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Controlled creation of three-dimensional vortex structures in Bose-Einstein condensates
using artificial magnetic fields
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The physics of quantized vortex excitations in atomic Bose-Einstein condensates has been extensively studied
in recent years. Although simple vortex lines are relatively easy to create, control, and measure in experiments,
it is a lot more difficult to do the same for vortex ring structures. Here we suggest and explore a method
for generating and controlling superfluid vortex rings, vortex ring lattices, and other three-dimensional vortex
structures in toroidally trapped superfluid Bose-Einstein condensates by using the artificial magnetic field
produced by an optical nanofiber.
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I. INTRODUCTION

Atomic Bose-Einstein condensates (BECs) are superfluids
consisting of neutral, bosonic atoms that have been cooled
and condensed into the macroscopic ground state of an ex-
ternal potential [1]. They have been shown to support a large
number of flow-related excitations, with the most common
ones being quantized vortex lines and vortex rings [2–9].
However, vortices with higher winding numbers are unstable
in singly connected condensates, which means that increasing
the amount of angular momentum imparted on the super-
fluid will lead to an increasing number of vortices with a
winding number of 1. These vortex lines interact repulsively
and larger numbers will eventually arrange themselves in the
form of a triangular, Abrikosov lattice [3], similar to the
behavior known for Type II superconductors [10]. Due to
the quantization and the homogeneity in winding numbers,
single component condensates are often suggested and used
for studying superfluid turbulence [11–14].

In a finite-sized atomic condensate without dissipative ef-
fects, all vortex lines must have a finite length and either
start and end at the cloud surface [2] or reconnect onto them-
selves [12]. Complex, three-dimensional vortex topologies
beyond vortex lines cannot be easily created by stirring or
rotating a BEC because the vortex lines generated in this
way must follow the axis of rotation; therefore, to consis-
tently control and generate vortex rings or other topological
structures, methods beyond stirring are required, and only a
small number of experimental realizations of these have been
reported [5,9].
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In most cases, including in most theoretical proposals,
vortex ring generation in BECs relies on dynamic pro-
cesses that do not create eigenstates of the system. These
include using the decay of dark solitons in multicompo-
nent condensates [5] via the snake instability [15], direct
density engineering [16,17], or the collision of symmetric
defects [18]. Other theoretical proposals have considered in-
terfering two BECs [19], using spatially dependent Feschbach
resonances [20], or direct phase imprinting methods [15].
It should be noted that for inhomogeneously trapped BECs,
vortex ring structures are known to be unstable, which has
led to difficulties in their experimental observation [21]. In
addition, the direct absorption imaging techniques employed
in the field of BECs are not well suited to determine whether
or not a three-dimensional vortex structure is present in an
experimental system, as the known creation mechanisms do
not lead to well-defined spatial orientations.

Another method to induce rotational effects in a BEC is
through the introduction of artificial magnetic fields, which
can be created, for example, by the interaction between an
atomic system in a dressed state and an electric field that is
tuned near an atomic resonance frequency [22]. In this case,
instead of following an axis of rotation, the vortices follow
along the artificial magnetic field lines, which allows one to
stably generate complex vortex structures by modulating the
geometry of the magnetic field profiles.

In this work we will discuss a system that allows for the
tunable creation of artificial magnetic fields based on electro-
magnetic fields that vary strongly over short distances. Such
behavior can be found in the near-field regime on the surface
of a dielectric system, when light undergoes total internal
reflection [23]. For the generation of vortex rings, a suitable
dielectric system is the optical nanofiber, which is an optical
element that has several propagation modes to allow for the
configurable generation of evanescent fields. Nanofiber sys-
tems can be created by heating and stretching optical fibers
until their thinnest region is roughly hundreds of nanometers
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FIG. 1. Schematic of the system. Blue- or red-detuned light is
sent into the nanofiber (yellow), creating an evanescent field and
artificial magnetic field (blue) that influences the BEC (maroon)
held by a toroidal trapping potential. If the artificial magnetic field
strength is greater than a threshold value, vortex rings (white) will
appear and begin to arrange themselves into a triangular lattice.

in diameter [24,25]. At this scale, the wavelength of light
is larger than the diameter of the fiber and the strength of
the evanescent field is significantly enhanced [26]. The form
of the evanescent field varies significantly depending on the
optical modes propagating through the nanofiber, and we will
show that this can be used to generate interesting and tunable
artificial magnetic fields.

Optical nanofibers are already used in many different
experiments with ultracold atoms [27–32], and trapping po-
tentials at around 200 nm from the fiber surface can be created
by using two differently detuned input fields [33,34]. Our pro-
posed setup will allow for the creation of vortex rings in BECs
that are trapped toroidally around the fiber at roughly the same
distance by coupling the BEC to the evanescent field created
by different modes propagating through the nanofiber [35]. A
schematic of system is depicted in Fig. 1.

The manuscript is organized as follows: In Sec, II, we will
discuss how BECs interact with the evanescent field profiles
generated by the optical nanofiber. Then, in Sec. III, we will
show simulated results of the vortex configurations that can
be generated for different modes and different parameters. In
Sec. IV, we conclude and briefly discuss potential extensions
of the suggested system.

II. BOSE-EINSTEIN CONDENSATES IN THE PRESENCE
OF AN OPTICAL NANOFIBER

The superfluid properties of atomic Bose-Einstein conden-
sates are captured by the Gross-Pitaeveskii Equation (GPE),
which describes the evolution of the condensate wave function
in the mean field limit as [1]

ih̄
∂�(r, t )

∂t
=

[
[p − mA(r)]2

2m
+ V (r) + g|�(r, t )|2

]
�(r, t ).

(1)
Here p = −ih̄ ∂

∂r is the standard momentum operator and
the kinetic energy term also accounts for the presence of
a spatially inhomogeneous artificial vector potential, A(r).
The potential term V (r) describes an external trap and the
nonlinear term accounts for the scattering interaction between
the atoms. Its strength is given by g = 4π h̄2as

m , where as is the
scattering length of the atomic species and m its mass.

For neutral atomic condensates described by the GPE,
the artificial vector potential can take many forms. While in
standard magnetism a charged particle acquires an Aharonov-
Bohm phase when traveling around a closed contour, for
neutral atoms the same can be achieved by creating a situation
where the atoms acquires a geometric phase when traveling
along such a contour. Berry’s phase is an example of such a
phase, and in the setup we discuss below it appears as slow
atoms travel through a highly inhomogeneous light field and
adiabatically follow the dressed eigenstates. When they return
to their original position, i.e. when they have traveled along a
closed contour, they will have acquired a Berry phase and one
can write the corresponding artificial vector potential in terms
of Berry’s connection as [22]

A = ih̄ 〈�l |∇�l〉 , (2)

where �l is the atomic wave function in some dressed state l .
Since we will be considering two-state atoms in the pres-

ence of an optical field, the relevant dressed states can be
written within the rotating wave approximation as [23]

|�1(r)〉 =
(

cos[�(r)/2]

sin[�(r)/2]eiφ(z)

)
, (3)

|�2(r)〉 =
(− sin[�(r)/2]e−iφ(z)

cos[�(r)/2]

)
, (4)

where φ(z) is the phase of the optical field and �(r) =
arctan(|κ (r)|/�), with � = ω0 − ω being the detuning and
κ (r) = d · E(r)/h̄ being the Rabi frequency. The atomic
dipole moment is given by d and E(r) is the electric field. The
condition for adiabatic following of a dressed state is that the
gap between the two dressed states should allow for adiabatic
elimination of one of them. This gap is given by h̄
(r), where

(r) =

√
�2 + |κ (r)|2 is a generalized Rabi frequency, and

which leads to a condition for the velocity of the atoms of the
form v � 
/(|〈�2|∇�1〉|). A detailed analysis of this can be
found [36].

The form of the artificial vector potential is therefore deter-
mined by the form of the optical fields, and for the nanofiber
system it can be controlled by choosing specific optical modes
to travel through the fiber. The artificial magnetic field asso-
ciated with the spatially varying artificial vector potential is
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then given by B = ∇ × A, and when the magnetic field lines
penetrate the condensates, an artificial Lorentz force will lead
to the creation of vortices around these field lines.

To determine which modes will propagate in an optical
fiber, one needs to calculate the V number, which is given

by V = k0a
√

n2
1 − n2

2. Here a is the fiber radius, n1 is the
refractive index of the fiber, n2 is the refractive index of the
cladding, and k0 = ω/c with ω being the frequency of the
input light beam. In this case, the fiber has been tapered
such that the cladding has become the vacuum with n2 = 1.
Higher order modes can only be sustained if V > Vc � 2.405,
and below this value only the fundamental HE11 mode can
propagate. The V number can easily be controlled by choosing
the fiber radius [29,32].

Using cylindrical coordinates, the evanescent field around
the nanofiber corresponding to the HE�m mode with circular
polarization is given by [37]

Er = iC[(1 − s)K�−1(qr) + (1 + s)K�+1(qr)]ei(ωt−βz), (5)

Eφ = −C[(1 − s)K�−1(qr) − (1 + s)K�+1(qr)]ei(ωt−βz), (6)

Ez = 2C(q/β )K�(qr)ei(ωt−βz), (7)

where

s = 1/h2a2 + 1/q2a2

J ′
�(ha)/[haJ�(ha)] + K ′

�(qa)/[qaK�(qa)]
, (8)

C = β

2q

J�(ha)/K�(qa)√
2πa2

(
n2

1N1 + n2
2N2

) , (9)

and

N1 = β2

4h2

[
(1 − s)2

[
J2
�−1(ha) + J2

� (ha)
]

+ (1 + s)2
[
J2
�+1(ha) − J�(ha)J�+2(ha)

]]

+ 1

2

[
J2
� (ha) − J�−1(ha)J�+1(ha)

]
, (10)

N2 = J2
� (ha)

2K2
� (qa)

(
β2

4q2

[
(1 − s)2

[
K2

�−1(qa) − K2
� (qa)

]

− (1 + s)2
[
K2

�+1(qa) − K�(qa)K�+2(qa)
]]

− 1

2

[
K2

� (qa) + K�−1(qa)K�+1(qa)
])

. (11)

The mode geometry is given by Jn(x), the Bessel function
of the first kind, Kn(x), the modified Bessel function of the
second kind, and β, the propagation constant of the fiber.

The scaling factors are given by q =
√

β2 − n2
2k2

0 and h =√
n2

1k2
0 − β2, the normalization constant is C and s is a di-

mensionless parameter.
When the input light field is linearly polarized, it is con-

venient to write the cartesian components of the evanescent
electric field as

Ex =
√

2C[(1 − s)K�−1(qr) cos(φ0)

+ (1 + s)K�+1(qr) cos(2φ − φ0)]ei(ωt−βz), (12)

Ey =
√

2C[(1 − s)K�−1(qr) sin(φ0)

+ (1 + s)K�+1(qr) sin(2φ − φ0)]ei(ωt−βz), (13)

Ez =2
√

2iC(q/β )K�(qr) cos(φ − φ0)ei(ωt−βz). (14)

Here φ0 determines the orientation of polarization, with φ0 =
0 being along the x axis and π/2 being along the y axis. The
artificial vector potential produced by such evanescent fields
around an optical nanofiber is then given by [35]

A = ẑh̄κ0(n1 + 1)s̃

[ |drEr + dφEφ + dzEz|2
1 + s̃2|drEr + dφEφ + dzEz|2

]
, (15)

where s̃ = |d·E|
h̄|�| and dr , dφ , and dz are the components of the

dipole moment d in cylindrical coordinates (see [35] for their
detailed form). The corresponding magnetic field B = ∇ × A
can be calculated to be

B = h̄κ0s2(n1 + 1)

(1 + s̃2|drEr + dφEφ + dzEz|2)2

×
[
φ̂

∂

∂r
|drEr + dφEφ + dzEz|2

− r̂
1

r

∂

∂φ
|drEr + dφEφ + dzEz|2

]
. (16)

This shows that the B field has only components in the φ̂ and r̂
directions, which means that all field lines lie in the horizontal
plane if the fiber is aligned along the vertical ẑ direction.

For a BEC that is trapped cylindrically around a nanofiber,
one can therefore expect to find vortex structures that wrap
around the nanofiber and potentially close in on themselves
in the form of vortex rings; however, depending on the exact
form of the evanescent mode other structures are possible
as well. Modulating the value of s̃ allows one to change the
amplitude and range of the magnetic field and thereby change
the size and shape of the generated vortex structures [35].
In the following we will focus on three different evanescent
field configurations: the fundamental HE11 mode with circular
polarization, the HE11 mode with linear polarization, and the
HE21 mode with linear polarization. The electric field config-
urations and their corresponding artificial magnetic fields can
be seen in Fig. 2. It is notable that using the circularly polar-
ized fundamental HE11 mode leads to cylindrically symmetric
electric [Fig. 2(a)] and artificial magnetic field configurations
[Fig. 2(b)], whereas using linearly polarized light leads to a
lobed structure for both quantities [see Figs. 2(c) and 2(d)].
When using linearly polarized light with the higher-order
HE21 mode, an even more complex structure composed of
four petals appears [see Figs. 2(e) and 2(f)] and the broken
rotational symmetry suggests these fields will lead to the
appearance of nonstandard flow excitations. While using even
higher order modes or interfering different modes can lead to
even more complicated fields [35], we concentrate here on the
three examples above, as they demonstrate the large range of
fundamental possibilities the system allows for.

III. VORTEX CONFIGURATIONS

To determine the vortex states that can be created by
the evanescent fields around a nanofiber we solve the full
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FIG. 2. Images of electric and artificial magnetic field profiles for [(a) and (b)] the fundamental HE11 mode with circular polarization,
[(c) and (d)] the HE11 mode with linear polarization, and [(e) and (f)] the HE21 mode with linear polarization. For these calculations, the input
power is 372 nW in (a) and (b), 16 nW in (c) and (d), and 418 nW in (e) and (f). For the HE11 mode the nanofiber radius is 200 nm with
blue-detuned light of 700 nm, and for the HE21 mode the nanofiber radius is 400 nm with red-detuned light of 980 nm.

three-dimensional Gross-Pitaevskii equation for a condensate
trapped toroidally around the fiber. For this, we use the GPUE

codebase [38] to describe a 87Rb condensate with 1 × 105

atoms with a scattering length of as = 4.76 × 10−9 m on a
three-dimensional grid of 2563 points with a spatial resolution
of 50 nm. To clearly highlight the effects of the artificial mag-
netic fields, we assume a generic, external toroidal trapping
around the fiber given by

V = m
[
ω2

r (r − η)2 + ω2
z z2

]
, (17)

where we chose the trapping frequencies in the r and z direc-
tions to be ωr = ωz = 7071 Hz to match typical experimental
conditions in fiber trapping [27]. The parameter η defines the
distance of the center of the toroidal condensate from the cen-
ter of the fiber and is chosen such that the atoms are trapped
outside the reach of the van der Waals potential of the fiber.
For simulations of the HE11 mode, we assume a fiber radius
of 200 nm and we use η = 3.20 μm to create a toroidal BEC
with an inner radius roughly 300 nm from the fiber surface. To
simulate the effects of higher-order HE21 modes, we assume
an increased fiber radius of 400 nm, with all other parameters
remaining the same. This creates a toroidal BEC with an inner
radius roughly 150 nm from the fiber surface.

As a first example, we study the fundamental HE11 mode
with circular polarization, which is perfectly azimuthally sym-
metric. One can therefore expect to find vortex lines that
wrap around the fiber at a constant radius and reconnect onto
themselves. This is confirmed in Fig. 3(a), where we show
the equilibrium solution for a field strength that leads to ex-
actly one vortex ring. For linearly polarized HE11 modes, the

circular symmetry is broken and one can see from Fig. 3(c)
that the vortex lines bend towards the inner edge of the
condensate, creating two vortex lobes. This can be easily un-
derstood by realizing that the vortex lines have to follow lines
of constant magnetic fields, which in these areas also bend
towards and vanish into the fiber surface. However, this also
means that the field lines come very close when approaching
the surface, and careful examination of the condensate density
shows that the vortex lines do not follow the field lines into
the fiber surface, but rather connect to the neighboring lobe
when they approach each other within a healing length. In
fact, one can continuously go from the circular to the linear
setting by considering elliptically polarized light, which leads
to vortex rings that are deformed and interpolate between
the azimuthally symmetric and fully folded in structure [see
Fig. 3(b)]. Finally, for the linearly polarized HE21 mode, the
superfluid system responds by creating vortex lines arranged
in a four-petal shape, again mimicking the geometry of the
artificial magnetic field [see Fig. 4]. For this situation we
also show it is possible to create multiples of these vortex
structures by increasing the field strength and that, for low
densities of these structures, they arrange themselves on top
of the maximum of the inhomogeneous B field inside the
condensate [see Fig. 5(b) for the HE11 mode].

To study control of multiple vortex structures with this
system, we show that by increasing the B-field strength even
further for the HE11 mode, we can create an even larger
number of vortex rings, which at a certain density, make a
transition to arranging themselves in a triangular geometry,
forming the equivalent of the famous Abrikosov lattice [see
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FIG. 3. Vortex configurations for different magnetic field profiles from the nanofiber for the fundamental HE11 mode with (a) circular
polarization, (b) elliptical polarization, and (c) linear polarization along the ŷ direction. The vortex distributions have been found via an
isosurface on the Sobel filtered wave function density for a 87Rb BEC and all optical fiber fields are normalized and for a nanofiber of 200 nm
in radius with blue-detuned light of 700 nm. The magnetic field profiles shown in the shaded region beneath wavefunction density are similar
to those in Fig. 2(b) and 2(d).

Figs. 5(a), 5(b), and 5(c)]. However, as the artificial magnetic
field is strongly inhomogeneous, this lattices forms close to
and around the maximum of the magnetic field.

It is therefore clear that one can control the shape of each
vortex structure and their number by purely controlling the
optical fields that are fed into the fiber, and that artificial
magnetic fields around optical fibers provide unprecedented
control for the creation of vortex ring-like structures. In fact,
because all optical fields can also be time dependent, this
system can potentially be used for studies of the dynamical
properties of these rings; however, in the latter case, additional
care needs to be taken as high magnetic field values change the
potential geometry of the atoms in the BEC due to a coupling
between the artificial vector potential A and the trapping po-
tential V . In this case, the external potential V gets modified
by a term proportional to A2, which has an effect on the
condensate density beyond exciting rotation. Time-dependent
changes to the A field through changes in the laser intensity
therefore also lead to phonon excitations, which in turn have
an influence on the vortex line dynamics. However, studies of
the response of the wave-function density to time-dependent
artificial magnetic fields go beyond the scope of this work.

FIG. 4. Vortex configuration for the HE21 mode with linear po-
larization along the ŷ direction. The vortex distributions have been
found via an isosurface on the Sobel filtered wave function density
for a 87Rb BEC and the optical fiber fields are for a nanofiber of
400 nm in diameter for the bottom image with red-detuned light of
980 nm. The magnetic field profile is similar to the one shown in
Fig. 2(f), and has been calculated for a nanofiber of 400 nm radius
with red-detuned light of 980 nm.

FIG. 5. (a) The magnetic field profile along the x direction for
the fundamental HE11 mode with circular polarization outside a fibre
of 200 nm radius. Note that for this mode and polarization the whole
system is azimuthally symmetric. For weak fields [see (b)] this leads
to a small number of vortices that align along the line at which the
magnetic field is maximal and for larger fields [see (c)] more vortex
rings appear that form the beginning of an Abrikosov lattice. The
optical fiber field and wave-function density have been normalized
and are for a nanofiber of 200 nm in diameter with blue-detuned light
of 700 nm and a 87Rb BEC respectively.
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Nevertheless, let us stress, that for constant optical fields
these (deformed) vortex-ring structures are stable and unique
to creating vortex rings with artificial magnetic fields. They
cannot be excited using simple rotation in singly connected
potentials.

IV. DISCUSSION

We have shown that it is possible to create and con-
trol vortex rings and more complicated vortex structures in
three dimensions using the artificial magnetic field around
an optical nanofiber. To the best of our knowledge, there is
currently no other known method to generate the structures
obtained from nonazimuthally symmetric modes from the
linearly and elliptically polarized evanescent fields shown in
Figs. 3(b), 3(c), and 4. Furthermore, using even higher-order
modes or interference between different modes will allow
creation of even more complicated vortex structures in a
controlled way. In general, detecting the presence of vortex
rings and more complicated structures in a three-dimensional
BEC is a difficult problem, as absorption spectroscopy only
provides a two-dimensional picture of an integrated density.
However, due to the fiber necessitating a multiply connected
geometry, the system presented here allows one to identify
whether vortex structures are present by exciting a scissors-

like mode of the condensate [39–41]. Different to the situation
in simply connected potentials though, where an elliptical
potential is rotated in one direction around its minimum, here
an elliptical toroidal potential can be rotated inwards or out-
wards around the trapping minimum. As at any point along the
azimuthal direction vortices only goes in one direction, this
quench will lead to scissors-like oscillation, whose frequency
will be influenced by the presence of vortex lines. We are
currently exploring this aspect further.

Finally, being able to stably create these nontrivial vortex
configurations may be the first step toward creating more
complex structures like vortex knots in a single-component
superfluid BEC system with the optical nanofiber; however,
to generate these structures, the magnetic field must have a
dependence on ẑ, which is not present in our current model.
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