Supporting Information

Catalytic Enantioselective Oxa-Hetero-Diels-Alder Reactions of Enones with Aryl Trifluoromethyl Ketones: Synthesis of Tetrahydropyranones

Maira Pasha and Fujie Tanaka*

Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan

1. Synthesis of Amine Derivative A S2
2. Oxa-Hetero-Diels-Alder Reactions (Table 2) S2
3. Determination of the Absolute Configuration of 3a-1 (Scheme 2) S8
4. References S9
NMR Spectra S10
HPLC Chromatograms S67

General

For thin layer chromatography (TLC), Merck silica gel 60 F254 aluminum sheets were used and the compounds were visualized by irradiation with UV light. Flash column chromatography was performed using Merck silica gel $60(230-400$ mesh $)$ or Yamazen flash column ($60 \AA, 40 \mu \mathrm{~m}$). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 400 or a Bruker Avance 500. Proton chemical shifts are reported in ppm downfield from tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) or relative to the residual proton signal of the deuterated solvent in $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm})$. Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl_{3} ($\delta 77.0$ ppm). High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap ESI ion trap mass spectrometer. Optical rotations were measured on a Jasco P2200 polarimeter.

1. Synthesis of Amine Derivative A

Amine derivative \mathbf{A} was synthesized by the reported procedure. ${ }^{1}$

A To a solution of $(1 S, 2 S)-(-)$-1,2-diphenylethylenediamine (1.27 g , 6.0 mmol) and triethylamine ($1.00 \mathrm{~mL}, 7.2 \mathrm{mmol}$) in dehydrated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL), (-)-10-camphorsulfonyl chloride ($1.50 \mathrm{~g}, 6.0$ mmol) was added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at same temperature for 2 h . To the mixture, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=98: 2\right)$ to give $\mathbf{A}(2.40 \mathrm{~g}, 88 \%)$ as a colorless solid. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of the obtained \mathbf{A} were consistent with those previously reported. ${ }^{1}$

2. Oxa-Hetero-Diels-Alder Reactions (Table 2)

General procedure for the synthesis of racemic standards of 3

Racemic standards of compounds $\mathbf{3}$ were synthesized by the reported procedure ${ }^{2}$ but with modified conditions.
To a solution of enone $\mathbf{1}(1.0 \mathrm{mmol})$ and aryl trifluoromethyl ketone $\mathbf{2}(3.0 \mathrm{mmol})$ in toluene (dehydrated, 2.0 mL), pyrrolidine ($16.5 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and acetic acid ($22.8 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) were added at room temperature $\left(25{ }^{\circ} \mathrm{C}\right)$, and the mixture was stirred at the same temperature until 1 was consumed (monitored by ${ }^{1} \mathrm{H}$ NMR analyses). For monitoring the reaction progress by ${ }^{1} \mathrm{H}$ NMR analyses, a portion $(50 \mu \mathrm{~L})$ of the reaction mixture was taken out and diluted with CDCl_{3}, which was directly used for the NMR analyses. The mixture (remaining portion) was purified by flash column chromatography (hexane/EtOAc $=98: 2$) to give racemic product 3. For each of all cases of $\mathbf{3}$ synthesized by this method, compound 3-1 (R and CF_{3}, trans) ${ }^{1}$ was the major diastereomer and compound 3-2 $\left(\mathrm{R} \text { and } \mathrm{CF}_{3}, c i s\right)^{1}$ was the minor diastereomer.

General procedure for the catalytic enentioselective oxa-hetero-Diels-Alder reactions

To a solution of amine derivative $\mathbf{A}(85.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and N -Boc- O - t Bu-L-threonine (B) (110 $\mathrm{mg}, 0.40 \mathrm{mmol}$) in toluene (dehydrated, 2.0 mL), enone $\mathbf{1}(1.0 \mathrm{mmol})$ and aryl trifluoromethyl
ketone $2(3.0 \mathrm{mmol})$ were added at $5^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 9 days until 1 was completely or almost consumed (monitored by TLC and/or ${ }^{1} \mathrm{H}$ NMR analyses). Before purification, the diastereomer ratio (dr) was determined by ${ }^{1} \mathrm{H}$ NMR analysis. The mixture was purified by flash column chromatography (hexane/EtOAc $=98: 2$, this solvent system was used for the purification of each of all 3) to give 3-1 (R and CF_{3}, trans) ${ }^{1}$ and 3-2 (R and CF_{3}, cis $)^{1}$ separately. For each of all the cases of $\mathbf{3}$ synthesized by this method, compound 31 (R and CF_{3}, trans) ${ }^{1}$ was the major diastereomer and compound 3-2 $\left(\mathrm{R}\right.$ and CF_{3}, cis) ${ }^{1}$ was the minor diastereomer. Formation of the aldol product was $<5 \%$ relative to the oxa-hetero-DielsAlder products (i.e., 3) for all reactions performed by this method. The enantiomer ratio (er) of 3-1 was determined by chiral-phase HPLC analysis after purification. The absolute configuration of 3a-1 obtained by this procedure was determined to be (R, R); see Section 3 (page S 8).

Compound 3a-1 (minor diastereomer)

General procedure, dr 3a-1/3a-2 = 8:1 (before purification), $\mathbf{3 a - 1} 201 \mathrm{mg}$ (70\%, er 91:9), $\mathrm{R}_{\mathrm{f}} 0.39$ (hexane/EtOAc $=95: 5$), colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}-$ 40.7 (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, er $91: 9$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 4.45-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J$ $=16.5 \mathrm{~Hz}, 11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.4,137.7,129.0,128.3,126.2,125.1\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=\right.$ $288 \mathrm{~Hz}), 78.7\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=28 \mathrm{~Hz}\right), 73.0,45.7,43.9,38.4,18.4,13.7$. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~F}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$287.1253, found 287.1249. HPLC (Daicel Chiralpak AS-3, hexane/i$\operatorname{PrOH}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major diastereomer, major enantiomer) $=24.5 \mathrm{~min}, t_{\mathrm{R}}$ $($ major diastereomer, minor enantiomer $)=22.7 \mathrm{~min}$.

Compound 3a-2 (minor diastereomer)

$\mathrm{R}_{\mathrm{f}} 0.27$ (hexane/EtOAc $=95: 5$), colorless oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.49(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 3 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 1 \mathrm{H})$, 3.26 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dd, $J=14.8$ $\mathrm{Hz}, 11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.38$ $(\mathrm{m}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.6$, $133.3,129.5,128.7,128.3,123.8\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=282 \mathrm{~Hz}\right), 80.7\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=29\right.$ $\mathrm{Hz}), 71.8,46.8,42.8,38.1,18.4,13.9$. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~F}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$287.1253, found 287.1248.

Compound 3b-1 (major diastereomer)

General procedure, dr $\mathbf{3 b - 1 / 3 b - 2}=7: 1$ (before purification), $\mathbf{3 b - 1}$ $220 \mathrm{mg}\left(69 \%\right.$, er 95:5), $\mathrm{R}_{\mathrm{f}} 0.23$ (hexane/EtOAc $=95: 5$), colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}-31.9$ (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, er 95:5). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.44-4.38$ (m, $1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J$ $=16.6 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=16.6 \mathrm{~Hz}, 11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-$
$1.73(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.0(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.9$,
136.1, 135.2, 128.5, 127.7, $124.9\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=288 \mathrm{~Hz}\right), 78.4\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=29 \mathrm{~Hz}\right), 73.2,45.7,43.8,38.3$, 18.4, 13.7. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{ClF}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 321.0864$, found 321.0858. HPLC (Daicel Chiralpak AS-3, hexane $/ i-\mathrm{PrOH}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major diastereomer, major enantiomer $)=23.5 \mathrm{~min}, t_{\mathrm{R}}($ major diastereomer, minor enantiomer $)=27.0$ min.

Compound 3b-2 (minor diastereomer)

$\mathrm{R}_{\mathrm{f}} 0.20$ (hexane/EtOAc $=95: 5$), colorless oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.44-7.38(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.01(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (ddd, $J=14.8 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.64-$ $1.47(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.1,135.9,131.9,129.7,129.1,123.6\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}\right.$ $=282 \mathrm{~Hz}), 80.5\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}\right), 72.1,46.7,42.7,38.1,18.4,13.9$. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{ClF}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 321.0864$, found 321.0857 .

Compound 3c-1 (major diastereomer)

General procedure, dr $\mathbf{3 c - 1} \mathbf{3 c} \mathbf{c} \mathbf{2}=5: 1$ (before purification), $\mathbf{3 c - 1} 182$ $\mathrm{mg}\left(60 \%\right.$, er $93: 7$), $\mathrm{R}_{\mathrm{f}} 0.34$ (hexane/EtOAc $=95: 5$), colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}-34.3$ (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, er 93:7). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{td}, J=7.9 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.37(\mathrm{~m}$, 1 H), 3.26 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (dd, J $=16.6 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=16.6 \mathrm{~Hz}, 11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-$ $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.44(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.9$, $162.6\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=245 \mathrm{~Hz}\right), 140.2\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=9 \mathrm{~Hz}\right), 124.9\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=288 \mathrm{~Hz}\right)$, $121.8,116.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=20 \mathrm{~Hz}\right), 114.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=24 \mathrm{~Hz}\right), 78.3\left(\mathrm{qd}, J_{\mathrm{C}, \mathrm{F}}=29 \mathrm{~Hz}, 2 \mathrm{~Hz}\right), 73.2,45.7$, 43.9, 38.3, 18.4, 13.7. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 305.1159$, found 305.1157. HPLC (Daicel Chiralpak AS-3, hexane $/ i-\mathrm{PrOH}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} $($ major diastereomer, major enantiomer $)=18.9 \mathrm{~min}, t_{\mathrm{R}}($ major diastereomer, minor enantiomer $)=$ 23.2 min .

Compound 3c-2 (minor diastereomer)

$\mathrm{R}_{\mathrm{f}} 0.31$ (hexane/EtOAc $=95: 5$), colorless oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.39(\mathrm{dt}, J=8.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.13-$ $7.08(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J$ $=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=14.9 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (ddd, $J=$ $14.9 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.48$ (m, 2H), 1.48-1.38 (m, 1H) $0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 203.0,162.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=246 \mathrm{~Hz}\right), 136.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=6 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=9 \mathrm{~Hz}\right), 124.0$, $123.6\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=285 \mathrm{~Hz}\right), 116.7\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=21 \mathrm{~Hz}\right), 115.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=22 \mathrm{~Hz}\right), 80.4\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}\right)$, 72.1, 46.6, 43.9, 38.1, 18.3, 13.8. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$305.1159, found 305.1154.

Compound 3d-1 (major diastereomer)

General procedure, dr $\mathbf{3 d - 1} \mathbf{3 d - 2}=8: 1$ (before purification), 3d-1 $194.2 \mathrm{mg}(64 \%$, er $94: 6), \mathrm{R}_{\mathrm{f}} 0.33$ (hexane/EtOAc $=95: 5$), colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}-41.2$ (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, er 94:6). ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, CDCl_{3}): $\delta 7.52$ (dd, $\left.J=8.7 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.44-$ $4.37(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.48 (dd, $J=16.6 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=16.6 \mathrm{~Hz}, 11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 203.1,163.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=248 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=2 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=8 \mathrm{~Hz}\right), 125.0(\mathrm{q}$, $\left.J_{\mathrm{C}, \mathrm{F}}=287 \mathrm{~Hz}\right), 115.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=21 \mathrm{~Hz}\right), 78.4\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=28 \mathrm{~Hz}\right), 73.2,45.7,43.9,38.4,18.4,13.7$. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 305.1159$, found 305.1153. HPLC (Daicel Chiralpak AS-3, hexane $/ i-\mathrm{PrOH}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major diastereomer, major enantiomer) $=26.0 \mathrm{~min}, t_{\mathrm{R}}($ major diastereomer, minor enantiomer $)=30.9 \mathrm{~min}$.

Compound 3d-2 (minor diastereomer)

$\mathrm{R}_{\mathrm{f}} 0.31$ (hexane/EtOAc $=95: 5$), colorless oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta 7.47(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 3.71-$ $3.65(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{~Hz}$, 1H), 2.38 (dd, $J=14.8 \mathrm{~Hz}, 11.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26 (ddd, $J=14.8 \mathrm{~Hz}, 2.7$ $\mathrm{Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.35(\mathrm{~m}$, $1 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.3$, $163.3\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=248 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=9 \mathrm{~Hz}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=4 \mathrm{~Hz}\right), 123.7\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=282 \mathrm{~Hz}\right)$, $115.9\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=21 \mathrm{~Hz}\right), 80.4\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}\right), 72.0,46.8,42.8,38.1,18.4,13.8$. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 305.1159$, found 305.1155 .

Compound 3e-1 (major diastereomer)

General procedure, dr 3e-1/3e-2 = 7:1 (before purification), 3e-1 158 $\mathrm{mg}(72 \%$, er $96: 4), \mathrm{R}_{\mathrm{f}} 0.36$ (hexane/EtOAc $=95: 5$), colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}-20.2$ (c $0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, er 96:4). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.44-4.38(\mathrm{~m}$, $1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J$ $=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=16.5 \mathrm{~Hz}, 11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.8,136.7$, $131.5,128.0,124.8\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=287 \mathrm{~Hz}\right), 123.5,78.5\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=29 \mathrm{~Hz}\right), 73.2,45.7,43.7,38.3,18.4$, 13.7. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{BrF}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 365.0359$, found 365.0349. HPLC (Daicel Chiralpak AS-3, hexane $/ i-\mathrm{PrOH}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major diastereomer, major enantiomer $)=24.5 \mathrm{~min}, t_{\mathrm{R}}($ major diastereomer, minor enantiomer $)=30.5 \mathrm{~min}$.

Compound 3e-2 (minor diastereomer)

$\mathrm{R}_{\mathrm{f}} 0.34$ (hexane/EtOAc $=95: 5$), colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-$ $3.64(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-$
$1.70(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.33(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.1,132.4,132.0,130.0,124.2,123.5\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=282 \mathrm{~Hz}\right), 80.5\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}\right)$, 72.1, 46.7, 42.6, 38.1, 18.4, 13.9. ESI-HRMS: m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{BrF}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 365.0359$, found 365.0348 .

Compound 3f-1 (major diastereomer)

General procedure, dr $\mathbf{3 f - 1 / 3 f - 2}=4: 1$ (before purification), $\mathbf{3 f - 1}$ $157.8 \mathrm{mg}(53 \%$, er $90: 10), \mathrm{R}_{\mathrm{f}} 0.37$ (hexane $/ \mathrm{EtOAc}=95: 5$), colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}-11.7$ (c $0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, er 90:10). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.43-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, J=16.4$ $\mathrm{Hz}, 11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.6,138.9,134.8,129.0,126.3,126.1,125.1\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=287 \mathrm{~Hz}\right), 124.0,78.6(\mathrm{q}$, $J_{\mathrm{C}, \mathrm{F}}=33.7 \mathrm{~Hz}$), $73.0,45.7,43.9,38.4,21.0,18.4,13.8$. ESI-HRMS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~F}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$301.1410, found 301.1408. HPLC (Daicel Chiralpak IB, hexane $/ i-\mathrm{PrOH}=98: 2,0.5$ $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major diastereomer, major enantiomer) $=11.6 \mathrm{~min}, t_{\mathrm{R}}$ (major diastereomer, minor enantiomer) $=13.3 \mathrm{~min}$.

Compound 3f-2 (minor diastereomer)

$\mathrm{R}_{\mathrm{f}} 0.35$ (hexane/EtOAc $=95: 5$), colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-$ $3.67(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39-2.32 (m, 4H), $2.23(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 1 \mathrm{H})$, $1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.7,139.6,130.2,129.5,128.3$, $123.9\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=282 \mathrm{~Hz}\right), 80.7\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=29 \mathrm{~Hz}\right), 71.7,46.9,42.8,38.2,21.0,18.4$, 13.9. ESIHRMS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~F}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 301.1410$, found 301.1406.

Compound 3g-1 (major diastereomer)

General procedure, dr $\mathbf{3 g - 1} / \mathbf{3 g}-\mathbf{2}=6: 1$ (before purification), $\mathbf{3 g} \mathbf{- 1}$ $196 \mathrm{mg}\left(56 \%\right.$, er 95:5), $\mathrm{R}_{\mathrm{f}} 0.35$ (hexane/EtOAc $=95: 5$), colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}-36.3$ (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, er $95: 5$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-$ $4.40(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51(\mathrm{dd}, J=16.6 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=16.6 \mathrm{~Hz}, 11.7 \mathrm{~Hz}$, $1 \mathrm{H})$, 1.84-1.76 (m, 1H), 1.68-1.47 (m, 3H), $1.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 202.6,141.5,131.3\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=32 \mathrm{~Hz}\right), 126.9,125.3\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=4 \mathrm{~Hz}\right), 124.8\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=287\right.$ $\mathrm{Hz}), 123.8\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=271 \mathrm{~Hz}\right), 78.6\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=29 \mathrm{~Hz}\right), 73.4,45.7,43.8,38.4,18.4,13.7$. ESIHRMS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$355.1127, found 355.1119. HPLC (Daicel Chiralpak IB , hexane $/ i-\mathrm{PrOH}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major diastereomer, major enantiomer) $=14.5 \mathrm{~min}, t_{\mathrm{R}}$ (major diastereomer, minor enantiomer) $=18.9 \mathrm{~min}$.

Compound 3g-2 (minor diastereomer)

$\mathrm{R}_{\mathrm{f}} 0.31$ (hexane/EtOAc $=95: 5$), colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-$ $3.65(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.42 (dd, $J=14.9 \mathrm{~Hz}, 11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (ddd, $J=14.9 \mathrm{~Hz}, 2.6 \mathrm{~Hz}$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.36(\mathrm{~m}$, $1 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.8$, $137.6,131.8\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=32 \mathrm{~Hz}\right), 128.8,125.8\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=4 \mathrm{~Hz}\right), 123.6\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=270 \mathrm{~Hz}\right), 123.5(\mathrm{q}$, $\left.J_{\mathrm{C}, \mathrm{F}}=281 \mathrm{~Hz}\right) 80.6\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}\right), 72.4,46.7,42.7,38.1,18.4,13.9$. ESI-HRMS: m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$355.1127, found 355.1118.

Compound 3h-1 (major diastereomer)

General procedure, dr $\mathbf{3 h - 1 / 3 h - 2}=5: 1$ (before purification), $\mathbf{3 h} \mathbf{h} \mathbf{1}$ $206.9 \mathrm{mg}\left(63 \%\right.$, er 89:11), $\mathrm{R}_{\mathrm{f}} 0.34$ (hexane/EtOAc $=95: 5$), colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}-10.6$ (c $0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, er $89: 11$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 4.43-4.36(\mathrm{~m}$, $1 \mathrm{H}), 3.30(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=15.0 \mathrm{~Hz}, 11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.20(\mathrm{~m}, 9 \mathrm{H}), 0.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 203.5,137.7,129.0,128.3,126.3,125.1\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=286 \mathrm{~Hz}\right)$, $78.7\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=29 \mathrm{~Hz}\right), 73.4,45.8,44.0,36.4,31.7,29.0,25.1,22.5,14.0$. ESI-HRMS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~F}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$329.1723, found 329.1720. HPLC (Daicel Chiralpak IB, hexane/i$\operatorname{PrOH}=98: 2,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}): t_{\mathrm{R}}\left(\right.$ major diastereomer, major enantiomer) $=12.2 \mathrm{~min}, t_{\mathrm{R}}$ $($ major diastereomer, minor enantiomer $)=14.1 \mathrm{~min}$.

Compound 3h-2 (minor diastereomer)

$\mathrm{R}_{\mathrm{f}} 0.31$ (hexane/EtOAc $=95: 5$), colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 7.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 3.74-3.67(\mathrm{~m}$, $1 \mathrm{H}), 3.25(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=$ $14.6 \mathrm{~Hz}, 11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H})$, 1.63-1.49 (m, 2H), 1.35-1.25 (m, 7H), $0.90(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.6,133.3,129.5,128.7,128.3,123.8(\mathrm{q}$, $\left.J_{\mathrm{C}, \mathrm{F}}=282 \mathrm{~Hz}\right), 80.7\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=29 \mathrm{~Hz}\right) 72.0,46.8,42.8,36.0,31.6,29.1$, 25.0, 22.6, 14.0. ESI-HRMS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~F}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 329.1723, found 329.1717.

Compound 3i-1 (major diastereomer)

General procedure, dr $\mathbf{3 i - 1} / \mathbf{3 i} \mathbf{- 2}=3: 1$ (before purification), $\mathbf{3 i} \mathbf{i} \mathbf{1}$ $220 \mathrm{mg}\left(56 \%\right.$, er 80:20), $\mathrm{R}_{\mathrm{f}} 0.36$ (hexane/EtOAc $=95: 5$), colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}-12.8\left(\mathrm{c} 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, er 80:20). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.61-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=15.8$
$\mathrm{Hz}, 11.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.9,138.7,137.1,132.0,129.3,128.5,127.6$, 126.3, $125.0\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=286 \mathrm{~Hz}\right)$ 122.5, 74.7, 47.2, 43.8. ESI-HRMS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{BrF}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$399.0202, found 399.0197. HPLC (Daicel Chiralpak IB, hexane $/ i-\mathrm{PrOH}=98: 2,0.5$ $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$): t_{R} (major diastereomer, major enantiomer) $=30.5 \mathrm{~min}, t_{\mathrm{R}}$ (major diastereomer, minor enantiomer) $=43.5 \mathrm{~min}$.

Compound 3i-2 (minor diastereomer)

$\mathrm{R}_{\mathrm{f}} 0.33$ (hexane/EtOAc $=95: 5$), colorless oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta 7.54-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=14.8 \mathrm{~Hz}, 11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.1,138.4$, 132.6, 131.9, 129.8, 129.0, 128.2, 127.3, $123.7\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=282 \mathrm{~Hz}\right)$, 122.3, $81.2\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=30 \mathrm{~Hz}\right), 73.0,48.3$, 42.7. ESI-HRMS: m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{BrF}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 399.0202, found 399.0194.

3. Determination of the Absolute Configuration of 3a-1 (Scheme 2)

Synthesis of (R)-4a ${ }^{3}$

Aldol (R)-4a ${ }^{3}$ was synthesized by the previously reported procedure using cinchonidine-derived amine with benzoic acid as the catalyst. ${ }^{3}$

Aldol (R)-4a ${ }^{3}$

$[\alpha]^{24}{ }_{\mathrm{D}}-114$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, er $95: 5$ determined by HPLC analysis). Lit. $[\alpha]^{24}{ }_{\mathrm{D}}-71.8$ (c 0.28 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$ ee) for (R)-4a. ${ }^{3}$ HPLC (Daicel Chiralpak AS-3, hexane $/ i-\mathrm{PrOH}=99: 1,0.5 \mathrm{~mL} / \mathrm{min}$, $\lambda=220 \mathrm{~nm}): t_{\mathrm{R}}($ major enantiomer $)=27 \mathrm{~min}, t_{\mathrm{R}}($ minor enantiomer $)=32 \mathrm{~min}$.

Synthesis of (\pm)-4a

Racemic standard of aldol $(\pm)-\mathbf{4 a}$ was synthesized by the procedure that was used for the synthesis of (R)-4a but using ethylenediamine (0.1 equiv) with benzoic acid (0.1 equiv) as the catalyst instead of the cinchonidine-derived amine with benzoic acid.

Transformation of (\boldsymbol{R})-4a to 3a: Intramolecular oxa-Michael reaction of (R)-4
Aldol (R)-4a ${ }^{3}$ (er 95:5) was transformed to 3a in the presence of $\mathbf{T f O H} .{ }^{4}$

To a solution of $(R)-\mathbf{4 a}$ (er $95: 5,180 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$, $\mathrm{TfOH}(2.7 \mu \mathrm{~L}, 0.031$ mmol) was added at room temperature $\left(25{ }^{\circ} \mathrm{C}\right)$, and the mixture was stirred at the same temperature for 3 days. A portion of the mixture was diluted with CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}$ NMR to observe the product formation and the dr; the ratios werw $\mathbf{3 a} / \mathbf{4 a}=7: 3$ and $\mathbf{3 a - 1} / \mathbf{3 a - 2}=$ 2.5:1. The mixture (remaining portion) was purified by flash column chromatography (hexane/EtOAc $=98: 2$) to give (R, R)-3a-1 (er 96:4).

Based on the comparison of HPLC retention times of 3a-1 obtained in the presence of amine \mathbf{A} and acid \mathbf{B} (page S2-S3) and of $(R, R) \mathbf{- 3 a - 1}$ obtained from $(R)-\mathbf{4 a}$, the absolute configuration of 3a-1 obtained in the presence of \mathbf{A} and \mathbf{B} (page S2-S3) was determined to be (R, R).

4. References

1. C. Lu, Z. Luo, L. Huang, and X. Li, Tetrahedron Asymmetry 2011, 22, 722.
2. D. Zhang and F. Tanaka, RSC Advances 2016, 6, 61454.
3. J. Lin, T. Kang, Q. Liu, and L. He, Tetrahedron:Asymmetry 2014, 25, 949.
4. M. Pasha, M. Sohail, and F. Tanaka, Heterocycles, 2020, 101, 339.

A

3a-2

Current Data Parameters $\begin{array}{lr}\text { NAME } & \text { MH-307-MINOR } \\ \text { EXPNO } & 10\end{array}$ PROCNO
F2 - Acquisition Parameters Date_ 20200212

$$
\begin{aligned}
& \text { Time } \begin{array}{l}
16.14 \\
\text { INSIRUM } \\
\text { PRORHD } \\
\hline 2151574
\end{array} \text { Avance }
\end{aligned}
$$

$$
\begin{aligned}
& \text { PROBHD } \quad 2151574 _0027(\\
& \text { PUUTPROG }
\end{aligned}
$$

$$
\begin{array}{lr}
\text { PULPROG } & 2930 \\
\text { ID } & 65536
\end{array}
$$

$$
\begin{array}{lr}
\text { TD } & 65536 \\
\text { SOLVENT } & \text { CDC13 }
\end{array}
$$

$$
\begin{array}{lr}
\text { SOLVENT } & \text { CDCl3 } \\
\text { NS } & 16 \\
\text { DS } & 2 \\
\text { SNH } & 100 \cap \Omega
\end{array}
$$

$$
\begin{array}{ll}
\text { DS } & 10000.000^{2} \mathrm{~Hz}
\end{array}
$$

$$
\begin{array}{ll}
\text { FIDRES } & 0.305176 \mathrm{~Hz} \\
\text { AQ } & 3.2767999 \mathrm{sec}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{AQ} \\
& \mathrm{RG}
\end{aligned}
$$

$$
3.2767999 \mathrm{sec}
$$

$$
\begin{array}{r}
101 \\
50.000
\end{array}
$$

$$
\begin{array}{r}
50.000 \text { usec } \\
11.14 \text { usec }
\end{array}
$$

$$
\begin{aligned}
& 11.14 \text { usec } \\
& 298.0 \mathrm{~K}
\end{aligned}
$$

$$
298.0 \mathrm{~K}
$$

$$
1.00000000 \mathrm{sec}
$$

$$
500.1330883_{3}^{1} \mathrm{MHz}
$$

$$
1 \mathrm{H}
$$

$$
\begin{aligned}
& 2.67 \text { usec } \\
& 8.00 \text { used }
\end{aligned}
$$

$$
\begin{array}{r}
8.00 \text { use } \\
23.68499947 \mathrm{~W}
\end{array}
$$

F2 - Frocessing parameters
SI 500.1300131
WDW EM
LB 0.30
0.30 Hz
1.00

 คトゥ

3b-1

Current	Data Parameters Mh-310-minor
EXPNO	10
PROCNO	1
F2 - Acquisition Parameters	
Date_	20200130
Time	18.18 h
INSTRUM	Avance
PROBHD	2167889_0002 (
PULPROG	zg30
TD	65536
SOLVENT	CDCl3
NS	16
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999 sec
RG	12.4562
DW	50.000 usec
DE	10.45 used
TE	298.1 K
D1	1.00000000 sec
TD0	1
SFO1	500.1330883 MHz
NUC1	1H
P0	4.00 usec
P1	12.00 usec
PLW1	6.80000019 W
F2 - Processing parameters	
SI	65536
SF	500.1300124 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

3c-1

Current Data Parameters	
NAME	
EXPNO	30
PROCNO	1
F2 - Acquisition Parameters	
Date_	20200201
Time	11.57 h
INSTRUM	Avance
PROBHD	2167889_0002 (
PULPROG	zg30
TD	65536
SOLVENI	CDCl3
NS	16
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999 sec
RG	9.3756
DW	50.000 usec
DE	10.45 usec
TE	298.1 K
D1	1.00000000 sec
IDO	1
SFO1	500.1330883 MHz
NUC1	1H
PO	4.00 usec
P1	12.00 usec
PLW1	6.80000019 W
F2 - Processing parameters	
SI	65536
SF	500.1300231 MHz
WDW	EM
SSB	0
IB	0.30 Hz
GB	0
PC	1.00

3c-1

$$
\begin{array}{lr}
\text { Current Data Parameters } \\
\text { NAME } & \text { MH-311-MAJOR } \\
\text { EXPNO } & 21 \\
\text { PROCNO } & 1
\end{array}
$$

F2 - Acquisition Parameters

$$
\text { Date_ } 20200131
$$

$$
\text { Time } \quad 14.42 \mathrm{~h}
$$

INSTRUM Avance

$$
\text { PROBHD } \quad 2167889 \text { _0002 }
$$

PULPROG

$$
\begin{aligned}
& \text { EUL } \\
& \text { TD } \\
& \text { SOL }
\end{aligned}
$$

$$
\begin{array}{lr}
\text { TD } & 65536 \\
\text { SOLVENT } & \text { CDC13 }
\end{array}
$$

$$
\begin{aligned}
& \text { SOLVENT } \\
& \text { NS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ND } \\
& \text { DS }
\end{aligned}
$$

SWH
FIDRES

$$
\begin{aligned}
& A Q \\
& R G
\end{aligned}
$$

$$
\begin{aligned}
& \text { RG } \\
& \text { DW }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DW } \\
& \text { DE }
\end{aligned}
$$

TE
D1

$$
\begin{aligned}
& \text { D1 } \\
& \text { D11 }
\end{aligned}
$$

TDO
SFO1
NUC1
Po

$$
\mathrm{P} 1
$$

ELW1

$$
\mathrm{SFO} 2
$$

NUC2
CPDPRG[2

$$
\text { PCPD } 2
$$

PLW2
PLW12
PLW13

$$
0.15300000 \mathrm{~W}
$$

$$
0.07683500 \mathrm{~W}
$$

 L

3c-2

NAME MH-311-MIN EXPNO
PROCNO

F2 - Acquisition Parameters	
Date_	20200131
Time	10.41 h
INSTRUM	Avance
PROBHD	2167889_0002 (
PUIPROG	zg30
TD	65536
SOLVENT	CDCl3
NS	6
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999 sec
RG	12.6367
DW	50.000 usec
DE	10.45 usec
TE	298.2 K
D1	1.00000000 sec
TDO	1
SFO1	500.1330883 MHz
NUC1	1H
PO	4.00 usec
P1	12.00 usec
PLW1	6.80000019 W
F2 - Processing parameters	
SI	65536
SF	500.1300121 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

3c-2
$\begin{array}{lr}\text { Current Data } & \text { Parameters } \\ \text { NAME } & \text { MH-311-MIN } \\ \text { EXPNO } & 11 \\ \text { PROCNO } & 1\end{array}$

 -•••••••••••• $\dot{\sim}$

3d-1

\qquad

NAME	MH-314-MAJOR
EXPNO	10
PROCNO	

PROCNO
F2 - Acquisition Parameters
Date_ 20200208
Iime $\quad 15.02 \mathrm{~h}$
-NsiRUM Avance
PULPROG TD
SOL
NS
DS
SWH
FIDRE
AQ
RG
DW
DE
TE
D1
SFOI
NUC
PO
P1
PLWI
2151574_0027 (2930
6536 CDCl3
10000.000 0.305176 Hz 3.2767999 sec 51.2821 50.000 usec 11.14 usec 298.0 K
1.00000000 sec
500.1330883 MHz

1 H
2.67 usec
8.00 usec
23.68499947 W

SI 65536
SF $\quad 500.1300115 \mathrm{MHz}$
EDW EM
SSB 0
$-\quad 0.30 \mathrm{~Hz}$
$\begin{array}{ll}\text { GB } & 1.00\end{array}$

3d-2

Current	Data Parameters
NAME	MH-314-MINOR
EXPNO	20
PROCNO	1

F2 - Acquisition Parameters Date_ 20200208 Time 16.09 h INSTRUM Avance PROBHD Z151574_0027 PULPROG \quad zg30 SOLVENT NS DS DS
SWH
ETDRE ${ }_{A Q}{ }^{\text {EAD }}$ AQ
RG
DW
DE
DE $\quad 50.000$ use 11.14 usec 298.0 K

$$
1.00000000 \mathrm{sec}
$$

$$
500.1330883_{1}^{1} \mathrm{MHz}
$$

1H
$2 . \overline{67}$ usec
8.00 use
23.68499947 W
$\begin{array}{lc}\text { F2 - Processing parameters } \\ \text { SI } & 65536 \\ \text { SF } & 500.1300115 \mathrm{MHz} \\ \text { WDW } & \text { EM } \\ \text { SSB } & 0 \\ \text { LB } & 0.30 \mathrm{~Hz} \\ \text { GB } & 0 \\ \text { PC } & 1.00\end{array}$

Current	Data Parameters
NAME	MH-315-MAJOR
EXPNO	10

F2 - Acquisition Parameters
Date 20200210

Date_	20200210 h
Iime	15.10 h
INSTRUM	Avance

PROBHD 2151574 Avance

$$
\begin{array}{lr}
\text { PROBHD } & 2151574 _0027 \\
\text { PULPROG } & \text { zg30 }
\end{array}
$$

$$
\begin{array}{lr}
\text { PULPROG } & \text { zg30 } \\
\text { ID } & 65536
\end{array}
$$

$$
\begin{array}{ll}
\text { TD } & 65536 \\
\text { SOLVENT } & \text { CDCl3 }
\end{array}
$$

$$
\begin{array}{lr}
\text { SOLVENT } & \text { CDCl3 } \\
\text { NS } & 16
\end{array}
$$

DS	16 SWH$\quad 10000.000^{2}$

FIDRES $\quad 0.305176$ $\begin{array}{lr}\text { FIDRES } & 0.305176 \mathrm{~Hz} \\ \text { AQ } & 3.2767999 \mathrm{sec}\end{array}$ RG DW

$$
\begin{aligned}
& 11.14 \mathrm{usec} \\
& 298.0 \mathrm{~K}
\end{aligned}
$$

$$
00000000
$$

$$
1.00000000 \mathrm{sec}
$$

$$
500.1330883 \mathrm{MHz}
$$

$$
\begin{array}{r}
1 \mathrm{H} \\
2.67 \text { use }
\end{array}
$$

$$
\begin{aligned}
& 2.67 \text { usec } \\
& 8.00 \text { usec }
\end{aligned}
$$

$$
23.68499947 \mathrm{~W}
$$

F2 - Processing parameters

$$
\begin{array}{lr}
\text { SI } & 65536 \\
\text { SF } & 500.1300134 \mathrm{M}
\end{array}
$$

$$
\begin{array}{lc}
\mathrm{SF} & 500.1300134 \mathrm{MHz} \\
\mathrm{WDW} & \mathrm{EM}
\end{array}
$$

$$
\begin{array}{lc}
W D W & E M \\
S S B & 0
\end{array}
$$

$$
0.30 \mathrm{~Hz}
$$

$$
1.00
$$

$\begin{array}{lr}\text { Current } & \text { Data Parameters } \\ \text { NAME } & \text { MH-315-MAJOR } \\ \text { EXPNO } & 10 \\ \text { PROCNO } & 1\end{array}$
F2 - Acquisition Parameters
Date_ 20200210
20200210
$\begin{array}{lr}\text { Time- } & 15.10 \mathrm{~h} \\ \text { INSIRUM } & \text { Avance }\end{array}$
INSTRUM
PROBHD
Avance
Z151574_0027
PROBHD Z151574_0027 (
PULPROG
zg30

PULPROG	
ID	6530
5536	

$\begin{array}{lr}\text { SOLVENT } & 65536 \\ \text { NS } & \text { CDCl3 } \\ \text { DS } & 16 \\ \text { SWH } & 2 \\ & 10000.000 \mathrm{~Hz}\end{array}$
$\begin{array}{lr}\text { SWH } & 10000.000 \mathrm{~Hz} \\ \text { FIDRES } & 0.305176 \mathrm{~Hz}\end{array}$
$\begin{array}{ll}\text { FIDRES } & 0.305176 \mathrm{~Hz} \\ \text { AQ } & 3.2767999\end{array}$
$\begin{array}{lr}\text { AQ } & 3.2767999 \mathrm{sec} \\ \text { RG } & 42.5532\end{array}$

DW	42.553
$D E$	50.
$T E$	11.

50.000 usec
11.14 usec
298.0 K
1.00000000 sec
$500.1330883^{1} \mathrm{MHz}$
1H
2.67 usec
2.07 usec
8.00 usec
23.68499947 w

F2 - Processing parameters

$3 \mathrm{e}-1$

$3 \mathrm{e}-2$

Current Data Parameters	
NAME	MH-315-MINOR
EXPNO	20
PROCNO	1
F2 - Acquisition Parameters	
Date_	20200210
Time	16.03 h
INSTRUM	Avance
PROBHD	2151574_0027 (
PULPROG	zg30
TD	65536
SOLVENT	CDCl3
NS	15
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999 sec
RG	77.6398
DW	50.000 usec
DE	11.14 usec
TE	298.0 K
D1	1.00000000 sec
TDO	1
SFO1	500.1330883 MHz
NUC1	1H
PO	2.67 usec
P1	8.00 usec
PLW1	23.68499947 W
F2 - Processing parameters	
SI	65536
SF	500.1300130 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

Current Data Parameter $\begin{array}{lr}\text { NAME } & \text { MH-320-MAJOR-C } \\ \text { EXPNO } & 10 \\ \text { PROCNO } & 1\end{array}$

F2 - Acquisition Parameters

Date_	20200304	
Time	20.13	h
INSTRUM	Avance	
PROBHD	2151574_0027 (
PULPROG	zg30	
TD	65536	
SOLVENT	CDCl3	
NS	16	
DS	2	
SWH	10000.000	Hz
FIDRES	0.305176	Hz
AQ	3.2767999	sec
RG	60.6061	
DW	50.000	usec
DE	11.14	usec
TE	298.1	K
D1	1.00000000	sec
TDO	1	
SFO1	500.1330883	MHz
NUC1	1H	
PO	2.67	usec
P1	8.00	usec
PLW1	23.68499947	W
F2 - Processing parameters		
SI	65536	
SF	500.1300131	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

$\infty \dot{\infty} \infty \dot{\omega} \dot{\bullet} \dot{\square}$
 न न न न न न
 -••••••••••••••• •• • ••

Current Data Parameters NAME EXPNO

F2 - Acquisition Parameters

Date_	20200304	
Time	22.11	h
INSTRUM	Avance	
PROBHD	2151574_0027 (
PuIprog	zgpg30	
TD	65536	
SOLVENT	CDCl3	
NS	1024	
DS	4	
SWH	30120.482	Hz
FIDRES	0.919204	Hz
AQ	1.0878977	sec
RG	101	
DW	16.600	usec
DE	6.50	usec
TE	298.2	K
D1	2.00000000	sec
D11	0.03000000	sec
TD0	1	
SFO1	125.7703643	MHz
NUC1	130	
PO	3.33	used
P1	10.00	usec
PLW1	88.26000214	W
SEO2	500.1320005	MHz
NUC2	1H	
CPDPRG[2	waltz65	
PCPD2	80.00	used
PLW2	23.68499947	W
PLW12	0.23684999	W
PLW13	0.11913000	W
F2 - Processing parameters		
SI	32768	
SE	125.7577928	MHz
WDW	EM	
SSB	0	
LB	1.00	Hz
GB	0	
PC	1.40	

ppm

Current NAME	Data Parameters MH-320-MINOR-CS
EXPNO	10
PROCNO	1
F2 - Acquisition Parameters	
Date_	20200304
Time	20.19 h
INSTRUM	Avance
PROBHD	2151574_0027 (
PULPROG	zg30
TD	65536
SOLVENT	CDCl3
NS	16
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999 sec
RG	101
DW	50.000 used
DE	11.14 usec
TE	298.2 K
D1	1.00000000 sec
TDO	1
SEO1	500.1330883 MHz
NUC1	1H
PO	2.67 usec
P1	8.00 useo
PLW1	23.68499947 W
F2 - Processing parameters	
SI	65536
SF	500.1300132 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

 LـL

$3 \mathrm{~g}-1$

里

3g-2

Current D	Data Parameters
NAME	MH-324-MIN-AGAIN-C13
EXPNO	12
Procno	1
F2 - Acquisition Parameters	
Date_	20200414
Time	18.10 h
INSTRUM	Avance
PROBHD	Z151574_0027 (
PULPROG	zgpg30
TD	65536
SOLVENT	CDCl3
NS	1024
DS	4
SWH	30120.482 Hz
FIDRES	0.919204 Hz
AQ	1.0878977 sec
RG	101
DW	16.600 usec
DE	6.50 usec
IE	298.2 K
D1	2.00000000 sec
D11	0.03000000 sec
TDO	1
SEO1	125.7703643 MHz
NUC1	13 C
PO	3.33 usec
P1	10.00 usec
PLW1	88.26000214 W
SEO2	500.1320005 MHz
NUC2	1H
CPDPRG[2	waltz65
PCPD2	80.00 usec
PLW2	23.68499947 W
PLW12	0.23014790 W
PLW13	0.11535020 W
F2 - Processing parameters	
SI	32768
SE	125.7577911 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0
PC	1.40

Current	Data Parameters
NAME	MH-322-MAJOR-CLEAN
EXPNO	10
PROCNO	1
F2 - Acquisition Parameters	
Date_	20200310
Time	16.11 h
INSIRUM	Avance
PROBHD	2151574_0027 (
PULPROG	z930
TD	65536
SOLVENT	CDCl3
NS	16
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999 sec
RG	101
DW	50.000 usec
DE	11.14 used
TE	298.1 K
D1	1.00000000 sec
TDO	1
SFO1	500.1330883 MHz
NUC1	1H
PO	2.67 used
P1	8.00 usec
PLW1	23.68499947 W
F2 - Processing parameters	
SI	65536
SF	500.1300131 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

NAME	MH-322-MINOR-C
EXPNO	10
PROCNO	1

F2 - Acquisition Parameters

$$
\text { Time } \quad 17.14 \mathrm{~h}
$$

INSTRUM Avance
PROBHD Z151574_0027

$$
\text { TD } \quad 65536
$$

$$
\begin{array}{lr}
\text { SOLVENT } & \text { CDCl3 } \\
\text { NS } & 16
\end{array}
$$

NS
SS
IDRES $\quad 10000.000 \mathrm{~Hz}$
AQ $\quad 0.305176 \mathrm{~Hz}$
RG
DW
IE $\quad \begin{aligned} & 11.14 \mathrm{us} \\ & 298.1 \mathrm{~K}\end{aligned}$
11.00000000 sec
$\begin{array}{ll}\text { TDO } & 500.1330883 \\ \text { SFO1 } & 1 \\ \text { MHz }\end{array}$
NUC1 1 H
PO
P1
PLW1
2 - Erocessing parameters
$\begin{array}{ll}\mathrm{SI} & 500.1300134 \mathrm{MHz} \\ \mathrm{SF} & 500\end{array}$
WDW EM
PC 1.00
PLW1 23.68499947 W
10000.000 Hz 3.2767999 sec 50.000 usec 11.14 usec 298.1 K 1.000 .1330883 MHz
500
2.67 usec
8.00 usec
23.68499947 W
500.1300134 MHz

EM
0
0.30 Hz
1.00

No.	RT	Area	Area \%	BC
1	23.523	95405742	95.224	MC
2	27.050	4785074	4.776	MC
	$1.001 \mathrm{E}+08$	100.000		

No.	RT	Area	Area \%	BC
1	18.970	6988923	92.783	MC
2	23.280	543607	7.217	MC
	7532530	100.000		

No.	RT	Area	Area \%	BC
1	27.140	11102158	49.996	MC
2	31.787	11104156	50.004	MC
	22206314	100.000		

(200

No.	RT	Area	Area \%	BC
1	26.027	22810647	93.653	MC
2	30.910	1546000	6.347	MC
	24356647	100.000		

No.	RT	Area	Area \%	BC
1	24.577	25800875	95.652	MC
2	30.520	1172833	4.348	MC
	26973708	100.000		

No.	RT	Area	Area \%	BC
1	11.697	17530685	89.570	MC
2	13.377	2041395	10.430	MC
		19570080	100.000	

No.	RT	Area	Area \%	BC
1	14.533	8721110	50.534	MC
2	18.887	8536906	49.466	MC
		17258016	100.000	

No.	RT	Area	Area \%	BC
1	14.507	19393987	94.899	MC
2	18.940	1042496	5.101	MC
	20436483	100.000		

No.	RT	Area	Area \%	BC
1	12.213	7178251	49.637	MC
2	14.087	7283346	50.363	MC
	14461597	100.000		

No.	RT	Area	Area \%	BC
1	30.700	4527337	50.011	MC
2	43.457	4525296	49.989	MC
	9052633	100.000		

No.	RT	Area	Area \%	BC
1	30.580	17679033	79.620	MC
2	43.577	4525214	20.380	MC
	22204247	100.000		

