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EQUIVALENCE OF SOLUTIONS OF EIKONAL EQUATION
IN METRIC SPACES

QING LIU, NAGESWARI SHANMUGALINGAM, AND XIAODAN ZHOU

Abstract. In this paper we prove the equivalence between some known notions of solu-
tions to the eikonal equation and more general analogs of the Hamilton-Jacobi equations
in complete and rectifiably connected metric spaces. The notions considered are that of
curve-based viscosity solutions, slope-based viscosity solutions, and Monge solutions. By
using the induced intrinsic (path) metric, we reduce the metric space to a length space
and show the equivalence of these solutions to the associated Dirichlet boundary prob-
lem. Without utilizing the boundary data, we also localize our argument and directly
prove the equivalence for the definitions of solutions. Regularity of solutions related to
the Euclidean semi-concavity is discussed as well.

1. Introduction

1.1. Background and motivation. In this paper, we are concerned with first order
Hamilton-Jacobi equations in metric spaces. The Hamilton-Jacobi equations in the Eu-
clidean spaces are widely applied in various fields such as optimal control, geometric optics,
computer vision, image processing. It is well known that the notion of viscosity solutions
provides a nice framework for the well-posedness of first order fully nonlinear equations;
we refer to [14, 6] for comprehensive introduction.

In seeking to further develop various fields such as optimal transport [5, 39], mean field
games [13], topological networks [38, 29, 1, 27, 28] etc., the Hamilton-Jacobi equations in a
general metric space (X, d) have recently attracted great attention, see for example [21, 22].
Typical forms of the equations include

H(x, u, |∇u|) = 0 in Ω, (1.1)

and its time-dependent version

∂tu+H(x, t, u, |∇u|) = 0 in (0,∞)× Ω (1.2)

with necessary boundary or initial value conditions. Here Ω ⊂ X is an open set and
H : Ω × R × [0,∞) → R is a given continuous function called the Hamiltonian of the
Hamilton-Jacobi equation. While ∂t denotes the time differentiation, |∇u| stands for a
generalized notion of the gradient norm of u in metric spaces.

In this paper we pay particular attention to the so-called eikonal equation

|∇u|(x) = f(x) in Ω. (1.3)

Here f : Ω→ [0,∞) is a given continuous function satisfying

inf
Ω
f > 0.
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The eikonal equation in the Euclidean space has important applications in various fields
such as geometric optics, electromagnetic theory and image processing [30, 33].

Several new notions of viscosity solutions have recently been proposed in the general
metric setting. We refer the reader to Section 2 for a review with precise definitions and
basic properties of solutions, and to the relevant papers we mention below.

Using rectifiable curves in the space X, Giga, Hamamuki and Nakayasu [22] discussed
a notion of metric viscosity solutions to (1.3) and established well-posedness under the
Dirichlet condition

u = ζ on ∂Ω, (1.4)
where ζ is a given bounded continuous function on ∂Ω satisfying an appropriate regularity
assumption to be discussed later. In the sequel, this type of solutions will be called curve-
based solutions (or c-solutions for short). The definition of c-solutions (Definition 2.1)
essentially relies on optimal control interpretations along rectifiable curves and requires
very little structure of the space. The same approach is used in [34] to study the evolu-
tion problem (1.2) with the Hamiltonian H(x, p) convex in p. Moreover, unique viscosity
solutions of the eikonal equation in the sense of [22] are also constructed on fractals like
the Sierpinski gasket [10].

On the other hand, when (X, d) is a complete geodesic space, by interpreting |∇u| as
the local slope of a locally Lipschitz function u, Ambrosio and Feng [4] provide a different
viscosity approach to (1.2) for a class of convex Hamiltonians. This was extended to
the class of potentially nonconvex Hamiltonians H by Gangbo and Święch [20, 21], who
proposed a generalized notion of viscosity solutions via appropriate test classes and proved
uniqueness and existence of the solutions to more general Hamilton-Jacobi equations in
length spaces. Stability and convexity of such solutions are studied respectively in [35]
and in [31]. Since this definition of solutions is based on the local slope, we shall call
them slope-based solutions (or s-solutions for short) below. See the precise definition in
Definition 2.3.

Since either approach above provides a generalized viscosity solution theory for first
order nonlinear equations, especially the uniqueness and existence results, it is natural
to expect that they actually agree with each other in the wider setting of metric spaces.
This motivates us to explore the relations between both types of viscosity solutions and to
understand further connections to other possible approaches.

1.2. Equivalence of solutions to the Dirichlet problem. In the first part of this
work (Section 3), we compare c- and s-solutions of the eikonal equation and show their
equivalence when continuous solutions to the Dirichlet problem exist. To this end, we
assume that (X, d) is complete and rectifiably connected; namely, for any x, y ∈ X, there
exists a rectifiable curve in X joining x and y.

Our key idea is to use the induced intrinsic metric of the space X, which is given by

d̃(x, y) = inf{`(ξ) : ξ is a rectifiable curve connecting x and y} (1.5)

for x, y ∈ X, where `(ξ) denotes the length of the curve ξ with respect to the original
metric d. It is then easily seen that (X, d̃) is a length space. Since this change of metric
preserves the property of c-solutions, we can directly compare the notion of c-solutions in
(X, d) with s-solutions in (X, d̃). In order to preserve the completeness of the metric space,
we assume throughout the paper that

d̃→ 0 as d→ 0. (1.6)
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Before introducing our main results, we emphasize that in the sequel, by “local” we mean
the property in question holds in sufficiently small open balls with respect to the intrinsic
metric of the space.

Our first main result is as follows.

Theorem 1.1 (Equivalence between c- and s-solutions). Let (X, d) be a complete rectifiably
connected metric space and d̃ be the intrinsic metric given by (1.5). Assume that (X, d)
also satisfies (1.6). Suppose that Ω ( X is an open set bounded with respect to the metric
d̃. Assume that f ∈ C(Ω) satisfies infΩ f > 0. If u is a c-solution of (1.3) with respect
to d, then u is a locally Lipschitz s-solution of (1.3) with respect to d̃. In addition, if f is
uniformly continuous in Ω, ζ is uniformly continuous on ∂Ω, and there exists a modulus
of continuity σ such that

|ζ(y)− u(x)| ≤ σ(d̃(x, y)) for all x ∈ Ω and y ∈ ∂Ω, (1.7)

then u is the unique c-solution and s-solution of (1.3) satisfying (1.7).

In the second result of the theorem above, we can replace the assumptions of uniform
continuity of u and f by their continuity if (X, d) is additionally assumed to be proper,
that is, any bounded closed subset of X is compact.

As the metric d was replaced with the metric d̃, the proof of the first statement in
Theorem 1.1 is more or less analogous to the classical arguments to show the relation
between a viscosity solution and its optimal control interpretation (cf. [6]).

The c-solutions and f considered in [22] are in general only continuous along curves, and
therefore might not be continuous with respect to either the metric d or the metric d̃; see
[22, Example 4.9]. Here we assume the stronger requirement of continuity with respect to
the metric d. Then (1.7) in the second result of Theorem 1.1 guarantees that the c-solution
u is uniformly continuous up to ∂Ω. Recall that the comparison principle (and thus the
uniqueness) for s-solutions [21] needs such an assumption. More precisely, it was shown in
[21, Theorem 5.3] that any s-subsolution u and any s-supersolution v satisfy u ≤ v in Ω
whenever there exists a modulus σ such that

u(x) ≤ ζ(y) + σ(d̃(x, y)), v(x) ≥ ζ(y)− σ(d̃(x, y)) (1.8)

for all x ∈ Ω and y ∈ ∂Ω. One thus needs to use (1.7) to validate the comparison principle
and conclude the uniqueness and equivalence. In Section 3.3, for the sake of completeness,
sufficient conditions for (1.7) are discussed.

1.3. Local equivalence of solutions. Our result in Theorem 1.1 states that c- and s-
solutions of (1.3) coincide. However, we show the equivalence in presence of the Dirichlet
boundary condition so as to use the comparison principle. One may wonder about a more
direct proof of the equivalence without using the boundary condition.

The second part of this work is devoted to answering this question. Our method is based
on localization of our arguments in the first part. To this end, we introduce a local version
of the notion of c-solutions, which we call local c-solutions, by restricting the definition in
a small metric ball centered at each point in Ω; see Definition 2.2. We also include a third
notion, called Monge solutions, in our discussion. We compare locally the notions of s-,
local c-, and Monge s olutions of (1.3) in a complete length space.

The Monge solution is known to be an alternative notion of solutions to Hamilton-Jacobi
equations in Euclidean spaces [36, 7]. In a complete length space (X, d), our generalized
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definition of Monge solutions to (1.3) is quite simple; it only requires a locally Lipschitz
function u to satisfy

|∇−u|(x) = f(x) for every x ∈ Ω,
where |∇−u|(x), given by

|∇−u|(x) = lim sup
y→x

max{u(x)− u(y), 0}
d(x, y)

,

denotes the sub-slope of u at x; see also the definition in (2.8). One advantage of this
notion is that it does not involve any viscosity tests and the comparison principle can be
easily established. We show that locally uniformly continuous c-, s- and Monge solutions
of the eikonal equation are actually equivalent under a weaker positivity assumption on f .
A more precise statement is given below.

Theorem 1.2 (Local equivalence between solutions of eikonal equation). Let (X, d) be
a complete length space and Ω ⊂ X be an open set. Assume that f is locally uniformly
continuous and f > 0 in Ω. Let u ∈ C(Ω). Then the following statements are equivalent:

(a) u is a local c-solution of (1.3);
(b) u is a locally uniformly continuous s-solution of (1.3);
(c) u is a Monge solution of (1.3).

In addition, if any of (a)–(c) holds, then u is locally Lipschitz with

|∇u|(x) = |∇−u|(x) = f(x) for all x ∈ Ω. (1.9)

We actually prove more:

• The notions of all locally uniformly continuous subsolutions are equivalent and
locally Lipschitz (Proposition 4.5, Proposition 4.6);
• The notions of locally Lipschitz s-supersolutions and Monge supersolutions are
equivalent (Proposition 4.7(i));
• Any locally Lipschitz local c-supersolution is a Monge supersolution (Proposition
4.7(ii));
• Any Monge solution is a local c-solution (Proposition 4.8).

We however do not know whether an s- or Monge supersolution needs to be a local c-
supersolution.

In proving Theorem 1.2, it turns out that the local Lipschitz continuity of solutions
is an important ingredient. Note that the local Lipschitz continuity holds for Monge
solutions by definition, and it can be easily deduced for c-subsolutions as well because
the space (X, d̃) is a length space, as shown in Lemma 3.3. In contrast, the Lipschitz
regularity of s-solutions of (1.3) is less straightforward. Our proof requires the assumption
on the local uniform continuity of s-solutions and f due to possible lack of compactness
for general length spaces. As stated in Corollary 4.10, we can remove such an assumption
if (X, d) is proper (and therefore the length space space X is a geodesic space because
of the generalized Hopf-Rinow theorem in metric spaces [24, 9], which can be viewed as
an immediate consequence of the Arzela-Ascoli theorem). The notions of continuity and
uniform continuity in a compact set are clearly equivalent.

In this work we will assume that (X, d) satisfies the hypotheses of Theorem 1.1. It is
worth stressing that in this section (X, d) is assumed to be a length space only for simplicity
from the point of view of c-solutions. The s-solutions and Monge solutions are not defined
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for the case that X is not a length space. For metric spaces that are not length spaces, the
slopes in the definition of s-solutions and Monge solutions require us to replace the metric
d with d̃.

It is not difficult to extend our discussion on the equivalence to the general equation (1.1)
under a monotonicity assumption on p → H(x, r, p). When p → H(x, r, p) is strictly
increasing, we can simply apply an implicit-function-type argument to locally reduce the
problem to the eikonal equation.

Besides, as in (1.9) in Theorem 1.2, in this general case for any solution u we can obtain
the continuity of |∇u| as well as the following property:

|∇u|(x) = |∇−u|(x) for all x ∈ Ω; (1.10)

in other words, the solution itself actually lie in the test class for s-subsolutions proposed
in [20, 21]. This type of properties also appears in the study of time-dependent Hamilton-
Jacobi equations on metric spaces (cf. [32]). Our analysis reveals that (1.10) resembles
the semi-concavity in the Euclidean space. In fact, in the Euclidean space, (1.10) implies
the existence of a C1 test function everywhere from above, which is a typical property
of semi-concave functions. We expect more applications of the regularity property (1.10),
since in general metric spaces defining convex functions is not trivial at all. It would be
interesting to see further properties on such regular solutions in relation to the structure
of PDEs and the geometric property.

The rest of the paper is organized as follows. In Section 2, we review the definitions
and properties of c- and s-solutions of Hamilton-Jacobi equations in metric spaces. Section
3 is devoted to the proof of Theorem 1.1. In Section 4 we propose the notion of Monge
solutions and prove Theorem 1.2.

Acknowledgements. The work of the first author was supported by JSPS Grant-in-
Aid for Scientific Research (No. 19K03574). The work of the second author is partially
supported by the grant DMS-#1800161 of the National Science Foundation (U.S.A.). The
work of the third author was supported by JSPS Grant-in-Aid for Research Activity Start-
up (No. 20K22315).

2. Metric viscosity solutions of Hamilton-Jacobi equations

In this section we review the two notions of viscosity solutions to Hamilton-Jacobi
equations in metric spaces, mentioned in the first section. We focus on the stationary
equation (1.1) and particularly the eikonal equation (1.3).

In the setting of general metric spaces, one needs to have an analog of |∇u|. To do so,
let us recall the definitions of viscosity solutions in [22] and [21].

2.1. Curve-based solutions. Given an interval I = [a, b] ⊂ R and a continuous function
(curve) ξ : I → Ω, we define the length of γ by

`(ξ) := sup
a=t0<t1<···<tk=b

k−1∑
j=0

d(ξ(tj), ξ(tj+1)).

Note that if `(ξ) <∞, then the real-valued function sξ : [a, b]→ [0, `(γ)] defined by

sξ(t) := `(ξ|[a,t])
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is a monotone increasing function, and hence it is differentiable at almost every t ∈ [a, b].
We denote s′ξ by |ξ′|, which can be equivalently defined by

|ξ′|(t) = lim
τ→0

d(ξ(t+ τ), ξ(t))

|τ |
for almost every t ∈ (a, b). Note that if ξ is an absolutely continuous curve (and so sξ is
absolutely continuous real-valued function), then

sξ(t) =

ˆ t

a
|ξ′|(τ) dτ

for all t ∈ [a, b].

For any interval I ⊂ R, we say an absolutely continuous curve ξ : I → X is admissible if

|ξ′| ≤ 1 a.e. in I.

Note that these are 1-Lipschitz curves. Let A(I,X) denote the set of all admissible curves
in X defined on I; without loss of generality, we only consider intervals I for which 0 ∈ I.
For any x ∈ X, we write ξ ∈ Ax(I,X) if ξ(0) = x. We also need to define the exit time
and entrance time of a curve ξ:

T+
Ω [ξ] := inf{t ∈ I : t ≥ 0, ξ(t) /∈ Ω};
T−Ω [ξ] := sup{t ∈ I : t ≤ 0, ξ(t) /∈ Ω}.

(2.1)

Since any absolutely continuous curve is rectifiable and one can always reparametrize a
rectifiable curve by its arc length (cf. [25, Theorem 3.2]), hereafter we do not distinguish
the difference between an absolutely continuous curve and a rectifiable (or Lipschitz) curve.

Definition 2.1 (Definition 2.1 in [22]). An upper semicontinuous (USC) function u in Ω
is called a curve-based viscosity subsolution or c-subsolution of (1.3) if for any x ∈ Ω and
ξ ∈ Ax(R,Ω), we have ∣∣φ′(0)

∣∣ ≤ f(x) (2.2)
whenever φ ∈ C1(R) such that t 7→ u(ξ(t)) − φ(t), t ∈ ξ−1(Ω), attains a local maximum
at t = 0.

A lower semicontinuous (LSC) function u in Ω is called a curve-based viscosity super-
solution or c-supersolution of (1.3) if for any ε > 0 and x ∈ Ω, there exists ξ ∈ Ax(R,X)
and w ∈ LSC(T−, T+) with −∞ < T± = T±Ω [ξ] <∞ such that

w(0) = u(x), w ≥ u ◦ ξ − ε, (2.3)

and ∣∣φ′(t0)
∣∣ ≥ f(ξ(t0))− ε (2.4)

whenever φ ∈ C1(R) such that w(t) − φ(t) attains a minimum at t = t0 ∈ (T−, T+). A
function u ∈ C(Ω) is said to be a curve-based viscosity solution or c-solution if it is both
a c-subsolution and a c-supersolution of (1.3).

In the definition of supersolutions, in general we cannot merely replace w with u ◦ ξ.
Suppose that X is not a geodesic space but a length space. When f ≡ 1, as we expect
that the distance function u = d(·, x0) is still a solution for any x0 ∈ X, the supersolution
property for u ◦ ξ without approximation would imply that ξ is a geodesic, which is a
contradiction.

The regularity of u above can be relaxed, since we only need its semicontinuity along
each curve ξ. In fact, one can require a c-subsolution (resp., c-supersolution) to be merely
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arcwise upper (resp., lower) semicontinuous; consult [22] for details. However, in order to
obtain our main results in this paper, we need to impose the conventional continuity of u
rather than the arcwise continuity.

The notions of c-subsolutions and c-supersolutions with respect to the metric d and
the intrinsic metric d̃ given in (1.5) are equivalent. Note that ξ is a curve with respect
to d if and only if it is a curve with respect to d̃ because of our assumption (1.6). It
can also be seen that the speed |ξ′| of the curve remains the same in both metrics; see
Lemma 3.1. Hence, the class of admissible curves in Definition 2.1 does not depend on the
choice between d and d̃.

Although there seems to be no requirement on the metric space in the definition above,
it is implicitly assumed in the definition of the c-supersolution that each point x ∈ Ω can
be connected to the boundary ∂Ω by a curve of finite length.

Uniqueness of c-solutions of (1.3) with boundary data (1.4) is shown by proving a
comparison principle [22, Theorem 3.1]. The existence of solutions in C(Ω), on the other
hand, is based on an optimal control interpretation; in particular, it is shown in [22,
Theorem 4.2 and Theorem 4.5] that

u(x) = inf
ξ∈Cx

{ˆ T+
Ω [ξ]

0
f(ξ(s)) ds+ ζ

(
ξ(T+

Ω [ξ])
)}

(2.5)

is a c-solution of (1.3) and (1.4) provided that for each x ∈ Ω we have

Cx :=
{
ξ ∈ Ax([0,∞),X) : T+

Ω [ξ] ∈ (0,∞)
}
6= ∅

and ζ satisfies a boundary regularity, see (3.17) below.

Note in the definition of c-supersolution, for each (x, ε) the conditions (2.3) and (2.4)
for (ξ, w) are satisfied for all t ∈ (T−, T+). We localize this definition as follows. Recall
the notions of T±O [ξ] for open sets O ⊂ X from (2.1).

Definition 2.2 (Local curve-based solutions). A function u ∈ LSC(Ω) is said to be a
local c-supersolution if for each x ∈ Ω there exists r > 0 with Bd

r (x) ⊂ Ω, and for each
ε > 0 we can find a curve ξε ∈ Ax(R,X) with ξε(0) = x and a function w ∈ LSC(t−r , t

+
r )

with t−r := T−
Bdr (x)

[ξε] and t+r := T+
Bdr (x)

[ξε] such that

w(0) = u(x), w(t) ≥ u ◦ ξε(t)− ε for all t ∈ (t−r , t
+
r ),

and ∣∣φ′(t0)
∣∣ ≥ f(ξε(t0))− ε

whenever φ ∈ C1(R) such that w(t) − φ(t) attains a minimum at t = t0 ∈ (t−r , t
+
r ). A

function u ∈ C(Ω) is said to be a local c-solution if it is both a c-subsolution and a local
c-supersolution of (1.3).

In the definition of local c-supersolutions given above, the ball Bd
r (x) is taken with

respect to d. If (X, d) is a complete rectifiably connected metric space such that the intrinsic
metric d̃ defined in (1.5) satisfies the consistency condition (1.6), then it is equivalent to
use metric balls Br(x) with respect to d̃. This definition is studied mainly in Section 4,
where we assume (X, d) to be a length space. For length spaces balls with respect to d
and balls with respect to d̃ are the same, that is, Bd

r (x) = Br(x).

A c-supersolution (resp., c-solution) is clearly a local c-supersolution (resp., local c-
solution), but it is not clear to us whether the reverse is also true in general. The notion
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of c-subsolutions is already a localized one, and we therefore do not have to define “local
c-subsolutions” separately.

2.2. Slope-based solutions. We next discuss the definition proposed in [20], which relies
more on the property of geodesic or length metric. We denote by Liploc(Ω) the set of locally
Lipschitz continuous functions on an open subset Ω of a complete length space (X, d). For
u ∈ Liploc(Ω) and for x ∈ Ω, we define the local slope of u to be

|∇u|(x) := lim sup
y→x

|u(y)− u(x)|
d(x, y)

. (2.6)

Let
C(Ω) := {u ∈ Liploc(Ω) : |∇+u| = |∇u| and |∇u| is continuous in Ω},
C(Ω) := {u ∈ Liploc(Ω) : |∇−u| = |∇u| and |∇u| is continuous in Ω},

(2.7)

where, for each x ∈ X,

|∇±u|(x) := lim sup
y→x

[u(y)− u(x)]±
d(x, y)

(2.8)

with [a]+ := max{a, 0} and [a]− := −min{a, 0} for any a ∈ R. In this work we call |∇+u|
and |∇−u| the (local) super- and sub-slopes of u respectively; they are also named super-
and sub-gradient norms in the literature (cf. [32]).

Concerning the test functions in a general geodesic or length space (X, d), it is known
that, for any k ≥ 0, x0 ∈ X, the function x 7→ kϕ(d(x, x0)) (resp., x 7→ −kϕ(d(x, x0)))
belongs to the class C(Ω) (resp., C(Ω)) provided that ϕ ∈ C1([0,∞)) satisfies ϕ′(0) = 0
and ϕ′ ≥ 0; see details in [20, Lemma 7.2] and [21, Lemma 2.3].

Now we recall from [21] the definition of s-solutions of a general class of Hamilton-Jacobi
equations. Following [21], we first extend the definition of H(x, ρ, p) for p < 0 by setting

H(x, ρ, p) = H(x, ρ, 0) for (x, ρ, p) ∈ Ω× R× (−∞, 0). (2.9)

Definition 2.3 (Definition 2.6 in [21]). An USC (resp., LSC) function u in an open set Ω ⊂
X is called a slope-based viscosity subsolution (resp., slope-based viscosity supersolution)
or s-subsolution (resp., s-supersolution) of (1.1) if

H|∇ψ2|∗(x)(x, u(x), |∇ψ1|(x)) ≤ 0 (2.10)(
resp., H |∇ψ2|∗(x)(x, u(x), |∇ψ1|(x)) ≥ 0

)
(2.11)

holds for any ψ1 ∈ C(Ω) (resp., ψ1 ∈ C(Ω)) and ψ2 ∈ Liploc(Ω) such that u−ψ1−ψ2 attains
a local maximum (resp., minimum) at a point x ∈ Ω, where, for any (x, ρ, p) ∈ Ω×R×R
and a ≥ 0,

Ha(x, ρ, p) = inf
|q−p|≤a

H(x, ρ, q), Ha(x, ρ, p) = sup
|q−p|≤a

H(x, ρ, q)

and |∇ψ2|∗(x) = lim supy→x |∇ψ2|(y). We say that u ∈ C(Ω) is an s-solution of (1.1) if it
is both an s-subsolution and an s-supersolution of (1.1).

In the case of (1.3), we can define subsolutions (resp., supersolutions) by replacing (2.10)
(resp., (2.11)) with

|∇ψ1|(x) ≤ f(x) + |∇ψ2|∗(x) (2.12)

(resp., |∇ψ1|(x) ≥ f(x)− |∇ψ2|∗(x)) . (2.13)
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When X = RN , it is not difficult to see that C1(Ω) ⊂ C(Ω) ∩ C(Ω) for any open set
Ω ⊂ X. Hence, s-subsolutions, s-supersolutions and s-solutions of (1.1) in this case reduce
to conventional viscosity subsolutions, supersolution and solutions respectively.

Comparison principles for s-solutions are given in [21, Theorem 5.3] for the eikonal equa-
tion and in [21, Theorem 5.1, Theorem 5.2] for more general Hamilton-Jacobi equations.

3. Equivalence between curve- and metric-based solutions

We give a proof of Theorem 1.1 in this section. Let us begin with some elementary
results on the space X with the intrinsic metric d̃. Then we show that any c-subsolutions
and c-supersolutions are respectively s-subsolutions and s-supersolutions.

3.1. Metric change. Let (X, d) be a complete rectifiably connected metric space. We
compare the notions of viscosity solutions to (1.3) provided respectively in Definition 2.1
and in Definition 2.3. The key to our argument is to use (1.5) to connect the geometric
setting of two notions.

It is clear that
d(x, y) ≤ d̃(x, y) for all x, y ∈ X. (3.1)

Therefore bounded sets in (X, d̃) are bounded in (X, d). Under the assumption of rectifiable
connectedness of (X, d), we also see that d̃(x, y) < ∞ for any x, y ∈ X and d̃ is a metric
on X. Moreover, by (3.1), it is clear that open sets in (X, d) are also open in (X, d̃).

The metric d̃ is also used in [22] to study the continuity and stability of c-solutions. In
the rest of this work, Br(x) denotes the open ball centered at x ∈ X with radius r > 0

with respect to the intrinsic metric d̃.

The induced intrinsic structure leads us to the following elementary fact that (X, d̃) is a
length space. One can find this classical result in [8, Proposition 2.3.12] and [37, Corollary
2.1.12] for instance. See also [17] for the arc-length parametrization of rectifiable curves
with respect to d and with respect to d̃.

Lemma 3.1 (Length space under intrinsic metric). Assume that (X, d) is a complete
rectifiably connected metric space. Let d̃ be the intrinsic metric of a metric space (X, d)

as defined in (1.5). Then (X, d̃) is a length space. Moreover, for any rectifiable curve ξ,
ξ(s) : I → X is a parametrization with respect to d if and only if it is a parametrization
with respect to d̃ and the speed |ξ′| in both metrics coincide.

We remark that a similar intrinsic metric is constructed in [15, 16, 17] involving a given
measure on the space. Ours is standard and simpler, since measures do not play a role in
the current work.

The completeness of the metric space is needed to properly define s-solutions under the
metric d̃. Note that (X, d̃) is complete if (X, d) is complete, since d ≤ d̃ holds and (X, d)
satisfies the condition (1.6).

3.2. Equivalence between solutions of the Dirichlet problem. Let us start proving
Theorem 1.1. We first prove that any c-subsolution is an s-subsolution. We need the
following characterization of c-subsolutions given in [22].
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Proposition 3.2 (Proposition 2.6 in [22]). Assume that f ∈ C(Ω) with f ≥ 0 in Ω. Let
u be upper semicontinuous in Ω. Then the following statements are equivalent:

(1) u is a c-subsolution of (1.3) in (Ω, d).

(2) The inequality

u(ξ(t1)) ≤
ˆ t2

t1

f(ξ(r)) dr + u(ξ(t2)) (3.2)

for all ξ ∈ A(R,Ω) and t1, t2 ∈ R with t1 < t2.

Such characterization enables us to deduce the local Lipschitz continuity of c-subsolutions
with respect to the metric d̃.

Lemma 3.3 (Local Lipschitz continuity of c-subsolutions). Let (X, d) be a complete rec-
tifiably connected metric space and d̃ be the intrinsic metric given by (1.5). Assume that
(1.6) holds. Let Ω ( X be an open set. Assume that f ∈ C(Ω) and f ≥ 0 in Ω. If u is
upper semicontinuous in Ω and is a c-subsolution of (1.3) in (Ω, d), then u ∈ Liploc(Ω). In
particular, for any x0 ∈ Ω and r > 0 such that B2r(x0) ⊂ Ω and f is bounded in B2r(x0),
u satisfies

|u(x)− u(y)| ≤ d̃(x, y) sup
B2r(x0)

f for all x, y ∈ Br(x0). (3.3)

Proof. Fix arbitrarily x0 ∈ Ω and r > 0 small such that B2r(x0) ⊂ Ω (with respect to d̃)
and f is bounded on B2r(x0). For any x, y ∈ Br(x0) and any 0 < ε < 2r − d̃(x, y), there
exists an arc-length parametrized rectifiable curve ξ0 joining x and y satisfying

`(ξ0) ≤ d̃(x, y) + ε < 2r.

It follows that ξ0 ⊂ B2r ⊂ Ω. Applying the characterization of c-subsolutions in Proposi-
tion 3.2(ii) with ξ = ξ0, we have

u(x)− u(y) ≤ (d̃(x, y) + ε) sup
B2r(x0)

f.

Passing to the limit ε→ 0, we get

u(x)− u(y) ≤ d̃(x, y) sup
B2r(x0)

f.

Exchanging the roles of x and y, we thus obtain (3.3). �

We next continue to use Proposition 3.2 to show that c-subsolutions of (1.3) are s-
subsolutions with respect to the metric d̃.

Proposition 3.4 (Implication of subsolution property). Let (X, d) be a complete rectifiably
connected metric space and d̃ be the intrinsic metric given by (1.5). Assume that (1.6)
holds. Let Ω ( X be an open set. Assume that f ∈ C(Ω) and f ≥ 0 in Ω. If u is upper
semicontinuous in Ω and is a c-subsolution of (1.3) in (Ω, d), then u is an s-subsolution
of (1.3) in (Ω, d̃).

Proof. Since (X, d̃) is a length space, our notation Liploc(Ω) now denotes the set of all
locally Lipschitz functions on Ω with respect to the intrinsic metric d̃. Note that if u is
upper semicontinuous with respect to the metric d, then it is upper semicontinous with
respect to d̃, since d̃→ 0 if and only if d→ 0 due to (1.5) and (1.6).
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Fix x0 ∈ Ω arbitrarily. Assume that there exists ψ1 ∈ C(Ω) and ψ2 ∈ Liploc(Ω) such
that u − ψ1 − ψ2 attains a local maximum at a point x0. So there is some r0 > 0 with
B2r0(x0) ⊂ Ω such that

u(x)− u(x0) ≤ (ψ1 + ψ2)(x)− (ψ1 + ψ2)(x0)

for all x ∈ Br0(x0).

Moreover, for any fixed ε ∈ (0, 1), by the continuity of f , we can make 0 < r0 smaller
so that

|f(x)− f(x0)| ≤ ε (3.4)
if x ∈ Br0(x0). We fix such r0 > 0 (and keep in mind that r0 now also depends on ε).

For any r ∈ (0, r0/2) and any x ∈ Ω with 0 < d̃(x, x0) < r, there exists an arc-length
parametrized curve ξ in Ω such that ξ(0) = x0 and ξ(t) = x, where

t = `(ξ) ≤ d̃(x, x0) + εd̃(x, x0). (3.5)

Applying Proposition 3.2 for such a curve with t1 = 0, t2 = t, we get

u(x0) ≤
ˆ t

0
f(ξ(s)) ds+ u(x),

and therefore,

(ψ1 + ψ2)(x0)− (ψ1 + ψ2)(x) ≤
ˆ t

0
f(ξ(s)) ds.

Dividing the inequality above by d̃(x, x0), we get

ψ1(x0)− ψ1(x)

d̃(x, x0)
≤ 1

d̃(x, x0)

ˆ t

0
f(ξ(s)) ds+

ψ2(x)− ψ2(x0)

d̃(x, x0)
. (3.6)

Since ε < 1 and r < r0/2, we have

d̃(ξ(s), x0) ≤ t ≤ r + εr < r0

for all s ∈ [0, t], by (3.4). Therefore

f(ξ(s)) ≤ f(x0) + ε

for all s ∈ [0, t]. Hence (3.6) yields
ψ1(x0)− ψ1(x)

d̃(x, x0)
≤ t

d̃(x, x0)
(f(x0) + ε) +

ψ2(x)− ψ2(x0)

d̃(x, x0)
.

Using (3.5) and recalling that the choice of r0 depends on ε, we thus have
ψ1(x0)− ψ1(x)

d̃(x, x0)
≤ (1 + ε)(f(x0) + ε) +

ψ2(x)− ψ2(x0)

d̃(x, x0)
(3.7)

for all ε > 0 and all x ∈ Ω with x ∈ Br0(x0).

Since ψ1 ∈ C(Ω), there exists a sequence of points xn ∈ Ω such that, as n→∞, we have
xn → x0 and

ψ1(x0)− ψ1(xn)

d̃(xn, x0)
→ |∇−ψ1|(x0) = |∇ψ1|(x0).

Adopting (3.7) with x = xn and sending n → ∞ and then ε → 0, we end up with the
desired inequality (2.12) at x = x0. �

We next show that any c-supersolution is an s-supersolution. We again use a result
presented in [22].
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Proposition 3.5 (Proposition 2.8 in [22]). Assume that f ∈ C(Ω) with f ≥ 0. Assume
infΩ f > 0. Let u be a lower semicontinuous c-supersolution of (1.3). Then for any ε > 0
and x0 ∈ Ω, there exists ξε ∈ Ax0([0,∞),Ω) satisfying T = T+

Ω [ξε] <∞ and

u(x0) ≥
ˆ t

0
f(ξε(s)) ds+ u(ξε(t))− ε(1 + t) (3.8)

for all 0 ≤ t ≤ T .

Remark 3.6. If u is a local c-supersolution instead, then for each x0 ∈ Ω there is a suffi-
ciently small r > 0 such that for each ε > 0 we can find a choice ξε ∈ Ax0([0,∞), Br(x0))
such that for all 0 ≤ t ≤ T+

Br(x0)[ξε], (3.8) holds. This is seen by directly adapting the
proof of [22, Proposition 2.8].

Proposition 3.7 (Implication of supersolution property). Let (X, d) be a complete rec-
tifiably connected metric space and d̃ be the intrinsic metric given by (1.5). Assume that
(1.6) holds. Let Ω ( X be an open set. Assume that f ∈ C(Ω) with infΩ f > 0. If u is
a lower semicontinuous c-supersolution of (1.3) in (Ω, d), then u is an s-supersolution of
(1.3) in (Ω, d̃).

Proof. Since u is lower semicontinuous with respect to the metric d, it is easily seen that
u is also lower semicontinuous with respect to d̃, thanks to (1.5) and (1.6).

Fix x0 ∈ Ω arbitrarily. Assume that there exist ψ1 ∈ C(Ω) and ψ2 ∈ Liploc(Ω) such
that u − ψ1 − ψ2 attains a local minimum at a point x0. We thus have r0 > 0 such that
B2r0(x0) ⊂ Ω and

u(y)− u(x0) ≥ (ψ1 + ψ2)(y)− (ψ1 + ψ2)(x0)

for all y ∈ Br0(x0).

Applying Proposition 3.5, for any ε > 0 satisfying
√
ε < min{r, d̃(x0, ∂Ω)}, we can find

ξ ∈ Ax0([0,∞),Ω) such that (3.8) holds for all 0 ≤ t ≤ T+
Ω [ξ]. Since T+

Ω [ξ] ≥ d̃(x0, ∂Ω) > 0,
we can take t =

√
ε and xε = ξ(

√
ε) in (3.8) to get

(ψ1 + ψ2)(xε)− (ψ1 + ψ2)(x0) ≤ −
ˆ √ε

0
f(ξ(s)) ds+ ε(1 +

√
ε).

Dividing this relation by
√
ε, we get

1√
ε

ˆ √ε
0

f(ξ(s)) ds+
ψ2(xε)− ψ2(x0)√

ε
−
√
ε(1 +

√
ε) ≤ ψ1(x0)− ψ1(xε)√

ε
. (3.9)

Noticing that
d̃ (xε, x0) ≤

√
ε,

we deduce that
ψ1(xε)− ψ1(x0)√

ε
≤ |ψ1(xε)− ψ1(x0)|√

ε
≤ |ψ1(xε)− ψ1(x0)|

d̃ (xε, x0)

and
ψ2(xε)− ψ2(x0)√

ε
≥ −|ψ2(xε)− ψ2(x0)|√

ε
≥ −|ψ2(xε)− ψ2(x0)|

d̃ (xε, x0)
.

Hence, combining the above inequalities together implies that

|ψ1(xε)− ψ1(x0)|
d̃ (xε, x0)

≥ 1√
ε

ˆ √ε
0

f(ξ(s)) ds− |ψ2(xε)− ψ2(x0)|
d̃ (xε, x0)

−
√
ε(1 +

√
ε).

Letting ε→ 0, we are led to (2.13) with x = x0 as desired. �
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Remark 3.8. By Remark 3.6, it is not difficult to see that if u is only a local c-supersolution,
then for any x0 ∈ Ω the same result as in Proposition 3.7 holds in Br(x0) with r > 0 small.
In fact, the proof will be the same except that Ω should be replaced by Br(x0).

We now prove Theorem 1.1.

Proof of Theorem 1.1. In view of Lemma 3.3, we know that any c-solution of (1.3) is locally
Lipschitz with respect to d̃. Now by Proposition 3.4 and Proposition 3.7 we see that any
c-solution u of (1.3) is a locally Lipschitz s-solution. If u satisfies (1.7) and f is uniformly
continuous with infΩ f > 0, then in the bounded domain Ω we can apply the comparison
principle for s-solutions (cf. [21, Theorem 5.3]) to show that u must be the only s- and
c-solution of the Dirichlet problem. �

3.3. Boundary value. In light of the second part of Theorem 1.1, the importance of the
condition (1.7) is clear. We now give sufficient conditions for (1.7), which is also important
for the existence of c-solutions. Recall that ζ is a continuous function on ∂Ω, playing the
role of the Dirichlet boundary data in (1.4).

Proposition 3.9 (Boundary consistency). Assume that (X, d) is a complete rectifiably
connected metric space and d̃ be the induced intrinsic metric given by (1.5). Assume that
(1.6) holds. Let Ω ( X be an open set. Suppose that f ∈ C(Ω) is bounded and f ≥ 0 in
Ω. Let u be given by (2.5) with ζ ∈ C(∂Ω) given.

(1) If there exists L > 0 such that ζ is L-Lipschitz on ∂Ω with respect to the metric d̃,
then

u(x)− ζ(y) ≤ d̃(x, y) max

{
L, sup

Ω

f

}
for all x ∈ Ω and y ∈ ∂Ω. (3.10)

(2) If ζ satisfies a stronger condition:

|ζ(x)− ζ(y)| ≤ d̃(x, y) inf
Ω
f for every x, y ∈ ∂Ω, (3.11)

then
|u(x)− ζ(y)| ≤ d̃(x, y) sup

Ω

f for all x ∈ Ω and y ∈ ∂Ω. (3.12)

Proof. For simplicity of notation, denote

m := inf
Ω
f, M := sup

Ω

f.

Fix x ∈ Ω and y ∈ ∂Ω. Then for any ε > 0, there exists an arc-length parametrized curve
ξ ∈ Ax(R,X) such that ξ(t) = y and

d̃(x, y) ≤ t ≤ d̃(x, y) + ε.

This curve may not stay in Ω, but there exists z = ξ(t1) ∈ ∂Ω, where

t1 := T+
Ω [ξ] = inf{s : ξ(s) ∈ ∂Ω}.

Since we have
t− t1 ≥ d̃(y, z) and t ≤ d̃(x, z) + d̃(y, z) + ε,

it follows that t1 ≤ d̃(x, z) + ε and therefore

d̃(x, z) + d̃(z, y) ≤ t ≤ d̃(x, y) + ε. (3.13)
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Now in view of (2.5), we have

u(x) ≤ ζ(z) +

ˆ t1

0
f(ξ(s)) ds ≤ ζ(z) +M(d̃(x, z) + ε). (3.14)

Thanks to the L-Lipschitz continuity of ζ, we have

ζ(z) ≤ ζ(y) + Ld̃(y, z). (3.15)

Applying (3.13) and (3.15) in (3.14), we thus get

u(x) ≤ ζ(y)+Ld̃(y, z)+Md̃(x, z)+Mε ≤ ζ(y)+max{L,M}d̃(x, y)+2 max{L,M}ε. (3.16)
Since the above holds for all ε > 0, we have (3.10) immediately.

In order to show (3.12), we need the stronger condition (3.11), which means that ζ is
m-Lipschitz on ∂Ω with respect to d̃. By (2.5), for any ε > 0, there exists yε ∈ ∂Ω and a
curve ξε ∈ Ax(R,Ω) such that with tε > 0 chosen so that ξε(tε) = yε, we have

u(x) ≥ ζ(yε) +

ˆ tε

0
f(ξ(s)) ds− ε ≥ ζ(yε) +md̃(x, yε)− ε.

Using (3.11), we have

u(x) ≥ ζ(y)−md̃(y, yε) +md̃(x, yε)− ε ≥ ζ(y)−md̃(x, y)− ε.
Letting ε→ 0, we obtain

u(x)− ζ(y) ≥ −md̃(x, y) ≥ −Md̃(x, y),

which, combined with (3.10) with L = m, completes the proof. �

The condition (3.11) gives a quite restrictive constraint on the oscillation of the boundary
data ζ. A weaker condition than (3.11) is thatζ(x)− ζ(y) ≤

ˆ t

0
f(ξ(s))|ξ′|(s) ds

for every x, y ∈ ∂Ω and every rectifiable curve ξ : [0, t]→ Ω with ξ(0) = x and ξ(t) = y.
(3.17)

This condition is employed in [22] to guarantee the existence of continuous solutions to the
Dirichlet problem. We can use (3.17) instead of (3.11) to obtain a continuity result weaker
than (3.12) provided that Ω enjoys a better regularity like the so-called quasiconvexity.

Proposition 3.10 (Boundary consistency under domain quasiconvexity). Let (X, d) be
a complete rectifiably connected metric space and d̃ be given by (1.5). We suppose that
(1.6) holds. Let Ω ( X be an open set. Assume that f ∈ C(Ω) is bounded and f ≥ 0

in Ω. Assume in addition that Ω is σΩ–convex in (X, d̃) with respect to a modulus of
continuity σΩ, i.e., for any x, y ∈ Ω, there exist a rectifiable curve ξ in Ω joining x and y
and satisfying `(ξ) ≤ σΩ(d̃(x, y)). Let ζ satisfy (3.17) and u be given by (2.5). Then (1.7)
holds with σ(t) = 2σΩ(t) supΩ f for t ≥ 0.

Proof. Let us still take M = supΩ f for simplicity of notation. Fix x ∈ Ω and y ∈ ∂Ω.
Using the same argument as in the proof of Proposition 3.9, we can easily prove that

u(x)− ζ(y) ≤ 2MσΩ(d̃(x, y)).

Indeed, since the quasiconvexity of Ω and (3.17) yield

|ζ(y1)− ζ(y2)| ≤MσΩ(d̃(y1, y2))
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for any y1, y2 ∈ ∂Ω, we only need to respectively substitute the termsmd̃(y, z) andmd̃(x, y)

in (3.15) and (3.16) with MσΩ(d̃(y, z)) and MσΩ(d̃(x, y)) .

Let us now show that
u(x)− ζ(y) ≥ −σ(d̃(x, y)). (3.18)

In fact, for any ε > 0, we can use (2.5) again to find yε ∈ ∂Ω and an arc-length parametrized
curve ξ1 ∈ Ax([0, t1)) with t1 > 0 such that d̃(x, yε) ≥ t1 − ε and

u(x) ≥ ζ(yε) +

ˆ t1

0
f(ξ1(s)) ds− ε. (3.19)

Note that there exists another arc-length parametrized curve ξ2 ∈ Ax([0, t2)) such that
ξ2(0) = x, ξ2(t2) = y and σΩ(d̃(x, y)) ≥ t2. We thus can join ξ1 and ξ2 by taking

ξ(s) =

{
ξ1(t1 − s) if s ∈ [0, t1],
ξ2(s− t1) if s ∈ (t1, t1 + t2].

Adopting (3.11), we have

ζ(y) ≤ ζ(yε) +

ˆ t1+t2

0
f(ξ(s)) ds,

which, combined with (3.19), implies that

u(x) ≥ ζ(y) +

ˆ t1

0
f(ξ1(s)) ds−

ˆ t1+t2

0
f(ξ(s)) ds− ε = ζ(y)−

ˆ t2

0
f(ξ2(s)) ds− ε

≥ ζ(y)−Mt2 − ε ≥ ζ(y)−MσΩ(d̃(x, y))− ε.

We conclude the proof of (3.18) by letting ε→ 0. �

3.4. Slope-based solutions in general metric spaces. Motivated by our above results,
we generalize the definition of viscosity solutions proposed in [21]. In particular, by utilizing
the induced intrinsic metric d̃ given by (1.5), we can now study the general equation (1.1)
in a general metric space (X, d) that is not necessarily a length space but a complete
rectifiably connected metric space satisfying (1.6).

We first extend the notion of pointwise local slope for any locally Lipschitz function u
by continuing to use the notation |∇u|:

|∇u|(x) := lim sup
y→x

|u(y)− u(x)|
d̃(x, y)

, for any x ∈ X. (3.20)

Such an idea has already been formally stated in [22, Equation (2.3)]. If (X, d) is a length
space, then d̃ = d and (3.20) agrees with (2.6).

Analogously, if (X, d) is a complete rectifiably connected metric space satisfying (1.6),
we can define upper and lower slopes by taking, for u ∈ Liploc(X),

|∇±u|(x) := lim sup
y→x

[u(y)− u(x)]±

d̃(x, y)
, for any x ∈ X. (3.21)

These are again consistent with (2.8) if (X, d) is a length space.

By using the definition in (2.7), we can provide the test classes C(Ω) and C(Ω) but on
an open set Ω of a more general metric space.
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As a result, a locally Lipschitz function u ∈ C(Ω) (resp., u ∈ C(Ω)) if and only if |∇u| is
continuous in Ω and

lim sup
y→x

u(y)− u(x)

d̃(x, y)
= |∇u|(x)

(
resp., lim sup

y→x

u(x)− u(y)

d̃(x, y)
= |∇u|(x)

)
for any x ∈ Ω. Now Definition 2.3 can be used to define viscosity solutions of (1.1) in a
complete rectifiably connected metric space as long as we replace d by d̃.

We conclude this section by remarking that our approach above is based on a pointwise
version of the notion of upper gradients, which, as an important substitute of the Euclidean
gradients, has recently attracted a great deal of attention in the study of Sobolev spaces
in metric measure spaces; see for instance [25, 26] for introduction on this topic.

4. Monge Solutions and Local Equivalence

In this section we aim to show the equivalence of c- and s-solutions of the eikonal
equation without relying on the boundary condition. Our discussion involves a third notion
of solutions to Hamilton-Jacobi equations in general metric spaces, which generalizes the
so-called Monge solution of the eikonal equation in the Euclidean space studied in [36, 7]
etc.

Thanks to our remarks in Section 3.4, it is sufficient to set up the problem in a complete
length space (X, d). Our results in this section can be applied to more general rectifiably
connected spaces by taking the induced intrinsic metric d̃ as in (1.5). Throughout this
section, we shall always focus our attention on the complete length space (X, d).

4.1. Definition and uniqueness of Monge solutions. Let us begin with the definition
of Monge solutions for the general Hamilton-Jacobi equation in a complete length space.

Definition 4.1 (Definition of Monge solutions). A function u ∈ Liploc(Ω) is called a
Monge subsolution (resp., Monge supersolution) of (1.1) if, at any x ∈ Ω,

H
(
x, u(x), |∇−u|(x)

)
≤ 0

(
resp., H

(
x, u(x), |∇−u|(x)

)
≥ 0
)
.

A function u ∈ Liploc(Ω) is said to be a Monge solution if u is both a Monge subsolution
and a Monge supersolution, i.e., u satisfies

H
(
x, u(x), |∇−u|(x)

)
= 0 (4.1)

at any x ∈ Ω.

In the case of (1.3), the definition of Monge subsolutions (resp., supersolutions) reduces
to

|∇−u|(x) ≤ f(x) (resp., |∇−u|(x) ≥ f(x)) (4.2)
for all x ∈ Ω. Then u is a Monge solution of (1.3) if

|∇−u| = f in Ω. (4.3)

The notion of Monge solutions of (1.3) in the Euclidean space is studied in [36], where
the right hand side f is allowed to be more generally lower semicontinuous in Ω. Such a
notion, still in the Euclidean space, was later generalized in [7] to handle general Hamilton-
Jacobi equations with discontinuities. The definitions of Monge solutions in [36, 7] require
the optical length function, which can be regarded as a Lagrangian structure for H. In
contrast, our definition of Monge solutions does not rely on optical length functions. We
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only consider continuous H in this work and the discontinuous case will be discussed in
our forthcoming paper [12].

One advantage of using the Monge solutions is that its uniqueness can be easily obtained.
In what follows, we give a comparison principle for Monge solutions of the eikonal equation.

Theorem 4.2 (Comparison principle for Monge solutions of eikonal equation). Let (X, d)
be a complete length space and Ω ( X be a bounded open set in (X, d). Assume that
f ∈ C(Ω) is bounded and satisfies infΩ f > 0. Let u ∈ C(Ω) ∩ Liploc(Ω) be a bounded
Monge subsolution and v ∈ C(Ω) ∩ Liploc(Ω) be a bounded Monge supersolution of (1.3).
If

lim
δ→0

sup
{
u(x)− v(x) : x ∈ Ω, d(x, ∂Ω) ≤ δ

}
≤ 0, (4.4)

then u ≤ v in Ω. Here d(x, ∂Ω) is given by infy∈∂Ω d(x, y).

Proof. Since u and v are bounded, we may assume that u, v ≥ 0 by adding a positive
constant to them. It suffices to show that λu ≤ v in Ω for all λ ∈ (0, 1). Assume by
contradiction that there exists λ ∈ (0, 1) such that supΩ(λu− v) > 2µ for some µ > 0. By
(4.4), we may take δ > 0 small such that

λu(x)− v(x) ≤ u(x)− v(x) ≤ µ
for all x ∈ Ω \ Ωδ, where we denote Ωr = {x : Ω : d(x, ∂Ω) > r} for r > 0. We choose
ε ∈ (0, δ/2) such that

sup
Ω

(λu− v) > 2µ+ ε2

and
ε < (1− λ) inf

Ωδ/2
f. (4.5)

We have such an ε > 0 because infΩ f > 0. Thus there exists x0 ∈ Ω such that λu(x0) −
v(x0) ≥ supΩ(λu− v)− ε2 > 2µ and therefore x0 ∈ Ωδ.

By Ekeland’s variational principle (cf. [18, Theorem 1.1], [19, Theorem 1]), there exists
xε ∈ Bε(x0) ⊂ Ωδ/2 such that

λu(xε)− v(xε) ≥ λu(x0)− v(x0)

and x 7→ λu(x)− v(x)− εd(xε, x) attains a local maximum in Ω at x = xε. It follows that

v(xε)− v(x) ≤ λu(xε)− λu(x) + εd(xε, x) (4.6)

for all x ∈ Br(xε) when r > 0 is small enough. Since v is a Monge supersolution of (1.3)
and hence satisfies (4.2), there exists a sequence {yn} ⊂ Ω such that

lim
yn→xε

[v(yn)− v(xε)]−
d(xε, yn)

≥ f(xε) > 0.

Note that here it is crucial to have f(xε) > 0 so that for large integers n we have v(yn) <
v(xε). Hence, by (4.6) we have

f(xε) ≤ lim
yn→xε

λ[u(yn)− u(xε)]−
d(yn, xε)

+ ε

≤ lim sup
x→xε

λ[u(x)− u(xε)]−
d(x, xε)

+ ε

= λ|∇−u|(xε) + ε

Using the fact that u is a Monge subsolution, we get

f(xε) ≤ λf(xε) + ε,
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which contradicts the choice of ε > 0 as in (4.5). Our proof is thus complete. �

In the above theorem we cannot replace |∇−u| with |∇u|. A simple counterexample
with |∇u| is as follows: in [−1, 1] ⊂ R, both 1 − |x| and |x| − 1 would be two different
solutions of (1.3) with f ≡ 1 that satisfy the boundary condition u(±1) = 0, but only the
former is the unique Monge solution.

Remark 4.3. It can be easily seen that the continuity assumption on f is not utilized at
all in the proof above. Hence the comparison principle in Theorem 4.2 still holds even if
we drop the continuity assumption for f . In [12] we study in detail Monge solutions for
discontinuous Hamiltonians in general metrics measure spaces.

Remark 4.4. An analogous comparison principle can be established for locally Lipschitz
Monge solutions of (1.1) provided that p 7→ H(x, ρ, p) is continuous in [0,∞) uniformly
for all (x, ρ) ∈ Ω× R and there exists µ > 0 such that

ρ 7→ H(x, ρ, p)− µρ

is increasing for all x ∈ Ω and p ≥ 0. The proof is similar to that of Theorem 4.2.

Concerning the existence of Monge solutions, Theorem 1.2 shows that any c-solution of
(1.3) is a Monge solution. In particular, the formula (2.5) provides a unique c- and Monge
solution of (1.3) and (1.4) if (3.11) holds.

4.2. Local equivalence of solutions of eikonal equations. We study the local relation
between Monge solutions, c-solutions and s-solutions. Let us first discuss the subsolution
properties.

Proposition 4.5 (Relation between c- and Monge subsolutions). Let (X, d) be a complete
length space and Ω be an open set in X. Assume that f ∈ C(Ω) with f ≥ 0. Let u ∈ C(Ω).
Then u is a c-subsolution of (1.3) if and only if it is a Monge subsolution of (1.3).

Proof. We begin with a proof of the implication “⇒”. Since the local Lipschitz continuity
of c-subsolutions u is provided in Lemma 3.3, it suffices to verify that |∇−u|(x0) ≤ f(x0)
for every x0 ∈ Ω. To this end, we fix x0 ∈ Ω. Since u is a c-subsolution of (1.3), using
(3.2) with s = 0 and ξ(0) = x0 we have

u(x0)− u(ξ(t)) ≤
ˆ t

0
f(ξ(s)) ds

for any ξ ∈ Ax0(R, Br(x0)) and 0 ≤ t ≤ T+
Br(x0)[ξ]. Therefore

u(x0)− u(x)

d(x, x0)
≤ 1

d(x, x0)

ˆ t

0
f(ξ(s)) ds ≤ 1

d(x, x0)
`(ξ) sup

Br(x0)
f

for any x ∈ Br(x0) and any curve ξ ⊂ Br(x0) joining x0 and x. By the continuity of f
and by the fact that X is a length space, taking the infimum over all ξ and then sending
r → 0 we obtain

|∇−u|(x0) ≤ f(x0)

as desired.

We next prove the reverse implication “⇐”. We again fix x0 ∈ Ω arbitrarily. We take an
arbitrary curve ξ ∈ Ax0(R,Ω); in particular ξ(0) = x0. Suppose that there is a function
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φ ∈ C1(R) such that t 7→ u(ξ(t)) − φ(t) attains a local maximum at t = 0. Then there is
some t0 > 0 such that we have

φ(t)− φ(0) ≥ u(ξ(t))− u(ξ(0))

when −t0 < t < t0 . If φ′(0) = 0, then we obtain immediately the desired inequality
(2.2). If φ′(0) 6= 0, then without loss we may assume that φ′(0) < 0, in which case
φ(t) − φ(0) < 0 for all t ∈ (0, t1) for sufficiently small t1 ∈ (0, t0). (If φ′(0) > 0, then we
can consider t ∈ (−t1, 0) instead below.) It follows that

|φ′(0)| ≤ lim sup
t→0+

u(ξ(0))− u(ξ(t))

t
≤ |∇−u|(x0).

Since u is a Monge subsolution, we have |∇−u|(x0) ≤ f(x0) and thus deduce (2.2) again.
�

Proposition 4.6 (Relation between s- and Monge subsolutions). Let (X, d) be a complete
length space and Ω be an open set in X. Assume that f is locally uniformly continuous
and f ≥ 0 in Ω. Let u ∈ C(Ω). Then the following results hold.

(i) If u is a Monge subsolution of (1.3), then it is an s-subsolution of (1.3).
(ii) If u is a locally uniformly continuous s-subsolution of (1.3), then it is a Monge

subsolution of (1.3).

Proof. (i) It is an immediate consequence of Proposition 3.4 and Proposition 4.5.

(ii) Take δ > 0 arbitrarily and fδ = f + δ in Ω. Fix x0 ∈ Ω and r > 0 small such that
B4r(x0) ⊂ Ω and u, f are both bounded on B4r(x0). For s ∈ [0, 4r) we set

Ms := sup
Bs(x0)

fδ,

and choose M > 0 such that

M > max

{
M2r,

supB3r(x0) u− u(x0)

r

}
.

Define a continuous function gr : [0, 3r)→ [0,∞) by

gr(t) := Mrt+M(t− r)+

for t ∈ [0, 3r). Due to the choice of M above, the function defined by

vr(x) = u(x0) + gr(d(x0, x))

for x ∈ B3r(x0), satisfies vr ≥ u on ∂B2r(x0). Moreover, for any x ∈ B2r(x0) with
x 6= x0 and any ε > 0, we can find an arc-length parametrized curve ξ such that ξ(0) = x,
ξ(tε) = x0 and tε − ε ≤ d(x, x0) ≤ tε. For any t ∈ [0, tε], we have

d(x0, ξ(t)) ≥ d(x0, x)− d(x, ξ(t)) ≥ (tε − ε)− (tε − t) = t− ε.
Therefore

t− ε ≤ d(x0, ξ(t)) ≤ `(ξ[0, t]) ≤ d(x, x0) + ε− d(x, ξ(t)).

Taking xε = ξ(
√
ε), we have

vr(x)− vr(xε)
d(x, xε)

≥ gr(d(x0, x))− gr(d(x0, xε))

d(x, x0)− d(x0, xε) + ε
≥ 1

1 + 2
√
ε

gr(d(x0, x))− gr(d(x0, xε))

d(x, x0)− d(x0, xε)

when ε > 0 is sufficiently small. Hence if 0 < d(x, x0) ≤ r, then for sufficiently small ε > 0
we have gr(d(xε, x0)) ≥Mrd(xε, x0), and then by the choice of Mr we have

lim sup
xε→x

gr(d(x0, x))− gr(d(x0, xε))

d(x, x0)− d(x0, xε)
= Mr ≥ fδ(x).
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If r < d(x, x0) < 2r, then for sufficently small ε we have d(xε, x0) > r as well, and so we
get

gr(d(x0, x))− gr(d(x0, xε))

d(x, x0)− d(x0, xε)
=

(Mr +M)d(x0, x)− (Mr +M)d(x0, xε)

d(x, x0)− d(x0, xε)
.

Therefore as d(x0, x) < 2r, we have

lim sup
xε→x

gr(d(x0, x))− gr(d(x0, xε))

d(x, x0)− d(x0, xε)
≥M > M2r ≥ fδ(x).

In either case, we see that |∇−vr|(x) ≥ fδ(x); in other words, vr is a Monge supersolution
of

|∇u| = fδ in B2r(x0) \ {x0}.
In view of Proposition 4.7(i), we see that vr is an s-supersolution of the same equation
(keep in mind also that by its construction, vr is M -Lipschitz); in particular, we have

vr(x)− u(y) ≥ vr(x)− vr(y) ≥ −Md(x, y) (4.7)

for all x ∈ B2r(x0) and y ∈ ∂B2r(x0) ∪ {x0}.

On the other hand, u is an s-subsolution and is uniformly continuous in B2r(x0) with
some modulus σ0. We have

u(x)− u(y) ≤ σ0(d(x, y))

for all x ∈ B2r(x0) and y ∈ ∂B2r(x0) ∪ {x0}. Combining this with (4.7), we have shown
that the condition (1.8) holds with Ω = B2r(x0) \ {x0}, v = vr, ζ = u and σ(s) =
max{Ms, σ0(s)} for s ≥ 0. Since fδ = f + δ in Ω, the function u must also be an
s-subsolution for the eikonal equation related to the function fδ. We thus can use the
comparison result [21, Theorem 5.3] to get u ≤ vr in B2r(x0) \ {x0}. Letting δ → 0, we
are led to

u(x) ≤ u(x0) + d(x, x0) sup
Br(x0)

f for all x ∈ Br(x0).

One can use the same argument to show that for all x, y ∈ Br/4(x0) (and therefore d(x, y) ≤
r/2),

u(y) ≤ u(x) + d(x, y) sup
Br/2(x)

f ≤ u(x) + d(x, y) sup
Br(x0)

f,

which yields (recalling that we chose r > 0 small enough so that f is bounded on B4r(x0))

|u(x)− u(y)| ≤ d(x, y) sup
Br(x0)

f.

This immediately implies that

|∇−u|(x0) ≤ |∇u|(x0) ≤ f(x0). (4.8)

Hence, we can conclude that u is a Monge subsolution of (1.3), since x0 is arbitrarily
taken. �

In the proof of (ii) above, the local uniform continuity of u and f (especially near x0)
enables us to adopt the comparison principle. The uniform continuity can be removed if
the space (X, d) has some compactness a priori.

We next turn to the relation between supersolutions.

Proposition 4.7 (Relation between supersolutions). Let (X, d) be a complete length space
and Ω be an open set in X. Assume that f is locally uniformly continuous and f ≥ 0 in
Ω. Let u ∈ Liploc(Ω). Then

(i) u is a Monge supersolution of (1.3) if and only if u is an s-supersolution of (1.3).
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(ii) Assume in addition that f > 0 on Ω. If u is a local c-supersolution of (1.3), then
u is a Monge supersolution of (1.3).

Proof. (i) Let us first show the equivalence between a Monge supersolution and an s-
supersolution. We begin with the implication “⇒”. Let u be a Monge supersolution.
Suppose that there exist ψ1 ∈ C(Ω) and ψ2 ∈ Liploc(Ω) such that u − ψ1 − ψ2 attains a
local minimum at x0. If f(x0) = 0, then the desired inequality

|∇ψ1|(x0) ≥ −|∇ψ2|∗(x0)

is trivial. It thus suffices to consider the case f(x0) > 0. By the definition of Monge
supersolutions, for any x0 ∈ Ω,

|∇−u|(x0) ≥ f(x0) > 0.

Then for any δ > 0, for each ε > 0 we can find xε ∈ Ω with xε → x0 as ε→ 0 such that

u(xε)− u(x0) ≤ (−f(x0) + δ)d(x0, xε). (4.9)

It follows from (4.9) and the maximality of u− ψ1 − ψ2 at x0 that

ψ1(xε)− ψ1(x0) + ψ2(xε)− ψ2(x0) ≤ (−f(x0) + δ)d(x0, xε),

which implies that

|ψ1(xε)− ψ1(x0)|
d(x0, xε)

≥ ψ1(x0)− ψ1(xε)

d(x0, xε)
≥ f(x0)− δ − |ψ2(xε)− ψ2(x0)|

d(x0, xε)
.

Letting ε→ 0 and then δ → 0, we obtain

|∇ψ1|(x0) ≥ f(x0)− |∇ψ2|∗(x0).

It follows that u is an s-supersolution.

The proof for the reverse implication “⇐” is given next. So we assume that u is an
s-supersolution. Suppose that u is not a Monge supersolution. Then there exists x0 ∈ Ω
such that

lim sup
x→x0

[u(x0)− u(x)]+
d(x, x0)

< f(x0).

A contradiction is immediately obtained if f(x0) = 0. We thus only consider f(x0) > 0
below. Then there exists δ > 0 such that for all x ∈ Bδ(x0),

u(x0)− u(x)

d(x, x0)
− f(x0) ≤ −2δ. (4.10)

By the continuity of f , for any 0 < ε < min{δ, f(x0)/2}, we can choose 0 < r < δ such
that

|f(x)− f(x0)| ≤ ε for all x ∈ Br(x0). (4.11)
Observe that f(x) ≥ f(x0)/2 > 0 whenever x ∈ Br(x0). Let

v(x) := u(x0)− (f(x0)− ε)d(x, x0) + δr.

Then in view of (4.10), we have v(x) ≤ u(x) for all x ∈ ∂Br(x0). Moreover, we claim that
v is an s-subsolution of

|∇v| = f in Br(x0).

Indeed, for any x ∈ Br(x0), if v−ψ1−ψ2 achieves a maximum at x, where ψ1 ∈ C(Ω) and
ψ2 ∈ Liploc(Ω), then

ψ1(x)− ψ1(y) ≤ v(x)− v(y) + ψ2(y)− ψ2(x).
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It follows that

|∇ψ1|(x) = lim sup
y→x

ψ1(x)− ψ1(y)

d(x, y)
≤ lim sup

y→x

v(x)− v(y)

d(x, y)
+ lim sup

y→x

ψ2(y)− ψ2(x)

d(x, y)

≤ f(x0)− ε+ |∇ψ2|∗(x)

≤ f(x) + |∇ψ2|∗(x).

The claim has been proved. Applying the comparison principle for s-solutions, we have
v ≤ u in Br(x0). This contradicts the fact that

v(x0) = u(x0) + δr > u(x0).

Our proof for the equivalence of supersolutions is now complete.

(ii) It follows immediately from (i) and Remark 3.8. Note that Remark 3.8 requires
infBr(x) f > 0 for any x ∈ Ω and r > 0 small, which is implied by the continuity and
positivity of f in Ω. �

We are not able to show that any Monge supersolution of (1.3) is a local c-supersolution.
However, if u is a Monge solution, then we can show that u must be a local c-solution.

Proposition 4.8 (Relation between Monge and local c-solutions). Let (X, d) be a complete
length space and Ω be an open set in X. Assume that f is locally uniformly continuous
and f > 0 in Ω. If u is a Monge solution of (1.3), then u is a local c-solution of (1.3).

Proof. Suppose that u is a Monge solution of (1.3) in Ω. By Proposition 4.5, we know that
u must be a c-subsolution. It suffices to show that u is a local c-supersolution of (1.3).

For any x0 ∈ Ω, take r > 0 small such that u is Lipschitz in Br(x0), that is, there exists
L > 0 such that

|u(x)− u(y)| ≤ Ld(x, y) for any x, y ∈ Br(x0). (4.12)
Letting ζ(y) = u(y) for all y ∈ ∂Br(x0), by (2.5) with Ω = Br(x0) we have the unique
c-solution U in Br(x0) given by

U(x) := inf

{ˆ t+r

0
f(ξ(s)) ds+ u

(
ξ(t+r )

)
: ξ ∈ Ax(R,X) with 0 < T+

Br(x0)[ξ] <∞
}
.

(4.13)
It follows from Proposition 4.5 and Proposition 4.7(ii) that U is a Monge solution of the
eikonal equation in Br(x0). Note also that, by Proposition 3.9(1),

U(x)− u(y) ≤ d(x, y) max

{
L, sup

Br(x0)
f

}
for any x ∈ Br(x0) and y ∈ ∂Br(x0).

We then can adopt the comparison principle, Theorem 4.2, to get U ≤ u in Br(x0). In
view of (4.13), it follows that for any x ∈ Br(x0) and any ε > 0 small, there exists a curve
ξε ∈ Ax(R,X) such that

u(x) ≥ U(x) ≥
ˆ t+r

0
f(ξε(s)) ds+ u

(
ξε(t

+
r )
)
− ε, (4.14)

where t+r = T+
Br(x0)[ξε] denotes the exit time of ξε from Br(x0). On the other hand, since

u is a c-subsolution, we can use Proposition 3.2 to get, for any 0 ≤ t ≤ t+r ,

u(ξε(t)) ≤ u
(
ξε(t

+
r )
)

+

ˆ t+r

t
f(ξε(s)) ds. (4.15)
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Combining (4.14) and (4.15), we deduce that for any 0 ≤ t ≤ t+r ,

u(x) ≥ u(ξε(t)) +

ˆ t

0
f(ξε(s)) ds− ε.

Setting

ξ(t) =

{
ξε(t) if t ≥ 0,
ξε(−t) if t < 0,

and w(t) = u(x)−
ˆ t

0
f(ξ(s)) ds

for t ∈ R, we easily see that (ξ, w) satisfies the conditions for local c-supersolutions in
Definition 2.2. Indeed, w is of class C1 in (−t+r , t+r )\{0} with w′ = f ◦ ξ in (−t+r , t+r )\{0}.
If there is φ ∈ C1(−t+r , t+r ) such that w − φ achieves a minimum at some t0 ∈ (−t+r , t+r ),
then t0 6= 0 since f > 0 in Ω. It then follows that φ′(t0) = w′(t0), which yields

|φ′|(t0) = |w′|(t0) = f(ξ(t0)).

Hence, u is a local c-supersolution and therefore a local c-solution. �

We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. The proof consists of the results in Propositions 4.5, 4.6, 4.7 and
4.8. In addition, combining (4.8) and the definition of Monge supersolutions, we have (1.9)
if any of (a), (b) and (c) holds. �

Remark 4.9. It is worth pointing out that, due to Proposition 4.6 and Proposition 4.7(i),
the equivalence between Monge solutions and locally uniformly continuous s-solutions still
holds even if the assumption f > 0 is relaxed to f ≥ 0 in Ω. See Theorem 4.11 a nd 4.12
below for a more general result focusing on the relation between Monge and s-solutions.

The local uniform continuity of f and u in Theorem 1.2 can be dropped if the space
(X, d) is assumed to proper, that is, any closed bounded subset of X is compact.

Corollary 4.10 (Local equivalence in a proper space). Let (X, d) be a proper complete
geodesic space and Ω be a bounded open set in X. Assume that f ∈ C(Ω) and f > 0 in Ω.
Let u ∈ C(Ω). Then the following statements are equivalent:

(a) u is a c-solution of (1.3);
(b) u is a s-solution of (1.3);
(c) u is a Monge solution of (1.3).

In addition, if any of (a)–(c) holds, then u ∈ Liploc(Ω) and satisfies (1.9).

4.3. General Hamilton-Jacobi equations. We next turn to a more general class of
Hamilton-Jacobi equations. In this case, c-solutions are no longer defined. We can still
show the equivalence between Monge solutions and s-solutions.

Theorem 4.11 (Equivalence of Monge and s-solutions of general equations). Let (X, d)
be a complete length space and Ω ⊂ X be an open set. Let H : Ω × R × [0,∞) → R be
continuous and satisfy the following conditions:

(1) (x, ρ) 7→ H(x, ρ, p) is locally uniformly continuous, that is, for any x0 ∈ Ω and
ρ0 ∈ R, there exist δ > 0 small and a modulus of continuity ω such that

|H(x1, ρ1, p)−H(x2, ρ2, p)| ≤ ω (d(x1, x2) + |ρ1 − ρ2|)
for all x1, x2 ∈ Bδ(x0), ρ1, ρ2 ∈ [ρ0 − δ, ρ0 + δ] and p ≥ 0.
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(2) For any x0 ∈ Ω and ρ0 ∈ R, there exist δ > 0 and λ0 > 0 such that

p 7→ H(x, ρ, p)− λ0p

is increasing in [0,∞) for every (x, ρ) ∈ Bδ(x0)× [ρ0 − δ, ρ0 + δ].
(3) p 7→ H(x, ρ, p) is coercive in the sense that

inf
(x,ρ)∈Ω×[−R,R]

H(x, ρ, p)→∞ as p→∞ for any R > 0. (4.16)

Then u is a Monge solution of (1.1) if and only if u is a locally uniformly continuous
s-solution of (1.1). In addition, such u is locally Lipschitz in Ω.

Proof. Let u be either a Monge solution or a locally uniformly continuous s-solution. We
first claim that

H(x, u(x), 0) ≤ 0 for any x ∈ Ω. (4.17)
Thanks to the condition (2), this is clearly true when u is a Monge solution. It thus suffices
to show (4.17) for a locally uniformly continuous s-solution u. Fix x0 ∈ Ω arbitrarily. Let

ψ1(x) =
1

ε
d(x, x0)2

for ε > 0 small. Then, due to the local boundedness of u, there exist δ > 0 and yε ∈
Bδ(x0) ⊂ Ω such that

(u− ψ1)(yε) ≥ sup
Bδ(x0)

(u− ψ1)− ε2

and yε → x0 as ε → 0. By Ekeland’s variational principle (cf. [18, Theorem 1.1], [19,
Theorem 1]), there is a point xε ∈ Bε(yε) such that

(u− ψ1)(xε) ≥ (u− ψ1)(yε)

and u− ψ1 − ψ2 attains a local maximum in Bδ(x0) at xε ∈ Bε(yε), where
ψ2(x) = εd(xε, x).

It is clear that xε → x0 as ε→ 0. Since u is an s-subsolution, we have

Hε

(
xε, u(xε),

2

ε
d(xε, x0)

)
= inf
|ρ|≤ε

H

(
xε, u(xε),

2

ε
d(xε, x0) + ρ

)
≤ 0,

which, by the condition (2) together with (2.9), yields

H (xε, u(xε), 0) ≤ 0.

Letting ε → 0, by the continuity of H, we deduce (4.17) at x = x0. We have completed
the proof of the claim.

By the coercivity condition (3) we can define a function h : Ω→ [0,∞) to be

h(x) := inf{p ≥ 0 : H(x, u(x), p) > 0}, (4.18)

and, thanks to the continuity of H and the condition (2), we see that for each x ∈ Ω,
h(x) ≥ 0 is the unique value satisfying

H(x, u(x), h(x)) = 0. (4.19)

We next claim that h is locally uniformly continuous in Ω. To see this, fix x0 ∈ Ω and
an arbitrarily small δ > 0. We take x, y ∈ Bδ1(x0) with δ1 ≤ δ sufficiently small such that
u(x), u(y) ∈ [u(x0)− δ, u(x0) + δ]. Then by the condition (1) we have

H(x, u(x), p)−H(y, u(y), p) ≤ ω(d(x, y) + |u(x)− u(y)|) (4.20)
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for any p ≥ 0. DenoteW (x, y) := ω(d(x, y)+ |u(x)−u(y)|) for simplicity. Since H satisfies
the condition (2), we can use (4.20) to get, for any x, y ∈ Bδ1(x0),

H

(
x, u(x), h(y) +

1

λ0
W (x, y)

)
≥ H(x, u(x), h(y)) +W (x, y) ≥ H(y, u(y), h(y)) = 0,

which, by (4.18) and (4.19), yields

h(x) ≤ h(y) +
1

λ0
W (x, y).

We can analogously show that

h(x) ≥ h(y)− 1

λ0
W (x, y)

and therefore h is uniformly continuous in Bδ1(x0).

From (4.19) it is clear that u is a Monge solution of (1.1) if and only if |∇−u|(x) = h(x),
that is, u is a Monge solution of (1.3) with f = h. Note however that the function h
depends on u implicitly in general.

We now show that u is an s-solution of (1.1) if and only if u is an s-solution of (1.3)
with f = h. To see this, suppose that there exist x0 ∈ Ω, ψ1 ∈ C(Ω) and ψ2 ∈ Liploc(Ω)
such that u − ψ1 − ψ2 attains a maximum in Ω at x0. Then by the monotonicity of
p→ H(x, ρ, p), the viscosity inequality (2.10) holds at x0 if and only if

H (x0, u(x0), (|∇ψ1|(x0)− |∇ψ2|∗(x0)) ∨ 0) ≤ 0,

which, due to (4.18), amounts to saying that

|∇ψ1|(x0)− |∇ψ2|∗(x0) ≤ h(x0),

that is, u is an s-subsolution of (1.3) with f = h. Analogous results for supersolutions can
be similarly proved.

Noticing that Monge solutions and locally uniformly continuous s-solutions of (1.3)
have been proved to be (locally) equivalent in Theorem 1.2, we immediately obtain the
equivalence of both notions for (1.1) and local Lipschitz continuity. �

As in Corollary 4.10, if (X, d) is additionally assumed to be proper, then in Theorem 4.11
we can drop the assumption on the local uniform continuity of s-solutions. Moreover, when
(X, d) is proper, in the proof above we only need to show the continuity of h as in (4.18),
since continuity implies local uniform continuity. Thus the condition (1) can be removed
and (2) can be weakened by merely assuming that for every (x, ρ) ∈ Ω× R, the mapping
p 7→ H(x, ρ, p) is strictly increasing in (0,∞). Below we state the result without proofs.

Theorem 4.12 (Equivalence of Monge and s-solutions in a proper space). Let (X, d) be
a complete proper geodesic space and Ω ⊂ X be an open set. Let H : Ω× R× [0,∞)→ R
be continuous and be coercive as in (4.16). Assume that, for every (x, ρ) ∈ Ω× R,

H(x, ρ, p1) < H(x, ρ, p2) for all 0 < p1 < p2 <∞. (4.21)

Then u is a Monge solution of (1.1) if and only if u is an s-solution of (1.1). In addition,
such u is locally Lipschitz in Ω.

The monotonicity assumptions on p → H(x, ρ, p) in Theorem 4.11 and Theorem 4.12
enables us to apply an implicit function argument. Although it is not clear to us if one
can weaken the requirement, the examples below show that the equivalence result fails to
hold in general if H is not monotone in p.
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Example 4.13. Let Ω = X = R with the standard Euclidean metric. Let

H(p) = 1− |p− 2|+ max{p− 3, 0}2, p ≥ 0.

One can easily verify that this Hamiltonian satisfies all assumptions in Theorem 4.11 except
for the monotonicity.

It is not difficult to see that the function u given by u(x) = −3|x| for x ∈ R is a Monge
solution of

H(|∇u|) = 0 in R, (4.22)

since |∇−u| = 3 in R. It is however not a conventional viscosity solution or an s-solution,
though it is an s-supersolution.

Example 4.14. Let Ω = X = R again. Set

H(p) = 1− |p|+ max{p− 3, 0}2, p ≥ 0,

which again satisfies all assumptions in Theorem 4.11 but the monotonicity. This time we
have

u(x) = |x|, x ∈ R
as a viscosity solution or s-solution of (4.22). But it is not a Monge solution, since
|∇−u|(0) = 0 and H(0) 6= 0.

4.4. Further regularity. Motivated by the observation (1.9) in Theorem 1.2, we consider
a higher regularity than the Lipschitz continuity related to the Monge solutions of (1.1).
One can slightly strengthen Definition 4.1 by further requiring that the solution u satisfy
(1.10). We say that a solution u is regular in Ω if (1.10) holds. The reason why we regard
this condition as regularity will be clarified below.

The property (1.10) is studied for time-dependent Hamilton-Jacobi equations on metric
spaces [32, Proof of Theorem 2.5 and Remark 2.27]. The authors of [32] show that at any
fixed time, such spatial regularity holds for the Hopf-Lax formula almost everywhere if X is
a metric measure space that satisfies a doubling condition and a local Poincaré inequality,
or everywhere if X is a finite dimensional space with Alexandrov curvature bounded from
below. This result is generalized in [23] for general geodesic spaces without involving any
measure structure.

In our stationary setting, in a similar vein to [23] we have shown that any Monge
solution of the eikonal equation (1.3) is regular in a complete length space without using
any measure structure or imposing any assumptions on the space dimension and curvature;
see Theorem 1.2. Now we consider the more general Hamiltonian H.

Proposition 4.15 (Regularity of Monge solutions). Suppose that the assumptions in The-
orem 4.11 or Theorem 4.12 hold. If u is a Monge solution of (1.1), then u is regular in Ω
and u ∈ C(Ω).

Proof. We have shown in the proof of Theorem 4.11 that u is locally a Monge solution of

|∇u| = h(x),

where h ∈ C(Ω) is given by (4.18) and we have h ≥ 0 in Ω. The regularity (1.10) is thus
an immediate consequence of (4.8) in the proof of Proposition 4.6 and the definition of
Monge solutions. We also see that u ∈ C(Ω). One can also apply the same proof to obtain
the conclusion under the assumptions of Theorem 4.12. �
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We emphasize that for (1.10) the strict monotonicity condition (4.21) cannot be relaxed,
as indicated by the following simple example.

Example 4.16. Let

H(p) =


p when 0 ≤ p < 1,
1 when 1 ≤ p < 2,
p− 1 when p ≥ 2.

In this case, it is easily seen that

u(x) =

{
x for x ≤ 0,
2x for x > 0

is an s-solution (usual viscosity solution) of

H(|∇u|) = 1 in X = R,

but |∇u|(0) = 2 6= 1 = |∇−u|(0).

We finally remark that (1.10) can be regarded as a type of regularity that is related
to the semi-concavity in the Euclidean spaces. Let us below briefly recall several results
on semi-concave functions in RN ; we refer the reader to [11] for detailed introduction to
the classical results and to [2, 3] for recent developments in more general sub-Riemannian
contexts.

Recall (cf. [11, Definition 2.1.1]) that for any open set Ω ⊂ RN , u ∈ C(Ω) is said to be a
(generalized) semi-concave function in Ω if there exists an increasing upper semicontinuous
function ω : [0,∞)→ [0,∞) such that

lim
r→0+

ω(r) = 0

and
u(x+ η) + u(x− η)− 2u(x) ≤ ω(|η|)|η| (4.23)

for any x ∈ Ω and any η ∈ RN with |η| sufficiently small. A more well-known notion of
semi-concave functions is to ask u ∈ C(Ω) to satisfy (4.23) with ω(r) = cr for some c > 0;
in this case, u is semi-concave in Ω if and only if x 7→ u(x)− c|x|2/2 is concave in Ω.

It is well known [11, Theorem 5.3.7] that viscosity solutions of (1.1) are locally semi-
concave (in the generalized sense) provided that H(x, ρ, p) is locally Lipschitz and strictly
convex in p; one can apply this result to (1.3) by changing the form into

|∇u|2 = f(x)2 in Ω

in order to meet the requirement of strict convexity. Moreover, any such semi-concave
function has nonempty superdifferentials; in other words, it can be touched everywhere
from above by a C1 function; see [11, Proposition 3.3.4]. The condition (1.10) is slightly
weaker than this property in RN .

Proposition 4.17 (Regularity and upper testability in Euclidean spaces). Let x0 ∈ RN
and assume that u : RN → R is Lipschitz near x0. If there exists a function ψ differentiable
at x0 such that u− ψ attains a local maximum at x0, then

|∇u|(x0) = |∇−u|(x0). (4.24)

Proof. By assumptions, we have

u(x)− ψ(x) ≤ u(x0)− ψ(x0)
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for any x ∈ Ω near x0. It follows that
min{u(x)− u(x0), 0} ≤ min{ψ(x)− ψ(x0), 0},
max{u(x)− u(x0), 0} ≤ max{ψ(x)− ψ(x0), 0}.

These relations imply that
|∇−u|(x0) ≥ |∇−ψ|(x0),

|∇+u|(x0) ≤ |∇+ψ|(x0).
(4.25)

Noticing that ψ is differentiable at x0, we have

|∇+ψ|(x0) = |∇−ψ|(x0) = |∇ψ(x0)|. (4.26)

We can use (4.25) to obtain (4.24) immediately. �

The statement converse to that of Proposition 4.17 also holds when N = 1 but it fails
to hold in higher dimensions, as indicated by the example below.

Example 4.18. Let u : R2 → R be given by

u(x) = min{x1, 0}+ |x2| for x = (x1, x2) ∈ R2.

It is clear that u is Lipschitz in R2 and |∇u|(0) = |∇−u|(0) = 1 but u cannot be tested at
x = 0 from above by any function that is differentiable at x = 0.

However, for x0 ∈ RN , if (1.10) holds in a neighborhood Ω of x0 and |∇u| is continuous
in Ω, then u can be touched from above everywhere in Ω by a C1 function. Indeed, under
these assumptions, u can be regarded as a Monge solution of (1.3) with f continuous in
Ω. This in turn implies that u is an s-solution and a conventional viscosity solution in
the Euclidean space by Corollary 4.10. Then its local semi-concavity and testability from
above follow immediately.

These suggest that (1.10) can be adopted as a generalized semi-concavity in more general
metric spaces.
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