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Abstract

Flow Instabilities and Vortex Dynamics in Intersecting Flows

Flow instabilities frequently arise in the proximity of stagnation points, often resulting
in the formation of vortices. Predicting vortex formation and dynamics is important
for numerous applications including engineering of bridges, airplanes and pipelines.
However, vortices are intermittent in nature and it is a challenge to control and study
their dynamics. Here we induce vortex formation in 4-way intersections, in which the
onset of flow instability is highly sensitive to small changes of the experimental param-
eters (i.e., channel depth:width ratio α, fluid properties and the Reynolds number, Re).
Microfluidic cross-slot geometries, with a novel configuration, are fabricated by selec-
tive laser-induced etching in fused silica glass, enabling quantitative flow velocimetry
measurements at the cross-section of the intersecting region. By precisely controlling
Re, the breaking of symmetry between 4-cells of Dean vortices is initiated at a critical
value 10 < Rec < 110, and two co-rotating Dean vortices are induced to merge into
a single steady vortex. Subsequent reduction in Re induces a vortex splitting process
and the regaining of symmetry. Increasing α results in faster merging dynamics and for
α > 0.55 the transition becomes hysteretic. By adjusting α and imposing Re � Rec,
we can control the nature of periodic fluctuations which are governed by the central
vortex core structure and the presence of side vortices in the surrounding flow field.
Additionally, we find that a slight increase of the elasticity of the fluid, by introduc-
ing small quantities of flexible polymers, destabilizes the flow, resulting in symmetry
breaking at reduced Rec. We also find that the polymer torque acts counter to the
vorticity, reducing the vortex intensity. Our experiments show that by tuning α, Re
and elasticity we gain precise control over the intensity, core structure, dynamics and
periodic fluctuations of the vortical flow field at the intersection. These experiments
capture fundamental processes that govern flow transitions and provide important in-
sights into the mechanisms of symmetry breaking, vortex dynamics and of turbulent
drag reduction by polymers. Our findings contribute to the improvement of flow con-
trol and advancement of applicable technologies in which vortex suppression is required
(i.e., stabilization of structures), or when vortex induced motion is desired (i.e., energy
harvesting, mixing enhancement) and are transferable to systems with similar flow be-
havior (i.e., Taylor-Couette apparatus, T-channels, flows around cylinders and at the
wake of airplane wings).
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Chapter 1

Introduction

Fantastic vortices and where to find them

Vortices are common flow structures that are characterized by a swirling motion around
an axis. The study of vortex formation and dynamics has been an active research
topic in the field of fluid dynamics. In the following section, the high prevalence and
importance of vortices in diverse environments and across length scales is presented to
motivate this thesis.

First, we introduce the Reynolds number (Re) which is a non-dimensional quantity
that captures the relative importance of inertial and viscous forces in the flow:

Re =
ρUw

η
, (1.1)

where U is the average flow velocity, w is the characteristic length scale, ρ is the density
and η is the dynamic viscosity of the fluid.

In geophysical flows, with large characteristic length scales (w > 103 m) and high
Re, vortices occur frequently, particularly in the atmosphere where they strongly in-
fluence the weather. For example, the polar vortex, which swirls in the upper levels of
the atmosphere above the poles, is subjected to temperature changes that may lead to
a vortex splitting process. The newly formed vortices migrate towards north America
and Europe, which results in extreme weather events in those regions [10–12]. Other at-
mospheric vortices form in the tropics and can induce violent storms such as tornadoes
and hurricanes (Fig. 1.1 a) [13].

Vortices of smaller length scales (w < 1 m), are also common in nature and often
serve as a contributing factor in the mechanism of flying and swimming animals [14,
15]. Additionally, vortices have a role in long range transport of seeds. The effective
flight mechanism of the dandelion seed, for example, relies on a special structure of
the seed that stabilizes a vortex that forms above it as it is being carried by the
wind (Fig. 1.1 b) [6, 16].

Vortex flows and their dynamics are important in many industrial and engineering
applications. In particular, the formation of trailing vortices in the wake of airplanes
are of special interest since their formation may lead to unpredictable turbulent flow
which will result in redirection of air traffic (Fig. 1.1 c) [17, 18]. Additionally, vortex
dynamics is of special importance in engineering of marine and terrestrial structures.
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2 Introduction

Figure 1.1: Vortices in different scales and environments: (a) Hurricane Florence as
seen from the international space station [5]; (b) A vortex flow field in the proximity
of the dandelion seed, supporting its flight mechanism [6]; (c) Trailing vortices in the
wake of an airplane [7]; (d) A pipe with protection against destructive vortex induced
motion [8]; (e) Demonstration of energy harvesting by vortex induced motion [9].

When fluid flows are interrupted by an obstacle, swirling flow patterns may emerge
above a critical Re downstream of the obstacle [19]. The resulting motion feeds-
back on the obstacle and may be destructive for structures such as bridges, pipes,
buildings and underwater cables (Fig. 1.1 d) [19, 20]. Nevertheless, these swirling flows
may develop time periodic patterns, which are recently being acknowledged for their
potential as a source for renewable energy from fluid flows (Fig. 1.1 e) [9, 21].

In low Re flows, pipes and channels with small length scales (w < 10−3 m), vortices
can still play a significant role in the fluid dynamics, particularly at flows around
obstacles, bends and at intersections [1–3, 22–31].

Vortices are also generated in inviscid environments such as superfluids and electro-
magnetic fields. The dynamics of these vortices resembles two dimensional ideal flows [32–
34], and they are often analyzed with classical fluid dynamics tools [35, 36].

Vortices arise in the development of many flow instabilities and they can be consid-
ered to be the building block of turbulent flows, as they form more defined (coherent)
structures which contain most of the kinetic energy in the flow [37, 38]. Vortex dy-
namics (i.e., merging and splitting) greatly influence the energy cascade of turbulent
flows [39–41].

In turbulent flows, the friction factor rises abruptly when compared to laminar flows
at similar Re. Introducing elasticity to a fluid by adding long-chain polymers result in
drag reduction of turbulent flows [42]. Turbulent drag reduction occurs when polymer
concentration is very low, at the order of ∼ 10 parts-per-million by weight, this small
addition of polymers can reduce friction drag by up to 80% [43].
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Vortices are naturally unstable and hence it is a challenge to predict their formation,
intensity and dynamics. A deeper understanding of the fundamental aspects of the
nature of vortical flows is of high importance in the prediction of natural flows, for
improvement of industrial flows and engineering applications, and for renewable energy
sources.

Research questions

Vortex formation and vortex dynamics will be explored using a novel configuration of
microfluidic flow intersections. By controlling different parameters in the experiments
(i.e., flow rates, elasticity and characteristic length scale) it will be shown how sym-
metry breaking flow instabilities, vortex properties and even vortex dynamics can be
tuned. Although microfluidics is not a common tool for the study of inertial flows, it
will be demonstrated that microfluidics allows exceptional control over the flow field
and enables the study of flow phenomena that otherwise is not attainable. The major
questions that will be addressed are:

1. How can we precisely control vortex formation, properties and dynamics by using
microfluidics?

2. What are the effects of spatial confinement on a vortex?

3. How does the nature of a flow instability affect vortex dynamics?

4. Can microfluidics be a useful tool to study vortex dynamics and unsteady flows
with general applicability?

5. How does changing fluid elasticity affect vortex formation and properties?

In the following introductory section, a comprehensive background and literature
review that are needed to answer these questions will be presented.

1.1 Flow instabilities and vortex formation
Flow instabilities can lead to formation of vortices, which may develop to turbulent
flows under certain conditions. Inertial flow instabilities are initiated once critical
conditions are met, resulting in symmetry breaking of the flow field. These conditions
depend on a combination of parameters that are captured by Re (Eq. 1.1).

Figure 1.2: Shear flow and planar elongation flow. (a) Couette flow between two
parallel plates, the upper plate is moving at velocity U and the bottom one is fixed.
(b) Planar elongation flow, the fluid is being subjected to outflow in two opposing
directions, which leads to formation of a stagnation point (in red).
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Figure 1.3: Common flow instabilities: (a) Rayleigh-Plateau instability. (b) Kelvin-
Helmholtz instability. (c) von Kármán vortex street [45].

Another important factor that influences the development of flow instabilities is the
flow field itself. A commonly occurring flow is the Couette flow (simple shear flow field),
in which a fluid is being sheared by an external force. For example, a fluid confined
between two parallel plates is being sheared by the relative movement between the two
plates. The velocity of fluid particles which are adjacent to the moving plate will be
the same as the moving plate velocity (e.g. no slip boundary condition). A gradient in
the velocity profile is seen as the fluid velocity gradually decreases until full arrest at
the bottom plate where the velocity Ū = 0 (Fig. 1.2 a). Another common flow type in
which flow instabilities frequently emerge is the planar elongation flow (Fig. 1.2 b) in
which the fluid accelerates away from a stagnation point, leading to streamwise velocity
gradients [44]. A few examples where this flow type appears are intersections (Y-, T-,
X-) and flows around obstacles.

Several well known flow instabilities appear in shear flows, where they are initiated
at the interface between two fluids that move at different velocities or have different
viscosities, such as the Rayleigh-Plateau (Fig. 1.3 a), the Rayleigh-Taylor and the
Kelvin-Helmholtz instabilities (Fig. 1.3 b). Flow instabilities such as von Kármán
vortex street, develop at planar elongation flows which involve stagnation points that
are formed around physical obstacles (Fig. 1.3 c) [46].

Additionally, there are flow instabilities that involve curving streamlines, such as
the Taylor-Couette flow instability which is described in the following subsection.

1.1.1 The Taylor-Couette flow instability

The Taylor-Couette flow cell is a benchmark configuration in the study of transition to
turbulent flows. A Taylor-Couette cell consists of two concentric cylinders of identical
height (l) and different radii r1 < r2 with fluid filling the gap (r0 = r2 − r1) between
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them. Rotation of the inner cylinder induces angular velocity, vω and fluid motion that
is subjected to centrifugal forces (Figure 1.4 a) [47]. The centrifugal forces are greater
on the fluid particles that are close to the inner cylinder than near the walls of the
outer cylinder. As a result, faster moving fluid particles near the center are forced to
move toward the outer surface. Upon a critical angular velocity, vω,c1, a flow instability
emerges, resulting in the formation of a stack of counter-rotating vortex pairs, also
known as “Dean vortices” [48]. In the Taylor-Couette cell, these vortices are named
“Taylor vortices” and they commonly appear in curving flows (Figure 1.4 a) [47].

When the aspect ratio (α = l/r0) of a Taylor-Couette cell is kept small (α ' 1) only
one pair of counter rotating vortices can form (Figure 1.4 b). Increasing the angular
velocity of the inner cylinder above second critical angular velocity, vω,c2, results in a
secondary flow instability where the symmetry between the vortex pair breaks, as one
vortex intensifies at the expense of the other (Figure 1.4 c). An increase in α will result
in a change from a smooth to abrupt transition [49, 50]. This secondary transition is
well described by the Landau model of phase transition near tricritical points (which
will be discussed in Chapter 3).

At flow intersections there is a unique combination of curving streamlines and a free
stagnation point, which leads to destabilization of the flow field at relatively low Re.
In sections 1.1.2-1.1.4 experimental evidence of inertial flow instabilities at intersecting
flows will be presented, focusing on the cross-slot geometry (length scales in the order
of 10−4 < w < 10−3 m) and covering the literature on this topic to date.

Figure 1.4: Perspective view of Taylor-Couette flow cell. Counter rotating vortices
form along the gap between the two cylinders at vω,c1. (a) High aspect ratio Taylor-
Couette flow cell with a stack of vortices; (b) Low aspect ratio Taylor-Couette cell
with a single pair of counter rotating vortices; (c) Above a critical flow rate vω,c2, the
symmetry between the vortices breaks as one vortex grows on the expense of the other.
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1.1.2 Flow instabilities at intersections

“..in hydrodynamic turbulence... the fate of vortices extending in the direction of motion
is of great importance.” (Burgers, 1948) [51].

As mentioned above, planar elongation flow fields (Fig. 1.2) which involve a stag-
nation point flow, will become unstable at a critical Re (Rec). These instabilities will
develop into streamwise vortices that extend in the direction of the flow, such as the
Burgers vortex, which is a common feature of turbulent flows [51].

A particularly strong planar elongation flow field can be formed by simultaneously
stretching the flow in two opposing directions. There are two known ways to form
planar elongation flow field which is symmetrical in the directions of the inflow and the
outflow, one is the 4-roll mill apparatus and the other is the cross-slot geometry.

The 4-roll mill apparatus, which consists of 4-rollers submerged in four corners
of a cuboid fluid tank (Fig. 1.5 a), was one of the first flow configurations in which
scientists recognized a stagnation point flow instability at a flow intersection. The 4-
roll mill apparatus was already used by Taylor in 1934 to form extensional flows and
study drops and emulsions that were trapped at the stagnation point [53].

In a different, more recent study (Lagnado et al., 1990), a viscous mixture of water
and glycerol was used, the 4-rollers were then rotated simultaneously, to induce exten-
sional flow (Fig. 1.5 a & b). Re was gradually increased by increasing the rotation rate
of the rollers, and upon a critical value of Rec ' 40 a three-dimensional flow structure
appeared. A side view of the tank revealed that the flow took a shape of a streamwise
spiral vortex, with counter rotating vortices formed above and below it (Fig. 1.5 b &
c) [52].

Similar streamwise vortices that developed around stagnation point flows were
mathematically predicted in colliding flow streams at intersecting flows [54]. Addi-
tionally, these vortices were found to form a periodic array of counter rotating vortices
located at the plane of symmetry in a stagnation-point flow [55].

Similar to the findings from the 4-roll mill apparatus, a 3D flow structure, evidence
of a stack of counter rotating vortices, appeared above Rec in cross-slot channels with

Figure 1.5: The 4-roll mill apparatus, (a) top and (b) perspective view of the 4-
roll mill; (c) a picture of the plane highlighted in red dashed line (in b) showing
experimental evidence of the vortex in the 4-roll mill at Re = 54 [52]. w and d are the
width and depth of the geometries, the stagnation point is indicated in red in (a).
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Figure 1.6: Deep cross-slot channel, (a) top and (b) perspective view of the cross-slot
geometry; (c) a picture of the plane highlighted in red dashed line (in b) showing the
stack of vortices in the cross-slot at Re = 64 [56]. w and d are the width and depth of
the geometries, the stagnation point is indicated in red in (a).

high aspect ratios (α = d/w, where w is the width and d is the depth of the channel)
of α = 262 and of α = 32 (Fig. 1.6 a & b). From a side view of the geometry, the
instability displayed as a striped structure of streamwise vortices stacked through the
depth of the flow cell (Fig. 1.6 b & c) [56]. The cross-slot channels used in these
experiments can be considered as microfluidic channels as their characteristic length
scales were w = 0.4 mm (for α = 262) and w = 0.8 mm (for α = 32).

1.1.3 Inertial flow in microfluidic intersections

The common conception in the field of microfluidics is that fluid inertia is negligible
and that the flow is governed by Stokes flow regime (Re → 0). However, in microflu-
idics it is possible to access intermediate inertial flow regimes at moderate Re numbers
in the range of 1 < Re < 100 (inertial microfluidics) [57]. In these intermediate flows,
both inertia and viscosity of the fluid are finite, and non-linear secondary flows arise.
The interest in inertial microfluidics has been growing in the past few years due to
diverse practical applications [58]. Non-linear microfluidics is commonly used for vari-
ous purposes such as heat transfer [59], particle arrangement and manipulation (using
curved channels [60], straight channels [61], obstacles [57] and intersections [62]) and
for mixing enhancement (at intersections [63, 64], staggered herringbone structure [65],
sudden expansions [66] and many other active and passive mixing techniques [67]). Ad-
ditionally, inertial microfluidics is used to study vortex breakdown phenomena that is
applicable for particle trapping, either in T-channels with straight inlets [23, 29] and
with offset inlets [31, 68].

Flow intersections, and particularly T-shaped and cross-slot geometries, have ad-
ditional widespread practical purposes. For example, these geometries are used in
lab-on-a-chip devices [66], micro-reactors [69], flow cytometers [70] flow focusing [71]
and droplet generation [72]. The use of these devices is contributing to advancement
in biotech research [73] and in environmental measurement techniques [74, 75].

The central stagnation point that is formed at intersetions, is particularly important
for elongation flow studies of complex fluids, rheological measurements and stretching
of DNA, polymers and wormlike micellar solutions in the T-shaped [76] and in the cross-
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slot devices [44, 77–79]. The cross-slot device has been instrumental to advance the
understanding of polymer dynamics in strong flows [80–84] and as a consequence has
become widely considered as a benchmark flow for study of complex fluids. Recently,
the cross slot geometry was also employed to study electro-elastic instabilities [85] and
elastic turbulence [86].

As demonstrated above, microfluidics and more specifically, microfluidic intersec-
tions, may exhibit inertial and non-linear properties. Particularly, the cross-slot geom-
etry that is common in various applications is of high interest. In the next subsection
the inertial flow instability in the cross-slot geometry will be further described.

1.1.4 Flow instability at the cross-slot intersection

In this thesis, a symmetric configuration of the cross-slot channel with a crossing angle
of 90◦ will be considered. The fluid is always inserted from two opposing inlets and
exits from two opposing outlets (Fig. 1.7 a). The crossing angle of a cross-slot geometry
strongly affects the critical Re needed for the flow instability to emerge. The smallest
Rec for the onset of the instability was found to be for intersections with an angle
of 90◦, which makes it the optimal angle for achieving inertial instabilities [87]. The
cross-slot geometry is often used to study extensional flow fields which appear in the
horizontal plane (x− y or z = 0) as seen in Fig. 1.7 b. Close to the stagnation point of
the cross-slot geometry, the flow field approximates to pure planar elongation [88, 89].
The inertial flow instability in the cross-slot is a three-dimensional (3D) instability.
The detailed spiral structure of the Dean vortices and the streamwise vortex can be
visualized at the vertical plane (y − z or x = 0) around the stagnation point where
x = y = z = 0 (Figure 1.7 c). This plane is not easily attainable for direct visualization
due to the high water column of the outlet channel.

Recently, laser scanning confocal microscopy was used for visualization of the flow
structure in the inner y − z plane at the cross-slot indirectly. The flow was visualized
by using water from one inlet and water pre-mixed with fluorescent dye from the other
inlet (Figure 1.8) [90], similar to a previous study [63, 64]. In these experiments, scans

Figure 1.7: The cross-slot geometry (a) A 3D cross-slot geometry, inflow and outflow
are indicated with arrows. A stagnation point is formed at the center of the geometry,
marked in red. (b) The flow field in the x − y plane exhibiting extensional flow. (c)
Flow field of the y − z plane of the geometry, the plane in which the spiral structure
of streamwise vortices can be seen.
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Figure 1.8: Dye advection patterns of a spiral vortex flow instability across the y− z
plane of a cross-slot geometry with α = 1. Flow visualization is done by adding
fluorescent dye to the right inlet. (a) Re = 5.2; (b) Re = 42.8; (c) Re = 60.6; and (d)
Re = 91.0. Scale bar in (a) is 200 µm [27].

of the x − y plane were taken along z direction. These z-stack image reconstruction
revealed that the spiral vortex structure developed in the mid-plane, at the stagnation
point. Pixel intensity analysis was used to study the growth of the spiral vortex for
increasing Re, for four different aspect ratios α = 0.49, 1.0, 1.85 and 3.87 of the
cross-slot. It was found that the transition and growth of the spiral vortex could be
characterized by the mixing between pure and dyed fluid streams.

Supported by numerical simulations that were conducted for a few additional aspect
ratios, it was also found that the critical Re (Rec) in which symmetry breaking flow
instabilities arise, was strongly dependent on the aspect ratio of the channel: low
aspect ratio cross-slot device required higher Rec (i.e., for α = 0.49, Rec = 100) and
high aspect ratio cross-slot device required lower Rec (i.e., for α = 1.85, Rec = 23).
The vortex size grew with increasing Re, enabling larger interfacial areas between the
fluid streams and thus enhanced the diffusive mixing downstream.

In the following subsection a suggested mechanism for the development of the flow
instability reported by Haward et al. [27] will be presented. The mechanism of the
flow instability is explained with the dynamics of the flow transition.

1.2 Vortex dynamics at cross-slot flow

1.2.1 Mechanism and onset of the flow instability

In order to understand the mechanism of the flow instability, we look at the governing
equations of the Newtonian flow in the cross-slot geometry, the Navier-Stokes equation:

∂v

∂t
+ v · ∇v =

−1

ρ
∇P + ν∇2v +∇G, (1.2)

and mass conservation for incompressible fluids

∇ · v = 0, (1.3)

where v is the fluid velocity, t is time, ρ is the density, P is the pressure, ν is the
kinematic viscosity, and G is the gravitational force.
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Vorticity is defined as the curl of the velocity ω = ∇ × v, and hence the vorticity
equation is:

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v + ν∇2ω. (1.4)

The left hand side of Eq. 1.4 is the material derivative and the equation can be written
as:

Dω

Dt
= (ω · ∇)v + ν∇2ω, (1.5)

where the 1st term on the right hand side is the rate of deformation of vorticity and
the 2nd term is viscous diffusion.

In order to find the vorticity at the stagnation point ωx |x=y=z=0 where the stream-
wise vortex is formed and stretched, we consider only the x component of Eq. 1.5:

∂ωx
∂t

= ωx
∂vx
∂x

+ ν[
∂2ωx
∂x2

+
∂2ωx
∂y2

+
∂2ωx
∂z2

]. (1.6)

The terms in Eq. 1.6 are non-dimensionalized as follows: ω∗x = ωxw/v, t∗ = tv/w,
x∗ = x/w, y∗ = y/w, z∗ = z/d, which leads to the non-dimensional center point
vorticity:

∂ω∗x
∂t∗

= ω∗x
∂v∗x
∂x∗

+
1

Re
[
∂2ω∗x
∂x∗2

+
∂2ω∗x
∂y∗2

+
1

α2

∂2ω∗x
∂z∗2

]. (1.7)

The 1st term on the right hand side of Eq. 1.7 refers to vortex stretching and the
2nd term refers to viscous diffusion. By non-dimensionalizing Eq. 1.6, we identify the
dimensionless groups that govern the flow: α (the aspect ratio of the flow channel) and
the Reynolds number.

These equations were used in time dependent numerical simulation that was per-
formed for the cross-slot geometry, showing that the transition could be described as
a stagnation point instability coupled to vortex stretching [27].

When Re � Rec, the diffusion term dominates the dynamics and the flow is stable
and symmetric (Fig. 1.9 a). When Re . Rec, the diffusion term still dominates the dy-
namics, disturbances are suppressed by viscosity and the flow is stable and symmetric.

Figure 1.9: Illustration of the instability mechanism in the cross-slot geometry;
red and blue colors indicate clockwise and anticlockwise rotation, respectively; (a)
Re � Rec, stable symmetric flow field; (b) Re . Rec, formation of 4-cells of Dean
vortices, flow field is stable and symmetric; (c) Re = Rec, two co-rotating Dean vor-
tices intensify and center point vorticity is generated; (d) Re > Rec, a central vortex
is formed by the merging process of two co-rotating vortices.



1.2 Vortex dynamics at cross-slot flow 11

However, 4-cells of Dean vortices develop due to the curving streamlines of the flow
(Fig. 1.9 b). When Re = Rec symmetry breaks, two co-rotating Dean vortices intensify
at the expense of the two counter rotating vortices and center point vorticity is gener-

ated, the vortex stretching term, ω∗x
∂v∗x
∂x∗

, grows and
∂ω∗x
∂t∗

> 0 (Fig. 1.9 c). Similar to
the experimental findings (Fig. 1.8), when Re > Rec numerical simulations found that
∂ω∗x
∂t∗

continues to grow as a central vortex is formed (Fig. 1.9 d).
As apparent from the mechanism shown in Fig. 1.9, the intensified Dean vortex

pair that formed in the symmetry breaking stage, is the foundation for the central
vortex formation and the determining factor of the central vortex direction of rota-
tion. Therefor we will further explore the dynamics between co-rotating vortices and
introduce the topic in the following section.

1.2.2 Dynamics of co-rotating vortices

The merging process of two co-rotating vortices has been broadly studied due to its
practical importance to aircraft trailing vortices. Experimental data and numerical
simulations of trailing vortices have been used to study the mechanism of vortex merg-
ing process which has been discussed in several studies [91–99].

Although there is still an ongoing debate about how to define a vortex [100, 101],
there is a general agreement that the mechanism of merging consists of three main
stages: (1) The first stage of merging is recognized as the slow stage in which diffusive
growth of the vortex cores is seen and the vortex cores slightly move towards each
other (Fig. 1.10 a). (2) Once a critical ratio between the core size (a) and the distance
(b/b0) is met, typically 0.24 ≤ a/b ≤ 0.32, a convective stage will begin. In the fast
convective stage, the vortices will deform, share filaments and will rapidly move towards
each other (Fig. 1.10 b). (3) The last stage is called the second diffusive stage in which
the vortices have merged into a single structure (Fig. 1.10 c) [98, 99, 102, 103]. Some
studies have reported a fourth stage in the merging process, which is referred to as a
second diffusive stage (a slow down in the merging process), that follows the convective
stage, prior to the final merging, see experimental studies Fig. 1.10 d and numerical
simulations in Fig. 1.10 e [92–94].

In contrast to vortex merging, the process of vortex splitting is much more challeng-
ing to induce and study, and experimental evidence of the phenomenon is scarce [104–
107]. Vortex splitting was theoretically predicted decades ago, and was supported with
computational evidence [108–110]. Experimental observation of vortex splitting were
first reported by Freymuth et al. [104, 105]. Their experiments validated the previous
theoretical predictions, by the observation of vortex splitting behind an airfoil where
regions of vorticity of opposite signs were formed. Later on, numerical simulations
revealed that the process of merging and splitting of Dean vortex pairs, in curved and
rotating channel flows, could be attributed to spanwise perturbations which are known
as the Eckhaus instability [106]. Additional reports suggest that merging and split-
ting events in arrays of counter-rotating Dean vortices are associated with the spacing
between vortex pairs and are affected by centrifugal instabilities [107].

In this thesis, cross-slot geometries will be used to induce controlled merging and
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Figure 1.10: Various stages of vortex merging process; (a) First diffusive stage, growth
of vortex cores; (b) Convective stage, vortices rapidly move towards one another; (c)
Second diffusive stage in which the vortices have merged into a single structure. Figures
(a-c) are taken from [93]. Evolution of the normalized vortex separation b/b0 with
time during merging; (d) Experimental data with Re = 530 [92]; (e) Direct numerical
simulation at Re = 10,000 [94].

splitting of co-rotating vortices as will be shown in Chapter 4. In the following sub-
section we will introduce additional important background that is essential in charac-
terizing vortex flows. We will describe important mathematical models of vortices that
will assist to classify the vortex that is formed in the cross-slot intersection.

1.2.3 Vortex models

Axisymmetric vortices, such as the ones that are formed in extensional flows, are vor-
tices in which the vorticity is concentrated by axial stretching and diffused by viscous
stresses. There are dozens of models that describe axisymmetric Newtonian-fluid vor-
tices in the literature, all of which are solutions to the Navier-Stokes equations. In
Fig. 1.11 the normalized velocity profile of ten different vortex models is plotted as
a function of the normalized radius of the vortex core. The vortices for which the
azimuthal velocity, vθ (in cylindrical coordinate system), can be described by an ex-
ponential function, include Lamb-Oseen, Burgers, Newman, Sullivan, Batchelor and
others [111].

Interestingly, all these vortex models have common characteristics and can be
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Figure 1.11: Comparison between the tangential velocity profile of different vortex
models [111].

grouped to a single family with common mathematical traits. Three of these traits
are captured by the vortex azimuthal velocity profile vθ(r). First, at the center of the
vortex, where the radius, r = 0, vθ(r) = 0 for all vortices. Secondly, they all share a
sinusoidal profile. Third, vθ(r) is asymmetric about r (vθ(r) = vθ(−r)) [111].

The Burgers and Lamb-Oseen vortices are both stagnation point vortices. The
Burgers vortex is defined as a stagnation point stretched vortex for which the viscous
diffusion is balanced by the concentration process induced by stretching. The radius
of the Burgers vortex is described by δB = (ν/γ)0.5, where ν is the kinematic viscosity
of the fluid and γ is the stretching rate of the external stretching field.

A Lamb Oseen vortex is a non-stretched stagnation point vortex which is mainly
affected by viscous diffusion. The vortex radius, δL, increases with time according to
δL = (νt)0.5 while the circulation Γ remains constant. The velocity profile vθ of the
Burgers vortex and the Lamb-Oseen vortex are identical when the vortex radius is
normalized by δ =

√
2ν/a, where a = 1.2564 [112]. The Burgers and Lamb-Oseen

vortices are plotted in Fig. 1.12.
Experimental evidence indicate that in the 4-roll mill apparatus, which exhibits

an intersecting extensional flow field similar to the cross-slot intersection, a stack of
vortices will appear upon a critical Re [52]. These vortices are reminiscent of the
Burgers vortex and they are called Kerr-Dold vortices, named after the scientists who
first described them [55].

Confinement of vortices within a cross-slot channel of low aspect ratio α, allows
to form a single, isolated, steady and stable vortex while maintaining the streamwise
component of the vortex, allowing it to stretch downstream. The description of such a
vortex fits well with the Burgers vortex description, however, a confinement factor is
missing and therefore the Burgers vortex model does not perfectly describe the vortex
in a cross-slot with low α. There is no existing model that describes a single confined
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Figure 1.12: Tangential velocity profile of Lamb-Oseen - Burgers vortex and Pancake
like vortex.

Burger-like vortex.
Other confined vortices, that are not stretched, such as Pancake-like vortices, are

defined as vortices that are spatially confined within a stratified fluid layer, along their
streamwise and spanwise directions. Pancake like vortices have an azimuthal veloc-
ity profile, vθ, with a forced drop in the velocity due to confinement. Consequently,
viscous diffusion is not the main factor influencing the velocity profile for these vor-
tices (Fig. 1.12) [113]. It is important to note that the forced velocity drop not only
affects the far edges of the vortex, it also affects the vortex core structure and stabil-
ity [114].

In Chapter 5, it will be shown that changing the aspect ratio of a cross-slot geometry,
significantly alters the velocity profile vθ. This forcing affects the vortex core structure
and stability, leading to time dependent periodic flows with characteristic frequencies.
This leads us to the following section in which the topic of periodic flows at stagnation
points and intersections is introduced.

1.2.4 Periodic flows at stagnation points and intersections

Flow instabilities may develop to unsteady time dependent flows when inertia is in-
creased. For a certain range of Re, on their route to become chaotic and turbulent,
these flows may exhibit ordered periodic cycles with typical frequencies. A benchmark
example for a flow that shows periodic fluctuations is the von Kármán vortex that
develops downstream of an obstacle, and has been briefly mentioned earlier in the in-
troduction (Fig. 1.3 c). This flow instability emerges upon a relatively low critical Re,
Rec, as two attached spanwise vortices flowing downstream of an obstacle, the vortices
grow in size upon an increase in Re to Re > Rec. Upon a second critical Re, Rep the
flow becomes unsteady and the vortices are formed behind the two sides of the obstacle
in an alternate manner, generating periodic asymmetric flow and consequently, vortex
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Figure 1.13: Periodic flow of von Kármán vortex street at the wake of a circular
cylinder. St as a function of Re [116].

induced vibrations [115]. This periodic motion has a characteristic frequency that can
be described with the non-dimensional Strouhal number (St)

St = fw/U, (1.8)

where f is the frequency of the fluctuation, U is the average flow velocity and w is the
characteristic length scale. For the case of flow around a circular cylinder, the relation
between St and Re (for 47 ≤ Re ≤ 180) can be described by the following equation:

St = A− B√
Re

(1.9)

where A = 0.2684 and B = 1.0356. Upon an increase in Re the values of the constants
A and B would slightly change, corresponding to different modes of the fluctuations
as seen in Fig. 1.13 [116]. This equation is not the only way to describe the Re - St
relation, other studies concerning flows around circular cylinders have described the
relation between Re and St (for Re < 200) with the following equation [117]:

St = x1/Re+ x2 + x3Re, (1.10)

where x1, x2 and x3 are free parameters.
In recent years, periodic flows at flow intersections have been predicted by numer-

ical simulations and are now experimentally validated. The T-shape geometry is well
studied for its mixing efficiency and rich flow regimes. Different flow regimes were
identified depending on the Re and the aspect ratio of the geometry, namely: stable
symmetric (e.g. stratified), symmetric Dean-vortex flow, asymmetric vortex flow (e.g.
engulfment flow) and unsteady flow regimes [118]. The onset of the unsteady periodic
flow regime was at Re ' 200, with St ' 0.1, this value grew to St ' 0.2 when Re ' 300.
The exact values slightly shifted in different studies, as seen in Fig. 1.14 [118–123].

Periodic flows with similar dependence between St number and Re were also ob-
served in a microfluidic T-channel with offset inlets. In this work it was shown that for
120 ≤ Re ≤ 170, St ' 0.5, corresponding to the periodically pulsating state of vortex
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Figure 1.14: Periodic flow in T-channels. Strouhal number as a function of Re [118–
123].

breakdown. For Re ≥ 160, St ' 1.75 corresponds to a helically oscillating state of the
vortex breakdown [31].

Very recently, in a cross-slot geometry with a square cross section and characteristic
scale of w = 10 mm, periodic flow patterns were also observed [124]. These will be
further discussed and compared to experimental results from this thesis in Chapter 5.

Other than purely inertial and confinement effects on the flow instability and vortex
dynamics, there is a wide interest in weakly elastic effects on vortex flows [125–128].
The stable steady vortex in the cross-slot can serve as a simplified model to study
the effects of weakly elastic flows on a single vortex. In the following section, elastic,
non-Newtonian flows in the cross-slot geometry will be introduced.

1.3 Inertio-elastic effects on flow instabilities

Polymer solutions have unpredictable properties when they are subjected to the influ-
ence of a flow field. Due to their high prevalence in diverse processes it is valuable to
understand their response to flows under different conditions. The following section
introduces polymer solutions and their response to extensional flows.

1.3.1 Characterizing non-Newtonian polymer solutions

The cross-slot device has been instrumental in the study of polymer dynamics in strong
extensional flows [80–84] and as a consequence has become widely considered as a
benchmark flow for study of complex fluids. Since the device is also a component of
central importance in a range of both fundamental and applied microfluidic technologies
[72, 88, 129–134] it is of great importance to define conditions and stability criteria for
cross-slot flows.
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Figure 1.15: Characterizing non-Newtonian fluids: (a) Couette flow between two
parallel plates, the upper plate is moving at velocity U and the bottom one is fixed.
(b) γ̇ as a function of σ for Newtonian and non-Newtonian shear thinning and shear
thickening fluids.

Polymers are often involved in biological and industrial flows and display non-
Newtonian properties. In the food industry, polymers are particularly important for
the precise engineering of textures, viscosity and other properties of food products
[135]. Biological fluids such as blood [136], saliva [137], mucus [138] etc. also contain
natural polymers and their flow behavior is of great concern for medicinal purposes.

The properties of high molecular weight polymer solutions are non-Newtonian and
they can be initially categorized by the response of the fluid to forces that are exerted
upon it, or in other words, the relation between the shear stress (σ = Fa−1plate, where F
is the force and aplate is the area on which it works) and shear rate (γ̇ = Ul−1 where U is
the velocity and l is the length scale) of the flow. The relation between γ̇ and σ can be
measured in a Couette flow using two parallel plates as demonstrated in Figure 1.15 a.
For a Newtonian fluid the relation between γ̇ and σ is linear and therefore the viscosity
(η = σγ̇−1) is independent of γ̇ and is only a function of temperature and pressure
[139]. For non-Newtonian fluids, the relation between γ̇ and σ is non-linear and η is a
function of γ̇ (see schematics in Fig. 1.15 b).

1.3.2 Purely elastic flow instabilities at intersecting flows

The non-linear response of a non-Newtonian fluid to shear can be expressed in terms
of elasticity. Elasticity (relative to the viscous stress) is characterized by the ratio
between the deformation rate of the flow (γ̇) and the relaxation time of the polymer
(λ), i.e. the Weissenberg number (Wi = λγ̇). For Wi > 1 a polymer is deformed at a
faster rate than it can relax and elastic effects arise.

Another useful dimensionless parameter for characterizing non-Newtonian flows is
the elasticity number El ≈ Wi/ Re, which quantifies the ratio of elastic to inertial
forces in the flow. For Newtonian flows, El ≡ 0, instabilities that may arise in these
flows are considered “purely inertial” since they depend only on Re. Instabilities that
may arise in highly elastic fluids (El � 1) are considered “purely elastic”, and may
occur in negligible inertia for Wi > 1. There is increasing evidence that suggests that
all these elastic instabilities are driven by accumulation of elastic stresses along curving
streamlines [44, 140–142].
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Figure 1.16: Purely elastic flow instability at a cross-slot junction. Dye advection
patterns at Re < 10−2 for (a) a Newtonian fluid, Wi = 0, and (b) a non-Newtonian
fluid, Wi = 4.5 [144].

In the cross-slot device, purely-elastic instability appears as two-dimensional (2D)
flow asymmetries, which can be steady or time dependent, depending on the particular
fluid and geometric parameters [44, 77, 89, 143–148]. At higherWi these purely elastic
instabilities can develop into spatio-temporally disordered fluctuations described as
“elastic turbulence” [149–152].

The onset of a “purely elastic” flow instability was previously demonstrated with
asymmetric flow patterns in several studies [77, 144, 145]. A view of the center x− y
plane of the cross-slot is shown in Figure 1.16, which illustrates dye advection patterns
at low Re < 10−2 for Newtonian and non-Newtonian fluids. The interface between
dyed and undyed fluid is deformed by an elastic instability [144]. The channel di-
mensions used for this study were of w = 650 µm and d = 500 µm with an aspect
ratio α = 0.77. In this work two novel flow instabilities of a planar extensional flow
(of 0.02 wt.% solution of 18 MDa polyacrylamide (PAA) in 97 wt.% aqueous glycerol),
were discovered. In the first instability, the flow became deformed and asymmetric
but remained steady. Another instability occurred at higher strain rates, in which the
velocity field fluctuated non-periodically in time. This purely-elastic instability in the
cross slot did not exhibit hysteresis [145].

An additional mode of “purely elastic” instability was discovered by using an optimal
configuration of the cross-slot geometry (the Optimized Shape Cross-slot Extensional
Rheometer, OSCER). This instability appears at lowerWi than the onset of the asym-
metric flow (shown in Fig. 1.16 b), and it is characterized by a lateral displacement
and local unsteadiness of the stagnation point [44].

Investigation of “elastic turbulence” in the cross-slot flow (with highly elastic poly-
mer solution) was also recently conducted, however in the parametric range studied, the
flow could not be characterized as fully turbulent but it was described as chaotic [86].

1.3.3 Inertio-elastic instabilities

High elasticity numbers are characteristic of polymeric fluids with long relaxation times,
i.e. those with viscous solvents, high molecular weights and relatively high concentra-
tions, at small geometric length scales. However, for flows of highly dilute polymer
solutions in low viscosity solvents in larger length scale flow configurations, typical of
drag-reduced flows, inertia is not negligible (0 < El . 1) and the flow can be termed
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“inertio-elastic” (or equivalently “elasto-inertial”). In this case there is a complex in-
teraction and competition between inertial and elastic effects that remains to be fully
described and understood.

The addition of high molecular weight polymers to a simple Newtonian fluid at
even extremely low concentrations (parts-per-million) introduces a small but impor-
tant degree of elasticity to the liquid, which can strongly influence macroscopic flow
behavior. The effects of polymer additives are exploited for the reduction of drag in
turbulent flows [43, 153–157], for enhancing the pressure drop in porous media flows
[158] and for inhibiting jet breakup and the atomization of sprays [159, 160]. These
effects are broadly understood in terms of the generation of localized anisotropic elastic
stresses due to polymer stretching and orientation in specific regions of the flow field.
However, detailed understanding of the mechanisms underlying the phenomena, such
as how exactly polymer stretching feeds back on the flow field in order to suppress (or
generate) instabilities, in many instances remains vague. Systems designed to model
aspects of these flows, while avoiding their full complexity, can play an important role
in filling the remaining knowledge gaps.

Only one study (1993) reported the increasing elastic effects in inertial cross-slot
flow [161]. In this study, the effect of the polymer polyethyleneoxide (PEO) on the
stability of planar flow was examined in high aspect ratio cross-slot devices with α =
32 and α = 262. In these devices, that were introduced in Section 1.1.2, Fig. 1.6,
Newtonian fluid flows become unstable at Re = 55 (α = 262). It was found that
increasing polymer concentrations reduced the critical Reynolds number in which the
transition to unstable flow occurs. This effect reached a minimum at a concentration
of 100 ppm where the critical Re drops to Rec ' 20 (α = 262). Further increase in the
polymer concentration led to an increase in Rec.

1.3.4 Inertio-elastic turbulence

A fully turbulent inertio-elastic flow regime was also recognized in flows in a macroscale
pipe, for which the transition to sustained turbulence occurred at Re ≈ 2000 in the
Newtonian case. In this study it was shown that the increasing polymer concentration
resulted in a delayed transition to turbulence, at higher Re [155]. However, in this
study they observed a new type of turbulent fluctuation termed ‘elasto-inertial tur-
bulence’ (EIT) due to the onset of an elastic instability driven by polymeric stresses
(though for non-negligible inertia), for which the onset Re decreased significantly as the
polymer concentration increased. As Re was increased beyond the onset of the insta-
bility, the measured friction factor directly approached the maximum drag-reduction
(MDR) asymptote [153], without any excursion towards the ‘Blasius’ friction factor
scaling expected for Newtonian turbulence. Furthermore, numerical simulations of the
flow structures and dynamics showed that as the MDR asymptote was approached,
streamwise-oriented vortices characteristic of Newtonian turbulence were suppressed.

In Chapter 6 it will be shown how a slight addition of polymers to Newtonian
solvents affects the stability of a stagnation point flow in the cross-slot geometry. We
will study the different components of the flow transition including symmetry breaking,
vortex merging, formation and properties of a single streamwise vortex in inertio-elastic
flows. As discussed in Section 1.1.2, streamwise vortices such as the one seen in the
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cross-slot geometry are important elements of turbulent flows. By isolating certain
components of flows (e.g. isolating a single vortex from a turbulent flow) we can avoid
their full complexity and by so, it is possible to understand the very fundamentals
of flow responses and transitions. Similar approach has been previously used to study
porous media with a single sphere or a pole [162–165] and by using jet or spray breakup
to approximate capillary thinning or drop pinch-off phenomena [166–169].



Chapter 2

Methods

2.1 Fabrication of microfluidic devices
In this thesis, a recent fabrication technique of microfluidic channels, based on selec-
tive laser-induced etching (SLE) is used [170]. SLE is a new subtractive 3D printing
technique enabling microfabrication in transparent substrates, such as fused silica glass
(SiO2) [170]. The technique permits the fabrication of 3D structures that are fully em-
bedded in a high modulus (≈ 75 GPa), highly transparent (optical transmission > 90%
over the whole of the visible range) material with a resolution ∼ O 1µm.

Although fabrication by soft lithography of microfluidic channels in poly-(dimethyl
siloxane) (PDMS) is the most common method for producing microfluidic devices (rela-
tively cheap, easy and rapid) there are many disadvantages when using PDMS channels
for inertial flow studies that led us to choose fabrication in fused silica glass with SLE.
Studying inertial flows requires high flow rates, yet applying high pressure in PDMS
channels leads to channel deformation, non-uniform channel dimensions and may also
cause leakage of fluid through the inlet and/or outlet connection points, all can be
easily avoided with fused silica glass channels.

Additionally, collapse of PDMS channels is common due to the softness of the
material, limiting the fabrication possibilities to channels with aspect ratio ∼ 1. On the
contrary, the stiff material used in SLE enables the fabrication of very slim structures
and channels with very high or very low aspect ratios.

The softness of the PDMS material also makes it difficult to clean since fluorescent
dyes and tracer particles may get trapped in the material and organic solvents may
react with it. Therefore, it is not possible to perform a series of experiments with a
single device, and multiple devices which are not perfectly identical will be required
(even if fabricated from the same mold). Yet, fused silica glass can be washed vigorously
with organic solvents and it is possible to remove blockages by applying high pressures,
therefore it can be re-used unlimited amount of times.

Furthermore, the optical properties of PDMS devices are poor, and viewing the
channel is restricted to the side of the glass cover slide. In contrast, fused silica glass
devices have a good optical transparency and can be observed from different planes.

Apart from SLE we also considered fabrication with other techniques such as laser
cutting [171], wire electrical discharge machining (wire-EDM) [172], micromilling [173],
reactive ion etching or chemical etching in silicon or glass [174]. Although these ap-
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proaches offer some solutions to the problems with PDMS, none of them provide a
solution to the 3D fabrication limitations; most are restricted to rather low aspect
ratio devices, and most have optical access limited to only one plane.

Microfluidic cross-slot devices

Fabrication of cross-slot devices with PDMS, allows to directly visualize the stagnation
point region only from the x−y plane. Visualization of the vortex formation across the
y− z plane can therefore only be done with non-direct methods such as imaging of dye
advection pattern with scanning confocal microscopy, as was previously done [27, 63].
From dye advection measurements it is possible to obtain qualitative information of
the flow structures and to quantify mixing efficiency.

The main limitations of experiments with dye advection patterns are: (1) it is not
possible to resolve flow patterns which are not at the interface between dyed and undyed
fluid streams. For example, the Dean vortices in Fig. 1.7 c, that are formed while the
flow is still symmetric are not visible (Fig. 1.8 a); (2) it is not possible to perform
detailed dynamic studies due to long scanning times of the confocal microscopy; (3)
dye advection experiments do not provide any quantitative information on the flow, and
therefore it is difficult to compare experiments with numerical simulations [3, 4, 27].

For these reasons, SLE provides the ideal solution for device fabrication that enables
to directly image and perform dynamic measurements by vertically mounting the cross-
slot on an inverted microscope, giving direct access to the y − z plane.

2.1.1 The selective laser induced etching technique

The SLE method is a two-step process including laser modification and chemical etching
of the substrate. A femtosecond laser is used to irradiate a selected volume of material,
thereby increasing the chemical etch rate of specific regions within the glass substrate
by up to 1000 times compared with the unirradiated material. To produce the SLE
structures we use the commercially available LightFab 3D printer (LightFab GmbH),
which uses a 4 W, λ = 1030 nm, femtosecond-pulsed laser, with a 2.6 µm (x, y) by
6 µm (z) spot size [175].

The SLE process begins with the preparation of a 3D computer-aided design (CAD)
model (Fig. 2.1 a) of the portion of the substrate that will be removed during fabri-
cation. The 3D model is sliced to create the programmed laser paths that the Light-
Fab scanner will use to modify the fused silica volume during the printing process
(Fig. 2.1 b).

Great care is taken in optimizing the slicing and filling of the volume: if the pro-
grammed laser paths are too dense, overlap frequently or form too many sharp corners,
cracking of the substrate will occur during the laser modification or wet etching steps.
Creating the laser paths for an SLE structure is a compromise between achieving the
most accurate representation of a desired 3D model and fabricating a structure without
failure.

Owing to the compromise between densely and minimally filled SLE structures, an
appropriate slicing and filling scheme needs to be chosen. Often an internal cubing
scheme is chosen (Fig. 2.1 b) to break up the internal volume of material into smaller
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Figure 2.1: Fabrication of micro-channels by selective laser-induced etching [2]: (a)
The inner volume of a desired microfluidic channel is created using 3D CAD software.
(b) The 3D model is then sliced and filled to create a z-stack of lines used to define in-
dividual laser paths. (c) A femtosecond laser irradiates a polished fused silica substrate
following the specified slices. (d) The laser-irradiated material is preferentially etched
by KOH (assisted by ultrasonication at 85◦C), and the inner volume of the microfluidic
channel is removed. (e) The finished monolithic glass microfluidic device.

volumes that can be easily removed through the narrow inlet and outlet regions during
the subsequent ultrasonic wet etching step. Once the programmed laser path file and
a polished fused silica substrate are loaded into the LightFab, laser modification is
performed (Fig. 2.1 c).

The laser-modified fused silica substrate is then placed in an 85◦C KOH ultrasonic
bath to perform the chemical etching (Fig. 2.1 d). The laser-modified regions of the
fused silica etch at a rate of between 50 and 100 µm hr −1 (compared with 0.1 ≈
µm hr −1 for the unmodified regions), allowing the removal of specified regions within
the material. After etching is complete, the device is rinsed with deionized water and
is ready for use (Fig. 2.1 e).

2.1.2 Microfluidic cross-slot devices - experimental set up

For this thesis, several cross-slot intersections have been fabricated using SLE. The
devices are fabricated with different aspect ratios (α = d/w) that are selected in
order to span a range of subcritical (hysteretic, α & 0.55) and supercritical (smooth,
α . 0.55) transitions [27] (Fig. 2.2). Detailed specifications of the devices can be found
in Table 2.1. The error in the measurement of α is estimated to be ± 1%.

Figure 2.2: Schematic illustration of the cross-slot devices used for studying flow
instability and vortex dynamics at the proximity of a tricritical point. (a) α = 0.45
superitical transition; (b) α = 0.57 near tricritical transition; (c) α = 1.1 subcritical
transition; (d) α = 2.4 subcritical transition.
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Table 2.1: Microfluidic cross-slot devices specifications

α w d Transition type Rec Re∗c Used in chapter

0.45 1490 670 supercritical 107.5 107.5 4 & 5
0.57 1460 830 near tricritical 76.0 75.0 4
1.1 990 1060 subcritical 40.2 36.5 4
2.4 620 1500 subcritical 26.5 21.4 4 & 5
1.0 430 430 subcritical 40.0 38.8 6

The inlet lengths of the cross-slot devices are set to be either 13 mm or 16 mm, giving
a high ratio (> 10) between the inlet length and the larger channel dimension ensuring
fully developed flow before the fluid reaches the center of the cross-slot geometry. The
outlets are designed to be as long as possible (≈ 5 mm), while still allowing imaging
to be performed in the y − z centerplane (at x = 0) with a long working distance
microscope objective (see Fig. 2.3 a). In this manner, it is possible to directly visualize
the stagnation point at the y − z centerplane and perform dynamic experiments (see
Fig. 2.3 b). A picture of the microfluidic device with tubing connections mounted on
an inverted microscope is shown in Fig. 2.3 c.

Flow within the glass microfluidic device is driven using four individually-controlled
high precision neMESYS syringe pumps (Cetoni GmbH, Germany) fitted with Hamil-
ton Gastight syringes and operating at a minimum of 10× (and typically > 50×) the
specified lowest “pulsation-free” dosing rate. Two of the pumps drive fluid into the two
opposed inlets, while the other two pumps withdraw fluid simultaneously from the two
outlets of the device (all at an equal volumetric flow rate Q). In order to keep the
system compliance at a minimum, the tubing between the syringes and the device is
made of rigid PTFE (polytetrafluoroethylene), and is kept as short as possible, and
great care is taken to purge all air from the system.

All of the experiments involve the flow of deionized water with a kinematic viscosity

Figure 2.3: Experimental set up of the microfluidic cross-slot device; (a) A schematic
diagram of the experimental setup; (b) Schematic diagram of a vortex in the cross-
slot device. Inflow (along y) and outflow (along x) are indicated by the blue and red
arrows, respectively; (c) A picture of the experimental set-up, showing the microfluidic
cross-slot device mounted on a microscope.
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ν = 8.9 × 10−7 m2 s−1 at 25◦C. All experiments are carried out at 25 ± 1◦C, and the
estimated error in Re is around ±1%.

2.2 Flow field measurement with the Differential Spin-
ning Disk confocal microscope

Flow structures formed by dye-advection patterns in the cross-slot geometry are achieved
by introducing a solution containing the fluorescent dye rhodamine B (10 µM) through
one inlet while an undyed solution is introduced through the other inlet. The microflu-
idic device is mounted on the stage of an inverted microscope (Nikon Eclipse Ti), and
the y − z plane is brought into focus using a long working distance lens (Nikon Plan
Fluor) with magnification of 10×, numerical aperture (NA) = 0.3, working distance
(WD) = 16 mm. With the use of a differential spinning disk confocal microscope sys-
tem (DSD2 - Andor Technology Ltd, Belfast, UK) it is possible to focus on a single
plane (the y− z plane) while the light emitted from out of focus planes is filtered. The
spinning disk confocal microscopy utilizes multiple pinholes that are located between
the objective lens and the camera, in order to project light onto the channel in a mul-
tiplexed pattern that is detected after fluorescence emission passes through the same
pinholes. The signal is then detected with an Andor Zyla scientific complementary
metal-oxide-semiconductor (CMOS) camera at a resolution of 0.1 µm per pixel. The
maximal frame rate of the camera is 10 fps and a green fluorescent light source is used
for illumination.

2.3 Micro Particle Imaging Velocimetry (µ-PIV)

2.3.1 µ-PIV working principles

Particle imaging velocimetry (PIV), is one of the most common technique for measuring
instantaneous velocity fields, without interfering the flow. With the PIV technique,
the plane of measurement is defined by a laser light sheet that continuously irradiate
tracer particles that are added to the fluid. µ-PIV systems have similar principle
of operation, with a difference in the type of illumination. Due to the small length
scales of microfluidics, it is very difficult to align a laser sheet within the channel and
therefore volume illumination is used. When using volume illumination, the recording
optics (i.e., camera, lens) defines the depth of the measurement plane. To achieve
the optimal signal-to-noise ratio that may be disrupted by unfocused particles in the
different illuminated planes, it is important to carefully choose the lens and tune the
concentration of the tracer particles in the sample [176, 177].

A scheme of a µ-PIV system is shown in Fig. 2.4. The dual pulse laser passes
through the inverted microscope and the optic lens illuminates the area of interest in
the microfluidic device. A high speed camera captures the frames simultaneously with
the illumination of the dual pulse laser. In order to represent correctly the flow field,
the separation between the dual pulses of the laser light should be smaller than the
time scales of the flow. The exact synchronized operation of the laser and the camera
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Figure 2.4: µ-PIV system, for flow field measurement. The main parts of the system
consists of a dual-pulsed laser, a high speed CMOS camera, an inverted microscope
and a synchronizer.

is determined with a synchronizer system. Dual frames of the flow field are illustrated
in Fig. 2.5 a & b. The flow field is divided to smaller interrogation areas and the
displacement of the particles between one frame to the other is analyzed with a cross-
correlation algorithm (Fig. 2.5 c). For each one of the interrogation areas determined,
the algorithm produces a vector that is placed in the center of the interrogation area
providing a full vector representation of the flow field (Fig. 2.5 d).

2.3.2 Flow field measurements with µ-PIV

Quantitative measurements of the flow field are made in the y − z center plane (x = 0
plane) of the cross-slot device (Fig. 2.3 b) using a microparticle image velocimetry
(µ-PIV) system (TSI Inc., MN) [176, 178]. The microfluidic device is mounted on the
stage of an inverted microscope (Nikon Eclipse Ti), and the x = 0 plane is brought
into focus. Details about the tracer particles, lens and resulting measurement depth
are listed below:

1. For experiments where the channel’s characteristic length scale w < 500 µm:

Test fluids are seeded with fluorescent particles (PS-FluoRed, MicroParticles
GmbH, Germany) of diameter dp = 2.08 µm with excitation and emission wave-
lengths of 530 and 607 nm, respectively. A long working distance lens Nikon
Plan Fluor is used, with magnification of 10×, NA = 0.3, WD = 16 mm. With
this combination of particle size and objective lens, the measurement depth over
which particles contribute to the determination of the velocity field is δxm ≈ 40
µm (δxm < 0.1 w) [176]. Image pairs are binned into interrogation areas of 32
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Figure 2.5: Creating a velocity vector field with the cross-correlation algorithm. The
camera captures two images synchronized with the illumination of the dual pulse laser
(a) image from pulse 1 and; (b) image from pulse 2; (c) the flow field is divided into
interrogation areas, in each area the displacement of each particle is measured between
the pulses; (d) the displacement of particles and the time separation between pulses
are used to resolve the velocity vector field of the flow at each interrogation area. For
simplification only dx is indicated yet there is also a displacement in the y direction
that is accounted for in real measurements.

× 32 pixels and cross-correlated using a standard µ-PIV algorithm (TSI Inc.) to
obtain velocity vectors spaced on a square grid of 12.8 × 12.8 µm in y and z.

2. For experiments where the channel’s characteristic length scale w > 500 µm:

Test fluids are seeded with fluorescent particles (PS-FluoRed, MicroParticles
GmbH, Germany) with diameter of dp = 5.0 µm with excitation and emission
wavelengths of 530 nm and 607 nm, respectively. A long working distance lens
Nikon Plan Fluor is used, with magnification of 4×, NA = 0.13 andWD = 16 mm.
With this combination of particle size and objective lens, the measurement depth
over which particles contribute to the determination of the velocity field is δxm ≈
210 µm (δxm < 0.33 w) [176]. Image pairs are binned into interrogation areas of
64 × 64 pixels and cross-correlated using a standard µ-PIV algorithm (TSI Inc.)
to obtain velocity vectors spaced on a square grid of 32 × 32 µm in y and z.

The µ-PIV system is equipped with a 1280 × 800 pixel high-speed CMOS camera
(Phantom MIRO), which operates in frame-straddling mode and is synchronized with
a dual-pulsed Nd:YLF laser light source with a wavelength of 527 nm (Terra PIV,
Continuum Inc., CA). The laser illuminates the fluid with pulses of duration δt < 10 ns,
thus exciting the fluorescent particles, which emit at a longer wavelength. Reflected
laser light is filtered out by a G-2A epifluorescent filter so that only the light emitted
by the fluorescing particles is detected by the CMOS imaging sensor array. Images are
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captured in pairs (one image for each laser pulse), where the time between pulses ∆t
is set by the instrument operator such that the average particle displacement between
the two images in each pair is around 4 pixels. The typical error on individual velocity
vector components is around ± 0.05 U , where U = Q/wd is the average flow velocity
in the channel.

2.4 Experimental protocols

2.4.1 Quasistatic flow measurements

Initially, in order to identify the approximate value of Rec for each experimental system,
several images are captured for fixed Re applied below and above the transition. Next,
more detailed quasistatic experiments are conducted over a range of Reynolds numbers
spanning Re < Rec to Re > Rec by programming the syringe pumps to perform ramps
up and down in Re with small step increases or decreases of 0.1 ≤ Re ≤ 2, depending
on the precise system under study. Performing experiments with decreasing time steps
allows to reveal if the transition is smooth or abrupt (i.e. if there is hysteresis in the
transition). If the flow turns back to symmetric at Re∗c = Rec, there is no hysteresis
in the flow. If the flow turns back to symmetric at Re∗c < Rec than the transition is
defined as hysteretic.

Typically 5 s of steady flow is imposed at each increment in Re. Note that this
is significantly longer than the diffusion time scale of the least viscous sample (water)
tested in the device with the largest length scale (α = 0.45, w = 1490 µm), which
is given by td = (w/2)2/ν ≈ 0.56 s. Dynamic experiments carried out to track the
startup of flow at Re > Rec, indicate that steady-state conditions are achieved for the
flow of water within approximately 0.5 s, as expected.

Images pairs are captured at a rate of 5 Hz using the µ-PIV system, typically
yielding 25 velocity vector fields per step in Re. Avoiding data captured during the
transient at the start of each Re step, velocity fields from each step are averaged
using the software Tecplot Focus (Tecplot Inc., WA) and further processed to obtain
streamline projections on the x = 0 plane and the x-component of the vorticity ωx =
(∂vz/∂y) − (∂vy/∂z), where vz and vy are the z and y components of the local flow
velocity vectors, respectively.

It is worthwhile to mention that for each test fluid the range of Re we can examine
in this way is restricted fundamentally by limitations of the µ-PIV system, which does
not allow the value of ∆t to be varied during a given experiment. Given a fixed ∆t, if
the flow velocity (or Re) during an experiment becomes too low, particles are displaced
insufficiently in the time between laser pulses to obtain reliable vectors. Conversely, if
the flow velocity becomes too high then too many particles can become displaced into
neighboring interrogation areas between laser pulses and the cross-correlation algorithm
again fails to resolve vectors. Ideally, for optimal function of the algorithm, the average
particle displacement between laser pulses should be around 1/8 of an interrogation
area (maximum 1/4 of an interrogation area). In our experiment ∆t must therefore be
carefully selected in order that velocity fields can be resolved reliably over a range of
flow rates that spans the onset of the flow instability.
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2.4.2 Dynamic flow measurements

Time dependent flow measurements are conducted to capture the dynamics of the
transition, in the proximity of Rec, from stable symmetric flow to unstable asymmetric
flow, and from unstable asymmetric flow to stable symmetric flow. Once the flow
transition is completed, the flow is at a steady state (e.g., unstable flows). Additional
dynamic measurement are conducted for time dependent flows at Re well beyond Rec,
in these cases the flow does not reach a steady state (e.g., unsteady flows).

Measurement of unstable flow

Based on the values of Rec and Re∗c found in the quasistatic experiments, time depen-
dent measurements are conducted. The transition from symmetric to asymmetric flow
field is studied by inducing a single step in Re from an initial Re below the critical
value (Rei < Re∗c) to a final Re above the critical value (Ref > Re∗c). Similarly, the
opposite experiments are conducted with a single step in Re, from Rei > Rec to a final
value Ref < Rec. For each α, several measurements are performed for various values
of Ref while Rei is held constant. Data acquisition starts before flow is imposed. The
Reynolds number is increased from 0 to Rei and held steady for 5 seconds. Subse-
quently we increase or decrease Re from Rei to Ref and again the flow is kept steady
for 5 s. In this way, the moment during acquisition where the second step begins,
which defines the time t = 0, can be easily determined. Image pairs are captured at
100 Hz and are processed individually to obtain 100 velocity fields per second. This is
found to be more than sufficient to capture the detailed dynamics of the flow transition.
Velocity fields from each experiment are processed using the software Tecplot Focus
(Tecplot Inc., WA) to obtain streamline projections on the x = 0 plane. Further data
analysis of the vector field is done with Matlab.

Measurement of unsteady flows

In these experiments, we set Re � Rec to study time dependent flow for two extreme
cases of vortex spatial confinement in the cross-slot geometry: high spatial confinement
with α = 0.45 (see Fig. 2.2 a) and moderate spatial confinement with α = 2.4 (see
Fig. 2.2 d). The Re is set using a the syringe pumps to a constant value and kept
steady for 5 s. Then, image pairs are captured at a high frequency of 500 - 1000 Hz in
order to capture the time dependent periodic cycles in the flow. For each Re studied,
100 velocity vector fields are produced. Vector fields from each experiment are used to
calculate velocity and vorticity contours using Matlab.

2.5 Rheology of non-Newtonian fluids

2.5.1 Materials

The effects of increasing elasticity on the onset and development of flow instability
and vortex formation in the cross-slot device, are studied using solutions of a high
molecular weight poly(ethyleneoxide) (PEO, Mw = 4 MDa, Sigma Aldrich) over a
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range of concentrations 0.0001 ≤ c ≤ 0.3 wt% (i.e. 1 ≤ c ≤ 3000 parts-per-million by
weight). Solutions are prepared in two different solvents: de-ionized (DI) water and
an aqueous solution of 8 wt% of a low molecular weight poly(ethyleneglycol) (PEG,
Mw = 8 kDa, Sigma Aldrich). At this molecular weight, 8 wt% aqueous PEG behaves
as a Newtonian fluid with its shear viscosity approximately four times greater than
water [179]. Stock PEO solutions are prepared by dispersing a weighed quantity of
the polymer powder in the appropriate quantity of solvent. To assist dissolution while
avoiding mechanical degradation of the PEO, only low speed (30 rpm) magnetic stirring
is applied. Dissolution is allowed to proceed until no refractive index variations or
residual gels are visible in the fluid (typically 24 to 48 hrs). The fluids are stored at
4◦C and are used within a maximum of 4 weeks. Solutions with lower concentration
of polymers are prepared by dilution of the stock fluids in the appropriate quantity of
solvent.

2.5.2 Test fluid characterization

Shear rheology for viscosity measurements

Steady flow curves of shear viscosity η as a function of the imposed shear rate γ̇ are
measured for the polymer solutions and the solvents using a stress controlled rota-
tional rheometer (Anton Paar, MCR 502) with a 50 mm diameter 1◦ cone-and-plate
fixture. The results are presented in Fig. 2.6. Most of the fluids are essentially non-
shear-thinning over the imposed range of shear rates, however for the two highest
concentrations of PEO in water a mild reduction in viscosity is observed as the shear
rate increases.

To estimate the viscosity of these shear-thinning fluids at arbitrary shear rates

Figure 2.6: Shear viscosity measurements with a stress-controlled rotational rheome-
ter (Anton Paar MCR 502) for PEO solutions of various concentrations in two different
solvents: water and 8 wt% aqueous PEG. Curve fitting for the shear thinning fluids
is done with the Carreau-Yasuda GNF model (Eq. 2.1). The diagonal dashed line
represents 10× the minimum sensitivity of the rheometer [3].
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Table 2.2: Parameters extracted by fitting the Carreau-Yasuda GNF model (Eq. 2.1)
to the steady flow curves of the shear-thinning solutions of PEO dissolved in water.

c [wt%] η0 [mPa s] η∞ [mPa s] γ̇∗ [s−1] n a∗

0.1 3.9 1 22.7 0.83 1
0.3 25 1 12.1 0.71 1

imposed within the microfluidic channel, the shear-thinning flow curves are fitted with
a Carreau-Yasuda generalized Newtonian fluid (GNF) model [180]:

η = η∞ +
η0 − η∞

[1 + (γ̇/γ̇∗)a∗ ](1−n)/a∗
, (2.1)

where η0 and η∞ are the zero and infinite shear rate viscosities, γ̇∗ is the characteristic
shear rate for the onset of shear-thinning, n is the power law index in the shear-
thinning region and a∗ is a parameter that controls the sharpness of the transition to
the power-law regime. The values of these parameters for the two shear-thinning fluids
are provided in Table 2.

Extensional rheology for relaxation time measurements

As far as possible, the relaxation times λ, of the test fluids, are measured using capillary
breakup extensional rheometry, (CaBER, Thermo Scientific). Measurements with this
device are performed as follows: a fluid is placed between two plates that rapidly
separate from each other, causing elongation of the solution until the thread of stretched
fluid breaks. A laser micrometer measures the diameter of the fluid thread at the
center point between the two plates. The rate of the thinning can then be used to
calculate the relaxation time of a fluid [167, 181, 182]. For many of the more dilute
PEO solutions, the relaxation times are too low to be measured accurately using the
standard CaBER technique and therefore the more sensitive slow retraction method
(SRM) is employed (Fig. 2.7) [183]. In this method, the drop of fluid is placed between
two plates (Fig. 2.7 a) but the detachment rate is slower (Fig. 2.7 b). The measurement

Figure 2.7: Demonstration of an SRM measurement performed using a CaBER device
(a) A droplet of the test fluid is placed between two plates with separation of h0. (b)
The plates are then separated at a rate of 0.1 mm s−1 while imaging is being performed.
(c) Image sequence of the thinning filament for PEO solution of 0.0003 wt% PEO in
8 wt% PEG dissolved in water. Images are taken at 18,000 fps with a high speed
Phantom camera.
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of the diameter of the fluid thread is done with a high speed camera and calculated
with a Matlab code (Fig. 2.7 c). Two of the fluids (0.001 wt% PEO in water and 0.0003
wt% PEO in PEG) are measured using both techniques (CaBER and SRM) and we
obtain good agreement.

Zimm relaxation time

The Zimm relaxation time (λZimm) is used to estimate the relaxation time for very
dilute solutions which cannot be measured by CaBER or SRM. For the lowest concen-
tration (0.0003 wt%) PEO in water, λ could not be reliably measured even by SRM
and therefore we estimate the relaxation time of this fluid using the Zimm formula:

λZimm = F ∗
[η]Mwηs
NAkBT

, (2.2)

whereMw = 4×106 g mol−1 is the PEO molecular weight, NA is the Avogadro constant,
kB is the Boltzmann constant, T is the absolute temperature, ηs = 0.94 mPa s is
the measured solvent viscosity, and the front factor F ∗ = 0.463 [184]. The intrinsic
viscosity [η] = 1.323 m3 kg−1 is calculated according to the Mark-Houwink-Sakurada
correlation [185]. According to this calculation the longest relaxation time of the 4MDa
PEO molecule in water is λZimm ≈ 1 ms.

The characteristic relaxation times of all the test fluids are summarized in Table 2.3.
We note that the values of 1/γ̇∗ obtained from the Carreau-Yasuda fit to the steady
shear rheology of the two fluids shown in Table 2.2 are consistent with the values of
λ obtained from the CaBER measurements on the same two fluids. Table 2.3 also

Table 2.3: Composition and material parameters of the experimental test fluids at
25oC.
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shows the measured zero shear viscosities of all the test fluids and the “solvent-to-total
viscosity ratio” β = ηs/η0, where η0 = ηs+ηp and ηp is the polymer contribution to the
viscosity. With these values we can calculate the Weissenberg number Wi = λγ̇. In
order to account for the polymer contribution to the Wi we can calculate the effective
Wi, Wieff = Wi(1 − β). Additionally, we can find the elasticity of the fluid El =
Wieff/ Re = (1− β)(λη/ρw2) (see Table 2.3).

It is apparent from Fig. 2.6 and Table 2.3 that by using the more viscous aqueous
solvent containing 8 wt% PEG, we are able to increase the relaxation time of the fluid
while maintaining the viscosity ratio close to 1 and avoiding significant shear-thinning
effects, which occur for higher concentrations of PEO in water.

Overlap concentration

Also shown in Table 2.3 is the ratio of the polymer concentration c to the overlap
concentration c∗. The overlap concentration for PEO in the aqueous-based solvents
used here is estimated based on space filling of polymer coils with a radius of gyration
Rg [186]:

c∗ =
3Mw

4NAπR3
g

, (2.3)

where the value of Rg = 152 nm is estimated according to previous results of light
scattering experiments [187]. Equation 2.3 provides a value of c∗ ≈ 0.045 wt%.

The equilibrium root-mean-square end-to-end separation of the PEO molecule is
given by < r0

2 >
1/2

=
√

6Rg = 372 nm. The contour length may be estimated by
Lc = lMw/m = 26.5 µm, where l = 0.278 nm and m = 42 Da are the length and mass
of the PEO repeat unit, respectively [188]. The ratio L = Lc/< r0

2 >
1/2 ≈ 71 indicates

the highly extendible nature of this high molecular weight PEO sample. This estimate
of L is used to compute an appropriate extensibility parameter (L2 = 5000) used for
subsequent numerical simulations using a finitely extensible non-linear elastic (FENE)
dumbell model, see Appendix A.





Chapter 3

The Landau model

In many physical systems, phase transitions or bifurcations, occur when a system is
disturbed out of its equilibrium (or symmetry) due to external fluctuations, resulting
in a new stable state. The physical parameters of a system will determine the nature
of the transition. Bifurcations may also appear in fluid flows when a flow transitions
from one regime to another, usually including loss of symmetry [189]. In certain phase
transitions, there is a point on the phase diagram in which the transition type trans-
forms from a continuous to discontinuous state, such a point is defined in the literature
as a tricritical point [190].

A sixth order polynomial Landau type model is particularly useful in capturing
the complexity of transitions near tricritical points [191]. Traditionally, the Landau
model has been used for the description of thermodynamic related transitions (i.e.
phase transitions in liquid crystals [192], melting of graphite [193] and solidification
of iron [194, 195]). However, it can also be used to describe flow transitions, such
as the secondary instability in the Taylor-Couette apparatus [49, 50] and the flow
instability in the cross-slot geometry [27]. The Landau model does not explain the
mechanisms behind a physical phenomenon but, as will be shown in this thesis, it can
provide information on some physical parameters in the system. For example, with the
Landau model we can precisely determine the critical Re, account for imperfections in
the experiments and find the extent of memory (hysteresis) of a system.

When using the Landau model we first need to identify the base state of a certain
physical system with a measurable parameter such as temperature or velocity that
indicates changes in the system (i.e. an order parameter, ψ). By changing the control
parameter, ε, the system is perturbed out of its equilibrium and will undergo a phase
transition.

According to the Landau theory, these bifurcations occur due to a change in the
“free energy” of the system, which can be described with a sixth order polynomial
potential, F :

F = −1

2
εψ2 +

1

4
gψ4 +

1

6
kψ6 − hψ. (3.1)

The value of ψ(ε) corresponds to the extrema of F, where
∂F

∂ψ
= 0 :

−εψ + gψ3 + kψ5 − h = 0. (3.2)
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Figure 3.1: Landau potential in the form of sixth order polynomial in a perfect system
h = 0. ε is varied above and below the critical point. The potential F is plotted as a
function of ψ for the three different transition types: (a) supercritical; (b) tricritical,
and; (c) subcritical transition.

Therefore, ε can be expressed as

ε = [kψ4 + gψ2 − hψ−1], (3.3)

where g, k, and h are free parameters. The ratio between the parameter g and k
(Eq. 3.1) determines the order of the transition and the extent of the hysteresis and
the parameter h corresponds to imperfections in the system. Plots of F as a function
of ψ in a perfectly symmetric system for which h = 0 (perfect system) are shown in
Fig. 3.1, where the control parameter ε is changed from below and above the critical
point. Fig. 3.1 a & b, represent the potential energy in a supercritical and a tricritical
transition, respectively. For ε ≤ 0, the plots have one minimum, indicating that the
system is stable at the symmetric state. Increasing the control parameter to ε > 0
will initiate a phase transition, resulting in the formation of two minimum points in
the Landau potential. The system will evolve to one of the new minimum points
into its new state, with an equal probability evolve to one minimum or the other.
Fig. 3.1 c represents the potential energy in a subcritical transition. For ε ≤ 0, the

Figure 3.2: Landau potential in an imperfect system, h 6= 0. ε is varied above
and below the critical point. The potential F is plotted as a function of ψ for the
three different transition types: (a) supercritical; (b) tricritical, and; (c) subcritical
transitions
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Figure 3.3: Sixth order polynomial Landau type model describing flow bifurcations
near tricritical points (see Eq. 3.1). ψ is plotted as a function of ε for the three different
cases of transitions near tricritical points: (a) supercritical smooth transition; (b)
tricritical transition, and; (c) subcritical non-continuous transitions. Each sub-figure
shows an example for a perfect system (blue) and a system with a slight imperfection
(red).

plots have three minimum points, indicating that the state of the system has three
different solutions, and it will evolve to one of them, depending on the history of the
system. Increasing the control parameter to ε > 0 will initiate a change in the Landau
potential, resulting in a potential with two minimum points.

This asymmetry will result in the development of asymmetric potential wells as
seen in Fig. 3.2 a-c for supercritical, tricritical and subcritical transitions, respectively.
Once the system is perturbed beyond equilibrium, it will have a high probability to
evolve to the deeper potential well.

In Fig. 3.3, bifurcation diagram of ψ as a function of ε is plotted for the different
transition types near a tricritical point (Eq. 3.3). A perfect system (in blue) can be
calculated numerically and a slightly imperfect systems (in red) represents a more real-
istic experimental system. A supercritical 2nd order continuous transition is plotted in
Fig. 3.3 a, the transition at the tricritical point is plotted in Fig. 3.3 b and a subcritical
1st order discontinuous transition with hysteresis is plotted in Fig. 3.3 c. When g/k > 0
the transition is a 2nd order forward bifurcation (Fig. 3.3 a). When g/k = 0 the transi-
tion is tricritical (Fig. 3.3 b). At the tricritical point, ε and g/k simultaneously become
zero. For g/k < 0 the transition is a 1st order backward bifurcation, displaying a char-
acteristic discontinuity in the curve and hysteretic behavior (Fig. 3.3 c). As previously
mentioned, the parameter h accounts for any initial imperfections that may exist in
the system. When initial conditions are slightly asymmetric, h 6= 0, it is pronounced
in the roundness of the curve near ε = 0 (Fig. 3.3).

3.1 Flow transition in the Taylor-Couette cell

In the early 1980’s it was shown that the Landau model can be used to describe flow
transitions, such as the secondary instability in the low aspect ratio (α = l/ro) Taylor-
Couette apparatus that was presented in Chapter 1, Fig. 1.4. b & c [49, 50]. Slight
variations of α in a low α Taylor-Couette flow (with only a single pair of counter
rotating vortices) leads to variation in the flow transition. The order parameter is
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Figure 3.4: Tricritical transition in low α Taylor-Couette flow [49]. ψ is plotted as a
function of ε, for (a) α = 1.129, supercritical transition; (b) α = 1.266, near tricritical
transition, and; (c) α = 1.281, subcritical transition. The data is fitted with Eq. 3.3.

defined in these experiments as ψ =
∫ l
0
vzdz/

∫ l
0
| vz | dz where l is the height of the

geometry and vz is the axial velocity component. Hence, ψ is a measurement of the
axial velocity along l in the vorticity direction, and it is plotted as a function of the
control parameter ε = vw/vw,c − 1 (where vw is the angular velocity and vw,c is the
critical angular velocity of the rotor of the Taylor-Couette geometry). Aitta et al.,
have demonstrated in their analysis that the Landau model (solid and dashed lines)
captures all types of the flow transitions, a smooth supercritical transition (Fig. 3.4 a),
a tricritical transition (Fig. 3.4 b) and an abrupt subcritical transition (Fig. 3.4 c).

The time dependency of the transition in low aspect ratio Taylor-Couette flow cells

Figure 3.5: Dynamics of flow transition in low α Taylor-Couette flow [196]. ψ is
plotted as a function of t, for (a & d) α = 1.129, supercritical transition; (b & e)
α = 1.266, near tricritical transition, and; (c & f) α = 1.281, subcritical transition. (a-
c) vw is increased from vw < vw,c to vw > vw,c and (d-f) vw is decreased from vw > vw,c
to vw < vw,c. The data is fitted with Eq. 3.5.
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was described by a dynamic form of the Landau model (Eq. 3.4) [196]:

τ
dψ

dt
=
−dF
dψ

, (3.4)

where τ is the characteristic time required to induce a transition in ψ. Combining with
Eq. 3.3, we obtain a dynamic model for the instability,

τ ψ̇ = [h+ εψ − gψ3 − kψ5]. (3.5)

The dynamic results for the Taylor-Couette experiments were plotted in Fig. 3.5
for increasing values of vw (from vw < vw,c to vw > vw,c, Fig. 3.5 a-c) and for decreasing
values of vw (from vw > vw,c to va < va,c, Fig. 3.5 d-f), for supercritical, tricritical and
subcritical transitions. The results for the dynamic flow experiments were found to be
quite different when the order of the transition changed with different aspect ratios,
slowing down when approaching a tricritical point [196]. The shape of the potential
wells plotted in Fig. 3.1 and 3.2 explain the nature of the dynamics of the transition.
Shallow potential wells that form for ε that is slightly above ε = 0, lead to F at
ψ = 0 that is nearly flat which translates to slow transition dynamics. This dynamic
model will be used for describing the time dependency of the symmetry breaking flow
transition in the cross-slot geometry (Chapter 4).

3.2 Flow transition in the cross-slot geometry

Similar to the experiments done with the Taylor-Couette geometry, quasistatic exper-
iments and numerical simulations were also conducted with cross-slot geometries with
low aspect ratios on the order of α ' 1. Numerical simulations revealed that the order
of the transition in the cross-slot geometry was also strongly dependent on the aspect
ratio with a tricritical point at α = 0.55 (Fig. 3.6) [90].

As shown in the introduction, the flow instability in the Taylor-Couette is a centrifu-
gal flow instability while the flow instability in the cross-slot geometry is a stagnation
point instability. Even though these are different instabilities that occur in different
flow fields, the nature of symmetry breaking flow transition is very similar and both
can be described with the Landau model.

3.2.1 The order parameter ψ in the cross-slot geometry

There are many possible definitions for the order parameters ψ. In this thesis, the two
definitions that will be used are shown in Eq. 3.6 and Eq. 3.7.

In the cross slot geometry, the order parameter can be defined as the x component of
the central point vorticity ωx = (∂vz/∂y)− (∂vy/∂z) which is the local rate of rotation
in a fluid, ~ω = ~O× ~v.

ψ = sgn(ωx |y=z=0)ωx |x=y=z=0 . (3.6)

Alternatively, a dimensionless order parameter can be calculated as the sum of ωx
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Figure 3.6: Numerical simulations of the order parameter as a function of normalized
Re for different α [27]. The order of the phase transition shows strong dependency on α.
For α < 0.55 the transition is of 2nd order, for α = 0.55 the transition is tricritical and
for α > 0.55 the transition is 1st order as indicated by the discontinuity of the function.

divided by the sum of | ωx | over the x = 0 plane:

ψ = sgn(ωx |y=z=0)

w
2∫
−w

2

d
2∫
− d

2

ωxdzdy

w
2∫
−w

2

d
2∫
− d

2

| ωx | dzdy

. (3.7)

This definition is particularly useful for detecting small fluctuations across the field in
time dependent experiments.

Positive or negative values of ωx are possible, depending on which vortex pair
intensifies. However, ψ is made to be always positive by accounting for the sign of
ωx |y=z=0.

As described in the Introduction, Chapter 1, Section 1.2.1, when Re < Rec the flow
in the cross-slot geometry is symmetric and at equilibrium. At this point, ψ = 0.

Loss of equilibrium by an increase in Re to Re > Rec is expressed by the intensi-
fication of a co-rotating Dean vortex pair and the generation of center point vorticity
(ωx > 0) which leads to ψ 6= 0. Upon reaching the critical value of Re, the flow bi-
furcates to one of two stable solutions, depending on which of the two pairs of Dean
vortices intensify and eventually merge to a single central vortex (see Fig. 1.9).

In cross-slot devices, wall imperfections due to limitations in fabrication can lead
to non-zero h, while in the numerical simulations they are completely avoided and
h = 0 (as seen in Fig. 3.6). The imperfections in the experimental system can cause a
favored branch or handedness for the transition, i.e. clockwise or anticlockwise vortex
formation. However, in numerical simulations these imperfections are avoided and
hence the Landau potential is perfectly symmetric, therefore, clockwise or anticlockwise
rotation have the same probability to occur.
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3.2.2 The control parameter ε in the cross-slot geometry

The control parameter ε is a normalized Re around the critical value (Rec) and defined
as:

ε =
Re

Rec
− 1. (3.8)

According to this definition, ε is assumed to vary linearly with Rec. In order to test
the validity of the linear approximation of ε, the theoretical value of ε is calculated for
the cross-slot experimental system. According to Aitta [50], the linear approximation
of the control parameter ε = Re/Rec-1, is valid only near Rec. More generally, ε is
assumed by Aitta [50], to behave as a parabola of the following form:

εAitta = p(X2 + 2XY + Y 2 + 2X − 2Y + 1), (3.9)

where p is a constant and X and Y are defined as:

X =
Rex −Re
Rem −Rex

, (3.10)

and
Y =

α− αm
αx − αm

. (3.11)

Here, Rex is the smallest critical Re in which the transition occurs and αx is the
corresponding aspect ratio. αm is the smallest aspect ratio in which the transition
occurs and Rem is the corresponding critical Re. According to Aitta, the control
parameter ε depends quadratically on Re and therefore it is a reasonable assumption
that the phase curve is a parabola. We found that the phase curve for our cross-slot
flow was oriented in the opposite way of the Taylor-Couette phase curve, and therefore
the parameters are defined slightly different from those described in Aitta’s papers
[50, 196]. An estimated αm = 0.4 is used, which is the smallest aspect ratio for which

Figure 3.7: Phase curve for the onset of the flow instability in the cross-slot geometry.
Black squares describe the non-hysteretic branch (Rec) and blue circles describe the
hysteretic branch (Re∗c). Data is taken from both experiments and numerical simula-
tions from the current work and from [27].
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Figure 3.8: Comparison between the theoretical prediction of εAitta and the linear
approximation of ε. dashed line indicates the critical value where ε = 0.

we have data for, and Rem = 132 is the corresponding Re. Rex = 26 is the smallest
Re at which the transition appears according to the minimum point of the phase curve
(Fig. 3.7), αx = 2.3 is the corresponding aspect ratio.

The solutions to Eq. 3.9 are:

X1,2 = −(1±
√
Y )2. (3.12)

Then, the expression for ε can be re-written using 3.12 and 3.11,

εAitta = −p(X −X1)(X −X2), (3.13)

and therefore,

εAitta = −p(Re−Re1)(Re−Re2)
(Rec −Rem)2

, (3.14)

where Re1 and Re2 can be calculated:

Re1,2 = −X1,2(Rem −Rec)−Rec. (3.15)

Fig. 3.8 shows the theoretical ε and the linear approximation of ε in the Re range
that will be used in this thesis. From this analysis we can conclude that it is reasonable
to use a linear approximation of ε near the critical point and therefore there is no need
for the complex definition with multiple unknown variables when defining ε. A linear
approximation of ε allows us to perform reliable curve fitting to our experimental
data, which enables to extract the parameters from the model and quantify the size
of the hysteresis loop, the asymmetry in our system and the critical Re in which
the flow instability occurs. Nevertheless, it is noted that the theoretical ε becomes
increasingly non-linear as α decreases (Fig. 3.8 a) displaying a clear curvature for the
lowest α = 0.45. This will be considered in the later analysis given in Chapter 4.



Chapter 4

Controlled symmetry breaking and
vortex dynamics in intersecting flows

In this chapter (adapted from our publication [1]) we discuss how vortex dynamics
depends on the nature of the flow transition that develops in the cross-slot geometry
when Re is increased beyond a critical value, Rec. Our observations and analysis show
that changing the aspect ratio, α, affects the degree to which the Dean vortices, that
appear due to the curving streamlines in the flow, are confined within their respective
quadrants of the channel cross section (lower α implies greater confinement). Our
findings show that by controlling α we are able to modify the relative rates of vortex
merging and splitting as Re is increased or decreased, respectively, past the critical
point. By reducing the aspect ratio we are able to reduce the relative vortex intensity
resulting in a weak attraction between co-rotating vortices. In this chapter we find the
link between vortex dynamics and symmetry breaking, which provides a rationalization
for the emergence of hysteresis in the system at higher values of α.

4.1 Introduction

The formation of vortices in confined spaces such as pipes and micro-sized channels or
veins and arteries is common, yet due to experimental limitations, confined merging
and splitting of vortices was not reported in the literature. Since the basic structure of
vortical flows is independent of Re, the process of merging and splitting is expected to
show similarities across length scales (as discussed in the introduction section 1.2.2).
Therefore, we anticipate that principles derived from the micro-scale experiments pre-
sented in this chapter will have general applicability.

By employing the cross-slot geometry, we can control the dynamics of both vor-
tex merging and splitting. At low values of Re the flow along the outlet channels is
symmetric along y and z and comprises of four cells of Dean vortices (Fig. 4.1 a). How-
ever, if Re is increased beyond a critical value Rec, the flow breaks symmetry and one
pair of co-rotating Dean vortices approach each other (Fig. 4.1 b) and merge to form
a single steady streamwise stretched vortex (similar to a Burgers vortex described in
the Introduction, Chapter 1, Section 1.1.2) [51, 55], centrally aligned along the outlet
channel (Fig. 4.1 c). By reducing the Reynolds number from an initial value Re > Rec,
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Controlled symmetry breaking and vortex dynamics

in intersecting flows

Figure 4.1: Flow transitions in the cross-slot geometry [1]. µ-PIV images of the
vorticity field at x = 0: (a) a symmetric flow field with 4 cells of Dean vortices; (b) an
asymmetric flow field where two intensified Dean vortices have commenced to merge;
and (c) a single steady, central streamwise vortex is formed by the merging of the two
Dean vortices.

to a final value Re < Re∗c the opposite process is observed, and a single vortex splits
into two co-rotating vortices that migrate away from each other as the flow regains its
symmetry.

Using SLE-fabricated cross-slots (see Methods Section 2.1), the processes can be
directly visualized, and the streamwise vorticity can be quantitatively measured using
time-resolved flow velocimetry. In our experimental system, each of the Dean vortices
is confined within a quadrant of the channel cross section that is dictated by the
boundaries of the channel and by the neighboring counter-rotating vortices. As a result,
the Fujiwhara effect, in which co-rotating vortices mutually orbit each other around
a point between them, is eliminated. Typical experiments in vortex dynamics studies
exhibit the Fujiwhara effect and therefore a rotating reference frame is needed when
analyzing the results. Besides avoiding a rotating reference frame, our experimental
set-up eliminates any uncertainties in the determination of vortex location [101, 197,
198]. In addition, in our experimental set-up the Re can be maintained as a constant
throughout an experiment, allowing to keep a constant distance between vortices that
are in the process of merging or splitting.

As described in details in the Methods, Chapter 2, Section 2.4, we perform ex-
periments by controlling Re in two distinct ways: (1) increasing and decreasing small
quasistatic ramps of Re in which the flow is observed under steady conditions at each
Re increment and, (2) large step increases or decreases in Re in which the flow is
observed as it dynamically approaches the steady state at above or below Rec.

Previous numerical studies of the vortex shedding downstream of a circular cylinder
[199] have indicated that vortex dynamics is linked to symmetry breaking transitions.
In our work we experimentally show, for the first time, that there is a mutual rela-
tionship between symmetry breaking and the merging and splitting of vortices. Fur-
thermore, we show that the intensity of Dean vortices and distance between them, is
determined by the aspect ratio α of the rectangular inlet and outlet channels.

Since the onset of the flow asymmetry is interrelated to the merging process, we
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will describe the flow asymmetry by using the Landau model and study its relation to
the merging and splitting process.

Through time dependent experiments we find that the relation between the emer-
gence of a flow instability and the onset of merging to be independent of Re. We
discover the effect of confinement on the merging and splitting of vortices and identify
possible changes in the physical mechanism that governs the process.

Our findings not only suggest that the mechanism of vortex merging can be affected
by confinement of the vortices, but they also introduce a new approach in the study of
vortex dynamics and specifically vortex splitting and its mechanism in a well controlled
experimental frame.

4.2 Quasistatic control of Re

4.2.1 Direct experimental observation on a streamwise vortex
in a square channel cross-slot flow

For an overall view on the Re parameter range where the flow instability appears, initial
observations were conducted with a confocal microscope (DSD2, Andor Technology,
Methods Section 2.2) focused on the x = 0 plane of a square cross section cross-
slot device with α = 1 (as described in the Methods Sections 2.1 and 2.2). For flow
visualization, water mixed with fluorescent dye is introduced from the left inlet while
pure water is introduced from the right inlet. Snapshots of the flow field are taken
for quasistaticaly increasing and decreasing Re (Fig. 4.2). At Re = 20 the flow is
symmetric and stable, increasing Re to a critical value (Rec ' 40) results in symmetry
breaking and the initiation a spiral vortex formation at the center of the x = 0 plane.
Further increase in Re results in an increase of the vortex size and additional loops
are added to the spiral vortex (Fig. 4.2 top row). At Re ∼ 128 secondary spirals form
in the top-left and bottom-right of the image, creating a “mushroom” shape, similar
to the findings in [27]. At Re > 280 the spiral structure no longer holds as the flow
becomes unsteady. When the experiments begin at Re > 280 and then Re is reduced
in a quasistatic manner (Fig. 4.2 bottom row) the steady spiral structure holds for

Figure 4.2: Initial direct observation of the flow instability with a confocal microscope,
Re is indicated in the labels, red line marks the diameter of the central vortex, dvortex.
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Figure 4.3: µ-PIV images of vorticity in the x = 0 plane measured under the qua-
sistatic experimental condition with α = 1 [3]. Parts (a)-(d) show results for progressive
increases in Re from Re < Rec to Re > Rec, while parts (h)-(e) show progressively de-
creasing Re from Re > Rec to Re < Re∗c . (a) & (e) Re = 37.1; (b) & (f) Re = 39.2;
(c) & (g) Re = 40.0; (d) & (h) Re = 41.2. The color scale indicates the local value of
the normalized axial vorticity.

Re < Rec = 38.5, which indicates the existence of hysteresis in the system.
Flow measurements are conducted using µ-PIV in the channel cross section at

the centerplane (x = 0 plane) for increasing and decreasing Re ramps. With this
measurement technique we can quantitatively characterize the flow transition in detail,
and validate our experimental setup and the measurement technique with previous
studies. The results from µ-PIV experiments in a microfluidic cross-slot geometry with
α = 1, close to Rec are shown in Fig. 4.3. Here, for increasing Re, starting at Re = 37.1
(Fig. 4.3 a) the flow is steady and symmetric. The two incoming fluid streams from
opposing y-directions meet at y = 0 and form an essentially straight interface along the
z-axis. At this Re, the four cells of Dean vortices previously reported in the numerical
simulations of Haward et al [27] are already apparent in the four quadrants of the
channel cross-section.

In Fig. 4.3 a, the four Dean vortices are relatively balanced and hence the interface
is straight and symmetric. As Re is increased (Fig. 4.3 b, c) the flow remains approx-
imately symmetric, with a slight tilt of the interface between incoming fluid streams
with respect to the y and z axes. This tilt results from an imbalance between the
two diagonally-opposed pairs of co-rotating Dean vortices. This asymmetry leads to
a small non-zero value of the centerpoint axial vorticity. For Re > Rec ≈ 40 a fully-
developed steady spiral vortex forms, centered on y = z = 0 with a counter clockwise
rotation, about the x-axis (Fig. 4.3 d). At this stage, the centerpoint axial vorticity
jumps greatly in its magnitude, indicating a discontinuity in the flow transition. As
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Figure 4.4: Central spiral vortex in a cross-slot with α = 1. (a) Confocal microscope
data of normalized central spiral vortex diameter, dvortex, as a function of Re. (b) µ-PIV
data of ψ as a function of ε, in the proximity of the critical point (ε = 0), revealing
the hysteresis in the transition, arrows indicate the jump between stable and unstable
branches. The data is fitted with the Landau model presented in Chapter 3, Eq. 3.3.

expected for a Newtonian fluid in a cross-slot device of square cross-section (i.e. α = 1)
[27], hysteresis is observed in the transition. When the Reynolds number is slowly de-
creased from Re > Rec (Fig. 4.3 e-h) we find that the flow only recovers symmetry
once Re < Re∗c = 38.8.

The central vortex diameter, dvortex is extracted from the measurements conducted
with the confocal microscope (Fig. 4.2) and normalized with the width of the channel,
w = 440 µm. Measurement of dvortex is demonstrated by the red line in the inset of
Fig. 4.4 a. A plot of dvortex/w as a function of Re is presented in Fig. 4.4 a, showing
how the central spiral diameter changes when Re is increased. Upon Rec, the central
vortex is formed with a CCW rotation and its diameter rapidly grows, where it reaches
a peak size at Re ∼ 130. The central vortex size remains stable up to Re ∼ 200 where
two additional CW rotating side vortices appear. For Re & 200, a small decrease in
the diameter of the central vortex is seen and eventually the flow becomes unsteady at
Re = 280.

The order parameter ψ (as defined by Eq. 3.7) is extracted from µ-PIV measure-
ments (Fig. 4.3) and plotted as a function of the control parameter ε (Eq. 3.8) for a
narrow range near the flow transition region (see Fig. 4.4 b). The plot is fitted with
the Landau model (Chapter 3, Eq. 3.3), revealing the critical values of Rec = 40.2 and
Re∗c = 38.0.

These findings are in close agreement with experimental and numerical observations
conducted with a similar system by Haward et al [27]. However, we point out that in
their work, it was not possible to resolve the hysteresis in the flow transition experimen-
tally and they could find indications on hysteresis from numerical simulations only. In
their experiments, laser-scanning confocal microscopy was employed to visualize dye-
advection patterns in the channel cross-section, however, their microfluidic cross-slot
device was not vertically mounted, and the only direct observation was obtained at the
x− y plane. In order to visualize the y− z plane in their system, they had to perform
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multiple scans of the x− y plane across the z direction and then reconstruct the y− z
plane. Performing quasistatic variations in the Re was not possible and therefore hys-
teresis could not be resolved [27]. Furthermore, comparisons between the results of the
experiments and the numerical simulations were made using different order parame-
ters: a specific local velocity component in the case of the numerical simulations and
a dilution-based mixing parameter in the case of the experiments [27]. Here, with our
glass microfluidic devices and µ-PIV measurements, not only we resolve the hysteresis
experimentally, but we also directly obtain quantitative spatially-resolved information
on the velocity field which can be directly compared with numerical simulations.

4.2.2 Flow bifurcation and the Landau potential in a cross-slot
flow with different aspect ratios

In this section, we present the results of quasistatically controlled ramps of increasing
and decreasing Re carried out in the four cross-slot devices with different values of α
(for microfluidic device specifications see Methods, Chapter 2, Section 2.1.2). The flow
bifurcation in each device is characterized in detail in terms of the Landau model (from
which we produce a phase diagram for the transitions). We then proceed to analyze
vortex merging and splitting of the dominant Dean vortex pair.

As defined in Chapter 3, Eq. 3.7, the quantity ψ is plotted as a function of the
normalized control parameter ε =(Re/Rec)−1 for all values of α in Fig. 4.5. Increasing
ramps in Re are represented by solid symbols and decreasing ramps by open symbols. In
all cases, the data are well described with the Landau model, Eq. 3.3 (solid lines), from
which we obtain the parameters g, k, h, and Rec. For subcritical transitions (g < 0) we
also obtain Re∗c = Rec(1− g2/4k). For g > 0, Re∗c = Rec. All the parameters extracted
from the Landau model fit are summarized in Table 4.1.

Table 4.1: Landau model parameters in different cross-slot devices.

α Transition type Rec Re∗c gk−1 h

0.45 supercritical 107.5 107.5 0.11 0.001
0.57 near tricritical 76.0 75.0 -0.03 0.0001
1.1 subcritical 40.2 36.5 -0.12 0.0012
2.4 subcritical 26.5 21.4 -0.14 -0.002

As discussed in Chapter 3, the Landau model does not account for any underlying
mechanisms behind a physical phenomenon, but the parameters of the model (Eq. 3.3)
may have physical significance. For example, a perfect bifurcation will appear as a
sharp transition in ψ at ε = 0. In a perfect experimental system, the transition will be
just as likely to result in a positive or a negative value of ψ, due to the symmetric shape
of the Landau potential (see Chapter 3, Fig. 3.1). However, for our microfluidic devices,
we do not observe perfect bifurcations and the h parameter, gives us indication about
how “perfect” our experimental system is (or how asymmetric the Landau potential
is, see Chapter 3, Fig. 3.2). Although small, in our experiments, the h parameter is
always non-zero, as specified in Table 4.1. The value of h with smallest magnitude is
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found for α = 0.57 and it can be seen in the sharpness of the transition of ψ near ε = 0
(Fig. 4.5 b). A larger magnitude h term is found for α = 2.4 as can be seen in the
noticeable roundness of ψ near ε = 0 (Fig. 4.5 d). The other free parameters in the
model, g and k are inter-related. When k is set to 1, the ratio gk−1 will remain the same
as for the case where k remains a free parameter. Therefore, the ratio between these
parameters is the only real free parameter in our fit and it determines the width and
shape of the hysteresis loop, the values are specified in Table 4.1. The relation between
the parameters g and k to α is found through exponential curve fitting to the values
extracted from the Landau model, g = −4.7 + 9.9e−1.6α and k = 32.4− 107.1e−2.7α.

As expected by prediction of numerical simulations [27], our data reveal that a
supercritical transition occurs at the lowest aspect ratio, α = 0.45 (Fig. 4.5 a). A
near tricritical transition is observed for α = 0.57 (Fig. 4.5 b), for which the transition

Figure 4.5: The order parameter ψ as a function of the control parameter ε for
quasistatic measurements in cross-slot channels with different α [1]. (a) Supercritical
transition for α = 0.45, (b) near tricritical transition for α = 0.57, (c) subcritical
transition with a small hysteresis loop for α = 1.1, and (d) a larger hysteresis loop
for α = 2.4. Closed and open symbols represent data obtained by controlled increases
and decreases in Re, respectively. Curves are fitted with the Landau model [Eq. (3.3)].
Arrows indicate the jump between stable and unstable branches where hysteresis is
detected. Insets are µ-PIV images of the vorticity at the center plane (x = 0) at the
values of Re indicated above each image.
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Figure 4.6: Phase diagram for the flow transitions in (α, ε) parameter space, the
Landau potentials are indicated (ψ as a function of F found with Eq. 3.1) [1].

appears slightly backwards, but Re∗c = Rec within experimental error. Subcritical
transitions with small and larger hysteresis loops, occur at α = 1.1 and α = 2.4,
respectively (Figs. 4.5 c and 4.5 d).

From Table 4.1, we can see that Rec increases as α is decreased. The confinement
of the flow field by the solid channel walls at z = ±d/2 increasingly stabilizes the flow
as α is decreased, and therefore a higher Rec is needed for the symmetric flow state to
become unstable. The insets of Fig. 4.5 show contour plots of the vorticity over the
x = 0 plane (an average of 15 images) with superimposed streamlines. These plots
demonstrate the flow field for decreasing Re ramps from values above Rec. The flow
fields enclosed by a red frame show a single spiral vortex structure for ε = 0.1. The
flow field enclosed by a blue frame corresponds to symmetric stable flow at Re < Re∗c .
For α = 0.45 and 0.57 the symmetric flow state is regained at ε 6 0 (see Fig. 4.5 a-b).
For the channels with higher α = 1.1 and α = 2.4, the regaining of symmetry happens
at lower values of ε 6 −0.1 and ε 6 −0.18 (respectively), due to hysteresis (Fig. 4.5 (c)
and 4.5 d). For these cases, we show an additional inset flow field (enclosed in a mauve
frame) for conditions within the hysteresis loop, where ε = −0.05 and the vortex has
lower intensity when compared to the intensity at ε = 0.

We note that for α = 0.45, the order parameter ψ reaches significantly higher values
when compared to the other aspect ratios. This difference is related to the vortex
flow field that develops at this high flow confinement and will be further discussed in
Chapter 5.

By varying α and ε we can control the shape of the Landau potential and the
free energy of the system. The Landau potentials (F (ψ), Eq. 3.1) can be calculated
from the parameters used to fit Eq. 3.3 to the experimental bifurcation diagrams in
Fig. 4.5. Examples of F (ψ) for various (α, ε) are shown as insets in the phase diagram
presented in Fig. 4.6. The vertical red line in Fig. 4.6 marks the aspect ratio α = 0.55
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for which a tricritical point is formed at ε = 0. To the left hand side of the red line,
the transition will be supercritical and to the right hand side the transition will be
subcritical. The black horizontal line marks the line of critical points, where ε = 0.
The dash-dot black line marks Re∗c and the hysteretic curve, where ε = g2/4k. Below
the dashed-dotted line, F has a single minimum at ψ = 0, indicating that symmetric
flow is always the only stable state. Above the solid black line, for ε > 0, F has a
maximum at ψ = 0 (symmetric flow becomes unstable), and acquires two new minima,
the new stable points, where the flow is asymmetric. The left-hand-side minimum
corresponds to a negative solution (ψ < 0, clockwise rotation) while the right-hand-
side minimum corresponds to a positive solution (ψ > 0, counter-clockwise rotation).
Since the bifurcations in these experiments are not perfect, and we get a non-zero h
term in Eq. 3.3, one minimum will be deeper than the other, and to this deeper well the
instability will evolve corresponding with the direction of the vortex rotation. Between
the black solid line and the black dashed-dotted line is the hysteretic region in which F
has three minima and the symmetric state can be either stable or unstable, depending
on the history of the system.

As ε is increased up to the onset of the asymmetry, and becomes non-zero, a dom-
inant pair of co-rotating Dean vortices begin to approach each other in the process of
merging. In Sec. 4.2.3, we describe for the first time, a controlled merging process cap-
tured during quasistatic experiments. We will also present the data from the opposite
experiments, in which a single vortex splits into two corotating vortices that migrate
away from each other as ε is decreased in a quasistatic fashion.

4.2.3 Quasistatic vortex merging and splitting

In the process of vortex merging, two co-rotating vortices grow in size and share their
outer vorticity bands as they approach each other. This process and its mechanism has
been described in detail in the literature for unconfined macroscale vortices [91–99].
The first stage of merging is recognized as the slow stage in which diffusive growth of
the vortex cores is seen and the vortex cores slightly move towards each other. Once a
critical ratio between size and distance is met, typically 0.24 ≤ a/b ≤ 0.32, a convective
stage will begin. In the fast convective stage, the vortices will deform, share filaments
and will rapidly move toward each other. The final third stage is the merged diffusive
stage in which the two vortices are merged into a single structure [94, 200, 201]. Some
studies have reported a fourth stage in the merging process, which is referred to as a
second diffusive stage (a slow down in the merging process), that follows the convective
stage, prior to the final merging [92–94].

In all of the previous reports, the experiments were time dependent, where only
the initial Re was controlled [91, 93, 200–203]. Here, with quasistatic experiments, we
are able to precisely control Re in very small increments, which allows us to arrest the
merging process at any stage while maintaining a constant background flow. To the
best of our knowledge, such a controlled experimental system for the study of vortex
merging was not reported before.

The process of merging is commonly studied by following the distance between the
cores of the merging vortices, b, normalized by the maximal distance between the cores
b0 [102]. In order to identify the location of the cores first we need to define the planar
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Figure 4.7: The nondimensional circulation ΓDean/Uw of a quadrant from the cross
section at x = 0 is plotted as a function of ε [1]. Closed and open symbols correspond
to increasing and decreasing increments in Re. Insets are µ-PIV images of the vorticity
at x = 0 for ε = −0.02, dashed lines divide the flow field into the defined quadrants.

domain in which the vortex is confined and find the circulation of the Dean vortex
(ΓDean) within the domain. In our experiments, it is reasonable to assume that the
planar domain for each Dean vortex is its respective quadrant of the cross-section of
the channel. The circulation in each quadrant, ΓDean is given by:

ΓDean =

±w
2∫

0

± d
2∫

0

ωxdzdy. (4.1)

In our experimental system, an equivalent analysis can also be performed for vortex
splitting, i.e., b can be evaluated as Re is progressively reduced as well as increased for
Re < Rec.

In Fig. 4.7 the non-dimensionalized average circulation of the two merging Dean
vortices ΓDean/Uw is plotted as a function of ε for ε < 0. From this figure we can
see that the maximal circulation of a Dean vortex is measured just before the onset of
the asymmetric flow. We note that near ε = 0, the dimensional circulation is higher in
channels with lower α (as illustrated by the inset images). However, in dimensionless
form ΓDean/Uw is higher for α = 1.1 and 2.4 than it is for α = 0.57 and 0.45, even
though the Reynolds number has now effectively been scaled out and a data collapse
might be expected.

The insets of Fig. 4.7 show the vorticity of the flow field at x = 0 for ε = −0.02,
just before the onset of the asymmetric flow. The vorticity patches shown in the insets
of Fig. 4.7 give an indication of the space within the quadrant occupied by a Dean
vortex. For α = 0.45 and 0.57 the vorticity patches occupy nearly the entire quadrant.
The size of the Dean vortex is set by the channel half-width w/2, so for α < 1 the Dean
vortices are compressed by the shallow depth and are constricted between the wall and
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Figure 4.8: Separation distance between Dean vortex pairs as a function of ε and
central vortex non-dimensional radius [1]. (a) Normalized distance between Dean vor-
tex pairs prior to merging, b/b0 as a function of ε. (b) Normalized characteristic radius
a/w of the single merged vortical structure as a function of ε. Closed/open symbols
represent increasing/decreasing Re steps.

the counter rotating vortices. By contrast, for higher α >1, the vorticity patches are
localized near the walls at z = ±d/2, occupy a space that is smaller than the quadrant,
and are therefore less spatially confined.

The center position of the merging Dean vortices Xc is calculated from the velocity
field as follows [102]:

Xc =
1

ΓDean

±w
2∫

0

± d
2∫

0

Xωxdzdy, (4.2)

where X is the coordinate within the quadrant containing the vorticity ωx. After
finding the center position of each Dean vortex for each imposed Re, the distance
between the two merging vortices (b) is computed by subtraction. The parameter b/b0
is plotted as a function of ε in Fig. 4.8 (a), closed and open symbols refer to vortex
merging (increasing ε) and splitting (decreasing ε), respectively.

In low aspect ratio channels (α < 1), we observe that the approach of the dominant
Dean vortex pair with increasing ε is very gradual and actually continues beyond
the onset of symmetry breaking. Merging into a single central vortex occurs after
displacement of the Dean vortices through a relatively short distance (≈ 0.1b0). Since
the Dean vortices are relatively close to each other even in the symmetric state (see
insets of Fig. 4.7), merging occurs for a relatively small displacement of the cores.

For the deep channels with (α > 1), the two merging Dean vortices show an initially
gradual approach as ε is increased but then rapidly merge into a single structure at
ε = 0 . In these cases, the Dean vortices are more widely separated in the symmetric
flow state (see insets of Fig. 4.7), so must displace a considerable fraction of their
maximal separation b0 before merging occurs.

Apart from the vortex merging process, our experimental system allows the con-
trolled study of vortex splitting. As mentioned in the introduction section 1.2.2, studies
on the dynamics of splitting vortices are scarce. The vortex flow field in the first exper-
imental observation of vortex splitting [104, 105] resemble that in our own experiments
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(see Fig. 4.5). Additional reports suggest that merging and splitting events in arrays
of counter-rotating Dean vortices are associated with the spacing between vortex pairs
and are affected by centrifugal instabilities [107].

Yet in all of the previous studies mentioned above, the control over the experimental
conditions was limited. Additionally, the previous studies involved stacks of multiple
vortices that exhibit complex interactions [104–107]. By contrast, in our experimental
setup, a single vortex is isolated at a fixed location and forced to split in a controlled
fashion by a simple manipulation of the Reynolds number.

In our experiments, we are able to measure the separation between vortices as
we reduce Re in a finely controlled manner, as demonstrated by the open symbols
in Fig. 4.8 a. For the low α channels the merging and splitting processes are clearly
reversible as the curves follow the same path. However, for α = 1.1 and 2.4, the vortex
splitting occurs for lower values of ε than vortex merging. This is due to the hysteresis
in the flow that permits the existence of a central vortex for g2/4k < ε < 0.

Once the dominant Dean vortex pair has merged into a single central vortex, we
can continue our analysis by tracking the size of the vortex core as a function of the
imposed ε. The characteristic radius of the central vortex core is evaluated from the
second moment of vorticity [102]:

a2 =
1

Γ

w
2∫

−w
2

d
2∫

− d
2

| X −Xc |2 ωxdzdy. (4.3)

The vortex core radius is normalized by the characteristic length scale w and is plotted
as a function of ε in Fig. 4.8 b. For increasing Re ramps, the plots show how the
radius of the central vortex core increases with increasing ε, starting from the value at
which the merging process is completed and the central vortex is formed. For α = 0.45
and 0.57, the growth and reduction of the central vortex radius follow the same curve.
However for α = 1.1 and 2.4 the curve for reducing Re is prolonged to negative values
of ε and smaller values of a/w due to the hysteresis in the flow. As α is increased, the
central vortex occupies a greater portion of the channel width w. However, the size
of the central vortex is not limited simply by w since the vortex can actually impinge
into the channel inlets (as reported previously [27] and demonstrated by the inset in
Fig. 4.5 d where Re = 30.2). This implies that the central vortex size is limited by d,
the depth of the channel. Therefore, higher values of α enable relatively larger, more
intense vortices to be formed, while low α suppresses vortex growth and intensification.

4.3 Dynamic experiments

In this section, we will describe the dynamic flow experiments in which we impose
a large step increase or decrease in Re across the critical value and observe the time
evolution of the flow as it approaches the steady state. We begin by presenting the time
dependence of the symmetry breaking flow instability before describing the dynamics
of the associated vortex merging and splitting processes.
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4.3.1 Dynamics of the flow transition

Time dependent experiments are conducted by imposing a single step increase or de-
crease in Re from an initial value Rei to a final value Ref across the transition, as
described in the Methods, Section 2.4.2. This results in an instantaneous change in the
free energy of the system F . We follow ψ as it subsequently evolves in time towards
equilibrium in one of the new potential wells (Fig. 4.6).

For time dependent experiments, the initial and final imposed control parameters
are defined as εi = (Rei−Rec)/Rec and εf = (Ref−Rec)/Rec, respectively.

For increasing Re steps, we begin with an initial Rei < Re∗c and end with a final

Figure 4.9: Time dependence of the ψ for all four aspect ratios [1]: (a) α = 0.45,
(b) α = 0.57, (c) α = 1.1, (d) α = 2.4. Experiments are done for various values of
εf , indicated in the legends. The data are fitted with the dynamic form of the Landau
model (Eq. 4.4). (Left) Increasing Re steps, and (right) decreasing Re steps.
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Figure 4.10: The parameter τ is extracted from the dynamic Landau model fit and
plotted with εf (SI-[1]). τ remains positive throughout the fittings and is nearly con-
stant.

Ref > Re∗c . The left-side column of 4.9 shows ψ plotted as a function of time (t)
for an increasing Re step, from εi (indicated in the figure) to εf which is specified in
the legend. For experiments involving decreasing Re steps, we begin from an initial
Rei > Rec and reduce to a final Ref < Rec (i.e., εf < 0 including values within the
hysteresis regions). The curves showing ψ(t) for decreasing ε experiments are plotted
in the right-side column of Fig. 4.9, where again εi is indicated in the figure and the
various values of εf imposed at each aspect ratio are indicated in the legends. The
solid lines in Fig. 4.9 are fits to the data using a dynamic form of the Landau model
[50]:

τ
dψ

dt
= −dF

dψ
= εψ − gψ3 − kψ5 + h, (4.4)

where τ is the characteristic time.
In order to reduce the number of free parameters, k was set to be equal to 1. The

parameters g, h, ε and τ which represent the extent of hysteresis in the transition,
channel imperfections, Re and the time constant, respectively, were left free. As is evi-
dent from Fig. 4.9 Eq. 4.4 provides an excellent description of the relaxation dynamics
observed in our experiments at all α and εf .

The parameter h was found to vary insignificantly between experiments, and it
shifts only slightly from the value originally found in the quasistatic experiments (see
Table 4.1). The maximum deviation from the quasistatic h value is 0.1%. This indicates
that h is independent of ε and only depends on the imperfections of a specific channel.

The parameter τ was found to remain nearly constant between 0 ≤ τ ≤ 0.05
throughout the experiments, for all α. A plot of τ as a function of ε is shown in
Fig. 4.10.

In Fig. 4.11 a and b, plot of the parameters εf and g are presented as a function of
ε for each of the four tested aspect ratios.

The value of Rec found in the quasistatic experiments is very similar to the value
of Rec that is retrieved from curve fitting of the dynamic Landau model for the time
dependent experiments. Therefore the relation between ε and εf is linear (Fig. 4.11 a).
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A shift from the linear trend is seen for α = 2.4 and for α = 1.1 (purple and blue
symbols in Fig. 4.11 a) where the value of ε is strongly affected by the hysteresis and
where the critical value to regain symmetry is no longer Rec but is now Re∗c .

The parameter g increases linearly, passing through the origin, with the increase
in ε. A slight shift from the linear trend is seen for the α = 0.45 (red symbols in
Fig. 4.11 b). This can be explained by the linear approximation that is performed
for the parameter εf and according to the theory should slightly curve, keeping a
linear relation with g. The linear trend of the parameter g was also observed in the
experiments done with the Taylor-Couette configuration [196].

For increasing steps in ε (Fig. 4.9, left), the results are in general accordance with
the quasistatic flow curves in Fig. 4.5 and the steady state value of ψ grows as the
imposed εf is increased. For the subcritical transitions, we note some interesting cases,
e.g., for α = 2.4 at εf = −0.02 , where ψ appears to settle at an intermediate metastable
value for 1 . t . 2.5 s before eventually increasing to the final steady state value. The
intermediate and final values of ψ are approximately consistent with the values found
on the lower and upper branches within the hysteresis loop shown in Fig. 4.5 d at
the same ε = εf = -0.02. Despite the resulting complex time evolution of ψ , Eq. 4.4
captures the dynamics in a very precise manner.

From the plots in Fig. 4.9 (left) it is apparent that the transition becomes prolonged
as εf is decreased. This can be explained by the shape of the Landau potential. For
small values of εf , the new potential wells that form are shallow and therefore F at
ψ = 0 is nearly flat, which causes ψ to evolve slowly. A larger εf results in deeper
potential wells with steeper slopes near ψ = 0 which cause the transition to occur faster.
This trend is seen for all values of α that are studied here; however, the slowdown in
the dynamics of the transition is most prominent near the tricritical point [i.e. for
α = 0.57 as εf → 0, Fig. 4.9 b]. Similar behaviors have also been reported for flow
transitions near critical points in the Taylor-Couette geometry [196, 204].

The right-hand side of Fig. 4.9 shows the evolution of ψ as ε is decreased from
εi > 0 to εf < 0. From these plots it is seen that for lower aspect ratios (Fig. 4.9 a and

Figure 4.11: Landau model parameters extracted from the dynamic model fits (SI-
[1]). (a) The parameter εf is plotted as a function of the parameter ε obtained from the
fit with the dynamic Landau model. The solid line is a linear fit to the data showing
that the free parameter ε remains similar to the original critical value obtained from
the quasistatic experiments. (b) The parameter g is plotted as a function of ε. The
solid line is a linear fit to the data.
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4.9 b) the transition back to symmetry (i.e. ψ = 0) occurs faster than the symmetry
breaking even as εf → 0. This can again be explained simply by considering the change
in shape of the Landau potential, which changes directly from having two minima to
having a single minimum as εf is decreased below the critical value (see insets in
Fig. 4.6). For the subcritical transitions at higher aspect ratios (Fig. 4.9 c and 4.9 d)
where hysteresis emerges, the process of regaining symmetry is more complicated, as
seen by the convoluted curve shapes. For values of −g2/4k < εf < 0 that lie within
the hysteresis loop, the Landau potential develops three minima (see Fig. 4.6) and it
is possible to remain at a high value of ψ in a stable or metastable state.

Figure 4.12 shows the flow fields measured in dynamic experiments for three differ-
ent cases of a subcritical transition (α = 2.4). For an increase in ε from εi = 0.24 to
εf = 0.06, Fig. 4.12 a shows how the flow field breaks symmetry at t > 0 and evolves
to a stable asymmetric field with a fully developed central vortex. This set of figures
correspond with the plot shown in Fig. 4.9 d, where εf = 0.06 (turquoise circles). The
evolution of the flow for a reduction of ε from εi = 0.15 into the hysteresis region is
shown by the images in Fig. 4.12 b, where εf = −0.17. Here, the flow field evolves from
stable central vortex at t = 0 s to a smaller central vortex at t = 0.25 s and finally to
an even smaller vortex at t = 1 s that subsequently remains stable and steady in time.
This set of figures corresponds with the plot shown in Fig. 4.9 d, where εf = −0.17
(bright green symbols). Regaining of symmetric flow, from an initially asymmetric
state at εi = 0.15 is illustrated by Fig. 4.12 c, for εf = 0.28 (corresponding to the dark
red symbols in Fig. 4.9 d). Here we can see how the flow field is transformed from a
fully developed central vortex back to a symmetric state within ≈ 1 s.

In Sec. 4.3.2, we will focus on analysing the dynamics of confined merging vortices
and the opposite process in which a single vortex splits into two vortices.

Figure 4.12: Evolution of vorticity fields observed in the center plane (x = 0) of a
cross-slot device with α = 2.4 [1]. (a) Symmetry breaking and formation of a central
vortex are captured for an increase from εi = -0.24 to εf = 0.06. (b) Decay of a central
vortex for a reduction from εi = 0.15 to εf = -0.17 (within the hysteresis loop). (c)
Regaining of symmetric flow for a reduction from εi = 0.15 to εf = -0.28. The colored
frames surrounding the sets of images correspond to the data sets shown in Fig. 4.9 d.
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4.3.2 Dynamics of vortex merging and splitting

The normalized separation distance between vortices b/b0, is plotted as a function
of dimensional time in Fig. 4.13. The left hand side of Fig. 4.13 shows the data
for increasing Re experiments during the process of merging. The right hand side
of Fig. 4.13 shows the opposite experiments where a step decrease in Re causes the
single central vortex to split into two Dean vortices that migrate away from each other
towards the channel walls.

We notice that for α = 0.45 and 0.57 the range of movement of the Dean vortices
prior to merging is ≈ 0.1b0 (Figs. 4.13 a and 4.13 b), similarly to the finding in the
quasistatic experiments shown in Sec. 4.2. For α = 1.1, the range of movement is
≈ 0.5b0 (Fig. 4.13 c), while for the highest aspect ratio α = 2.4, we observe that
the Dean vortices pass through an even larger relative distance ≈ 0.7b0 before merging
(Fig. 4.13 d). The merging process that is seen for α = 1.1 and α = 2.4 has a qualitative

Figure 4.13: Normalized distance between the center position of merging and sepa-
rating Dean vortices (b/b0) as a function of time for four aspect ratios [1] ; (a) α = 0.45,
(b) α = 0.57, (c) α = 1.1, (d) α = 2.4. Experiments are performed for step increases
(left) and decreases (right) in εf which is indicated in the legend. Solid lines correspond
to exponential curve fitting.
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Figure 4.14: R0 as a function of εf [1]. R0 is extracted from the exponential fits to
the data in Fig. 4.13 a. The solid lines are linear fits to the data, where m is the slope.
Merging data are located in the upper right quadrant; splitting data are located in the
lower left quadrant.

similarity to previous studies in which the vortices are not confined [93, 94, 200–202,
205].

Since the experimental system enables control of the initial and final Re, we are
able to capture unique cases in which the vortices are in the process of merging but
never fully merge, due to the balance achieved between inertial and viscous forces at
the final Ref . Examples for this equilibrium state within the vortex merging process
can be seen for two experiments with the channel α = 0.45 for which εf = 0.03 and
εf = 0.06 (as shown in the left side of Fig. 4.13 a). By fixing Ref in the dynamic
experiments, we are also able to arrest the process at any given stage while remaining
under constant flow. This can potentially enable a very detailed study of the flow field
during merging and splitting of vortices.

In order to get further insight about the effects of confinement on the dynamics of
the merging process we performed curve fitting to the plots in Fig. 4.13 at different
aspect ratios.

All of our experimental data sets (for vortex merging and splitting) are well-
described by a simple exponential of the form b/b0 = 1 + AeR0t where A is a constant
and R0 is the rate of the exponential growth. Note that vortex merging has been
described as an exponential process in various previous studies [41, 99, 206–209].

The parameter R0, is extracted from the fit and plotted as a function of εf in
Fig. 4.14. From our results, it is seen that the rates of both the merging and the
splitting processes are linearly dependent on the imposed Ref , with an apparent change
in slope at the critical point. Considering first the merging process, at all aspect ratios
we observe faster merging for higher εf . This is in agreement with previous experiments
which measured the time taken for vortices to merge for different initial imposed Re
[92].

For a given εf , merging rates are faster in high α devices compared to the low α
channels. Now, considering the splitting process, we observe the opposite trend, i.e.,
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faster splitting in low α channels than in high α channels (for a given εf ).
Considering only the low α channels, it is apparent that, equidistant from the critical

point, the merging is significantly slower than the splitting of vortices. The opposite is
true for high α channels, where merging proceeds at a faster rate than splitting.

The contrasting dynamics can be attributed to the higher value of ΓDean/Uw (see
Fig. 4.7) that leads to stronger attraction between Dean vortices in high α channels.
Hence the vortices in high α channels are relatively quick to merge but relatively slow
to separate in comparison with lower α channels. This disparity provides a basis for
understanding the hysteresis in the flow transition observed in the higher aspect ratio
channels.

Confining vortices by reducing the channel aspect ratio forces them to be in an
“unnatural” constricted environment. At higher aspect ratios, the vortices are less
confined, show a more natural circular shape and gain further spatial freedom. Con-
sequently, we can expect that in an un-confined system (for instance in aerodynamics
or geophysical flows), the splitting dynamics will be slower than that of merging.

In Sec. 4.3.3, we will discuss the relation between the onset of the flow instability
and regaining of symmetry with the merging and splitting of vortices.

4.3.3 Relation between flow instability and vortex dynamics

Here, we present the relation between the order parameter ψ which and the distance
between the merging and separating Dean vortices b.

For each α, the plots of ψ as a function of 1 − b/b0 are presented in Fig. 4.15 for
a wide variety of εf . In general, there is a good collapse of the data at each aspect

Figure 4.15: Relation between the order parameter ψ and the distance between
merging Dean vortices b/b0 [1]. The data plots show both increasing and decreasing
Re steps experiments, εf is indicated in the legend. Supercritical transition (a) α =
0.45 and (b) α = 0.57. Subrcritical transition (c) α = 1.1 and (d) α = 2.4.
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ratio, clearly showing the inter-relation between the two quantities and suggesting that
ψ depends only on the distance between Dean vortices, independently of the history
of the system. The relation between ψ and 1 − b/b0 is solely affected by the value of
α, which determines the extent of confinement and the initial distance of the vortices
from each other.

For the different transition types we see a different trend. For the supercritical tran-
sition, ψ shows a general linear change with 1− b/b0 with an apparently α-dependent
slope (Fig. 4.15 a and 4.15 b). However, for subcritical transitions the relation between
the parameters is non-linear (Fig. 4.15 c and 4.15 d).

In the high α channels we can see that initially, ψ changes rapidly as a function
of the distance between the vortices. As the vortices approach each other, there is
a change in slope and ψ increases more moderately while the distance between the
vortices decreases rapidly.

We interpret these two regimes as corresponding to the diffusive and convective
stages of the merging and splitting processes. The general linear relation between ψ
and 1 − b/b0 for low α channels suggests the absence of one of the stages in merging
and splitting in these more confined cases. Since the vortices only move through a
relatively short distance in these low α cases, we conclude that the confinement results
in a dominant diffusive stage and the absence of an observable convective stage.

4.4 Summary

In this chapter, we have examined the vortex dynamics associated with a symmetry
breaking flow instability that occurs beyond a critical Reynolds number in a 4-way
intersecting flow. At low Re, the flow in the cross section of the intersecting region
is symmetric and composed of four cells of Dean vortices. As Re is increased beyond
the onset of bifurcation, one pair of diagonally opposed Dean vortices intensifies and
begins to approach each other, ultimately merging to form a single vortex located on
the channel centerline. By a subsequent reduction of Re, the opposite process can be
induced in which a single vortex splits into two co-rotating vortices that migrate away
from each other. While vortex merging has been studied extensively, the process of
vortex splitting is much more challenging to induce and study. Here, by careful ma-
nipulation of the imposed Reynolds numbers in quasistatic and dynamic experiments,
we are able to easily induce both the merging and splitting processes while keeping the
system under a well-controlled constant steady flow. Furthermore, we can arrest the
dynamics at any desired stage, permitting a detailed study of the complex flow fields
and vortex interactions.

Our dynamic experiments show that the process of merging and splitting is expo-
nential with a rate R0 that depends linearly on the imposed Reynolds number and also
depends on whether the vortices are merging or separating. By changing the aspect
ratio (α) of the channels leading to and from the intersection, we vary the degree of
confinement of the four Dean vortices in the symmetric flow state, which has a sig-
nificant effect on the rates of vortex merging and splitting. For channels with lower
values of α, the Dean vortices are tightly confined within quadrants of the channel
cross section. This results in a relatively slow rate of vortex merging compared with
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splitting and reversibility of the flow transition. By contrast, for channels with higher
α, the Dean vortices are relatively widely spaced and unconfined. In this case, we find
a faster rate of merging than of splitting. The change in the relative rates of vortex
merging and splitting as α is varied provides a rationalization for the emergence of
hysteresis in the symmetry breaking transition at higher values of α [27].

The symmetry breaking and the vorticity dynamics are intimately linked, and our
order parameter that describes the degree of flow asymmetry is shown to depend only
on the separation distance b between Dean vortices, independent of Re or the history
of the system. The relation between ψ and b is linear for low α channels (supercritical
transitions, for which only a slow diffusive merging and splitting are observed) but
is non-linear for the more complicated hysteretic subcritical transitions in higher α
channels (for which both slow diffusive and fast convective stages are seen). Our
results are clearly relevant to understanding and predicting flow transitions associated
with the merging and splitting of vortices in confined environments such as pipe flows,
microfluidics, and biological flows within veins and arteries. Our discoveries may also
benefit the understanding of vortex dynamics in general, particularly, with regard to
the turbulent energy cascade and the prediction of vortex behavior and interactions in
geophysical flows.





Chapter 5

Vortex structure and periodic flow
fluctuations

In this chapter, the Re −α phase diagram is further explored by increasing Re well be-
yond Rec. We study the changes in the flow field under different confinement conditions
and how confinement affects the properties of the central vortex and its dynamics. The
main findings from this chapter indicate that by tuning the confinement parameter, α
and Re, it is possible to control vortex properties such as its intensity and core struc-
ture. Additionally, it is shown that the vortex type at the steady state will determine
the nature of the unsteady fluctuations that arise upon an increase in Re.

5.1 Introduction

Periodic flow patterns commonly occur, upon a critical flow rate, when the fluid is
interrupted by an obstacle, around which stagnation points are formed [19]. As briefly
mentioned in the general Introduction in Chapter 1, the resulting motion, vortex in-
duced vibration, may be destructive for structures such as bridges, pipes, buildings
and underwater cables [19, 20]. Vortex induced vibration is one of the major issues in
the engineering of deepwater risers for oil and gas production and many efforts have
been made to suppress it [210]. In order to avoid vibrations of such underwater pipes,
they are often fitted and covered with small structures, that are designed to stabilize
the flow and control the vortex induced motion [211–213].

In recent years, vortex induced vibration is being acknowledged as a source for
renewable energy from fluid flows [9, 21]. Vortex induced vibration is described as a
high energy phenomena and is already in use for energy harvesting from ocean currents
at high Re (104 < Re < 105) [214].

The stagnation point flow in the cross-slot geometry, becomes unstable and un-
steady at relatively low Re and can potentially offer improved conditions for energy
harvesting by vortex induced vibrations. The control over the flow instability and vor-
tex formation in the cross-slot geometry was thoroughly studied in the Chapter 4. In
this chapter, vortex types and properties will be further characterized. Additionally,
it will be shown that the nature of periodic vortex flows is affected by the vortex type
and can be controlled by flow confinement.

65
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Figure 5.1: Schematic diagrams demonstrating cross-slot devices with (a) highly
confined (low aspect ratio α = d/w = 0.45) and (b) moderately confined (higher
aspect ratio α = d/w = 2.4) vortices. Inflow (along y) and outflow (along x) are
indicated by the blue and red arrows, respectively.

The cross-slot intersections that are studied in this chapter are selected as they are
located at the two opposite ends of the Re −α phase diagram presented in Chapter 3
Fig. 3.7. The first geometry is a low aspect ratio cross-slot device, α = 0.45 (Fig. 5.1 a)
with a distinct supercritical transition, the second is a high aspect ratio cross-slot
device, α = 2.4 (Fig. 5.1 b) with a distinct subcritical transition. In Chapter 4 the
transition to unstable flow and its dynamics are discussed in detail. Briefly, for low
aspect ratio, stabilization of the flow occurs due to the close proximity of the walls
located at z = ±d/2, leading to slower dynamics of the transition and determining
its type (super rather than subcritical). Higher aspect ratio cross-slot devices allow
greater spatial freedom, therefore a vortex will grow and intensify at relatively low Re.
It should be noted that the central vortex that is formed at α = 0.45 is fully contained
within the borders of the outlet channel (the y − z plane), however, the vortex that
is formed for α = 2.4, may occupy a larger space than that of the outlet channel,
the borders of this vortex may intrude into the inlet channels (along y direction) as
previously reported [1, 27].

In this chapter we will test higher values of Re, well beyond Rec to study time
dependent flows for these two contrasting cases of vortex under spatial confinement.
As described in the Methods, Section 2.4, µ-PIV is used to capture image pairs of
the flow field at a high rate of 500 - 1000 Hz in order to study the dynamics of the
time dependent flow. For each Re studied, 100 velocity vector fields are produced
and processed to present velocity and vorticity contours. In order to study the nature
of the periodic fluctuations and to find the characteristics frequencies, a fast Fourier
transform analysis is performed by using a Matlab code.

5.2 Results

5.2.1 Steady vortex at high spatial confinement

As shown in Chapter 4, Section 4.2.2, at an intersection with α = 0.45 a single steady
vortex will form at Rec = 107. According to the experimental measurements, the
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central streamwise vortex persists and remains steady for a range of 107 < Re < 473.
A contour plot of the velocity component vy/U , is constructed for a steady vortex
flow at Re = 446 (Fig. 5.2 a). The velocity profile vy/U is plotted as a function of
z/w (Fig. 5.2 b). In Fig. 5.2 c, a contour plot of the vorticity, ωxw/U , is presented,
showing a central counter clockwise (CCW) rotating vortex. The vorticity distribution,
ωxw/U is plotted as a function of z/w (x = y = 0) in Fig. 5.2 d, showing a clear single
peak of ωxw/U at the center of the y − z plane, where the stagnation point is located
(x = y = z = 0).

A vortex with a single peak in the vorticity distribution, such as the one formed
in this channel, can be termed “monopolar”. Monopolar vortices, do not have counter
rotating vortices surrounding them. Such vortices are commonly seen in stratified
fluids, as described in several studies [113, 215, 216]. Apart from the central monopolar
vortex, the flow field contains two smaller vortices with the same CCW rotation which
appear in the corners of the y−z plane. These vortices are less intense than the central
one. All vortices in the flow field remain steady in the range of 107 < Re < 473.

5.2.2 Steady vortex at a moderate spatial confinement

At an intersection with α = 2.4 a single steady vortex will form at Rec = 26.5, as shown
in Chapter 4, Section 4.2.2,. For this aspect ratio the steady central streamwise vortex
persists over a range of 26.5 < Re < 69. Contour plots of vy/U , are constructed for

Figure 5.2: Nondimensional velocity component, vy/U and vorticity ωxw/U for
α = 0.45, Re = 446. (a) Contour plot of vy/U at the center plane (x = 0) and;
(b) velocity profile, vy/U at y=0 plotted as a function of z/w. (c) Contour plot of
ωxw/U at the center plane (x = 0) and; (d) vorticity distribution, ωxw/U at y = 0
plotted as a function of z/w.
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steady flow at Re = 37 and Re = 62 (Fig. 5.3 a and b). The velocity profiles vy/U at
32 ≤ Re ≤ 62 for which the flow is steady are plotted as a function of z/w in Fig. 5.3 c.

Contour plots of the vorticity, ωxw/U , are constructed for Re = 37 and Re = 62
(Fig. 5.3 d and e). A CCW vortex is seen at the center of the plane at z = y = 0.
At the coordinate z/w & 0.9 and z/w . −0.9 there are vorticity patches with CW
rotation but there are no vortices in these regions. When comparing the vorticity field
at Re = 37 (Fig. 5.3 d) and Re = 62 (Fig. 5.3 e), it is visible that the core of the
central vortex changes as Re is increased. A plot of the vorticity distribution, ωxw/U
along y = 0 is shown in Fig. 5.3 f for 32 ≤ Re ≤ 62. With this plot we can identify a
clear difference of the voritcity distribution when Re is increased (the vortex remains
steady). At Re = 32 the vorticity distribution shows a clear single peak at the center
of the y − z plane, similar to the vorticity peak that is seen for the lower aspect ratio
α = 0.45 (see Fig. 5.2 d). At Re = 37, the peak flattens, and at Re = 50 and Re = 62
a clear double-peak profile is seen (Fig. 5.3 f).

As Re is increased from Re = 32 to Re = 62 the double-peak profile becomes

Figure 5.3: Velocity and vorticity distributions for steady flow in α = 2.4. Contour
plot of vy/U for (a) Re = 37 and (b) Re = 62; (c) vy/U at y = 0 as a function of z/w.
Contour plots of ωxw/U for (d) Re = 37 and (e) Re = 62; (f) ωxw/U at y = 0 plotted
as a function of z/w for different Re. Insets in c and f show the core region.
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more distinct and a local minimum point is formed at z/w = 0. This ring of high
vorticity around a lower intensity vorticity region, resembles the initial stages of an
“eye” development, similar to the eye formed in hurricanes and tornadoes. Within the
eye, the vorticity drops and a “wall” of high vorticity is formed around it. In these
atmospheric vortices, the existence of such an eye is also Re dependent. However, in
storm systems, the Re is orders of magnitudes higher than the values in our experiments
and the eye structure and formation is far more complicated and affected by many
factors such as humidity, heat convection and atmospheric conditions. Additionally, in
such large storms the vorticity at the center of the eye can develop a counter rotating
motion to that of the vorticity that is measured outside the eye [217, 218].

5.2.3 Characterization of vortex profiles

As discussed in the Introduction, Chapter 1, Section 1.2.3, there are many existing vor-
tex models that describe velocity and vorticity profiles of vortices such as the Burgers,
Lamb-Oseen, Rankine and many others [111]. However, these models can not account
for the sharp decrease in the velocity profile that occurs in the case of confined vortices.
Additionally, these models assume that the peak of the vorticity distribution is at the
center of the vortex. Confined vortices were previously described mainly in stratified
fluid layers [219] or short annulus in which the vortex is confined in both streamwise
and spanwise directions. Here we will use a modified pancake-like vortex model, based
on previous studies [113], to describe the velocity and vorticity profiles of the vortices
in the cross-slot geometry that are confined only in the spanwise direction and are
stretched at the streamwise direction.

There are several ways to define vortex size, but in order to apply the pancake model
we will use the same definition used in [113]. The vortex radius Rvy,max , is defined at
the point where vy = vy,max along z at x = y = 0. In Fig. 5.4 we re-scale the velocity,
vy/vy,max and plot it as a function of z/Rvy,max for α = 0.45, Re = 446 (Fig. 5.4 a) and
α = 2.4, Re = 62 (Fig. 5.4 b). To use the pancake model for the vorticity distribution,
ωx along z is re-scaled with ωx,max. Figure 5.4 c-d shows ωx/ωx,max plotted with
z/Rvy,max for α = 0.45 (Re = 446) and α = 2.4 (Re = 62), respectively. These cases
display Re slightly below Rep, in which the flow field becomes unsteady.

For α = 0.45 the peak of the vorticity distribution is at the center of the vortex (at
z/Rvy,max = 0). However, for α = 2.4 (50 < Re < 69), the peak of the vorticity is not
located at the center of the vortex as demonstrated in Fig. 5.3 d-f.

In order to capture the complexity of the velocity and vorticity profiles within the
core of the vortex, near vy/vy,max = 0, the fit equation from [113] needs an adjustment,

Table 5.1: Pancake-like vortex model fit parameters for the vortices in the cross-slot
devices.

α a1 a2 b1 b2 R1 R2

0.45 0.6 - 0.6 - 0.84 -
2.4 1.5 -2.0 0.84 -0.38 0.88 0.34
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Figure 5.4: Highly and moderately confined vortices fitted with a modified pancake-
like vortex model. vy/vy,max plotted as a function of z/Rvy,max for; (a) α = 0.45,
Re = 446 and (b) α = 2.4, Re = 87. ωx/ωx,max plotted as a function of z/Rvy,max for;
(c) α = 0.45, Re = 446 and (b) α = 2.4, Re = 87. Black triangles are data points and
red lines are fits to the data described in the text.

since it can only be applied for a simple pancake vortex. Such complex velocity and
vorticity profiles are not common and we could only find scarce evidence in numerical
studies of fluid drainage systems [220] and for tangential wind profiles of vortices [221].

We apply modification to the model of [113], assuming that within the vortex core
an additional vortex may form with a smaller diameter than that of the high intensity
vorticity area surrounding it. The inner vortex may develop a counter rotating motion,
similarly to the motion that is observed in large scale storms [217, 218].

The velocity profile is fitted with Eq. 5.1 (Fig. 5.4 a-b),

vy,p = a1(z/R1) exp(
1− (z/R1)

s

s
) + a2(z/R2) exp(
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s

s
), (5.1)

and the vorticity profile is described by Eq. 5.2 (Fig. 5.4 c-d),
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where a1, a2, b1, b2, R1 and R2 are free parameters and their best-fit values by the
model above, are specified in Table 5.1. For α = 0.45 we set a2 = 0 and b2 = 0. The
parameters a1, a2, b1, b2 are related to the orientation and intensity of the vorticity.
The radii of the larger and smaller vortex are depicted by R1 and R2 respectively.

It was previously found that close to s ∼ 2, the value that accounts for the steepness
in the velocity profile, a pancake like vortex will become unsteady [113]. Since we are
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testing cases that are close to Rep, it is a reasonable assumption that s ∼ 2 in our
cases. In order to reduce the free parameters in the fit, we set s = 2 and indeed show
that this value fits well for the cases studied here.

As seen in Fig. 5.4 d, Eq. 5.2 describes well the central vortex and the double
peak, however it does not apply to the areas of counter rotating vorticity close to the
bounding walls.

5.2.4 Periodic fluctuation at high flow confinement

For a cross-slot channel with α = 0.45, when Re is increased to Re > 473, the flow field
loses steadiness and fluctuations appear. A high temporal resolution µ-PIV measure-
ment of the flow field (at 500 Hz, time step between images is 0.002 s), reveals that
the fluctuations are periodic with a period time of 0.016 s, for 473 6 Re 6 543.

We define non-dimensional time t∗ by normalizing t with the average flow velocity,
U and the width of the cross-slot channel, w,

t∗ = tU/w. (5.3)

A time series, of instantaneous contour plots of ωxw/U are constructed from exper-
imental data for Re = 488 and shown in Fig. 5.5.

The nature of the fluctuation can be described as follows; at t∗ = 0 the flow field
contains a large CCW rotating vortex, the center of the vortex is located at y = z = 0

Figure 5.5: A cycle of periodic fluctuations seen for α = 0.45, Re = 488. Time is
indicated in dimensionless form.
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Figure 5.6: Vorticity distribution ωxw/U along z/w of a single cycle of the periodic
fluctuation for α = 0.45 at Re = 488.

(Fig. 5.5 a). Additionally, two smaller, less intense CCW rotating vortices can be seen
in the upper left (y ' -0.35, z ' 0.15) and lower right (y ' 0.4, z ' -0.15) corners of
the y − z plane.

From t∗ = 0 to t∗ = 2.0 the upper left corner vortex gradually intensifies as it
migrates towards the center of the y − z plane, simultaneously, the central vortex
loses intensity and migrates towards the bottom right corner of the y − z plane plane
(Fig. 5.5 a-f). At t∗ = 2.0 the two vortices begin a merging process as they share their
filaments and rapidly move towards each other (Fig. 5.5 g). At t∗ = 2.8, the final stage
of the cycle, the vortices have completed the merging process as they form a single
vortex at the center of the y − z plane (Fig. 5.5 h). A new small vortex forms at the
upper right corner of the plane.

In Fig. 5.6, the vorticity distribution ωxw/U from the time series shown in Fig. 5.5
is plotted as a function of z/w. The cycle starts at t∗ = 0 with a large peak at z/w = 0
where ωxw/U > 50 and the vortex is at the center of the y−z plane. The peak intensity
is gradually reduced to ωxw/U < 10, where the central vortex is at the farthest point
from the center at t∗ = 1.6. At t∗ = 2.0, ωxw/U along z/w rapidly increases as the
vortices merge at the center of the y − z plane.

For the characterization of the periodic cycles, vy/U is extracted from the coordi-
nates where the velocity reaches its maximal value vy/U=vy,max/U at the point y = 0,
z = 0.1 (see Fig. 5.2). At this point, the fluctuations in the flow are the strongest
and the detected signal is particularly clear. A time series of vy/U is collected from
several measurements where Re is kept constant at each measurement. A range of
445 < Re < 543 is studied. Due to limitations of the experimental set-up we could not
investigate higher Re, as our system is limited by the volume of the syringe pumps and
the capabilities of the µ-PIV system (maximal frame rate of the camera is 1600 fps
and the shortest time gap between laser pulses can be set to 1 µs). To experimen-
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Figure 5.7: Velocity fluctuation and power spectral density are extracted for various
Re from the point vy,max/U (α = 0.45). vy/U is plotted as a function of t on the left
column and PSD is plotted as a function of the frequency, f on the right column for
(a) Re = 445; (b) Re = 473; (c) Re = 487; (d) Re = 502; (e) Re = 529; (f) Re = 543.
St is indicated in the labels.

tally study higher Re, modifications of the experimental set-up are needed (i.e., laser
pulsing, camera properties, objective lens and/or channel dimensions).

In the left column of Fig. 5.7, the normalized velocity, vy/U is plotted as a function of
time, t. In order to extract the characteristic frequencies of the fluctuations, the power
spectral density (PSD) is found through a Fast Fourier Transform (FFT) analysis for
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vy/U data points (plotted on the left column of Fig. 5.7). PSD is plotted as a function
of the frequency f , the non-dimensional frequency, Strouhal number (St = fw/U)
is indicated as well (plotted on the right column of Fig. 5.7). The frequency of the
fluctuations remains constant at f = 75 Hz, so St decreases with increasing Re. The
PSD, increases non-linearly with an increase in Re. However the resolution of the data
might not be sufficient for further analysis of the PSD amplitude (which is indicated
by a single data point).

5.2.5 Periodic fluctuations at a moderately confined flow

Figure 5.8: Instantaneous contour plots of ωxw/U showing a cycle of the periodic
fluctuation for α = 2.4 and Re = 87. Time is indicated in dimensionless form.

Periodic fluctuations begin to emerge in the α = 2.4 cross-slot device when Re is
increased above Re = 69. The nature of these fluctuations is fundamentally different
from those described for the case of α = 0.45. A time series of instantaneous contour
plots of ωxw/U is shown in Fig. 5.8. Here too, the experiments are conducted at 500 Hz,
with a time step of 0.002 s between two images, a full cycle of the fluctuation at Re = 87
is completed within 0.022 s. Time, t∗ in Fig. 5.8 is indicated in dimensionless form.

The nature of the fluctuation can be described as follows; from t∗ = 0 to t∗ = 1.6
the central vortex maintain a large core with a distinct ring of intense vorticity around
the core, the core of the vortex slightly grows (Fig. 5.8 a-e). At t∗ = 2.0, the core
structure begins to deform (Fig. 5.8 f). At t∗ = 2.4 and t∗ = 2.8, the vortex core
shrinks to a smaller structure with an intense vorticity at its center (Fig. 5.8 g and h).
At t∗ = 3.2 the core of the vortex is reformed, the vorticity at the center of the vortex
is less intense from its surrounding ring (Fig. 5.8 i). At t∗ = 3.6 and t∗ = 4.0 the vortex
core begins to grow (Fig. 5.8 j and k).

In Fig. 5.9, the vorticity distribution along the center line (z/w) are plotted. These
are taken from the contour plots shown in Fig. 5.8. From t∗ = 0 to t∗ = 2.0 a double-
peak is seen, indicating an intense vorticity ring surrounding the core of the vortex. At
t∗ = 2.4 the double-peak is replaced by a single peak, indicating that the vortex core
has lost its structure. At t∗ = 2.8 a single peak is seen in the vorticity distribution and
at t = 3.2 the double-peak appears, indicating that the vortex core and the surrounding
ring of intense vorticity region has been re-formed.
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Figure 5.9: Vorticity distribution ωxw/U of a single cycle of the periodic fluctuation
for α = 2.4 at Re = 87. Time is indicated in dimensionless form.

The left column in Fig. 5.10 shows vy/U at the coordinate y/w = 0, z/w =
0.6, where vy/U = vy,max/U and the fluctuations of the flow are the strongest (see
Fig. 5.3 a). A time series of vy/U is collected from several experiments in each of the
experiments, while Re is kept as a constant. The experiments are performed for a range
of 50 < Re < 249. The results are plotted as a function of time, t in the left column of
Fig. 5.10. FFT analysis is conducted for the vy/U data points presented in Fig. 5.10.
PSD is found through FFT analysis and plotted as a function the frequency f Hz, in
the right column of Fig. 5.10. The main peak that is found for each Re is indicated
with the St number. Clear equally spaced harmonics peaks are also seen in the plots.
The peaks in the frequency f and St are not constant and change non-linearly with
increasing Re. These are plotted and further discussed in the following section.

5.2.6 Phase diagrams

Re is plotted as a function of α in Fig. 5.11 showing the onset of steady vortex flow
(at Re = Rec) and the onset of periodic vortex flow (at Re = Rep) as found in this
work and previous work. For comparison, the results from a recently reported work
where the transition to unsteady flow was studied in a cross-slot channel with α = 1
are also presented [124]. All of the studies show that the onset of periodic flows is α
dependent. Due to the stabilization of the flow at low α the flow becomes unsteady
only at relatively high Rep (Rep = 473 for α = 0.45 and Rep = 300 for α = 1), while
for high α, the flow becomes unsteady at relatively low Rep (for α = 0.45, Rep = 69).
Additional data is needed for different α in order to determine what is the nature of
the relation between Rep and α.

The nature of the fluctuations that are detected for α = 0.45 and α = 2.4 are
fundamentally different due to the initial flow field that is dictated by the confinement.
For α = 0.45 (supercritical transition to unstable flow) the flow field before the onset
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Figure 5.10: Velocity fluctuation and power spectral density are extracted for various
Re from the point vy,max/U (α = 2.4). vy/U is plotted as a function of t on the left
column and PSD is plotted as a function of the frequency, f in Hz on the right column
for (a) Re = 50; (b) Re = 69; (c) Re = 87; (d) Re = 99; (e) Re = 187; (f) Re = 249.
St is indicated.

of unsteady flow, contains a central vortex and two co-rotating side vortices (between
the co-rotating vortices there are regions of counter-rotating vorticity). The flow is
dominated by co-rotating vortices (this can also be seen in the high values of the order
parameter plots of ψ as a function of ε that were presented in Chapter 3, Fig. 5.2 a).

For α = 0.45 the periodic cycles include migration of the central vortex from the
center to the side of the y − z plane and then a merging event of the central vortex
with a co-rotating side vortex that initially formed in the corner of the plane.
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Interestingly, this fluctuation pattern resembles a similar periodic flow pattern that
was recently reported to occur in a T-channel [119]. In their work they showed that for
a T-channel with inlet aspect ratio of 1 and outlet aspect ratio of 0.5, unsteady periodic
flow has emerged at Rep = 190. At the T-channel, the initial flow field at the plane
where the outlet begins (in their work it was defined as z/h = 1 where h is the height
of the channel and z is the coordinate along the height) has two central vortices that
formed at the steady flow state. At Rep = 190, the central vortices migrated towards
the corners of the plane and a merging of two co-rotating vortices occurred, similar to
the one that is seen here for α = 0.45. The St numbers that was found through their
experiments (0.15 < St < 0.22), and the frequency of the fluctuations are compared to
the results from this Chapter in Fig. 5.12.

The same authors performed a similar investigation of the flow in a cross-slot ge-
ometry with dimensions of w = d = 10 mm and α = 1 [124]. In their study they
found that periodic fluctuations emerged for Re > 300, the fluctuations were described
as events of continuous merging of two co-rotating Dean vortices and splitting of the
central vortex. They constructed a time series of the normalized distance between
vortices l/lmax. However, it was not specified how this distance was measured. In their
analysis, they found that the period time of the fluctuation increased with an increase
in Re due to a slow down in the stage of the vortex merging. They reported that the
phase in which the flow exhibited a merged central vortex remained nearly constant
with a value of ' 0.5 s. It seems that the Dean vortices, in their study, were struggling
to re-intensify as Re was increased, which gives a possible explanation to the slow down
in the merging process that was observed. Additionally, their visualization technique,
using fluorescent dye from one inlet and non-dyed fluid from the other, does not allow
to capture the full complexity of the flow. Using such method allows only to resolve
the flow patterns at the interface where the two inflows meet and it is not possible to
resolve side vortices that are formed with the fluid from a single inlet. Therefore, they
were not able to visualize the Dean vortices at the stable state. The St number that
was found through their experiments (0.06 < St < 0.17) is compared to the results

Figure 5.11: Re - α phase diagram. Rec and Rep are plotted as a function of α.



78 Vortex structure and periodic flow fluctuations

from this chapter in Fig. 5.12.
For α = 1 (subcritical transition to unstable flow) the flow field before the onset

of unsteady flow, also contains a central vortex and two side vortices. However, the
important difference between this flow field (α = 1) and the the flow field observed
for α = 0.45 is that the observed side vortices, at the steady state, seen for α = 1
are counter rotating in relation to the rotation of the central vortex (the steady flow
field contains CW rotating vortex and two CCW rotating side vortices). While for
the case of α = 0.45 the side vortices at the steady state are co-rotating in relation to
the central vortex (the steady flow field contains three CCW rotating vortices). This
difference strongly affects the nature of the fluctuations and can explain the different
nature and dynamics of the periodic fluctuations.

When considering the high aspect ratio channel, α = 2.4, the vortex maintains the
initial position at the center of the geometry (y = z = 0) during the fluctuation cycle.
The fluctuation does not exhibit vortex merging or splitting, instead, the central vortex
core structure collapses and reforms.

In Fig. 5.12 a, f is plotted as a function of Re for α = 0.45, α = 2.4 (open symbols)
and for comparison, the data for cross-slot channel with α = 1 and a T-channel taken
from [124] and [119], respectively, are also plotted (closed symbols). The data for
α = 1 and the T-channel are collected from geometries with larger characteristic length
scales than the ones used here. Both cross-slot and T-shape channels have dimensions
of w = d = 10 mm which are ∼10× larger than the dimensions of our microfluidic
channels, thus the fluctuation frequency is significantly lower [119, 124]. In order to
compare with their results, the frequency found in their experiment is plotted on a
secondary y axis (Fig. 5.12 a).

Figure 5.12 b, shows the non-dimensional St number plotted as a function of Re.
Here the results from α = 1 and the T-channel [119, 124] are scaled similarly to the
results from the current experiments.

Figure 5.12: Comparison between the periodic fluctuations in cross-slot channels
with different α and a T-channel. (a) f as a function of Re, the right-hand side y axis
corresponds to α = 1 and the T-channel; (b) St as a function of Re, the lines are fits to
the data with Eq. 5.4; Data for α = 1 and T-channel (closed symbols) are taken from
[124] and [119], respectively.
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The lines in Fig. 5.12 b are a fit with Eq. 5.4 that was previously used to describe
the relation between Re and St in studies of transition to turbulence for flows around
circular cylinders with different curvatures, aspect ratios and angled end plates [117,
222, 223],

St = x1/Re+ x2 + x3 Re (5.4)

where x1, x2 and x3 are free parameters. The parameters are extracted from the fit
and are listed in Table 5.2.

Table 5.2: St - Re relation, parameters extracted from fitting of Eq. 5.4
.

α x1 x2 x3

0.45 -854 4.2 -0.004
1 -340 2.5 -0.004
2.4 -20 0.6 -0.001

T-channel -65 0.6 -0.0004

As discussed in the Introduction, Chapter 1, Section 1.2.4 (Fig. 1.3), the quadratic
relation in Eq. 5.2 is used to distinguish between modes of vortex shedding in flows
around circular cylinders. Periodic vortex flows at the wakes of circular cylinders are
characterized by the formation of spanwise vortices, while at intersecting geometries,
the flow field consists of streamwise vortices. Even-though vortex properties (i.e.,
spanwise or streamwise with different core structure) are strongly affected by the flow
geometry, we show that the same quadratic relation can be also used for characterizing
periodic flows at intersections.

Since the nature of the fluctuations is dictated by the steady flow field, the relation
between Re - St are expected to be different between geometries. Describing the relation
between Re and St with a quadratic equation (and retrieving the parameters from
the fit) gives an initial indication that periodic flows at intersecting geometries have
different modes when flow parameters are changed. Due to experimental limitation we
are not able to study a larger range of Re, but even with our narrow parameter range
studied, we are able to characterize our flows and to reveal the similarities between
flows around cylinders and intersecting flows. Further experiments in improved spatial
and temporal resolution are needed in order to find if there are different modes for
the instability at each of the geometries and also in order to understand the physical
significance of the parameters found by fitting Eq. 5.4 to the data.

5.3 Summary

In this chapter, vortex structure and dynamics are studied with two microfluidic cross-
slot devices. The first device has a low aspect ratio (α = 0.45) representing a highly
confined vortex flow field, and the second device has a high aspect ratio (α = 2.4)
representing a moderately confined vortex flow. The same devices were used in Chap-
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ter 4 where the symmetry breaking transition and vortex formation were thoroughly
studied.

Our analysis shows that the vortex in the cross-slot device is similar to a Burg-
ers vortex (stretched streamwise vortex) with an additional confinement component
that was only previously reported in pancake like vortices (which are confined in both
streamwise and spanwise directions).

We find that vortex confinement changes the properties of streamwise vortices at
the steady state. Above Rec, a highly confined flow field (α = 0.45) consists of a central
vortex and two, less intense, co-rotating side vortices. At this stage, the vorticity across
the centerline of the vortex core, shows a single Gaussian peak that can be described
by a simple pancake-like vortex model.

For a vortex that is moderately confined (in a higher aspect ratio channel, α = 2.4)
the flow field contains a single streamwise vortex (above Rec) surrounded by a counter
rotating vorticity field. At Re > Rec, the central vortex will have a characteristic single
peak in the vorticity across the core centerline (similar to the highly confined vortex
at α = 0.45). However, increasing Re (while the flow is still steady) will result in the
development of a double peak in the vorticity across the core centerline, indicating
on the development of an “eye” or a vorticity center surrounded by a ring of higher
intensity vorticity. In order to describe this vortex we slightly modified the pancake-
like vortex model to capture the complexity of the vorticity distribution at the vortex
core.

Further increase of the Re, to a critical value, Rep, will result in the onset of a peri-
odic flow cycle. The nature of the periodic cycle depends on the vortex characteristics
in the steady state. At high flow confinement (α = 0.45) upon Rep, the central vortex
will migrate away from the center of the plane (where it was initially formed), where
it will merge with one of the co-rotating side vortices in the flow field. The merged
vortex will migrate back to the center of the plane and the periodic cycle will start
again. At moderate flow confinement (α = 2.4), upon Rep, the periodic fluctuations
will appear as a collapse and reformation of the vortex core, throughout the periodic
cycle the position of the vortex will remain at the center of the geometry.

The characteristic frequencies of the fluctuations are found by applying FFT anal-
ysis on a velocity point in the flow field and are compared to other studies that inves-
tigated similar fluctuations in the cross-slot geometry with α = 1 and in a T-channel.
We find that the relation between St and Re is quadratic as was previously described
for similar stagnation point fluctuations around circular cylinders [117, 222, 223]. We
find that the relation between St and Re is non-linear and dependent on the geometry
studied.

The findings of this chapter indicate on a rich periodic flow regime at cross-slot flows
that can be precisely tuned by changing the parameter space (i.e., Re and α). These
findings are valuable for improving the control over periodic vortex motion at stagnation
points that may induce harmful vortex vibrations on structures such as bridges, pipes
and buildings. Additionally, our findings can initiate new ways to increase the efficiency
of energy harvesting from vortex induced vibrations as a source of renewable energy.



Chapter 6

Inertioelastic flow instability at a
stagnation point

In this chapter (adapted from our publication [3]), the effects of weak elasticity on the
flow instability and vortex formation in the cross-slot geometry with α = 1 are studied.
We show how small changes in fluid elasticity strongly effect the onset of symmetry
breaking and vortex formation in the cross-slot geometry. We compare our findings to
numerical simulations conducted by our collaborators described in Appendix A [3, 4].

6.1 Introduction

By adding polymers to a Newtonian fluid it is possible to tune the elasticity of the
fluid. This affect has been well known and is used for various applications such as drag
reduction in turbulent flows [43, 153–157], pressure drop enhancement in porous media
flows [158] and inhibiting jet breakup and atomization of sprays [159, 160].

Under flow, polymer additives are known to generate local anisotropic elastic stresses
due to stretching and orientation in certain regions of the flow field. These elastic stress
can be evaluated in relation to the viscous stresses with the Wiessenberg number (Wi).
The interaction between flows and polymers and how this interaction leads to the sup-
pression of inertial instabilities and gives rise to elastic instabilities is not very well
understood.

In this chapter we will use the cross-slot geometry to generate a streamwise vortex
in order to study the effects of weak elasticity on vortex flows. Since streamwise vortices
are a major element in turbulent flows, findings from this chapter can help to explain
the phenomena of drag reduction by polymer additives in turbulent flows.

Apart from Wi and Re, a useful dimensionless parameter for characterizing poly-
meric flows is the elasticity number (El ≈ Wi/Re, which quantifies the ratio of elastic
to inertial forces in the flow). For Newtonian flows, El ≡ 0 and instabilities are
“purely inertial”, depending only on the magnitude of Re. Flows of highly elastic fluids
(El� 1) present distinct “purely elastic” instabilities that can arise even for negligible
inertia. As discussed in the Chapter 1, Section 1.3.2, there is increasing evidence about
the generality of these instabilities.

In flows of highly dilute polymer solutions in low viscosity solvents in larger length

81
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scale flow configurations, typical of drag-reduced flows, inertia is not negligible (0 <
El . 1) and the flow can be termed “elasto-inertial”. In this case there is a complex
interaction and competition between inertial and elastic effects that remains to be fully
described and understood.

By using the cross-slot device to make direct measurements of the axial vorticity
by systematically varying both Re and El, we shed insights on possible mechanisms
for the vortex suppression observed in the drag-reduced state of elasto-inertial turbu-
lence (EIT) at the scale of a single streamwise vortex. Changing El by controlling the
polymer concentration and solvent viscosity and by characterizing our model fluids in a
non-dimensional manner with Wi and El numbers (rather than simply using polymer
concentration) we are able to collapse data for the critical Re and Wi conditions in a
highly generalized form. Complementary numerical simulations using a finitely exten-
sible non-linear elastic (FENE) dumbbell model provide near-quantitative agreement
with our experiments and add important information that is otherwise not attainable
from the experiment on the spatial distribution of the elastic stress due to polymer
stretching in the complex 3D flow field. We are able to strengthen the links between
inertio-elastic instabilities and the suppression of streamwise vorticity observed in drag-
reduced flows.

The results presented in this chapter fill a significant gap in the literature between
the purely-inertial [27] and purely-elastic regimes (e.g. [44]) and link the two by showing
how the instability is transformed from an inertia-dominated to an elasticity-dominated
mode as El is increased. The flow in the cross-slot device is characterized by a stagna-
tion point and as demonstrated in the previous chapters, there are many elements of
the flow in the cross-slot geometry that resemble other flows (i.e. elongation flow field,
stagnation point, curving streamlines). Hence, these results are expected to be relevant
in many other geometries with similar characteristics (e.g. [22, 23, 26, 28, 224]).

For this chapter we use a microfluidic device with dimensions of w = d = 440 µm
and α = 1, for further details about the device see Methods, Chapter 2 Section 2.1.2.
For details about the experimental protocol see Section 2.4.1. Characterization of the
test fluids is detailed in Section 2.5.

Dimensionless numbers are defined in order to characterize the inertial, viscous
and elastic forces in both the experiments and numerical simulations. Since some of
our polymeric test fluids are shear thinning (see Methods, Chapter 2, Fig. 2.6), the
Reynolds number Re is now γ̇ dependent and defined as:

Re =
ρUw

η(γ̇)
, (6.1)

where η(γ̇) is the shear rate-dependent shear viscosity, and ρ is the fluid (solvent)
density.

The Weissenberg number describes the relative importance of elastic to viscous
forces in the flow and (in the absence of a solvent viscosity) can be expressed as Wi =
N1/τxy = λγ̇. Here, N1 = (τxx − τyy) is the first normal stress difference, τxy is the
shear stress, and γ̇ = U/w is the characteristic shear rate within the flow channel [225].
We define the “effective” Weissenberg number Wieff which is scaled using the solvent-
to-total viscosity ratio β = ηs/η0, where ηs is the solvent viscosity and η0 is the zero
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shear viscosity (see methods Chapter 2, Fig. 2.6), in order to account for the solvent
contribution to τxy, but not to N1:

Wieff = λγ̇(1− β). (6.2)

The elasticity number is given by the ratio between Wieff and Re and therefore
describes the relative importance of elastic to inertial forces:

El =
λη(γ̇)

ρw2
(1− β). (6.3)

For constant viscosity fluids (such as the majority of our test solutions and the
simulations), El is independent of the applied shear rate. Values of El for our test
fluids in the microfluidic cross-slot device are provided in Table 2.3.

6.2 Results and discussion

6.2.1 Initial experimental observations of inertial and elastic
instabilities

For an initial overview of the parameter space, flow visualizations of dye advection
patterns are performed in the x− y centerplane of the cross-slot at z = 0. For this we

Figure 6.1: Confocal microscope images of dye-advection patterns taken in the x− y
centerplane (z = 0 plane) of the cross-slot device for aqueous PEO solutions of various
El. Fluid dyed with rhodamine B enters from the left-hand inlet channel and undyed
fluid enters through the right-hand inlet channel [3]. (a) Stable flow with a symmetric
interface (Newtonian or viscoelastic, Re < 10); (b) Inertial instability of Newtonian
fluid (El = 0, Re = 80); (c) Inertio-elastic instability with 0.001 wt% PEO solution
(El = 0.00018, Re = 79); (d) Inertio-elastic instability with 0.01 wt% PEO solution
(El = 0.011, Re = 33); (e) Elastic instability with 0.1 wt% PEO solution (El = 0.68,
Re = 49); (f) Elastic instability with 0.3 wt% PEO solution (El = 10.4, Re = 15).
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employed a differential spinning disk (DSD2) confocal microscope (Andor Technology
Ltd, Belfast, UK) and a range of aqueous PEO solutions with various El. Solution
containing the fluorescent dye rhodamine B (10 µM) is introduced through one inlet
of the channel while through the other inlet an undyed solution is introduced. We
confirmed that the addition of dye at this concentration had a negligible effect on the
physical properties of the fluids.

As shown in Fig. 6.1 a, at low Re < 10 a straight and symmetric interface is
observed between the dyed and undyed fluid streams entering the cross-slot. Similar
symmetric flow patterns are observed for all the fluids (Newtonian and polymeric) at
this low Re. Fig. 6.1 b shows what is observed for the Newtonian fluid (water) when
a Reynolds number of Re = 80 is imposed. Here, a distinctive banded structure of
alternating bright (dyed) and dark (undyed) regions is observed. This pattern is a
slice taken along the z = 0 plane through the spiral vortex that has formed, as was
similarly shown by Ait Mouheb et al [64]. For a PEO solution of c = 0.001 wt% and
El = 0.00018 at Re = 79 (Fig. 6.1 c), the dye advection pattern is similar to that of
water at Re = 80 (Fig. 6.1 b). As the PEO concentration is increased to c = 0.01 wt%
(El = 0.011) the structure observed at Re = 33 (Fig. 6.1 d) is blurry when compared
with Figs. 6.1 b, c. This is an indication that the flow has become unsteady under these
conditions, varying spatio-temporally on a timescale shorter than the image acquisition.
At higher polymer concentrations, c = 0.1 wt% (El = 0.68, Fig. 6.1 e) and c = 0.3 wt%
(El = 10.4, Fig. 6.1 f), the banded pattern indicative of the vortex formation is not
observed at all, and instead a different mode of instability emerges. In these images it
is seen that most of the dyed fluid flows out through the upper exit channel, while most
of the undyed fluid flows out through the lower exit channel. This flow asymmetry has
been reported before and described in Chapter 1, Section 1.3.2 and it is considered to
be an elasticity-dominated flow instability [44, 77, 144, 145, 148]. We note that the
elastic mode observed in this case is unsteady in time.

6.2.2 Experimental and numerical vorticity fields

Aqueous PEO solutions of different polymer concentrations with different El are tested.
Our measurements focus on the Re range that is slightly below and slightly above
the flow transition from stable symmetric to asymmetric flow and the formation of
a central vortex. Fig. 6.2 a-c shows a series of images for fluids of progressively in-
creasing El taken at a specific value of the dimensionless control parameter ε =(Re-
Rec)/Rec = 0.15. From the images, it is seen that, under comparable flow conditions
beyond the onset of instability, the induced vorticity decreases significantly as the
fluid elasticity is increased. In Fig. 6.2 d-f, we present vorticity fields resulting from
numerical simulations with the FENE-MCR model under conditions of constant El
corresponding to Fig. 6.2 a-c, respectively. There is a remarkably good, near quan-
titative, agreement between the experiment and the numerical simulations. L2 is the
extensibility parameter relating the maximum length of a fully-extended dumbbell to
its equilibrium length, and here is set to L2 = 5000 to match the molecular weight of
the polymer used in the experiments, as explained in the Methods, Chapter 2, Sec-
tion 2.5.2, for further details about the numerical simulations see Appen. A.

In Fig. 6.3, we present experimental vorticity fields obtained at ε = 0.15 for two
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Figure 6.2: A comparison between experimental measurements and numerical simu-
lations of the dimensionless vorticity (ωxd/U) over the x = 0 plane for fluids of various
elasticity number El. Top panel shows experimental µ-PIV images obtained at the
same value of the dimensionless order parameter ε = 0.15 (Eq. 3.3): (a) c = 0 wt%
PEO, Re = 47.2; (b) c = 0.001 wt% PEO, Re = 37.0; (c) c = 0.003 wt% PEO,
Re = 28.3. Bottom panel shows converged solutions obtained from constant-El numer-
ical simulations with the FENE-MCR model and L2 = 5000 at similar Reynolds num-
bers to the experiments: (d) β = 1 (Newtonian), Re = 47.0; (e) β = 0.99, Re = 40.0;
(f) β = 0.95, Re = 26.2. The color scale indicates the dimensionless vorticity. Super-
imposed streamline projections exhibit the directionality of the secondary flow in the
cross-section [3].

additional aqueous PEO solutions of higher polymer concentration and elasticity (c =
0.01 wt%, El = 0.011 and c = 0.03 wt%, El = 0.078). Under these conditions there was
unsteadiness in the flow; the position of the vortex and the magnitude of the vorticity
fluctuates slightly in time. Since numerical simulations are restricted to steady-state
solutions (see Appen. A), comparable numerical results at these elasticity numbers are
not available. The images shown in Fig. 6.3 are in fact averages made of 15 individual
vector fields captured at a rate of 5 Hz over a 3 s time interval. Note that the spatio-
temporal fluctuations we report in these two fluids with El� 1 are completely absent
in a Newtonian fluid at an equivalent value of ε = 0.15, for which both experiments
and simulations clearly show the flow remains steady and laminar.

Velocity fields obtained in the x = 0 plane of the cross-slot device using µ-PIV are
used to locally evaluate the vorticity in the axial direction ωx = (∂vz/∂y)− (∂vy/∂z).
Although other possible parameters can be considered [1, 27], in this chapter we
use the measurement of an increase in the value of the center point axial vorticity,
ωx|x=y=z=0 as an indication of the onset of the inertia-dominated mode of instability.
The dimensionless order parameter ψ is defined as described in Chapter 3, Eq. 3.6
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Figure 6.3: Experimental dimensionless vorticity fields in the x = 0 plane at ε = 0.15
for (a) c = 0.01 wt% PEO in water (El = 0.011, Re = 19.7), and (b) c = 0.03 wt%
PEO in water (El = 0.078, Re = 17.2). Under these conditions the flow exhibited mild
unsteadiness and the images shown are averaged over 15 individual fields. The color
scale indicates the dimensionless vorticity (ωxd/U). Superimposed streamlines exhibit
the directionality of the flow [3].

(ψ = sgn(ωx |y=z=0)ωx |x=y=z=0.)
In Fig. 6.4 the order parameter ψ (Eq. 3.6) is plotted as a function of the ap-

plied Reynolds number for a range of aqueous PEO solutions with elasticity numbers
0 ≤ El ≤ 0.68. Here, closed symbols represent data obtained by applying quasistatic
increases in Re, while open symbols represent data obtained from a subsequent qua-
sistatic decreasing ramp in Re. For each fluid, as Re is progressively increased starting

Figure 6.4: Order parameter ψ as a function of Re for solutions of PEO in water,
with the viscosity ratio spanning 0.24 < β < 1 for the experimental fluids. Closed
symbols indicate data obtained with increasing flow rates and open symbols indicate
data obtained with decreasing flow rates. Data is fitted with the Landau model (Eq. 3.3,
solid lines). Numerical data is obtained with the FENE-MCR model with L2 = 5000
and constant El [3].
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from a low value, ψ initially adopts a value close to zero indicating that the flow field
is symmetric. As a fluid-dependent critical value Rec is reached, the flow field adopts
an asymmetric state, resulting in the measurement of a non-zero axial vorticity ωx at
the centerpoint (y = z = 0) and hence a non-zero value of the order parameter ψ.
For subsequent further increases in Re above Rec, the measured centerpoint vorticity
continues to increase towards a plateau value as the central spiral vortex develops. For
subsequent quasistatic reductions in Re starting from a high value (i.e. Re > Rec),
the centerpoint vorticity also reduces, following the same curve defined by the data for
quasistatic increases in Re. For some of the experimental cases (though not all), there
is hysteresis in the transition and Re must be reduced to a value Re∗c < Rec before the
flow field recovers symmetry.

The occurrence (or otherwise) of hysteresis appears to have a complex nonmono-
tonic dependence on the concentration of PEO in the polymer solution, or on the
elasticity number of the experiment. We will return to this point in more detail in
a subsequent section of the discussion. We note that in the numerical simulations
hysteresis is always observed in the transition, and that the value of Rec tends to be
slightly higher than what is observed in the experiments. We have found that the flow
transition from symmetric to an asymmetric state in the simulations for increasing Re
depends on the level of numerical noise (e.g. mesh size, times step). However, for
decreasing Re ramps, the value obtained for Re∗c is more reliable numerically and more
consistent with the experiments, as was also found in previous work [27]. For this
reason, further comparison between the experimental and the numerical results will

Figure 6.5: A comparison between (a) experimental measurements with a c =
0.0001 wt% solution of PEO in 8 wt% PEG (β = 0.97, El = 0.00083) and (b) nu-
merical simulations with L2 = 5000 and β = 0.97 at constant El = 0.00083. The
color scale indicates the dimensionless vorticity ωxw/U in the x = 0 plane. Projected
streamlines show the directionality of the secondary flow in the cross-section [3].
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be made on the basis of decreasing Re ramps. Despite the minor differences, there is
clearly a good general consistency between the experimental and the numerical data
presented in Fig. 6.4. It is immediately obvious from both data sets that as El is in-
creased the value of Rec is decreased. In addition, the normalized centerpoint vorticity
tends to approach a reduced plateau value with increasing El. In our experiments
with a c = 0.1 wt% PEO solution (El = 0.68) we did not observe any increase in the
centerpoint vorticity before the onset of the elasticity-dominated flow asymmetry, (as
illustrated by Fig. 6.1 e). Curve fitting of the data in Fig. 6.4 at each fixed value of El
is performed using the Landau model (Eq. 3.3).

Additional µ-PIV measurements are performed using solutions of PEO in the more
viscous solvent composed of 8 wt% aqueous PEG. This allows us to formulate fluids
with relatively long relaxation times while avoiding the effects of shear-thinning, which
occur in the purely aqueous PEO solutions at higher concentrations. Thus we are
able to clearly isolate the importance of fluid elasticity from shear-thinning in the
polymer solutions. Fig. 6.5 a shows a sequence of four images taken over a range of
Re spanning the onset of the transition for the flow of a c = 0.0001 wt% solution of
PEO in the 8 wt% PEG Newtonian solvent. Here we only show data obtained for
quasistatic decreases in Re. This sequence can be compared with Fig. 4.3 e-h that was
presented in Chapter 4 for the flow of a Newtonian fluid, revealing marked differences
even at this low polymer concentration (only 1 part per million). The flow field in
the PEO solution remains asymmetric down to a significantly lower Reynolds number
than for the Newtonian fluid, and the vorticity intensification at higher Re is noticeably
perturbed in the weakly elastic fluid. Fig. 6.5 b shows a sequence of images obtained

Figure 6.6: Order parameter ψ as a function of Re for solutions of PEO in 8 wt%
PEG, with the viscosity ratio spanning 0.91 < β < 1 for the experimental fluids.
Closed symbols indicate data obtained with increasing flow rates and open symbols
indicate data obtained with decreasing flow rates. Data is fitted with the Landau
model (Eq. 3.3, solid lines). Numerical data (decreasing Re ramp only) is obtained
with the FENE-MCR model with L2 = 5000 and constant El [3].
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from a numerical simulation designed to mimic the experiment shown in Fig. 6.5 a and,
once again, the results are in generally good qualitative agreement.

Differences between the low concentration PEO solutions and the 8 wt% PEG
Newtonian solvent are clearer to see in Fig. 6.6, which shows the order parameter ψ
measured for increasing and decreasing Re and fitted using the Landau model given in
Eq. 3.3. The 8 wt% PEG solvent behaves quite similarly to the pure water (Fig. 6.4),
showing subcritical behavior with a characteristic hysteresis in the bifurcation. The
critical Reynolds number for quasistatic increases in Re is Rec = 40.0, while for decreas-
ing Re the transition occurs for Re∗c = 38.0. Further, for Re > Rec the dimensionless
vorticity for both water and 8 wt% aqueous PEG approach similar values. The encour-
aging self-similar behavior displayed by the two Newtonian fluids gives good confidence
that we are correctly non-dimensionalizing our order and control parameters. Also
(similarly to the experiments performed using PEO solutions prepared in pure water),
as the elasticity number increases the bifurcation occurs at a progressively lower value
of Re and a general reduction in the maximum centerpoint vorticity occurs. At the
highest concentration of PEO in the aqueous 8 wt% PEG solvent that we measured
(0.003 wt%, El = 0.34), we observed no clear increase in the value of ψ over the range
of Re we tested. Instead, we observed the elasticity-dominated mode of instability
characterized by the asymmetric flow state, as illustrated by Fig. 6.1 e,f.

6.2.3 Appearance of hysteresis in the flow transition.

As mentioned in Sec. 6.2.2 in the discussion of Figs. 6.4 and 6.6, the Newtonian sol-
vents and some of the polymeric test fluids show hysteretic behavior with a critical
Reynolds number that depends on whether the flow rate is ramped up or down qua-
sistatically. Fig. 6.7 summarizes the appearance of hysteresis in the transition for all
the experimental test fluids as a function of the elasticity number. Here we examine

Figure 6.7: The ratio of the parameters g and k as a function of El. The dashed line
indicates g = 0 where the transition would be tricritical. Above the line the transition
is supercritical, below the line the transition is subcritical with hysteresis [3].
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Figure 6.8: The nondimensional circulation ΓDean/ν of a quadrant from the cross
section at x = 0 is plotted as a function of ε. Closed and open symbols correspond to
increasing and decreasing increments in Re. Insets are µ-PIV images of the vorticity
at x = 0 for ε = 0. Solid lines in the insets divide the flow field into the defined
quadrants [3].

the ratio of the parameters g and k obtained by fitting the Landau model to the ex-
perimental data. The ratio g/k has a negative value for Newtonian fluids (El = 0),
indicating a subcritical transition with hysteresis. As El increases, the size of the
hysteresis loop decreases and the transition turns apparently supercritical. For a spe-
cific intermediate value of El where g/k = 0 the transition would be tricritical. The
transition remains supercritical up to values of El ≈ 0.01. For fluids with elasticity
values between 0.01 < El < 0.09 certain fluids have slightly negative values of g/k and
show small hysteresis loops (see e.g. Fig. 6.4), but the general tendency is towards
tricritical behavior. Of course the sensitivity of the experiment to noise at different El
levels may be masking any underlying hysteretic behavior. In contrast, the numerical
simulations with the FENE-MCR model demonstrated hysteretic transitions for all
elasticity numbers and β values tested.

Changes in the order of the transition through a tricritical point have been reported
in previous work with Newtonian fluids in the cross-slot geometry when the parameter
space was changed geometrically by changing the aspect ratio α [27]. Tricritical phe-
nomena in Newtonian fluid mechanics have also been reported for flow in low aspect
ratio Taylor-Couette flow cells [49, 50, 196].

In Chapter 4 we showed that the appearance of hysteresis is dependent on the level
of vortex confinement which determines vortex intensity and the dynamics of merging
and splitting of vortices. Here too, we perform similar analysis in order to have a better
understanding of the appearance of hysteresis.

In Fig. 6.8, non-dimensionalized average circulation of the two merging Dean vor-
tices ΓDean is plotted as a function of ε for ε < 0, prior to symmetry breaking (this
figure can be compared to the Newtonian fluid cases presented in Chapter 4, Fig. 4.7).
It is apparent that the normalized ΓDean, is higher for fluids with low elasticity. In-
creasing El reduces vortex intensity, similarly to the effect that flow confinement has
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Figure 6.9: (a) Normalized distance between Dean vortex pairs prior to merging, b/b0
as a function of ε. Closed/open symbols represent increasing/decreasing Re steps [3].

on vortex intensity. The insets of Fig. 6.8, show the vorticity of the flow field at x = 0
for ε = 0 at the onset of symmetry breaking. The insets reveal that the vorticity is
significantly more intense for low elasticity than higher elasticity fluids.

In order to study the relation between symmetry breaking in weakly elastic fluids
and the formation of the central vortex we follow the distance between the cores of the
merging vortices, b, normalized by the maximal distance between the cores b0 [102].

The parameter b/b0 is plotted as a function of ε in Fig. 6.9, closed and open symbols
refer to vortex merging (increasing ε) and splitting (decreasing ε), respectively. This
figure can be compared to Fig. 4.8 (a) in Chapter 4.

For El = 0, we observe that the onset of symmetry breaking and completion of
Dean vortex merging are simultaneous at ε = 0. The splitting of the central vortex (and
regaining of symmetry) occurs at ε = −0.05 which confirms the expected hysteresis
in the transition. A minor increase in elasticity to El = 0.0003 results in a slight,
yet measurable prolongation of vortex merging process above the critical value for
symmetry breaking at ε ' 0.02, symmetry breaking and vortex merging are no longer
simultaneous (similar behavior is seen for α ≤ 0.57 in Chapter 4 Section 4.2.3). When
El is further increased, (El ≥ 0.001), the approach of the dominant Dean vortex pair
with increasing ε is gradual and continues well beyond the onset of symmetry breaking.
At El = 0.01, we again detect hysteresis, however, as we shown in Fig. 6.3, although
we can still observe a central vortex formation at this value of El, it is very small in
comparison to the vortex formed at El = 0 and also, it is slightly unsteady.

As demonstrated in Chapter 4 Section 4.2.3, changing the aspect ratio of the ge-
ometry has two effects on merging and splitting process, the first is that Dean vortices
that are formed at low α are weaker in intensity when compared to Dean vortices
that are formed in higher α. Additionally, the distance between the Dean vortices at
low α is relatively smaller than the distance between the Dean vortices at high α. In
the experiments done in the current chapter, we decouple the effect of the changing
distance between the merging Dean vortices by keeping α constant. In this way it
is possible to isolate the effects of Dean vortex intensity on vortex merging process.
When compering the findings from Section 4.2.3 Figs. 4.7 and 4.8 (a) and the current
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section Figs. 6.8 and 6.9 we demonstrate how changing different parameters have a
similar effect on vortex merging and splitting processes and give further confirmation
that these processes, at confined intersecting flows, are ruled by vortex intensity.

6.2.4 Detailed analysis and phase diagrams

In this section we summarize the results obtained from both our experiments and our
numerical simulations in the form of phase diagrams in dimensionless parameter space.
In Fig. 6.10 we present the values of the lower critical Reynolds numbers Re∗c for the
inertial flow transition as a function of the elasticity number El. Over the full range
of El for which inertia-dominated transitions occur, the values of Re∗c obtained from
both experimental fluid systems (water and 8 wt% PEG solvents) collapse well onto
a single curve described by a strongly decaying exponential function of El: Re∗c =
25 exp(−250El) + 15. Furthermore, at the low values of El < 0.01 which give rise to
a steady flow bifurcation, the critical Reynolds numbers obtained from the numerical
simulations also collapse onto the same curve.

The exponential decay of Re∗c with increasing El indicates a system in which the
sensitivity to elasticity increases exponentially as El is reduced. This suggests the
potential utility of the system as a novel rheometer for weakly elastic fluids. The
concept has some analogy with the microfluidic serpentine channel rheometer of Zilz
et al., [226] but here exploiting an inertia-dominated as opposed to a purely-elastic
instability.

Figure 6.10: Lower critical Reynolds number Re∗c as a function of the elasticity num-
ber El for inertia-dominated flow instabilities of low concentration PEO solutions in a
cross-slot device with α = 1. For experimental data, closed symbols represent steady
instabilities, while half-closed symbols represent unsteady instabilities. For numerical
results, open symbols represent constant Wieff, while closed symbols represent con-
stant El simulations. The solid black line is a decaying exponential fit described in the
text [3].
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We remark on the similarity between the form of Fig. 6.10 and the reduction in
critical Reynolds number with increasing polymer concentration reported for the onset
of elasto-inertial turbulence (EIT) by Samanta et al [155], although the onset Reynolds
number for vortex formation in the cross-slot is around 2 orders of magnitude smaller
than that for EIT.

Samanta et al showed that following the onset of EIT, the friction factor of the flow
directly approaches the maximum drag reduction asymptote [153] as Re is increased.
Here, by observing and measuring the vorticity in a single vortex as Re is increased
beyond the onset of inertio-elastic instability, the drag reduction reported by Samanta
et al can clearly be rationalized in terms of the suppression of vortex formation and
vorticity growth. However, we interpret the effect of the polymer as causing modifica-
tion to the inertial (Newtonian) flow state, and not necessarily as driving the formation
of a distinct new flow state, as found by Samanta et al for fully turbulent flows [155].

The critical Reynolds number for the onset of inertio-elastic flow instabilities in
T-shaped intersecting channels with two inlets of aspect ratio α = 1 and one outlet
of α = 2 has also been found to be dependent on El [227]. In the Newtonian case,
flow in such channels becomes unstable resulting in the formation of vortices extending
along the outlet channel when the Reynolds number exceeds a critical value Rec ≈ 100
[22, 224, 228]. There are rather few numerical and/or experimental studies of non-
Newtonian flows in T-channels [76, 227, 229, 230]. However, using the upper-convected
Maxwell model, Poole et al showed numerically that low levels of fluid elasticity could
cause a reduction in Rec [227]. With highly elastic fluids (El = 861), Soulages et al

Figure 6.11: Wi∗eff,c as a function of El. For experiments, closed symbols represent
steady spiral instabilities, half-closed symbols represent unsteady spiral vortex insta-
bilities, and open symbols represent elasticity-dominated asymmetries. For numerical
results, open symbols represent constant Wieff, while closed symbols represent con-
stant El simulations. The dashed line marks El = 1. Power law fit through the data is
Wi∗eff,c = 6El0.8, (note that error bars on the two lowest El experimental data points
extend beyond the boundaries of the plot) [3].
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[76] reported flow asymmetries in microfluidic T-channels that appear closely related
to the purely-elastic asymmetries seen in cross-slot devices [144, 145]. These limited
reports suggest that the effects of increasing fluid elasticity may be similar in various
different types of intersecting geometries containing stagnation points.

Studying flow transitions in non-Newtonian fluids is more complex compared with
Newtonian fluids due to the additional dimensions of the parameter space [231]. Non-
Newtonian transitions in the cross-slot depend not only on Re and α but also on
Wi and β (and potentially other groups such as the ratio between first and second
normal stress coefficients). This additional parameter space is accessed and explored
by changing the El of the fluid. Here this is achieved through manipulation of the
polymer concentration and the solvent viscosity, but similar variations could be made
via control of, e.g. the polymer molecular weight, polymer flexibility or solvent quality.

In this work, elastic effects in the fluids are characterized using the effective Weis-
senberg number Wieff, Eq. 6.2 (which factors out both λ and β) and the elasticity
number El, Eq. 6.3 (which additionally factors out Re, i.e. lengthscale, viscosity and
density). In Fig. 6.11 we show the values of the lower critical effective Weissenberg
number Wi∗eff,c as a function of El for all the polymeric test fluids listed in Table 2.3.
For fluids that display inertia-dominated (or inertio-elastic) instabilites, the lower criti-
cal effective Weissenberg number is computed asWi∗eff,c = Re∗c×El. For the fluids that
show elasticity-dominated flow asymmetries,Wi∗eff,c is estimated from the results of the
coarse dye-advection experiments illustrated in Fig. 6.1. All of the data collapses onto
a power law with exponent 0.8, as shown by the straight line through the experimental
and numerical data points on the log-log plot. We observe clearly that the elastic mode
of instability dominates as the elasticity number approaches the value El = 1, as might
be expected [232].

Increasing El influences the inertial instability by increasing theWieff,c at which the
transition occurs. Higher El further reduces the relative importance of inertial forces
and as El approaches the value 1, the inertial instability is completely suppressed,
giving rise instead to the purely-elastic time-dependent flow instability as demonstrated
in Fig. 6.1 e, f.

In Fig. 6.12 we plot the critical conditions determined for all the non-Newtonian test
fluids in the form of a stability diagram in Wieff - Re dimensionless state space. Here
we represent three flow regimes: (1) a region of stable symmetric flow at lower values
of Wieff and Re; (2) a region of inertially-dominated spiral vortex type instabilities,
which dominate at higher Re but for El . 1; (3) a region at lower Re and higher Wieff
where elastic asymmetries dominate at El & 1. The results of numerical simulations
deviate somewhat from the experiments at high Re and low Wieff (i.e. low El), but
interestingly approach the experimental trend for lower Re and higher Wieff (i.e. as El
increases). We note some similarity of the stability diagram presented in Fig. 6.12 with
those presented by Joo and Shaqfeh [233], who demonstrated by linear stability analysis
on Dean and Taylor-Couette flows the destabilization of inertial instability modes by
increasing the elasticity, and conversely the destabilization of elastic instability modes
by the increase of inertia. We point out that the ranges of Re . 50 and Wieff . 50
covered in Fig. 6.4 can be routinely achieved with low viscosity aqueous viscoelastic
fluids, even in microfluidic channels. For the validity of such experiments (e.g. cell
sorting, immunoassays, DNA analysis), it is clearly of great importance to be aware
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of the likelyhood of flow instabilty onset beyond critical conditions and to limit the
dimensionless flow parameters within bounds where the flow field remains stable and
well-defined.

In the cross-slot, it was shown that the instability of Newtonian flows is a conse-
quence of the introduction of a centerpoint axial vorticity due to imbalances between
four cells of Dean vortices that form due to centrifugal forces around the corners of the
cross-slot as inertia becomes significant [27]. For Re > Rec,Newt ≈ 40 (α = 1), vortex
stretching drives the growth of the centerpoint vorticity until a steady state is reached.
For the weakly elastic fluids examined here, our numerical simulations give insight into
how the presence of the polymeric additive modifies the Newtonian instability mecha-
nism by showing the regions of the flow field where the localized orientation of polymer
gives rise to increases in the first normal stress difference N1 = (τxx − τyy). Such an in-
situ measurement is not possible using currently available experimental techniques, so
the use of complementary simulations here provides a great advantage. Fig. 6.13 shows
contours of N1 for the case El = 0.0042, β = 0.90. At relatively low Re (Fig. 6.13 a,
Wieff = 0.02, Re = 4.76), the first normal stress-difference exhibits the anticipated be-
havior of an extension-dominated flow, where a thin strand of high stress is formed
along the flow centreline emanating from the stagnation point [132, 145, 148, 234].
This indicates that significant stretching and orientation occurs at the region close to
the stagnation point, which has been demonstrated in previous experiments by the ob-
servation of “birefringent strands” [232]. As Wieff and consequently Re are increased,
the flow field is modified and the highest values of the first normal stress difference are
no longer located near the stagnation point, but rather are shifted along the vertical

Figure 6.12: Stability diagram in dimensionlessWieff - Re parameter space. A stable
region is indicated below the solid line, drawn through the experimental data as a guide
to the eye. For experiments, closed symbols represent steady spiral vortex instabilities,
half-closed symbols represent unsteady spiral vortex instabilities, and open symbols
represent elasticity-dominated asymmetries. For numerical results, open symbols rep-
resent constant Wieff, while closed symbols represent constant El simulations [3].
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direction (z) forming two peaks close to the top and bottom walls of the channel, as
shown in Fig. 6.13 b. Although in both Fig. 6.13 a and Fig. 6.13 b, the flow field
remains symmetric, the difference is that when Wieff = 0.08 there are Dean vortices
present due to inertia. Examining the superimposed streamlines in Fig. 6.13 a, it can
be seen that for Wieff = 0.02 the fluid elements that pass close to the stagnation point,
which consequently exhibit the higher stretching, are then almost immediately oriented
along the outlet streamwise direction. Thus, as they flow far from the high stretching
region they gradually relax and the intensity of the birefringent strand slowly decays.
In contrast, for Wieff = 0.08 the fluid elements along the inlet flow centreline that
pass close to the stagnation point are initially stretched and are then oriented to flow
towards the z-direction of the configuration.

When flowing along this path, the already stretched fluid elements experience some
additional stretching from the incoming streams, which results in an accumulation of
stress from the stagnation point region towards the z-direction and generates high-
stress peaks located precisely between the pairs of counter-rotating Dean vortices.
Flow feedback in the region of the Dean vortices by these localized peaks in N1 is
the likely cause of the destabilization of the flow for Rec < Rec,Newt, as observed both
experimentally and numerically. Finally, once the central spiral vortex has formed, the
region of the highest N1 relocates to the vortex core (see Fig. 6.13 c). It is already
well-known that the polymer torque resulting in such a situation acts counter to the
vorticity [235–239], which explains why the vorticity growth is suppressed in the weakly
elastic fluids compared with the Newtonian case as Re is increased above Rec. Such
a mechanism is thought to be responsible for suppression of streamwise and hairpin
vortices in polymer drag-reduced flows [235, 236]. These numerical results reveal a
complex interplay between inertia and elasticity, suggesting El alone is insufficient to
fully capture the observed phenomena, and highlighting that both Wi and Re or (Wi
and El) remain important.

For pipe flows at high Re > 1000, Samanta et al showed that the criticial Re for
the onset of elasto-inertial turbulence (EIT) decreased as the polymer concentration

Figure 6.13: Contours of the normalized first normal stress difference N1/(η0U/w)
(indicated by the color scale) with superimposed streamlines along the centreplanes of
the cross-slot. Constant elasticity number simulations using the FENE-MCR model
with El = 0.0042, β = 0.90 and (a) Wieff = 0.02, Re = 4.76 (symmetric), (b) Wieff =
0.08, Re = 19.05 (symmetric), and (c) Wieff = 0.125, Re = 29.76 (asymmetric) [3].
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was increased [155]. Using pipes of various diameters, they also showed collapse of
the critical deformation rate for the onset EIT at different polymer concentrations.
The latter observation suggests the importance of polymer deformation and elastic
stresses on driving the onset of instability. As Re was increased beyond the onset of
EIT, Samanta et al showed the friction factor directly approached the maximum drag
reduction asymptote while streamwise vortices characteristic of Newtonian turbulence
were suppressed. Here, in a very different flow configuration, we make highly analogous
observations in a single streamwise vortex as Re is increased beyond the onset of inertio-
elastic instability: i.e. a critical Re that decreases with increasing El, a critical Wi
that scales with El and a suppression of vorticity growth as the flow is driven beyond
the onset of instability. Combined with simulations that provide details of the elastic
stresses within the vortex, we can clearly rationalize the drag reduction reported by
Samanta et al in terms of the action of the polymer. By using a range of fluids
with well-characterized elasticity numbers, the collapsed data we obtain for the critical
values of Re and Wieff show that these effects have significant generality.

In the cross-slot device, following the onset of inertio-elastic instability, the result-
ing flow structures for very low elasticity fluids appear qualitatively similar to those
obtained in unstable Newtonian flows (see e.g. Fig. 6.1 b, c and Fig. 6.2 a, b). In
this case, the effect of the polymer may be interpreted as causing modification to the
inertial (Newtonian) flow state. However, as the elasticity is increased, spatio-temporal
fluctuations of the flow structures (which are absent in Newtonian fluids) are observed
(see Fig. 6.1 d and Fig. 6.3). As El → 1 we see the emergence of a distinct elasticity-
dominated flow state (see Fig. 6.1 e, f). The fluctuating inertio-elastic state shown
in Fig. 6.1 d and Fig. 6.3 may well be connected to the distinct nature of the fluc-
tuations observed in EIT compared with traditional Newtonian turbulence, reported
by Samanta et al [155]. However, further time-resolved investigations of fluctuations
arising at higher Re in Newtonian and inertio-elastic flows in the cross-slot geometry
will be required in order to confirm this likelihood.

6.3 Summary

In this chapter we study the interactions between an inertial flow instability (that re-
sults in the formation of streamwise vortex along the outlet channel) and the elasticity
introduced by adding small quantities of a high molecular weight polymer at concentra-
tions relevant to polymer drag reduction. For small increasing values of the elasticity
number El, the flow is destabilized at a lower critical Reynolds number than in the
Newtonian case. However, following the onset of instability, the growth of the axial
vorticity with increasing Re is significantly suppressed by the increase of El. In this
regime of low El, our experimental data is well matched by numerical simulations using
the constant viscosity FENE-MCR model, which further allows us to locate the regions
in the flow domain where high polymer stretch and stress occur. Feedback between
localized regions of high polymeric stresses and the flow field are shown to be respon-
sible for the destabilization of the flow at a lower critical Reynolds number than seen
in the Newtonian case. Suppression of the subsequent vortex formation is most likely
through the action of polymer torque. These quantitative measurements at the scale of
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a single vortex provide clear mechanisms for (and a clear visual demonstration of) how
polymer additives potentially act to reduce drag in turbulent flows. As the elasticity
is increased towards El ∼ 1, our experimental results show how an inertia-dominated
instability is transformed into an elasticity-dominated mode as the vorticity becomes
completely suppressed by the action of the polymer additive.

Our data significantly add to the literature on the stability of inertio-elastic flows,
which are relevant to understanding a number of important practical applications (e.g.
jet breakup, drag reduction, enhanced oil recovery). Our results are anticipated to
provide insight into the stability of weakly-elastic fluid flows through intersections and
near stagnation points in general.



Summary and Conclusions

A 4-way intersecting flow, offers a unique combination of a planar elongation flow field
with curving streamlines and a free stagnation point and is highly sensitive to mild
changes of the experimental parameters (i.e., geometric aspect ratio, fluid properties
and flow rates). By tuning the parameters of the experiments it is possible to initiate
symmetry breaking at relatively low inertial condition (in comparison to other geome-
tries) and form a streamwise vortex. The vortex properties can be controlled in terms
of vortex intensity, vortex core structure and the nature of periodic fluctuations that
arise in the system.

At low Reynlods number (Re), the flow field at the cross-section of the intersecting
region is symmetric, steady and stable. When Re approaches the critical value for
symmetry breaking, four cells of Dean vortices form due to the curving streamlines in
the flow field. As Re is increased above the critical value, the symmetry between Dean
vortices cells breaks as two of the Dean vortices (diagonally opposed and co-rotating)
intensify. A merging process is then initiated for the intensified vortices, resulting in
the formation of a single, steady, streamwise vortex. Once a central vortex is formed, a
reduction in Re can be induced in order to initiate the opposite process, vortex splitting
and regaining of symmetry.

By using microfluidic channels fabricated with the Lightfab 3D printing technique,
it is possible to perform quantitative measurements of the intersecting region of the
cross-slot geometry using micro-particle imaging velocimetry. With this method we
experimentally reveal the hysteresis that appears in the flow transition when the aspect
ratio of the flow channels is modified. By increasing the aspect ratio (α, the ratio of
depth over width of the cross-section) of the channel to α > 0.55 it is possible to switch
the transition type from supercritical to subcritical. The appearance of hysteresis in
the flow transition is found to be dictated by Dean vortex intensity. When the intensity
of the Dean vortices is increased (for high α), merging rates are faster, leading to a
discontinuous jump in ψ as Re is increased, from the symmetric to the asymmetric
branch, resulting in hysteresis. Additionally we find a strong link between the type
of the transition and the process of vortex merging in both quasistatic and dynamic
experiments. Moreover, we show that the basic principles of vortex merging mechanism
in the cross-slot geometry resembles higher Re flows such as the ones seen at the wake
of airplane wings.

By adjusting the flow confinement (through a variation of α) and increasing Re
to values that are well beyond symmetry breaking, we can control the vortex core
structure. For flows that are highly confined (in channels that show supercritical flow
transitions) the vorticity profile at the vortex core is represented by a single Gaussian
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peak. This structure remains stable until periodic fluctuations emerge upon further
increase in Re. For decreased flow confinement (channels that show subcritical flow
transitions), the vortex core structure changes upon an increase in Re, developing an
area of lower intensity vorticity surrounded by a higher intensity vorticity ring, similar
to the structure of an “eye” that appears in tropical storms. Confinement conditions
are found to strongly influence the vortex structure and the nature of periodic fluc-
tuations that emerge when Re is further increased. Slight changes in the aspect ratio
of the channel results in flow fields that are inherently different from each other and
may contain; (1) a single central vortex surrounded by a counter rotating vorticity
field (α = 2.4), or a flow field that contains side vortices that are either (2) co-rotating
(α = 0.45), or (3) counter rotating (α = 1) with respect to the central vortex. Un-
der high flow confinement conditions, where side vortices exist in the flow field, the
periodic fluctuations are dominated by the interaction of the central vortex with the
side vortices. In contrast, under lower confinement conditions, where there is only a
single well-defined vortex in the flow field, the periodic fluctuations are dominated by
a collapse and reformation of the vortex core.

From the fundamental aspect, this thesis demonstrates that experimental microflu-
idic methods can be used to study inertial fluid dynamics problems such as vortex
formation, interactions between vortices and vortex dynamics in a controlled environ-
ment. The methods that were used here can be applied for other stagnation point flows
that exhibit 3D and time dependent flows. Our findings can assist the improvement of
applicable technologies in which vortex suppression is required to stabilize structures.
Alternatively, when vortex induced motion is a desired feature (e.g., for energy har-
vesting purposes), our findings can give guidance on how to modify the geometry in
order to control the nature of vortex fluctuations.

The response of the flow to the presence of polymers in low concentrations is also
studied with a cross-slot geometry of α = 1. By adding polymers to the fluids and
applying an extensional flow field we induce local stretching of the polymer. The elastic
response of the polymer results in local high stress regions in the flow field which
destabilizes the flow and causes symmetry breaking at lower Re. When compared to
the Newtonian case, symmetry breaking occurs at progressively lower Re as elasticity
is increased by increasing the polymer concentration. Even at extremely low elasticity
(parts-per-million of polymer), we observe a significant reduction in the growth of
vortex intensity. Numerical simulations identify that the reduction in vortex intensity
is related to the torque that a stretched polymer exerts on the flow field. In these
inertio-elastic flows we also detect a disappearance of hysteresis from the flow transition
due to an increase in elasticity which results in relatively weaker Dean vortices. Similar
to the Newtonian case, weaker Dean vortices will lead to a smooth symmetry breaking
transition with no hysteresis, as expressed by the growth of ψ when Re is increased.
These measurements, that are conducted on a single vortex, provide a clear explanation
on how polymers act to reduce drag in turbulent flows. Not only vortex intensity is
reduced but also the merging of two co-rotating Dean vortices is delayed far beyond
symmetry breaking, indicating slower dynamics when elasticity is increased. Since this
flow system shows such high sensitivity to elasticity it can potentially be applied for
measurements of elasticity of polymer solutions. Our findings are specifically important
for the improvement of applications such as drag reduction in pipe flows, jet breakup
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and oil recovery.
There are additional interesting research directions that remain to be explored in

future studies, such as using the steady vortex flow in the cross-slot and study the
response of particles to the flow field. It has been shown with numerical simulations,
that particles that are added to turbulent flows (Newtonian and non-Newtonian) tend
to concentrate in regions of low vorticity intensity, yet experiments in 3D system have
not been conducted. The experimental system used in this thesis can be applied to
study an isolated single vortex and how particles (isotopic and anisotopic) respond to
this simplified vortical flow field. Addition of polymers in low concentrations will add
elastic forces to the system and are expected to effect particle distribution within and
in the surrounding of the vortex.

Other possible directions for future investigations involving intersecting geometries
are: (1) study the dynamics of inertio-elastic fluids at confined flow intersections, which
may develop to time dependent flows with new unexplored dynamics. Such studies
can be relevant to improving drag reduction in blood flows that is confined to narrow
arteries. (2) Study the effect of drag-reducing surfactant solutions on vortex formation.
(3) Develop a cross-slot device with optimal mixing conditions that can be integrated
within automated lab-on-a-chip devices. (4) Study vortex-structure interactions and
vortex induced vibrations by introducing posts (which can have circular, triangular or
any other geometric shape of the cross section) at the stagnation point or at different
locations downstream of the outlet channel. Such studies may contribute to optimize
energy conversion from vortex induced motion.





Appendix A

Appendix - Numerical method

The numerical simulations were all done by our collaborators Prof. Rob J. Poole and
Dr. Konstantinos Zografos from the university of Liverpool. Here we present them in
comparison to the experimental results. The following section describes the numerical
method used in this work, taken from our publications Burshtein et al., 2017 and
Zografos et al., 2018 [3, 4].

The numerical investigation of the inertially-driven flow instability is achieved by
performing three dimensional computational fluid dynamics simulations based on the
finite-volume technique [240]. The flow is considered to be laminar, incompressible and
isothermal and is governed by the equations of mass conservation and momentum:

∇ · u = 0, (A.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τττ , (A.2)

where u is the velocity vector, p is the pressure and τττ is the stress tensor which contains
the solvent, τττ s, and polymer, τττ p, contributions. Therefore, the stress tensor in the
momentum equation is defined as τττ = τττ s + τττ p, where the solvent component is given
by τττ s = ηs(∇u + ∇uT). To account for the effects of elasticity, the set of governing
equations is completed with an appropriate constitutive equation for τττ p. Here the
modified Chilcott-Rallison model, FENE-MCR, is employed [241, 242]:

τττ p +
λ

g(τp)

O
τττ p = ηp(∇u +∇uT), (A.3)

where
O
τττ p, is the upper-convected derivative of the polymeric component of the stress

tensor and g(τp) is a function of the stress tensor, defined as

g(τp) =
L2 + (λ/ηp)Tr(τττ p)

L2 − 3
. (A.4)

In the above equation, Tr(τττ p) refers to the trace operator of the polymeric stress ten-
sor and L2 is the extensibility parameter. The latter is employed to relate the maxi-
mum length of a fully-extended dumbbell to its equilibrium length, and here is set to
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L2 = 5000 to match the molecular weight of the polymer used in the experiments, as
explained in Section 2.5.2. This viscoelastic model, valid for dilute polymer solutions,
exhibits constant shear viscosity and predicts a non-zero, shear-thinning, first normal-
stress coefficient which is controlled by the value of L2 [242]. Moreover, in steady-state
extensional flow, as occurs at the stagnation point in the cross-slot geometry which is
examined here, the extensional viscosity predicted by the model exhibits a bounded
behaviour [242, 243].

An in-house implicit, time marching, finite volume solver [244, 245] is employed in
order to numerically solve the governing equations (Eq. A.1, A.2, A.3, A.4). The solver
is appropriate for collocated numerical grids, with the convective terms in both the
momentum and the polymeric constitutive equation discretised based on the CUBISTA
high-resolution scheme [246]. The diffusive terms are discretised considering a central-
difference scheme, while the transient terms are evaluated using a first-order implicit
Euler scheme. It should be noted that, since we are interested only in the steady-state
solution, the 1st order accuracy discretization of the transient term is not restrictive,
since the time derivative vanishes when steady-state is reached.

The bulk of our simulations are performed at constant Wieff (fixed in the range
0.01 ≤ Wieff ≤ 0.12) on two fluids described by high viscosity ratios (β = 0.90 and
β = 0.95) representative of the experimental samples. By progressive reduction of the
Reynolds number from an initially asymmetric solution, a value is obtained for the
lower critical Reynolds number Re∗c for which the flow regains symmetry. Since Wieff
is fixed while Re is varied, these simulations involve a varying elasticity number El.
In order to more closely mimic some of the experimental (i.e. fixed El) conditions, a
few simulations are performed under conditions of constant elasticity number (El =
0.00018 with β = 0.99, El = 0.00083 with β = 0.97, El = 0.0021 with β = 0.95, and
El = 0.0042 with β = 0.90). In these four cases, ramps are performed both up and
down in Re in order to examine whether the hysteresis observed (or not) experimentally
can be reproduced by the model. We reiterate for clarity that all of the flow fields solved
numerically are steady-state solutions.
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