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Pattern in space and time is central to ecology, and adequately designed ecological 
sampling is needed to resolve those patterns, pursue ecological questions and design 
conservation strategies. Recently, there has been an explosion of various ecological 
data due to the proliferation of online data-sharing platforms, citizen science programs 
and new technology such as unmanned aerial vehicles (UAVs), but data reliability, 
consistency and the error properties of the sampling method are usually uncertain. 
While there are a number of standard survey protocols for different taxa, they often 
subjectively designed and standardization is meant to facilitate repeatability rather 
than produce a quantitative evaluation of the data (e.g. error properties). Here, we 
describe an ecological survey scheme consisting of an ‘algorithm’ to be followed in the 
field that will result in a standard set of data as well as the error properties of the data. 
While many such sampling schemes could be developed that target different types of 
organisms, we focus on one case of a moving observer attempting to detect a species 
in the field (e.g. a birder, UAV, etc.) with the goal of producing a presence–absence 
map. The multiscale model developed is spatially explicit and accommodates inher-
ent survey tradeoffs such as sampling speed, detectability and map resolution. Given 
a set of sampling parameters, the model provides estimates of the total sampling time 
and map accuracy translated into the probability of false negative. Additionally it also 
provides an actual and sampled occupancy–area curve across mapping resolutions that 
can be utilized to discuss sampling effects. While the proposed sampling framework is 
simple, the same general approach could be adapted for other conditions to meet the 
needs of a particular taxon. If a set of ‘canonical’ sampling algorithms could be devel-
oped with known mathematical properties, it would enhance reliability and usage of  
ecological datasets.
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Introduction

Documenting spatiotemporal patterns is a central need for 
ecology (Levin 1992) and ecological surveys provide a foun-
dation for asking ecological questions and supports deci-
sion making for ecosystem management and conservation 
(Nichols and Williams 2006, McDonald-Madden et al. 2010, 
Danielsen et al. 2014). Although the recent progress in gen-
erating and consolidating large data have enabled us to reveal 
common ecological patterns across the globe and discuss 
ecosystem conservation at global scales (Orme  et  al. 2006, 
Pimm et al. 2014, Di Marco et al. 2019), our knowledge of 
biodiversity is still largely deficient due to geographical and 
taxonomic sampling biases (Böhm et al. 2013, Dulvy et al. 
2014, Bland et al. 2015).

Over the last few decades, global ecological data have 
increasingly been available given rapid proliferation of online 
data-sharing platforms (e.g. Global Biodiversity Information 
Facility (GBIF) (GBIF.org 2019)) working synergistically 
with citizen science programs such as eBird (Sullivan et  al. 
2009), and emergent tools such as unmanned areal vehicles 
(UAVs) (Anderson and Gaston 2013, Bonney  et  al. 2014, 
Crutsinger  et  al. 2016, Chandler  et  al. 2017). In addition, 
UAVs have recently been introduced to the citizen science 
program, for instance, in Guyana to monitor agricultural 
fields (Cummings et al. 2017). These have been widely uti-
lized in ecological studies and ecosystem management at 
scales that have previously not been feasible (Dickinson et al. 
2012, Kobori et al. 2016, Chandler et al. 2017). However, 
there are a number of possible survey protocols (Stem et al. 
2005, Burton et al. 2015), and often they are arbitrarily tai-
lored to local situations (Danielsen et al. 2014). Since field 
observations are the basis for ecological datasets, our under-
standing of ecological phenomena is ultimately influenced 
by these observation methods. In addition, detailed surveil-
lance procedures and potential data bias and error are often 
not explicitly mentioned, leaving quality of available data 
unclear. The use of ambiguous data risks mis-interpretation 
of ecological structure as surveillance methods such as the 
area and shape of sampling regions could alter observed pat-
terns (Takashina et al. 2019).

The development of transparent and widely applicable 
survey methods with a theoretical basis would both improve 
data quality and maximize return on investment of time and 
resources. Given that monetary and time constraints are an 
issue for any conservation effort, ecological surveys must 
be undertaken in a cost-effective manner. As data quality 
significantly alters the conservation benefits (McDonald-
Madden  et  al. 2010), incorporating surveillance time and 
data accuracy into the management planning facilitates con-
servation success (Chades  et  al. 2008, Bennett  et  al. 2018, 
Takashina et al. 2018b). Therefore, having ecological survey 
guidelines provide a quantitative benchmark of data quality 
and survey time and can improve the decision making of the 
survey design. Quantifying accuracy of available data also 
substantially helps to judge its utility given a specific ecologi-
cal question and conservation (IUCN 2017).

There have been a number of sampling designs pro-
posed and examined for different field systems, such as 
biodiversity estimation of spiders in tropical ecosystems 
(Coddington  et  al. 1991), termite assemblages in tropi-
cal forests (Jones and Eggleton 2000), aquatic invertebrate 
assemblages in three Tennessee River tributaries (Kerans et al. 
1992), the marine coastal ecosystem monitoring by a remote 
device (Aguzzi  et  al. 2011), coral reef biodiversity (Reef 
Life Survey 2019) and many more. The standardization of 
sampling methods can lead to comparable datasets. On the 
other hand, sampling performance parameters, including the 
degree of error in the data for a given amount of sampling, 
usually remains unclear. There is also a large body of litera-
ture developing theory for aspects of survey protocols such as 
effort allocation under budgetary constraints to achieve opti-
mal information gain (Field et al. 2005, Mackenzie and Royle 
2005) or optimal surveillance for invasive species (Epanchin-
Niell et al. 2012) in a spatially-implicit context. On the other 
hand, generalized spatially explicit survey schemes are largely 
deficient. Spatially explicit protocols are necessary since they 
allow us to explore detailed survey protocols and quantita-
tively discuss inherent trade-offs such as sampling path and 
map resolution. Previously, Baxter and Hamilton (2018) 
numerically performed how the species detection error via 
an UAV survey affects the population estimate and occu-
pancy within 50 × 50 grid cells where individual distribution 
are explicitly modeled. Takashina et al. (2018a) developed a 
multi-scale mathematical framework to assess survey accu-
racy given a detectability on the presence–absence map where 
the survey region, resolution of the map and actual sampling 
region can be flexibly changed. These attempts focused on 
unveiling generic tradeoffs in the survey such as detectability, 
spatial resolution and sampling accuracy.

To ensure ecological sampling is conducted in a cost–
effective manner with a specific sampling design, including 
sampling path, map resolution and sampling error, we need 
a theoretical framework that quantifies the sampling time 
and its accuracy in a spatially explicit setting. Regardless of 
observer considered (e.g. field ecologist, citizen scientist or 
UAV) and sampling method to detect individuals (e.g. ocu-
lar, plot, transect or image-based methods (Booth et al. 2005, 
2006, Booth and Cox 2008)), a wide variety of ecological 
surveys seeking to observe ‘events’ (e.g. presence of a species, 
interaction between species, etc.) within a specific area and 
sampling period commonly consist of the four outcomes: 
1) the event was not detected during the sampling period 
because the event did not occur, 2) the event occurred during 
the sampling period but was not detected (i.e. false negative), 
3) detection of an event that occurred within the given sam-
pling period, 4) false detection of an event. The component 
(4) has two types: false detection of (4-a) an event that did 
not occur; and (4-b) an event that occurred but it was not 
detected until the event of the false detection. The inaccu-
racy of data arises from false negatives and false positives. We 
propose that explicitly modeling these components under 
general situations and developing a solid insight into math-
ematical properties of the model can lead to the development 
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of a general survey protocol utilized by a variety of samplers 
and sampling methods.

Here we aim to develop a general spatially-explicit ecologi-
cal survey framework to produce a presence–absence map as 
an output. We focus on cases involving a moving observer, 
such as a field ecologist, wildlife manager, UAV or citizen 
scientist seeking to create a presence–absence map within an 
arbitrary area. The sampling process involves an inherent error 
of individual detection, undermining map accuracy by intro-
ducing false negative and positives into the resulting map. 
Presence–absence maps are one of the example of a survey 
output, and these have a broad applicability of both ecology 
and conservation biology including the estimation of the spe-
cies extinction risk (IUCN 2017), measuring beta diversity 
(Koleff et al. 2003) and understanding the impact of inva-
sive species expansions (Sanders et al. 2003). Our framework 
naturally provides an occupancy probability and therefore we 
can also obtain the actual and sampled occupancy–area curve 
(Kunin 1998, Azaele et al. 2012) across mapping resolutions. 
Our goal is to demonstrate that, by carefully determining a 
parameters of a given sampling scheme, the survey frame-
work can offer an quantitative estimation of expected total 
survey time and accuracy of the obtained presence–absence 
map measured by the false negative probability of absence 
region; the central trade-offs of ecological surveys. We then 
perform an in silico demonstration of how our method can 
be used to design sampling and provide theoretical predic-
tions using several test datasets, including both simulated 
datasets and the actual spatial pattern of tree distributions 
from the 50 ha plot at Barro Colorado Island, Panama.

Methods

Let us assume that an ecological survey is carried out in a 
region W where individuals of a target species are dis-
tributed randomly or tend to form intraspecific clusters 
(Supplementary material Appendix A Fig. S1). The region 
W is surveyed by an observer such as field biologist, citizen 
scientist or UAV (henceforth, ‘observer’). The purpose of this 
section is to introduce a method to quantify the ability of 
each observer, and to introduce a survey protocol that can 
be widely used in ecosystem management and monitoring 
programs. In this framework, key outputs of the ecological 
survey are the expected total survey time and map accuracy 

in terms of the probability of false negative. We summarized 
the key parameters introduced below in Table 1.

Quantifying the ability of the observer

Various observers can be represented by the framework dis-
cussed by changing the ability level of an observer, and these 
are characterized by the detection error of an individual ε 
and sampling intensity. The sampling intensity reflects the 
average fractional area searched within a concerned region 
until a given sampling time ts by an observer. The sampling 
intensity is a product of various factors such as the sampling 
trajectory, sampling method and the speed to follow the 
sampling trajectory (Fig. 1). Although the sampling inten-
sity can be uniquely determined for each observer provided 
a sampling trajectory and its speed, multiple definitions can 
be possible since the above-mentioned factors are not inde-
pendent but interact each other. Here, we use an intuitive 
definition by introducing the sampling unit S: average region 
that an observer surveys at a given time unit and speed; for 
example, a citizen scientist surveys region S1 every 5 min with 
the ground speed 25 m min−1 or region S2 every 5 min with 
the ground speed 30 m min−1, and a UAV surveys region 
S1 every 10 s with the flight speed 3 m s−1. Then, sampling 
intensity by time ts is comprised of sampling efficiency α(t) 
and the area (represented by ν(·)) of sampling unit S given a 
sampling speed:

Sampling intensity
concerned region

=
( ) ( )

( )
0

n a

n

S t dt
tsò

  

The sampling efficiency measures the redundancy of a sam-
pling trajectory and it satisfies 0 < ( )

0

ts
st dt t∫ ≤a  where the 

equality occurs under the ideal sampling trajectory. It gives the 
highest sampling intensity, and the smaller sampling intensity 
occurs when the sampling trajectory causes redundant sam-
pling (i.e. trajectory of Fig. 1, top). An easy way to minimize 
sampling redundancy is to subdivide each mapping unit into 
sampling units, and sample each unit at each time unit in a 
predetermined trajectory where overlap does not occur. In this 
study, we will adopt this approach. The integral becomes the 
summation in case of the discrete–time survey. Each individ-
ual sampling is associated with the sampling error that may 
depend on the sampling speed: too fast sampling speed com-
pared to the ability of an observer may cause a high detection 
error while the effect of decreasing the sampling speed may 
be diminished at a certain speed. However, we do not require 
to model this relationship for our purpose, and we arbitrary 
determine the sampling unit S and sampling error ε.

A general protocol for ecological surveys by a 
moving observer

We here introduce a general field survey protocol (Fig. 2). 
We use a discrete time in the presentation that may be easier 

Table 1. Definition of central parameters.

Symbol Parameter

W Observation window
M Mapping resolution
S Sampling resolution
ν(R) Area of region R
NM Number of mapping units
λdist Intensity of individuals of distribution pattern dist
ε probability of sampling error
ts sampling stopping time
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to handle in a field survey practice but its generalization is 
straightforward. The survey protocol follows the two rules:

1. Define the resolution of map M (mapping unit).
2. Each mapping unit is sampled with the sampling unit S, 

efficiency α(t) and detection error ε with an arbitrary tra-
jectory as in Fig. 1.

By these two basic rules we can conduct various survey 
protocols other than the protocol we present below. Since the 
size of mapping unit M is unique, the number of mapping 
units is NM = ν(W)/ν(M). Since we focus on the survey to 
obtain a presence–absence map, we further introduce the fol-
lowing two steps:

Figure 1. Schematic diagrams of the region sampled (colored region). Sampling trajectory (arrows) and the sampling speed (e.g. m s−1; curve 
width) to follow the trajectory determine the sampling intensity. The labels ti represents time steps of the sampling on the trajectories. Faster 
(thick curve) and efficient sampling trajectory increases the area sampled per unit time, than slower (thin curve) and inefficient sampling. 
However, faster sampling speed may cause larger sampling error.

Figure 2. General survey scheme proposed to create a presence–absence map with observation window where the target population is sur-
veyed, mapping unit and sampling unit (W, M, S). By determining (a) a sampling path to visit all mapping units and (b) sampling trajectory 
within each mapping unit based on sampling unit, we can create (c) a presence–absence map and calculate the expected total survey time 
and the probability of false negative. An example of the sampling and the resulting presence–absence map shown here is only the last four 
mapping units (labeled m1, m2, m3 and m4). In this example, there are 64 mapping units and each mapping unit composed of 4  
sampling units.
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3. Define the maximum sampling time in each mapping 
unit ts.

4. Go to next mapping unit when a first individual is 
observed, a false detection occurs or sampling time reach 
the stopping time ts.

In the following mathematical descriptions, we present 
the situation where the possibility of false positive detection 
is negligible for simplicity. The integration of false positive 
detection is straightforward, but it requires further assump-
tions of causes of the false detection, one more probability 
variable and the calculations of two extra average times to 
estimate a total sampling time compared to the discussion 
below. We leave technical details in the Supplementary mate-
rial Appendix D, and we will present only results in the  
main text.

Given the sampling protocols 1–4, the probability of false 
negative is calculated probabilistically

P tsNo detection of individual by time

within a mapping unit with ind

(
iividual(s))

  

and the expected total survey time tsamp is described by
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where, P(Detection of an individual by time ts) is the (sam-
pled) occupancy probability of the presence–absence map. 
Traveling times from one location to the next patch may 
be independent each other and therefore it may be linearly 
scaled to the number of mapping units, and we omit in the 
following discussion. Let us define the random variable X(t) 
be the accumulated number of detected individuals at time 
t in a given mapping unit, E[t] be the average time that the 
variable X(t) = 0 switches to X(t) > 0, and the random vari-
able Y be the number of individual in a given mapping unit. 
Then the above expressions are formally described as

P X t Ys( ( ) = 0, > 0)   (1a)

t N t P Y P X t Y
N E t P X t Y

M s s

M s

samp = { ( = 0) ( ( ) = 0, > 0)}
[ ] ( ( ) > 0, > 0)

+

+
  (1b)

When the sampling time is fixed within each map-
ping unit (fixed-time sampling), the sampling time is  

simply t × (number of sampling units). Obviously, the prob-
ability of false negative is the same as the sampling method 
mentioned above. The occupancy–area curve is obtained by 
calculating P(X(ts) > 0, Y > 0) across mapping resolutions.

Takashina et al. (2018a) previously obtained the probabil-
ity P(X(R) > 0|Y > 0) under a fixed-area survey, where X(R) is 
the number of individuals found in the fixed survey region, R, 
and they regarded it to the presence mapped fraction. Since 
the probability of false negative in our protocol is the same 
as that of the fixed-area survey, we also have the relationship 
P(X(ts) > 0|Y > 0) = P(X(R) > 0|Y > 0). Therefore, we can use 
the following relationship derived in Takashina et al. (2018a)

P X t Y
P X t
P Ys

s( ( ) > 0 > 0) =
1 ( ( ) = 0)

( > 0)
|

-
  (2)

Case studies using simulated and real-world datasets

Following the theoretical analysis, we aimed to test and 
demonstrate the survey method using experimental surveys. 
Although one could do this with new real field surveys, we 
chose to perform in silico experiments by simulating the sur-
vey of target datasets because through simulation many repli-
cates can be run with different conditions, and the target data 
are known a priori so errors can be assessed. As test cases, we 
simulated artificial datasets with different clustering proper-
ties, and used real species data from the well known Barro 
Colorado Island (BCI) 50 ha plot dataset (ForestGEO 2020).

Simulated individual distributions
In the theoretical analysis, we assume random or clustering 
individual distributions. Here we outline the process to simu-
late individual distribution data with these properties. More 
detailed discussion is found in the Supplementary material 
Appendix A.

The random and clustering individual distributions are 
generated by applying the theory of spatial point processes 
that accommodate stochasticity in individual distributions in 
region W. Specifically, random individual distributions are 
generated by a homogeneous Poisson process, and a Thomas 
process, widely applied to characterize intraspecific aggre-
gation patterns (Plotkin  et  al. 2000, Morlon  et  al. 2008, 
Azaele et al. 2012, May et al. 2018, Takashina et al. 2018a, 
2019), describes clustering spatial patterns. The parameters 
do not change with a spatial scale considered, and aggrega-
tion of these processes can realize well-established commu-
nity patterns across scales such the species–area relationship 
(Plotkin et al. 2000, Takashina et al. 2019).

In the homogeneous Poisson process, the number of indi-
viduals X in a given region R with area ν(R) and the intensity 
λpo follows the Poisson distribution

P X k
R

k
e

k
R

( = ) =
( ( ))

!
( )l n l npo po-
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Similarly, we can define the intensity of the Thomas process 
λth, and in the analysis, we set λth = λpo to satisfy the average 
numbers in a given area are the same under both individual 
distributions.

Setting sampling details
We set ν(S), ν(M) and ν(W) to be the form 2n (n = 0, 1, 2…) 
for numerical convenience (e.g. we set ν(W) = 24 km2). Also, 
we present the normalized sampling time under fixed- and 
non-fixed time samplings for the presentation convenience. 
For normalizing the total sampling time, we simply divide 
Eq. 1b by NMtmax, where tmax is the sampling time that the 
sampling intensity becomes 1: ν(S)tmax/ν(M) = 1. Namely, 
this normalized value measures the sampling time relative 
to the time for the exhaustive survey. Then we perform the 
survey proposed when the average population density is 10, 
100 or 1000 km−2 for both random and clustering individual 
distributions. We provide examples of realized point patterns 
for both random and clustering individual distributions in 
Supplementary material Appendix A Fig. S1 with a param-
eter set used in the following analysis. We also examine two 
probabilities of the sampling error ε = 0.1 and 0.3. We run 
105-time simulations for each scenario to quantify the sam-
pling average and 5 and 95 percentile of the simulations. To 
simulate an occupancy–probability curve, we set ts so as to 
satisfy the sampling intensity is 0.5: ν(S)ts/ν(M) = 0.5, where 
the area of mapping resolutions are ν(M) = {2−11, 2−10, …, 24}. 
For surveys with false detection, we will focus on the sam-
pling time and the probabilities of false negative and posi-
tive when the probability of the sampling error is ε = 0.1 as 
the results are qualitatively similar to the surveys without  
false detection.

An empirical dataset: plant species in the 50-ha forest plot at 
Barro Colorado Island, Panama
We will demonstrate application of the sampling design and 
its expected sampling time and the probability of false negative 
using the well known vascular plant data at Barro Colorado 
Island (BCI) where highly spatially-resolved location data is 
available in a well-defined region with the area ν(W) = 1000 
× 500 m. We examine the dataset of Zanthoxylum panamense 
(n = 463) and Cecropia obtusifolia (n = 362) independently as 
test cases. We will show, via Ripley’s K function, that these 
species show a comparable pattern to the random or cluster-
ing individual distribution at a given distance. Note that we 
are using the BCI data here as a ‘true’ pattern which we ‘sam-
ple’ using in silico surveys by a moving observer. The BCI 
plot is already exhaustively sampled with low error through 
standard protocols (ForestGEO 2020) and we are not sug-
gesting those protocols should be changed. Rather, the point 
of this exercise is to test sampling methods in silico on a real-
world high quality dataset as a target.

Setting sampling details
To make the proposed sampling protocol fully available, 
we require equal-sized mapping units with an area ν(M) 
consisting of equal-sized sampling units with an area ν(S). 

In this example, we choose the area of mapping resolu-
tion and sampling resolution ν(M) = 32.05 × 32.05 m 
and ν(S) = 4.05 × 4.05 m, respectively, that gives the total 
number of mapping units 1024 and sampling units within 
each mapping unit 64. We set the probability of sampling 
error to be 10% (ε = 0.1). Here we do not need to specify 
an actual time to spend in each mapping unit, to calculate 
the fractional time as in the theoretical analysis. However, 
the actual total sampling time is readily recovered once the 
time unit is specified. We perform 104-time simulations 
for each scenario to quantify the sampling average and 5 
and 95 percentile of the simulations.

Results

Theoretical properties of the proposed method

Here, we demonstrate how false negative Eq. 1a and the total 
survey time Eq. 1b are derived. By doing so, we can show 
these forms can be greatly simplified, and make the underly-
ing tradeoffs clear. Later on this chapter, we perform numeri-
cal simulations for the sake of verification of our analysis and 
visualizations. Here, without loss of generality, we assume 
that the time step is discrete and the sampling trajectory is 
ideal (schematic image is provided in Fig. 2b), and therefore 
the sampling intensity until time ts (≤ tmax) is represented 
by ν(S)ts/ν(M). In Supplementary material Appendix C, we 
also asymptotic behavior when the mapping unit becomes  
very small.

Random individual distribution
Here we overview the derivations of each probability required 
for Eq. 1a, 1b, and technical details are left in Supplementary 
material Appendix B. Later, we will show the same manner 
will immediately follow in the case of clustering individual 
distributions.

When individuals are distributed randomly (i.e. via 
homogeneous Poisson process), the probability of false nega-
tive is directly obtained by calculating the probability of 1) 
mis-detection given individual encounter (hitting), and 2) 
encounter no species (non-hitting) until time ts given indi-
vidual existing in a mapping unit as follows (Supplementary 
material Appendix B)

P X t Y e es

S t Ms

po
po po( ( ) = 0, > 0) =

( ) (1 ) ( )- - -
-

l n e l n
  (3)

where, the subscript po indicates the underlying individual 
distribution (Poisson process). The probability of false nega-
tive can be reduced more efficiently by increasing the sam-
pling stopping time ts when the intensity λpo and sampling 
unit ν(S) are larger and detection error ε is smaller. Equation 3 
immediately gives us the probabilities of Ppo(X(ts) > 0|Y > 0), 
Ppo(X(ts) > 0, Y > 0) and Ppo(X(ts) = 0, Y > 0) (Supplementary 
material Appendix B) where the occupancy probability of the 
presence–absence map has the form
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P X t Y es
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  (4)

These probabilities allow us to calculate the total survey time 
(Supplementary material Appendix B)
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This suggests intuitive characteristics of ecological survey: the 
total sampling time is proportional to the number of map-
ping units NM, an effect of a mapping resolution M. As in the 
case of Eq. 3, the sampling time is reduced more efficiently 
by increment the sampling stopping time ts when the factors 
λpo, ν(S) and 1 − ε are larger.

Clustered individual distribution
The same discussion follows when individuals tend to create 
clusters in space which can be described by the Thomas pro-
cess. The form of zero probability is given in Supplementary 
material Appendix A Eq. A3, and the probability of false 
negative and the occupancy probability are immediately 
obtained by using the relationship in Eq. 2.

Provided the false negative probability, the sampling time 
has the following form:

t N P X tM
t

ts

samp
th

th= ( ( ) = 0)
=0

1-

å   (6)

where, th indicates the underlying individual distribution 
(Thomas process) as above. This has the same form as the first 
line of Eq. 5 although we could not further simplify.

Case studies: using ‘in silico’ surveys to test the 
theory using example datasets as targets

Simulated datasets: random and clustering individual 
distributions
Here we generate random and clustering individual distribu-
tion patterns in a manner presented in Supplementary mate-
rial Appendix A. We perform numerical simulation to verify 
the mathematical analyses above.

Expected sampling performance without false detection
Provided by simulated individual distributions, we can con-
duct ecological survey on computer and quantify its perfor-
mance. Figure 3 shows that the theoretical values have a good 
agreement with numerical values. As predicted by the discus-
sion above, the reduction of the normalized sampling time 
(top) and the probability of false negative (bottom) given an 
increment of the sampling stopping time ts is larger when the 
intensity λpo is larger. This is also true for the clustering indi-
vidual distributions. In addition, the normalized sampling 
time is nearly linearly scaled by the normalized sampling 
time when the intensity λpo and λth are small as the theoretical 
discussion suggests. The same line of discussions hold true 
with the different probability of sampling error (ε = 0.3; 
Supplementary material Appendix A Fig. S1) and sampling 
protocols with ε = 0.1 and 0.3 (see Supplementary material 
Appendix A–D for plots with (ν(M), ν(S) = 2−4 × 2−4 km2, 
2−6 × 2−6 km2), Fig. S2; and (ν(M), ν(S) = 2−3 × 2−3 km2, 2−5 
× 2−5 km2), Fig. S3). For a comparison, we also plot the total 
survey time under the fixed-time survey (Fig. 3 top) where 

Figure 3. Normalized sampling time and false negative given normalized stopping time ts with the probability of sampling error ε = 0.1. For 
each individual distribution scenarios, the numerical average (lines) and its theoretical value (dashed) are provided. The shaded area are 
between 5 and 95 percentiles of a 105-time numerical simulation. FTS represents the fixed-time survey. The scales of surveys are are 
ν(W) = 4 × 4 km, ν(M) = 2−3 × 2−3 km, ν(S) = 2−6 × 2−6 km and the probability of sampling error is ε = 0.1. The parameter values of the 
clustered (Thomas) process are λth = 5, c = 20, σth = 0.1. Supplementary material Appendix A Fig. S1 for example realizations of individual 
distributions with the intensities λpo = λth = 100.
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sampling time in each mapping unit is fixed to ts (i.e. the total 
survey time is NMts).

Figure 4 shows (a) actual and sampled occupancy–area 
curves across mapping unit ν(M) and (b) relative probability 
of sampled and actual that measures the agreement of sampled 
estimation. We observe that the probability of occurrence 
asymptotically converges to λdistν(S)ts(1 − ε) and 1, when the 
area of the mapping unit approaches 0, and when the area 
of mapping unit becomes sufficiently large, respectively. At 
intermediate sizes of mapping unit, randomly distributed 
individuals show higher probabilities occurrence than spa-
tially aggregated individuals regardless of the actual or sam-
pled curve (Fig. 4a). The relative probability has the form of 
P(X(ts) > 0|Y > 0), and the the agreement is decreased with 
the size of mapping unit (Fig. 4b). When the sampling inten-
sity is fixed across mapping unit scales, this is equivalent to 
the presence mapped fraction, P(X(R) > 0|Y > 0) where X(R) 
is the number of individuals in the region R (Takashina et al. 
2018a) and it asymptotically converges to sampling intensity 
× error rate when the area of the mapping unit approach 0 
(Takashina et al. 2018a); ν(S)ts(1 − ε) in our context.

Expected sampling performance with a possibility of false 
detection
Here we briefly demonstrate that the similar results can be 
obtained in ecological survey with a false positive detection 
in line with the result in Fig. 3 ((ν(M), ν(S)) = (2−3 × 2−3 km2, 
2−6 × 2−6 km2), the probability of sampling error is ε = 0.1). 
We assume that the number of false positive detection after 
sampling the area ν(S)t follows a Poisson distribution with an 
intensity λfp: Po(λfpν(S)t) (Supplementary material Appendix 
D). Qualitatively similar patterns are realized for the normal-
ized sampling time (Fig. 5; top) and the probability of false 
negative (Fig. 5; middle). Intuitively, the probability of false 
negative increases with the sampling time (Fig. 5; bottom) 
and it becomes negligible when the number of individuals are 
sufficiently large (Fig. 5c; bottom).

The same line of discussions hold true with other sets 
of mapping and sampling resolutions (see Supplementary 

material Appendix A–D for plots with (ν(M), ν(S)) = (2−4 × 
2−4 km2, 2−6 × 2−6 km2), Fig. S4; and (ν(M), ν(S)) = 2−3 × 2−3 
km2, 2−5 × 2−5 km2), Fig. S5).

Field dataset: plant species in Barro Colorado Island (BCI)
Here, we apply our sampling protocol to the spatial distri-
bution of two vascular plants, Zanthoxylum panamense and 
Cecropia obtusifolia in the 50-ha (1000 × 500 m) plot at BCI 
(Fig. 6a–b). This section is intended to develop a connection 
to well-known dataset in spatial ecology, although we don’t 
argue it is practically useful for this particular study system 
(e.g. BCI is already thoroughly sampled for all species, and 
thus single species surveys with optimized protocols are not 
necessary). The BCI data is taken as a target that we attempt 
to sample using our simulated surveys.

Spatial aggregation of BCI data
We first quantify spatial aggregation pattern of the data points 
to make the comparison to theoretical results clear. Ripley’s 
K function summarizes such a spatial statistics of data points 
(s1, s2, …, sN) up to the distance t within a concerned region 
of area A0 (Ripley 1977, Chiu et al. 2013)
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where, l̂ = / 0N A  is the data density with the number of 
data points N, w(si, sj) is the edge-correction factor, the pro-
portion of a circle centered at si with the radius ||si − sj|| over-
lapping with A0, and I is the indicator function (I(·) = 0 if (·) 
is true, 0 otherwise). For example, if the value of K̂ t( )  of 
any individual distributions is larger than that of a random 
individual distribution at distance t, it indicates that the con-
cerned distribution is more aggregated than the random dis-
tribution up to the distance t, and vice versa. This is a relative 
concept and the same discussion is made for a comparison to 
the aggregated (Thomas) process used in the preceding analy-
sis. Hence, Zanthoxylum panamense shows similar pattern as 

Figure 4. (a) Occupancy–area curves and (b) relative occupancy probability of sampled and actual values provided the sampling intensity 
0.5. The shaded areas are between 5 and 95 percentiles of a 105-time numerical simulation, and the lines are the theoretical value. The 
intensity of both distributions λdist are 100. The other parameters used are the same as in Fig. 3.
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random distribution but with more aggregation at shorter 
distances, and Cecropia obtusifolia shows more aggregation 
than the Thomas process at shorter distance but less aggrega-
tion at a larger distances.

Expected sampling performance in BCI and decision making 
for sampling design
Once we define the sampling design based on definition 
above, it is straightforward to compute and quantify the sam-
pling performance discussed in the preceding section (Fig. 7). 
The top panels of Fig. 7 shows one of realized presence–
absence map when the sampling stopping time is ts = 0.78.

How can we utilize these theoretical predictions? To con-
sider this, first let us discuss the situation where we employ 
a fixed-time sampling. For example, when the time taken to 
sample a unit area ν(S) = 4.05 × 4.05 m is, on average, 30 s, 
then the expected time of the sampling is proportional to the 
number of the total sampling units (1024 × 64); 546 h.

Next, we employ the sampling methods developed. Let 
us assume that we have a budgetary constraint that limits 
the maximum allowable sampling time. For example, let us 
define the maximum allowable sampling time to be 350 h. 
Then, our theoretical predictions provide a sampling stop-
ping time, ts, that enables us to produce a presence–absence 
map within this time limit and an expected sampling error 
in the map. Such a sampling stopping time is obtained 
from Fig. 7a–b, where the sampling stopping time gives the 

sampling time 0.64 (approx. 350/546). This sampling time is 
realized when the sampling stopping time is about ts = 0.78 
(23.4 s) in Fig. 7a and ts = 0.73 (21.9 s) in Fig. 7b. Using 
these sampling stopping time, we can obtain the expected 
error contents in the realized map from Fig. 7c–d: 0.22 in 
Fig. 7c and 0.28 in Fig. 7d, respectively. Our framework does 
not include the transition time from one mapping unit to 
another, so, in practice, the sampling time should be taken 
smaller than 0.64 not to exceed the total allowable sampling 
time.

It is also possible to set a required map accuracy first and 
then calculate the sampling time, by following our discussion 
above backwards.

Discussion

The capacity for ecosystem surveys is rapidly growing world-
wide, but can we get more out of our efforts and limited 
resources with smarter sampling strategies? We developed 
a theoretical framework for designing surveys with known 
error properties using as an example the case of a moving 
observer (such as field biologist, citizen scientist or UAV) 
attempting to estimate a presence–absence map. This allows 
the calculation of the expected total sampling time and prob-
ability of false negative given a set parameters. Therefore, this 
survey protocol enables us to estimate the central trade-offs of 

Figure 5. Normalized sampling time, false negative and false positive given normalized stopping time ts with the probability of sampling 
error ε = 0.1. For each individual distribution scenarios, the numerical average (lines) and its theoretical value (dashed) are provided. The 
shaded area are between 5 and 95 percentiles of a 105-time numerical simulation. FTS represents the fixed-time survey. The scales of surveys 
are are ν(W) = 4 × 4 km, ν(M) = 2−3 × 2−3 km, ν(S) = 2−6 × 2−6 km. The intensity of false positive is λfp = 10. The parameters for the points 
generations are the same as in Fig. 3.
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existing ecosystem surveys: feasibility/cost and the accuracy 
of survey results. In particular, we showed that the perfor-
mance can be specified by a set of multiple probabilities (Eq. 
1a, 1b), and hence, we can discuss the effect of changing the 
ability of observer (e.g. detectability) or sampling design (e.g. 
mapping resolution) on the performance. Additionally, the 
framework provides the actual and sampled occupancy–area 
curves across mapping resolutions that enables us to estimate 
the sampling artifact. We also demonstrated the development 
of sampling design, the sampling performance and its inter-
pretation for sampling decision using computational survey 
with example plant species distribution data from Barro 
Colorado Island.

In the application to simulated species distribution data, 
and empirical BCI data, we demonstrated the design of 

sampling and its decision-making process based on the theo-
retical prediction. In the example, we discussed a decision-
making process to optimize the sampling accuracy under 
a budgetary constraint that limits the total sampling time. 
Figure 8 summarizes such a decision-making process to 
achieve an effective survey design given a maximum-possible 
sampling time. First, we estimate the number of hours that 
we can afford to carry out the survey from the budget avail-
able. We then quantify the observer’s ability, design the sur-
vey protocol and set the required map accuracy in terms of 
the probability of false negative. Given a set of parameters, we 
can calculate the number of hours and map accuracy using 
the proposed framework. If the survey is not feasible given 
the budgetary constraint or does not meet required survey 
accuracy, we redefine the survey parameters and protocols 

Figure 6. Distribution of (a) Zanthoxylum panamense (n = 463) and (b) Cecropia obtusifolia (n = 362). Subdivided regions represents the 
mapping unit used in this example (32.05 × 32.05 m). (c) Ripley’s K function (Eq. 7) in the 50-ha plot at Barro Colorado Island.



303

such as the sampling speed, mapping resolution, M and even 
required map accuracy and repeat until these predetermined 
requirements will be met. We can also use this workflow to 
find an optimal survey protocols once we define the objective 
function. For example, when our objective is to find the fin-
est map resolution given a budgetary constraint and required 
map accuracy, then the optimal sampling protocol given the 
constraint can be found by repeating the same process as 
above, with the two conditions tsamp < T and P(false negative) 
≤ p satisfied, and find the smallest possible map resolution.

It is intuitive that false positive detection reduces total 
sampling time as it ends the sampling in a current mapping 
unit and starts a sampling in a new mapping unit. Also, it 
reduces the probability of false negative as false negative no 
longer occurs once a false detection is realized in a map-
ping unit. Our results suggest that the effects of false posi-
tive detection becomes significant in a survey with a larger 
sampling stopping time ts and the smaller population size. 
Although integration of false positive detection is mathemati-
cally straightforward (Supplementary material Appendix D), 
modelling actual false positive detection is not simple: it may 

be caused by miss-classification of other species, objects, 
geography, etc. and be highly dependent on the nature of 
the observer. In the Supplementary material Appendix D, we 
applied to a simple phenomenological approach where we 
assume the number of false positive detection follows a prob-
ability distribution provided a sampling area. Yet simple, this 
can be a powerful method to consider false positive detection 
in our survey framework. Investigating relationship between 
the surveyed area and the number of false detection enables 
us to heuristically estimate the above-mentioned probability 
distribution.

In a situation where we know nothing about the abundance 
and spatial distribution of a species beforehand, it would 
not be possible to use theory to calculate an optimal design. 
However, this could be mitigated by a strategy to conduct a 
pilot sampling to estimate spatial parameters (Takashina et al. 
2018b), or use a surrogate species and expert opinion (com-
monly used in ecosystem management) to inform the model 
(Caro and O’Doherty 1999, Martin et al. 2005). Also, the 
data accuracy can be estimated a posteriori once species data 
becomes available, and accumulating data may offer a better 

Figure 7. Expected sampling outcomes of two plant species (left) Zanthoxylum panamense and (right) Cecropia obtusifolia in the presented 
sampling method in 50-ha plot at Barro Colorado Island. Top panels show that one realized presence–absence map with sampling stopping 
time ts = 0.78. The legends on the colorbar represents FN: false negative; ID: individual detection; NI: no individual exists. The second (a, 
b) and third (c, d) panels show estimated sampling time, and map accuracy given a sampling stopping time, ts, respectivley, calculated by 
104-time numerical simulations. The shaded areas are between 5 and 95 percentile in the simulations.
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estimate provided the detailed survey method. Hence, pro-
viding details of the sampling protocol used, if any, along 
with data will have benefits for future surveys.

This theoretical exercise can also be useful for develop-
ing general survey framework to obtain presence–absence 
maps. Discussion under a common framework, definitions 
and knowledge facilitates our understanding about sampling 
method and it helps to make a better management decision 
making (McDonald-Madden et al. 2010). For example, the 
IUCN Red List is one of the well-developed and widely-
applied frameworks of quantitatively assessing the status of 
endangered species (IUCN 2017) where four criteria, gener-
ality, precision, realism and simplicity are thought to be key 
components (Keith et al. 2015). The IUCN Red List guides 
to assign the risk of extinction of species to the categories 
(e.g. Critically Endangered, Endangered or Vulnerable) based 
on quantitative criteria such as the reduction of the popula-
tion and the geographic range (IUCN 2017). The assessment 
protocol first published in 1994 (IUCN 2017). Since then it 
has been under active development over e.g. criteria itself and 
terminologies used (Keith  et  al. 2013, 2015, IUCN 2017, 
Bland et al. 2018), and it has adopted to many countries and 
multiple ecosystem types (Nicholson et al. 2009). Our sur-
vey theory is developed in alignment with the need of such 
a common, general and quantitative framework. Seeking an 

opportunity to develop and describe a survey methods under 
the common terminologies and definitions would improve 
the overall ecological data. Moreover, discussion under the 
common framework may promote understanding and per-
formance of the protocol itself. For example, there are vari-
ous sampling trajectories within each mapping unit possible, 
such as spatially balanced sampling (Stevens and Olsen 2004, 
Robertson  et  al. 2013, Curran  et  al. 2020) and clustered 
sampling (Takashina  et  al. 2018b). These can be incorpo-
rated into our model, and these exercises will further pro-
mote development of a better sampling scheme but within 
a common framework. Also, sampling error is an emergent 
property of interactions of complex mechanisms, such as 
experience and the sampling speed. Establishing a common 
framework provides well-defined sampling problems that can 
boost future researches to improve the sampling protocol.

Sampling autonomously via drones is an emerging 
approach to ecological surveys (Crutsinger  et  al. 2016). 
One advantage of such devices, and why we feature them 
prominently in this paper, is the potential to program them 
with behavioral algorithms more easily than human behav-
ior can be enforced. In actuality, however this technology 
is still mostly in the future. Other than a simple routines 
such as a fixed-time survey (Fig. 3) combined with image-
based methods (Booth et al. 2005, 2006, Booth and Cox 
2008) or via a ground control system, it may not be feasible 
for automated UAVs to conduct the presented survey pro-
tocols since it requires the realtime pixel-data processing 
to detect individuals on the fly. However, given an accel-
erating speed of hardware development and even faster 
software innovation (Crutsinger  et  al. 2016), UAVs are 
likely to be applicable to the protocol presented and more 
complex protocols in the near future. In fact, UAVs have 
already been applied to ecological sampling as an alterna-
tive to field sampling (Kattenborn et al. 2019). However, 
regardless of the current capacity of the technology, a 
theoretical development of the ecological survey method 
is essential to drive the innovation of the ecology-specific 
software (Crutsinger et al. 2016), and this will eventually 
promote ecological data reliability.

Here, we developed a theoretical framework for ecologi-
cal surveys motivated by the increasing ecological survey 
intensity and the advantages of benchmarking data accuracy. 
The theoretical treatment of such a basic survey method and 
quantifying the survey performance will be a basis for the 
further discussion and development of more complex and 
inclusive survey approaches. For example, there is a phase to 
develop the sampling design under the presented sampling 
protocol, and a phase for citizen scientists to receive training 
in survey method (Danielsen  et  al. 2014). Also, ecological 
data is often subjected to further process (e.g. data input and 
classification, and image analysis for pixel data (Booth and 
Cox 2008, Ancin-Murguzur et al. 2019)) to utilize as input 
data in various research questions. These factors may reduce 
the available sampling time. Considering these multiple steps 
as a single framework will be necessary and it reduces the 
uncertainty of ecological sampling programs.

Set required 
data accuracy

Start

Implement 
sampling

Set sampling budget

Estimate sampling cost 
and data accuracy

Set sampling protocol 

Satisfy required data 
accuracy?

Is sampling feasible?

yes

yes

no

no

Figure 8. Flowchart of proposed survey design to achieve an effec-
tive sampling given a budgetary constraint.
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