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Abstract 14 

Neuronal circuits are intensively shaped depending on experiences received during 15 

developmental critical periods. How neuronal circuits are sculpted can even affect the later 16 

development of higher cognitive functions, such as vocal communication skills. Here, we 17 

propose songbirds that learn to sing from early auditory experiences as a model for 18 

understanding the neuronal mechanisms underlying the development of multistep vocal 19 

learning. By applying the principal concepts of neuronal mechanisms for regulating the timing 20 

of critical periods, which have been well investigated by using experience-dependent 21 
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mammalian cortical plasticity, we review our current understanding of the underlying neuronal 22 

mechanism of the song-learning critical period.  23 
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1. Introduction 28 

From our own experience, we know that experiences, particularly during developmental 29 

periods, have great impacts on our perceptual skills and even on the later learning of higher 30 

cognitive tasks, suggesting the presence of a developmental ‘critical period’ (CP) for higher 31 

cognitive functions. The concept of the CP originally derives from developmental biology, 32 

where applications of drugs to developing embryos at particular stages cause specific 33 

malformations (Stockard, 1921). Since then, the concept of a specific developmental time 34 

window during which the impact of environmental stimuli has a greater impact has been 35 

applied to multiple fields, including neuroscience, and the neuronal mechanism of plasticity 36 

during CPs and the underlying mechanism for regulating the timing of CPs have been 37 

intensively investigated, especially in experience-dependent cortical plasticity. On the other 38 

hand, Konrad Lorenz showed that goose hatchlings can imprint upon moving objects 39 

(Lorenz, 1935), followed independently by Eckhard Hess revealing the presence of a time 40 

window for imprinting to occur (Hess, 1959), suggesting the presence of CPs even in higher 41 

cognitive functions, such as learning. Although the length and timing of CPs remain under 42 

debate, CPs exist in human speech and perception and even in language acquisition 43 

(Hartshorne et al., 2018; Kuhl, 2010; Werker and Hensch, 2015). Like humans learning to 44 

speak, songbirds learn to sing from their early auditory experiences during development. By 45 

exposing juvenile birds to different tutors at different times, the presence of a song-learning 46 

period has been found for zebra finches, a widely used songbird model (Clayton, 1988; 47 

Eales, 1985; Roper and Zann, 2006). However, despite the well-defined presence of CPs in 48 

song-learning behavior in zebra finches, neuronal mechanisms that regulate the timing and 49 



plasticity of CPs have not yet been well described. In this review, we discuss how much we 50 

can apply the concepts that we have learned from the neuronal mechanism of CPs in 51 

mammalian cortical neuronal plasticity, especially in the visual system in rodents, to the CPs 52 

of bird song learning. 53 

 54 

2. Multiple steps of CPs 55 

There are multiple stages in the development of speech and perception in humans, and 56 

the existence of a distinct CP for each stage has been suggested (Kuhl, 2010; Werker and 57 

Hensch, 2015). Similarly, juvenile zebra finches learn to sing in two well-orchestrated time 58 

windows, a sensory learning period during which juveniles memorize adult songs by 59 

listening and a sensorimotor learning period during which they vocally match their 60 

vocalization to memorized tutor songs by using auditory feedback (Fig. 1A). Recent studies 61 

further suggest that learning of syllable phonology and temporal sequence happen in 62 

different steps in the later sensorimotor learning period (Lipkind et al, 2013; Lipkind et al, 63 

2017). Sensory learning starts before they begin to sing by themselves, indicating that the 64 

sensory learning period begins earlier than the sensorimotor learning period (Brainard & 65 

Doupe, 2002; Mooney 1999). Exposing juveniles to another tutor later than 60 days post-66 

hatching (DPH) does not lead to additional song learning (Clayton, 1987; Eales, 1985), 67 

although juveniles at this age are still updating their vocalizations, indicating that the 68 

sensory learning period ends earlier than the sensorimotor learning period does. How are 69 

these two phases of CPs organized, and how are the timings regulated? Sensory deprivation 70 

(isolation) between sequential learning from two different tutors delays the end of the 71 



sensory learning period but not of the sensorimotor learning period (Yazaki-Sugiyama and 72 

Mooney, 2004). Deafening as well as disruptions of auditory feedbacks in adults causes slow 73 

degradation of the song, suggesting that sensorimotor matching continues in adults, 74 

although new song learning does not (Lombardino and Nottebohm, 2000; Nordeen and 75 

Nordeen, 1992; Leonardo & Konishi, 1999; Fukushima & Margoliash, 2015). Despite 76 

behavioral studies suggesting distinct time windows for sensory learning and the 77 

sensorimotor learning period, whether these two steps of the CPs for song learning are 78 

regulated by distinct neuronal mechanisms has not yet been thoroughly investigated. In the 79 

following paragraphs, we will review the studies on the neuronal mechanisms underlying 80 

CPs and further discuss which stages of CPs are regulated. 81 

 82 

 83 

3. Neuronal mechanism of CPs in bird song learning 84 

A few decades ago, Hubel and Wiesel found that closing one eye of kittens, but not of 85 

adult cats, causes the loss of visual responsiveness of neurons in the primary visual cortex to 86 

stimulations to the deprived eyes (ocular dominance (OD) plasticity) (Hubel and Wiesel, 87 

1970; Wiesel and Hubel, 1963) and suggested that cortical neuronal circuits are shaped 88 

depending on sensory experiences from the environment. Since then, the mechanisms by 89 

which neuronal circuits modify their structures and functions, as well as the underlying 90 

neuronal mechanisms regulating the timing, opening and closing of CPs, have been 91 

intensively investigated using OD plasticity. A series of studies have suggested some 92 

principles for regulating the timing of the CP (Hensch, 2004). In higher cognitive behaviors, 93 



such as imprinting, bird song learning and human speech development, while the presence 94 

of CPs is obvious based on behavior, the neuronal mechanism that regulates the timing and 95 

plasticity during the CP has not yet been well described. Here, we will consider whether each 96 

of the principles suggested from OD plasticity in mammals can also be applied to CPs in 97 

zebra finch song learning. 98 

1) Activity-dependent regulation of CP timing 99 

The onset timing of CP of OD plasticity is determined  by sensory experiences (Hensch, 100 

2004). Dark rearing as well as TTX injection into the retina delays the onset of the CP of OD 101 

plasticity (Chapman et al., 1986; Mower, 1991; Mower et al., 1985). On the other hand, 102 

earlier onset of the CP of OD plasticity by increasing GABA activity in the earlier 103 

developmental stages does not lengthen the duration of the CP (Fagiolini and Hensch, 2000), 104 

suggesting that sensory experience triggers the onset of the CP and once it’s open the 105 

duration of the CP is determined. Similarly, in zebra finch song learning, sensory deprivation 106 

in the form of isolation from father’s songs during the sensory learning period allows 107 

juvenile zebra finches to learn from tutors to which they are exposed beyond the normal CP 108 

(> 60 DPH), while it delays little the end of the sensorimotor learning period (Eales, 1987; 109 

Morrison and Nottebohm, 1993). Auditory isolation during a particular period also delays 110 

NMDA current development in the song nucleus LMAN (Livingston et al., 2000), where song 111 

motor plasticity is regulated (Kao et al., 2005; Ölveczky et al., 2005). As observed in 112 

mammalian OD plasticity, the timing of CPs in zebra finch song learning has been suggested 113 

to be regulated by auditory experiences. Series of experiments in which juveniles are 114 

exposed to tutors at different ages and for different durations suggest that auditory 115 



experiences of father’s songs regulate both the beginning and the duration of CPs(Eales, 116 

1987, 1985; Roper and Zann, 2006; Yazaki-Sugiyama and Mooney, 2004). However, as all the 117 

studies analyzed the data by the extent of song learning, which includes factors of both 118 

sensory and sensorimotor learning, the precise periods of sensory and sensorimotor learning 119 

are not yet clear. 120 

2) Regulation of CPs by inhibitory signaling 121 

In mice in which neurons have poor GABA release (GAD 65 KO), monocular deprivation 122 

even during the normal CP does not cause OD plasticity, and injection of the GABAa receptor 123 

modulator diazepam restores OD plasticity at any age (Fagiolini and Hensch, 2000). Although 124 

there are several subtypes of GABA-positive interneurons in the mammalian neocortex, the 125 

emergence of a particular cell type, large basket parvalbumin (PV)-expressing interneurons, 126 

shows a close correspondence with the onset of the OD CP (del Río et al., 1994). The 127 

acceleration of PV neuron development by BDNF causes precocious OD CP (Huang et al., 128 

1999). Moreover, deletion of sensory inputs delays the maturation of perisomatic GABAergic 129 

inputs, which normally come from PV neurons (Cellerino et al., 1992; Chattopadhyaya et al., 130 

2004). Transplantation of immature PV neurons into primary sensory areas can restore 131 

plasticity after the end of the CP (Tang et al., 2014). In addition to regulating the timing of 132 

CPs, inhibitory neurons show a unique plasticity pattern in response to sensory deprivation 133 

and are suggested to control cortical network plasticity (Yazaki-Sugiyama et al., 2009a). Even 134 

beyond the primary visual cortex, auditory deprivation delays GABA current maturation in 135 

the primary auditory cortex of gerbils (Takesian et al., 2012). Together, these findings 136 

suggest that maturation of GABA inhibitory signaling triggers CP onset. Although GABA 137 



inhibitory signals have been reported to shape auditory response properties of zebra finch 138 

brain, as in the mammalian higher auditory cortex, development of GABA inhibitory signal 139 

has not yet been well studied. While the number of GABAergic neurons in the song motor 140 

nucleus, RA, peaks near the end of the sensory learning period in males, which sing, it does 141 

not in females, which do not sing (Sakaguchi, 1996). Furthermore, recent study showed 142 

developmental implementation of local inhibitory signals for auditory responsiveness in 143 

sensory-motor integration area, HVC (Vallentin et al, 2016). On the other hand, the numbers 144 

of PV neurons are reported to be stable in most of the nuclei of the song system, HVC, RA 145 

and LMAN, and instead decrease in Area X during development. On the other hand, social 146 

isolation, which delays the end of the sensory learning CP, prevents the maturation of PV 147 

neurons (Balmer et al., 2009). The immunoreactivity for BDNF proteins increases over the 148 

song learning period in the song control nucleus only in male zebra finches, while the 149 

development of PV neurons has not been examined (Tang and Wade, 2013). We previously 150 

reported that acceleration of GABA inhibitory function in the zebra finch juvenile brain 151 

during early developmental stages by diazepam injection disrupts song learning (Yazaki-152 

Sugiyama et al., 2009b), suggesting that maturation of GABA inhibitory currents triggers the 153 

CP of bird song learning. However, the location of the inhibitory system has not yet been 154 

identified. 155 

3) Molecular markers of the end of a CP 156 

While maturation of GABA inhibitory function has been suggested to trigger the onset of 157 

CPs, some molecular markers seem to stop neuronal plasticity in the juvenile period. Among 158 

several molecular brakes reported, NgR  (gene for the nogo-66 receptor) (McGee et al., 159 



2005; Stephany et al., 2014), the acetylcholine receptor linker LYNX1 (Morishita et al., 2010), 160 

and perineuronal nets (PNNs) are the most prominent markers, which act as anatomical 161 

brakes on neuronal plasticity. Maturation of PV neurons triggers the onset of the CP and 162 

controls OD plasticity in V1 (Cellerino et al., 1992). PNNs enwrap PV neurons during 163 

development, in an activity-dependent manner (Sugiyama et al., 2008), and they function to 164 

maintain the ionic concentrations in neurons (Härtig et al., 1999). PNNs are thought to 165 

anatomically stabilize the neuronal circuit connection, and removing PNNs in adults restores 166 

the OD shift after monocular deprivation (Pizzorusso et al., 2002). Sensory deprivation, such 167 

as dark rearing, which delays the onset of the CP, delays the emergence of PNNs surrounding 168 

PV neurons. In zebra finch song learning, the emergence of PV neurons is not correlated with 169 

song learning during development. However, PNN enwrapment of PV neurons in HVC and 170 

Area X begins during the sensory and sensorimotor learning periods, and sensory deprivation 171 

(isolation) delays PNN development (Balmer et al., 2009). Interestingly, PNN formation in the 172 

song nucleus is much more limited in bird species that retain vocal plasticity in adulthood 173 

(Cornez et al., 2017).  174 

4. Brain areas for neuronal plasticity during song-learning CPs 175 

The existence of CPs in zebra finch song learning is well accepted based on their 176 

behavior, and neuronal mechanisms for regulating CPs have been investigated. However, 177 

the type of neuronal plasticity that occurs and the areas in the zebra finch brain that show 178 

plasticity during sensory and sensorimotor learning have not been identified. As described 179 

in previous paragraphs, there have been reports about various areas of the zebra finch 180 

brain, especially components of the song system, in relation to molecular markers for 181 



ending CPs and to the maturation of inhibitory neurons triggering the onset of CPs, but 182 

none of these has been completely described. Recently, we examined the zebra finch brain 183 

region in which neuronal plasticity is observed during the sensory learning period when a 184 

memory of tutor song is formed through auditory experiences. A number of studies have 185 

suggested that tutor song memories can be mapped to the caudomedial nidopallium 186 

(NCM), a region homologous to the mammalian higher auditory cortex. The expression level 187 

of an immediate early gene, ZENK, is higher in the NCM of birds exposed to tutor songs than 188 

in birds exposed to novel songs (Bolhuis et al., 2000; Gobes et al., 2010; Terpstra, 2004). 189 

NCM neurons decrease neuronal auditory responsiveness along with repeated song 190 

stimulation (habituation), and the rate of habituation is slower for tutor song repetition 191 

than for novel conspecific song repetition (Phan et al., 2006). Furthermore, blocking 192 

extracellular-signal-regulated kinase activity in the NCM in juvenile zebra finches prevents 193 

song learning (London and Clayton, 2008). Recently, we performed chronic recording of 194 

neuronal activity from the NCM of juvenile zebra finches over song learning. We identified 195 

two neuronal subsets, broader spiking (BS) and narrower spiking (NS) neurons, which were 196 

distinct in spike shapes and firing rates. Among them, a specific subset of BS neurons in the 197 

tutored juveniles showed highly selective auditory responses to the experienced tutor’s 198 

songs, while these neurons were barely found in isolated pre-tutored juveniles and in 199 

isolated age-matched control juveniles (Fig. 2). Moreover, we found that the selectivity of 200 

auditory responsiveness decreases with the blockade of local GABA inhibitory functions 201 

within the NCM (Yanagihara and Yazaki-Sugiyama, 2016). The NCM is suggested to be a 202 

place where neuronal circuits are shaped for sensory song learning. 203 



 204 

5. Closing remarks 205 

Despite the well-accepted behavioral concept of CPs in zebra finch song learning, the 206 

underlying neuronal machinery remains to be explored. Here, we reviewed the studies on 207 

CP in zebra finch song learning and assessed whether what we have learned from the CPs 208 

of experience-dependent mammalian cortical plasticity could be applied to those of zebra 209 

finch song learning. Some studies on zebra finch song learning showed clear parallels in the 210 

relationship between the emergence of molecular markers for CP closure and the end of 211 

song learning. However, no study has yet investigated the causality, such as testing 212 

whether removing molecular brakes allows the extension of the song-learning CP. Neuronal 213 

mechanisms regulating CPs have been studied intensively in mammalian experience-214 

dependent cortical plasticity. As with human speech acquisition, zebra finch learns to sing 215 

in multiple steps (Brainard & Doupe, 2002; Mooney, 1999).  Other studies also suggest that 216 

learning of syllable phonology and sequence take place in different steps (Lipkind et al, 217 

2013; Lipkind et al, 2017). The new concepts of independent regulation of each CP in zebra 218 

finch song learning might shed light on the neuronal mechanism of CPs for higher cognitive 219 

function, which involves separate CPs for multiple steps. Recent studies have shown that 220 

adult birds can memorize and discriminate songs of their associates via certain tasks 221 

(Comins and Gentner, 2013; Kriengwatana et al., 2016). The zebra finches which were 222 

prevented from auditory feedbacks with laud white noise exposure retain motor plasticity 223 

in the adult period (Funabiki & Konishi, 2003). Further, other studies have shown that adult 224 

birds retain limited motor plasticity and can shift their pitch in response to aversive 225 



learning (Ali et al., 2013; Andalman and Fee, 2009; Tumer and Brainard, 2007; Xiao et al., 226 

2018). These findings suggest that zebra finch song learning can be further used to evaluate 227 

the effects of early auditory experiences on song perception or motor skills. The application 228 

of recently developed technologies to the songbird model would also accelerate the 229 

understanding the causal relations between suggested neuronal mechanisms and bird song 230 

learning and the understanding of how early life would impact higher cognitive functions. 231 
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 238 

Figure legends 239 

Fig. 1: Timeline of zebra finch song learning and the song system in the zebra finch brain. 240 

A: Zebra finches learn to sing during the developmental critical period, which consists of a 241 

sensory learning period and a sensorimotor learning period. Some studies suggested the 242 

regulation of critical period with auditory experiences and the maturation of inhibitory signal. 243 

B: Brain areas that are necessary for song learning and productions are identified as the ‘song 244 

system’. HVC, at the apex of the song system, receives inputs from auditory pathways. HVC 245 

receives inputs from an auditory pathway which consists of the brain areas equivalent to (eq) 246 

the mammalian auditory cortex. 247 



 248 

Fig. 2: Neuronal plasticity in the zebra finch higher auditory cortex during sensory song learning. 249 

Top: Timelines of chronic electrophysiology recording over the song-learning period. Inset: 250 

Chronic electrophysiological recording from the NCM neurons identified two types of neurons, 251 

broader-spiking (BS) and narrower-spiking (NS) neurons, which can be distinguished by their 252 

spike shapes. Middle: Pie charts for the percentage of the BS neurons that show selective 253 

auditory responses to tutor’s song or bird’s own song, recorded before (left) and after (right) 254 

song learning. Bottom:  Mean firing rate (FR) curves (10 ms, smoothed with a Gaussian kernel) 255 

and time-aligned spectrogram for each auditory stimulus of representative BS neurons 256 

recorded before (left) and after (right) song learning.  257 
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