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Abstract. In this note two results are established for energy functionals that are

given by the integral ofW (x,∇u(x)) over Ω ⊂ Rn with ∇u ∈ BMO(Ω;RN×n), the space

of functions of Bounded Mean Oscillation of John and Nirenberg. A version of Taylor’s

theorem is first shown to be valid provided the integrandW has polynomial growth. This

result is then used to demonstrate that every Lipschitz-continuous solution of the corre-

sponding Euler-Lagrange equations at which the second variation of the energy is uni-

formly positive is a strict local minimizer of the energy in W 1,BMO(Ω;RN ), the subspace

of the Sobolev space W 1,1(Ω;RN ) for which the weak derivative ∇u ∈ BMO(Ω;RN×n).

1. Introduction. Let Ω ⊂ Rn, n ≥ 2, be a Lipschitz domain. Suppose that d : D →
RN , N ≥ 1, is a given Lipschitz-continuous function, where D ⊂ ∂Ω, the boundary of Ω.

We herein consider functionals of the form

E(u) =
∫
Ω

W
(
x,∇u(x)

)
dx (1.1)

for W that satisfy, for some a > 0 and r > 0,

|D3W (x,K)| ≤ a(1 + |K|r),

for all real N by n matrices K and almost every x ∈ Ω. We take u = d on D and

u ∈W 1,BMO(Ω;RN ), the subspace of the Sobolev space W 1,1(Ω;RN ) for which the weak

derivative ∇u is of Bounded Mean Oscillation (BMO). Our main result shows that any

Lipschitz-continuous weak solution ue of the corresponding Euler-Lagrange equations:

0 = δE(ue)[w] =

∫
Ω

DW
(
x,∇ue(x)

)[
∇w(x)

]
dx for all w ∈ Var, (1.2)
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at which the second variation of E is uniformly positive: for some b > 0 and all w ∈ Var,

δ2E(ue)[w,w] =

∫
Ω

D2W
(
x,∇ue(x)

)[
∇w(x),∇w(x)

]
dx ≥ b

∫
Ω

|∇w(x)|2 dx, (1.3)

will satisfy, for some c > 0,

E(w + ue) ≥ E(ue) + c

∫
Ω

|∇w(x)|2 dx

for all w ∈W 1,BMO(Ω;RN )∩Var whose gradient has sufficiently small norm in BMO(Ω).

Here

DjW (x,K) =
∂j

∂Kj
W (x,K), Var := {w ∈W 1,2(Ω;RN ) : w = 0 on D},

∥∇u∥BMO := []∇u[]BMO +
∣∣⟨∇u⟩Ω

∣∣,
[] · []BMO denotes the standard semi-norm on BMO(Ω) (see (2.1)), and ⟨∇u⟩Ω denotes the

average value of the components of ∇u on Ω.

The above result extends prior work1 of Kristensen and Taheri [19, §6] and Campos

Cordero [4, §4] (see, also, Firoozye [8]) who showed that, for the Dirichlet problem, if ue

is a Lipschitz-continuous weak solution of the Euler-Lagrange equations, (1.2), at which

the second variation of E is uniformly positive, (1.3), then there is a neighborhood of

∇ue in BMO(Ω) in which all Lipschitz mappings have energy that is greater than the

energy of ue.

Our proof of the above result makes use of a version of Taylor’s theorem on BMO(Ω)

that is established herein: Let W satisfy, for some a > 0, r > 0, and integer k ≥ 2,

|DkW (x,K)| ≤ a(1 + |K|r),

for all real N by n matrices K, and almost every x ∈ Ω. Fix M > 0 and F ∈
L∞(Ω;RN×n). Then there exists a constant c = c(M, ||F||∞) > 0 such that every

G ∈ BMO(Ω;RN×n) with ||G− F||BMO < M satisfies∫
Ω

W (G) dx ≥
∫
Ω

W (F) dx+

k−1∑
j=1

1

j!

∫
Ω

DjW (F)
[
H,H, . . . ,H

]
dx− c

∫
Ω

|H|k dx, (1.4)

where H = G− F, F = F(x), G = G(x), and, e.g., W (F) =W (x,F(x)).

The key ingredient in our proof of (1.4) is the interpolation inequality [22, Theo-

rem 2.5]: If 1 ≤ p < q < ∞, then there is a constant C = C(p, q,Ω) such that, for all

ψ ∈ BMO(Ω), ∫
Ω

|ψ(x)|q dx ≤ C
(
[]ψ[]BMO +

∣∣⟨ψ⟩Ω∣∣)q−p
∫
Ω

|ψ(x)|p dx. (1.5)

When Ω = Rn and ⟨ψ⟩Rn = 0 this inequality is due to Fefferman and Stein [7, p. 156],

although it is clear from [16, pp. 624–625] that Fritz John was aware of (1.5) when

[]ψ[]BMO was sufficiently small and ⟨ψ⟩Ω = 0 (for domains Ω of bounded eccentricity).

We mention that our main result assumes that the solution ue of the Euler-Lagrange

equations (1.2) is Lipschitz continuous and has uniformly positive second variation (1.3).

It follows that ue is a weak relative minimizer of the energy (1.1), that is, a minimizer

1The result in [19, §6] has been extended to the Neumann and mixed problems in [22, §3].
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with respect to perturbations that are small in W 1,∞. Grabovsky and Mengesha [11, 12]

give further conditions2 that they prove imply that ue is then a strong relative minimizer

of E , that is, a minimizer with respect to perturbations that are small in L∞, whereas our

result only changes W 1,∞ to W 1,BMO ⊂⊂ L∞. However, as Grabovsky and Mengesha

have noted, their results require that ue be C1. Examples of Müller and Šverák [21]

demonstrate that not all Lipschitz solutions of (1.2) need be C1. Also, the Lipschitz

example of Kristensen and Taheri [19, §7] satisfies both (1.2) and (1.3).

Finally, we note that although BMO has become a standard tool in analysis, it appears

that only Fritz John (see, e.g., [16]) has made use of this space to investigate applied

problems.3 However, it appears to us that the interpolation inequality (1.5) should

allow other researchers in Applied Mathematics to make use BMO in their analysis. In

particular, (1.5) has allowed us to extend and strengthen the results presented in [19, §6]
and [4, §4].

2. Preliminaries. For any domain (nonempty, connected, open set) U ⊂ Rn, n ≥ 2,

we denote by Lp(U ;RN ), p ∈ [1,∞), the space of (Lebesgue) measurable functions u

with values in RN , N ≥ 1, whose Lp-norm is finite:

||u||pp = ||u||pp,U :=

∫
U

|u(x)|p dx <∞.

L∞(U ;RN ) shall denote those measurable functions whose essential supremum is finite.

We write L1
loc(U ;RN ) for the set of measurable functions that are integrable on every

compact subset of U .

We shall write Ω ⊂ Rn, n ≥ 2, to denote a Lipschitz domain, that is a bounded

domain whose boundary ∂Ω is (strongly) Lipschitz. (See, e.g., [6, p. 127], [20, p. 72], or

[14, Definition 2.5].) Essentially, a bounded domain is Lipschitz if, in a neighborhood

of every x ∈ ∂Ω, the boundary is the graph of a Lipschitz-continuous function and

the domain is on “one side” of this graph. W 1,p(Ω;RN ) will denote the usual Sobolev

space of functions u ∈ Lp(Ω;RN ), 1 ≤ p ≤ ∞, whose distributional gradient ∇u is also

contained in Lp. Note that, since Ω is a Lipschitz domain, each u ∈W 1,∞(Ω;RN ) has a

representative that is Lipschitz continuous. We shall write RN×n for the space of real N

by n matrices with inner product A : B = trace(ABT) and norm |A| =
√
A : A, where

BT denotes the transpose of B.

2.1. Bounded Mean Oscillation. The BMO-seminorm4 of F ∈ L1
loc(U ;RN×n) is given

by

[]F[]BMO(U) := sup
Q⊂⊂U

−
∫
Q

|F(x)− ⟨F⟩Q|dx, (2.1)

2The most significant are quasiconvexity in both the interior and at the boundary. See Ball and

Marsden [1].
3John showed that small nonlinear strain, (∇u)T∇u− I, in L∞ yields a small deformation gradient,

∇u, in BMO. A result similar to (1.5) then yields uniqueness, for the displacement problem, in Nonlinear
Elasticity for deformations with small strain. See [22, §6] for the mixed problem.

4See Brezis and Nirenberg [2, 3], John and Nirenberg [17], Jones [18], Stein [23, §4.1], or, e.g., [13,
§3.1] for properties of BMO.
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where the supremum is to be taken over all nonempty, bounded (open) n-dimensional

hypercubes Q with faces parallel to the coordinate hyperplanes. Here

⟨F⟩U := −
∫
U

F(x) dx :=
1

|U |

∫
U

F(x) dx

denotes the average value of the components of F, |U | denotes the n-dimensional Lebesgue

measure of any bounded domain U ⊂ Rn, and we write Q⊂⊂U provided that Q ⊂ KQ ⊂
U for some compact set KQ.

The space BMO(U ;RN×n) (Bounded Mean Oscillation) is defined by

BMO(U ;RN×n) := {F ∈ L1
loc(U ;RN×n) : []F[]BMO(U) <∞}. (2.2)

One consequence of (2.1)–(2.2) is that L∞(U ;RN×n) ⊂ BMO(U ;RN×n) with

[]F[]BMO(U) ≤ 2∥F∥∞,U for all F ∈ L∞(U ;RN×n). (2.3)

We note for future reference that if U = Ω, a Lipschitz domain, then a result of

P. W. Jones [18] implies, in particular, that

BMO(Ω;RN×n) ⊂ L1(Ω;RN×n).

It follows that5

∥F∥BMO := []F[]BMO(Ω) + |⟨F⟩Ω| (2.4)

is a norm on BMO(Ω;RN×n).

Remark 2.1. The standard example of a function ϕ ∈ BMO(Rn) that is not bounded

is ϕ(x) = ln |x|.
2.2. Further Properties of BMO. The main property of BMO that we shall use is

contained in the following result. Although the proof can be found in [22], the significant

analysis it is based upon is due to Fefferman and Stein [7], Iwaniec [15], and Diening,

R
◦
užička, and Schumacher [5].

Proposition 2.2. Let Ω ⊂ Rn, n ≥ 2, be a Lipschitz6 domain. Then, for all q ∈ [1,∞),

BMO(Ω;RN×n) ⊂ Lq(Ω;RN×n)

with continuous injection, i.e., there are constants J1 = J1(q,Ω) > 0 such that, for every

F ∈ BMO(Ω;RN×n), (
−
∫
Ω

|F|q dx
)1/q

≤ J1∥F∥BMO. (2.5)

Moreover, if 1 ≤ p < q < ∞ then there exists constants J2 = J2(p, q,Ω) > 0 such that

every F ∈ BMO(Ω;RN×n) satisfies

||F||q,Ω ≤ J2

(
||F||BMO

)1−p/q(
||F||p,Ω

)p/q

. (2.6)

Here ∥ · ∥BMO is given by (2.1) and (2.4).

5If F = ∇w with w = 0 on ∂Ω then ∥∇w∥BMO = []∇w[]BMO(Ω) since the integral of ∇w over Ω is

then zero.
6This result, as stated, is valid for a larger class of domains: Uniform domains. (Since BMO ⊂ L1

for such domains. See P. W. Jones [18], Gehring and Osgood [10], and e.g., [9].) A slightly modified
version of this result is valid for John domains. See [22] and the references therein.
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Remark 2.3. Proposition 2.2 together with (2.3) shows that, for every p ∈ [1,∞),

L∞(Ω) ⊂ BMO(Ω) ⊂ Lp(Ω).

Thus, BMO is a space that is “between” L∞ and all of the other Lp-spaces. However,

researchers in Harmonic Analysis make use of BMO as a replacement for L∞. See, e.g.,

[23, §4.5].

3. An Implication of Taylor’s Theorem for a Functional on BMO.

Hypothesis 3.1. Fix k,N ∈ Z with k ≥ 2 and N ≥ 1. We suppose that we are given

an integrand W : Ω× RN×n → R that satisfies:

(H1) K 7→W (x,K) ∈ Ck(RN×n), for a.e. x ∈ Ω;

(H2) (x,K) 7→ DjW (x,K), j = 0, 1, . . . , k, are each (Lebesgue) measurable on their

common domain Ω× RN×n; and

(H3) There are constants ck > 0 and r > 0 such that, for allK ∈ RN×n and a.e. x ∈ Ω,

|DkW (x,K)| ≤ ck(1 + |K|r).

Here, and in the sequel,

D0W (x,K) :=W (x,K), DjW (x,K) :=
∂j

∂Kj
W (x,K)

denotes j-th derivative of K 7→ W (·,K). Note that, for every K ∈ RN×n, a.e. x ∈ Ω,

and j = 1, 2, . . . , k,

DjW (x,K) ∈ Lin(

j copies︷ ︸︸ ︷
RN×n × RN×n × · · · × RN×n;R),

that is, DjW (x,K) can be viewed as a multilinear map from j copies of RN×n to R.
Remark 3.2. Hypothesis (H3) implies that DjW , j = 0, 1, . . . , k − 1, each satisfy a

similar growth condition, i.e., |DjW (x,K)| ≤ cj(1 + |K|r+k−j). It follows that each of

the functions DjW is (essentially) bounded on Ω×K for any compact K ⊂ RN×n.

Lemma 3.3. Let W satisfy Hypothesis 3.1. Fix M > 0 and F ∈ L∞(Ω;RN×n). Then

there exists a constant c = c(M, ||F||∞) > 0 such that every G ∈ BMO(Ω;RN×n) with

||G− F||BMO < M satisfies∫
Ω

W (G) dx ≥
∫
Ω

W (F) dx+

k−1∑
j=1

1

j!

∫
Ω

DjW (F)
[
H,H, . . . ,H

]
dx− c

∫
Ω

|H|k dx, (3.1)

where H = G− F, F = F(x), G = G(x), and, e.g., W (F) =W (x,F(x)).

Proof. Fix M > 0 and F ∈ L∞(Ω;RN×n). Let G ∈ BMO(Ω;RN×n) satisfy ||G −
F||BMO < M . We first note that (2.5) in Proposition 2.2 yields

H := G− F ∈ Lq(Ω;RN×n) for every q ≥ 1, (3.2)

while (H3) together with the fact that F is in L∞ yields (see Remark 3.2), for some

C > 0 and a.e. x ∈ Ω, ∣∣DjW
(
x,F(x)

)∣∣ ≤ C, j = 0, 1, . . . , k − 1. (3.3)
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Consequently, (3.2) and (3.3) yield, for every q ≥ 1,

x 7→ DjW
(
x,F(x)

)[
H(x),H(x), . . . ,H(x)

]
∈ Lq(Ω;RN×n), (3.4)

for j = 0, 1, . . . , k − 1.

Next, by Taylor’s theorem for the function A 7→W (·,A), for almost every x ∈ Ω,

W (G) =W (F) +

k−1∑
j=1

1

j!
DjW (F)

[
H,H, . . . ,H

]
+R(F;H),

R(F;H) :=

∫ 1

0

(1− t)k−1

(k − 1)!
DkW (F+ tH)

[
H,H, . . . ,H

]
dt.

(3.5)

We note that hypothesis (H3) together with the inequality |a + b|r ≤ cr(|a|r + |b|r),
cr = max{1, 2r−1}, and the fact that t ∈ [0, 1] gives us

|DkW (F+ tH)| ≤ ck
(
1 + |F+ tH|r

)
≤ ck + ckcr

(
|F|r + |H|r

)
(3.6)

and hence the absolute value of the integrand in (3.5)2 is bounded by ck/(k − 1)! times

|H|k
(
1 + cr||F||r∞

)
+ cr|H|k+r. (3.7)

We next integrate (3.5)1 and (3.5)2 over Ω to get, in view of (3.4), (3.6), and (3.7),∫
Ω

W (G) dx =

∫
Ω

W (F) dx+

k−1∑
j=1

1

j!

∫
Ω

DjW (F)[H,H, . . . ,H] dx+

∫
Ω

R(F;H) dx (3.8)

and ∫
Ω

R(F;H) dx ≤ C1

∫
Ω

|H|k dx+ C2

∫
Ω

|H|k+r dx

≤
(
C1 + C2J

k+r
2 ||H||rBMO

) ∫
Ω

|H|k dx,
(3.9)

where we have made use of (2.6) of Proposition 2.2 with p = k and q = k + r, C2 :=

ckcr/(k− 1)!, and C1 := ck(1 + cr||F||r∞)/(k− 1)!. The desired result, (3.1), now follows

from (3.8) and (3.9). □

4. The Second Variation and BMO Local Minimizers. We take

∂Ω = D ∪ S with D and S relatively open and D ∩ S = ∅.

If D ̸= ∅ we assume that a Lipschitz-continuous function d : D → RN is prescribed. We

define

W 1,BMO(Ω;RN ) := {u ∈W 1,1(Ω;RN ) : ∇u ∈ BMO(Ω;RN×n)} (4.1)

and denote the set of Admissible Mappings by

AM := {u ∈W 1,BMO(Ω;RN ) : u = d on D or ⟨u⟩Ω = 0 if D = ∅}.

The energy of u ∈ AM is defined by

E(u) :=
∫
Ω

W
(
x,∇u(x)

)
dx, (4.2)
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where W is given by Hypothesis 3.1 with k = 3. We shall assume that we are given a

ue ∈ AM that is a weak solution of the Euler-Lagrange equations corresponding to (4.2),

i.e.,

0 =

∫
Ω

DW
(
x,∇ue(x)

)
[∇w(x)] dx, (4.3)

for all variations w ∈ Var, where

Var := {w ∈W 1,2(Ω;RN ) : w = 0 on D or ⟨w⟩Ω = 0 if D = ∅}.

Theorem 4.1. Let W satisfy Hypothesis 3.1 with k = 3. Suppose that

ue ∈ AM∩W 1,∞(Ω;RN )

is a weak solution of (4.3) that satisfies, for some a > 0,∫
Ω

D2W (∇ue)
[
∇z,∇z

]
dx ≥ 4a

∫
Ω

|∇z|2 dx for all z ∈ Var. (4.4)

Then there exists a δ > 0 such that any v ∈ AM that satisfies

||∇v −∇ue||BMO < δ (4.5)

will also satisfy

E(v) ≥ E(ue) + a

∫
Ω

|∇v −∇ue|2 dx. (4.6)

In particular, any v ̸≡ ue that satisfies (4.5) will have strictly greater energy than ue.

Remark 4.2. 1. The theorem’s conclusions remain valid if one subtracts
∫
Ω
b(x) ·

u(x) dx and
∫
S s(x) · u(x) dSx from E . 2. Fix q > 2. Then inequality (2.6) in Propo-

sition 2.2 together with (4.6) yields a constant ĵ = ĵ(q) such that any v ∈ AM that

satisfies (4.5) will also satisfy

E(v) ≥ E(ue) + âĵδ2−q

∫
Ω

|∇v −∇ue|q dx.

Remark 4.3. The conclusions of Theorem 4.1 remain valid if we replace the assump-

tion that ue is a weak solution of (4.3) by the assumption that ue is a weak relative

minimizer of E , i.e., E(v) ≥ E(ue) for all v ∈ AM∩W 1,∞(Ω;RN ) with ∥∇v − ∇ue∥∞
sufficiently small.

Proof of Theorem 4.1. Let ue ∈ AM be a weak solution of the Euler-Lagrange equa-

tions, (4.3), that satisfies (4.4). Suppose that v ∈ AM satisfies (4.5) for some δ > 0 to

be determined later and define w := v − ue ∈ Var∩W 1,BMO. Then Lemma 3.3 yields a

constant c > 0, such that

E(v) ≥ E(ue) + 2k̂

∫
Ω

|∇w|2 dx− c

∫
Ω

|∇w|3 dx, (4.7)

where we have made use of (4.2)–(4.4).

We next note that inequality (2.6) in Proposition 2.2 (with q = 3 and p = 2) gives us

J3||∇w||BMO

∫
Ω

|∇w|2 dx ≥
∫
Ω

|∇w|3 dx. (4.8)
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The desired inequality, (4.6), now follows from (4.5), (4.7), and (4.8) when δ is sufficiently

small. Finally, E(v) > E(ue) is clear from (4.6) since Ω is a connected open region and

either ⟨w⟩Ω = 0 or w = 0 on D ⊂ ∂Ω. □

5. Comparison with Prior Results. Given a Lipschitz-continuous (equivalently,

W 1,∞), weak solution of the Euler-Lagrange equations, ue, Theorem 4.1, as well as the

comparable results in [4, 19, 22], yields a neighborhood of ue in the spaceW 1,BMO(Ω;Rn)

(see (4.1)) in which certain competitors have strictly greater energy than the energy of

ue. In [4, 19, 22] such competitors must be Lipschitz, while Theorem 4.1 allows such

mappings to be contained in the larger space W 1,BMO(Ω;Rn). However, our results,

as well as the result in [4], require the polynomial growth of W (see (H3)), which is

incompatible with W (F) → ∞ as the determinant of F approaches 0, as is usually

assumed in Nonlinear Elasticity.7 Finally, we note that the results in [4, 19], for the

Dirichlet problem, are valid for W that are C2 rather than C3 as required here and

in [22]. It appears that an extension of our results to C2 integrands will necessitate a

generalization of Proposition 2.2 to certain Orlicz spaces.
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