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Turbulence role in the fate of virus-containing droplets in violent expiratory events
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Violent expiratory events, such as coughing and sneezing, are highly nontrivial examples of a two-phase
mixture of liquid droplets dispersed into an unsteady turbulent airflow. Understanding the physical mechanisms
determining the dispersion and evaporation process of respiratory droplets has recently become a priority given
the global emergency caused by the SARS-CoV-2 infection. By means of high-resolution direct numerical
simulations (DNSs) of the expiratory airflow and a comprehensive Lagrangian model for the droplet dynamics,
we identify the key role of turbulence in the fate of exhaled droplets. Due to the considerable spread in the
initial droplet size, we show that the droplet evaporation time is controlled by the combined effect of turbulence
and droplet inertia. This mechanism is clearly highlighted when comparing the DNS results with those obtained
using coarse-grained descriptions that are employed in the majority of the current state-of-the-art investigations,
resulting in errors up to 100% when the turbulent fluctuations are filtered or completely averaged out.
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I. INTRODUCTION

Turbulent transport of droplets in a jet or puff is a prob-
lem of paramount importance in science and engineering that
nowadays has become even more important given the global
emergency caused by the COVID-19 infection (for a recent
review see, e.g., Refs. [1–3]). The relationship stems from the
fact that the dominant route of SARS-CoV-2 spread is via
small virus-containing respiratory droplets that the infected
person exhales when coughing, sneezing, or talking [4]. The
spread thus does not necessarily involve a physical contact
between the infected and the susceptible persons [5].

Because the exhalation process occurring in violent air
expulsions (e.g., coughing and sneezing) has a finite duration,
one has to distinguish between two different regimes for the
evolution of the exhaled airflow (a cloud in short): one re-
lated to the early evolution stage and one related to the late
evolution stage. In the initial stage of the evolution, which
defines the jet phase [6,7], the mouth (i.e., the source) is still
injecting air into the ambient; in the late stage, which defines
the puff phase [7,8], the cloud stops to receive momentum
from the source and becomes freely evolving in the ambient.
The initial jet behavior is determined by the conservation of
the momentum flux ρr2(dx/dt )2 ∼ const together with the
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assumption of a self-similar behavior (i.e., a power law) for
the longitudinal coordinate of the cloud center of mass x(t )
and the cloud radius r(t ) ∝ x(t ). Combining these ingredients,
one easily gets x(t ) ∼ t1/2 for the jet phase [9]. Note that in
violent human expulsions (e.g., for a cough) the momentum
flux at the source is time dependent [10], a fact that may
cause the breakdown of the self-similarity hypothesis for the
jet phase.

In the puff stage, the momentum of the cloud is con-
stant, ρr3(dx/dt ) ∼ const which, again under the hypothesis
of self-similarity and r(t ) ∝ x(t ), leads to x(t ) ∼ t1/4 [8,9].
Owing to the chaotic or turbulent nature of the jet phase, the
puff behavior is expected to be robust with respect to different
ways of producing the air expulsion at the source.

Jet and puff phases, because of their different self-similar
behaviors, are thus expected to affect in a different way the
transport process of droplets hosted in the flow. The transport
process of momentum is indeed further complicated by the
fact that the released cloud may hardly be interpreted as a
homogeneous fluid. It rather consists of a two-phase mix-
ture of droplets dispersed into a fluid phase which is hotter
and more humid than the ambient air. Two new players are
thus involved in the transport process: the humidity field (or,
equivalently, the supersaturation field for almost isothermal
expulsion processes) and droplet evaporation.

There is, however, one additional player in violent respira-
tory events: fluid turbulence. The typical duration of a cough
is 200–500 ms, the average mouth opening of male subjects is
(4 ± 0.95) cm2, and the resulting Reynolds number is about
104 [9,10]. Larger values for the Reynolds number (of about
a factor of 4) have been found for a sneeze expulsion [9]. One
more player can thus contribute to dictate the fate of ejected
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FIG. 1. Snapshot of the expiratory event 7.6 s after start coughing obtained from our numerical simulations. Different colors represent
different values of the humidity field ranging between the 99% of the ambient humidity RHa (red areas) and RHa (white areas). Green bullets
(shown not in scale) identify the position of the airborne droplets, initialized with the sizes taken from Ref. [11]. The streamwise extension of
the puff at this time is 2.6 m.

droplets and thus of the virus spreading: turbulent fluctuations
of both the carrier flow and the humidity field.

Understanding the combined role of turbulence and droplet
inertia on the virus-containing droplet evaporation under real-
istic conditions mimicking a human cough is the main aim
of the present work. To do that, we attack the problem on
the numerical side by performing accurate direct numerical
simulations (DNSs) for the fluid flow and humidity field,
complemented by a Lagrangian solver for the droplet dy-
namics including a dynamical equation for the evolution of
the droplet radii modeling the evaporation-condensation pro-
cess (see Fig. 1). Such an accurate description is nowadays
possible thanks to the deep understanding achieved in the
microphysics of small liquid droplets under different ambient
conditions [12].

For the problem of respiratory droplet spreading, typ-
ical approaches found in the current literature are based
on large-eddy simulations (LESs) and Reynolds-averaged
Navier-Stokes (RANS) equations (see, e.g., Refs. [13–17]).
By definition, LESs and RANS equations only describe tur-
bulent fluctuations at the largest scales involved. On the other
hand, the fine structure of turbulence is expected to be cru-
cial to correctly account for its effect on droplet evaporation.
This is expected from results in atmospheric cloud micro-
physics where turbulence is crucial to explain the broadening
of the cloud-droplet size spectrum (see, e.g., Refs. [18–20]).
Numerical approaches based on DNS are thus crucial to
assess quantitatively how turbulence dictates the fate of virus-
containing droplets, and consequently provide useful insights
on the spread of SARS-CoV-2 and other airborne transmitted
infections.

The rest of the paper is organized as follows: in Sec. II
we introduce the methodology of the investigation, in Sec. III
we compare droplet fate in simulations that ignore or simplify
turbulence vs simulations that fully account for turbulence,
and finally in Sec. IV we draw the concluding remarks.

II. METHOD

A. Governing equations

The airflow exhaled from the mouth is ruled by the incom-
pressible Navier-Stokes equations

∂t u + u · ∂u = − 1

ρa
∂p + ν∂2u, ∂ · u = 0, (1)

with ν being the air kinematic viscosity and ρa the air density.
The list of all relevant parameters used in this study is reported
in Table II in Appendix A. Instead of simulating the evolution
of the absolute humidity field (the exhaled air is saturated,
or close to saturation [21]), it is more convenient to model
directly the supersaturation field (i.e., s = RH − 1, RH being
the relative humidity). Indeed, the supersaturation dictates the
evaporation-condensation process, as it appears in the evolu-
tion equation for droplet radius [12]. The supersaturation field
is ruled by the advection-diffusion equation [18]:

∂t s + u · ∂s = Dv∂
2s, (2)

Dv being the water vapor diffusivity. Equation (2) assumes
that the saturated vapor pressure is constant, an assumption
that holds as long as the ambient is not much colder than the
exhaled air, which is at about 30 ◦C according to Morawska
et al. [21].

To simulate the airflow generated by a human cough, we
adopt the inlet air velocity profile proposed by Gupta et al.
[10], as shown in Fig. 2 (top). The air is assumed to be
saturated (i.e., s = 0) as it exits from the mouth opening of
area 4.5 cm2. The duration of the expulsion is approximately
0.4 s and the peak velocity is 13 m/s. The resulting Reynolds
number (based on the peak velocity and on the mouth average
radius) is about 9000. The flow field is thus fully turbulent as
one can easily realize by looking at Fig. 1.

Before discussing how the liquid part of the two-phase
mixture is modeled, let us first validate the puff dynamics
of the exhaled air. By means of a simple phenomenological
approach, we show how one can derive the temporal scaling
for the standard deviation of a cloud of tracers in a turbulent
puff. The starting point is the result obtained by Kovasznay
et al. [8] for the temporal scaling of the puff radius, σ u ∼ t1/4,
obtained by the authors in terms of a simple eddy-viscosity
approach. In order to determine the standard deviation, σ ,
for a cloud of tracers carried by the turbulent puff, one has
to resort to the concept of relative dispersion. The latter can
be described in terms of arguments à la Richardson [22].
Accordingly, σ (t ) ∼ ε(t )1/2t3/2, where ε(t ) is the turbulence
dissipation rate. This latter can be easily estimated from the
well-known Kolmogorov 4/5 law evaluated at the integral
scale σ u. Namely,

ε(t ) ∼ δU 3

σ u
with δU ∼ σ u

t
, (3)
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FIG. 2. Top: Time-varying inlet air velocity representative of
cough according to Ref. [10]. Bottom: Droplet initial size distribution
according to Ref. [11].

from which one immediately gets ε(t ) ∼ t−5/2. The scaling
law for ε immediately leads to the temporal scaling for the
standard deviation of the tracer cloud: σ (t ) ∼ t1/4. Finally,
because 〈s〉 is proportional to the puff volume, and this latter
goes as σ 3 ∼ t3/4, the decay law for the mean supersaturation
is 〈s(t )〉 ∼ t−3/4. The same law holds for the mean stream-
wise puff velocity [8]. The reliability of our puff dynamics
is demonstrated in Fig. 3, which clearly shows the expected
scaling laws for more than two decades with high accuracy.

We are now ready to introduce the model for the liquid
part of the two-phase mixture. It is described as an ensem-
ble of N inertial particles ruled by the well-known set of
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FIG. 3. Mean velocity v of the exhaled air (solid blue circles)
and of the supersaturation s − sa (open red circles) as a function of
time. The blue line shows the scaling predicted for the velocity field
in Ref. [8] which also holds for the supersaturation field (red line).

equations [23]

Ẋ i = U i(t ) +
√

2Dvηi(t ), i = 1, . . . , N, (4)

U̇ i = u(X i(t ), t ) − U i(t )

τi
+ g, (5)

τi = 2(ρD i/ρa)R2
i (t )

9ν
, (6)

where N is the number of exhaled droplets (here N ≈ 5000
according to Duguid [11]), X i is the position of the ith droplet
and U i its velocity, and, finally, g is the gravitational accel-
eration. Each droplet is affected by a Brownian contribution
via the white-noise process ηi (see also Appendix B). Here,
ρD i is the density of the ith droplet. Finally, τi is the Stokes
relaxation time of the ith droplet and Ri is its radius.

Since in our case the flow is neither statistically homo-
geneous nor stationary, we consider the characteristic flow
time scale τflow =

√
νσu/v3, where v is the puff mean velocity

measured by the Lagrangian tracers (as later described in
Sec. II C). Using the latter, we can define the Stokes number
for the ith droplet as St = τi/τflow, which allows us to clearly
distinguish droplets whose trajectory is (or is not) dominated
by inertia, i.e., St > 1 (or St < 1).

Droplets are assumed to be made of salt water (water and
NaCl) and a solid insoluble part (mucus) [24,25]. The droplet
radius evolves according to the ruling equation [12]

d

dt
R2

i (t ) = 2CR
(
1 + s(X i(t ), t ) − e

A
Ri (t ) −B

r3
Ni

R3
i (t )−r3

Ni

)
, (7)

Ri(t ) = rNi for s � scrh (crystallization). (8)

Hydrodynamic interactions between particles and flow can
affect transport in specific conditions (e.g. [26,27]). Here, no
feedback of this equation to Eq. (2) is considered because of
the very small values of the liquid volume fraction, typically
smaller than 10−5 [9,28] or even smaller according to John-
son et al. [29] and Morawska et al. [21], and thus droplet
back-reaction on the flow is largely negligible. In Eq. (7),
CR is the droplet condensational growth rate, scrh = −0.55
(CRH = 0.45, the so-called crystallization RH or efflores-
cence RH) for NaCl [30]. Figure 3 of Ref. [31] and Ref. [32]
show the weak dependence of CRH on temperature. rNi is
the radius of the (dry) solid part of the ith droplet when the
salt is entirely crystallized (i.e., below CRH). The dependence
of rN i on physical, chemical, and geometrical properties of
the exhaled droplets is reported in Appendix A together with
the expressions of parameters A and B. On the basis of the
parameters assumed here, the ratio rN i/Ri(0) is 0.16, which
agrees with the estimations discussed in Ref. [33].

We consider here the initial distribution of droplet sizes
to match seminal experiments from Ref. [11], which is still
considered as a reference on the subject. According to Duguid
[11] and as shown in Fig. 2 (bottom), we consider initial
droplet radii approximately ranging from 1 to 1000 μm with
the 95% falling between 1 and 50 μm. Droplets are initially
at rest and randomly distributed within a sphere of radius
1 cm located inside a pipe conceptually mimicking the human
mouth (see Appendix C). Finally, the exhaled droplets enter
the ambient considered initially at rest with a relative humidity
RHa = 60% (i.e., sa = −0.4), larger than the crystallization
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RH. Note that states of local equilibrium are possible from
Eq. (8) owing to the solute effect [12].

B. Numerical method

The employed in-house flow solver is named FUJIN [34]
and is based on the (second-order) central finite-difference
method for the spatial discretization and the (second-order)
Adams-Bashfort scheme for the temporal discretization. The
Poisson equation for the pressure is solved using the 2DECOMP

library coupled with a fast and efficient fast Fourier trans-
form (FFT)-based approach. The solver is parallelized using
the massage passing interface protocol and has been exten-
sively validated in a variety of problems [35–39]. The droplet
dynamics is computed via Lagrangian particle tracking com-
plemented by an established droplet condensation model that
has been successfully employed in the past for the analysis
of rain formation processes [18–20]. The governing equations
for the droplet dynamics [Eqs. (4)–(8)] are advanced in time
using the explicit Euler scheme. The numerical domain is
discretized with a uniform grid of size 3.5 mm and we ver-
ified that the following results are independent of the grid
size, statistical sample, and droplet initial condition. Further
information on the numerical setup, method, and verifications
is reported in Appendix C.

C. Coarse-graining approaches

In this work, we aim at highlighting the crucial role of
turbulence in the dynamics of expiratory droplets. To this aim,
two additional types of coarse-grained simulations have been
performed as detailed in the following of this section.

1. Filtered DNS

In the so-called filtered DNS, we let the governing equa-
tions, i.e., the Navier-Stokes equations for the fluid flow and
the advection-diffusion equation for the supersaturation field,
evolve exactly as in the fully resolved DNS. However, both
in the Lagrangian particle tracking and in the droplet radii
evolution equation [Eqs. (4)–(8)], instead of using the actual
fluid velocity and/or supersaturation, we make use of their
averaged values over a stencil of 73 Eulerian grid points sur-
rounding the droplet. As a result, the fine structure of both the
velocity and supersaturation fields is washed out.

2. Mean-field simulation

In this last approach, we first seed the fluid flow with 2 ×
104 Lagrangian tracers from which we reconstruct a mean,
time-dependent streamwise velocity field (whereas both the
spanwise and the vertical components are set to zero because
of the symmetry of the problem) and a mean, time-dependent
supersaturation field of the turbulent puff. Such mean velocity
is thus supplied to the Lagrangian particle tracking while the
mean supersaturation field is supplied to the droplet radii
evolution equation [Eqs. (4)–(8)]. Moreover, from the tracer
trajectories we also measure the time evolution of the puff
size. The latter is used to specify at each iteration whether the
droplet resides inside or outside the puff. In the first case, we
apply the described mean fields; conversely, outside the puff
we impose s = sa and u = 0.

0

50

100

0.01 1 100

N
%

t [s]

FIG. 4. Time history of the percentage number of droplets set-
tling on the ground (dashed line) vs those remaining airborne and
reaching 1 m from the mouth (solid line).

III. RESULTS

In this work, we focus on airborne transmitted droplets
where turbulence is expected to play a significant role. Never-
theless, as a first step in our analysis, we provide an overview
of the observed dynamics by quantifying the number of air-
borne transmitted droplets and of those settling on the ground.
Such information is reported in Fig. 4, from which we clearly
observe that the number of sedimenting droplets represents
only a tiny fraction (around 5%) of the total number of exhaled
droplets. Sedimenting droplets have larger size and are char-
acterized by a ballisticlike trajectory, due to the fact that the
effect of gravity largely dominates the action exerted by the
flow. Because the dynamics of these droplets is ballistic, we do
not further discuss their fate but rather focus on the behavior
of airborne transmitted droplets, with particular attention to
the role of turbulent fluctuations both in their dispersion and
evaporation process.

Because the supersaturation field evolves as a passive
scalar in a turbulent field, it exhibits the well-known “plateau-
and-cliff” structures [40–44]. Namely, the scalar field displays
dramatic fluctuations occurring in small regions (called cliffs
or fronts) separating larger areas where the scalar is well
mixed (called plateau). Because airborne droplets and su-
persaturation are transported by the same velocity field,
correlations occur between droplet trajectories and super-
saturation values [18]. This phenomenon causes droplets of
sufficiently small size to remain long in the large well-mixed
regions where they can equilibrate with the (local) value of the
supersaturation. The droplet evaporation process is thus ex-
pected to behave in time by alternating phases of equilibrium
with phases of rapid evaporation, i.e., a sort of stop-and-go
process. The same type of structure is also expected for the
decay of droplet radii. This phenomenon can be clearly
detected in Fig. 5 where the temporal behavior of the su-
persaturation field along the Lagrangian trajectory of a small
airborne droplet is reported (group of lines denoted by St < 1)
together with the time evolution of the corresponding droplet
radius (see the inset of Fig. 5). The time history with the fully
resolved DNS (solid blue line) clearly shows the effect of the
plateau-and-cliff structures on the evaporation process, which
is, however, absent for the larger sedimenting droplet (group
of lines denoted by St > 1). The fact that the radius closely
follows the temporal behavior of the supersaturation field
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FIG. 5. s − sa as a function of time experienced by two rep-
resentative droplets in the DNS (solid blue line), filtered DNS
(long-dashed red line), and mean-field simulation (dashed green
line). The group of three curves close to the bottom left corner of
the figure corresponds to a “small droplet” having an initial radius of
0.6 × 10−6 m and a Stokes number always smaller than 0.004 during
the whole droplet evolution (referred to as St < 1 in the figure). The
group of three curves in the upper part of the main figure corresponds
to a “large droplet” having an initial radius of 0.8 × 10−3 m and
a Stokes number always larger than 3 during the whole droplet
evolution (referred to as St > 1 in the figure). The inset shows the
radius time evolution of the “small droplet.”

(inset of Fig. 5) is the signature of a quasiadiabatic picture
for the evaporation process (i.e., the process of radius adjust-
ment due to evaporation is much faster than the corresponding
variation of the supersaturation field). It is worth noting that if
one considers the smaller droplet evolving in coarse-grained
fields (long-dashed line in red, where both velocity and su-
persaturation have been coarse grained in space as discussed
in Sec. II C), the effect of the plateaus-and-cliffs structures
on the evaporation process reduces, and eventually vanishes
when the turbulent fields are replaced by their mean-field
components (dashed green line).

Having shown that sufficiently small droplets correlate
with the supersaturation field, let us now discuss the conse-
quences on droplet motion. For smaller droplets remaining for
a sufficiently long time in regions where the supersaturation
field is locally constant, with a value larger (smaller) than
the mean, the evaporation takes place more slowly (rapidly)
than what it would be for the same droplet experiencing
smoother fluctuations as in the filtered DNS or in the mean-
field approach. The two effects, i.e., reduction vs increase
in evaporation time, are, however, not symmetric as a con-
sequence of a positive skewness observed in the probability
density function of s′, the turbulent fluctuation of the super-
saturation field. As shown in Fig. 6, a positive skewness is
accompanied by a zero-mean value of s′. The net result caused
by turbulent fluctuations of the supersaturation field on the
fate of small droplets is thus to increase their evaporation time.
Evidence of positive skewness has been reported for scalar
concentration emitted by point sources within atmospheric
turbulent flows [45].

Let us now quantify the delay caused by turbulence in the
evaporation process by comparing, for an observation time of
60 s, the time it takes for each airborne droplet to shrink to its
final equilibrium radius. Let us denote those typical evapora-
tion times as τevap. All droplets which sedimented within the
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FIG. 6. Skewness (p = 3, solid line) and mean value (p = 1, dot-
dashed line) of the supersaturation turbulent fluctuation s′. Inset: The
probability density function of s′ at the time t̃ = 0.05 s. Note the
change of sign from negative to positive skewness passing from the
jet to the puff phase.

observation time of 60 s were not included in this analysis.
The sole airborne droplets were selected here, thus automati-
cally satisfying the requirement of having a sufficiently small
radius.

The results are presented in Fig. 7, where the probability
density functions of τevap are reported both for the fully re-
solved case and for the evolution with the sole mean fields (of
both the carrying flow and the supersaturation field) and with
the filtered DNS. The corresponding mean evaporation times
are reported in Table I. The role of turbulence clearly emerges,
both causing delay of the evaporation process and broader
probability density functions, the fingerprint of fluctuations.

Importantly, the observed delay in the evaporation sig-
nificantly affects droplet motion. This is depicted in Fig. 8,
where we report the streamwise coordinate of the center of
mass of the cloud of airborne droplets, x(t ), as a function
of time. Shown in this figure are the fully resolved DNS,
the filtered DNS, and the mean-field approach. In the two
cases where turbulent fluctuations are either coarse grained
or entirely neglected, droplets travel further than in the fully
resolved DNS. This is the fingerprint of the reduced inertia
of the droplets evolving in the filtered fields. In the initial
stage of their evolution, these droplets are indeed spuriously
lighter than the droplets evolving in the fully resolved DNS.

10−1

100

101

0 0.5 1

p
df

τevap [s]

FIG. 7. Probability density function of the time for each airborne
droplet to shrink to its final equilibrium radius for the DNS (solid
blue line), filtered DNS (long-dashed red line), and mean-field simu-
lation (dashed green line). Only airborne particles in the observation
time of 60 s are considered.
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TABLE I. Droplet mean evaporation times calculated from the
probability density functions of Fig. 7.

Simulation type DNS Filtered DNS Mean field

〈τevap〉 (s) 0.4 0.3 0.2

Being lighter, they are carried more efficiently by the under-
lying rapidly accelerating flow thus reaching longer distances
before touching the floor. Note also that all the curves show
a pronounced S-shaped kink which reflects the rapid evapora-
tion of relatively large droplets exiting from the puff, resulting
in a sudden reduction of the total mass of the droplet cloud.

In order to ascertain whether the observed delay of tra-
jectories of small droplets is a genuine effect caused by the
interplay between turbulence and inertia, a subset of ideal-
ized simulations have been performed where monodisperse
droplets of Ri(0) = 5 μm are considered, with and without
inertia [i.e., simply switching on or off the inertia in the ruling
equations (4) and (5)]. This size is close to the peak of the
droplet size distribution we have used in the previous analysis
[11], and corresponds to droplets that are neither too large to
be insensitive to turbulence, nor too small to make the mass
loss due to evaporation negligible.

The results are shown in Fig. 9. Both in the presence and
in the absence of droplet inertia we found the turbulence-
induced broadening of the probability density functions of
the evaporation time. This is shown in the inset of Fig. 9
for the simulations without inertia. Filtering the turbulence
fluctuations (long-dashed black curve in the inset) reduces the
broadening as observed for the polydisperse case with inertia.
It is now worth remarking that the observed difference be-
tween the mean evaporation time measured from the DNS and
the one measured from the filtered DNS does not produce any
relevant effect on the droplet motion when inertia is switched
off in the droplet ruling equations. The similarity in the main
frame between the solid gray curve and the long-dashed black
curve confirms this fact. Switching on inertia, the effect of
the delayed evaporation in the DNS case becomes apparent
(see in the main frame the differences between the solid blue
curve and the long-dashed red curve). Figure 9 confirms that
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FIG. 8. The streamwise coordinate, x(t ), of the center of mass of
the cloud of airborne droplets. Solid blue line, DNS; long-dashed red
line, filtered DNS; dashed green line, mean-field simulation.

0

10

20

30

0 1 2 3

10−1

100

101

0 0.5 1

t
[s

]

x [m]

p
df

τevap [s]

FIG. 9. The streamwise coordinate, x(t ), of the center of mass of
the cloud of airborne droplets. Results refer to the simulations for
the monodisperse droplets of initial radius Ri(0) = 5 μm with and
without inertia in the droplet ruling equations. Main frame: Inertia
causes differences in droplet trajectories. DNSs with (without) in-
ertia are represented by the solid blue (gray) curve, filtered DNSs
with (without) inertia by the long-dashed red (black) curve. Inset:
Turbulence causes the observed broadening of evaporation times.
The probability density function of the evaporation time τevap without
inertia for the DNS (solid gray curve) and for the filtered DNS
(long-dashed black curve).

turbulence is the root cause of the broadening of evaporation
times, whereas inertia causes differences in the trajectories.

IV. CONCLUSIONS

In this work, we investigated the physical mechanisms
involved in violent expiratory events such as coughing and
sneezing, focusing on the evaporation and consequent air-
borne spread of small exhaled droplets. To this aim, we
conducted a series of high-resolution DNS experiments of the
airflow associated with human cough [10] in order to fully re-
solve the turbulent fluctuations both in time and space. Droplet
dynamics are evolved by means of a Lagrangian model includ-
ing the evolution of droplet radius to properly describe the
droplet evaporation process. Selecting a representative initial
distribution of droplet sizes from current literature [11], we
track each single droplet in time. We distinguish between
larger droplets which settle on the ground ballistically and the
smaller droplets which remain trapped in the turbulent puff.

For such airborne droplets, we found that turbulence plays
a crucial role in determining their evaporation time. To
demonstrate this result, we performed the same numerical
experiments using two different coarse-graining techniques,
i.e., filtered DNS and mean-field simulation. Compared to
the DNS results, we find that coarse graining leads to
underestimating droplet evaporation time up to 100%. Cor-
respondingly, we find that DNSs are crucial to accurately
describe the inertial effects in droplet trajectory and ultimately
predict their flight time and final reach. Importantly, the heated
debate on social distancing rules depends crucially on these
observables.

Do the same conclusions drawn here apply for sneeze
expulsions? Sneezing differs from coughing mainly for the
larger Reynolds numbers and for the larger number of exhaled
droplets. According to Duguid [11] up to a million droplets
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may be emitted in a sneeze, compared to the few thousand
typical for cough. Thus droplets in a cough are far from one
another, but this may not be the case for droplets emitted in a
sneeze. In a sneeze, droplets may affect one another and well-
documented clustering effects may further delay evaporation
[46,47]. Further work is needed to clarify the potential role
of clustering in delaying evaporation during violent human
expulsions.

ACKNOWLEDGMENTS

A.M. thanks the financial support from the Compagnia di
San Paolo, Project MINIERA No. I34I20000380007. M.E.R.,
S.O., and A.M. acknowledge the computational time provided
by HPCI on the Oakbridge-CX cluster in the Information
Technology Center, University of Tokyo, under Grant No.
hp200157 of the “HPCI Urgent Call for Fighting against
COVID-19” and the computer time provided by the Scientific
Computing section of the Research Support Division at OIST.
Useful discussions with G. Seminara, B. Carli, G. Forni, S.
Fuzzi, and A. Rinaldo are warmly acknowledged.

APPENDIX A: PHYSICAL AND CHEMICAL PROPERTIES
OF COUGH

The complete list of physical and chemical parameters ap-
pearing in our model, along with their baseline values adopted
in this investigation, is presented in Table II. Some of these
quantities are deduced by other parameters. Specifically, the
saturation vapor pressure above a flat water surface at temper-
ature T (where T is in degrees Celsius) is obtained using the
Magnus-Tetens approximation [48],

esat = 6.1078 × 102 e(17.27 T/(T +237.3)) Pa, (A1)

and the droplet condensational growth rate is given by

CR =
[
ρw Rv (273.15 + T )

esat Dv

+ ρw L2
w

ka Rv (273.15 + T )2

− ρw Lw

ka(273.15 + T )

]−1

. (A2)

The expressions of the coefficients A and B appearing in
Eq. (7) follow from Ref. [12] (p. 176):

A = 2σ

Rv (T + 273.15)ρw

, (A3)

B = ns	sεvMwρs

Msρw

, (A4)

where ns = 2 is the total number of ions into which a salt
molecule dissociates, 	s = 1.2 is the practical osmotic co-
efficient of the salt in solution [49], and εv = εm(ρN/ρs) is
the volume fraction of dry nucleus with respect to the total
droplet.

To complete the description, some useful relations can be
easily derived from the quantities specified in Table II. First,
assuming that the dry nucleus of droplets is composed by a
soluble phase (NaCl) and an insoluble phase (mucus) and that
the typical value of the mass fraction of the former is known,
the overall density of the dry nucleus can be expressed as

ρN = ρu

1 − εm[1 − (ρu/ρs)]
= 1.97 × 103 kg/m3. (A5)

Similarly, the density of the entire ith droplet turns out to be

ρD i = ρw + (ρN − ρw )

(
rN i

Ri(t )

)3

, (A6)

TABLE II. Physical and chemical properties assumed in the present study.

Mean ambient temperature T 25 ◦C
Crystallization (or efflorescence) RH CRH 45%
Deliquescence RH DRH 75%
Quiescent ambient RH RHa 60%
Density of liquid water ρw 9.97 × 102 kg/m3

Density of soluble aerosol part (NaCl) ρs 2.2 × 103 kg/m3

Density of insoluble aerosol part (mucus) ρu 1.5 × 103 kg/m3

Mass fraction of soluble material (NaCl) with respect to the total dry nucleus εm 0.75
Mass fraction of dry nucleus with respect to the total droplet C 1 %
Specific gas constant of water vapor Rv 4.6 × 102 J/(kg K)
Diffusivity of water vapor Dv 2.5 × 10−5 m2/s
Density of air ρa 1.18 kg/m3

Kinematic viscosity of air ν 1.8 × 10−5 m2/s
Heat conductivity of dry air ka 2.6 × 10−2 W/K m
Latent heat for evaporation of liquid water Lw 2.3 × 106 J/kg
Saturation vapor pressure esat 0.616 kPa
Droplet condensational growth rate CR 1.5 × 10−10 m2/s
Surface tension between moist air and salty water σ 7.6 × 10−2 J/m2

Molar mass of NaCl Ms 5.9 × 10−2 kg/mol
Molar mass of water Mw 1.8 × 10−2 kg/mol
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FIG. 10. Side-view sketch of the domain used in our DNS (note
that the figure is not to scale).

where the radius of the (dry) solid part of the droplet when
NaCl is totally crystallized (i.e., below CRH) is given by

rN i = Ri(0)

( Cρw

Cρw + ρN (1 − C)

)1/3

. (A7)

APPENDIX B: DETAILS ON THE LAGRANGIAN MODEL
FOR THE DROPLET DYNAMICS

We take as a model for the dynamics of an individ-
ual droplet the stochastic differential equations with additive
noise [23,50]:

Ẋ = U (t ) +
√

2κ1η(t ), (B1)

U̇ = u(X (t ), t ) − U (t )

τ
+

√
2κ2μ(t ), (B2)

where the same notation of Sec. II is used having dropped the
droplet index. In the above equations, vectors η(t ) and μ(t )
denote independent white noises with Brownian diffusivity
constants κ1 and κ2. The reason for considering a nonvanish-
ing Brownian force acting on the position process is twofold
and detailed in Ref. [51]. In the limit of tracer particles, i.e.,
τ → 0 in the above equations, the quantity κ1 + κ2 can be
immediately identified with the (water vapor) diffusivity Dv .
Namely, Dv = κ1 + κ2. Because of the fact that the only ac-
cessible value here is the one of Dv , we opted for the simplest
choice, Dv = κ1, which guarantees a viscous regularization of
the large-scale transport [51].

APPENDIX C: NUMERICAL METHOD

In this section, we supply additional information on the
computational framework that is used to investigate the prob-
lem. The fluid flow equations [Eqs. (1) and (2)] are solved
within a domain box of length Lx = 4 m, height Ly = 2.5 m,
and width Lz = 1.25 m, as depicted in Fig. 10. The fluid is
initially assumed at rest, i.e., u(x, 0) = 0. Air is thus injected
through a circular pipe, placed at z = 1.6 m above the floor,
of length l = 6 cm and internal diameter d = 2.4 cm as an
essential model of a human mouth. We use the time-varying
velocity profile proposed by Gupta et al. [10] (shown in Fig. 2)
to reproduce the cough-associated airflow. The no-slip condi-
tion applies at the bottom, i.e., y = 0, and left wall, i.e., z = 0
(solid lines in Fig. 2). At the top (y = Ly, dot-dashed), we
prescribe the free-slip condition. For the supersaturation field

10−1

100

101

0 0.5 1

p
df

τevap [s]

10−1

100

101

0 0.5 1
p
df

τevap [s]

10−1

100

101

0 0.5 1

p
df

τevap [s]

FIG. 11. Top: Grid convergence analysis: probability density
function of the particle evaporation time computed in the baseline
case with spacing �x = 3.5 mm (blue curve) and �x = 1.75 mm
(orange symbols). Middle: Convergence of the statistics: probability
density function of the particle evaporation time computed in the
baseline case with N ≈ 5000 (blue line) and with half of them (ma-
genta symbols). Bottom: Independency of the results from the initial
condition: probability density function of the particle evaporation
time computed in the baseline case (blue line) and when droplets
are emitted with a time delay of 0.07 s (brown), 0.14 s (black), and
0.21 s (gray).

s, at t = 0 we have s(x, 0) = sa = RHa − 1 everywhere in the
domain. The inlet flow exiting from the mouth is assumed to
be saturated air; i.e., s = 0. The Dirichlet condition s = sa is
thus used at the bottom, left, and top boundaries. For both
the velocity and supersaturation field, we impose a convec-
tive outlet boundary condition at the right boundary, x = Lx

(dashed line). Finally, periodic boundary conditions apply at
the sidewalls, i.e., z = 0 and z = Lz.

In our simulations, the domain is discretized with uniform
spacing �x = 3.5 mm in all directions, resulting in a total
number of N ≈ 0.3 billion grid points. Results are validated
against the theoretical prediction for a turbulent puff (see
Fig. 2). Moreover, we assessed the convergence with respect
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to the grid resolution, as it is shown in Fig. 11 (top) where we
compare the probability density function of the particle evapo-
ration time using the adopted grid setting with that obtained by
doubling the spatial resolution. From the figure we can clearly
observe that only minor differences occur, thus confirming the
reliability of the chosen grid resolution.

The results discussed in the text are statistically significant.
We varied this by halving the numerical sample (Fig. 11,
middle) and by varying the release time of the droplets
(Fig. 11, bottom), thus resulting in different dynamics due to
the chaotic nature of the flow; for both tests the figure shows
no appreciable differences.
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