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Abstract

Signatures of Novel Spin Liquids in Kagome-like Lattices

The phenomenon of magnetism in solids aroused the curiosity of scientists already in
ancient times. While quantum mechanical effects on a single–particle level are well
understood, magnets offer phenomena caused by collective interactions between many
electrons and provide the opportunity to find novel states of matter. In this context,
frustrated magnets play a central role, since interactions between local magnetic mo-
ments on a crystallographic lattice cannot be satisfied at the same time. This can
prevent the systems to order even at very low temperatures, creating a magnetic state
similar to those of liquids, which gives them the name spin liquids. Within this field, the
kagome lattice — a two–dimensional network of corner–sharing triangles — has played
a particularly iconic role and continues to provide rich inspiration to theoreticians and
experimentalists alike.

In this thesis, we first explore the thermodynamic properties and signatures of classi-
cal spin liquids on kagome–like lattices, by the use of complementary analytical Husimi
tree and numerical Monte Carlo simulation techniques. The emerging phenomenon of
a Curie–law crossover, reflecting a crossover between a high–temperature paramagnet
and a low–temperature collective paramagnet, turns out to be a powerful signature of
exotic physics in classical spin liquids, and explains the difficulty of making a precise
estimate of the Curie–Weiss temperature in experiments.

But spin liquids do not necessarily need to show just one Curie–law crossover. The
anisotropic Ising model on the shuriken, or square–kagome lattice, shows a succession
of multiple Curie–law crossovers due to a rich phase diagram with many disordered
ground states. Hereby, low–and high–temperature regimes are less correlated than the
intervening classical spin liquid, allowing to extend the definition of reentrant phenom-
ena to disordered systems.

Furthermore, we also study dynamical properties of the nearest–neighbour Heisen-
berg model on the bilayer breathing kagome lattice, which has been motivated by recent
experiments on Ca10Cr7O28. Using semi–classical molecular–dynamics simulations, we
are able to reproduce many features seen by inelastic neutron scattering experiments
and provide a first explanation of its spin–liquid origin. Surprisingly, we find that ex-
citations encode not one, but two distinct types of spin liquids at different time scales.
Fast fluctuations reveal a Coulombic spin liquid, as known from the classical kagome–
lattice antiferromagnet, while slow fluctuations reveal a spiral spin liquid, which can
be understood by a mapping onto an effective spin-3/2 honeycomb model.
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Chapter 1

Introduction to Magnetism and Spin
Liquids

“ Dass ich erkenne, was die Welt
Im Innersten zusammenhält.”

Faust 1, Vers 382 f. (Faust)
Johann W. v. Goethe

While quantum mechanical effects on a single–particle level are well understood,
magnets offer phenomena caused by collective interactions between many electrons,
and provide the opportunity to unveil novel states of matter. To study the “social life”
of particles, which allows for such unconventional phases, frustrated magnets found
their way into active research areas more than 30 years ago [2, 3] and grew to become
one of the most active topics in many–body physics today.

Conventional magnets are described by their ordering process into a symmetry–
broken state. On the other hand, in frustrated magnets the interaction energy on
all magnetic degrees of freedom cannot be minimised simultaneously, which generally
suppresses conventional order. Subdominant interactions become predominant and
allow for unconventional types of order and novel states of matter, like spin liquids,
which do not order at any temperature.

In its own way, this research is as fundamental as the search for new particles in
high–energy physics. Indeed the Higgs boson was first proposed in the context of a
superconductor [4, 5, 6], while the first observation of magnetic monopoles [7, 8] and
Majorana fermions [9] have taken place in magnets.

1.1 Origin of Magnetism in solids
Magnetism is one of the fundamental forces in physics, which caught the interest of
researchers already in ancient times. However, a modern understanding of magnetism
in solids dates back not much further than to the end of the 19th century. While e.g.
Pierre Curie [10] and Pierre Weiss [11] significantly contributed to an understanding of
thermodynamic properties in magnetic crystals, a microscopically exact understanding
of magnetism still needed to wait until the invention of modern quantum mechanics.

1



2 Introduction to Magnetism and Spin Liquids

1.1.1 A historical summary

Magnetism has been known since antiquity from lodestone, a naturally occurring form
of magnetite (Fe3O4). Greek philosophers wrote about lodestone around 800 B.C.,
while Chinese writings about magnetite date back to 4000 B.C., assuming that the
original discoveries were made in China [12]. A pivoted–needle compass developed
before 1000 A.D. has been used in China for navigation on land and water, and also
became highly important in the 13th century in medieval Europe [12, 13].

However, the first scientific investigation of the phenomena of magnetism happened
1269 by Pierre Pélerin de Maricourt [14], who described simple laws of magnetic attrac-
tion. Following de Maricourt’s work, the English scientist William Gilbert published
three centuries later “De Magnete”, a landmark treatise, to be the first which clearly
distinguishes electric from magnetic effects and also explains that the earth by itself
behaves like a large magnet [15].

It was the danish physicist Hans Christian Ørsted, who in 1819 discovered the link
between electricity and magnetism, by placing a compass needle near a wire with an
electric current [16]. While Biot, Savart and Ampere established the relationship of the
magnetic induction and the current that generates it, James Clerk Maxwell essentially
completed in 1865 the classical theory of electromagnetism by showing that electricity
and magnetism represent two different aspects of the same fundamental force field
[17, 18, 19]. Still without knowing the microscopic mechanism, Pierre Curie [10] and
Pierre Weiss [11] contributed significantly to a modern understanding of magnetic
phenomena in solid state physics by examining the effect of temperature on magnetic
materials and the existence of phase transitions between magnetically ordered and
disordered phases. Indeed, Pierre Curie even introduced the concept of symmetry
analysis to classify ordered phases in his PhD thesis. However, a microscopically exact
understanding of magnetism still needed to wait until the invention of modern quantum
mechanics.

The concept of quantisation at the beginning of the 20th century introduced by Max
Plank [20] and Albert Einstein [21] induced a series of discoveries in the so–called pe-
riod of “old quantum theory”. Fundamental work towards a microscopic understanding
of magnetism has been done by Niels Bohr [22], who quantised energy levels in the
Rutherford’s atom. The famous experiment by Stern and Gerlach allowed the deter-
mination of quantised angular and magnetic moments of atoms [23]. In 1921 Compton
suggested an intrinsic spin and therefore a magnetic moment to electrons [24], which
has been proven to be correct by Goudsmit and Uhlenbeck in 1925 [25]. The magnetic
moment of the electron is

ms = −gµB
S

~
, (1.1)

where S is the quantised electron spin and the unit of magnetic momentum has been
defined with the Bohr magneton

µB ≡
e~

2me

. (1.2)

The origin of the Landé g–factor g ∼= 2.0023 could be explained by Dirac, who
included relativistic aspects of electrons. With his postulation of the particle–wave
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duality [26], Louis de Broglie provided the starting point for Schrödinger to formulate
his famous wave equation in 1926 [27]. The Schrödinger equation forms the basis of a
successful description of solid–states physics and quantum statistical mechanics

H Ψn = EnΨn , n ∈ N , (1.3)

with the ground state Ψ0 of the system corresponding to the state with the lowest
energy eigenvalue E0 of the Hamiltonian H . At the same time, Heisenberg and co–
workers developed a synonymous description of quantum systems via harmonic oscilla-
tors. Hereby, the use of a coherent formulation of a non–commutative matrix algebra
turns out to be a very powerful tool to assign every physical quantity a corresponding
mathematical operator.

In 1933 Arnold Sommerfeld introduced the free–electron model for solids by apply-
ing quantum mechanical Fermi–Dirac statistics and the Schrödinger equation to the
classical Drude model [28, 29]. This concept has been formulated in second quantisa-
tion as the “band theory of solids”, which averages out interaction effects by using the
Hartree–Fock approximation (Stoner mean–field theory). A huge number of crystalline
solids like metals and insulators could be classified using this method, but showed very
quickly its limitations.

Transition and rare–earth metals have in addition to their conduction bands also
partially filled d or f orbitals. It turns out, that strong Coulomb repulsion at com-
mensurate filling, can suppress the electrons agility, localise them and make the ma-
terial insulating, by performing a metal–insulator transition as seen for several simple
transition–metal oxides [30]. Materials, which show such a behaviour are called Mott
insulators [31] with many unconventional physical properties (reviewed in [32, 33]).
The magnetism within those materials cannot be explained by the band theory of
solids [34, 35] and requires an extension of concepts. A microscopic model, including
interactions of electrons within solids is provided by the well–known Hubbard model,
which shall be described in further details in the next section.

1.1.2 Hubbard model

The unification of electricity and magnetism by Maxwell [19] and work of Pierre Curie
[10] and Pierre Weiss [11] on fundamental properties of magnetic materials motivated
the importance of a microscopic description of magnetism in solids. However, such a
description needed to wait for a sound foundation of quantum mechanical concepts.
This was also qualitatively stated by Niels Bohr in 1911 [36] and Hendrika Johanna van
Leeuwen in 1921 [37], saying that magnetism in solids is a purely quantum mechanical
effect and cannot be described by a classical theory (known as the Bohr–van Leeuwen
theorem).

The Hubbard model was introduced in 1963 independently by Martin Gutzwiller
[38], Junjiro Kanamori [39] and John Hubbard [40, 41, 42], and formulates the simplest,
one–band many–body Hamiltonian which allows for a meaningful description of d and
f electron systems with correlated conduction electrons.

Microscopically, those conduction electrons are allowed to occupy and hop be-
tween different atomic orbitals. Spatially extended orbitals are expressed as Wannier-
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functions φ(r − Ri), an orthogonal set of functions, localised around the position Ri

of the ith ion and rapidly falling off to zero away from it.
In respect to the Pauli exclusion principle, electrons will be created (ĉ†iσ) and anni-

hilated (ĉiσ) with spin σ at discrete points Ri of the crystallographic lattice, following
the fermionic anticommutation relations

{ĉiσ, ĉ†jσ′} = ĉiσ ĉ†jσ′ + ĉ†jσ′ ĉiσ = δi,jδσ,σ′ (1.4)

{ĉiσ, ĉjσ′} = {ĉ†iσ, ĉ†jσ′} = 0 . (1.5)

The Hamiltonian representing the kinetic energy of the system is

Ht = −t
∑
〈i,j〉σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) , (1.6)

whereas the overlap of the physical orbitals has been encoded in the hopping amplitude
t. Eq. (1.6) is generally known as the tight–binding Hamiltonian [28], where delocalised
electrons do not interact and lead to a conducting behaviour of the system.

Nevertheless, sufficiently dense electrons show correlation effects, due to Coulomb
repulsion. A large on–site Coulomb energy

U =

∫
dr1

∫
dr2 |φ(r1 −Ri)|2

e2

|r1 − r2|
|φ(r2 −Ri)|2 (1.7)

restricts the hopping of electrons to already occupied orbitals and tends to form an
insulator. The energy increase for doubly occupied sites is written as

HU = U
∑
i

n̂i↑n̂i↓ , (1.8)

where the occupation number operator is n̂iσ = ĉ†iσ ĉiσ.
The Hubbard model accounts for both terms, Eq. (1.6) and Eq. (1.8)

H = −t
∑
〈i,j〉σ

(ĉ†iσ ĉjσ + ĉ†jσ ĉiσ) + U
∑
i

n̂i↑n̂i↓ , (1.9)

giving valuable insight into the nature of strongly–correlated electron systems. In the
limit of U/t� 1 and half filling this model describes Mott insulators [43], an important
group of materials in the scope of conventional and unconventional magnetism and
therefore worth discussing in more detail.

1.1.3 Mott insulators

The microscopic understanding of Mott insulators does not only provide an explana-
tion for the absence of electron conductivity, but also for the emergence of magnetic
properties. For pedagogical reasons the magnetic properties in Mott insulators shall
be demonstrated on the simple example of a half–filled dimer with strong coulomb
interactions U/t� 1.
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Figure 1.1: Energy spectrum
of the Hubbard model for a
dimer at half filling. Exact di-
agonalization of Eq. (1.10) gives
a set of states, which are sepa-
rated by the dominating Coulomb
interaction U . A finite hopping
t will split degeneracies of these
states by J := 4t2/U and allows
the singlet state to be the new
grounds state.

The Hubbard model from Eq. (1.9) for two sites, labeled 1 and 2, reads:

H dimer = −t
∑
σ

(ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ) + U(n̂1↑n̂1↓ + n̂2↑n̂2↓) , (1.10)

where σ =↑, ↓. This Hamiltonian has eigenfunctions |ψn〉 and eigenvalues En

H dimer|ψn〉 = En|ψn〉 . (1.11)

In the case of half filling (2 electrons) six possible wave functions are allowed. States
with doubly occupied and one empty site form “excited” configurations, since they have
to account for a large on–site Coulomb repulsion

|ex1〉 = | ↑↓, 0〉 ,
|ex2〉 = |0, ↑↓〉 . (1.12)

Non–excited states are states with singly occupied sites. Those form one singlet and
three triplet states and are denoted by their spin quantum numbers |S, Sz〉

|1, 1〉 = | ↑, ↑〉 ,

|1, 0〉 =
1√
2

(| ↑, ↓〉+ | ↓, ↑〉) , (1.13)

|1,−1〉 = | ↓, ↓〉 .

|0, 0〉 =
1√
2

(| ↑, ↓〉 − | ↓, ↑〉) . (1.14)
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Diagonalising Eq. (1.10) reveals the following eigenvalues

E5 =
1

2
(U +

√
U2 + 16t2) ≈ U +

4t2

U
, (1.15)

E4 = U , (1.16)

E1 = E2 = E3 = 0 , (1.17)

E0 =
1

2
(U −

√
U2 + 16t2) ≈ −4t2

U
, (1.18)

up to second order in t/U , where the energies for the triplet states are equal to zero.
The corresponding wave functions are

|ψ5〉 ≈ −
2t

U
|0, 0〉+

1√
2

(
1− 2t2

U2

)
(|ex1〉+ |ex2〉) , (1.19)

|ψ4〉 =
1√
2

(|ex1〉 − |ex2〉) , (1.20)

|ψ3〉 = |1, 1〉 ,
|ψ2〉 = |1, 0〉 , (1.21)
|ψ1〉 = |1,−1〉 ,

|ψ0〉 ≈
(

1− 2t2

U2

)
|0, 0〉+

√
2t

U
(|ex1〉+ |ex2〉) , (1.22)

where triplet wave functions are left unchanged.
As seen in Fig. 1.1 the system provides degenerate states at high and low energy in

absence of an electron hopping t = 0. In a real lattice, those states would transform into
bands, which then are commonly referred to as the upper and lower Hubbard bands. A
finite kinetic energy t > 0 splits the degeneracies by J := 4t2/U and allow the singlet
|ψ0〉 to be the new ground state with energy E0 < 0. The ground state mixes with
|ex1〉 and |ex2〉 [Eq. (1.22)], providing a small but finite probability of finding doubly
occupied sites in the ground state.

A large onsite Coulomb interaction U � t separates states of low lying energy from
excited ones. It becomes quite unlikely for electrons to occupy the excited states at
very low temperatures, which is why a simplification of the Hubbard model — usually
achieved by a canonical transformation [43] — allows to consider just the low–lying
energy states. Such a simplification leads to the celebrated Heisenberg model, the core
model for most theoretical descriptions of insulating magnets.

1.1.4 Heisenberg model

The ground state properties in a Mott insulator are described by singlet and triplet
states in the lower Hubbard band. Their ground state physics is well explained by the
celebrated Heisenberg model:

Heff = J
∑
〈ij〉

Si · Sj + const , (1.23)
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where
∑
〈ij〉 runs over all sites i connected to neighbouring sites j via the bond–

dependent exchange term Jij. The spin operator on site i is represented by the Pauli
matrix σ

Si =
1

2

∑
αβ

ĉ†iασαβ ĉiβ , (1.24)

where one can see that the term Si · Sj in Eq. (1.23) accounts for virtual hopping, or
also “exchange” of electrons between two connected sites.

To convince oneself, that this concept is correct, one can again consider the example
of a two site Mott insulator, where the product of spin operators with eigenvalue
S = 1/2 is

S1 · S2 =
1

2

[
(S1 + S2)

2 − 2S(S + 1)

]
. (1.25)

It is easy to see that S1 +S2 = 0 and S1 ·S2 = −3/4 for the singlet, while S1 +S2 = 1
and S1 ·S2 = 1/4 for the triplet states. The result from the Hubbard model [Eq. (1.17)
and Eq. (1.18)] can be reproduced by taking J = 4t2/U and the constant in Eq. (1.23)
to −J/4.

Historically motivated by phenomena in Cuprate superconductors, which are basi-
cally doped Mott insulators, this model has been extended to the famous t-J model
[44], allowing to describe correlated systems away from half filling [43, 45, 46, 47]. This
model also allows the inclusion of higher order terms like further–neighbour interaction
and higher–order spin–exchange terms, as e.g. the biquadratic term ∝ (~Si · ~Sj)2 [43].

1.1.5 Anisotropic exchange

In Eq. (1.23), all spin components, Sx, Sy and Sz were considered on an equal footing.
However, this is only true if effects like spin–orbit coupling are neglected. In general,
the electron spin is coupled to its orbital momentum, which is influenced by the crystal
field and therefore provides a mechanism where the spin can “feel” the orientation of
the crystal axes. This phenomenon of magnetic anisotropy can be described by an
anisotropic exchange Heisenberg Hamiltonian with the direction–dependent couplings
Jz and J⊥, parallel and perpendicular to the local field axes.

H =
∑
〈ij〉

(
J⊥ij (S

x
i S

x
j + Syi S

y
j ) + JzijS

z
i S

z
j

)
. (1.26)

In the classical limit, there are commonly three different models:

• Heisenberg model: no orientation is favoured J⊥ ≈ Jz. The spins contain
O(3) symmetry, have two degrees of freedom and can point along any direction
on the three–dimensional sphere.

• XY model: the crystal field suppresses the coupling between the local z–
components of the spins J⊥ � Jz. The spins contain O(2) symmetry, have one
degree of freedom and can point in any direction on a circle, perpendicular to the
local z–direction.
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• Ising model: the crystal field favours the coupling of spins along the local z–
direction. J⊥ � Jz. The spins contain Z2 symmetry and can point just in two
directions.

Different lattice symmetries can produce more complicated anisotropic exchange be-
haviour, such as Dzyaloshinski–Moriya interaction [48, 49].

1.2 Magnetic order in conventional magnets
Being able to formulate a microscopic model for a magnetic material is a fundamental
step towards its complete physical description. However, solving such models exactly
is quite often not possible, and requires approximations as given by simulation or field–
theoretical methods.

The mean–field approach is a first step to simplify a complicated model Hamil-
tonian and estimate thermodynamic properties like phase transitions in conventional
magnets. A general theory for explaining phase transitions and classifying various
types of ordering mechanisms within them is provided by the Landau theory, which
also shall be part of the discussions in this section.

1.2.1 Mean–field theory

Mean–field theory is a very general and usually the first approach to get insight into
systems with complex magnetic correlations or unknown physical properties. It is an
approximation, which neglects magnetic fluctuations and allows for a much simpler
treatment of the problem at hand. This significant method has been introduced by
Pierre Curie [10] and Pierre Weiss [11] to provide a simplified theory for phase tran-
sitions in ferromagnets [50].

An illustrative example for applying mean–field theory is provided by the Ising
model

H = J
∑
〈ij〉

σiσj − h
∑
i

σi . (1.27)

Hereby, the exchange interaction J couples nearest–neighbour spins on sites i and j
with Ising degree of freedom σi = ±1. In the following one should consider J < 0 (fer-
romagnetic interaction) on the central site σ0, which is surrounded by q neighbouring
spins for the square lattice with lattice–coordination number q = 4. By averaging out
fluctuations on these neighbouring spins

〈σi〉 = m 0 < i ≤ q , (1.28)

the new mean–field Hamiltonian will have the form

HMF = (Jqm− h)σ0 . (1.29)

The expectation value of the central site 〈σ0〉 follows from

m = 〈σ0〉 =

∑
{σ0} σ0 e

−βHMF∑
{σ0} e

−βHMF

= tanh
[
− β(Jqm− h)

]
, (1.30)
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where translational invariance of the lattice allows to set 〈σi〉 = 〈σ0〉 = m.

The self–consistent Eq. (1.30) needs to be solved numerically or graphically and
provides for h = 0 one trivial (m0 = 0) and two non–trivial (m0 6= 0) solutions at
exactly the critical temperature Tc

TckB
|J |

= q . (1.31)

The two–dimensional square lattice with q = 4 and ferromagnetic interactions shows
a phase transition temperature TckB/|J | = 4, which is comparable, but still quite
different from the exact result of TckB/|J | = 2.269 [51]. Similar mean–field techniques
with probably better accuracy are available by the Bethe approximation [52, 53], and
models on the Bethe lattice [52, 54, 55], which shall be explained for frustrated lattices
in more detail in Section 2.1 and Chapter 3.

However, a very general theory of phase transitions is provided by Landau theory,
which shall be the topic of the next section.

1.2.2 Landau theory

Many types of phase transitions exist as e.g. melting and crystallisation, evapora-
tion and condensation, but also between different forms of solids, fluid–superfluid, or
conducting–superconducting transitions. It was Lev Landau in 1936 who thought about
a general theory for explaining such phase transitions [56], which shall here be applied
to magnets.

The standard observable representing magnetic properties is the magnetisation m,
which shall in the following correspond to the magnetic order parameter of an Ising
magnet. To describe the phenomenon of phase transitions Landau expanded the free
energy G(m,T ) close to the critical temperature Tc

∆G(m,T ) = G(m,T )− G(0, T )

=
b(T )

2
m2 +

c(T )

4
m4 +

d(T )

6
m6 + · · · , (1.32)

here, presented for the case of the free energy function even in m. In more general
models, cubic terms may also be allowed in the free energy, usually driving first order
phase transitions.

It is assumed that G(m,T ) is analytic at exactly the critical temperature, which
generally is incorrect, since the only singular feature of a system performing a phase
transition is exactly at Tc. Nevertheless, Landau theory works surprisingly well in clas-
sifying the nature of phase transitions and predicting physical observables in materials
[57].

The temperature dependent coefficients b(T ), c(T ) and d(T ) allow to modify the
behaviour of Eq. (1.32) such that different types of magnetic phase transitions with
different order can occur. The order of a phase transition equals the order of the
lowest–order derivative in the free energy −∂G

∂h

∣∣
h=0

= m, which shows a discontinuity
at the critical temperature.
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(a)

m

ΔG(m,T)

T > Tc2 T = Tc2 T < Tc2

(b)

m

ΔG(m,T)

T > Tn T = Tn T = Tc1 Tc2< T < Tc1

(c)

T

m

Tc2

(d)

T

m

Tc1

Figure 1.2: Landau theory for 2nd and 1st order phase transitions. Gibbs
free energy ∆G(m,T ) [Eq. (1.32)] as a function of magnetisation m and tempera-
ture T . (a) Characteristic behaviour for a 2nd order phase transition, with parame-
ter b(T ) = b0(T − Tc2) and b0, c, d positive. Tc2 is the critical temperature, where the
system magnetically orders into +|m0| or −|m0| as seen in (c). (b) Characteristic
behaviour for a 1st order phase transition, with c(T ) that changes sign at Tn, where
Tn > Tc2 . Local minima in ∆G(m,T ) appear below Tn, which become global minima
at Tc1 , why the magnetisation shows a jump, as seen in (d).

2nd order phase transition

In a 2nd order phase transition the correlation length diverges, causing strong corre-
lations of spins throughout the lattice. Assuming that the leading term in the free
energy [Eq. (1.32)] will change its behaviour at the critical temperature Tc2 , the pre
factor b(T ) = b0(T −Tc2) shall change its sign, whereas other coefficients c(T ), d(T ), . . .
shall stay positive and constant. For temperatures above Tc2 , ∆G will have just one
global minimum at m = 0, whereas for T < Tc2 ∆G shows two degenerate non–trivial
global minima

m0 =

{
0 if T ≥ Tc2

±
√
− b0

c
(T − Tc2) if T < Tc2 ,

(1.33)

as shown in Fig. 1.2(a). At the critical temperature T = Tc2 the potential is quartic,
instead of quadratic, which allows for a large set of nearly degenerate ground states
fluctuating around the global minimum m = 0. Below Tc2 two degenerate ground
states are available. Since the system cannot occupy both states with an opposite
magnetisation at the same time, it has to choose one of them, which happens via the
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process of spontaneous symmetry breaking. Since the first derivative of the free energy
−(∂G/∂h)h ≡ m is continuous, but not the second one, the transition is called 2nd

order or continuous phase transition.

1st order phase transition

First order phase transitions are characterised by a discontinuity in the magnetisation
at the critical temperature Tc1 as shown in Fig. 1.2(d), however without a diverging
correlation length. The entropy also changes discontinuously at Tc1 by releasing latent
heat.

By assuming b(T ) and d(T ) to be positive over the considered temperature region
and c(T ) becoming negative below a temperature T < Tn, local minima for m0 6= 0 will
occur in G(m,T ) [Eq. (1.32)]. For T < Tc1 these minima will become global minima,
responsible for a jump in the order parameter from 0 to m0. This can be seen by
imposing the condition G(m0, Tc1) = G(0, Tc1) and δG

δm

∣∣
m0

= 0, which will provide the
magnetisation of the ordered state at Tc1

m2
0 = −3c(Tc1)

4d
(1.34)

by relating the coefficients of Eq. (1.32) as

b(Tc1) =
3c2

16d
> 0 . (1.35)

This justifies, that the critical temperature for 1st order phase transitions occurs at
higher temperatures, than phase transitions of 2nd order Tc1 > Tc2 .

Assuming b(T ) and c(T ) to become negative at the same temperature (Tn = Tc2),
forbids the formation of metastable states, making the phase transition again continu-
ous. Such a point in parameter space is called a tricritical point and separates different
phase transition lines from each other.

Critical exponents

As shown for the magnetisation m ∝ (T − Tc)1/2 [Eq. (1.33) and Eq. (1.34)] thermo-
dynamic observables follow a power law scaling close to the critical temperature Tc.
These exponents are called critical exponents, written for thermodynamic observables
as

χ(0, T ) ∝ |T − Tc|−γ ,
Ch(0, T ) ∝ |T − Tc|−α ,
ξ(0, T ) ∝ |T − Tc|−ν , (1.36)
m(0, T ) ∝ |T − Tc|β ,
|m(h, Tc)| ∝ |h|−1/δ .

Critical exponents are independent of the microscopic details of the system and just
depend on the symmetry of the order parameter and its dimension. They fall into
universality classes, classifying the nature of their phase transitions [43, 53].
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(a) (b) (c) (d) (e)

Figure 1.3: Different frustrated unit cells. (a) Ising spins on a chemically frus-
trated square, (b) a triangle, (c) a tetrahedron, (d) a square with further nearest–
neighbour interactions and (e) a hexagon with further nearest–neighbour interactions.
Dotted lines represent ferromagnetic interactions, while lines represent antiferromag-
netic interactions. Due to the given configurations, the spins on the marked “?” are
not able to minimise the energy of the unit cell by choosing a particular direction.

In the case of Landau theory, these exponents will take the following values

β = 1/2 , δ = 3 , γ = 1 , α = 0 , and ν = 1/2 , (1.37)

which are the values for a mean–field theory, since it neglects fluctuations in the system
by considering a mean value of magnetisation m [Eq. (1.32)]. However, fluctuations
can be introduced by an additional term (∇m(r))2, giving rise to the Landau–Ginzburg
theory [58, 59], a theory enjoying large popularity in application also to superconduc-
tivity [60, 61, 62] and nonequilibrium physics [63].

A comparison to the previous result for Ising model (Section 1.2.1) gives the fol-
lowing coefficients:

b(T ) = kB(T − Tc) and c(T ) =
kB
3

(
T 3
c

T 2

)
. (1.38)

1.3 Frustrated Magnetism
A magnetic system is said to be frustrated, when a simultaneous minimisation of the
interaction energy between all degrees of freedom is impossible. Although, frustrated
models have been studied in the context of water ice by Bernal & Fowler already
in 1933 [64] and Pauling in 1935 [65], the term frustration in magnetism appeared
the first time 1977 in a paper on spin glasses by Toulouse [66] and Villain [67], while
geometrically frustrated antiferromagnets were pointed out by Houtappel [68], Wannier
[69] and Anderson [70] in the 1950s.

Frustrated magnets can be divided into multiple categories. In one of them, chem-
ical disorder causes a random arrangement of ferro and antiferromagnetic bonds on
the lattice, as shown in the simple example for the square lattice in Fig. 1.3(a). This
class of materials is generally known as spin glasses [71, 72, 73] and has motivated wide
experimental and theoretical activity, aimed at e.g. the understanding of the nature
of spin freezing and detection of a true thermodynamic spin–glass phase transition
[66, 74].
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Another category is represented by geometrically frustrated magnets, where a si-
multaneous satisfaction of interaction energies on all available bonds is not possible
due to the geometric arrangement of lattice sites. This effect usually happens in an-
tiferromagnetic models on lattices containing triangular plaquettes [Fig. 1.3(b)] as in
triangular or kagome lattices, but can also appear in ferromagnetic models on e.g. the
pyrochlore lattice, as in spin ice, where Ising spins pointing in or out of the centre of
a tetrahedron [Fig. 1.3(c)].

However, frustrated magnets do not need to be restricted to geometric frustration
only. Models with further–neighbour exchange interaction can also induce frustration,
as e.g. shown on the antiferromagnetic Heisenberg model on the bipartite square
[Fig. 1.3(d)] or honeycomb lattice [Fig. 1.3(e)].

For a very comprehensive introduction into the subject, the reader might refer to
the book “Introduction to Frustrated Magnetism: Materials, Experiments, Theory” [3]
and a review dedicated especially to pyrochlore oxides [75].

1.3.1 Properties of frustrated magnets

After providing an exact solution in two–dimensions by Onsager and Kaufman [51,
76, 77], thermodynamic properties of the Ising model on various lattice types became
accessible. It turned out, that the Ising model on the triangular lattice has the rather
interesting property of a residual entropy S(T → 0) ≈ 0.3383 [69], according to the
effect of frustration, as shown in Fig. 1.3(b).

In 1973, Phil Anderson referred to the triangular lattice by stating, that the quan-
tum model with antiferromagnetic nearest–neighbour interactions allows for a Reso-
nance Valence Bond (RVB) ground state [78, 79]. By resonating between different
arrangements of singlet–dimer coverings on this lattice, the RVB state — the first ex-
ample of a quantum spin liquid state — is disordered down to the lowest temperatures.
Since the suggestion of their possible relevance to cuprate superconductors in 1987 [80],
insulating materials made of triangular unit cells were the focus of intensive studies
and play until now a crucial role in the development of a fundamental understanding
of spin liquids.

Obviously spin liquid behaviour can also be achieved in non–triangular frustrated
unit cells as seen in pyrochlore and checkerboard [3], or other lattices with further
nearest–neighbouring coupling like the J1-J2 Heisenberg model on the honeycomb lat-
tice [81] or the J1-J2-J3 Heisenberg model on the square lattice [82].

Classical Ground State Degeneracy

To understand the absence of order in spin liquids, one needs to understand their ground
state properties. Each frustrated unit cell in Fig. 1.3(b)–(d) shows a 6–fold degenerate
ground state manifold, due to lattice and time–reversal symmetry. Considering real
systems with a total number of sites in the order of the Avogadro number, one can
easily see that the ground state manifold of such a frustrated system will remain highly
degenerate, giving rise to an extensive entropy.

The Maxwellian counting argument can be used to make a statement about the
number of ground states in spin liquids. The number of ground state degrees of freedom
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D is given by the difference of the total number of degrees of freedom F and the number
of constraints K that must be satisfied.

Many frustrated lattices are made of corner–sharing units, such as e.g. the kagome
and pyrochlore lattice. On such lattices, isotropic interactions can be written as

H = J
∑
〈ij〉

Si · Sj =
J

2

N∑
α

L2
α + const , (1.39)

where α runs over all N corner–sharing units of total spin Lα in the lattice. The ground
state of the classical Heisenberg antiferromagnet on the kagome and pyrochlore lattices
follows the constraint

Lα =

q∑
i=1

Si,α = 0 for all unit cells , (1.40)

where q defines the total number of sites on one corner–sharing unit (q = 3 for kagome,
q = 4 for pyrochlore).

The O(n)–symmetric Hamiltonian can be minimised by respecting n local con-
straints Lx1α = Lx2α = . . . = Lxnα = 0, while there are (n− 1)q degrees of freedom shared
between two neighbouring unit cells. The difference between degree of freedom F and
number of constraints K gives the number of ground state degree of freedom D for the
entire system:

F = Nq(n− 1)/2 , (1.41)
K = nN , (1.42)

D = F −K =
N

2
(n(q − 2)− q) , (1.43)

The counting argument for the Heisenberg model on the pyrochlore lattice (n = 3,
q = 4) gives D = N , linearly depending on the number of tetrahedra in the lattice,
and is therefore extensive.

On the other hand, the estimate for the XY model on the pyrochlore lattice (n = 2,
q = 4) or the Heisenberg model on the kagome lattice (n = 3, q = 4) would give D = 0
and therefore naively predicts order [83, 84]. In that sense these models are exactly at
the border, where the Maxwellian counting argument underestimates the ground state
degrees of freedom. The assumption of constrained isolated unit cells in Eq. (1.43)
does not include correlations beyond a single unit within the ground state manifold as
e.g. necessary to capture weather vane modes in the kagome antiferromagnet [refer to
Fig. 1.5(b) in Section 1.3.2]. In that context, corrections of the counting argument are
important, if they contribute to the ground state degeneracy of the system.

One might ask, if an extensively degenerate ground state manifold is robust against
thermal fluctuations. At any nonzero temperature, the system tends to minimise its
free energy, which now depends on the type of thermal fluctuations. It turns out,
that ground states with the lowest excitation frequencies are selected, because they
have the largest entropy and the lowest zero–point energy. Such a mechanism, where
fluctuations enhance order instead of suppressing it, is termed order by disorder and
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(a) (b)

Figure 1.4: The kagome lattice in real materials, reproduced from [91].
The lattice structure of (a) Volborthite and (b) Herbertsmithite. The crystallographic
lattices are drawn in the same scale. While Volborthite provides two different types of
bond–interactions between Cu1 and Cu2 and Cu2 and Cu2, Herbertsmithite is claimed
to be in a structurally perfect kagome lattice [92] providing isotropic nearest–neighbour
exchange. The inset shows the possible arrangement of Cu 3d orbitals carrying unpaired
electrons.

has been studied first by Villain in the context of Ising spins [85] and later by Shender
[86], Kawamura [87] and Henley [88] for systems with continuous symmetries. Monte
Carlo simulations showed, that the antiferromagnetic Heisenberg model on the kagome
lattice develops coplanar spin order in the low–temperature limit [89, 90], while the
Heisenberg model on the pyrochlore lattice does not seem to show any order by disorder
mechanism [83, 84].

1.3.2 The classical Heisenberg antiferromagnet on the kagome
lattice

Materials

The kagome lattice is a showcase model of frustrated magnetism. It was mentioned
the first time in 1951 in a paper of Syôzi [93, 94], with respect to the typical shape of
the Japanese bamboo basket, known as KAGO–ME. Due to its low dimensionality and
simple corner sharing geometry the kagome lattice plays a crucial role in the discovery
of new materials with spin liquid behaviour. Nevertheless, it took about 40 years until
the kagome lattice found its first experimental realisation in the so–called “pyrochlore
slab” SrCr8Ga4O19, a material of decoupled kagome layers [95].

One of the most studied family of kagome antiferromagnets are the Jarosite mate-
rials, which provide properties in classical and quantum limits [96, 97, 98] with con-
ventional long–range magnetic order and exotic unconventional order [96, 99]. The
Volborthite (Cu3V2O7(OH)2·2H2O) and Herbertsmithite (ZnCu3(OH)6Cl2) materials
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(see Fig. 1.4 and [91, 100] for reviews on experimental advances on both materials)
consist of kagome layers and are known to show no long range order down to 50 mK,
strongly indicating to be spin liquids [101, 102]. Also, quite recently, “a family of novel
materials based on a perfect two–dimensional rare–earth kagome lattice” of the form
RE3Sb3Mg2O14 (RE = La, Pr, Sm, Eu, Tb, Ho) could be synthesised, and showed for
many of them no sign of magnetic ordering above 2 K [103].

The antiferromagnetic Heisenberg model on the kagome lattice provides a possible
model hamiltonian for several materials with kagome lattice structure. Large–S mate-
rials like Y0.5Ca0.5BaCo4O7 [104] (S = 3/2), deuterium Jarosite (S=5/2) [105] and the
materials on the Swedenborgite lattice with Heisenberg [106] and Ising spins [107, 108]
can be explained in a classical picture. Further more, results of the classical model are
also relevant for low–spin models, since quantum fluctuations often play an important
role just at very low temperatures, and might be overwhelmed by thermal fluctuations
when heated.

Studies for more than 25 years [109, 110, 89, 111] show that the solution of the clas-
sical antiferromagnetic Heisenberg model on the kagome lattice is a challenging quest.
Complex non–linear fluctuations around extensively degenerate harmonic ground states
made fundamental statements about ground state properties difficult to formulate.

Thermodynamics

Early studies examined the classical antiferromagnet on the kagome lattice with nearest–
neighbour interactions and n–component vector spins [109]. Hereby, each model showed
its own specific behaviour, like a disordered ground state at all temperatures for the
Ising model (n=1), a mapping to the three–state Potts model in the limit T → 0 for
the XY model and the development of a coplanar state at low temperatures for the
Heisenberg model (n=3) [109].

For the Heisenberg model, it turns out, that the system energy is minimised by any
configuration for which the total spin of each triangular plaquette is zero (

∑
i∈4 Si = 0).

An extensive ground state degeneracy originates from many ways of fitting these pla-
quettes together, due to a rotational degree of freedom around a local exchange field.
However, at low temperatures entropy selects a subset of the ground state manifold
via an order by disorder mechanism and favours plaquettes aligned within a plane
[89, 112, 111, 90].

Long–range ordered ground states, which are part of this manifold of planar con-
figurations are the so–called q = 0 and

√
3×
√

3 states, as shown in Fig. 1.5 [111, 113].
Spins form an angle of 120◦ to each other, whereas green and red coloured spins are
allowed to rotate around the local exchange axis, parallel to the blue–coloured spins,
without any additional cost of energy. The q = 0 state [Fig. 1.5(a)] shows a uniform
spin chirality with repeating spin–ordering pattern on each geometric unit cell and
allows for global spin excitations, traversing the entire lattice. On the other hand, the√

3 ×
√

3 state [Fig. 1.5(b)], is characterised by a alternating chirality, allowing for
localised spin–excitations along hexagonal loops of the kagome lattice, the so–called
“weather vane” mode [113, 114, 115]. Via an effective Hamiltonian approach the long–
range ground state in the limit of T → 0 has been proposed to select the

√
3 ×
√

3
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(a) (b)

Figure 1.5: The two possible long–range ordered ground states of the clas-
sical antiferromagnetic Heisenberg model on the kagome lattice. (a) The
q = 0 state is characterised by the same chirality on each triangle with repeating spin–
ordering pattern on each geometric unit cell and allows for global spin excitations. (b)
The

√
3×
√

3 state allows for an spin arrangement with alternating chirality, allowing
for localised spin–excitations along hexagonal loops, so–called “weather vane” modes.
These fluctuations cost no energy and are called weather–vane mode.

state and not the q = 0 state [116].
Numerical techniques such as classical Monte Carlo simulations allow to investigate

thermodynamic properties of the antiferromagnetic Heisenberg model on the kagome
lattice at very low temperatures and large sizes, which ensures a control of finite–size
effects. Simulations of the classical antiferromagnetic Heisenberg model on the kagome
lattice were carried out, using the heat–bath, over-relaxation and parallel tempering
method (see Chapter 2) for a system size of N = 10800 spins, and should be compared
to published results by Zhitomirsky [90].

The specific heat per spin C/N , reveals three different temperature regimes: a
high–temperature paramagnetic regime, a cooperative paramagnetic regime and a low–
temperature coplanar state, as shown in Fig. 1.6(a). The crossover temperature into a
coplanar state lays around Tk ≈ 0.004 J and is indicated by a drop to C/N = 11/12,
accounting for the number of zero modes in the model [see details in Appendix A.1].

Fig. 1.6(b)–(d) shows the momentum–resolved equal–time structure factor S(q)
for each temperature regime. The cooperative paramagnetic regime shows triangular,
bowtie like regions of strong scattering intensity, which are connected via pinch–points,
a signature of spin liquids with emergent Coulomb physics. Upon cooling the intensi-
ties are redistributed to the centres of the triangular regions with q = {8π/3, 0} and
equivalent wave vectors. Those intensities are no Bragg peaks, since corresponding spin
correlations fall off as r−2 [117] and the intensities grow logarithmically. The coplanar
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(a)

(b) T/|J| = 0.0004 (c) T/|J| = 0.01 (d) T/|J| = 0.1645

Figure 1.6: Thermodynamics in the Heisenberg model on the kagome anti-
ferromagnet. (a) Specific heat over a wide temperature range shows three different
regimes, a high–temperature paramagnetic regime, a cooperative paramagnetic regime
and a low–temperature regime with a coplanar state. The red line corresponds to
11/12. Specific heat measurements were averaged over 40 independent samples, all
with different random configurations. Error bars are sufficiently small down to very
low temperatures (T/|J | ∼ 10−4). (b)–(d) Equal–time structure factor S(q), within
the regimes listed in (a). Results have been calculated for systems of size N = 10800.
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(a) S(q, ~ω = 0) (b) S(q, ~ω = |J |) (c)

Figure 1.7: Dynamical structure factor for the Heisenberg model on the
kagome antiferromagnet. (a) Energy cut at ~ω = 0 shows a structure like in
the energy–integrated structure factor S(q), shown in Fig. 1.6(b), suggesting that the
largest weight lays in the zero–energy fluctuations. Diffuse scattering intensity is ar-
ranged on triangular bowtie–like features, separated via pinch–points. (b) Energy cut
at ~ω = |J | shows rings evolving from the high–intensity regions, seen in (a), whereas
“half–moon” features evolve out of pinch–points. (c) S(q, ω) along the path, shown in
(a), with start at q = {0, 0}, shows spin waves evolving out of gapless high–intensity
modes. Results have been calculated for systems of size N = 10800 at T = 0.001|J | .

state starts to develop at temperatures below Tk and is responsible for the peaks at
q = {4π/3, 0} and vanishing pinch–points.

The consideration of the primary ordering parameter, a third–rank tensor account-
ing for all available symmetries in the kagome lattice provides evidence for octupolar
ordering for T → 0 [90], and has been concluded in later studies to be a very small
dipolar–spin order with a tripled unit cell [118].

Dynamics

Classical Monte Carlo simulations, combined with molecular dynamics simulations (see
Section 2.3) for a system of size N = 10800 spins has been used to present dynamical
properties of the kagome antiferromagnetic Heisenberg model in the coplanar state at
T/|J | = 0.001 and should be compared to results in the literature [113, 114, 119, 115].
While, in the paramagnetic regime dynamical properties show completely diffusive
character, the cooperative paramagnetic regime is characterised by algebraic spin cor-
relations mediated by dynamics of spin clusters. In the coplanar regime at very low
temperatures, spin waves propagate through the system with very short life times and
seem to stay strongly correlated with localised weather vane modes [115], which control
the system’s relaxation time scale.

The dynamical structure factor at zero frequency S(q, ~ω = 0) [Fig. 1.7(a)] in
the coplanar state looks very similar to the energy–integrated structure factor S(q)
[Fig. 1.6(b)], which suggests that the strongest intensities are coming from low–energy
fluctuations. Pinch–points, located at the Brillouin zone centres evolve into “half–
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(a)
(b)

(c)

Figure 1.8: The J1-J2-J3 Heisenberg model on the honeycomb lattice, repro-
duced from [120]. (a) T=0 phase diagram of the classical model for ferromagnetic
J1. Next to four collinear phases (I, II, IV, VI), also two spiral phases (III, V) ex-
ist. The phase boundary between phase III and V is very special, since it allows for
an infinite degeneracy of spiral ground–states. (b) The bipartite honeycomb lattice
with real–space lattice vectors t1 and t2 and exchange parameters J1, J2 and J3. (c)
Highly degenerate states on the coexistence line between phase III and V show rings
in the momentum–resolved spin–spin correlations, shown for J2 = -0.2, -0.4 and -0.5
respectively.

moon” features at higher frequency [Fig. 1.7(b)], spin–wave excitations with strongly
reduced cross section along peculiar lattice directions [114]. The S(q, ω) on a particular
path in momentum space and function of energy [Fig. 1.7(c)] shows spin waves in form
of acoustic and optical modes. However, optical modes seem to be an artefact of the
simulation, and not measurable in large systems, as discussed in [119].

1.3.3 The J1-J2-J3 Heisenberg model on the honeycomb lattice

Nearest–neighbour antiferromagnetic models on geometrical frustrated lattices with
triangular units, like the triangular or kagome lattice, receive a lot of attention, due to
the possible emergence of spin–liquid ground states.

However, spin liquids do not need to be restricted to geometric frustration only.
Models with further–neighbour exchange interaction can also induce frustration, such
as e.g. further–neighbour antiferromagnetic Heisenberg models on the square lattice
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[121, 122, 123, 124, 82, 125].
Particular attention in this section shall be given to the J1-J2-J3 Heisenberg model

on the honeycomb lattice, due to its relevance for the spin liquid compound Ca10Cr7O28,
which shall be discussed detail in Chapter 5. The relevant classical Hamiltonian for
this system is

HHC = J1
∑
〈ij〉1

SiSj + J2
∑
〈ij〉2

SiSj + J3
∑
〈ij〉3

SiSj , (1.44)

where the first, second and third sums run respectively over the first, second and third
nearest–neighbours, as depicted in Fig. 1.8(b). As evaluated in the literature [126, 120]
the classical phase diagram of HHC provides a plethora of zero–temperature phases. As
shown in Fig. 1.8(a) for ferromagnetic coupling J1 < 0, four collinear phases (I, II, IV,
VI) exist, next to two spiral phases (III, V). These spiral phases are characterised by a
wave–vector Q, such that the ground–state wave–function at position R on sublattice
α is given as

SR,α = S
(

cos (Q ·R + φα)u + sin (Q ·R + φα)v
)
. (1.45)

Hereby, u and v are two orthogonal unit vectors defining the spin–plane and φα is an
additional phase.

The phase boundary between the two spiral phases III and V is special [120], since
it allows for an infinite degeneracy of spiral ground–states corresponding to:

cos (Q ·R1) + cos (Q ·R2) + cos (Q · (R1 −R2)) =
1

8J2
2

− 3

2
, (1.46)

where t1 = {1, 0} and t2 = {1/2,
√

3/2} are the two lattice vectors of the triangular
Bravais lattice. Fouet et al. [120] conjectured that the models on this coexistence line
have a RVB spin–liquid ground–state, with a small but finite gap and strong short
range order. Further more spin–spin correlations for models along this coexistence
line will show a “ring” in momentum space, as presented for the in Fig. 1.8(c) for
J2 = -0.2, -0.4 and -0.5 respectively. This ring–signature has been recently measured
in inelastic neutron scattering experiments on single crystals of Ca10Cr7O28 [127] and
shall be explained in detail in Chapter 5.

Similar signatures in the energy–integrated structure factor S(q) have been identi-
fied for the classical J1-J2 Heisenberg model on the honeycomb lattice with antiferro-
magnetic (J1 > 0) interactions [81] and in the J1-J2-J3 Heisenberg model on the square
lattice [82].

1.4 Outlook of this Thesis

This thesis is dedicated to the thermodynamic and dynamic signatures in kagome–
like lattices and is divided into five Chapters. The aim of the current Chapter 1 was
to generally introduce and motivate the concept of frustrated magnetism, which are
impossible to study within a standard mean–field theory, as used for conventional
magnets.
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The next Chapter 2 discusses new methods, needed in order to access the low–
temperature physics of spin liquids. The methods, used for this work are analytical
Husimi tree calculations — a very powerful tool to predict thermodynamic properties
in spin liquids — and classical Monte Carlo simulations, which additionally allow,
combined with the numerical integration of the semiclassical–equations of motion, to
access dynamical properties in spin liquids.

Chapter 3 presents thermodynamic properties and signatures of classical spin liquids
on corner sharing lattices, by the use of complementary analytical Husimi tree and nu-
merical Monte Carlo simulation techniques. The emerging phenomenon of a Curie–law
crossover between a high–temperature paramagnetic and a low–temperature collective
paramagnetic regime, turns out to be a powerful signature of exotic physics in classi-
cal spin liquids, and explains the difficulty for a precise estimate of the Curie–Weiss
temperature in experiments.

But spin liquids do not necessarily need to show just one Curie–law crossover,
as shown in Chapter 4, which discusses results for the anisotropic Ising model on
the “shuriken”, or “square–kagome” lattice. A rich phase diagram provides multiple
disordered ground states, where low–and high–temperature regimes are less correlated
than the intervening classical spin liquid, giving rise for a reentrant phenomenon in
disordered systems.

Motivated by recent experiments on Ca10Cr7O28, Chapter 5 shows dynamical prop-
erties and signatures of the nearest–neighbour Heisenberg model on the bilayer breath-
ing kagome lattice. Hereby semi–classical molecular–dynamics simulations could be
used to reproduce many features seen by inelastic neutron scattering experiments and
allowed to provide a first explanation of the spin–liquid origin in Ca10Cr7O28. Sur-
prisingly, magnetic excitations of Ca10Cr7O28 encode not one, but two types of spin
liquids; a gapless “spiral spin liquid”, with origin in an extensive ground state degen-
eracy, understandable by a mapping onto the J1-J2 honeycomb model; and, at finite
energy, a “Coulombic spin–liquid” familiar from the kagome–lattice antiferromagnet.



Chapter 2

Technical Background

“ Ein Kerl, der spekuliert,
Ist wie ein Tier, auf dürrer Heide,

Von einem bösen Geist im Kreis herumgeführt,
Und ringsumher liegt schöne grüne Weide.”

Faust 1, Vers 1830 ff. (Mephistopheles)
Johann W. v. Goethe

In the framework of a mean–field theory, conventional magnets typically order at
temperatures comparable to the exchange interaction (Tc ∼ |J |) via spontaneous sym-
metry breaking. On the other hand, magnetic moments in frustrated magnets are
characterised by a suppression of such an ordering mechanism down to very low tem-
peratures, due to strong fluctuations.

Since thermodynamic and dynamic properties of systems with such behaviour are
reasonably hard to access, specific analytical and numerical methods are crucial. Possi-
ble methods allowing to access those physical quantities presented in this work consider
both, analytical calculations on the Husimi tree and numerical Monte Carlo simula-
tions combined with molecular dynamics. With the help of these methods classical spin
liquids can be characterised and classified due to their thermodynamic and dynamic
signatures, which will be presented on specific examples for kagome–like spin systems
in the following Chapters.

2.1 Husimi tree — a tool for exploring spin liquids in
corner–sharing lattices

This Section will illustrate the importance and elegance of using the Husimi tree —
a variation of the Bethe lattice — in order to describe the thermodynamic proper-
ties in classical spin liquids on corner sharing lattices. While this method tends to
overestimate the critical temperature in systems with magnetic phase transitions, its
application to classical spin liquids, which are characterised by crossovers between dif-
ferently correlated regimes, provides a surprisingly good estimate of thermodynamic
properties.

23
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Figure 2.1: Cayley tree for coordination number q = 3 up to shell n = 3. The
central site 0 is connected to q neighbours, which will form the 1st shell. Connections
to higher shells will happen to q − 1 neighbouring sites. For n → ∞ the Cayley tree
can be considered as a Bethe lattice and allows to calculate thermodynamic properties
deep within its centre at site 0.

Calculations on the Husimi tree shall be constrained to models with discrete degree
of freedom, preferably Ising systems, providing the simplest model to show and under-
stand spin liquid behaviour. An extension to Heisenberg models is generally possible,
as explained in the literature [128, 129].

The Ising model has the general form

H = J
∑
〈ij〉

σiσj − h
∑
i

σi , (2.1)

where the interaction J couples nearest–neighbouring spins 〈ij〉 of discrete spin value
σi = ±1 on lattice sites i. Additionally, spins are coupled to an external magnetic field
h, which shall be used later as a “probe” to enforce a magnetic signature in the system.

2.1.1 Bethe Lattice

Treating a system in a standard mean–field approach is usually the starting point for
getting a good overview of its physical properties. However, it might not be enough to
capture the important and charming physical properties, which make these complex
systems so different and interesting, compared to others. Especially in the case of spin
liquids unexpected physical properties are originated in long–ranged fluctuations within
a disordered ground state, which simply would be ignored in a standard mean–field
theory.

A solution can be found in pseudo–lattices like e.g. the Cayley tree, which is
statistically simpler than the true lattice, but still includes fluctuations. Invented in
the context of connected graph theory more than 100 years ago, Cayley trees still play
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an important role in modern science, since exact solutions are available [55] and its
application to more realistic random graphs [130] and complex networks [131, 132] is
possible.

After providing a first abstract definition of a group in 1854 [133] Arthur Cayley
introduced the concept of combinatorial graphs associated to a group in 1878 [134],
which are now known as Cayley graphs. A further development of this idea in 1910
allowed Max Dehn to reintroduce in his lectures on group theory [135, 136] Cayley
graphs under the name “Gruppenbild” (group diagram), which is nowadays known
as geometric group theory. Specifically, if those Cayley graphs are simple connected
undirected graphs with no cycles (no closed path), then they are called trees. [54].

A Cayley tree of order q (see Fig. 2.1 for order q = 3) and n shells consists of a root
vertex (0), which is connected to q new vertices via q links. The first set of q vertices
is named the shell n = 1 of the Cayley tree. In order to build shells ≥ 2 each vertex
on shell 1 needs to be linked to q− 1 vertices from the next shell. For a Cayley tree of
q > 2 the number of vertices on the nth shell is given by

Nn = q(q − 1)n−1 , (2.2)

whereas the total number of vertices is

N =
q((q − 1)n − 1)

q − 2
. (2.3)

The ratio of both numbers for n→∞ is

lim
n→∞

Nn

N
=
q − 2

q − 1
∼ 1 , (2.4)

and does not approach zero, as it would be the case for a regular lattice of dimension
d, which scales like N−1/d. Furthermore, this shows that the Cayley tree in the ther-
modynamic limit has an infinite dimension [55], and offers unusual properties, as e.g.
unconventional phase transitions for the Ising model [137, 138, 139].

Actually, the special case of a Cayley tree, which just considers local properties
deep within the graph by pushing the boundaries to infinity is called the Bethe lattice,
introduced in 1935 by Hans Bethe [52]. Using the recursive nature of the Bethe lattice
allows to solve the Ising model on this pseudo–lattice exactly. Disassembling the Ising
model [Eq. (2.1)] to each shell on the Bethe lattice (consider Fig. 2.1 for n→∞) leads
to the following Hamiltonian:

H = H0 +

q∑
i

(
Hi +

q−1∑
j

(
Hij +

q−1∑
k

(
Hijk + · · ·

)))
(2.5)

H0 = −hσ0
Hi = σi(Jσ0 − h)

Hij = σij(Jσi − h)

Hijk = σijk(Jσij − h)

...
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The resulting partition function at the central site σ0 can be expressed in a recursive
way by considering the partition functions on each connected outer branch

Z0 =
∑
{σ}

e−βH (2.6)

=
∑
{σ0}

e−βH0 ·
q∏
i

Z1(σ0, σi) (2.7)

Z1 =
∑
{σi}

e−βHi ·
q−1∏
j

Z2(σi, σij)

Z2 =
∑
{σij}

e−βHij ·
q−1∏
k

Z3(σij, σijk)

...

with Zi the partition function from branches originated in shell i and
∑

σ the sum over
all possible spin configurations within the lattice. Since each branch gives the same
result, the partition function can be factorised

Z0 =
∑
{σ0}

eβhσ0 [Z1(σ0)]
q (2.8)

and the magnetisation m on the central site σ0 can be calculated

m = 〈σ0〉 =
1

Z0

∑
{σ0}

σ0e
βhσ0 [Z1(σ0)]

q . (2.9)

Following the considerations from Baxter [55] the exact transition temperature at zero
field for the Bethe lattice with an infinite number of shells is

J/kBTc =
1

2
ln

(
q

q − 2

)
, (2.10)

which gives a result of TckB/J = 2.8854 for the square lattice (q = 4). This result is
much closer to Onsager’s exact solution of TckB/J = 2.269 [51] than the result provided
by general mean–field theory TckB/J = 4 [Eq. (1.31)].

2.1.2 Husimi tree

The Bethe lattice allows for exact solutions due to its recursive nature and is able to
include fluctuations along non–intersecting links. However, it is not possible to use the
Bethe lattice to solve models on geometrically frustrated lattices, since such models
often need a minimum amount of short loops, e.g. loops of size 3 for models on the
kagome lattice.

The Husimi tree — a cluster version of the Bethe lattice, where every vertex is
replaced by a geometrically frustrated unit cell — allows to study spin liquids on
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(a)
(b)

Figure 2.2: The Husimi tree on the kagome lattice. (a) Triangular unit cells
arranged on the Husimi tree (Husimi Cactus). The Husimi tree is equivalent to the real
kagome lattice up to its 2nd shell (in green). (b) All possible spin configurations for an
isolated triangular plaquette with Boltzmann weights g0 and g1 evaluating Eq. (2.1).

a pseudo lattice, and provided already very promising results in the past. E.g. a
variational version of the Husimi tree has been used to study spin ice, a spin liquid on
the pyrochlore lattice, and allowed to compute its correct zero–point entropy, which a
simple mean field treatment fails to reproduce [140]. The Husimi tree also allowed to
predict the isothermal magnetic susceptibilities of the spin ice materials Dy2Ti2O7 and
Ho2Ti2O7 in a wide temperature range of 1.8− 50 K [141, 142], and has been applied
to itinerant electron systems [143].

The definition of a Husimi tree dates back to Harary and Uhlenbeck [144], who have
named it after its inventor, Kôdi Husmi [145] :

“A Husimi tree is a connected graph in which no line lies on more than one
cycle. It is characterised by the numbers n2, n3, n4, ... of lines, triangles,
quadrilaterals, etc., out of which it is built up. A pure Husimi tree is one
which consists of only one type of figure. Otherwise we speak of mixed
Husimi trees. A pure Husimi tree consisting only of lines is a Cayley tree.
If it consists only of triangles we will call it a cactus.”

This definition can be applied to various other types of lattices, as e.g. done in Chap-
ters Chapter 3 and Chapter 4 for pyrochlore, trillium and shuriken lattice.

In the following the Husimi tree calculation shall be explained on the example of
the kagome lattice, shown in Fig. 2.2, where branches of nonintersecting triangular
plaquettes are extending from the central unit (drawn in red). The definition for the
magnetisation on the Bethe lattice [Eq. (2.9)] can be extended to the Husimi tree, by
replacing every single vortex is by a triangular plaquette. The magnetisation on one
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site within this triangular plaquette can be calculated, as

〈σ1〉 =
1

Z0

∑
{σ1,σ2,σ3}

σ1

(∏
〈ij〉

gij

)(
3∏
i=1

αi

)
· Z1(σ1)Z1(σ2)Z1(σ3) , (2.11)

Z0 =
∑

{σ1,σ2,σ3}

(∏
〈ij〉

gij

)(
3∏
i=1

αi

)
· Z1(σ1)Z1(σ2)Z1(σ3) , (2.12)

where
∏
〈ij〉 is a product over the nearest–neighbour spins within the central triangular

plaquette. Z0 and Z1 are the partition functions on sites in shell 0 (red) and shell
1 (blue), respectively. The Boltzmann weights accounting for the energies from the
bond–interaction J and the coupling to the external magnetic field h are written as

gij = e−βJσiσj , (2.13)
αi = eβhσi . (2.14)

For a given triangle the Boltzmann factor becomes g0 = eβJ and g1 = e−3βJ as
illustrated in Fig. 2.2(b). Eq. (2.11) gives explicitly for the kagome lattice

〈σ1〉 =
g0(Y1 − Y 2

1 ) + g1(1− Y 3
1 )

3g0(Y1 + Y 2
1 ) + g1(1 + Y 3

1 )
, (2.15)

where we introduced the ratio between the partition function of a spin on shell n,
pointing ↑ (σ = 1) and a spin pointing down ↓ (σ = −1) [55] as

Z↓n
Z↑n

= Yn e
2βh . (2.16)

Since shell 0 is located in the centre of the Husimi tree, far away from its boundary,
one can assume the ratios of the partition function between shell 0 and 1 to be equal
in the thermodynamic limit

Y0 = Y1 ≡ Y . (2.17)

In absence of an external magnetic field Y = 1, since the disordered system does not
prefer any spin direction. However, small external magnetic fields h cause a perturba-
tion ε away from this value, so that

Y = 1− ε , (2.18)

which can be used together with Eq. (2.17) and Eq. (2.16) to obtain ε in first order
approximation

ε = 2βh
3g0 + g1
5g0 − g1

. (2.19)

Please note, that the first–order expansion in h is sufficient to compute the magnetic
susceptibility, since higher–order terms vanish as h → 0. Introducing Eq. (2.19) into
Eq. (2.15) gives the temperature–dependent magnetisation of σ1

〈σ1〉 = βh
g0 + 3g1
5g0 − g1

. (2.20)
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Knowing the partition function Z0 and the magnetisation 〈σ1〉 allows to calculate
further thermodynamic observables, like energy, specific heat, entropy and suscepti-
bility. Therefore, the Husimi tree is a very powerful analytical method to predict
thermodynamic properties of spin liquids over a wide range of temperatures. Its gener-
ality to other spin liquids on corner–sharing lattices has been investigated and discussed
for the topic of a “Curie–law crossover” in Chapter 3 and the specific example of the
shuriken lattice in Chapter 4.

2.2 Monte Carlo simulations for spin systems

The goal of this Section is to introduce the very powerful and widely used Monte Carlo
method, a sampling algorithm, famous for simulating phenomena with a large number
of coupled degrees of freedom. Due to its simple key concepts and ability to adapt to a
very large range of problems, it is used in many different disciplines as a computational
algorithm for numerical optimisation, finance and business, climate change, artificial
intelligence, engineering, computational biology, and of course statistical physics [146].

Here, the basic concepts for using Monte Carlo algorithms, to draw states from a
thermal distribution (Boltzmann distribution), will be explained by an application to
spin systems with discrete Ising (Z2), and continuous Heisenberg (O(3)) symmetry. It
turns out that the implementation of the single–spin flip Metropolis Monte Carlo algo-
rithm for conventional magnets is rather straight forward, but allows for new technical
challenges in the application on spin liquids. Complex physical phenomena, like topo-
logical phase transitions, order by disorder effects or the absence of any order down to
the lowest temperatures do not allow this algorithm to properly thermalise the system
anymore, making the implementation of advanced algorithms like cluster or parallel
tempering updates necessary.

Detailed explanations about equilibrium statistical physics and different Monte
Carlo algorithms for various applications can also be found in the literature [53, 147,
148, 149].

2.2.1 A fundamental sampling method

To fully understand a complex system with a very large number of unknown quantities
can be a very difficult, or even impossible task. For example 1 litre of air at room
temperature and atmospheric pressure consists of 3× 1022 molecules, all moving and
colliding with each other and with the walls of a container, following their individual
equations of motion [149]. Solving all equations of motion for so many interacting
particles is basically impossible, which is why we need to rely on statistical sampling
techniques by calculating physical quantities of many independent, well–behaved small
ensembles, whose averaged properties allow us to make predictions for the entire system.

Markov process, Ergodicity and Detailed Balance

Temperature is one of the most important ingredients in Monte Carlo simulations,
since it considers a canonical ensemble, which consists of stochastically–distributed
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micro states coupled to an external heat bath. The energy coming from the heat bath
can be exchanged with the system energy and allows for transition processes between
different micro states. The time evolution of such micro states is directly coupled to
their transition processes, and can very generally be described by the master equation:

dωµ
dt

=
∑
ν

[
ων(t)P (ν → µ)− ωµ(t)P (µ→ ν)

]
. (2.21)

Hereby, the time evolution of the occupation probability ωµ(t) provides a measure of
how likely it is to find the system in a micro state µ at time t. ωµ(t) simultaneously
obeys the sum rule: ∑

µ

ωµ(t) = 1 (2.22)

for all t, since the system must be in a given state at all times. The transition prob-
ability from state µ to ν is described by P (µ → ν), where µ and ν do not necessarily
have to be two different states. To allow for a proper statistical sampling, the system
needs to be “memoryless”. Therefore, the transition rates P (µ → ν) have to satisfy
the fundamental condition of a Markov process, which means that they should not
vary over time and should only depend on the properties of the current states µ and
ν, and not on any other state the system passed through before. Also, the algorithm
needs to provide ergodicity throughout the whole simulation, making the whole phase
space accessible in a finite amount of time. Knowing the values for the occupation
probabilities ωµ(t), we a priori know their equilibrium values by waiting long enough
in time:

pµ = lim
t→∞

ωµ(t) . (2.23)

If the system reached in its time evolution an equilibrium state, then the occupation
probabilities are not time dependent anymore:

dωµ
dt

= 0 . (2.24)

The right side of the master equation [Eq. (2.21)] can therefore be evaluated as:∑
ν

pνP (ν → µ) =
∑
ν

pµP (µ→ ν) (2.25)

whereas the sum over all incoming and outgoing transitions needs to be equal. For
what follows, the sufficient, but not necessary condition of detailed balance

pνP (ν → µ) = pµP (µ→ ν) (2.26)

has been chosen to satisfy Eq. (2.25). This condition states that all individual incoming
transitions (ν → µ) equals their opposed outgoing transition (µ → ν). Algorithms in
general do not necessarily need to be constrained to this condition and can use more
complex transition processes. One example is the Event Chain algorithm, which breaks
detailed–balance, but satisfies global balance and can outperform conventional Monte
Carlo algorithms [150, 151, 152, 153].



2.2 Monte Carlo simulations for spin systems 31

Metropolis Algorithm

Gibbs showed in 1902, by connecting statistical mechanics with thermodynamics [154],
that the equilibrium occupation probabilities pµ of systems in thermal equilibrium with
a reservoir at temperature T follow the Boltzmann distribution:

pµ =
1

Z
e−Eµ/kBT , (2.27)

where kB has been denoted as the Boltzmann constant and Eµ as the energy of the
system in state µ. In the following, the inverse temperature (kBT )−1 will be written
as β, while the partition function

Z =
∑
µ

e−βEµ (2.28)

operates as a normalisation parameter.
By introducing Eq. (2.27) into Eq. (2.26) one obtains:

P (µ→ ν)

P (ν → µ)
=
pν
pµ

= e−β(Eν−Eµ) , (2.29)

where the ratio of transition probabilities is expressed by the Boltzmann weight of
the energy differences between two micro states µ and ν. In general these transition
probabilities can be set to any arbitrary values, as long as they satisfy the condition
in Eq. (2.29). However the efficiency of the algorithm depends on the choice of those
values. Metropolis found that the efficiency of this algorithm is the highest, if the
larger of the two transition probabilities gets the largest possible value, namely 1, and
then adjust the other one in order to satisfy the constraint. Therefore the most efficient
algorithm, which satisfies Eq. (2.29) will consider the constraint:

P (µ→ ν) =
{
e−β(Eν−Eµ) if Eν − Eµ > 0
1 otherwise. (2.30)

In other words, if a new state with a lower energy compared to the previous one has been
selected, then the algorithm should always accept the transition to it. If it has a higher
energy, then the transition is just accepted with the probability given in Eq. (2.30).
This specific algorithm is called the Metropolis algorithm, pioneered by Metropolis and
coworkers in their work on two–dimensional rigid–sphere systems in 1953 [155].

2.2.2 Measurement of thermodynamic observables

The laws of thermodynamics are omnipresent in our daily life and occupied researchers
for more than 200 years by studying the efficiency of steam engines by e.g. Nicolas
Léanard Sadi Carnot in 1824 [156] and M.C. Clapeyron in 1834 [157]. One of the charm
of thermodynamics comes from its connection to statistical mechanics, which is the key
in order to learn something about thermodynamic properties of spin liquids, simulated
via numerical Monte Carlo techniques.

This section will review just a small portion of thermodynamical relations. The
interested reader might refer to the book of Michael Plischke and Birger Bergersen
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"Equilibrium Statistical Physics" [53] or "Monte Carlo Methods in Statistical Physics"
by Newman and Barkema [149], in order to get a more profound insight into the topic.

Once a system has been thermalised one needs to extract physical observables like
energy E, magnetisation M , or other system dependent order parameters to compare
to experimental results. Hereby, the differential of the system energy is expressed as:

dE = δQ− δW , (2.31)

where δQ is the heat, and δW is the infinitesimal change of work added to the system.
For reversible processes the second law of thermodynamics states that:

δQ = T dS , (2.32)

with S the entropy of the system. If the work W is performed by a coupling of
the magnetisation M to the external magnetic field h, then the internal energy for a
canonical ensemble will look like:

dE = T dS − h dM . (2.33)

A canonical ensemble hereby allows fluctuations about the fixed mean energy 〈E〉, but
does not allow the number of particles and volume of the system to fluctuate.

〈E〉 = const , N = const , V = const , (2.34)

Energy and Magnetisation

Fluctuations in energy and also in magnetisation are used to measure thermodynamical
response functions such as the specific heat Ch at constant magnetic field h and the
magnetic susceptibility χ.

Ch =

(
∂〈E〉
∂T

)
h

, (2.35)

χ =

(
∂〈M〉
∂h

)
h→0

. (2.36)

Considering the fluctuation in energy from the mean value, given by

∆E = E − 〈E〉 , (2.37)

one can calculate the variance of the energy:

〈∆E2〉 = 〈E2 − 2E〈E〉+ 〈E〉2〉 (2.38)
= 〈E2〉 − 〈E〉2 . (2.39)

The connection between thermodynamical observables to statistical quantities, like the
equilibration occupation probability pµ, via the Boltzmann distribution [Eq. (2.27)]
allows to express the mean system energy by the partition function Z [Eq. (2.28)]

〈E〉 =
∑
i

pµEµ = − 1

Z

(
∂Z
∂β

)
h

= −
(
∂

∂β
ln Z

)
h

, (2.40)

〈E2〉 =
∑
i

pµE
2
µ =

1

Z

(
∂2Z
∂β2

)
h

. (2.41)
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This is an important point, since the fluctuations in energy can be connected to the
specific heat Ch by using Eq. (2.39):

〈∆E2〉 =
1

Z

(
∂2Z
∂β2

)
h

+
1

Z2

(
∂Z
∂β

)2

h

=
∂

∂β

(
∂

∂β
ln Z

)
h

(2.42)

= − ∂

∂β
〈E〉h = kBT

2Ch , (2.43)

making it possible to express Ch in terms of the mean and mean–square values of the
energy E.

Ch =
1

kBT 2

[
〈E2〉 − 〈E〉2

]
, (2.44)

which can be easily extracted as a byproduct from the Monte Carlo simulations.
In the same spirit the susceptibility χ can be connected to the fluctuations of the

corresponding order parameter under consideration, here the magnetisation M

χ =
1

kbT

[
〈M2〉 − 〈M〉2

]
. (2.45)

The relative fluctuations in energy on the scale of its mean may be written as:√
〈∆E2〉
〈E〉

=

√
kBT 2Ch
〈E〉

∼ 1√
N
, (2.46)

since Ch and E are extensive variables and explicitly depend on the number of particles
in the system. Eq. (2.46) is a consequence of the central limit theorem. For Avogadro–
sized assemblies N ∼ 1024 the fluctuations in energy will be about ∼ 10−12, which is
smaller than any experimental precision could provide. Actually, energy fluctuations
will vanish in the thermodynamic limit for N → ∞, merging the physical properties
for the canonical ensemble to those of the micro canonical ensemble.

Fluctuations play a central role in Monte Carlo simulations of finite sized systems,
and can be treated efficiently in multi–canonical sampling methods, like the parallel
tempering method, which shall be explained in more detail in Section 2.2.5.

Entropy

Next to the fluctuations in energy and magnetic order parameter, the entropy S is also
very important for studying spin liquids. The entropy relates to the specific heat as:

Ch = T

(
∂S

∂T

)
h

, (2.47)

leading to a solution for the absolute entropy S(T ) at temperature T by integrating
the specific heat Ch over temperature T

S(T ) = S(T0) +

∫ T

T0

Ch
T
dT . (2.48)

Hereby the integration constant S(T0) should be set to a known entropy value at
temperature T0.
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Since Monte Carlo simulations are done over a set of discrete temperature values,
one needs to perform the numerical integration in form of a sum

S

(
Tj + Tj+1

2

)
= S(T0) +

j∑
i=0

Ci + Ci+1

Ti + Ti+1

(Ti+1 − Ti) , (2.49)

in order to extract the entropy value between two given temperatures. Hereby, the
specific heat Ci is measured at the corresponding temperature value Ti on the temper-
ature grid, individually chosen for the simulation. Of course the temperature values
should be chosen wisely, such that numerical errors are minimised and possible sharp,
or singular features as seen at phase transitions are taken into account as well.

As a remark, the calculation of the entropy S as shown in Eq. (2.49) is not applicable
for classical Heisenberg systems (see Section 2.2.4) since fluctuations of spins will scale
with temperature even down to T → 0+.

Correlation Function

The correlation in real space of two spins at site i and j is expressed by the two–point
correlation function

Gij = 〈SiSj〉 − 〈Si〉〈Sj〉 (2.50)

=
1

β2

∂2 log Z
∂hi∂hj

. (2.51)

Since the system is translationally invariant, Gij only depends on the displacement r
between sites i and j, and not exactly on where the sites are. One can calculate the
correlation function averaged over all sites on the lattice

G(r) =
1

N

∑
i

G(ri, ri + r) (2.52)

=
1

N

∑
ij with

rj−ri = r

[
〈SiSj〉 − 〈Si〉〈Sj〉

]
. (2.53)

Systems can show exponential or algebraic decay of correlations, a property used to
classify spin liquids in a broad sense [2].

2.2.3 The Ising model

The Ising model is one of the simplest and best–studied statistical mechanics models.
Introduced in his PhD, Ernst Ising used this model (later named after him, by Rudolf
Peierls [158]) on a one–dimensional spin chain in order to understand ferromagnetism
[159]. It was Lars Onsager in 1944 [51], who solved this statistical model analytically
on the square lattice, and provided an exact solution in its thermodynamic limit. Not
just important as a statistical model, it also allows to predict physical properties of
real materials in two (e.g. CoCs3Cl5 and CoCs3Br5 [160]) and three-dimensions (e.g.
DyPO4 [161]).
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(a)

(b) (c) (d)

Figure 2.3: Monte Carlo simulations for the Ising model (100 × 100 sites)
on the square lattice. (a) shows the specific heat with a global maximum at
Tc/J ≈ 2.27, comparable to the exact result (Tc/J = 2.269) by Onsager [51]. Snap–
shots of the spin configuration are seen in (b) at Tc & T = 2J below the phase transi-
tion, (c) Tc . T = 2.4J above the phase transition and (d) Tc < T = 5J far above the
phase–transition temperature Tc. Blue corresponds σi = +1, while orange corresponds
σi = −1 at site i. Simulations were performed with local spin–flip Metropolis updates
and parallel tempering, 105 steps for equilibration, annealing and statistical averaging.
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The Ising model describes a magnet, where magnetic moments σi are placed on
lattice sites i and are able to take two values: +1 or −1. If there are N sites on this
lattice, then the total number of possible states will be 2N and the system energy will
be described by the following Hamiltonian:

H =
∑
〈ij〉

Jijσiσj − h
∑
i

σi , (2.54)

where Jij represents the bond–dependent exchange energy between coupled spins 〈ij〉,
and h is an external magnetic field.

Results from Monte Carlo simulations of the ferromagnetic Ising model (Jij =
J = −1) [Eq. (2.54)] are shown in Fig. 2.3 for the square lattice with N = 10000
sites. Fig. 2.3(a) shows the specific heat Ch [Eq. (2.44)] close to the phase transition
temperature Tc with snapshots of spin configurations Fig. 2.3(b) below, (c) in the
vicinity, and (d) above Tc.

Numerical Implementation

To numerically simulate the Ising model with classical Monte Carlo simulations, one
needs to define an array of N lattice sites, with an Ising variable σi = ±1, connected
with periodic, helical, or open boundary conditions. A random distribution of these
spins on each site could be a starting configuration for the algorithm. The algorithm
will randomly visit sites i in the lattice and evaluates the Metropolis sampling condition,
stated in Eq. (2.30) by calculating the energy Eµ over all neighbouring bonds for the
initial spin and Eν for a new spin, which is flipped. The system energies for both
configurations can be compared by using Eq. (2.54)

E−σiν − Eσi
µ = ±2

(∑
δ

Ji,δ σδ − h
)
, (2.55)

where the difference of the total energy of both systems just depends on the change
in energy on the bonds, connecting the flipped spin σi to its neighbouring spins σδ. If
the new system energy is reduced in this new configuration, then the spin flip will be
accepted. On the other hand, if the system energy increases, then the spin flip is just
accepted, if the Boltzmann probability, stated in Eq. (2.30) allows it. The verification
in that manner for N randomly chosen sites of the lattice is called one Monte Carlo
step.

Random Numbers

The evaluation of the Metropolis argument in Eq. (2.30) takes place with a numerically
produced random number R0 ∈ [0, 1]. If the random number R0 is hereby smaller than
the Boltzmann weight, which corresponds to the energy difference between state µ and
ν, then the transition is accepted.

The question is, how does a computer — probably one of the most deterministic
machines, produced by humans — provide statistically independent random numbers?
In this context, one relies on the use of random number generators, a piece of computer
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(a)

(b)

Figure 2.4: Monte Carlo scheme and simulated annealing. (a) Example scheme
of a Monte Carlo (MC) simulation. The actual sampling for each replica starts after
simulated annealing and equilibration. Thermodynamic properties are stored after ∆n
MC steps to account for statistically independent samples. (b) Example of temperature
distributions per replica and MC step. The first 105 MC steps account for simulated
annealing, while the next 105 MC steps are used to equilibrate the system at the fixed
target temperature.

code, able to produce a sequence of statistically uncorrelated numbers. The length of
this sequence is usually related to the periodicity of a random number generator and
needs to be reasonably large to allow for uncorrelated statistical sampling in Monte
Carlo simulations [162].

Thermalisation

Thermalisation in Monte Carlo simulations is a very important process, since the qual-
ity of the obtained results highly depends on the proper equilibration of the system. A
sketch of the whole Monte Carlo sampling process can be seen in Fig. 2.4(a).

In order to “cool” a system down to low temperatures, one can, as in a real ex-
periment, quench the system, by setting the temperatures for each replica directly to
the target temperature. Starting from a decorrelated high–temperature paramagnetic
phase, the system will “rush” through possible phase transitions and enter into a low–
temperature correlated phase. Not allowing the system to thermalise within this broad
temperature regime might cause difficulties for finding equilibrated replica. A useful
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method for avoiding such effects is simulated annealing, which allows the system to
adiabatically cool down to its target temperature. The distributions of temperature
values are hereby chosen in any convenient way, as e.g. by a logarithmic distribution,
shown in Fig. 2.4(b).

After the system reached its target temperature, one should allow the algorithm to
further equilibrate the system by waiting a sufficiently large amount of Monte Carlo
steps before starting the actual measurements. The actual measurement of physical
observables happens after ∆n MC steps in order to allow the system to decorrelate
and provide statistically independent results. However, every system shows different
correlation effects (especially at low T) and ∆n can range from a few, up to many MC
steps. To know if a simulation provides decorrelated samples one needs to consider the
autocorrelation function.

Systems with phase transitions, show a diverging correlation length in the vicinity
of the phase transition temperature Tc, as shown in the context of Landau theory of
phase transitions in Section 1.2.2. Close to Tc the correlation length will be in the
order of the length of the cluster, used for the simulation, producing large domains
of equal magnetisation, separated by domain walls [Fig. 2.3(c)]. Since single–spin flip
algorithms are not capable of flipping whole clusters of spins, thermalisation close
to the transition temperature becomes difficult, and is called critical slowing down.
However, advanced algorithms like cluster–flipping methods, as the Wolff algorithm
[163] or the Swendsen–Wang algorithm [164], are able to flip large regions of spins with
same magnetisation and can remove the problem of critical slowing down entirely.

Autocorrelation Function

In order to make a statement about the number of Monte Carlo steps ∆n between each
measurement [see Fig. 2.4(a)], one should consider the time-displaced autocorrelation
function G(t), a measure of the correlation between the spin configurations after a
different number of Monte Carlo steps,

G(t) =

∫
dt′[m(t′)− 〈m〉][m(t′ + t)− 〈m〉] (2.56)

=

∫
dt′[m(t′)m(t′ + t)− 〈m〉2] , (2.57)

where m(t) is the instantaneous value of the system magnetisation at time t and 〈m〉
is the average value of it. This correlation time strongly depends on the system under
consideration and might range between several Monte Carlo steps in simple models
and up to infinity for e.g. spin glass models [72, 165, 73]. In absence of freezing, the
autocorrelation is expected to decrease exponentially like

G(t) ∼ e−t/τ , (2.58)

where τ represents the correlation time, a measure of the minimal time window neces-
sary to allow for two statistical independent samples.
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2.2.4 The Heisenberg model

The Ising model can be generalised by increasing the degree of freedom of the spins on
the lattice, as done for example in the Potts model [166]. Pushing the limit of allowed
degrees of freedom up to infinity can be described, to some extend, by the classical
Heisenberg model, where spins are allowed to point in any direction in space.

In the classical Heisenberg model spins at position i are treated as vectors with

Si ∈ R3 and |Si| = 1 , (2.59)

where the spin length is set to be unity. The Hamiltonian evaluating the total energy
of interacting spins on a lattice is

H =
∑
〈ij〉

Jij Si · Sj − h
∑
i

Si , (2.60)

where Jij represents the exchange energy between coupled spins 〈ij〉 and h the external
magnetic field.

The infinite number of allowed spin directions makes the evaluation of this Hamilto-
nian with Monte Carlo simulations much more difficult than in the simple Ising model.
At low temperatures Heisenberg systems might show unconventional phase transitions
into partial ordered states [167, 168, 169], chiral–ordered states [170] or disordered
states with decreased entropy, as in the case of the antiferromagnetic Heisenberg model
on the kagome lattice (see Section 1.3.2). Hereby, the updating process of the single–
spin flip Metropolis algorithm [Eq. (2.30)] is not able to provide sufficient spin–flip
acceptance ratios anymore. Spins will mostly be stuck in a frozen configuration, which
will prevent the algorithm from a proper sampling over a large amount of different en-
sembles and does not guarantee sufficient statistics. In the following, after presenting
the familiar single–spin flip method by choosing a random vector uniformly distributed
on a sphere, different algorithms are presented, which will help to recover sufficient
sampling statistics at temperature regions, where the simple single–spin flip algorithm
is not reliable anymore.

Uniformly distributed points on a sphere

In order to perform single or multiple–spin updates in Monte Carlo simulations for
Heisenberg models one needs to ensure spins uniformly distributed on a sphere. To
select cartesian coordinates x, y and z from uniform distributions x, y, z ∈ [−1, 1] and
normalising them such that x2 + y2 + z2 = 1 will be incorrect, since points will be
gathered near the edges and corners of the corresponding cube [see Fig. 2.5(a) and
Fig. 2.5(b)]. In a similar spirit, selecting spherical coordinates φ and θ from uniform
distributions φ ∈ [0, 2π) and θ ∈ [0, π] will be incorrect as well, since the area element
dΩ = sin θ dφ dθ is a function of the azimuthal angle θ. To overcome this issue one can
choose the following new set of coordinates:

x =
√

1− u2 cosφ ,

y =
√

1− u2 sinφ , (2.61)
z = u ,
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(a) front view (b) side view (c) front view (d) side view

Figure 2.5: Random distributed points on a sphere. (a) and (b) show a non–
uniform distribution of points on a sphere, seen by higher point–density on corners
and edges of a cube. Hereby points have been selected uniformly on x, y, z ∈ [−1, 1]
and projected onto a sphere by normalising them with x2 + y2 + z2 = 1. (c) and (c)
show points chosen uniformly distributed on the sphere by the method of Marsaglia
Eq. (2.63).

with φ ∈ [0, 2π) and u ∈ [−1, 1]. These new points are uniformly distributed on the
sphere, since the differential element of the solid angle is not a function of the azimuthal
angle θ anymore.

dΩ = sin θ dφ dθ = −dφ d(cos θ) . (2.62)

In 1972George Marsaglia [171] presented another method, where variables x1 and x2 are
chosen randomly between (−1, 1) and will be rejected, if x21 + x22 ≥ 1. The remaining
points

x = 2x1

√
1− x21 − x22 ,

y = 2x2

√
1− x21 − x22 , (2.63)

z = 1− 2
(
x21 + x22

)
will have a uniform distribution on a sphere, as shown in Fig. 2.5(c) and Fig. 2.5(d).
Of course there are many more ways of distributing points randomly on a sphere
[172, 173, 171].

Uniformly distributed points on a spherical cone

System dependent unconventional ordering mechanisms often become difficult to cor-
rectly sample at very low temperatures. A leading example would be the antiferromag-
netic Heisenberg model on the kagome lattice, which lowers its free energy by entropic
selection by condensing into a coplanar state. When spins freeze into such a state,
fluctuations out of their local quasi–ordered direction will decrease by lowering the
temperature and lead to low acceptance rates by choosing a new spin configuration on
a sphere.

A possible way to overcome this issue and allow for sufficient acceptance rates and
statistics is to sample spin configurations on a spherical cone. As a small but important
remark: By choosing a sampling method on a spherical cone, one needs to be conscious
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Figure 2.6: Uniformly dis-
tributed points on a spheri-
cal cone. By knowing the central
axes a and opening angle θ0 of the
spherical cone, points can be dis-
tributed uniformly on its surface.

that generally the fundamental rule of ergodicity is violated. Therefore, this sampling
method is just applicable if the behaviour of the physical system is understood well
enough and allows a treatment with this algorithm.

To construct points on a spherical cone one uses two mutually–orthogonal unit
vectors u and v, both of them orthogonal to the given central axis a of the cone, where
|a| = 1 (as shown in Fig. 2.6). We choose the polar angle φ uniformly in [0, 2π), and
the azimuthal angle θ on the interval (0, θ0]. Hereby, θ0 stands for the opening angle
of the spherical cone and is restricted to the interval [0, π]. θ0 is usually decreasing
with temperature and goes for the antiferromagnetic Heisenberg model on the kagome
lattice as θ0 ∼

√
T [116], in order to account for soft modes.

To find new vectors x, uniformly distributed on the spherical cone with 0 ≤ θ ≤ θ0,
one might follow this recipe: Choose random numbers for z, uniformly distributed
on the interval [cos θ0, 1], and set θ := arccos(z). Furthermore let φ be uniformly dis-
tributed on [0, 2π). Then the point

x = sin θ(cosφ u + sinφ v) + cos θ a (2.64)

will be uniformly distributed on the corresponding spherical cone.

Over–relaxation

Another way to increase the sampling statistics of a Monte Carlo simulation, applicable
for any system under consideration is provided by the powerful over–relaxation method
[174, 175]. Hereby, randomly chosen spins on the lattice are rotated by an arbitrary
angle φ ∈ [0, 2π) around its local exchange field

Hi =
∑
δ

Jiδ Sδ − h , (2.65)

where the index δ counts the sites, which are coupled via Jiδ to the ith spin under
consideration. By doing so the system energy stays constant, while allowing for a new
spin configuration.

Considering the large amount of operations on large lattices, the computational
cost for such a vector rotation around individual exchange–field axes are usual quite
high. In order to reduce this computational cost, one would simply rotate the spin i
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by a polar angle φ = π with the formula:

Sπi = 2 (Si ·Hi)
Hi

|Hi|
− Si . (2.66)

Heat Bath

As we learned in this Section the single–spin flip Metropolis algorithm might not be
sufficient for achieving proper statistical results in a numerical simulation at low tem-
peratures. The limiting factor is the acceptance ratio, which depends on the behaviour
of the system under consideration and often becomes very small at small temperatures
since the system prefers to make small fluctuations about local minima of the energy.
One can improve the rejection ratio by reducing the acceptance window, as e.g. shown
by using the cone–approximation [see Fig. 2.6 and Eq. (2.64)], but this practically
limits the extent of the phase space that can be explored.

The heat bath algorithm [176, 177] is a rejection–free algorithm, which automat-
ically adjusts the size of a typical move as the temperature is lowered. Hereby, each
spin is assumed to be in contact with a heat bath, which puts each spin into a local
equilibrium in respect to the instantaneous effective field, coming from its neighbouring
spins as defined in Eq. (2.65). The local Hamiltonian associated with spin Si on site i
is written as

H i
loc = HiSi = HiSi cos θ , (2.67)

where θ represents the angle between the local exchange field (Hi = |Hi|) and the local
spin (Si = |Si|). The probability to find the spin i in a space element of the solid angle
dω = sin θ dθ dφ is written as

P (θ, φ) sin θ dθ dφ = C exp(−Hloc/kBT ) sin θ dθ dφ , (2.68)

where C denotes a normalisation constant of the form:

1/C =

∫ 2π

0

dφ

∫ π

0

sin θ dθ exp(−Hloc/kBT ) , (2.69)

since the probability of finding a new vector somewhere on the whole sphere needs to
be 1. A distribution of continuous energy levels can be sampled by using a random
number R ∈ [0, 1] and connect it with the Boltzmann distribution pµ [Eq. (2.27)]

R =

∫ m

1

dµ pµ . (2.70)

Hereby R, as a random number between 0 and 1 represents the probability to find the
system in state m. By the help of this correlation the azimuthal angle θ and polar
angle φ can be sampled by:

R0 =

∫ 2π

0

dφ′
∫ θ

0

sin θ′ dθ′ P (θ′, φ′) , (2.71)

R1 = φ/(2π) (2.72)
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with R0 and R1 two random numbers. Note that the upper limit in Eq. (2.71) needs
to be the azimuthal angle θ, which defines the maximum possible deviation from the
local exchange field vector Hi. The polar angle φ [Eq. (2.72)] can be arbitrarily chosen
between 0 and 2π, since it will not affect the system energy.

By solving Eq. (2.71), one obtains a sampled azimuthal angle θ:

cos θ = − 1

HK
log
[
e−2HK(1−R0) +R0

]
− 1 , (2.73)

where K = S/kBT . It is necessary to convert the spin direction back to cartesian
coordinates, such that the fields on neighbouring sites of n can be easily computed.

The physical meaning behind the heat bath algorithm is rather interesting and
has been discussed in the literature [177]. This algorithm seems to mimic additional
degrees of freedom, as e.g. lattice vibrations, which allow the system to fall into thermal
equilibrium, while, in contrast, the Metropolis update provides simply a mathematical
device to give the correct probability distribution in equilibrium.

2.2.5 Parallel tempering

The parallel tempering or exchange Monte Carlo method is a method, developed for
improving the dynamical properties of conventional Monte Carlo simulations. It has
been introduced the first time in 1986 by Swendsen and Wang [178] in order to solve
controversies about properties of systems with quenched random interactions, such as
spin glasses and random–field models. Such “hardly–relaxing” systems generally have
numerous local energy minima which are separated to each other via energy barriers.
In conventional, local–update Monte Carlo algorithms the characteristic time in which
a system is able to escape such an energy minimum increases rapidly as temperature
decreases [179].

The parallel tempering method is a parallelised Monte Carlo algorithm, which al-
lows for temperature exchange between independent replicas — identical systems with
independent starting conditions — and consequently provides rapid relaxation times.
Hereby replica, which might get “stuck” in an local energy minimum, seeming to be
frozen, are allowed to couple to a different heat bath at higher temperatures. Hereby
induced thermal fluctuations allow the system to overcome such a local energy mini-
mum, able to reach a larger phase space, and at some point escape the local energy
minimum and relax into a possible global energy minimum.

The very strong point of this algorithm is its compatibility to any other algorithm
and easy application to any type of system, even without knowing its low temperature
behaviour. The computational effort is relatively modest, while distributed from a
single core to many cores, in order to allow for the exchange of replicas at different
temperatures, including both high and low temperature phases.

After waiting for the system to thermalise via the simple single–spin flip Monte
Carlo method, replicas might be distributed around their equilibration energies in re-
gard to the central limit theorem, as shown in the energy histogram in Fig. 2.7(a).
In this configuration the Parallel tempering method allows to swap replicas of neigh-
bouring temperatures (visible by a grey shaded overlap in the energy histogram), if
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(a) (b)

Figure 2.7: Parallel tempering on multi–core Monte Carlo simulations. (a) A
schematic energy histogram shows the distribution of individual replicas, after thermal
equilibration at different temperatures, following the central limit theorem. Replicas
within the overlap region of neighbouring temperatures may be allowed to swap their
spin–configuration and thermalise at their new temperature, in order to overcome local
energy barriers. (b) The exchange of replicas with different energies are allowed by the
transition probability from Eq. (2.74). Hereby n replicas, associated with their indi-
vidual temperature are evaluated at n different CPU cores. After a certain amount of
Monte Carlo (MC) steps (usually ti− ti−1 ≈ 10− 100MC steps) replicas at neighbour-
ing temperatures are allowed to swap and thermalise at their new system–temperature
in order to be able to escape local energy minima in the system by thermal excita-
tions. After tm total sweeps, one replica should have been able to visit all available
temperatures in the simulation.
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their energy and temperatures satisfy the all-important Boltzmann distribution. En-
ergies of replicas with adjacent temperatures shall be evaluated at Tlow for the replica
with lower, and Thigh for the replica with higher temperature. By considering their
corresponding energies, Elow and Ehigh, the replicas are allowed to be swapped by the
transition probability

P (high ↔ low) =
{
e−(βlow−βhigh)(Ehigh−Elow) if Ehigh − Elow > 0
1 otherwise. (2.74)

In order to be convinced that this algorithm is correct, one needs to prove ergodicity
and the sufficient detailed balance condition. This is discussed in Appendix B.1.

A schematic picture visualises the whole parallel tempering process in Fig. 2.7(b),
where n replicas, associated with their individual temperature Ti are evaluated at n
different CPU cores. The choice of the temperature grid hereby plays an essential
role for guaranteeing exchange between replicas, since the range of energies for a given
temperature decreases with increasing system size as 1/

√
N , where N is the number

of sites in the system. After tm total Monte Carlo steps, one replica should have been
able to visit all available temperatures in the simulation. In such a manner a system
at low temperature is allowed to visit high–temperature regions to recover ergodicity,
overcome local energy minima and hopefully relax into a global energy minimum.

As a technical fact, such parallel tempering sweeps should not be performed too
often, since the system needs time to thermalise at the new temperature again. Tem-
perature sweeps immediately after each other, will not change the system configuration
at all and simply correspond to a waste of computer time. In this work sweeps have
been performed usually after 10 − 100MC steps. Also, in order to optimise efficiency,
one should just exchange the temperature information and not the whole spin config-
urations between each CPU, since this process will cost substantial computer time for
very large system sizes.

The interested reader, grasping for detailed information about parallel tempering
and its application in statistical mechanics shall be referred to the excellent and com-
prehensive book of M. E. J. Newman and G. T. Barkema “Monte Carlo Methods in
Statistical Physics” [149] and further literature for an introduction of parallel tempering
[178], its first application to spin glasses [179], its application for molecular dynamics
simulations [180] and also for the successful determination for crystal structures from
powder diffraction data [181]. A review on parallel tempering with its theory, applica-
tions, and new perspectives can be found in [182].

2.3 Molecular dynamics

2.3.1 Semi–classical equations of motion

The spin operator is a well–defined quantum mechanical object, which preserves com-
mutation relations and assigns each particle a spin quantum number. However, classical
Monte Carlo simulations treat those quantum objects as classical vectors; basically dis-
entangled product states in the limit of an infinite large spin quantum number. This
allows to use the quantum nature of the spins by following their commutation relations
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in order to calculate their evolution in time. It turns out that this approximation
gives quantitatively good results for systems containing larger spin–quantum numbers
S ≥ 3/2 and can already provide useful insights into the behaviour of quantum systems
with S = 1/2.

The time evolution of the spin operator Sn(t) at site n is accessible by using the
Ehrenfest theorem

d

dt
Sαn (t) =

1

i~
[
Sαn (t),H

]
(2.75)

=
1

i~
∑
〈ij〉,β

Jij
[
Sαn (t), Sβi S

β
j

]
(2.76)

with H as defined in Eq. (2.60) in the absence of an external magnetic field. Following
the commutation relation for spin operators:[

Sαi , S
β
j

]
= i~ εα,β,γ Sγi δij , (2.77)

where i and j are the site index and α, β, γ the direction component x, y, z. εα,β,γ = 1 if
α, β, γ is cyclic, and −1 if not cyclic. Each component of the spin Sαn separately gives:

d

dt
Sxn(t) =

∑
δ

Jnδ
(
SyδS

z
n − SzδSyn

)
, (2.78)

d

dt
Syn(t) =

∑
δ

Jnδ
(
Sxδ S

z
n − SzδSxn

)
, (2.79)

d

dt
Szn(t) =

∑
δ

Jnδ
(
SyδS

x
n − Sxδ Syn

)
, (2.80)

which can be written in a generalised way by a cross product and the local exchange
field as defined in Eq. (2.65)

d

dt
Sn(t) = Hn × Sn(t) . (2.81)

Considering the fact that Eq. (2.81) represents coupled linear differential equations,
finding an analytical solution will be quite hopeless. However, as a special case, the
equations of motion will be decoupled for a system, which is nearly fully polarised.
In that case the d

dt
Sz(t) ≈ 0 and allows for an analytic solution, which can be used

compare numerical results. This analytical method is known as spin–wave theory and is
presented for the quantum case of the antiferromagnetic square lattice in Appendix B.2.

The general solution to Eq. (2.81) just becomes accessible via numerical integration
[183], which has been done in the framework of this thesis with the Runge-Kutta
method of order 4.

2.3.2 Numerical integration – 4th order Runge–Kutta

As the name refers to, Molecular Dynamics is used to study the dynamical properties
of molecules in real time [184, 185]. This method is not just limited to molecules, but
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also can be used to calculate the dynamical properties of spins on a lattice. As seen
above one needs to solve coupled differential equations, which is generally not possible
analytically, but can be approximated by iterative interpolation. Ordinary differential
equations usually have the following form:

y′ = f(x, y) (2.82)

with a solution

y = y(X) = y0 +

∫ X

x0

f(x)dx . (2.83)

By expanding Eq. (2.82) by means of a Taylor series in order to extrapolate its result,
one arrives at:

y(x0 + h) = y(x0) + hf(x0, y0) +
h2

2
(fx + fyf)(x0, y0)

+
h3

6
(fxx + 2fxyf + fxfy + fyyf

2 + f 2
y f)(x0, y0) +O(4) , (2.84)

where h indicates the increment in x until the next point of interpolation. fx = ∂
∂x
f

corresponds to the partial derivative of f to x.
First attempts to solve Eq. (2.82) were provided by Euler in 1768 in his “Institutiones

Calculi Integralis” (Sectio Secunda, Caput VII) [186], giving the solution:

y1 = y0 + hf(x0, y0) . (2.85)

Comparing this result with the solution from the Taylor series of the exact solution in
Eq. (2.84), one obtains a difference ∆y for the first step:

∆y = y(x0 + h)− y1 =
h2

2
(fx + fyf)(x0, y0) + . . . (2.86)

with the error correction O(h2). This formula is neither very accurate, since it uses
the derivative information only at the beginning of the interval of length “h”, nor very
stable.

The accuracy in that sense can be increased by reducing these weak points by
choosing intermediate points with the midpoint method, which allows to extrapolate
the following integration step by

k1 = f(x0, y0) (2.87)

k2 = f(x0 +
h

2
, y0 +

h

2
k1) (2.88)

y1 = y0 + hk2 . (2.89)

In order to compare the error of this method with the exact solution of Eq. (2.84) one
needs to compute the Taylor expansion of y1 in Eq. (2.89):

y1 = y0 + hf(x0 +
h

2
, y0 +

h

2
k1) (2.90)

= y0 + hf(x0, y0) +
h2

2
(fx + fyf)(x0, y0) (2.91)

h3

8
(fxx+ 2fxyf + fyyf

2)(x0, y0) + . . . , (2.92)
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providing an error of

∆y = y(x0 + h)− y1 (2.93)

=
h3

24
(fxx + 2fxy + fyyf

2 + 4(fyfx + f 2
y f))(x0, y0) + . . . , (2.94)

which provides a result one order better in accuracy than the Euler method with O(h3).
Conventionally, methods are called nth order if its error term is in O(hn+1), why the
midpoint method also can be referred to second–order Runge–Kutta method.

By introducing further Euler steps into the calculation, Runge (1895) [187] and
Heun (1900) [188] increased the accuracy from Eq. (2.89). It was Kutta (1901) [189]
who then formulated a general scheme for what is called the Runge–Kutta method,
which looks for its 4th order as:

k1 = f(x0, y0) (2.95)

k2 = f(x0 +
h

2
, y0 +

h

2
k1) (2.96)

k3 = f(x0 +
h

2
, y0 +

h

2
k2) (2.97)

k4 = f(x0 + h, y0 + k3) (2.98)

y1 = y0 +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4 . (2.99)

Higher order Runge–Kutta methods are in general superior to lower order Runge–Kutta
methods, however its accuracy depends on the mathematical problem. To confirm
satisfactory precision of the simulation, one should check the energy conservation and
its error, produced during the numerical integration.

2.3.3 Application to spin systems

Dynamical properties can just be studied in systems with a continuous degree of free-
dom as e.g. provided by the Heisenberg model, which is seemingly the first model
studied within the framework of Molecular Dynamics simulations [190, 191].

After equilibrating the system via Monte Carlo simulations, the Runge–Kutta
method can be used to evaluate the time evolution of all spins on the lattice. Hereby,
the time–increment δt = h needs to be chosen sufficiently small, such that the energy
of the system will be conserved with sufficiently large accuracy.

Since spin–spin correlations are directly accessible with inelastic neutron scatter-
ing (INS) experiments, one is interested in calculating the dynamical structure factor
S(q, ω), a comparable quantity for dynamical properties in energy and momentum
space.

2.4 Correlation functions in momentum space
A general property of spin liquids is the absence of conventional order at low tem-
peratures. This means, magnetic moments are still fluctuating and show correlations,
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specific to the underlying physical nature within the spin liquid. These dynamical sig-
natures are measured in inelastic neutron scattering (INS) experiments and can directly
be compared to calculations of the dynamical structure factor S(q, ω).

2.4.1 Dynamical structure factor

The analysis of spin correlations in magnetic materials plays a crucial role in estimating
their thermodynamic and dynamic properties. Neutrons have a spin, but no electric
charge, which makes them to ideal probes for magnetic properties in crystals. Experi-
mentally this is done in inelastic neutron scattering (INS) experiments, which measures
the flux of scattered neutrons σ in a solid angle dΩ with energy dEf This quantity is
the so–called double differential cross section for magnetic scattering [192, 193] and is
given by

d2σ

dΩdEf
∝ F (q)2

∑
α,β

(
δαβ −

qαqβ
q2

)
Sαβ(q, ω) , (2.100)

where the signal needs to be multiplied by F (q), the magnetic form factor, since
magnetic scatterers have a finite width in real space and cannot be approximated
as discrete point scatterers. Neutrons only measure the magnetic field distribution
perpendicular to the scattering vector, what has been taken into account by the term
(δαβ − qαqβ

q2 ). Sαβ(q, ω) is the direction–dependent dynamical structure factor, also
known as the Fourier transform of the real–space spin–spin structure factor into energy
and momentum space

Sαβ(q, ω) =
1√

2πN

N∑
i,j

eiq(ri−rj)
∫ ∞
−∞

dt eiωt 〈Sαi (0) · Sβj (t)〉 , (2.101)

with Sαi (t) the time–dependent α–component of the spin at site i and 〈. . .〉 the ther-
modynamic average.

In order to technically extract the Fourier transform of the spin–spin correlation
function one needs to be cautious about the signal sampling in time.

2.4.2 Signal sampling in time

The time evolution of the spin component in real space, provided by the numerical
integration of the semiclassical equations of motion, need to be Fourier transformed
twice, once from time to energy, and secondly from real space to momentum space.
Technically, such a Fourier transform can be implemented manually, however the use of
libraries as provided by e.g. FFTW3 (http://www.fftw.org) is strongly recommended,
in order to save computation time.

It is important to choose the correct values of the time increment ∆t, which will be
the time difference between two position vectors Si(t) and Si(t + ∆t) (not to confuse
with the time increment used by the Runge–Kutta method δt in the last section).
The numerical integration needs to provide a sampling–rate that allows to capture
all possible information provided in by the system. Hereby, the Nyquist–Shannon
sampling theorem gives a sufficient condition allowing to reduce a continuous signal
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Figure 2.8: Sampling, fol-
lowing the Nyquist criterion.
Following the Nyquist criterion,
discretisation or sampling of a
continuous function in time has
to happen at least at twice of its
maximum frequency. If this crite-
rion is not satisfied, function re-
construction will exhibit aliasing,
an effect that causes different sig-
nals to become indistinguishable
when sampled, as shown for two
sine functions sin(x) (red) and
sin
(
π
4

+ 1
2
x
)
(dashed black).
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into discrete steps (analog to digital signal processing) without loosing information. If
the sampling is worse than in this limit, then the system will show aliasing, accompanied
by unphysical patterns, as seen for the case of a simple sine function in Fig. 2.8.

Might the numerical simulation provide no frequencies higher than ωmax, then the
whole spectrum can be captured by a series of points spaced at 1/(2ωmax) apart (perfect
reconstruction will be guaranteed). To be “on the safe side” one uses usually twice as
many data points as provided by the Nyguist condition.

By providing the maximum frequency ωmax in the system and the total number of
considered time steps Nt, all necessary information for a proper Fourier transform with
time increment ∆t are given by the conditions

∆t =
2π

ωmax
= NRKδt (2.102)

∆ω =
2π

Tmax
=

2π

Nt∆t
=

2π

NtNRKδt
, (2.103)

where δt has been introduced in the previous section as the time difference between
two successive Runge–Kutta steps for NRK total Runge–Kutta data points. δt is fixed
by the necessary accuracy of the simulation and stability of the numerical integration.
Since the energy of the system should be conserved, the variation in energy over the
whole numerical integration should be sufficiently low and needs to be taken as a
reference to choose δt small enough.

The increment in frequency ∆ω is indirectly proportional to the total amount of
sampling time of the system Tmax, and therefore depends on the considered time steps
Nt of the simulation.

2.4.3 Numerical artefacts

With all the explanations above, one is able to calculate the dynamical properties of
spin systems in momentum and energy space. However, there still is a technical issue,
which needs to be solved before being able to provide proper results, comparable to
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experimental measurements. The numerical integration of the time–dependent spins
in the system starts at time t0 and ends at tmax, and therefore provides a box function
with singular points at these times. The Fourier transform of a box function is a
cardinal sine function

1√
2π

∫ ∞
−∞

rect(t)e−iωtdt =
1√
2π

sin(ω/2)

ω/2
=

1√
2π

sinc(ω/2) . (2.104)

In order to reliably sample singular features in the spectrum, one needs an infinite
number of Fourier components in the Fourier transform, which is simply not possible
to calculate. The Fourier transform with a finite number of Fourier components will
produce unphysical features away from the main frequency, which makes proper studies
of physical objects cumbersome and difficult.

Here one can refer to a trick, by using the convolution theorem. The convolution
theorem says, that the Fourier transform of two multiplied functions equals the con-
volution of both individual Fourier transformed functions [194]. Let F be the Fourier
transform acting on the independent functions f and g then the convolution theorem
states that:

F{f · g} = F{f} ∗ F{g} , (2.105)

where ∗ denotes the the convolution and · the multiplication of two functions.
This theorem is rather useful, since a simple multiplication of the time–dependent

spin signal in real space by a Gaussian envelope, will produce a Gaussian convoluted
signal in energy after performing a Fourier transform. In that sense the removal of
information in time allows to realistically mimic INS experiments with finite–energy
resolution and suppress technical artefacts from the Fourier transformation over a finite
time window.





Chapter 3

Curie–law crossover: thermodynamic
signatures of spin liquids

“ Was glänzt, ist für den Augenblick geboren;
Das Echte bleibt der Nachwelt unverloren.”

Faust 1, Vers 73 f. (Dichter)
Johann W. v. Goethe

For more than 100 years the Curie–Weiss law [10, 11], has been known as a mean–
field estimate of magnetic properties in conventional magnets above their critical point.
More recent, the Curie–Weiss law is also widely used in the field of frustrated magnetism
and provides an empirical estimate for their “strength of frustration” [195]. However,
mean–field approximations usually neglect fluctuations and correlations between spins,
suggesting that this method does not represent an appropriate approximation for spin
liquids, which are characterised by a collective cooperative behaviour already at high
and intermediate temperatures.

The absence of a symmetry–breaking phase transitions, a gradual increase of cor-
relations from a high–temperature paramagnetic into a low–temperature cooperative–
paramagnetic regime and controversial fitting results in the literature motivate a de-
tailed follow–up on the limitations of the Curie–Weiss law in spin liquids.

This Chapter presents the concept of the “Curie–law crossover” on a variety of frus-
trated lattices in both, two and three dimensions, by using complementary analytical
and numerical techniques, namely Husimi tree calculations and Monte Carlo simula-
tions. Spin liquids are characterised by a crossover between different high–temperature
and low–temperature Curie–laws, which turns out to be a powerful signature of exotic
physics in classical spin liquids, able to explain the difficulty for a precise estimate of
the Curie–Weiss temperature in experiments.

53
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(a) (b)

Figure 3.1: Curie–Weiss law in conventional and frustrated magnets. The
inverse susceptibility 1/χ allows to obtain the value of the Curie–Weiss temperature θcw
in a magnetic system, as defined in Eq. (3.5). (a) Conventional magnets show values of
|θcw| ∼ |J |, of the order of the coupling constants J . The sign θcw hereby predicts the
type of dominating correlations in the system, which can be antiferromagnetic (blue),
ferromagnetic (red), or negligible at the temperature of measurement (green), as in a
paramagnet. The dashed line is an extrapolation of the linear term in 1/χ down to
negative temperatures. (b) 1/χ in frustrated magnets stand out by the fact, that an
ordering–temperature Tc is pushed down to temperatures much lower than |θcw|. The
ratio f ≡ |θcw|/Tc is often used as an empiric measure of the “strength of frustration”
in the system [195].

3.1 Curie–Weiss law in conventional and unconven-
tional magnets

3.1.1 From Curie–law to Curie–Weiss law

A common way to approximate magnetic properties in complex systems is to use a
standard mean–field theory (Section 1.2.1). In the high–temperature limit, the sus-
ceptibility of decorrelated spins in a small magnetic field h is given by the Curie–law:

χ0 =
N

V

(gµB)2

3

J(J + 1)

kBT
, for kBT � gµBh , (3.1)

with N spins of angular quantum number J in a volume V of the solid. The Curie–
constant C takes commonly the value

C =
N

V

(gµB)2

3kB
J(J + 1) . (3.2)

Upon cooling, interactions within the lattice will introduce a deviation from the
high–temperature paramagnetic Curie–law, which can be introduced by an effective
external field within the solid

heff = h+ λm , (3.3)
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where λ is the Weiss–molecular field constant coupled to the magnetisation m. The
susceptibility then is given by

χ =
∂m

∂h
=

∂m

∂heff

∂heff
∂h

= χ0(1 + λχ) , (3.4)

where χ0 is evaluated for the effective field heff. Far above the ordering temperature
(T � Tc), in the limit of zero applied field, heff vanishes and χ0 is taking the form of
the Curie–law in Eq. (3.1). Near the ordering temperature (T ≈ Tc), the zero–field
susceptibility in the paramagnetic regime [10, 11, 28] of Eq. (3.4) gives:

χ =
C

T − θcw
, (3.5)

with θcw ≡ λC the Curie–Weiss temperature.
The extrapolation of a linear Curie–Weiss fit of 1/χ [Fig. 3.1(a)] can be used to

extract C and θcw. Hereby, θcw allows to predict the type of correlations in the system,
which usually are

θcw < 0 for antiferromagnetic correlation ,
θcw = 0 paramagnetic phase ,
θcw > 0 for ferromagnetic correlations .

For conventional magnets θcw is in the order of the phase–transition temperature and
coupling constant |θcw| ∼ |Tc| ∼ |J |.

3.1.2 Curie–Weiss law in spin liquids

Quite commonly, the Curie–Weiss law is also used to specify the nature of correlations
in frustrated magnets. In that context, the ratio

f ≡ |θcw|
Tc

(3.6)

presents an empirical signature of frustration [195], where large values of f account for
strong frustration in the material. Tc corresponds to a non–trivial ordering or freezing
temperature of the system, which, for spin liquids, ideally is pushed down to zero
temperature [Fig. 3.1(b)].

However, past studies pointed at the possibility of misjudgement of frustration in
spin liquids by the use of an oversimplified Curie-Weiss law [196]. Independent studies
on e.g. pyrochlore oxides from Bramwell et al. [197] and Lummen et al. [198] show
different estimates for θcw by fitting in a different range of temperatures. For exam-
ple, the Curie–Weiss temperature for Dy2Ti2O7 (Ho2Ti2O7) has been estimated with
θcw ∼= 1.0 K (θcw ∼= 2.0 K) in [197] by fitting 1/χ within a temperature window of
10–20 K (20–50 K), proposing weak ferromagnetic correlations. On the other hand,
different Curie–Weiss temperatures for the same materials have been estimated with
θcw = 2(2) K (θcw = 6(2) K) in [198] by fitting at temperatures above 100 K. Also, fur-
ther references present deviations from the common Curie–Weiss law in the frustrated
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Diversity of corner sharing lattices in two and three dimensions.
The antiferromagnetic Ising model [Eq. (3.7)] investigated on the two–dimensional (a)
kagome, (b) shuriken and (c) ruby lattice; and the three–dimensional (d) hyperkagome,
(e) trillium and (f) pyrochlore lattice.

S = 1/2 system Li2VOSiO4 [199], and the spin–orbital liquid candidate Ba3ZnIr2O9

[196].
The absence of symmetry–breaking phase transitions, their cooperative correlations

in a broad range of temperatures and controversial fitting results in the literature
motivate a detailed follow–up on the limitations of using the Curie–Weiss law in spin
liquids.

3.2 Curie-law crossover

Since fluctuations play a major role in frustrated magnets, one might consider an
analytical method, which approximates thermodynamic properties better than in a
standard mean–field theory. The Husimi tree (see Section 2.1 for technical details)
provides a very powerful tool to study classical spin liquids, as shown by the successful
prediction of the zero–point entropy [140] and the three–dimensional Kasteleyn tran-
sition in spin ice [200, 201], and the prediction of magnetic susceptibilities over a wide
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(a) Husimi 1 (b) Husimi 2 (c) Husimi 3

Figure 3.3: Husimi Tree on various corner sharing lattices. Frustrated unit
cells from real lattices [Fig. 3.2] are arranged on the Husimi tree (HT), with the central
unit in red, the 1st shell in blue and the 2nd shell in green. (a) HT for the kagome,
hyperkagome and shuriken lattice, with corner sharing triangular plaquettes. (b) HT
for the trillium lattice, were three triangular plaquettes share one corner. (c) HT for
the pyrochlore and ruby lattice, which is made of corner–sharing square plaquettes,
with first and second–neighbour interactions.

range of temperatures in spin ice materials [141, 142].
The following results concentrate on thermodynamic properties for the isotropic

antiferromagnetic Ising model

H = −J
∑
〈ij〉

σiσj , (3.7)

on various corner–sharing lattices in two and three dimensions, as depicted in Fig. 3.2.
Hereby, an important quantity of magnetic correlations is the reduced susceptibility

χT =
1

N

(∑
i,j

〈σiσj〉 − 〈σi〉〈σj〉

)
, (3.8)

= 1 +
1

N

∑
i 6=j

〈σiσj〉 , (3.9)

which recovers the common Curie–law at high temperatures (χT
∣∣
T→∞ = 1, compare

to Eq. (3.1) & Eq. (3.2) with C = 1 for Ising spins). As one can see, deviations from
the high–temperature value directly depend on the averaged correlations

∑
i 6=j〈σi σj〉

within the system, causing χT > 1 for dominant ferromagnetic and χT < 1 for dom-
inant antiferromagnetic correlations at low temperatures. Those correlations become
important in spin liquids at already high temperatures, and are neglected in conven-
tional mean–field theories.

In classical frustrated spin systems, the spin–liquid phase usually refers to an exten-
sively degenerate ground state manifold at T = 0. However, for all models considered
here [Fig. 3.2], the finite entropy plateau persists up to T/|J | ∼ 1, as seen in Fig. 3.4.
This entropy plateau is accompanied by a spin-liquid Curie law, followed at higher
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Figure 3.4: Thermodynamic properties of frustrated magnets. Comparison
of energy E, specific heat Ch, entropy S and reduced susceptibility χT per spin be-
tween results from classical Monte Carlo simulations (discrete data points) on the
real lattice [Fig. 3.2] and analytical calculations (solid lines) on their corresponding
Husimi tree [Fig. 3.3]. (a) Results for lattices with triangular unit cells: the kagome,
shuriken and hyperkagome lattice. (b) Results for lattices with three triangular pla-
quettes, connected on one corner as in the trillium lattice. (c) Results for lattices with
checkerboard–type unit cells: the ruby and pyrochlore lattice. All systems perform a
crossover from a high–temperature paramagnetic regime into a low–temperature co-
operative paramagnetic (classical spin liquid) regime. This is seen by a very broad
peak in the specific heat, a gradual decrease of entropy to a non–zero value at low
temperatures and two different Curie–laws at high and low temperatures in the re-
duced susceptibility χT [Eq. (3.9)]. Monte Carlo simulations have been performed
with the standard Metropolis single–spin flip algorithm for N > 10000 sites, and ad-
ditional Worm algorithms [202] for the Ruby and Pyrochlore lattices to account for
proper low–temperature equilibration.
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Lattice S (T → 0) χT (T → 0)
Monte Carlo Husimi Tree Monte Carlo Husimi Tree

Kagome 0.502(1) 0.5014 0.201(1) 1/5

Hyperkagome 0.502(1) 0.5014 0.200(1) 1/5

Shuriken 0.504(1) 0.5014 0.203(1) 1/5

Trillium 0.392(1) 0.4055 0.135(1) 1/7

Ruby 0.194(1) 0.2027 0.0 0

Pyrochlore 0.206(1) 0.2027 0.0 0

Table 3.1: Comparison of low–temperature results from Monte Carlo simu-
lations and Husimi tree calculations. The entropy S and reduced susceptibility χT
in the limit T → 0 is displayed for all lattices under consideration [Fig. 3.2]. Results,
obtained by Monte Carlo simulations and Husimi tree calculations match very well.
While the Husimi tree usually underestimates the entropy, it does not do so for the
trillium and ruby lattice. Exact results for the kagome lattice (S = 0.50183 [94]) and
the pyrochlore lattice (S = 0.20501 [203]) are within the error of the Monte Carlo sim-
ulations. Monte Carlo simulations have been performed with the standard Metropolis
single–spin flip algorithm for N > 10000 sites, and additional Worm algorithms [202]
for the Ruby and Pyrochlore lattices to account for proper low–temperature equilibra-
tion.

temperature by a broad crossover (spanning one or two orders of magnitude in tem-
perature) into the paramagnetic regime. Hereby, the specific value of χT is a direct
measure of the integrated correlations between spins [Eq. (3.9)], and as such a signa-
ture of the nature of the considered spin liquid. For example, in the ground state for
the Ruby and Pyrochlore lattices, χT goes to zero, as opposed to all other models [see
Tab. 3.1].

Also remarkable at this point is the structure of the shuriken lattice, which al-
lows for a reentrant phenomenon between disordered phases. As shown in Fig. 4.7 of
Section 4.3 an advanced Husimi tree for the shuriken lattice (Appendix C.1) shows
for a specific range of bond interactions dominating ferromagnetic correlations at high
temperatures, while dominating antiferromagnetic correlations at low temperatures. A
high–temperature Curie–Weiss fit would hereby provide a dramatically wrong estimate
of the low–temperature physics and should be considered with special caution [196].

3.3 Validity of Husimi tree
The Husimi tree considers a frustrated model on a connected graph in which no line
lies on more than one cycle. Compared to the real lattice, the Husimi tree does not
account for loops larger than those, given by a single frustrated unit, which are e.g. in
the case of the kagome lattice loops of size six.

However, even though its topology is very different from the real lattice, all ther-
modynamical quantities presented in Fig. 3.4 match between Monte Carlo simulations
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and Husimi tree calculations surprisingly well over a big range of temperatures. This
suggests that the correlations of the considered model drop off at length scales, shorter
than the sizes of loops, which cannot be considered in the Husimi tree calculation.

To confirm this hypothesis, one can calculate the correlation length on the Husimi
tree. The central spin in “Husimi 1” [Fig. 3.3(a)] is surrounded by four nearest neigh-
bours and provides at zero temperature six out of eight total states in the ground state.
The averaged spin–spin correlation to one of the four neighbours on the first shell is

〈σ0σ1〉gs = −1

3
. (3.10)

One can define 〈σ0σn〉 as the correlations between the central site σ0 and all sites
σn on shell n

〈σ0σ1〉 = 4

(
− 1

3

)
,

〈σ0σ2〉 = 8

(
− 1

3

)2

,

〈σ0σ3〉 = 16

(
− 1

3

)3

,

...

〈σ0σn〉 = 2 · 2n
(
− 1

3

)n
. (3.11)

As expected, Eq. (3.11) recovers the result for χT [Eq. (3.9)], by summing over all
available correlations in the whole Husimi tree:

χT = 1 +
∞∑
n=1

〈σ0σn〉

= 1 +
∞∑
n=1

2 · 2n
(
− 1

3

)n
= 1 + 2

[
∞∑
n=0

(
− 2

3

)n
− 1

]
(3.12)

= 0.2 .

Considering the averaged correlation function C(n) along a single path over n bonds
gives

C(n) =

(
− 1

3

)n
(3.13)

= (−1)n e−n ln 3 , (3.14)

which allows to define a correlation length ξ, with C(n) ∼ e−
n
ξ :

ξ =
(

ln 3
)−1
≈ 0.91 . (3.15)

This result is the same for the other trees “Husimi 2” and “Husimi 3”, and shows that
the correlation length is of the order of a single–bond distance. Correlations decay over
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short distances, such that the effect of different topology between Husimi tree and real
lattice becomes negligible, allowing for such a good match between both methods.

As a remark: Results on the trillium lattice show a less good match than for other
lattices [Fig. 3.4(b) and Tab. 3.1], since the smallest non–trivial loops are of size five,
effectively one bond shorter than on the other lattices with triangular units.

3.4 Limit of Curie–Weiss fit and relevance to experi-
ments

Fig. 3.4 shows a crossover between two different Curie-laws at high (> 100|J |) and
low temperature (< 1|J |). Since this crossover occurs over a very wide range of tem-
peratures, it is important to clarify the temperature window, which would allow a
high–temperature Curie–Weiss fit in order to estimate low–temperature physics in spin
liquids.

The inverse susceptibility can be written as a high–temperature expansion [28],
resolving the Curie–Weiss law in first order

1

χ
=
T

C

(
1− θcw

T

)
. (3.16)

The same high–temperature expansion can be done for the results of the Husimi tree
calculation, where second and higher order terms will account for the deviation from
the Curie–Weiss law. Results on the Husimi tree, shown in Fig. 3.3 are summarised as
follows:

Husimi 1:

1

χ
= T

5− e− 4
T

3e−
4
T + 1

= T

(
1− −4

T

(
1 +

1

T
− 1

3T 2
+ . . .

))
, (3.17)

C = 1 , (3.18)
θcw = −4 , (3.19)

∆(T ) =
1

T
− 1

3T 2
+O(T 3) , (3.20)

Husimi 2:

1

χ
= T

7e
4
T − 3

e
4
T + 3

= T

(
1− −6

T

(
1 +

1

T
− 1

3T 2
+ . . .

))
, (3.21)

C = 1 , (3.22)
θcw = −6 , (3.23)

∆(T ) =
1

T
− 1

3T 2
+O(T 3) , (3.24)
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(a) (b)

Figure 3.5: Limitations of Curie–Weiss law in spin liquids. Panel (a) shows
the reduced susceptibility χT on a logarithmic scale for results of Monte Carlo simula-
tions on the kagome lattice [Fig. 3.2(a)] (blue circles) with its corresponding results on
“Husimi 1” (blue line), in comparison to their Curie–Weiss (green) and low–temperature
(red) fits. Deviations from the Curie–Weiss law happen already at high temperatures
at T/|J | ∼ 10 and give qualitatively different results at temperatures below T/|J | < 1.
Panel (b) shows the same results plotted for the inverse susceptibility 1/χ on a linear
plot, as commonly done to present experimental data. The exact result of “Husimi
1” shows two different slopes at high and low temperatures, corresponding to the two
different Curie–laws.

Husimi 3:

1

χ
= T

3e
2
T − e− 6

T + 2

2
(
e−

6
T + 1

) = T

(
1− −6

T

(
1 +

1

T
− 4

3T 2
+ . . .

))
, (3.25)

C = 1 , (3.26)
θcw = −6 , (3.27)

∆(T ) =
1

T
− 4

3T 2
+O(T 3) . (3.28)

The deviation ∆(T ) of θcw scales independently of the type of the Husimi tree with
1/T in leading order. However, the deviation in higher–order terms differs between
Husimi trees, made of triangular plaquettes and square plaquettes.

To visually emphasise its experimental relevance, the result for “Husimi 1” has been
plotted in Fig. 3.5 together with its Curie–Weiss (T → ∞) and its low–temperature
fits (T → 0). Fig. 3.5(a) presents the reduced susceptibility χT , whereas Fig. 3.5(b)
shows the inverse susceptibility 1/χ. From Fig. 3.5(a) it is visible that exact results for
“Husimi 1” (blue curve) deviate from the Curie–Weiss fit (green curve) already at high
temperatures (T/|J | ∼ 10) and show different values at temperatures below T/|J | ∼ 1.
On the other side, the low–temperature fit (red curve) is only valid below T/|J | ∼ 1.
This effect is even more pronounced in Fig. 3.5(b), where the slope of 1/χ shows two
different values at high and low temperatures, indicating the two different Curie–laws.
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From those comparisons it is visible that a high–temperature Curie–Weiss law does
not give a proper description of the low–temperature physics in spin liquids, since it
does not capture the crossover between two different Curie regimes.

3.5 Conclusions
Classical spin liquids, as discussed here for the simple Ising model on a variety of
corner sharing lattices in two and three dimensions, perform a Curie–law crossover
between a high–temperature paramagnetic and a low–temperature collective param-
agnetic regime. Results for thermodynamic properties like entropy S and reduced
susceptibility χT account for this crossover, and could be calculated consistently with
analytical Husimi tree calculations and numerical Monte Carlo simulations.

The Curie–Weiss law is recovered as the first order approximation of the high–
temperature expansion of Husimi–tree calculations. However, to be precise, this fit
should be done at particularly high temperature. Indeed, the Curie–law crossover
extends over a broad range of temperatures (one or two orders of magnitude in the
systems studied here). During the crossover, the Curie–Weiss temperature is not prop-
erly defined, which is the reason, why different fitting windows within this crossover
region provide different results for a Curie–Weiss fit, as often seen in experiments. In
most cases, using the Curie–Weiss temperature to measure the degree of frustration
of a material remains qualitatively valid, but should only be used as a rough esti-
mate. Furthermore, it turns out that, a Curie–Weiss fit, even done at sufficiently high
temperatures, does not capture the crossover into a different Curie–law at low tem-
peratures and might estimate wrong ground state properties. A possibly more helpful
way of identifying low–temperature physics in spin liquids is given by the analysis of
χT , which can be compared to analytical Husimi tree calculations. Hereby, thermody-
namic properties do not depend on the dimensionality of the lattice, but rather on the
type of unit cell and its connectivity. Depending on those properties, S and χT will
show different values at low temperatures, allowing to identify spin liquids on different
lattices [Tab. 3.1].

Discussions of the Husimi tree have been presented for systems with Ising degree
of freedom, but can in principal be extended to Heisenberg models [128, 129], which
would allow for a comparison to a broader range of materials.





Chapter 4

The Shuriken Lattice –
reentrance in a novel Spin Liquid

“Erquickung hast Du nicht gewonnen,
Wenn sie dir nicht aus eigner Seele quillt.”

Faust 1, Vers 568 f. (Faust)
Johann W. v. Goethe

Triangular and kagome lattices are showcase examples in frustrated magnetism. It
was shown that the antiferromagnetic Ising model on those lattices reveals a very large
residual entropy [69, 94]

triangular S(0) = 0.3383
S(0)

S(∞)
≈ 0.49 , (4.1)

kagome S(0) = 0.50183
S(0)

S(∞)
≈ 0.72 , (4.2)

which is a direct consequence of the presence of triangular units within the lattice.
Hereby the corner sharing nature of the kagome lattice reduces the constraints on
magnetic lattice sites, compared to the triangular lattice even further, allowing for
∼ 72% of residual entropy at zero temperature.

Another lattice made of corner sharing triangles, but with different type of short–
loops, is the “shuriken” (or square–kagome) lattice, as depicted in Fig. 4.1(a). The
unit cell contains six sites with two symmetrically inequivalent sublattices, which very
naturally provide the opportunity to introduce bond anisotropy. A tuning of this
anisotropy allows to visit regions in the phase diagram, where magnetic disorder prevails
down to zero temperature, in analogy to a quantum critical point. In the vicinity of this
point, multiple disordered ground states give rise to a reentrant phenomenon, where
low and high–temperature regimes are less correlated than the intervening classical
spin liquid.

This chapter shall provide a detailed and precise understanding of the thermody-
namic properties of the anisotropic shuriken lattice, by using complementary analytical
and numerical techniques as Husimi tree calculations and Monte Carlo simulations.

65
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(a) (b)

Figure 4.1: The shuriken lattice with six sites per unit cell and two sublat-
tices A and B. (a) Exchange couplings between A sites are denoted as JAA (red square
plaquettes), while interactions between A and B sites are described with JAB (black
octagonal plaquettes). By convention the triangles have been chosen to be equilateral
and therefore show irrational relative positions within the unit cell. (b) Distribution
and intensity of Bragg peaks in reciprocal space (qx,qy), as it would be measured in x-
ray diffraction experiments on the shuriken lattice. While Bragg peaks are periodic and
respect the symmetry of the shuriken lattice, their intensities do not [see explanations
in Appendix C.1].

4.1 The anisotropic shuriken model

The shuriken lattice [204] – also known as square–kagome [205, 206, 207, 208, 209, 210,
211, 212], squagome [213, 214], squa–kagome [215], or L4-L8 [216] lattice – provides a
model example for investigating multiple disordered phases and their competition to
each other. Asymptotic limits of this asymmetry provided a promising S=1/2 zero–
temperature phase diagram, ranging from bipartite long–range ordered phases to a
highly degenerate ground sate of tetramer clusters of spins [215]. Even though the
quantum ground states [204, 208, 212, 215] and influence of magnetic fields [206, 207,
208, 209, 204, 210, 217, 211] have been studied to some extent, knowledge about its
finite–temperature properties in zero field is limited [205, 213].

The lattice structure is very similar to the celebrated kagome lattice, since it is com-
posed of corner sharing triangles, but with the important difference of two inequivalent
sub lattices and different types of smallest closed loops of size 4 and 8 [Fig. 4.1(a)].
As a consequence, the unit cell consists of six sites, where 2/3 of the spins belong to
sublattice A and 1/3 to sublattice B. The coupling constants connecting the A sites on
the square plaquettes are called JAA, while couplings connecting the A and B sites on
the octagonal plaquettes are called JAB.
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The Hamiltonian of the model can be written as

H = −JAA
∑
〈ij〉AA

σAi σ
A
j − JAB

∑
〈ij〉AB

σAi σ
B
j , (4.3)

where Ising spins take values of σi = ±1 and are coupled to their nearest neighbours.
For JAA = +1 the system does not show frustration and undergoes a phase tran-

sition with spontaneous Z2 symmetry breaking for JAB 6= 0. Thus the model shall be
studied in the following just for JAA = −1. Energy and temperature scales are defined
with respect to |JAA|, where thermodynamic properties are discussed as a function of
the coupling ratio

x =
JAB
JAA

, (4.4)

with positive and negative JAB.

4.2 Finite–temperature phase diagram

This section deals with thermodynamic properties of the Ising model on the anisotropic
shuriken lattice by evaluating the Hamiltonian of Eq. (4.3), which is invariant under
the transformation

σA → −σA , JAB → −JAB , (4.5)

accounting also thermodynamic quantities such as energy E, specific heat Ch and
entropy S to be invariant for a transformation between x and −x.

The phase diagram in Fig. 4.2(a) reveals a plethora of different phases, which shall
be discussed in the following sections in detail. As a function of the coupling ratio
x [Eq. (4.4)] the model supports long–range ordered ferromagnetic (FM) and ferri-
magnetic (FiM) phases, with ground state configurations depicted for one unit cell
respectively in Fig. 4.2(b) and (c). Two distinguishable classical spin–liquid phases
(SL1 & SL2), are surround by a binary paramagnetic phase (BPM) which is made of
antiferromagnetically ordered square plaquettes, decoupled from each other by inter-
mediate decorrelated spins, on sublattice B [Fig. 4.2(d)].

All points in the phase diagram correspond to maxima in the specific heat. Open tri-
angles represent crossovers, obtained from analytical Husimi tree calculations, whereas
open circles correspond to phase transitions, obtained and classified by single spin flip
Monte Carlo simulations. Technical details are presented in Section 2.1 and Section 2.2
respectively.

4.2.1 Long range–order: |x| > 1

When couplings on the octagonal plaquettes are dominating (|x| → ∞), correlations
between sites on the square plaquettes can be neglected. The model Hamiltonian in
Eq. (4.3) transforms into a nearest–neighbour Ising model on the decorated square lat-
tice, which is not frustrated and orders via phase transition of the 2D Ising universality
class [218] by spontaneous Z2 symmetry breaking. The exact transition temperature
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(a)

(b) FM (c) FiM (d) BPM

Figure 4.2: Phase diagram of the Ising model on the anisotropic shuriken
lattice. (a) Circles (triangles) correspond to phase transitions (crossovers), obtained
by Monte Carlo simulations (Husimi tree calculations). As a function of the coupling
ratio x [Eq. (4.4)] the model supports long–ranged ordered ferromagnetic (FM) and
ferrimagnetic (FiM) phases. Two classical spin liquid phases (SL1 & SL2) surround
the binary paramagnetic phase (BPM), which is made of antiferromagnetically ordered
square plaquettes, decoupled from each other by intermediate decorrelated spins, on
sublattice B. (b) sample configuration of a ferromagnetic ground state. (c) sample
configuration of a ferrimagnetic ground state. (d) sample configuration of a binary
paramagnetic ground state.
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(a)

(b) (c)

(d) (e)

Figure 4.3: Thermodynamic properties and finite–size scaling for x = −3. (a)
Specific heat for system sizes N = {600, 2400, 5400, 9600, 15000}. The inset presents
finite–size scaling of the specific–heat maximum as a function of inverse system length
1/L with L =

√
N , allowing to estimate the phase transition temperature in the

thermodynamic limit with Tc = 2.788(5). (b) Magnetisation |M | and (c) reduced
susceptibility χT plotted for different system sizes. Respectively (d) and (e) show the
scaling collapse for (b) and (c) by using critical exponents of the Ising 2D universality
class [Eq. (4.9)].
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(a)

(b) (c)

(d) (e)

Figure 4.4: Thermodynamic properties and finite–size scaling for x = −1.05.
(a) Specific heat for system sizesN = {600, 2400, 5400, 9600, 15000}. The inset presents
finite–size scaling of the specific–heat maximum as a function of inverse system length
1/L with L =

√
N , allowing to estimate the phase transition temperature in the

thermodynamic limit with Tx = 0.0714(5). (b) Magnetisation |M | and (c) reduced
susceptibility χT plotted for different system sizes. Respectively (d) and (e) show the
scaling collapse for (b) and (c) by using critical exponents of the Ising 2D universality
class [Eq. (4.9)].
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for this case can be calculated by using the decoration–iteration transformation [1].

Tc =
2JAB

ln
(√

2 + 1 +
√

2 + 2
√

2
) ≈ 1.30841 JAB . (4.6)

The 2D Ising universality class persists down to |x| → 1+, as shown by finite size
scaling with Monte Carlo simulations at points x = −3 and x = −1.05 in Fig. 4.3 and
Fig. 4.4 respectively. By symmetry of the Hamiltonian [Eq. (4.3) and Eq. (4.5)], the
results also directly apply for x > 1.

Finite size scaling for systems sizes N = {600, 2400, 5400, 9600, 15000} provides a
phase transition temperature Tc of

x = −3⇒ Tc = 2.788(5) , (4.7)
x = −1.05⇒ Tc = 0.0714(5) . (4.8)

Based on Tc the reduced temperature ε − (T − Tc)/Tc has been used to scale the
absolute magnetisation |M | = |

∑N
i σi| and the magnetic susceptibility [Eq. (2.45)] as

done in the literature [148]. As confirmed in Fig. 4.3 and Fig. 4.4 the phase transi-
tion belongs to the 2D Ising universality class, as shown by a scaling collapse of the
magnetisation M and reduced susceptibility χT by using the critical exponents

β = 0.125 , γ = 1.75 , ν = 1 . (4.9)

For x < −1 and x > 1 the system shows respectively ferromagnetic [Fig. 4.2(b)]
and ferrimagnetic [Fig. 4.2(c)] ground states. The staggered magnetisation of the
latter one comes from all A–spins on the square plaquettes pointing in one direction,
whereas the other spins take an antiparallel configuration. This effect leads to the
rather uncommon consequence of a finite magnetisation if both couplings JAA and
JAB are antiferromagnetic, reminiscent of Lieb ferromagnetism [219] as presented in
Ref.[215] for quantum spins.

4.2.2 Binary paramagnet: |x| < 1

For low temperatures the phase diagram [Fig. 4.2(a)] shows for |x| < 1 an extended bi-
nary paramagnetic (BPM) regime, surrounded by two spin liquid phases (SL1 & SL2).
A sample configuration of this state is shown in Fig. 4.2(d), where antiferromagneti-
cally ordered square–plaquettes are decorrelated via intervening spins on sublattice B.
The antiferromagnetic square–plaquettes locally order in two different configurations,
equivalent to a superspin Ξ with Ising degree of freedom:

Ξ = σA1 − σA2 + σA3 − σA4 = ±4 , (4.10)

with site indices given in Fig. 4.1(a). These superspins refer to a classical analogue
of tetramer objects observed in the S=1/2 model on the shuriken lattice in Ref. [215].
Those superspins Ξ are perfectly decoupled from the B sites at zero temperature, due
to the frustration on the JAB bonds. The system then forms two interpenetrating
square lattices, one made of super spins, the other one made of sites on the B sites. In
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analogy to binary mixtures of liquids and gases, this phase shall be referred to as binary
paramagnetic phase. While the decomposition into two independent paramagnetic
phases is rather exotic, decorrelation of clusters of spins is not uncommon in frustrated
systems. It is for example reminiscent of the decorrelation between one–dimensional
chains in the hollandite [220] and kagome lattices [221, 222, 223], and between two–
dimensional planes in the breathing pyrochlore lattice [224].

The absence of correlations beyond square plaquettes at T → 0 allows to estimate
the ground–state entropy in the BPM phase. Let Nuc be the number of unit cells with
N = 6Nuc total spins in the lattice There are 2Nuc decorrelated spins on the B sites
per unit cell, giving rise to an extensive ground–state entropy

SBPM = kB ln(2Nuc22Nuc) =
N

2
kB ln 2 , (4.11)

which turns out to be half the entropy of an Ising paramagnet. The magnetic suscepti-
bility, measuring the normalised variance of the magnetisation in the system [Eq. (2.45)]
can be written as the reduced susceptibility χT

χ T =
1

N

(∑
i,j

〈σiσj〉 − 〈σi〉〈σj〉

)
, (4.12)

= 1 +
1

N

∑
i 6=j

〈σiσj〉 , (4.13)

which converges to a finite value in BPM phase of

lim
T→0

χ T
∣∣∣
BPM

=
1

3
. (4.14)

This result should be compared to the high–temperature phase χ T
∣∣∣
PM

= 1.

4.2.3 Classical spin liquid: |x| ∼ 1

The Ising model on the isotropic shuriken lattice (|x| = 1), can be seen as a classi-
cal analogue of quantum critical points, which sit in between ordered and disordered
phases, resulting in a persistence of spin–liquid behaviour at finite temperatures (blue
regions) and continuously connects them to the high-temperature paramagnet.

The large entropy of the classical spin liquids SL1 & SL2 spreads to neighbouring
regions of the phase diagram for |x| ∼ 1 and T > 0. Since the model stabilises
a classical spin liquid above a long–ranged ordered phase for |x| & 1, the system
undergoes by cooling the evolution “gas crossover−−−−−→ liquid transition−−−−−→ solid”. Classical spin
liquids generally show such properties, when adiabatically tuned away from their high–
degeneracy point, as observed in e.g. Heisenberg antiferromagnets on the kagome [225]
or pyrochlore [226, 227] lattice. On the other side for |x| . 1 the system shows a
reentrant behaviour by evolving “gas crossover−−−−−→ liquid crossover−−−−−→ gas” upon cooling, which
shall be discussed in detail in the following section.
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T → 0+ Monte Carlo Husimi tree exact

S(|x| = 1) 0.504(1)
1

6
ln

41

2
≈ 0.5034 n/a

χT (x = 1) 0.203(1) 0.2028 n/a

χT (x = −1) 1.77(1) 1.771 n/a

S(|x| < 1) 0.347(1)
1

2
ln 2 ≈ 0.3466

1

2
ln 2

χT (|x| < 1) 0.333(1)
1

3

1

3

Table 4.1: Entropy S and reduced susceptibilities χT for T → 0+ with cou-
pling ratios |x| ≤ 1. Results were obtained by numerical Monte Carlo simulations,
analytical Husimi tree calculations and exact solutions for the binary paramagnet. All
quantities are normalised to the number of spins N , with the Boltzmann constant
kB = 1.

4.3 Reentrance of disorder

4.3.1 Double crossover

Fig. 4.5 shows thermodynamic properties, such as energy E, specific heat Ch, entropy
S and reduced susceptibility χT [Eq. (4.13)] as a function of temperature T/|JAA| for
different points |x| ≤ 1. The obtained results from numerical Monte Carlo simulations
and analytical Husimi tree calculations agree remarkably well and confirm that the
classical spin liquid and binary paramagnet persist down to zero temperature for |x| = 1
and |x| = 0 respectively.

The system shows for |x| = 0.9 [Fig. 4.5(b)] a double crossover, indicated by two
local maxima in the specific heat Ch and a stepwise decrease of the entropy S. Ch
and χT are independent of the system size in Monte Carlo simulations [Fig. 4.6],
confirming with the absence of finite size effects that the system does not perform a
phase transition, rather than a crossover. The crossover persists until 0.5 ≤ |x| < 1,
where the system evolves upon cooling from a high–temperature paramagnet into a
classical spin liquid before entering the binary paramagnet. The spin liquid provides an
entropy plateau for |x| = 0.9 [Fig. 4.5(b)], at the same value as for the low–temperature
regime for |x| = 1 [Fig. 4.5(a)]. All relevant thermodynamic quantities are summarised
in Tab. 4.1.

The Hamiltonian is invariant via the mapping of x→ −x [Eq. (4.5)] and therefore
preserves energy, specific heat and entropy, but not the magnetic correlations. Cor-
relations in classical spin liquids give rise to a Curie–law crossover (see Chapter 3)
between different 1/T asymptotic regimes of the susceptibility, as also observed in
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(a) (b) (c)

Figure 4.5: Thermodynamic properties for different coupling ratios x show-
ing both, single and multiple Curie–law crossovers. Energy E, specific heat Ch,
entropy S and reduced susceptibility χT are shown for (a) x = ±1, (b) x = ±0.9 and
(c) x = 0. The absence of singularities (phase transitions) for this set of parameters
is the reason why Monte Carlo simulations (open circles) and Husimi tree calculations
(solid lines) match that well. For |x| = 0.9 the system shows a double crossover, where
the low–temperature regime is the same as for x = 0. The entropy is obtained by
numerical integration of Ch/N and setting S(T → +∞) = ln 2. Vertical dotted lines
represent the estimated crossover temperatures. All quantities are normalised to the
number of spins N , with the Boltzmann constant kB = 1.
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(a) (b)

Figure 4.6: Finite–size evolution in the double–crossover region for x = 0.9.
Absence of finite size effects in Monte Carlo simulations for different cluster sizes shown
in the specific heat in (a) and reduced susceptibility (b). The system sizes used here are
much bigger than the average correlation length [Fig. 4.8], which is why the numerical
results for all system sizes lay on top of each other.

pyrochlore [142, 228, 229, 230], triangular [231] and kagome [231, 221, 232] systems.
The same effect is also observed in the shuriken lattice for x = {−1, 0, 1} [Fig. 4.7].
However, for 0.5 < |x| < 1 in the double crossover region the reduced susceptibility
becomes non–monotonic. χT first tend towards the values of spin liquids SL1 (SL2)
for x < 0 (x > 0), before converging to 1/3 for the binary paramagnet, as shown in
x = {−0.99,−0.9, 0.9, 0.99} in Fig. 4.7. In general and beyond the current problem, the
multistep Curie–law crossover underlines the advantages of the reduced susceptibility
to identify intermediate magnetic regimes, and the classification of different phases.

A detailed discussion about the Curie–law crossover and the limitations of the
Curie–Weiss law in spin liquids took place in Chapter 3. In this context, the ex-
ample of the shuriken lattice is outstanding, since non–monotonic correlations would
produce a qualitatively wrong estimate of the low–temperature properties from a high–
temperature Curie–Weiss fit. For example x = −0.9 [Fig. 4.5(b)] would predict domi-
nating ferromagnetic correlations by taking a high–temperature Curie–Weiss fit above
> 5T/|JAA|, whereas the low–temperature physics are obviously dominated by antifer-
romagnetic correlations.

4.3.2 Correlation function in real and momentum space

The non–monotonic behaviour of χT goes along with a non–monotonic behaviour of
the correlation length. The function Cρ measures the correlations between a central
spin σ0 and all spins at distance ρ. One needs to distinguish between sublattice A and
B, since connectivities and symmetries for both is different. Let DX

ρ be the ensemble of
sites at distance ρ from a given spin σX0 on the X = {A,B} sublattice. The real–space
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Figure 4.7: Reduced susceptibility χT for coupling ratios
x = {0,±1,±0.9,±0.99}. Results are obtained from numerical Monte Carlo
simulations (circles) and analytical Husimi tree calculations (solid lines). Since the
system performs a standard Curie law crossover for x = {±1, 0} seen as a monotonic
behaviour of χT , the system shows a multistep behaviour for intermediate values of x
due to a double crossover. The asymptotic low–temperature values for χT are given
in Tab. 4.1.

correlation function is defined as

CX
ρ =

∑
i∈DXρ

|〈σX0 σi〉|∑
i∈DXρ

, (4.15)

where the absolute value accounts for antiferromagnetic correlations. The energy inte-
grated structure factor S(q) provides information about spin–correlations in momen-
tum space

S(q) = 〈σqσ−q〉 =

〈∣∣∣∣ 1√
N

N∑
i

eiqriσi

∣∣∣∣2〉 . (4.16)

The correlation functions on both sublattices CA
ρ and CB

ρ are plotted in Fig. 4.8.
For x = −1.05 [Fig. 4.8(a) and (b)] the system orders below the critical temperature
Tc = 0.0714(5) [Fig. 4.4(a)], seen in Cρ = 1 over long–length scales. Above the phase
transition, the correlations decay exponentially.

At x = −1 [Fig. 4.8(c) and Fig. 4.8(d)] the correlations still decay exponentially,
down to the lowest temperatures, as confirmed by a quantitative superimposition of
data points. The correlation length reaches a maximum value of ξ ≈ 0.3 and effectively
retains this value up to T ∼ 1JAA, until thermally excited defects destroy them. How-
ever, exponentially decaying correlations should not be confused with paramagnetic
ones, as seen in their strongly inhomogeneous structure factor S(q) [Fig. 4.9(a) and
Fig. 4.9(c) and supplemental material of Ref. [1]].

Also, the S(q) in the spin liquid regimes is aperiodic, which is uncommon for
regular lattices. However, analysing the shuriken lattice structure with equilateral
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Figure 4.8: Spin–spin correlations in the vicinity of the spin liquid phases.
(a) and (b) for x = −1.05 show order below the critical temperature [Eq. (4.8)], a
finite correlation length for temperatures of the order of the coupling constant and no
correlation between neighbouring sites at high temperatures. (c) and (d) for x = −1
show no order at any temperature, but a correlation length characteristic for the spin
liquid phase, which remains constant for all temperatures below ∼ |JAA|. (e) and (f) for
x = −0.9 show no correlations between neighbouring sites at very high (paramagnetic
regime) and very low temperatures (binary paramagnetic regime). However, interme-
diate temperatures show a finite correlation length coming from the spin liquid regime.
This non–monotonic behaviour of the correlation length illustrates the reentrant nature
between paramagnetic regimes. The agglomeration of data points around C ∼ 2×10−5

comes from finite size effects. The blue datapoint at ρ ≈ 0.4 and C ≈ 0.001 comes from
the fact that the simulations were performed at high but not infinite temperatures.
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Figure 4.9: Equal–time structure factor S(q) at zero temperature. (a) and
(c) show the S(q) for x = ±1 in the spin liquid regime, characterised by the absence of
any Bragg peaks. Aperiodic features are caused by the irrational relative coordinates
of sites within the unit cell of the shuriken lattice with equilateral triangles. The S(q)
for the shuriken lattice with non–equilateral triangles is presented in the Appendix C.3.
The similarity of S(q) for x = -1 and x = 1 comes from the symmetry between the
two models [Eq. (4.5)]. (b) shows the S(q) for x = 0 in the binary paramagnetic
regime. The black background represents the absence of correlations beyond the size
of the superspins, living on square plaquettes. The finite extension of superspins in
real-space is reasonable to the finite extension of the dots of scattering in momentum
space. To recover ergodicity, a local “multi–spin” update flipping four spins of the
square plaquettes has been used. A video showing the temperature evolution of S(q)
at x = 0.9 is available in the supplemental material of Ref. [1].

triangles shows, that distances between lattice sites are irrational, and do not satisfy
eiqri = ei(q+Q)ri , from Eq. (4.16), with Q a reciprocal lattice vector. However, the S(q)
will become periodic by choosing a shuriken unit cell, which contains non-equilateral
triangles as shown in Appendix C.3.

In the double–crossover region at x = −0.9 [Fig. 4.8(e) and (f)] the correlation
function becomes non–monotonic with temperature. In the binary paramagnet the A
sites show a finite cutoff after the size of a square plaquettes (super spins), where the
B sites become perfectly decorrelated. This can also be seen in the S(q) at x = 0
[Fig. 4.9(b)], where correlations are just restricted to a finite region in momentum
space, with absence of correlations along the lattice directions.

4.3.3 Experimental realisations

The Ising model on the anisotropic shuriken lattice provides a conceptually interesting
model for reentrance behaviour between disordered phases. Unfortunately, experi-
mental realisations have not been found yet. However, several directions of possible
experimental realisation are possible, each of them with their advantages and draw-
backs.
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The shuriken topology has been observed, albeit hidden, in the material dyspro-
sium aluminium garnet (DAG) [233, 234] (see Ref. [235] for a review). A projection of
complex coupling interactions from the three–dimensional material into the [001] direc-
tion recovers an effective Ising model on the shuriken lattice. However, its microscopic
Hamiltonian does not respect the same symmetry as the model studied here [Eq. (4.3)]
and shows ferrimagnetic order. Nevertheless, it shows that the shuriken topology can
exist in real materials and calls for further investigations.

Cold atoms might offer an alternative way, since the necessary experimental setup
for an optical shuriken lattice has been proposed in the literature [214]. However, the
most promising possibility might be provided by artificial lattices, where ferromag-
netic nano islands effectively behave like Ising spins. Since various lattice types can
be engineered by lithography, the production of a shuriken geometry should not be
an issue. Nano islands have been grown with magnetisation axis the in z direction,
perpendicular to the lattice [236, 237, 238]. Since interactions between these islands
will decay quickly in space (dipolar interactions), at a nearest neighbour level, a phys-
ical distortion of the shuriken geometry would reproduce the anisotropy of Eq. (4.3)
for x > 0. Further nearest–neighbour interactions are expected to lift the extensive–
ground state degeneracy of models for |x| ≤ 1, giving rise to a low–temperature phase
transition. Simulations for the closely related kagome lattice predict such a transition
at T/|J | ≈ 0.03 [238], which offers an appreciable temperature range to observe the
phase diagram in Fig. 4.2(a) in artificial lattices.

4.4 Conclusions

The Ising model on the anisotropic shuriken lattice supports a plethora of different
phases as a function of the anisotropy parameter x = JAB/JAA. Two long–range
ordered phases (ferromagnetic and ferrimagnetic) occur for |x| > 1 by a continuous
phase transition, as part of the 2D Ising universality class. In a broad region |x| . 1
three disordered phases evolve [Fig. 4.2(a)], where a binary paramagnetic (BPM) phase,
composed of locally ordered square plaquettes and completely decorrelated by single
spins on the B sites [Fig. 4.2(d)], is surrounded by two classical spin liquids SL1,2.
Thermal fluctuations spread the classical spin liquids SL1,2 beyond the singular points
x = ±1 and allow for a double crossover from a high–temperature paramagnet to a
correlated spin liquid and to a binary paramagnet (BPM) for |x| . 1. This process can
be considered as a reentrant behaviour [239, 240, 241, 242, 243] between disordered
regimes, in absence of phase transitions. Such a competition of disordered phases has
been quantified by a double–peak features in the specific heat, a stepwise decrease of
the entropy and a multi–step Curie–law crossover [see Fig. 4.5, Fig. 4.7 and Fig. 4.8].
As such, it represents an interesting mechanism to stabilise a paramagnetic (gas–like
phase) at temperatures below the regime of a classical spin–liquid phase.

Additionally the shuriken lattices showed its properties as a distorted frustrated
magnet, where extended regions of magnetic disorder can be stabilised by anisotropy or
further neighbour exchange, as on Cairo [216, 244], hollandite [220], kagome [221, 222,
223], and pyrochlore [245, 224, 246] lattices. Such connections are particular promising
since it enlarges the possibility of experimental realisations of, e.g. Volborthite [220]



80
The Shuriken Lattice –

reentrance in a novel Spin Liquid

or breathing pyrochlores [247, 248].
Possible future directions of this work might involve thermodynamic and dynamic

investigations of the classical Heisenberg model on the shuriken lattice, which is sup-
posed to also provide an extensive ground state degeneracy at |x| = 1 [208, 215]. In
analogy to the antiferromagnetic Heisenberg model on the kagome lattice, order-by-
disorder effects are expected to play a role, able to form spin waves or zero–energy
excitations comparable to the weather vane modes on the kagome lattice.

Applying an external magnetic field [207, 211] would provide a tool to directly break
the invariance given by Eq. (4.5), making the phase diagram of Fig. 4.2(a) asymmetric.



Chapter 5

Origin of spin liquid behaviour in
Ca10Cr7O28

“ Ein jeder lernt nur, was er lernen kann;
Doch der den Augenblick ergreift,

Das ist der rechte Mann.”

Faust 1, Vers 2017 ff. (Mephistopheles)
Johann W. v. Goethe

The physical realisation of spin liquids and their fundamental understanding is a
central theme in frustrated magnetism. However, despite intensive research, just few
experimental candidates have been proposed.

This chapter shall present the new spin–liquid candidate Ca10Cr7O28, a physi-
cal realisation of a S=1/2 magnet on the bilayer breathing kagome (BBK) lattice.
Ca10Cr7O28 received little attention until Balz et al. recently reported the possibility
of a quantum spin liquid ground state, by applying a range of experimental techniques
and functional renormalisation group calculations [127, 249, 250]. Next to other evi-
dences, supporting the possibility of a spin liquid ground state, inelastic neutron scat-
tering (INS) data show high intensity “ring” features at low energies and bow–tie–like
features at finite energies.

The aim of this chapter is to deepen the understanding of the spin liquid behaviour
in Ca10Cr7O28 by comparing the dynamical signatures of INS experiments to numerical
simulations of the Heisenberg model on the BBK lattice and extract their physical
origin. A combination of classical Monte Carlo [Section 2.2] and molecular dynamics
[Section 2.3] simulations could provide high–resolution spin–spin correlation functions,
comparable to INS results of Ca10Cr7O28. In particular, the origin of the distinct “ring”
features in INS data could be identified by mapping the BBK model onto the J1-J2
honeycomb model. This model shows in the relevant region of the phase diagram the
coexistence of different spiral phases, which allow for the emergence of a degenerate
ground–state manifold. Additionally, broad bow–tie–like features at higher energies in
INS data can be shown to evolve into sharp pinch–points for transverse spin excitations
in finite field, similar to those of the classical antiferromagnetic Heisenberg model on
the kagome lattice [Fig. 1.7(b) in Section 1.3.2].

81
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5.1 Synthesis of Ca10Cr7O28

Ca10Cr7O28 is related to the quantum–dimer systems A3Cr2O8 (A = Sr, Ba) and con-
tains Cr ions located within oxygen tetrahedra. These Cr ions are arranged on dis-
torted triangular bilayers, following the trigonal space group R3c. The first reported
crystallographic study of Ca10Cr7O28 dates back to 1981, where Gyepesová et al. [251]
obtained the correct space group but the incorrect chemical composition Ca3Cr2O8 in
analogy to A3Cr2O8 (A = Sr, Ba) compounds. Furthermore, partial occupancies led to
the empirical formula of Ca10.07Cr7O27.58, which provided a rather unsatisfying crystal
structure model.

Arc̆on et al. [252] published in 1998 X-ray absorption data, which suggested a charge
order of Chromium with two different valences, Cr5+ and Cr6+ in the ratio 6:1. The
average valence for Cr of 5.14 was consistent with experimental observations, allowing
to provide the correct formula of Ca10(Cr5+O4)6(Cr6+O4). However the location of the
non–magnetic Cr6+ could not be determined at that point.

In a recent paper from 2013, Gyepesová et al. revised the crystal structure of this
compound and published a more detailed diffraction study [253]. However, in 2017 Balz
et al. [250] solved the crystal structure by using x-ray diffraction on single crystals,
confirming Ca10Cr7O28 to be a mixed valence compound with ordered Cr6+ ions.

While Cr6+ is non–magnetic, the Cr5+ ion has a single electron in its outermost
shell, providing a S = 1/2 moment to the magnetic properties of the system. The crys-
tallographic lattice structure of these magnetic ions form a stacked version of kagome
bilayers, which shall be investigated in more detail in Section 5.3 of this chapter. As
outlined in the next section, Balz et al. [127, 249, 250] could confidently show the ab-
sence of long–range order down to 19 mK and provide strong evidence for Ca10Cr7O28

to be a spin liquid.

5.2 Thermodynamic properties in Ca10Cr7O28

Generally, it is much harder to show the absence, than the presence of order in magnetic
materials. This is one of the reasons, why Balz et al. [127, 249, 250] needed an extensive
set of experiments to comprehensively conclude the evidence for a spin liquid behaviour
in Ca10Cr7O28.

The first indication of absence of magnetic order has been seen in low–temperature
specific heat measurements [127], as reproduced in Fig. 5.1(a). The heat capacity Cp
shows a broad maximum at T = 3.1 K, indicating the onset of short–ranged magnetic
fluctuations, comparable to a Curie–law crossover (see Chapter 3), which is followed
by a weak kink at 0.46 K.

Fig. 5.1(b), reproduced from [249], shows the magnetic heat capacity divided by
temperature C/T , as a function of temperature for various values of magnetic field up
to 14.5 T. C/T at low temperatures is characterised by a smooth and rapid increase
for low fields, while showing a change of slope at 1 T and a weak peak at T = 0.4 K.
This peak has been interpreted as an onset of slow, persistent spin fluctuations, which
could be measured with zero–field muon spectroscopy (µSR) and a.c. susceptibility
[127] and suggests a crossover from a spin liquid phase into another phase at finite field
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(a) (b)

(c) (d)

Figure 5.1: Thermodynamic properties of Ca10Cr7O28, reproduced from
[127, 249, 250]. (a) Low–temperature heat capacity with Cp = αT 3 Debye–like
phonon contribution (purple circles), and without (blue triangles). Cp for the mag-
netic contributions shows a broad maximum at T ∗ = 3.1 K, indicating the onset
of short–range fluctuations, followed by a weak kink at T+ = 0.46 K. The entropy
S =

∫
(Cp/T )dT for the magnetic contributions (green circles) has been integrated

from 0.3 to 23.3 K and is plotted on the right axis. Maximum available entropy of
R ln 2 has been assigned to decorrelated S = 1/2 moments from the Cr5+ moments at
high temperature. (b) Magnetic heat capacity C/T as a function of temperature for a
range of magnetic fields. At low temperatures C/T changes slope at ∼ 1 T. (c) Suscep-
tibility (right axis) and inverse susceptibility (left axis) measured from 1.8–400 K for
B = 0.1 T perpendicular and parallel to the crystallographic c axis. Inset: Curie–Weiss
fit for 1/χ yields θcw = 2.35 K suggesting dominant ferromagnetic interactions in the
material. (d) Magnetisation per Cr ion for the field applied along the crystallographic
c direction at 1.8 K.
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[249].
Magnetic susceptibility measurements, as reproduced from [250] and shown in

Fig. 5.1(c), has been performed over a large range of temperatures in B = 0.1 T
perpendicular and parallel to the crystallographic c axis. The linear Curie-Weiss fit
for 1/χ [Eq. (3.5)] reveals a Curie-temperature θcw = 2.35 K, suggesting dominating
ferromagnetic interactions in the material, but no magnetic order down to 0.3 K.

Even though these thermodynamic properties show no magnetic order down to
0.3 K, the true ground state properties of Ca10Cr7O28 are still unclear. To analyse the
ground state properties at very low temperatures, results for the a.c. susceptibility
have been carried out and could confirm that Ca10Cr7O28 does not show any spin
glass behaviour down to 0.05 K [127]. Further more, muon spin relaxation (µSR)
measurements, could rule out the presence of any kind of static long–range magnetic
order down to 19 mK, highly suggesting the nature of the magnetic ground state to be
entirely dynamic [127].

Fig. 5.1(d), reproduced from [250] shows the magnetisation as a function of external
field at 1.8 K. The magnetisation is characterised by a rapid increase up to 1T and a
further increase with different slope up to saturation at around 11 T. The magneti-
sation is normalised to the total number of Cr ions in the lattice and shows at the
saturation of |B| ≈ 12 T a value of 6/7µB = 0.857µB, since non–magnetic Cr6+ ions
do not contribute.

5.3 The bilayer breathing kagome (BBK) model

Knowing the lattice structure for Ca10Cr7O28 [Fig. 5.2(a)] allows to specify the model
Hamiltonian, which describes magnetic properties in the material. The appropriate
Hamiltonian suggested in the literature [127] considers only nearest–neighbour inter-
actions and takes the form of a Heisenberg model

HBBK =
∑
〈ij〉

Jij Si · Sj −B
∑
i

Szi , (5.1)

where Si are spin vector operators and Jij the exchange couplings between the spins.
Fig. 5.2(b) shows the seven inequivalent nearest–neighbour interactions for the

BBK model, identified from fitting of linear–spin wave (LSW) theory to INS data
at high magnetic field (B = 11T) [127, 249]. The spin–wave signal along the crystal-
lographic c direction is dispersion less, providing non–measurable coupling constants
(J11 = J12 = 0) between the kagome bilayers. Therefore interactions between the bi-
layers can be ignored. This simplifies the model Hamiltonian from seven to five inde-
pendent coupling constants and allows to consider a two–dimensional bilayer breathing
kagome (BBK) lattice, as seen in Fig. 5.2(c), in order to simulate physical quantities
for Ca10Cr7O28 .
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(a) (b)

Exchange Coupling (meV) Type
J0 -0.08(4) FM
J11 0 –
J12 0 –
J21 -0.76(5) FM
J22 -0.27(3) FM
J31 0.09(2) AFM
J32 0.11(3) AFM

(c)

Figure 5.2: Magnetic unit cell for Ca10Cr7O28 and simplification to the bi-
layer breathing kagome lattice. (a) Magnetic unit cell of Ca10Cr7O28, reproduced
from [250], revealed by x-ray and neutron diffraction consists of ABC stacked kagome
bilayers of Cr5+ ions. Cr6+ ions are drawn in light and dark blue, whereas the magnetic
Cr5+ ions are drawn in green. Magnetic Cr5+ ions are coupled via isotropic nearest–
neighbour exchange on bonds J0, ..., J31. (b) Nearest–neighbour coupling parameters
of the Heisenberg model on the BBK lattice taken from [127, 249]. Negative interac-
tions are ferromagnetic (FM), while positive interactions are antiferromagnetic (AFM).
Since J11 and J12 show non–measurable values, magnetic interactions in Ca10Cr7O28

can be considered to happen just in individual, decoupled bilayer kagome layers. (c)
Single layer of the bilayer breathing kagome lattice.
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(a) (b) (c)

Figure 5.3: Inelastic neutron scattering data for Ca10Cr7O28 compared to
theory, reproduced from [127]. (a) Single-crystal inelastic neutron scattering (INS)
data measured at zero applied field and T = 220 mK. Three energy scales appear
between 0.7 − 1.3 meV, 0.2 − 0.6 meV and < 0.2 meV, without any signature of spin
waves. No magnetic scattering has been found above 1.6 meV. (b) Energy slice of
INS data from (a) at E = 0.25 meV and T = 90 mK shows broad intensities on a
ring around the Brillouin centres. (c) q–space resolved susceptibility, calculated by a
pseudofermion functional renormalisation group (PFFRG) shows no sign of order at
E = 0 meV and T = 0 K. Intensities are broadly distributed around the corners of
every second Brillouin, comparable to results in INS experiments (b). False colour
plots present intensities with high scattering in red and low scattering in blue.

5.4 Magnetic excitations in Ca10Cr7O28 in theory and
experiment

To investigate the dynamical properties in Ca10Cr7O28, Balz et al. [127] chose in-
elastic neutron scattering (INS) as an optimal probe for magnetic dipole excitations.
Fig. 5.3(a) shows INS data on a single crystal of Ca10Cr7O28 along the [2+h, -2+h, 0]
direction (within kagome planes) in zero field, and reproduces three energy scales.
Intensities are found on a high–energy scale between 0.7− 1.3 meV, an intermediate–
energy scale between 0.2− 0.6 meV and a low–energy scale < 0.2 meV. Data show
diffuse and dispersionless scattering, which is much broader than the instrumental
resolution, and no signs of order due to the absence of magnetic Bragg peaks. The
signal at low–energies comes in experiments from incoherent–quasi elastic background
scattering, which, however, turns out to hide another gapless spin–wave excitation, as
presented in numerical investigations in Section 5.5. Magnetic scattering above 1.6
meV has been confirmed to be absent [127].

An energy slice of the INS data in Fig. 5.3(a) at E = 0.25 meV and T = 90
is shown in Fig. 5.3(b) and contains broad intensities in the form of “ring–pattern”,
located around the Brillouin zone centres. Data do not show signatures of magnetic
order, whereas the high–intensity peaks in red are coming from phonon excitations.

Those “rings” have also been seen by Balz et al. in pseudofermion functional renor-
malisation group (PFFRG) calculations [Fig. 5.3(c), reproduced from [127]], which
measures the momentum–resolved susceptibility at E = 0 meV and T = 0 K.
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Investigations with molecular dynamics simulations shall provide further insights
into the dynamical properties of the three energy–regimes and the connection between
the “ring”–like features at low energy with the spin–liquid behaviour in Ca10Cr7O28.

5.4.1 Details of simulations

Considering the Heisenberg model, given in Eq. (5.1), classical Monte Carlo simulations
have been used to produce a thermally–equilibrated canonical ensemble of classical
vectors on the bilayer breathing kagome (BBK) lattice. Those vectors are normalised
to S = 1/2 and shall represent spins of Cr5+ ions in Ca10Cr7O28. In order to achieve
satisfying statistics various Monte Carlo algorithms, such as the heat bath method,
over relaxation and parallel tempering (all explained in Section 2.2) have been used.

Numerical integration of the semi–classical equations of motion (Section 2.3) has
been carried out using the Runge–Kutta method of order 4 [Eq. (2.99)], followed by a
Fourier transform of the time and space–dependent spin–spin correlation into energy
and momentum space. Following the discussion in Section 2.4 the spin signal in time
has been multiplied by a Gaussian, such that the Fourier transformed signal resolved
a Gaussian convolution in energy–space. For satisfying comparison to experiments
this signal has been evaluated for Eq. (2.100), by choosing a Gaussian envelope of
FWHM = 0.2 meV, and the magnetic form–factor for the Cr5+ ions, as presented in
Appendix D.1.

5.4.2 Polarised state at high field

The absence of order in Ca10Cr7O28 below 90 mK is consistent with the absence of dis-
tinct spin–wave branches in inelastic neutron scattering (INS) experiments [Fig. 5.3(a)].
In order to confirm the validity of the semiclassical molecular–dynamics (MD) method
and the quality of simulation results, a direct comparison to the fully polarised state in
high magnetic field is a sensible task to do. Hereby, the quantum fluctuations will be
suppressed and allow for spin–waves on top of the fully polarised state, which should
provide comparable results between INS, MD and also linear spin–wave (LSW) theory.

Fig. 5.4 shows the direct comparison between INS results for Ca10Cr7O28, repro-
duced from [127], and the dynamical structure factor, theoretically obtained from MD
simulations and LSW theory (Appendix B.2) of the BBKmodel [Eq. (5.1)] at B = 11 T.
Such fields have been chosen, since the magnetisation is fully saturated at B = 11 T
and above, as seen in Fig. 5.1(d).

The spin–wave spectrum of Ca10Cr7O28 and the BBK model show three distinct
spin–wave branches at finite energy, visible with significant high–intensity regions at
Brillouin zone centres. Two branches at high energy look quantitatively the same, how-
ever with different intensity distributions between each other. Recovering a reasonable
good spin–wave dispersion is a good indication for the reliability of results from MD
simulations.

LSW theory works very well for predicting excitations about the saturated state in
applied magnetic field, albeit does not work well for predicting dynamical properties of
a disordered state in absence or at low fields. The strength of finite temperature MD
simulations is its predictive power even for non–polarised states at low magnetic fields,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.4: Spin dynamics of Ca10Cr7O28 in the saturated state at B = 11
T. (a), (d), (g) Results for inelastic neutron scattering (INS) experiments, reproduced
from [127, 249], are compared to (b), (e), (h) linear spin–wave (LSW) theory and (c),
(f), (i) molecular dynamics (MD) results of the bilayer breathing Kagome (BBK) model
HBBK [Eq. (5.1)], with parameters taken from Fig. 5.2(b). (a)–(c) Gapped, dispersing
spin–wave excitations along the [h, -h, 0] direction. (d)–(f) Gapped, dispersing spin–
wave excitations along the [2+h, -2 + h, 0] direction. Constant–energy cut at (g) E
= 1.4 meV, and (h) and (i) E = 1.3 meV shows bright features corresponding to
high intensities in the spin–wave dispersion. In order to compare to INS data, results
for LSW theory and MD simulations are presented with a Gaussian convolution of
FWHM = 0.2 meV. INS and MD results at T = 90mK, while LSW theory at T = 0.
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since it is not limited to the underlying order of the system. The following section shall
evaluate the evolution of the dynamical structure factor in field, and shall suggest the
range of fields, where MD simulations can be expected to be reliable.

5.4.3 Evolution of the spin–wave spectrum in field

Starting from the polarised state at B = 11T, where experiments and simulations com-
pare reasonably well, the field can be reduced in order to “trace” the behaviour of the
spin–wave branches down to the point at which the excitation–gap closes. Fig. 5.5
compares the INS data for Ca10Cr7O28, reproduced from [127], with the S(q, ω) from
molecular–dynamics simulations of the BBK model. Even though Ca10Cr7O28 already
leaves its fully polarised state for B < 11 T [Fig. 5.1(d)], a comparison between theory
and experiment provides reasonable results down to B ≈ 1 T. At such fields the lowest
band touches zero energy, as shown in a later section in Fig. 5.12 and compares to a
systematic change of the heat capacity, seen in Fig. 5.1(b).

At B = 0 T, a clear comparison to experiment becomes difficult, since INS data
shows strong diffusive scattering in the background, which is absent in MD simulations.
However, experiment and theory still show three energy–scales, which can be analysed
in more detail.

5.4.4 Dynamics at zero field

The comparison of energy slices at zero field for each energy regime is presented in
Fig. 5.6. The low energy signal in Fig. 5.6(e) and Fig. 5.6(f) shows “rings” in momentum
space, with intensity around the corners of every second Brillouin zone. Actually, this
scattering pattern stays the same for even lower energies, just increases in intensity,
and is remarkably similar to pseudofermion functional renormalisation (PFFRG) [127],
at E=0 meV and T=0 K [Fig. 5.3(c)]. It turns out, that the origin of those ring–like
diffuse scattering signatures is originated in the coexistence of spiral ground–states
with different ordering vector in momentum space. A detailed discussion is given in
Section 5.5.1.

Signal at finite energies Fig. 5.6(a), (b) and (c), (d) shows broadened, “bow–tie”
like features, as seen in e.g. in the Heisenberg antiferromagnet on the kagome lattice
[Fig. 1.6 in Section 1.3.2] and shall be considered in more detail in Section 5.5.2.

5.5 Origin of spin liquid behaviour in the BBK model
and Ca10Cr7O28

5.5.1 Mapping onto the J1-J2 Honeycomb model

Dynamical correlations of Ca10Cr7O28 show “ring features” in INS data [Fig. 5.6(e)],
and MD simulations on the BBK model [Fig. 5.6(f)]. The Hamiltonian in Eq. (5.1)
defined on the BBK lattice [Fig. 5.2(c)] includes five independent coupling parameters
[Fig. 5.2(b)], which makes a deep understanding of the ground state properties rather
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(a) B = 7.5T (h) B = 7.5T

(b) B = 5T (i) B = 5T

(c) B = 4T (j) B = 4T

(d) B = 3T (k) B = 3T

(e) B = 2T (l) B = 2T

(f) B = 1T (m) B = 1T

(g) B = 0T (n) B = 0T

Figure 5.5: Evolution of spin excitations as a function of magnetic field.
Comparison between inelastic neutron scattering results for Ca10Cr7O28, reproduced
from [249], and the dynamical structure factor S(q, ω) from molecular dynamics (MD)
simulations of the bilayer breathing kagome model [Eq. (5.1)]. Results are shown
along the [h,−h, 0] and [2 + h,−2 + h, 0] direction, both integrated over ±0.2 r.l.u.
perpendicular to the cut in reciprocal space. MD simulations have been convoluted
with a Gaussian of FWHM = 0.2 meV.
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(a) E = 0.9 meV (b) E = 1.1 meV

(c) E = 0.65 meV (d) E = 0.52 meV

(e) E = 0.25 meV (f) E = 0.23 meV

Figure 5.6: Dynamical correlations in the spin–liquid phase of Ca10Cr7O28.
(b), (c), (e) Constant–energy cuts through inelastic neutron scattering data for
Ca10Cr7O28 in zero magnetic field, reproduced from [254]. (a), (d), (f) Constant–
energy cuts through the dynamical structure factor S(q, ω) [Eq. (2.101)], calculated via
molecular dynamics (MD) simulations of of the bilayer breathing Kagome (BBK) model
HBBK [Eq. (5.1)]. Scattering at low energies (E ≈ 0− 0.3 meV) shows a ring–like pat-
tern, characteristic of the spin–liquid ground state. Scattering at higher energies show
broadened, bow–tie features, of the type associated with the spin liquid in the Kagome-
lattice antiferromagnet [see Fig. 5.11 and Fig. 5.10] For comparison with experiment,
MD results have been convoluted in energy with a Gaussian of FWHM = 0.2 meV.
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(a) (b)

Figure 5.7: Mapping onto an effective J1-J2 Honeycomb model. (a) Ferromag-
netic couplings on alternating triangles are dominant (shaded in green). (b) Assuming
the limit of infinite strong ferromagnetic couplings (J21 and J22) allows to contract
three S = 1/2 sites from the triangular plaquettes onto one singular S = 3/2 site. The
problem maps onto an effective S = 3/2 J1-J2 Heisenberg model on the Honeycomb
lattice [Eq. (5.2)].

complicated. However, further simplifications of the model Hamiltonian are possible,
in order to qualitatively understand the scattering pattern.

Coupling constants of the BBK model Fig. 5.2(b) provide predominantly ferromag-
netic (FM) exchange interactions, also shown from a Curie-Weiss fit revealing a positive
Curie-temperature θcw = 2.35 K [Fig. 5.1(c)]. The dominant exchange interaction on
the ferromagnetic bonds [J21 and J22 shaded as green triangles in Fig. 5.7(a)], suggests
to consider their infinitely large limit. Single triangular plaquettes with ferromagnetic
interactions and three spins S = 1/2 can be contracted to a single site with S = 3/2, as
depicted in Fig. 5.7(b). The effective model forms a S = 3/2, J1-J2 Heisenberg model
on the honeycomb lattice

HHC = J1
∑
〈ij〉1

Si · Sj + J2
∑
〈ij〉2

Si · Sj , (5.2)

where the nearly identical antiferromagnetic couplings J31 and J32 and the ferromag-
netic interlayer coupling J0 from the BBK model transform respectively into the an-
tiferromagnetic next–nearest neighbour coupling J2 and into the nearest–neighbour
coupling J1 of the honeycomb model.

The classical ground states of this model has been studied already in the past
[126, 120] and shows various spiral ground states at zero temperature, as introduced in
Section 1.3.3. In a specific region of the phase diagram, there exist a set of coexisting
spiral ground states with different ordering vectors, distributed on a ring in momentum
space. Fouet et al. conjectured that the models on this coexistence line have a RVB
spin–liquid ground–state, with a small but finite gap and strong short range order [120].

Fig. 5.8(a) shows the zero–field phase diagram for the BBK model [Eq. (5.1)], as
determined from the maxima in specific heat, obtained in classical Monte Carlo sim-
ulations. Simulations were carried out for parameter sets appropriate for Ca10Cr7O28,
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(a) BBK model, T > 0

(b) Honeycomb model, T = 0

Figure 5.8: Phase diagram of the bilayer breathing kagome (BBK) and
J1-J2 Honeycomb model. (a) Finite–temperature phase diagram of the BBK model,
Eq. (5.1), as determined by classical Monte Carlo simulation, allowing Jeff ≡ J31 = J32
to vary, with all other parameters taken from Ca10Cr7O28. Dotted lines correspond to
peaks in the specific heat C(T ), and indicate the onset of correlations corresponding
to spiral/ferromagnetic states at low temperature. White spots show the parameter–
ratio and temperatures associated with inelastic neutron–scattering experiments on
Ca10Cr7O28 [127, 249]. Inset: “ring” in equal–time structure factor S(q), characteristic
of the spiral spin liquid. Monte Carlo simulations have been performed for a system
with N = 13824 sites. (b) Classical ground state of the effective honeycomb–lattice
model, Eq. (5.2), following [126, 120]. The spiral spin liquid can be traced to a highly–
degenerate manifold of classical ground states occurring for −1/2 < x < −1/6.
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where the value of antiferromagnetic couplings Jeff ≡ J31 = J32 has been been varied
as x = Jeff/J0. The low–temperature regime of the phase diagram shows spiral and fer-
romagnetic states, with a broad region of a spiral spin liquid at higher temperatures,
providing a “ring” feature in the equal time structure factor S(q) [see inset Fig. 5.8(a)].
The S(q) has been calculated at (T = 222 mK), in the vicinity of a zero–temperature
ordered spiral ground state and therefore shows the emergence of Bragg peaks at high–
symmetry points of the Brillouin zone. Taking the parameter set from Fig. 5.2(b),
Ca10Cr7O28 can be found at x = −1.25 in this phase diagram. However, the error
bars in this estimation of coupling parameters is quite large, allowing the material to
exist in a large region of parameter space up to x ≤ −0.6. Fig. 5.8(b) Classical zero–
temperature ground state phase diagram for the J1-J2-J3 Heisenberg model on the
Honeycomb lattice [Eq. (5.2)], as reproduced from [126, 120], for J1 < 0 and J3 = 0.
The spiral spin liquid can be traced to a highly–degenerate manifold of classical ground
states occurring for −1/2 < x < −1/6.

5.5.2 Transverse and longitudinal excitations

Fig. 5.5 shows the field dependent evolution of spin–wave excitations from MD simu-
lations and INS data. A broad energy–convolution in MD simulations makes a com-
parison to experiments possible, but a physical understanding of dynamical properties
rather complicated. Fig. 5.9 shows MD simulations of HBBK [Eq. (5.1)] with better
resolution in energy–space than provided by experiment.

Additionally the dynamical structure factor S(q, ω) has been separated into trans-
verse and longitudinal channel, where

S(q, ω) = S⊥(q, ω) + S‖(q, ω) . (5.3)

These quantities are defined by

S⊥(q, ω) =
1√
Nt

Nt∑
n

eiω nδt 〈S⊥q (t) · S⊥−q(0)〉 , S⊥i = (Sxi , S
y
i ) , (5.4)

and

S‖(q, ω) =
1√
Nt

Nt∑
n

eiω nδt 〈Szq(t) · Sz−q(0)〉 . (5.5)

The channel perpendicular to the external field S⊥(q, ω) will account for transverse
spin excitations (x, y components of the spins) and represents usually the types of
excitations accessible in linear spin–wave (LSW) theory.

S⊥(q, ω) shows six pair–wise degenerate spin–wave branches persistent for a wide
range of magnetic fields. By decreasing the external field, those spin–wave branches
gain intensity and shift down in energy. In fact, above B & 1 T the energy for all bands
depends linearly on the field, as shown in Section 5.5.3.

More surprisingly, dynamical properties of HBBK [Eq. (5.1)] also include gapless
longitudinal excitations. As seen in the longitudinal channel S‖(q, ω) of Fig. 5.9, the
intensity dominates the Brillouin zone centre in form of Bragg peaks, corresponding to



5.5 Origin of spin liquid behaviour in the BBK model and Ca10Cr7O28 95

(a
)
B

=
7.
5T

(b
)
B

=
5T

(c
)
B

=
4T

(d
)
B

=
3T

(e
)
B

=
2T

(f
)
B

=
1T

(g
)
B

=
0T

F
ig
u
re

5.
9:

E
vo

lu
ti
on

of
th
e
sp
in
–w

av
e
sp
ec
tr
u
m

fo
r
th
e
b
il
ay
er

b
re
at
h
in
g
ka
go

m
e
m
od

el
in

fi
el
d
.

F
ir
st

ro
w
:

C
om

pa
ra
bl
e
to

F
ig
.5

.5
,s
ho

w
s
th
e
to
ta
ld

yn
am

ic
al

st
ru
ct
ur
e
fa
ct
or
S

(ω
,q

)
[E
q.

(5
.3
)]
w
it
h
m
ax

im
al
ly

po
ss
ib
le

re
so
lu
ti
on

in
en
er
gy

an
d

m
om

en
tu
m

sp
ac
e.

Se
co
nd

ro
w
:
tr
an

sv
er
se

st
ru
ct
ur
e
fa
ct
or

S
⊥

(ω
,q

)
[E
q.

(5
.4
)]
,
T
hi
rd

ro
w
:
lo
ng

it
ud

in
al

st
ru
ct
ur
e
fa
ct
or

S
‖ (
ω
,q

)
[E
q.

(5
.5
)]
.

W
hi
le

tr
an

sv
er
se

sp
in
–e
xc
it
at
io
ns

in
cr
ea
se

lin
ea
rl
y
in

en
er
gy

as
a
fu
nc
ti
on

of
fie
ld
,
th
e
lo
ng

it
ud

in
al

sp
in

ex
ci
ta
ti
on

s
do

no
t.

D
ec
re
as
in
g
m
ag
ne
ti
c
fie
ld

w
ill

in
cr
ea
se

th
e
lo
ng

it
ud

in
al

si
gn

al
,a

nd
lo
w
er

th
e
en
er
gy

fo
r
th
e
tr
an

sv
er
se

si
gn

al
.

Fo
r
lo
w

en
ou

gh
fie
ld
s
bo

th
tr
an

sv
er
se

an
d
lo
ng

it
ud

in
al

sp
in
–e
xc
it
at
io
ns

co
ex
is
t
at

th
e
sa
m
e
en
er
gy
.
T
he

m
ag

ne
ti
c
fo
rm

fa
ct
or

fo
r

C
r5

+
io
ns

ha
s
no

t
be

en
in
cl
ud

ed
,s

ys
te
m

te
m
pe

ra
tu
re

is
T

=
22

2
m
K
.



96 Origin of spin liquid behaviour in Ca10Cr7O28

the field induced polarisation of the spins. In addition, three bands of diffuse weekly–
dispersing longitudinal excitations are visible for fields below 4T. Those bands stay
constant in energy and therefore suggest excitations of multiple spins, with total spin
S=0, which do not couple to an external magnetic field. The lowest band is tight
to zero energy and becomes nearly flat at 1T, when the band–gap in the transverse
channel closes.

Transverse excitations

Fig. 5.10(a) shows transverse spin–wave branches in S⊥(q, ω) at T = 222 mK and
B=2 T. Energy slices along the low–energy band shows “ring” features [Fig. 5.10(g)],
a signature of the spin–liquid ground state of the BBK model, understandable by a
mapping to the further–neighbour Heisenberg model on the honeycomb lattice (details
are discussed in Section 5.5.1).

Intermediate and high energy bands in S⊥(q, ω) show quantitatively the same spin–
wave branches. Those branches are considered to correspond to dynamics within each
breathing–kagome layer, but happen at different energy scales and different intensity,
since ferromagnetic couplings within the layers [Table of Fig. 5.2(b)] are different.
Energy slices along the flat mode at S⊥(q, ω = 0.54 meV) in Fig. 5.10(e) show bow–tie
features of strong scattering intensity which are connected via pinch–points, located
at the Brillouin–zone centres. Those features are comparable to dynamical properties
in the cooperative paramagnetic regime of the classical antiferromagnetic Heisenberg
model on the kagome lattice [Fig. 1.6(c) in Section 1.3.2] and suggest a spin liquid
ground state with emergent Coulomb gauge structure. Hereby, additional features,
which would correspond to the development of

√
3 ×
√

3 coplanar order [compare to
Fig. 1.6(b) and Fig. 1.7(a)] have not be seen at the considered temperature.

Energy slices at slightly higher energy [Fig. 5.10(c)], compared to the flat band
reveal structure in the form of “half moons”, corresponding to the development of spin–
wave branches out of the flat band, as seen in Fig. 1.7(b) in Section 1.3.2 for the the
antiferromagnetic Heisenberg model on the kagome lattice.

Longitudinal excitations

Fig. 5.10(b) shows diffuse weakly–dispersing longitudinal bands in S‖(ω,q) at B=2 T
and T = 222 mK. The lowest band is tight to zero energy and shows, next to Bragg
peaks at the Brillouin zone centres, also intensity, which is circularly distributed around
every second Brillouin zone centre [Fig. 5.10(h)].

Energy slices along the flat mode at S⊥(q, ω = 0.39meV) in Fig. 5.10(f) show a
broad and weak distribution of intensity with zero weight in a small circular region
around every second Brillouin centre. Those longitudinal excitations cause a broaden-
ing of the pinch–point features in the transverse channel, as shown for lower fields in
Fig. 5.11. Energy slices at slightly higher energy [Fig. 5.10(d)], show broad intensity
distributions similar to the shape of a honeycomb lattice.

The origin of those longitudinal modes has not been clarified yet, but suggest im-
portant physical insights for a qualitative interpretation of the broadening of bow–tie
features seen in INS data [Fig. 5.6(a) and Fig. 5.6(b)].
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(a) S⊥(ω),q) (b) S‖(ω,q)

(c) S⊥(ω = 0.57meV,q) (d) S‖(ω = 0.51meV,q)

(e) S⊥(ω = 0.54meV,q) (f) S‖(ω = 0.39meV,q)

(g) S⊥(ω = 0.135meV,q) (h) S‖(ω = 0.015meV,q)

Figure 5.10: Spin dynamics in field show transverse and longitudinal exci-
tations. (a) Simulation results for S⊥(ω,q) [Eq. (5.4)] at B = 2T and T = 222 mK,
show six distinct branches of transverse spin–wave excitations. Constant energy–line
cuts can be seen in (c), (e) and (g). (b) Simulation results for S‖(ω,q) [Eq. (5.5)],
showing gapless, longitudinal spin excitations with weak signal. The magnetic form
factor for Cr5+ ions has not been included.
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(a) S(q, ω = 0.54 meV)

B = 2 T

(b) S(q, ω = 0.42 meV)

B = 1 T

(c) S(q, ω = 0.39 meV)

B = 0.5 T

(d) S⊥(q, ω = 0.54 meV) (e) S⊥(q, ω = 0.42 meV) (f) S‖(q, ω = 0.39 meV)

(g) S‖(q, ω = 0.39 meV) (h) S‖(q, ω = 0.39 meV) (i) S‖(q, ω = 0.39 meV)

Figure 5.11: Field dependency of transverse and longitudinal spin–
excitations at high–energy. Transverse and longitudinal spin excitations separate
for fields B ≥ 1 T and show at line cuts along the flat band in Fig. 5.10(a) pinch–points,
comparable to those in the classical antiferromagnetic Heisenberg model on the kagome
lattice [90, 115]. Decreasing magnetic field will increase the longitudinal signal, and
lower the energy for the transverse signal. For low enough fields both spin excitations
coexist at the same energy, which causes the broadening of pinch–points seen as in (c),
comparable to experimental INS data in Fig. 5.6(a).

Broadening of pinch-points

The evolution of the pinch–points down to low magnetic fields is shown in Fig. 5.11.
A decreasing magnetic field will increase the intensity signal of the longitudinal spin
excitations, while lowering the energy for the transverse excitations. For low enough
fields both spin excitations coexist at the same energy, which causes the broadening of
pinch–points seen as in Fig. 5.11(c). These signatures are comparable to experimental
INS data, as presented in Fig. 5.6(c) and Fig. 5.6(a).

5.5.3 Band–gap opening at B = 1 T

Analysing results obtained by MD simulations, as presented in Fig. 5.9 for dynamics
in the transverse channel [Eq. (5.4)] allows to make qualitative statements about the
closing of the lowest–lying band–gap in the model. Fig. 5.12 shows the minimal energy
∆ of the lowest lying band as a function of applied field B, determined by MD simu-
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Figure 5.12: Gap to transverse spin excitations as a function of applied
magnetic field. Estimation of the field–dependent energy–minimum of the lowest
band in the transverse channel S⊥(ω,q) [Eq. (5.4)], obtained from molecular dynamics
simulations of HBBK [Eq. (5.1)] for parameters of Ca10Cr7O28. Linear fit at high fields
provides the estimate of a bandgap touching at B = 1.0(5) T, which is consistent
with a systematic change of the heat–capacity measurements at 1 T in Ca10Cr7O28

[Fig. 5.1(b)].

lations. A linear interpolation of ∆ at high fields shows, that the lowest band touches
zero energy B ≈ 1 T. This result is consistent with experimental measurements of the
specific heat as a function of field, presented in [249].

5.5.4 Spin–liquid scenario in Ca10Cr7O28

Ca10Cr7O28 provides a new example of a gapless, two–dimensional spin liquid. The
lowest band shows “ring” features, seen and compared between inelastic neutron scat-
tering experiments for Ca10Cr7O28, pseudofermion functional renormalisation group
calculations and molecular dynamics simulations [Fig. 5.3 and Fig. 5.6].

The origin of this signature can be understood by a mapping of the bilayer breathing
kagome model onto the J1-J2 honeycomb model. For a specific parameter region in the
phase diagram, relevant to Ca10Cr7O28, this model allows for coexisting spiral ground
states with different momentum ordering q-vector. Highly degenerate ground states
with continuously varying momentum on a ring emerge and give rise to the spin–liquid
behaviour, seen in Ca10Cr7O28. In fact, such a class of spin liquids is referred to as
“spiral spin liquids” and showed already its presence, next to the J1-J2 Heisenberg
model on the honeycomb lattice [81] also e.g. in the the J1-J2-J3 model on the square
lattice [82] and the J1-J2 model on the diamond lattice [255, 256].

The analysis of the spin–wave spectrum could reveal a condensation of the lowest
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band to zero energy at B ≈ 1 T, consistent with a change of slope in the specific heat
for Ca10Cr7O28, seen in Fig. 5.1(b).

Ca10Cr7O28 also provides signatures of a Coulombic spin liquid at finite energies.
Higher energy bands show broad bow–tie features, which develop into pinch–points in
magnetic field, comparable to those in the classical antiferromagnetic Heisenberg model
on the kagome lattice [90, 114, 115]. However, at zero field, those transverse excitations
are “smeared” out in momentum space due to its coexistence with longitudinal spin–
excitations.

Longitudinal excitations form diffusive, weakly–dispersing gapless bands. The en-
ergy of those bands does not move in field, suggesting excitations of multiple spins,
with total spin S=0, which do not couple to an external magnetic field. This may be
linked to the fact that the magnetisation for Ca10Cr7O28, seen in Fig. 5.1(d) shows two
changes of slopes, at ≈ 1 T, and at around 11 T. The system seems not to be fully po-
larised at intermediate fields, rather than seemingly to enter another phase between 1
and 11 T, where other excitations suppress the system’s magnetisation. Such an effect,
even though at much larger field, has already be seen in LiCuVO4 [257] suggesting the
presence of a spin–nematic phase.

5.6 Conclusions

The aim of this chapter was to present a deeper understanding of the dynamical proper-
ties and signatures of the new spin–liquid candidate Ca10Cr7O28, a physical realisation
of a S=1/2 magnet on the bilayer breathing kagome (BBK) lattice. Experimental re-
sults, provided by Balz et al. [127, 249, 250] for the a.c. susceptibility and muon spin
relaxation showed that Ca10Cr7O28 is neither a spin glass, nor contains partial order,
down to 19 mK, which strongly suggests a spin–liquid ground state. Single crystal in-
elastic neutron scattering experiments show at zero field three excitation energy scales
with “ring” features at low energies and broad bow–tie features at higher energies [127].

In this work, a combination of classical Monte Carlo and molecular dynamics sim-
ulations of the Heisenberg model on the BBK lattice could provide high–resolution dy-
namical structure factors, comparable to previously measured inelastic neutron scatter-
ing (INS) results of Ca10Cr7O28 at finite fields. In field, the dynamical structure factor
could be separated into transverse and longitudinal channels, whereas the transverse
channel shows six doubly–degenerate spin–wave branches and the longitudinal channel
shows diffusive, weakly dispersing excitations of low intensity.

It has been shown that the ground state of Ca10Cr7O28 forms a spiral spin–liquid
coming from highly degenerate ground states with continuously varying momentum
on a ring. Ca10Cr7O28 also shows a Coulombic spin–liquid at finite energies and field,
characterised by pinch–points, comparable to those in the classical antiferromagnetic
Heisenberg model on the kagome lattice.

One of the remaining challenges is to explain the two changes of slope in the mag-
netisation at ∼ 1 T, and at ∼ 11 T [Fig. 5.1(d)]. A possible explanation is the formation
of magnon pairs, which could form a quasiparticle with effective S = 0, not coupling
to the magnetic field and suppressing the system’s magnetisation.

Another interesting suggestion for future work could point at the investigation of
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“doped” Ca10Cr7O28, where the Ca ions are exchanged with e.g. K for hole and Sc
for electron doping and possibly allow for superconducting properties. Also, chemical
pressure could shift the material within the classical phase diagram [Fig. 5.8(a)] to
regions, where the spin–liquid regime persists to even lower temperatures.





Chapter 6

Conclusions

“ Natürlich, wenn ein Gott sich erst sechs Tage plagt,
Und selbst am Ende bravo sagt,

Da muss es was Gescheites werden.”

Faust 1, Vers 2441 ff. (Mephistopheles)
Johann W. v. Goethe

Collective electron interactions in spin liquids suppress conventional ordering mech-
anisms and make their identification and classification in experiments rather compli-
cated. However, spin liquids do show thermodynamic and dynamic signatures, which
allow to distinguish them from each other due to their underlying physical nature. In
this thesis we tried to make a small contribution to the vast field of highly–frustrated
magnetism, by analysing thermodynamic and dynamic signatures of novel spin liquids
on kagome–like lattices.

We have first explored a simple Ising model on a variety of corner–sharing lattices
in two and three dimensions, by complementary analytical Husimi tree and numer-
ical Monte Carlo simulation techniques. The emerging phenomenon of a Curie–law
crossover, reflecting a crossover between Curie–laws for a high–temperature paramag-
net and a low–temperature collective paramagnet, turns out to be a unique fingerprint
of exotic physics in classical spin liquids, and explains the difficulty of making a precise
estimate of the Curie–Weiss temperature in experiments.

Describing the Curie–law crossover of spin liquids in the framework of a Husimi
tree calculation allows to validate the deviation of the susceptibility from the high–
temperature Curie–Weiss fit. It turns out, that the error for estimating the Curie–
Weiss temperature θcw increases significantly at low temperatures, where materials
show their spin–liquid properties. Also, some spin liquids are able to show a succes-
sion of Curie–law crossovers, due to a non–monotonic behaviour of correlations, which
produces a qualitatively wrong estimate of the sign of θcw and therefore the type of
dominant interactions in the system.

An example of multiple Curie–law crossovers in spin liquids provides the anisotropic
Ising model on the shuriken, a.k.a. square–kagome lattice, which is characterised by
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a rich phase diagram with multiple disordered phases, surviving down to zero tem-
peratures [1]. Here a binary paramagnetic (BPM) phase, composed of completely
decorrelated, locally ordered square plaquettes is surrounded by two classical spin liq-
uids. Thermal fluctuations spread the spin liquid phases into neighbouring regions of
the phase diagram, allowing for models which perform a double crossover from a high–
temperature paramagnet into a correlated spin liquid and back into a low–temperature
paramagnet (BPM phase). This process can be considered as a reentrant behaviour
[239, 240, 241, 242, 243] between disordered regimes, in absence of phase transitions,
representing an interesting mechanism to stabilise a paramagnetic (gas–like phase) at
temperatures below the regime of a classical spin liquid phase.

Possible future directions of this work might involve thermodynamic and dynamic
investigations of the classical Heisenberg model on the shuriken lattice, which is sup-
posed to also provide an extensive ground state degeneracy in the isotropic case [208,
215]. Order by disorder effects are expected to occur and form zero–energy fluctua-
tions, comparable to the “weather vane” modes found in the antiferromagnetic Heisen-
berg model on the kagome lattice. It would also be interesting to extend the Husimi
tree formalism to Heisenberg spins and verify its validity by a comparison to Monte
Carlo simulations. Results should be comparable in cooperative–paramagnetic regimes,
but should give different results at very low temperatures due to characteristic loop–
dynamics, which might not be accessible in Husimi tree calculations.

Pointing the focus to dynamical properties in spin liquids, we also studied the
low–temperature physics of the nearest–neighbour Heisenberg model on the bilayer
breathing kagome lattice, which has been motivated by very recent experiments on
Ca10Cr7O28 [127, 249, 250]. Semi–classical molecular–dynamics simulations, allowed
us to reproduce many features seen in inelastic neutron scattering experiments, and
provide a first explanation of the origin of a spin liquid phase in Ca10Cr7O28. Surpris-
ingly, we find that the magnetic excitations of Ca10Cr7O28 encode not one, but two
types of spin liquids; a gapless “spiral spin liquid”, with origin in an extensive ground
state degeneracy, understandable by a mapping onto the J1-J2 honeycomb model; and,
at finite energy, a coulombic spin liquid, familiar from the kagome–lattice antiferro-
magnet.

A mapping of the bilayer breathing kagome model onto the J1-J2 honeycomb model
provides the missing pice of the puzzle, for an explanation of the “ring” features, seen
in inelastic neutron scattering experiments for Ca10Cr7O28, pseudofermion functional
renormalisation group calculations and molecular dynamics simulations. For a specific
parameter region in the phase diagram, relevant to Ca10Cr7O28, this model allows for
two coexisting spiral ground states with different momentum ordering q-vectors. Highly
degenerate ground states with continuously varying momentum on a ring emerge and
give rise to the spin–liquid behaviour, seen in Ca10Cr7O28.

Higher energy bands show broad bow–tie features, which develop into pinch points
in magnetic field, comparable to those in the classical antiferromagnetic Heisenberg
model on the kagome lattice. However, at zero field, those transverse excitations are
“smeared” out in momentum space due to their coexistence with longitudinal spin
excitations.

Longitudinal excitations form diffusive, weakly dispersing gapless bands. Their
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energy does not move in field, suggesting excitations of multiple spins in form of magnon
pairs with total spin S=0, which do not couple to an external magnetic field. This might
link to the fact that the magnetisation for Ca10Cr7O28 shows two changes of slope at
∼ 1 T and ∼ 11T, indicating a transition between different phases. Such an effect,
even though at much larger fields, has already be seen in LiCuVO4 [257], suggesting
the presence of a spin–nematic phase.

Further investigations of quantum models on the bilayer breathing kagome lattice
with exact diagonalization, field theories and the formulation of tensor product states
in two dimensions might provide the methods to resolve missing pieces in understand-
ing the magnetic properties in Ca10Cr7O28 completely. Further suggestions for future
work on the experimental side, could point at the investigation of doped Ca10Cr7O28,
where the Ca ions are exchanged with e.g. K for hole and Sc for electron doping and
possibly allow for superconducting properties. Also, chemical pressure could shift the
material within the classical phase diagram to regions, where the spin–liquid regime
persists to even lower temperatures.

To conclude, this thesis presented various thermodynamic and dynamic signatures
in novel spin liquids on kagome–like lattices. Since spin liquids behave very different
from conventional magnets, a comprehensive understanding of their physical nature
helps to identify and classify them in theory and experiment.

Because spin liquids do not order or freeze, they show strong correlation effects
even at very low temperatures. The nature of those correlations can be directly used
to identify and classify them, as seen by single and multiple crossovers between high–
and low–temperature Curie–laws. Signatures of different spin liquids can be revealed in
spin–structure factors, as shown for a Coulombic spin liquid by pinch–point singularities
and a spiral spin liquid by ring signatures, both combined in one material: Ca10Cr7O28.

The knowledge of such signatures hopefully allows to find and identify new spin–
liquid materials in the future. Such signatures might not only be important to spin
liquids, but possibly also to superconducting materials, which require magnetic fluc-
tuating ground states. Large–scale Monte Carlo simulations might be improved by
parallelisation techniques available in GPU programming, and possibly can also be
extended to quantum models.
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A.1 Thermodynamics of classical oscillators
At low temperatures ordered magnets allow excitations to propagate through the lat-
tice. In the classical limit (S → ∞) these excitations can be treated as classical
oscillators with an energy

E =
p2

2m
+

1

2
κ2q

2 +
1

4!
κ4q

4 . (A.1)

Without loss of generality, the mass can be set to m = 1 and one writes:

E =
1

2
(p2 + ω2

0q
2) +

κ4
4!
q4 , (A.2)

where ω0 is the frequency of the oscillator. The energy considers also higher–order
terms in the expansion of the momentum–dependent energy in form of an quartic
term. The partition function will give

Z =
1

2π

∫
dpe−

β
2
p2
∫
dqe−

β
2
ω2
0q

2

e−
β
4!
κ4q4 . (A.3)

Considering first the general case with κ4 = 0 gives the unperturbed partition
function

Z =
T

4T0
, (A.4)

The internal energy and specific heat is

E0 = T 2 ∂

∂T
ln Z = T (A.5)

C0 =
∂

∂T
E0 = 1 , (A.6)

where one directly can see that the specific heat is insensitive of the oscillation frequency
ω0. Note that the free energy

F0 = −T ln Z (A.7)
= −T lnT + T ln 4ω0 , (A.8)
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and the entropy

S0 = −
(
∂F0

∂T

)
(A.9)

= lnT + 1− ln 4ω0 (A.10)

explicitly depends on ω0. That means that low frequency oscillations play a crucial
role in minimising the free energy of the system. Modes with very small frequencies
ω < 1/4 will raise the system’s entropy, and therefore reduce the free energy F0, a
typical order by disorder effect, where small oscillations in the system are preferred.
Small ω0 make the harmonic term in Eq. (A.2) vanish, which is why the consideration
of next–order anharmonic terms are essential.

In the case of anharmonic contributions in the energy, the partition function will
be

Z =
1

4

T

T0

[
1− T

2T0

]
(A.11)

where T0 = 4ω4/κ4 can be seen as an effective, mean–field treatment of interactions
between different oscillator modes. The anharmonic term will modify physical observ-
ables as

C = T − T

T0
, (A.12)

F = −T lnT + T ln 4ω0 +
T 2

2T0
, (A.13)

S = lnT + 1− ln 4ω0 −
T

T0
. (A.14)

Deviation away from C = 1 will count the number of modes in the system, which
explicitly in the case of the Heisenberg antiferromagnet on the kagome lattice is 11/12.
The case ω0 = 0 needs to be treated separately, since ln will diverge in this limit. Also,
this arguments do not depend on energy and can be seen in static spin configurations
as well.
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B.1 Detailed balance in parallel tempering
In order to show that the parallel tempering algorithm, presented in Section 2.2.5 with
Eq. (2.74) is correct, one needs to prove ergodicity and the sufficient detailed balance
condition. Parallel tempering, as a multicanonical sampling method just accounts for
the exchange of replicas, due to their energy and temperature properties. It does not
actively sample new spin configurations, which is why the ergodicity of the algorithm
is defined by the ergodicity of every individual joint Monte Carlo algorithm, as e.g.
the single–spin flip Metropolis algorithm, which is assumed to satisfy ergodicity and
detailed balance.

The detailed balance condition needs slightly more careful considerations. One con-
sider the joint probability pµν , stating that the system will be for the low temperature
Tlow in state µ and for the high temperature Thigh in state ν. This joint probability
needs to respect the Boltzmann distribution

pµν =
1

ZlowZhigh
e−βlowEµe−βhighEν , (B.1)

where Zlow and Zhigh are the partition functions of the two systems. Following the
detailed balance condition from Eq. (2.26) one can formulate:

P (µν → µ′ν ′)

P (µ′ν ′ → µν)
=
pµ′ν′

pµν
=
e−βlowEµ′e−βhighEν′

e−βlowEµe−βhighEν
. (B.2)

Three kinds of moves will occur in such a system. Two of them will be simple Monte
Carlo single–spin flip moves, one for the high temperature and one for the low tem-
perature system, where the third one will be the swap between these systems. The
sing–spin flip Monte Carlo moves respect detailed balance, which can be shown for the
case that in the low temperature system the state transforms from µ → µ′, while the
high temperature system dos not transform (ν → ν). Using Eq. (B.2) one can write:

P (µν → µ′ν)

P (µ′ν → µν)
=
e−βlowEµ′

e−βlowEµ
, (B.3)
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which is the simple detailed balance condition, provided by Eq. (2.29). Any single–spin
flip Monte Carlo move will satisfy this condition and therefore detailed balance. The
proof for the high–temperature system is identical.

In order to show, that the swapping move respects detailed balance as well, one
needs to consider the final states µ′ = ν and ν ′ = µ since we exchanged the high with
the low temperature system. Hereby one gets

P (µν → νµ)

P (νµ→ µν)
=
e−βlowEνe−βhighEµ

e−βlowEµe−βhighEν
= e−(βlow−βhigh)(Eν−Eµ) , (B.4)

which is the condition, provided by Eq. (2.74). Therefore each of the three moves
respects detailed balance and therefore also does the whole algorithm.

B.2 Linear spin–wave theory
Spin–wave theory is a very useful tool to study the magnetic excitation spectrum on
top of an ordered ground state. The basic concept of linear spin–wave theory shall
be visualised on the example of the antiferromagnetic Heisenberg model on the square
lattice and can be looked up in detail in the literature [258, 43]. Classically this model
shows a Néel–long range ordered ground state, while quantum fluctuations allow to
reduce its energy even further. The common Heisenberg model from Eq. (1.23) can be
rewritten for the specific case of the bipartite square lattice as

H = J

N/2∑
i∈A,δ

SiSi+δ ,

= J
∑
i∈A,δ

[
SziS

z
i+δ +

1

2

(
S+
i S
−
i+δ + S−i S

+
i+δ

)]
, (B.5)

where the sum has been performed just over the sublattice A, and S+ = Sx + iSy and
S− = Sx − iSy are the spin–ladder operators.

Magnons created on top of the classical ordered ground state can be described by
Holstein–Primakoff bosons with a distinction between different sublattice

Sublattice A Sublattice B
Ŝz S − â†â −S + b̂†b̂

Ŝ+
√

2S â
√

2S b̂†

Ŝ−
√

2S â†
√

2S b̂

This description corresponds to the linear order, specifying the theory to linear spin–
wave theory.

A Fourier transform of the bosonic operators into momentum space

â†i =
1√
N

N∑
k

e−irikâ†k , (B.6)

âi =
1√
N

N∑
k

eirikâk , (B.7)
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allows to express Eq. (B.5) in momentum space

H = H0 + H1 ,

H0 = −2JS2N , (B.8)

H1 = 4JS
∑
k

[
γk

(
âkb̂−k + â†−kb̂

†
k

)
+
(
â†kâk + b̂†kb̂k

)]
, (B.9)

where H0 corresponds to the classical Néel–ordered ground state energy and H1 to the
Hamiltonian describing spin excitations on top of it. The geometrical factor depends
on the real space lattice and is defined as

γk =
1

4

∑
δ

eikδ . (B.10)

However, this is not the end of the game yet. Unfortunately Eq. (B.9) does not show
a diagonal form, as it would be necessary to calculate its energy dispersion. Occupation
numbers of âk and b̂k are not conserved, in fact they mix.

In order to express Eq. (B.9) in an orthogonal basis, one needs to perform a Bo-
goliubov transformation.

âk = ukα̂k + vkβ̂
†
−k , â†k = ukα̂

†
k + vkβ̂−k , (B.11)

b̂k = ukβ̂k + vkα̂
†
−k , b̂k = ukβ̂

†
k + vkα̂−k . (B.12)

Hereby, the introduced operators α̂†, α̂ and β̂†, β̂, are defined on sublattice A and B
respectively and satisfy boson commutation relations

[α̂k, α̂
†
k′ ] = δk,k′ , (B.13)

[β̂k, β̂
†
k′ ] = δk,k′ , (B.14)

and the pre–factors uk and vk are constrained, such

u2k − v2k = 1 . (B.15)

Rewriting Eq. (B.9) in its symmetric form according to
∑

k = (
∑

k +
∑
−k)/2 allows

to obtain the an equation for H , which is diagonal in the occupation number

H = −2NS(S + 1) + 4JS
∑
k

√
1− γ2k

[(
α̂†kα̂k +

1

2

)
+
(
β̂†kβ̂k +

1

2

)]
, (B.16)

with the spin–wave dispersion

ωk = 4JS
√

1− γ2k . (B.17)

The spin–wave dispersion energy is hereby two–fold degenerate, since α̂† and β̂† in
Eq. (B.16) create magnons on each sublattice . In the long–wavelength limit

√
1− γ2k ≈

|k|a, whit a the lattice constant, thus the spectrum shows no presence of a excitation
gap

ωk ≈ 4JSa|k| , (B.18)
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and shows the presence of Goldstone modes. The ground state energy

E0 = −2JNS2 + 4JS
∑
k

(√
1− γk − 1

)
(B.19)

shows a value smaller than provided for the classical ground state H0 in Eq. (B.8), due
to the presence of quantum fluctuations.
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C.1 The shuriken lattice in Monte Carlo simulations

The definition of the shuriken lattice, as shown in Fig. 4.1(a) considers equilateral
triangles within the unit cell, whereas the site coordinates are

r1 = (−α,−α)a, r2 = (α,−α)a,

r3 = (α, α)a, r4 = (−α, α)a, (C.1)
r5 = (1/2, 0)a, r6 = (0, 1/2)a,

where the irrational number

α =
1

4
(
√

3− 1) (C.2)

is used to define the positions of sites within the unit cells. The origin of the unit cells
form a square lattice, with lattice constant a.

The structure factor for the lattice sites is defined as

I(q) =
1

Nuc

∣∣∣∑
i

e−iq·ri
∣∣∣2 , (C.3)

which sums over all Nuc unit cells within the whole lattice. Since the shuriken lattice
corresponds to a Bravais square lattice with six sites per unit cell, its structure factor
will also form a square lattice in reciprocal space with Bragg peaks located at

q = (qx, qy) =
2π

a
(n,m), n,m ∈ Z. (C.4)

As a function of n and m (set a = 1), the intensity of the structure factor will be
modulated as

I (q = 2π(n,m)) = Nuc

∣∣∣4 cos

(
π n

1 +
√

3

)
cos

(
π m

1 +
√

3

)
+ (−1)n + (−1)m

∣∣∣2 . (C.5)
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Figure C.1: The Husimi tree
for the shuriken lattice. The
Husimi tree is made of shuriken
unit cells and shows tow succes-
sive layers, which are connected
via sites on the B sublattice (same
colour code of shell as in Fig. 2.2
of Section 2.1). Even though
closed loops of size 8 and beyond
do not exist.

Since the relative coordinates of the lattice sites within the unit cell are irrational
[Eq. (C.1)], the phase factor in Eq. (C.5) will modulate I(q) such that it becomes
aperiodic, when restricted to the grid allowed q–values [Eq. (C.4)] in momentum space.
Such a behaviour causes the aperiodic pattern seen in the structure factor for the lattice
sites in Fig. 4.1(b) and also in the spin–spin correlation function in momentum space,
shown in Fig. 4.9(a) and Fig. 4.9(c). These complications due to the irrationality of α
disappear for non-equilateral triangles as shown in Appendix C.3.

C.2 The shuriken lattice on the Husimi tree
Fig. C.1 shows the Husimi tree for the shuriken lattice in the same convention as used
in Fig. 2.2 of Section 2.1. Branches from the central shell (red) do just evolve from
the B sites and do not allow for loops of size 8 and beyond. Following Eq. (2.12)
the partition function the A sites and B sites within the central shell will provide the
energy and entropy

E = −2

3

1 + 6ψφ+ 2φψ3 − ψ4

1 + 6ψ2 + ψ4
(C.6)

S =
1

6
ln 8 +

1

6
ln(1 + 6ψ2 + ψ4) +

2β

3

2ψ(ψ − φ)(3 + ψ2)

1 + 6ψ2 + ψ4

where

κ = 16 e4β
(
1 + 6ψ2 + ψ4

)
, (C.7)

ψ = e−2β cosh(2βx) , (C.8)
φ = e−2β x sinh(2βx) , (C.9)

and where we set kB = 1 with x defined in Eq. (4.4). The specific heat Ch is obtained
by a differentiation of the energy with respect to the temperature at zero magnetic
field. The susceptibility χ is obtained from evaluating Eq. (2.11) for the A and B sites
in the unit cell.
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C.3 The non–equilateral shuriken lattice
The relative positions of sites in the shuriken lattice [Fig. 4.1(a)] are irrational and
therefore cause very complex aperiodic structure factors [Fig. 4.1(b) and Fig. 4.9]. A
modification of the shuriken lattice, by transforming the equilateral triangles into non–
equilateral triangles reproduces a lattice as shown in Fig. C.2(a). It transforms into a
decorated square or Lieb lattice with nearest–neighbour interactions JAB and specific
further–neighbour interactions JAA.

The structure factor of the lattice sites [Fig. C.2(b)] reproduces the symmetry of
the square lattice in momentum space with a phase modulation affecting the intensity
I(q) [Eq. (C.3)] for the allowed q–points [Eq. (C.4)]. Spin–spin correlation functions
S(q) for Fig. C.2(c) x=-1, and (e) x = 1 show a simpler structure factor compared to
Fig. 4.9(a) and Fig. 4.9(b).

Since the length of the JAA bonds (red) in Fig. C.2(a) are not modified, and B sites
decorrelate ordered square plaquettes in the binary paramagnet phase (as discussed in
Section 4.2.2), the S(q) for (d) x = 0 shows the same pattern as in the shuriken lattice
with equilateral triangles [Fig. 4.9(b)].
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(a) (b)

(c) x = -1 (d) x = 0 (e) x = 1

Figure C.2: Non–equilateral triangles in the shuriken lattice. (a) The shuriken
lattice with non–equilateral triangles, forming a decorated square/Lieb lattice with
specific next–nearest neighbour interactions JAA. (b) Distribution and intensity of
Bragg peaks in reciprocal space, reproduces the symmetry of the square lattice in
momentum space. (c)–(e) Static structure factors for x = 0,±1 in order to compare
with Fig. 4.9(a)–(c).
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D.1 Magnetic form factor of Cr5+

In order to compare molecular dynamics simulations of the Heisenberg model on the
breathing kagome bilayer (BBK) model [Eq. (5.1)] to inelastic neutron scattering exper-
iments of Ca10Cr7O28, one needs to take the magnetic form–factor F (q) [see Eq. (2.100)
in Section 2.4.1] of the magnetic Cr5+ into account.

F (q) for 3-d transition metal ions is given by [259]:

F (k) = 〈j0〉(k) +

(
1− 2

g

)
〈j2〉(k) , (D.1)

where the gyromagnetic ratio is assumed to be g = 2. The necessary quantity is 〈j0〉,
which is given as

〈j0〉(k) = Ae−ak
2

+Be−bk
2

+ Ce−ck
2

+D (D.2)

From private communication with Christian Balz, coefficients in Eq. (D.2) have been
assigned to

A = −0.2602 , B = 0.33655 , C = 0.90596 , D = 0.0159 (D.3)
a = 0.03958 , b = 15.24915 , c = 3.2568 . (D.4)

Comparison of INS data has been done via Eq. (2.100) for k = |q|/4π.
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