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Abstract: Salmonids are extremely important economically and scientifically; therefore, dynamic
developments in their research have occurred and will continue occurring in the future. At the
same time, their complex phylogeny and taxonomy are challenging for traditional approaches in
research. Here, we first provide discoveries regarding the hitherto completely unknown cytogenetic
characteristics of the Anatolian endemic flathead trout, Salmo platycephalus, and summarize the
presently known, albeit highly complicated, situation in the genus Salmo. Secondly, by outlining
future directions of salmonid cytogenomics, we have produced a prototypical virtual karyotype of
Salmo trutta, the closest relative of S. platycephalus. This production is now possible thanks to the
high-quality genome assembled to the chromosome level in S. trutta via soft-masking, including
a direct labelling of repetitive sequences along the chromosome sequence. Repetitive sequences
were crucial for traditional fish cytogenetics and hence should also be utilized in fish cytogenomics.
As such virtual karyotypes become increasingly available in the very near future, it is necessary to
integrate both present and future approaches to maximize their respective benefits. Finally, we show
how the presumably repetitive sequences in salmonids can change the understanding of the overall
relationship between genome size and G+C content, creating another outstanding question in
salmonid cytogenomics waiting to be resolved.

Keywords: chromosome banding; cytotaxonomy of trout; FISH; NOR phenotype; rDNA;
Salmo platycephalus

1. Introduction

The taxonomic species diversity of peri-Mediterranean and Near East brown trout is still not well
understood, and new species are expected to be discovered and/or resurrected from the westernmost
tip of the trout distribution area in Morocco [1,2], across the Iberian peninsula [3], Italy, the Balkans
(reviewed in Kottelat and Freyhof [4]) and Greece [5]. Similarly, new trout species were recently
described in the territory of Turkey in the Mediterranean Sea, Black Sea and Persian Gulf river
drainages [6–11], presently encompassing 12 species. However, several authors have already recognized
the taxonomic diversity of this region’s brown trout ([9,12,13] and references therein). Among these

Genes 2020, 11, 1462; doi:10.3390/genes11121462 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0001-7436-5828
https://orcid.org/0000-0002-7100-2922
https://orcid.org/0000-0002-2270-6018
https://orcid.org/0000-0002-6409-7783
http://dx.doi.org/10.3390/genes11121462
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/11/12/1462?type=check_update&version=2


Genes 2020, 11, 1462 2 of 19

authors, Behnke [14] even erected a new subgenus Platysalmo within the genus Salmo and described
species P. platycephalus for morphologically distinct trout found in the Zamanti River in the upper
parts of the Seyhan River system in southeastern Turkey. The separate taxonomic status of this
species was later confirmed by analyses of mtDNA and nuclear molecular markers, which nested
the flathead trout within the Adriatic phylogeographic lineage of the brown S. trutta complex and
advocated for its separate taxonomic status [13]. However, the exact position of P. platycephalus within
the Adriatic cluster remained unclear. The researchers concluded that classification of the flathead
trout as a genus and/or subgenus of Salmo is not supported by their data, although their taxonomic
construction is generally accepted in all subsequent studies (e.g., Turan et al. [8]). The flathead trout’s
morphological and life history characteristics were addressed by Kara et al. [15,16]. Recently, flathead
trout populations are critically endangered by habitat loss and stockings of non-native trout [17].

In spite of numerous cytogenetic studies of the brown trout [18], available data for trout of the
peri-Mediterranean as well as the southeastern distribution range remains highly limited (Table 1).
In this study, we described for the first time the karyotype and other chromosomal characteristics of
the Anatolian endemic flathead trout, Salmo platycephalus Behnke, 1968, as revealed by conventional
(Ag-impregnation, CMA3 fluorescence) and molecular (FISH with 5S and 18S rDNA as well as telomeric
probes) techniques. Such a detailed cytogenetic analysis of this species has been missing since the
publication of the influential and so far most comprehensive overview of salmonid chromosome
evolution [18]. To compare our results with other literature records, we also reviewed available
cytotaxonomic data for Eurasian species of the genus Salmo. In so doing, we have updated and
extensively summarized the present cytogenetics of the salmonid genus Salmo.

Current fish cytogenetics has been largely shaped by the huge sequencing effort worldwide,
and there are trends to integrate cytogenetics with genomics in fish (e.g., Mazzuchelli et al. [19];
de Oliveira et al. [20]). Salmonids are economically and especially scientifically important [21]; Hence,
their genomes have been increasingly sequenced, despite the sizeable obstacles of their genome size [22]
and substantial repeats content [23,24] represent particularly to genome assembling. The NCBI/genome
currently lists 12 salmonid genomes, of which six species have been assembled to the chromosome
level (November 2020). The latest Release 101 of the Ensembl genome browser (August 2020) lists
five salmonid species all assembled to the chromosome level [25]. These resources open up new
directions for cytogenomic investigations in fish that are particularly relevant for salmonids. Namely,
the genome assemblies available in Ensembl can be utilized to produce plots visualizing proportions
of repetitive and non-repetitive fractions and their G+C content (GC%) simultaneously with a novel
Python tool [26]. Hence, it is now also possible to use this tool for several salmonids and to produce
a prototypical virtual karyotype for this group. Actually, the very first plots of S. salar are already
available by Matoulek et al. [26], in three different resolutions, i.e., different sliding window sizes,
(https://github.com/bioinfohk/evangelist_plots). However, S. salar belongs to the karyotype category
B′ sensu Phillips and Ráb [17], i.e., salmonids with 2n = ~60 (54–58) and chromosome arm number
NF = 72–74. Hence, Salmo trutta Linnaeus, 1758, with a karyotype more similar to S. platycephalus,
is more desirable for cytogenomic comparisons. The first results of virtual karyotyping of S. salar show
that the soft-masked genome (i.e., repetitive fraction) appears surprisingly GC-rich (even richer in GC
than the non-repetitive fraction [26].

Repetitive sequences that are generally highly important for fish cytogenetics are represented in
salmonid genomes in thus far unprecedented proportions of up to 60%, among the highest proportions
established for any vertebrate [27,28]. Repetitive sequences in salmonids were recently suggested
to have a different relationship between salmonid genome GC% and genome size than that of other
teleosts [29]. This is in line with the aforementioned results of virtual karyotyping. Now, thanks to
the fast development in fish genomics, new teleost genomes including several salmonid species
have become available. Therefore, it is desirable to address this still outstanding question of GC%
of salmonid repeatome representing another direction of future research—namely the quantitative
approach described in more details as related to fish in this special issue by Borůvková et al. [30].

https://github.com/bioinfohk/evangelist_plots
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Hence, we outline future research directions not only of salmonid cytogenetics but of vertebrates’
cytogenetics in general.

2. Materials and Methods

2.1. Studied Material

Five males and six females of flathead trout were collected by electrofishing in Karagoz Creek,
Zamanti River Basin, 38.7350000 N, 36.4864000 E. The individuals were dissected both for direct
chromosome preparation in field conditions as well as for other analyses and thus were not deposited
in collection as vouchers. Valid Animal Use Protocol was enforced during study in IAPG CAS
(No. CZ 02386).

2.2. Chromosome Preparation and Staining

Standard procedures for chromosome preparation followed those laid out in Ráb and Roth [31].
Chromosomal preparations from all individuals were stained with conventional Giemsa solution
(5%, 10 min) to confirm the number and morphology of their chromosomes. Fluorescent staining
with chromomycin A3 (CMA3) specific for GC-rich regions was applied, counterstained with DAPI,
with a higher affinity for AT-rich regions [32]. Silver (Ag-) staining for detection of nucleolar organizer
regions (NORs) followed Howell and Black [33]. The sequence of staining followed the protocol of
Rábová et al. [34].

2.3. Fluorescence In Situ Hybridization (FISH) with Telomeric and rRNA Genes Probes

Probes for FISH experiments were produced by PCR with the primer pairs and thermal cycling
conditions according to Komiya and Takemura [35] for 5S rDNA and White et al. [36] for 28S rDNA.
The PCR reactions were carried out in a final volume of 25µL consisting of 100 ng genomic DNA, 12.5µL
PPP master mix, 0.01 mM of each primer and PCR water to complete the volume (all reagents from
TopBio, Prague, Czech Republic). Cycling conditions were as follows: (a) 28S: 2 min at 95 ◦C; 35 cycles of
1 min at 95 ◦C, 40 s at 55 ◦C and 2 min at 72 ◦C; 5 min at 72 ◦C; (b) 5S rDNA: 5 min at 94 ◦C; two cycles of
1 min at 95 ◦C, 30 s at 61 ◦C, and 45 s at 72 ◦C; two cycles of 1 min at 95 ◦C, 30 s at 59 ◦C and 45 s at 72 ◦C;
two cycles of 1 min at 95 ◦C, 30 s at 57 ◦C and 45 s at 72 ◦C; 25 cycles of 1 min at 95 ◦C, 30 s at 61 ◦C and
45 s at 72 ◦C; 7 min at 72 ◦C. The amplified fragments were sequenced at the ABI 3700 sequencer prior
FISH experiments. Probes were indirectly labelled with biotin-16-dUTP (Roche, Mannheim, Germany)
and digoxigenin-11-dUTP (Roche) through PCR reamplification of previously sequenced PCR products.
Reamplification was carried out under the same condition as the previous PCR reaction. Labelled
PCR products were precipitated. A hybridization mixture was made consisting of hybridization
buffer [37], sonicated salmon sperm blocking DNA (15 µg/slide; Sigma-Aldrich, St. Louis, MO, USA)
and differently labelled PCR products of both genes. The hybridization and detection procedure
were carried out under conditions described by Symonová et al. [37]. The biotin-dUTP-labelled
probes were detected by either the Invitrogen CyTM3-Streptavidin (Invitrogen, San Diego, CA, USA;
cat. no. 43-4315) or by the FITC-Streptavidin (cat. no. 43-4311). The digoxigenin-dUTP-labelled probes
were detected either by the Roche Anti-Digoxogenin-Fluorescein (cat. no. 11207741910) or by the
Anti-Digoxigenin-Rhodamin (cat. no. 11207750910). The chromosomes were counterstained with
Vectashield/DAPI (1.5 mg/mL) (Vector, Burlingame, CA, USA).

2.4. Microscopy and Image Analyses

Chromosomal preparations were examined by an Olympus Provis AX 70 epifluorescence
microscope (Olympus, Tokyo, Japan). Images of metaphase chromosomes were recorded with a cooled
Olympus DP30BW CCD camera (Olympus, Tokyo, Japan). The IKAROS and ISIS imaging programs
(Metasystems, Altlussheim, Germany) were used to analyse grey-scale images. The captured digital
images from FISH experiments were pseudocoloured (red for Anti-Digoxigenin-Rhodamine, green
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for Invitrogen FITC-Streptavidin) and superimposed using Adobe Photoshop software, version CS5.
Karyotypes from Giemsa-stained chromosomes were arranged in Ikaros (Metasystems) software.
In the case of CMA3/DAPI staining, the CMA3 signal was inverted into the red channel while the
DAPI signal went into the green channel to enhance the contrast between these two signal types.
At least 25 metaphases (of the highest possible quality) per individual and method were analysed,
some of them sequentially. Chromosomes were classified according to Levan et al. [38], but modified
as m = metacentric, st = subtelocentric and a = acrocentric, where st and a chromosomes were scored
as uni-armed to calculate the NF value (Nombre Fondamental, number of chromosome arms sensu
Matthey [39].

2.5. Cytogenomic Analyses

First, we reviewed current genomic resources (Ensembl and NCBI/genome) for fish and
especially salmonid genome assemblies. Second, we applied the novel Python tool EVANGELIST
(= EVAluatioN on GEnome LIST) based on the non-overlapping sliding window to visualize and
quantify percentage of repeats and GC% in both repeats and non-repetitive DNA simultaneously,
introduced by Matoulek et al. [24]. With this tool, we produced the prototypical virtual karyotype for
a salmonid (S. trutta). Third, we extracted and manually curated data on genome size and GC% from
currently available fish genomes assembled to the chromosome level (the best genome quality) using
the NCBI online tool https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/. Finally, we processed
these data with R [40] and compared them with our previous results [29].

3. Results

3.1. Karyotypes and Molecular Cytogenetic Traits

The diploid chromosome number was 2n = 80 and the karyotype was composed of 7 pairs of
metacentric, 5 pairs of subtelocentric, 2 pairs of distinctly large acrocentric and 26 pairs of moderate
sized acrocentric chromosomes, decreasing gradually in size (Figures 1 and 2a, b). The NF value
equalled 96 (Figure 1). DAPI/CMA3 fluorescence showed CMA3-positive, i.e., highly GC-enriched,
signals in p arms of the largest subtelocentric chromosome pair (Figure 2c). FISH with the 28S rDNA
probe clearly visualized signals in the same position as CMA3, while 5S rDNA sites were located in
pericentromeric regions of one middle-sized metacentric chromosome pair (Figure 2e). FISH with the
telomeric probe labelled the terminal regions of all chromosomes and did not reveal any interstitial
signals (Figure 2d). Finally, Ag-NOR impregnation marked the same CMA3 and FISH positive region,
i.e., the p arms of the largest sub-telocentric chromosome pairs (Figure 2f).
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including an option to visualise the two nuclear ribosomal fractions in the next step. Visualization of 
5S rDNA can already be performed in Ensembl, showing that chromosome No. 1 bears the majority 
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sequences otherwise hidden for FISH. 

Figure 2. Chromosome analyses of Salmo platycephalus. (a,b) Giemsa-stained metaphases corresponding
to (d,e) panels; (c) DAPI/CMA3 fluorescence, DAPI stained chromosomes (green), CMA3 signals of
GC-rich regions (red); (d) DAPI stained chromosomes (blue), telomere repeat hybridization signals
(green); (e) DAPI stained chromosomes (blue), 28S rDNA (green, indicated by arrows), 5S rDNA
hybridization signals (red, indicated by arrowheads); (f) Ag-NOR impregnation showing the active
major rDNA unit corresponding to the 28S rDNA sites. Bar equals 10 µm.

3.2. Virtual Karyotype and Cytogenomics in Salmonids

Thanks to the close relatedness between the S. platycephalus analysed here and the species S.
trutta [41], which is among the best cytogenetically analysed salmonid fishes [18], it is relevant to
compare their karyotypes. Utilizing the EVANGELIST Python tool, we produced the first virtual
karyotype for the latter species (Figure 3). The virtual karyotype of S. trutta was confronted with
its cytogenetics-based congeneric karyotypes. Both virtual karyotypes of the genus Salmo show a
homogenization in GC% along chromosomes and repetitive as well as non-repetitive fractions reaching
50–60%. The comparison with actual karyotypes enabled an assignment of just the three largest
chromosomes (Figure 3) at this stage and shows the need to improve the virtual analysis by including
an option to visualise the two nuclear ribosomal fractions in the next step. Visualization of 5S rDNA
can already be performed in Ensembl, showing that chromosome No. 1 bears the majority of 5S rDNA
sequences (Figure 3, labelled with a blue arrowhead). Moreover, one more 5S rDNA site was identified
on chromosome No. 20 (Figure 3, orange arrowhead). This site is probably below the detection range
of FISH; however, it shows the potential of virtual karyotyping to visualize DNA sequences otherwise
hidden for FISH.
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enables us to roughly identify only the first three chromosomes according to their size—the largest 
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Figure 3. Virtual karyotype of Salmo trutta shows the haploid set of size-sorted chromosomes. The colour
scale represents the proportion of repetitive (green) and non-repetitive (red) sequences. The y axis
of each chromosome represents the scale of GC%. The karyotype based on cytogenetics in S. trutta
enables us to roughly identify only the first three chromosomes according to their size—the largest
acrocentric, the largest sub-telocentric and probably the largest metacentric chromosome. According to
Ensembl, the 5S rDNA bearing chromosomes are chromosome No. 1 (the main site visualized also
by FISH, blue arrow), i.e., the fourth largest chromosome, and chromosome No. 20 (orange arrow),
which has a single 5S rDNA sequence.
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Finally, we have taken advantage of the increasingly available data on genomic features (GC%
and genome size) among teleost fishes with a special focus on salmonids. Including more species than
in the previous analysis [29] confirmed earlier results that genome size negatively correlates with the
genomic GC% in fish excluding salmonids. Moreover, the results revealed an inverse relationship
between these two measures in salmonids in comparison with other teleosts (Figure 4).
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4. Discussion

The salmonid genus Salmo (Linnaeus, 1758) represents freshwater anadromous fishes that are
originally widely distributed from the North Atlantic Basin, i.e., Northeastern North America and
Europe (including European Arctic) to the upper parts of Amu-Darya R. in Central Asia [42]. The genus
contains two sister lineages—a primarily anadromous Atlantic salmon, S. salar, and primarily freshwater
resident fishes collectively known as brown trout (Salmo spp.), although both lineages include numerous
anadromous and freshwater populations. However, these salmonids have been introduced and/or
stocked outside their native range virtually around the world, mainly as objects of recreational fishery.
As a result, several countries report an adverse ecological impact after their introduction [43–47].
Although brown trout are of limited interest in production aquaculture [48] (except the commercially
important Atlantic salmon), brown trout have been and still are objects of intense investigations in
various types of studies [12]. Similarly, chromosomes of different species and forms of brown trout
were already extensively studied by numerous authors by the end of the 19th century (see review
of Gas [49]). To compare results of our cytogenetic analysis of flathead trout, we summarized all
available chromosome data in brown trout (Table 1). Summing up these studies, we excluded
those without reliable locality data, without descriptions of cytogenetic methods used, without the
number of individuals used and/or simply reports from other non-referenced sources. In some
cases, we reinterpreted specific status of material examined under the name S. trutta (i.e., S. oxianus,
S. cenerinus, S. farioides, S. lourosensis, S. peristericus) since the published locality data clearly pointed
to species different from true S. trutta. We also included older data based on analyses of anaphase
chromosomes from embryo squashes for species/forms not analysed afterwards (i.e., S. carpio, S. letnica,
S. labrax, S. caspius) but with a sufficient chromosome quality to reliably infer 2n and karyotypes.
On the other hand, we are aware that all of these summarized studies had significant flaws. First,
none of these studies clearly claimed that examined fishes were deposited in any collection to enable
later taxonomic identification of the material analysed [50]. Second, the results of some cytogenetic
studies, especially in peri-Mediterranean and central European populations, could certainly have been
affected by the stocking of non-autochthonous individuals and their subsequent genetic admixture
(e.g., Kohout et al. [51], Leitwein et al. [52]). Nevertheless, our review clearly shows that cytogenetic
and/or cytotaxonomic characteristics of flathead trout are nearly or even invariably the same as in
other species/forms of brown trout. To explain this conclusion, we further examine in detail the data
regarding 2n, karyotype composition and other chromosomal characteristics.

https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/
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Table 1. Review of reported cytogenetic data for members of Palearctic trout of the genus Salmo.

Species/Form Locality Country Examined Individuals 2n
Karyotype Composition

NF Ref. Notes
m/sm st/a

Aral Sea Basin
S. oxianus Kyzylsu R. (Amu Darya basin) KAZ 3 80 18 62 98 [53] 1; 2
S. oxianus Alamedin R. (Chu basin) KG 5 80 18 62 98 [53] 1; 2
S. oxianus Bech–Tach (Talas basin) KG 11 80 18 62 98 [53] 1; 2
Balkans and Mediterranean Sea Basin
S. carpio Garda L. IT embryos 80 20 60 100 [54] 1
S. cenerinus Monti Sibillini IT 57 † 80 14/8 58 102 [55] 2; 5
S. farioides Drosopigi R. GR / 80 20 60 100 [56] 1; 2
S. lourosensis Louros R. GR / 80 20 60 100 [56] 1; 2
S. letnica Ochrid L. MK embryos 80 104 [57] 1
S. marmoratus Socha R. SI / 80 22 58 102 [58] 1
S. marmoratus Socha R. SI 1 80 22 58 102 [59] 1
S. marmoratus Idrijca R. SI 2 80 22 58 102 [59] 1
S. marmoratus Friuli–Venezia IT 57 † 80 14/8 58 102 [55] 2; 5
S. obtusirostris Buna R. (Neretva R. basin) BIH / 82 12 70 94 [60] 1
S. peristericus Aigos Germanos GR / 80 20 60 100 [56] 1; 2
S. trutta * Buni, Krupica, Bistrica R. RU 17 80 18–20 62–60 100 [61] 1; 2
S. trutta * Klinje L. BIH 17 80 20 60 100 [61] 1; 2
S. trutta * Pschata R. SI / 80 20 60 100 [58] 1
S. trutta * Tripotamos R. GR / 76 16 60 92 [56] 1; 2
Baltic Sea Basin
S. trutta Ropsha RU / 78 20 58 98 [62] 3
S. trutta (anadromous) Vistula R. PL 23 80 14/6 60 100 [63]
S. trutta (anadromous) Vistula R. PL 21 80 22 58 102 [64]
S. trutta Vistula R. PL 18 80 22 58 102 [65]
S. trutta (lacustrine) Wdzydze L. PL 13 80 22 58 102 [65]
S. trutta Gawrych Ruda Hatchery PL 21 80 22 58 102 [66]
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Table 1. Cont.

Species/Form Locality Country Examined Individuals 2n
Karyotype Composition

NF Ref. Notes
m/sm st/a

Black Sea Basin
S. labrax Local hatchery GE embryos 80 18 62 98 [67] 1
S. labrax Local hatchery GE 6 80 22 58 102 [68]
S. trutta * Black R. GE 8 80–82 20–22 60 100–104 [68] 3
S. trutta * Bzyb R. GE 9 82 22 60 104 [68] 1
S. trutta * Gumista R. GE 9 82 22 60 104 [68] 1
S. trutta * Kodori R. GE 8 80–82 20–22 60 100–104 [68] 1; 2
S. trutta * Bicaz, Prejmer, Azuga RO / 80 24 56 104 [69] 1; 2
S. trutta * Western–Middle Carpathians RO / 80 24 56 104 [69] 1; 2
Caspian Sea Basin
S. caspius embryos 80 18 62 98 [70] 1
S. caspius Kura R. AZ 2 82 20 62 102 [68] 1; 2
S. ischchan “winter ischchan” Sevan L. AR 11 80 16 64 96 [67,71] 1; 2
S. ischchan “gegarkuni” Sevan L. AR 17 80 18 62 98 [67,71] 1; 2
S. ischchan “summer ischchan” Sevan L. AR 23 82 18 64 100 [67,71] 1; 2
S. ischchan “bodjak” Sevan L. AR 7 82 16 66 98 [67,71] 1; 2
S. trutta “alabalach” * Argichi R. AR 8 80 16 64 96 [72] 1
S. trutta Marmarik R. AR / 82 16 66 98 [73] 1
S. trutta Vedi R. AR / 78 20 58 98 [73] 1
S. trutta * Azat R. AR 8 78 20 58 98 [68] 1
S. trutta * Arindg R. 7 80 18 62 98 [68] 1
S. trutta * Vedi R. AR 18 78 20 58 98 [68] 1
S. trutta * Korotan R. 15 80 20 60 100 [68] 1
S. trutta * Dzeoraget R. AR 8 80 20 60 100 [68] 1
S. trutta * Kcia R. 3 82 20 62 102 [68] 1
S. trutta * Kyuretchai R. 9 84 16 68 100 [68] 1
S. trutta * Marmarik R. AR 7 82 16 66 98 [68] 1
S. trutta * Ochtchi R. 8 82 20 62 102 [68] 1
S. trutta * Chatchen R. 7 80 20 60 100 [68] 1
S. trutta * Tchaki R. 8 82 18 64 100 [68] 1
S. trutta * Goygol L. AZ 7 80 20 60 100 [68] 1
S. trutta * Tabackuri L. GE 15 80 20 60 100 [68] 1
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Table 1. Cont.

Species/Form Locality Country Examined Individuals 2n
Karyotype Composition

NF Ref. Notes
m/sm st/a

Northern Sea Basin, European Atlantic coast
S. trutta Cares R. ES 49 80 22–23 57–58 102–103 [74] 1
S. trutta Pyrenees hatchery ES 44 81 22–24 57–59 103–105 [74] 1
S. trutta (anadromous) Galicia ES 14 80 20 60 100 [75] 4
S. trutta (local hatchery strain) Galicia ES 19 80 20 60 100 [75] 4
S. trutta Pšovka Cr. CZ 10 80 14/4 62 98 [76] 4
S. trutta Navia, Tambre, Umia, Mino R. ES 133 78–80 20 58–60 98–100 [77,78] 2; 4; 5
S. trutta Galicia ES 15 80 20 60 100 [79] 3
S. trutta Hatchery stock AT lineage IT 20 80 14/8 58 102 [55] 2; 5
S. trutta Loch Lomond SCT 6 79–80 21–22 58–59 100–102 [80] 3
S. trutta Norway (migratory) NO / 80 14 66 94 [81] 3
S. trutta Germany DE 6 78–82 20–26 52–62 102–104 [82] 2
S. trutta 10 localities across all Sweden SW 14 80 20 60 100 [83] 1

Notes: 1: Giemsa-stained chromosomes only; 2: Robertsonian polymorphism detected; 3: Replication banding pattern discovered cytotype variants in some chromosomes; 4: Ag-,
CMA3- and/or C-banding, cytotype polymorphisms; 5: Ag-, CMA3- and rDNA ISH and/or FISH; *—Material was analysed under the name S. trutta but evidently out of the known
autochthonous range of S. trutta s. str., thus likely representing another species of the genus, the species name was determined based on locality data in a given study according to
geographical distribution of trout taxa in Kottelat and Freyhof [4]; †—counts reported both trout taxa without distinguishing between them. Studies with incomplete information (without
data reflecting karyotype composition, geographic origin, number of examined individuals or methodically problematic studies; all mostly reviewed in Gas [49]) were excluded from this
review; symbol “-“ in chromosome counts represents observed range, symbol “/”in chromosome counts shows that both categories (m and sm or st and a) were determined.
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The karyotype of flathead trout undoubtedly belongs to category A sensu Phillips and Ráb [18],
i.e., salmonids with 2n = ~80 and chromosome arm number NF = ~100. The 2n = 80 found in flathead
trout has been reported in a majority of studies (e.g., [16,37,48]). Differences from this value are mostly
caused by centric fusions of acrocentric chromosomes and/or fissions of metacentric chromosomes
as reported in nearly all studies so far. Some reports of different 2n were caused by (i) lower
quality of metaphases examined and/or (ii) low number of analysed individuals (e.g., Kaidanova [62],
Karakousis et al. [56]). On the other hand, some studies pointed definitively to different 2n such
as 2n = 82 in S. obtusirostris [60], 2n = 84 in S. trutta “alabalach” [72], 2n = 82 in some forms of
S. ischchan [71] and 2n = 78 to 82 in some taxonomically unidentified Transcaucasian trout [68].
Regardless, such variation in 2n, frequently documented in other lineages of salmonids with A type
karyotype, could be explained despite minor chromosome rearrangements such as pericentromeric
inversions that can convert acrocentric chromosomes into sub-telocentric ones [18].

The 2n, karyotypes, and hence NF of the examined species/forms of brown trout are remarkably
similar (Table 1). Nevertheless, differences caused by a chromosome classification bias among
individual reports exist. Most authors categorise uni-armed and bi-armed chromosomes according
to Levan [38] but NF was originally designed to quantify the centric translocations or fissions of the
Robertsonian type [39] only. However, some authors scored sub-telocentric chromosomes as bi-armed.
Differences in the NF reported for the same form/species thus usually resulted from a difference in the
scoring rather than from any real variation. In other words, most of the studies provide the number of
metacentric and submetacentric chromosomes together, while a minority of them distinguish these
categories, as was done in our study. Another problem in comparing reports on karyotype structures in
brown trout is that most of the summarized studies analysed Giemsa-stained chromosomes, published
karyotypes and/or metaphase plates of lower quality to infer karyotype structure in more details.
The studies using conventional and/or molecular cytogenetic protocols [55,64–66,74–80] revealed
very similar or even identical karyotypes as we found in the flathead trout for this study. We can
therefore conclude that the karyotype of brown trout typically consist of seven pairs of metacentric,
five to six pairs of visibly sub-telocentric chromosomes and all remaining are acrocentric elements of
gradually decreasing size. The brown trout’s karyotype also contains several distinct chromosome
markers—the first two pairs of acrocentric chromosomes distinctly larger from other acrocentric ones
and the largest sub-telocentric pair, which is also the largest one in the complement. The short (p) arm
of this marker chromosome pair bears the major rDNA sites, as revealed by FISH with 28S rDNA probe,
corresponding to positive Ag- and CMA3-stainings [55,64–66,75–78,84]. Intraspecific variation in the
locations and sizes of the chromosomal nucleolar organizer regions (NORs), i.e., major rDNA sites,
have been frequently documented [85] but available data for this marker consistently document the
same karyotype location across brown trout diversity including flathead trout. However, as in other
cases, some intraspecific variability has been observed [64–66]. In our study, we observed the variability
in the size of the NOR-bearing p arm of this marker chromosome corresponding to the 28S rDNA
signal, similar to Caputo et al. [28] in S. marmoratus. The intraspecific variability of the 5S rDNA
cytotaxonomic marker is quite well known [85–87]. Surprisingly, the location of 5S rDNA genes in
the genus Salmo was examined in two studies only. Pendás et al. [84] found multichromosomal sites
of these genes in brown trout from northwestern Spain, while Caputo et al. [55] observed these sites
in telomeres of one middle-sized metacentric pair only. Our study also detected this gene cluster in
the pericentromeric region of one middle-sized metacentric pair only. Whether this 5S rDNA bearing
chromosome pair is homologous remains to be demonstrated by a cross-species painting protocol
(e.g., Ráb et al. [88]). We can therefore conclude that the 2n, and structure as well as number and
position of NORs, i.e., the active 28S rDNA sites, of the endemic flathead trout karyotype entirely
correspond to those found in other brown trout taxa
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4.1. Cytotaxonomy and Diversity of Eurasian Trouts

The species S. trutta has long been considered a single but highly polymorphic species
broadly distributed in the European ichthyo-geographic region (see Bañarescu [42]) forming three
ecotypes—marine migratory, lacustrine and brook/riverine [4]. In line with this, several subspecies or
even distinct species have been described but most of them are simply considered as interindividual
and/or interpopulation variability. Though even nominal subgenera of the genus Salmo have been
described, i.e., Acantholingua (for A. ohridanus), Salmothymus (for S. obtusirostris) and Platysalmo
(for P. platycephalus), collectively called ´archaic trout´, they are closely related to the S. trutta species
complex at the molecular level (e.g., Sušnik et al. [89], Phillips et al. [90]). However, recent detailed
investigations of brown trout life histories, biology, distribution and taxonomy suggest that the
biological and hence taxonomic diversity of the Eurasian genus Salmo is considerably greater than the
taxonomy that was accepted up until the 1990s would suggest [4,91], a situation similar for freshwater
trout of the genus Oncorhynchus [92]. Recently, FishBase [93] lists 50 formally described Salmo species.
However, many molecular phylogeneticists and phylogeographers question this biological species
concept of taxonomic diversity of the genus Salmo by pointing to negligible and/or weak genetic
differentiation among some of those populations/taxa (to cite from numerous ones e.g., [13,89,94–99]).
Yet, other colleagues detected significantly larger genetic differences (e.g., [100–104]). How can the
cytotaxonomy of the genus Salmo contribute to this debate? Our results of the cytogenetic analysis
of flathead trout compared with available cytogenetic data for other trout populations and/or taxa
(Table 1) clearly demonstrate that 2n, karyotype structures and other chromosomal markers, especially
the position of major rDNA sites, are rather stable or even invariable across trout diversity as described
for several lineages of salmonid fishes with A type karyotypes [18,105]. At first glance, this conclusion
would support/conform to the view of molecular-based studies. However, the stability of 2n and
similar and/or even identical chromosomal characteristics were observed, i.e., karyotype stasis is widely
documented in a group of taxonomically different species and/or even lineages. Such uniform stasis has
been discovered in groups as diverse as plants [106–108], amphibians [109,110] and birds [111]. Among
teleost fishes, multiple groups display such apparent karyotype stasis persisting in significantly long
stages of lineage divergences, e.g., pikes of the genus Esox [112,113], fishes of the family Leuciscidae
([88,114–117] and references therein), Gobionidae [34], Xenocyprinidae [118] and especially many
percomorph groups [119–124]. The underlying evolutionary mechanisms for this mode of karyotype
(non) differentiation have not been identified so far but they may be at least partially linked with
the functional arrangement of chromatin within the interphase nucleus and the degree of tolerance
to its change [125,126]. We therefore conclude that, from the cytotaxonomic point of view, apparent
karyotype stasis found in trout of the genus Salmo does not challenge their existing and evident
taxonomic diversity.

4.2. Cytogenomics in Salmonids

The cytogenomic approach represents a logical continuation of the traditional molecular
cytogenetics, which was crucial for understanding fish genome evolution. Cytogenomics effectively
integrates the huge body of evidence generated by karyological and cytogenetic research with the
genomic approach based on currently extensive genome sequencing [127]. The sequencing effort of
fish genomes is still accelerating and highly ambitious; hence, with about 32,000 fish species [128],
fish cytogenomics has a good chance of fast becoming as equally crucial as molecular cytogenetics
despite the small fraction of genomes that had been sequenced so far in comparison with the number of
species already analysed cytogenetically. Already, virtual karyotyping has taken another step forward
with the potential to visualize more details with better resolutions than through the use of microscopes
for most small-sized fish chromosomes.

At this initial stage, our tool for virtual karyotyping utilizes masking of repeats in the DNA
sequence via soft-masking, i.e., identified repetitive sequences become lower-case, whereas the
remaining sequences retain their upper-case. It means that the quality of the input assembly and its
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soft-masking is crucial and cannot be influenced by the tool itself. This tool has been introduced in this
special issue to outline the potential future of fish cytogenomics, and so far its functionality has been
utilized to address general questions on GC% and repeats evolution not only in fish but also across
vertebrates. This means that the tool has not yet been used systematically in cytogenetically analysed
fish species and results of both approaches have not yet been compared.

The inverse relationship between the GC% and genome size had been initially ascribed to
the extremely dynamic and often highly amplified ribosomal genes [105,129–131] that represent
the GC-richest genome fraction [132,133]. However, further molecular cytogenetic results based
on FISH with rDNA probes in further salmonids (continuously summarized by the database by
Sochorová et al. [134]) as well as the results obtained here do not support these initial assumptions.
The genomic approach is less useful here, because the rDNA is mostly disregarded and/or even
discarded in the genome assemblies.
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Eds.; Cytogenetic Section of Czechoslovakian Biological Society Publishers: Brno, Czech Republic, 1988;
pp. 115–124.

32. Sola, L.; Rossi, A.R.; Iaselli, V.; Rasch, E.M.; Monaco, P.J. Cytogenetics of bisexual/unisexual species of
Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by
C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogen. Cell Genet. 1992, 60,
229–235. [CrossRef]

33. Howell, W.M.; Black, D.A. Controlled silver-staining of nucleolus organizer regions with a protective colloidal
developer: A 1-step method. Experientia 1980, 36, 1014–1015. [CrossRef]

34. Rábová, M.; Völker, M.; Pelikánová, Š.; Ráb, P. Sequential chromosome banding in fishes. In Fish Cytogenetic
Techniques; Ozouf-Costaz, C., Pisano, E., Foresti, F., de Almeida Toledo, L.F., Eds.; CRC Press: Boca Raton, FL,
USA, 2015; pp. 92–102. ISBN 978-1-4822-1198-6.

http://dx.doi.org/10.1007/s10641-007-9213-x
http://dx.doi.org/10.1017/S1464793100005613
http://dx.doi.org/10.1186/1471-2164-13-463
http://www.ncbi.nlm.nih.gov/pubmed/22958299
http://dx.doi.org/10.1371/journal.pone.0214225
http://www.genomesize.com
http://dx.doi.org/10.1186/gb-2010-11-9-403
http://dx.doi.org/10.1093/database/bay119
http://dx.doi.org/10.1159/000444429
http://www.ncbi.nlm.nih.gov/pubmed/26967166
http://dx.doi.org/10.1038/nature17164
http://www.ncbi.nlm.nih.gov/pubmed/27088604
http://dx.doi.org/10.1186/s13100-019-0195-y
http://www.ncbi.nlm.nih.gov/pubmed/31857829
http://dx.doi.org/10.1159/000133346
http://dx.doi.org/10.1007/BF01953855


Genes 2020, 11, 1462 15 of 19

35. Komiya, H.; Takemura, S. Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii)
liver. J. Biochem. 1979, 86, 1067–1080. [CrossRef]

36. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes
for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M., Gelfand, J., Sninsky, J.,
White, T., Eds.; Academic Press: Orlando, FL, USA, 1990; pp. 315–322.

37. Symonová, R.; Sember, A.; Majtánová, Z.; Ráb, P. Characterization of fish genomes by GISH and CGH. In Fish
Cytogenetic Techniques; Ozouf-Costaz, C., Pisano, E., Foresti, F., de Almeida, L., Eds.; CRC Press: Boca Raton,
FL, USA, 2015; pp. 118–131. ISBN 978-1-4822-1198-6.

38. Levan, A.; Fredga, K.; Sandberg, A.A. Nomenclature for centromeric position on chromosomes. Hereditas
1964, 52, 201–220. [CrossRef]

39. Matthey, R. L’évolution de la formule chromosomiale chez les vertébrés. Experientia 1945, 1, 78–86. [CrossRef]
40. Team, R.C. R: A Language and Environment for Statistical Computing, version 2.6.2; R Foundation for Statistical

Computing: Vienna, Austria, 2013.
41. Sušnik, S.; Schöffmann, J.; Snoj, A. Phylogenetic position of Salmo (Platysalmo) platycephalus Behnke 1968

from south-central Turkey, evidenced by genetic data. J. Fish. Biol. 2004, 64, 947–960. [CrossRef]
42. Bănărescu, P. Zoogeography of Fresh Waters. Volume 2: Distribution and Dispersal of Freshwater Animals in North

America and Eurasia; Aula-Verlag: Wiebelsheim, Germany, 1991; ISBN 3-89104-482-8.
43. Budy, P.; Gaeta, J.W. Brown trout as an invader: A Synthesis of problems and perspectives in North America.

In Brown trout: Biology, ecology, and management; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2018;
pp. 525–534.

44. Jones, P.; Closs, G. The introduction of brown trout to New Zealand and their impact on native fish
communities. In Brown Trout: Biology, Ecology, and Management; John Wiley and Sons Ltd.: Hoboken, NJ,
USA, 2018; pp. 545–567.

45. Jellyman, P.G.; McHugh, P.A.; Simon, K.S.; Thompson, R.M.; McIntosh, A.R. The effects of brown trout on
the trophic webs of New Zealand streams. In Brown Trout: Biology, Ecology and Management; John Wiley and
Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 569–598.

46. Casalinuovo, M.A.; Alonso, M.F.; Macchi, P.J.; Kuroda, J.A. Brown trout in Argentina: History, interactions,
and perspectives. In Brown Trout: Biology, Ecology, and Management; John Wiley and Sons Ltd.: Hoboken, NJ,
USA, 2018; pp. 599–622.

47. Weyl, O.L.; Ellender, B.R.; Ivey, P.; Jackson, M.C.; Tweddle, D.; Wasserman, R.J.; Woodford, D.J.; Zengeya, T.A.
Africa: Brown trout introductions, establishment, current status, impacts and conflicts. In Brown trout:
Biology, ecology, and management; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 623–639.

48. FAO Fisheries and Aquaculture—Statistics—Introduction. Available online: http://www.fao.org/fishery/

statistics/en (accessed on 6 November 2020).
49. GAs, M. Revue bibliographique sur la caryologie des Téléostéens. Etude critique des méthodes employées

et des résultats obtenus. Biologie Médical 1970, 54, 54–81.
50. Dettai, A.; Pruvost, P. Storage of Karyotyped Voucher Specimens and their Molecular Identification. In Fish

Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans; CRC Press Taylor and Francis Group: London,
UK, 2015; p. 11.

51. Kohout, J.; Jašková, I.; Papoušek, I.; Šedivá, A.; Šlechta, V. Effects of stocking on the genetic structure of brown
trout, Salmo trutta, in Central Europe inferred from mitochondrial and nuclear DNA markers. Fish Manag.
Ecol. 2012, 19, 252–263. [CrossRef]

52. Leitwein, M.; Gagnaire, P.A.; Desmarais, E.; Guendouz, S.; Rohmer, M.; Berrebi, P.; Guinand, B. Genome-wide
nucleotide diversity of hatchery-reared Atlantic and Mediterranean strains of brown trout Salmo trutta
compared to wild M editerranean populations. J. Fish. Biol. 2016, 89, 2717–2734. [CrossRef] [PubMed]

53. Mazik, E.J.; Toktosunov, A.T. Karyotype of the Amu Darya trout Salmo trutta oxianus (Salmoniformes,
Salmonidae) from Kyzylsu River. J. Zool. 1986, 65, 1582–1586.

54. Merlo, S. Osservazioni cariologiche su Salmo carpio: (Con 1 tavola fuori testo). Ital. J. Zool. 1957, 24, 253–258.
55. Caputo, V.; Giovannotti, M.; Cerioni, P.N.; Splendiani, A.; Olmo, E. Chromosomal study of native and

hatchery trouts from Italy (Salmo trutta complex, Salmonidae): Conventional and FISH analysis. Cytogen. Gen.
Res. 2009, 124, 51–62. [CrossRef] [PubMed]

56. Karakousis, Y.; Paschos, J.; Triantaphyllidis, C. Chromosomal studies in brown trout (Salmo trutta L.)
populations. Cytobios 1992, 72, 117–124.

http://dx.doi.org/10.1093/oxfordjournals.jbchem.a132601
http://dx.doi.org/10.1111/j.1601-5223.1964.tb01953.x
http://dx.doi.org/10.1007/BF02156807
http://dx.doi.org/10.1111/j.1095-8649.2004.0363.x
http://www.fao.org/fishery/statistics/en
http://www.fao.org/fishery/statistics/en
http://dx.doi.org/10.1111/j.1365-2400.2011.00828.x
http://dx.doi.org/10.1111/jfb.13131
http://www.ncbi.nlm.nih.gov/pubmed/27666575
http://dx.doi.org/10.1159/000200088
http://www.ncbi.nlm.nih.gov/pubmed/19372669


Genes 2020, 11, 1462 16 of 19

57. Dimovska, A. Chromosome complement of Ochrid trout (Salmo letnica Karaman). Godisen zb. Prirodno-matem.
Fak. Univ. Skopje 1959, 12, 115–135.

58. Al-Sabti, K. Karyotypical studies in three Salmonidaae in Slovenia using leukocyte culture technique.
Ichthyologia 1983, 15, 41–46.

59. Al-Sabti, K. Chromosomal studies by blood leukocyte culture technique on three salmonids from Yugoslavian
waters. J. Fish. Biol. 1985, 26, 5–12. [CrossRef]

60. Berberovic, L.; Curic, M.; Hadziselimovic, R.; Sofradzija, A. Chromosome complement of Salmothymus
obtusirostris oxyrhynchus (Steindachner). Acta Biol. Jug. Genet. 1970, 2, 55–63.

61. Sofradzija, A. The chromosomes of the trout Salmo trutta m. fario and Salmo gairdneri. Godisnajak Bioloskog
Instituta Univerziteta u Sarajevu 1982, 35, 117–128.

62. Kaidanova, T.I. Karyotype study of brown trout Salmo trutta morpha fario from Ropsha population. Voprosy
Ichtiologii 1975, 15, 1124–1128.

63. Jankun, M. Standard karyotype of sea trout (Salmo trutta morpha trutta) based on replication banding patterns.
Cytobios 2000, 103, 79–89. [PubMed]

64. Woznicki, P.; Jankun, M.; Kucharczyk, D.; Boron, A.; Luczynski, M. Cytogenetic characterization of sea trout
(Salmo trutta) from Poland. Copeia 1999, 1999, 501–505. [CrossRef]

65. Woznicki, P.; Sanchez, L.; Martinez, P.; Pardo, B.G.; Jankun, M. A population analysis of the structure and
variability of NOR in Salmo trutta by Ag, CMA3 and ISH. Genetica 2000, 108, 113–118. [CrossRef]

66. Woznicki, P.; Jankun, M.; Luczynski, M. Chromosome studies in brown trout (Salmo trutta m. fario) from
Poland: Hypothetical evolution of the 11th, 12th and 14th chromosome pairs in the Salmo karyotype. Cytobios
1997, 91, 2017–2214.

67. Dorofeeva, E.A.; Ruhkjan, R.G. Divergence of Salmo ischchan Kessler in light of karyological and morphological
characteristics. Voprosy Ichtiologii 1982, 22, 36–48.

68. Ruhkjan, R.G. Karyology and Origin of the Transcaucasian Trouts; Academy of Sciences Armenian SSR Press:
Yerevan, Armenia, 1989; p. 166. (In Russian)

69. Raicu, P.; Taisescu, E. Cytogenetic study in Salmo irideus and S. trutta fario. Cytologia 1977, 42, 311–314.
[CrossRef]

70. Dorofeeva, E.A. Karyology and systematic status of Caspian and Black Sea salmons (Salmo trutta caspius
Kessler, Salmo trutta labrax Pallas). Voprosy Ichtiologii 1965, 5, 28–45.

71. Ruhkjan, R.G. A comparative analysis of the karyotypes of the Sevan trout Salmo ischchan Kessler. Citologia
1982, 24, 66–77.

72. Ruhkjan, R.G. On the origin and species identity of alabalach trout (genus Salmo, Salmonidae) based on its
karyological characteristics). Voprosy Ichtiologi 1984, 23, 368–373.

73. Ruhkjan, R.G. Karyotypes of brown trouts of Armenia Salmo trutta m. fario. Biol. J. Armenii 1981, 34, 412–417.
74. Mořan, P.; Pendas, A.M.; García-Vázquez, E.; Linde, A.R. Chromosomal and morphological analysis of two

populations of Salmo trutta sbp. fario employed in repopulation. J. Fish Biol. 1989, 35, 839–843. [CrossRef]
75. Martinez, P.; Vinas, A.; Bouza, C.; Arias, J.; Amaro, R.; Sánchez, L. Cytogenetical characterization of hatchery

stocks and natural populations of sea and brown trout from northwestern Spain. Heredity 1991, 66, 9–17.
[CrossRef]

76. Mayr, B.; Ráb, P.; Kalat, M. Localisation of NORs and counterstain-enhanced fluorescence studies in Salmo
gairdneri and Salmo trutta (Pisces, Salmonidae). Theoret. Appl. Genet. 1986, 71, 703–707. [CrossRef]

77. Castro, J.; Rodríguez, S.; Arias, J.; Sánchez, L.; Martínez, P. A population analysis of Robertsonian and
Ag-NOR polymorphisms in brown trout (Salmo trutta). Theoret. Appl. Genetics 1994, 89, 105–111. [CrossRef]

78. Castro, J.; Viñas, A.; Sánchez, L.; Martínez, P. Characterization of an atypical NOR site polymorphism in
brown trout (Salmo trutta) with Ag- and CMA3-staining, and fluorescent in situ hybridization. Cytogenet.
Genome Res. 1996, 75, 234–239. [CrossRef]

79. Sánchez, L.; Martínez, P.; Bouza, C.; Viñas, A. Chromosomal heterochromatin differentiation in Salmo trutta
with restriction enzymes. Heredity 1991, 66, 241–249. [CrossRef]

80. Hartley, S.E.; Horne, M.T. Chromosome relationships in the genus Salmo. Chromosoma 1984, 90, 229–237.
[CrossRef]

81. Gjedrem, T.; Eggum, Å.; Refstie, T. Chromosomes of some salmonids and salmonid hybrids. Aquaculture
1977, 11, 335–348. [CrossRef]

http://dx.doi.org/10.1111/j.1095-8649.1985.tb04234.x
http://www.ncbi.nlm.nih.gov/pubmed/11077970
http://dx.doi.org/10.2307/1447499
http://dx.doi.org/10.1023/A:1004055125295
http://dx.doi.org/10.1508/cytologia.42.311
http://dx.doi.org/10.1111/j.1095-8649.1989.tb03035.x
http://dx.doi.org/10.1038/hdy.1991.2
http://dx.doi.org/10.1007/BF00263267
http://dx.doi.org/10.1007/BF00226990
http://dx.doi.org/10.1159/000134491
http://dx.doi.org/10.1038/hdy.1991.30
http://dx.doi.org/10.1007/BF00292401
http://dx.doi.org/10.1016/0044-8486(77)90083-7


Genes 2020, 11, 1462 17 of 19

82. Zenzes, M.T.; Voiculescu, I. C-banding patterns in Salmo trutta, a species of tetraploid origin. Genetica 1975,
45, 531–536. [CrossRef]

83. Nygren, A.; Nilsson, B.; Jahnke, M. Cytological studies in Salmo trutta and Salmo alpinus. Hereditas 1971, 67,
259–267. [CrossRef] [PubMed]

84. Pendás, A.M.; Morán, P.; García-Vázquez, E. Multi-chromosomal location of ribosomal RNA genes and
heterochromatin association in brown trout. Chromosome Res. 1993, 1, 63–67. [CrossRef] [PubMed]

85. Gornung, E. Twenty Years of Physical Mapping of Major Ribosomal RNA Genes across the Teleosts: A Review
of Research. Cytogenet. Genome Res. 2013. [CrossRef] [PubMed]

86. Sember, A.; Bohlen, J.; Šlechtová, V.; Altmanová, M.; Symonová, R.; Ráb, P. Karyotype differentiation in 19
species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and
heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015, 15,
251. [CrossRef]

87. Majtánová, Z.; Unmack, P.J.; Prasongmaneerut, T.; Shams, F.; Srikulnath, K.; Ráb, P.; Ezaz, T. Evidence of
Interspecific Chromosomal Diversification in Rainbowfishes (Melanotaeniidae, Teleostei). Genes 2020, 11,
818. [CrossRef]

88. Ráb, P.; Rábová, M.; Pereira, C.S.; Collares-Pereira, M.J.; Pelikánová, Š. Chromosome studies of European
cyprinid fishes: Interspecific homology of leuciscine cytotaxonomic marker—the largest subtelocentric
chromosome pair as revealed by cross-species painting. Chromosome Res. 2008, 16, 863–873. [CrossRef]

89. Sušnik, S.; Snoj, A.; Wilson, I.F.; Mrdak, D.; Weiss, S. Historical demography of brown trout (Salmo trutta) in
the Adriatic drainage including the putative S. letnica endemic to Lake Ohrid. Mol. Phylogen. Evol. 2007, 44,
63–76. [CrossRef]

90. Phillips, R.B.; Matsuoka, M.P.; Konon, I.; Reed, K.M.; McEachran, M. Phylogenetic Analysis of Mitochondrial
and Nuclear Sequences Supports Inclusion of Acantholingua ohridana in the Genus Salmo. Copeia 2000, 2000,
546–550. [CrossRef]

91. Kottelat, M. Freshwater fishes of western and central Europe. Biologia 1997, 52, 1–271.
92. Behnke, R.J. Native trout of western North America. Am. Fish. Soc. Monogr. USA 1992, 6, 233–256.
93. FishBase. A Global Information System on Fishes. Available online: https://www.fishbase.se/home.htm

(accessed on 6 November 2020).
94. Cortey, M.; Pla, C.; García-Marín, J.-L. Historical biogeography of Mediterranean trout. Mol. Phylogenetics

Evol. 2004, 33, 831–844. [CrossRef] [PubMed]
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