 
response are modeled.

(Hastie et al. 2001, 
Goldstein et al. 
2014, Apley and 
Zhu 2019)

Global H-statistic Measures the interaction  
strength of paired features  
based on the stability of  
partial dependence

Identifies key pairwise interactions, 
either among all possible 
combinations or given a specific 
feature.

(Friedman and 
Popescu 2008)

Global Greenwell’s partial 
dependence-based  
variable importance 

Measures the interaction  
strength of paired features  
based on the stability of  
partial dependence 

Identifies key pairwise interactions, 
either among all possible 
combinations or given a specific 
feature.

(Greenwell et al. 
2018)
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as argmin L(f, g, πx) + Ω(g). The term L(f, g, πx) calculates the 
difference in accuracy between the complex model f (e.g. 
random forests) and a simple model g (e.g. linear model) at 
the target prediction x and the surrounding neighborhood of 
proximity π in the n-dimensional space. The term Ω(g) is the 
complexity of the simple model represented as the number of 
parameters. The LIME algorithm minimizes L + Ω to replace 
the complex model by the simpler one, while attempting to 
avoid losing accuracy. A key assumption of LIME is that the 
necessary degree of model complexity depends on the data 
domain for which predictions should be made.

Hence, LIME helps us remove ‘unnecessary’ complexity 
from a global model to better understand how it arrives at 
local predictions. Although a complex algorithm may be nec-
essary to accurately model species distributions at large spa-
tial extents (e.g. the full species range), a simpler algorithm is 
often sufficiently accurate at smaller extents of the same grain 
size where conservation and management activities actually 

take place. In fact, many parameters that would apply to large 
spatial extents are not as important at small extents, where 
most of the parameters can often be assumed to be constants 
(but see Potter et al. 2013).

The local surrogate model can also be used for checking 
the ecological plausibility of model behavior and prediction, 
as we demonstrate in an example where we provide site-level 
assessment and interpretation for an SDM for the African 
elephant (Box 1, Fig. 2). Most complex algorithms were pri-
marily designed to improve predictions, and design principles 
such as boosting, bagging or deep layers in neural networks 
usually complicate the interpretation of the fitted model. For 
example, suppose one fits a random forest model to a focal 
species with a range of different predictor variables and the 
model predicts the presence or high suitability for the species 
at a particular site. One may want to know why the model 
made such a prediction. For example, is it due to optimal 
climatic conditions, resource availability or other reasons? 

Box 1. Explaining the distribution of the African elephant with xAI

We demonstrate here an application of some xAI tools from Table 1 for species distribution models (SDMs) with R (R Core Team), 
using the African elephant Loxodonta africana as an example. The R script to reproduce the analysis with detailed settings is avail-
able on Zenodo (<https://doi.org/10.5281/zenodo.4048271>). Note that our intention is purely demonstrational: we seek neither 
to advance the ecological knowledge of this species nor to adhere to all the best modeling practices (e.g. we did not consider spatial 
autocorrelation or model tuning).

We applied the random forests algorithm (Breiman 2001b) for modeling the distribution of L. africana using occurrence data 
downloaded from GBIF (Musila et al. 2019, naturgucker_de 2020, Navarro and Jackson 2020, Questagame 2020, Ueda 2020), 10 
000 randomly sampled background points, and standard bioclimatic variables from WorldClim v2 (Fick and Hijmans 2017). For 
data acquisition and processing, we used the sdmbench package (Angelov 2018), for model training the mlr package (Bischl et al. 
2016), and for model explanation the iml package (Molnar and Schratz 2020) and the lime package (Pedersen and Benesty 2019; 
but note that the breakDown package is an alternative, Biecek and Grudziaz 2020). The data was split into training and testing data, 
70% and 30% respectively.

Conventionally, model assessment relies heavily on visual inspections of the mapped model predictions (in this case, species’ habitat 
suitability; left panel in Fig. 2) and accuracy metrics. Besides these, xAI tools can be applied. In this example we apply permutation 
importance that can rank and identify important predictor variables, and partial dependence plots that can visualize how habitat suit-
ability is associated with focal variables in the model (note that such techniques are also oftentimes used in conventional SDM assess-
ment). We interpret that the model is accurate when evaluated on testing data (area under the ROC curve = 0.98) and that the most 
important variable is the precipitation of the wettest quarter. This variable is positively associated with habitat suitability to a certain 
level, but an excessive precipitation amount does not increase suitability. These model assessments are important for biogeographical 
understanding at the large spatial extent.

Moreover, using local surrogate approaches, we can evaluate the reliability of the model and the importance of variables at the 
local spatial extent, where actual management and/or conservation occurs. Such comprehensive assessments are rarely seen in the 
SDM literature. With local interpretable model-agnostic explanation (LIME), we show site-level model assessment at three randomly 
chosen sites (right panel). At site A, the model predicts high habitat suitability (1.00). With LIME, we can confirm that the predic-
tion is supported by all top five environmental conditions at the site. At sites B and C, suitability is lower than site A. LIME suggests 
that precipitation during the driest season is unfavorable at site B, while temperature is unfavorable at site C (see variables of ‘vote for 
absence’ in the right panel).

While the global-level variable importance suggests precipitation of the wettest quarter as the most important variable, the variable 
is not listed as a key variable at the three sites. This may indicate that, while precipitation of the wettest quarter is the main variable that 
explains the variability of habitat suitability over the entire modeled region, other variables become more important (e.g. temperature 
seasonality) at the local scale.

Note that 1) we confirmed only top five variables for brevity and interpretation might change by considering all variables (but it is 
not recommended as it decreases interpretability), and 2) the local surrogate model did not perfectly explain the global model. We do not 
intend to solve these issues in this exercise, but they can be taken as potential caveats of LIME.

As demonstrated, individual LIME explanations for local sites can help us better explore spatial variations in variable importance, 
which in turn, can contribute to more reasonable conservation and management decisions with higher interpretability for the model 
at the local scale.
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LIME can help to analyze how the importance of the predic-
tor variables changes with scale and/or subregion (Ryo et al. 
2018) and which variables are most relevant for a particular 
location or scenario.

More broadly, xAI methods can help researchers analyze 
and approximate the global and local behavior of the model 
and identify the reasons for why particular predictions are 
made (although important predictors may not be causally 
related to species’ occurrences). It is widely appreciated that 
statistical models can use non-causal predictor variables to 
make predictions (i.e. the model predicts the right outcome 
for the wrong reason (Fourcade  et  al. 2018)). This is not 
necessarily a problem, because non-causal factors can act as 
proxies for unobserved and unobservable causal factors to 

improve predictions. However, the use of such non-causal 
model structures is problematic when predicting under con-
ditions where the correlation structures of predictor variables 
change (Dormann et al. 2013). It is therefore important to 
determine the extent to which the fitted model reflects the 
true causal structure, and thus the mechanisms actually driv-
ing these relationships.

xAI cannot directly answer these questions, but it can help 
ecologists to examine the question of causality. For example, 
an xAI analysis may show that model predictions depend on 
predictor variables that are determined a priori as unlikely 
relevant for the focal species, or that the relevance of predic-
tor variables changes in geographical or environmental space 
in a way that is ecologically counterintuitive. These results 

Figure 2. Interpreting the species distribution model of the African elephant Loxodonta africana, using explainable AI (xAI) tools: permuta-
tion importance and a partial dependence plot for the global level and local interpretable model-agnostic explanations at the local level (see 
Table 1 for the description of the techniques).
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may lead the researcher to reconsider the extent to which the 
fitted model reflects true mechanistic relationships, as well 
as the extent to which it can be used for extrapolation or 
to inform direct management interventions. Moreover, when 
using SDMs for extrapolation, for example to model species 
invasions, xAI tools can be applied to examine how variable 
importance changes from the fit to the extrapolation domain. 
In such a way, xAI can be combined with ecological and bio-
geographical knowledge to create a richer and more accurate 
interpretation of fitted machine learning models.

Whereas xAI would bring substantial benefits to the SDM 
research domain, we also acknowledge some major caveats. 
There is an ongoing debate on whether we should use post-
hoc model-agnostic methods to explain complex models 
or use simpler models that can be more easily interpreted 
(Rudin 2019, Krishnan 2020, Molnar  et  al. 2020). As we 
also argued, ‘explaining the modeled associations’ is not the 
same as ‘explaining the real causal associations’(Lipton 2018). 
Moreover, local surrogate approaches that explain the model 
behavior by another statistical model itself may bring addi-
tional error because of imperfect model approximation. For 
instance, LIME performance depends on parameter π, how the 
local domain for approximation is defined within the entire 
variable space. Certainly, interpretation cannot be made appro-
priately without domain expertise and a proper identification 
of the pitfalls associated with the method (Molnar et al. 2020).

In conclusion, we hope that this article will encourage 
applications of xAI tools in the SDM research domain to 
strengthen mutual understanding between modelers and 
practitioners. Post-hoc model-agnostic tools we list in Table 1 
can be used for virtually any SDM algorithm, including pop-
ular algorithms such as Maxent. Due to its high compatibility 
with existing modeling approaches, xAI can be used to com-
pare multiple models. Expert knowledge from both groups 
can be used to assess how local predictions are made based 
on the output of xAI, and this should inform model selection 
and conservation or management action. To conclude, we 
think that demystifying the decisions that complex models 
make is a necessary step towards producing models that can 
explain real-world ecological phenomena (Araújo et al. 2019, 
Mammola et al. 2019).
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