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Abstract 
 

Cellular and genetic heterogeneity contributes to the complexity of cancer which poses 

challenges for cancer therapy. For instance, epithelial-to-mesenchymal transition (EMT) is a 

physiological phenomenon that was adopted to neoplasm to describe the possibility of 

carcinoma cells in acquiring mesenchymal traits, leading to invasion and metastatic 

dissemination. These EMT-induced tumor cells acquire cancer stem cells (CSCs) properties 

and contribute to heterogeneity within a tumor microenvironment. My thesis is set out to tackle 

the abovementioned phenomenon, with a common goal of investigating the potential of using 

exogenous biological agents in modifying the cellular phenotypes and processes of cancer. 

Firstly, I demonstrated the molecular mechanism and the ability of altering the stem cell 

property of breast cancer cells by downregulating CD44 molecules using exogenous miRNAs. 

Secondly, I investigated the potential of bioinspired laminin-derived self-assembling peptides 

to alter the microenvironment and cellular processes including metabolism of cancer cells for 

anti-metastatic treatment in pancreatic cancer. Both studies utilized comprehensive molecular 

biology approaches in elucidating the functional changes and mechanisms behind the 

therapeutic effects of biological agents using relevant cancer cell lines and animal 

xenotransplantation models. This thesis provides insights into cancer cell plasticity which can 

be harnessed for cancer therapy.   
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1.1 Tumor heterogeneity as a hallmark of cancer  

Cancer is a highly complex and dynamic disease. One reason for its complexity is that 

during the course of disease, the cellular makeup of the tumor becomes more and more 

heterogenous as the cancer attempts to evolve for survival. As a result of the dynamic process 

of cancer evolution, a bulk tumor is often made up of cells harboring distinct molecular 

signatures, termed intratumor heterogeneity (Dagogo-Jack and Shaw, 2018) which have 

important clinical and therapeutic implications.  

Many inherent traits of a tumor cannot be traced back to individual tumor cell and the 

genotype they possess, challenging the traditional notion of cell-autonomous malignant 

transformation that was proposed in early twentieth century (Kleppe and Levine, 2014). 

Though the contribution of essential somatic alterations in oncogenes or tumor suppressors in 

a stepwise malignant transformation still largely holds true, there is increasing evidences 

illuminating the diversity in the genome of cells within a tumor, thanks to the advent and 

widespread use of next-generation sequencing. Consequently, the dynamic of a tumor genome 

also brought about an emergence of a diverse microenvironment to help sustain the tumor 

survival and progression. Intratumor heterogeneity is now recognized as a common feature of 

human malignancies for its contribution to the major hallmarks of cancer, including emerging 

characteristics like avoiding immune destruction, deregulating cellular energetic, genome 

instability, and tumor-promoting inflammation (Hanahan and Weinberg, 2000, 2011). Due to 

its complexity, tumor heterogeneity poses a key challenge for cancer treatment.  

Though genomic diversity in tumors was proposed back in 1956 (Huxley, 1956), it is 

not until the introduction of next-generation sequencing that more comprehensive evidence 

emerged to highlight the heterogenous sub-clone of cells bearing a variety of genomic 

alterations within a tumor. To align with the theme of this thesis research, I will review the 

intratumor genetic heterogeneity in the context of breast cancer and pancreatic cancer as follow.  
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1.2 Genomic diversity is a common feature of intratumor heterogeneity in breast 

and pancreatic cancers 

Breast cancer has been broadly classified based on their histology or molecular 

characteristics. Histologically, they are categorized into in situ carcinoma and invasive 

carcinoma. In situ carcinoma is further subclassified into ductal (DCIS) or lobular carcinoma 

in situ (LCIS) while invasive carcinoma is subclassified into infiltrating ductal, invasive lobular, 

ductal/lobular, mucinous, tubular, medullary and papillary carcinomas (Malhotra et al., 2010). 

On the other hand, breast cancer is also stratified according to their molecular markers such as 

estrogen receptor (ER), progesterone receptor (PR) and ErbB2 (Her2/neu) receptor into the 

following subtypes: basal-like, ErbB2+, normal breast like, Luminal Type A, Luminal Type B 

and claudin-low (Perou et al., 2000; Sørlie et al., 2001; Prat et al., 2010). These major 

classifications had driven development of specific therapeutic strategies that tailor to the tumor 

subtype, for instance, hormonal therapies, HER2-targeting agents, and cytotoxic chemotherapy 

for triple-negative subtype (tumors that do not express ER, PR and ErbB2). No matter how 

successful the therapies are for these tumors, some patients still relapse and present with 

resistance to chemotherapy, especially common among triple-negative breast cancer (TNBC) 

patients. This had led to a surge of investigations into the intratumor heterogeneity of breast 

cancer during tumor progression.    

 Early study using comparative genomic hybridization demonstrated that tumor 

subpopulations consists of diverse patterns of chromosomal alterations including focal 

amplifications and deletions in the primary breast tumors and during tumor progression to 

lymph node metastases (Torres et al., 2007; Navin et al., 2010). Further studies into the 

evolution of breast cancer by whole genome analysis revealed that breast tumors generally 

follow a sub-clonal diversification route with a characteristic dominant lineage which undergo 

subsequent mutational processes before expansion happens (Nik-Zainal et al., 2012a, 2012b). 
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On the other hand, by applying a more rigorous approach of combining whole-genome and 

targeted sequencing to multiple regions of breast tumor samples, Yates and colleagues found 

that there is profound sub-clonal diversification with high number of point mutations and 

rearrangement within a tumor and suggested that chemotherapy targeting actionable mutations 

might expose the resistant clones that initially exist in the primary lesion (Yates et al., 2015).  

The revolutionary development of single-cell genome sequencing that combines flow-

sorting, whole genome amplification and next-generation sequencing offers a much closer look 

into the genome profile of individual cells, and provides new perspectives on tumor evolution 

(Navin, 2015; Zhang et al., 2016). Using single-cell sequencing, researchers found that no two 

individual breast tumor cells are genetically identical; chromosomal aberrations occurred 

through short punctuated bursts early in tumor evolution, followed by point mutations that 

evolved over a long period of time to generate an expansive of diverse sub-clones (Navin et al., 

2011; Wang et al., 2014; Gao et al., 2016). Metastatic cells also emerged through a punctuated 

clonal evolution with few intermediates, challenging the conventional paradigm of a gradual 

clonal expansion model of tumor progression. In addition, using single-cell RNA sequencing 

analysis, Lee et. al. reported that there is significant heterogeneity, including specific RNA 

variants involved in microtubule stabilization and organization among individual cells that are 

resistant to chemotherapeutic agent (paclitaxel) in a triple-negative metastatic breast cancer 

cell line (Lee et al., 2014).   

While examining the intratumor heterogeneity, one must also notice that tumors cells 

present with a dynamic plasticity in adapting to new signaling pathways under various growth 

and therapeutic stress conditions. Cellular plasticity which generally refers to changes in cell 

identity and property is a collective term used to describe the ability of tumors cells to undergo 

molecular and phenotypic changes during cancer progression where there is a dynamic change 

in genetic and epigenetic alterations, or in response to the volatile microenvironmental cues 
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and treatment (Yuan et al., 2019). For instance, it has been shown in a mouse tumor xenograft 

study that not only non-dominant sub-clone of cells are capable of stimulating growth of all 

tumor cells in a non-cell autonomous manner via a tumor-promoting microenvironmental 

signal like Interleukin-11, they can also be outgrown by a sub-clone with a higher proliferative 

index (Marusyk et al., 2014). The genomic landscape of metastatic lesions also underwent 

significant remodeling including de novo mutations from the primary tumor xenografts, 

displaying a temporal pattern of cellular plasticity during cancer progression (Ding et al., 2010). 

Therapeutic intervention such as chemotherapy similarly induces changes in the tumor cells. 

As reported by Balko and colleagues, the genomic landscape of residual tumors of TNBC after 

neoadjuvant treatment differed largely from their matched pre-treatment specimens (Balko et 

al., 2014). Another evidence of cellular plasticity is depicted by the observation of a stochastic 

change of tumor cells into a stem-like state from normal and neoplastic mammary epithelial 

cells, giving rise to a unique subpopulation of cells called cancer stem cells (CSCs) through 

dedifferentiation (Chaffer et al., 2011; Gupta et al., 2011). A more detailed review on breast 

CSCs will be presented in the following section of this chapter. Overall, these studies 

underscore the complex heterogeneity of breast tumors, both in spatial and temporal terms 

which may explain the therapeutic challenges occurred during tumor relapse or metastasis.   

Similar to breast cancer, pancreatic cancer is a well-established model to study 

intratumor heterogeneity. The main reason for studying pancreatic cancer is the fact that it 

remains one of the deadliest malignancies with a dismal 5-year survival rate of less than 10%. 

Among the reasons that lead to its aggressiveness and poor survival rate are late detection due 

to the retroperitoneum anatomical position of pancreas, rapidly growing feature of the tumor 

mass, and most importantly, the lack of effective treatment (Hidalgo, 2010). In contrast to other 

malignancies, it is predicted that pancreatic cancer incidence rate will continue to rise and 

eventually become the second most common cause of cancer-related death worldwide before 
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2030 if no improvement in treatment is achieved. The mainstay of pancreatic cancer treatment 

is surgery whereby it is only curative in early stage or for locally advanced tumors. Chemo-

radiation is the alternative treatment option when the cancer has advanced to higher stage where 

invasion or metastasis has had taken place. The dismal prognosis of pancreatic cancer had 

raised immediate attention among the cancer research community to look into the genetics and 

biology of pancreatic cancer.  

Pancreatic adenocarcinoma (PDAC) which arises from the exocrine part of the pancreas 

is the most common histological type, representing approximately 85 percent of the pancreatic 

tumor cases. PDAC, the most aggressive phenotype was thought to progress from a neoplastic, 

noninvasive precursor lesion called pancreatic intraepithelial neoplasia (PanIN) (Hruban et al., 

2001) through a series of acquisition of common mutations in oncogenes or tumor suppressors, 

including KRAS, CDKN2A, SMAD4, TP53 and BRCA2 (Hruban et al., 2000; Yamano et al., 

2000). The development of genome-wide studies in the recent decades had advanced our 

understanding of the divergence of pancreatic cancer development and the tumor heterogeneity 

of PDAC. As such, exome-based stratification of PDAC samples revealed a complex and wide 

intertumoral heterogeneity in altered signaling pathways, chromosomal rearrangements and 

structural variations, copy number variations, and genetic mutations that contribute to disease 

progression and metastasis (Jones et al., 2008; Campbell et al., 2010; Collisson et al., 2011; 

Biankin et al., 2012; Waddell et al., 2015; Witkiewicz et al., 2015; Bailey et al., 2016). For 

instance, Campbell et. al. discovered that the ubiquitous KRAS activating mutation found in 

PDAC has an amplified copy numbers at specific metastatic sites like peritoneum or lung, but 

not in the primary tumor or other metastatic locations, indicating that heterogeneity within the 

core KRAS signaling pathway exists (Campbell et al., 2010). This finding was later reinforced 

by another gene-expression study using large-scale microarray data which delineated PDAC 

molecularly into three subtypes, namely classical, quasi-mesenchymal, and exocrine-like with 
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varying prognosis, and found that an array of human PDAC cell lines are represented by either 

classical (KRAS-dependent) or quasi-mesenchymal (partial or less KRAS-dependent) with 

differing sensitivity to epidermal growth factor receptor inhibitor (erlotinib) or conventional 

chemotherapeutic drug for PDAC (gemcitabine, a nucleoside analog) (Collisson et al., 2011). 

A more recent whole-genome sequencing study analyzing 100 PDAC samples reported that 

only one-fifth of the tested tumors are classified as ‘stable’, carrying less than 50 structural 

variations, and are often presenting with widespread aneuploidy, while the majority of the 

samples exhibited greater number of structural variations and non-random chromosomal 

damage (Waddell et al., 2015).  

 Apart from genetic heterogeneity, efforts looking into the epigenome landscape also 

yielded significant understanding in the epigenetic reprogramming in PDAC: diverse DNA 

methylation pattern, distinct histone marks, and alteration of the enhancer landscape in 

different subtypes of PDAC which drive specific malignant heterogeneity, clinical outcome 

and therapeutic response (Nones et al., 2014; Silverman and Shi, 2016; McDonald et al., 2017; 

Lomberk et al., 2018, 2019). Intriguingly, a few studies pointed out that tumor 

microenvironment (TME) or the tumor stroma contribute to the genetic and epigenetic 

heterogeneity. As such, a specific basal subtype of PDAC with an activated stroma gene 

expression profile was determined (Collisson et al., 2011; Moffitt et al., 2015). This basal 

subtype tumors were found to be associated with upregulation of a gene responsible for chemo-

resistance, CYP3A5 (Noll et al., 2016), and possess a distinct epigenetic landscape around 

genes that are highly oncogenic and are related to epithelial-to-mesenchymal transition (EMT) 

(Lomberk et al., 2018). Overall, these studies not only provided insights into the remarkable 

intratumor genetic and epigenetic heterogeneity of PDAC, they also highlighted the challenge 

of therapeutic difficulty and relevance of personalized medicine for PDAC.  
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It is important to note that the phenotypic heterogeneity of most cancers cannot be 

solely attributed to the diverse genetic or epigenetic make-up of tumors. Two models provide 

further explanation for the phenotypic and functional heterogeneity among cancer cells in 

certain tumors: 1) cancer stem cell model and 2) diversity of tumor microenvironment (TME). 

I will discuss these two models further using breast and pancreatic cancer as the representative 

example for each model.  

 

1.3 Cancer stem cells contribute to the intratumor heterogeneity and cellular 

plasticity of breast cancer 

 Cancer stem cells (CSCs) or tumor-initiating cells constitute a small portion of the bulk 

of tumor. They were first described in human acute myeloid leukemia in 1994 (Lapidot et al., 

1994), but it was not until 2003 where the first identification of CSCs in solid tumor, i.e., breast 

cancer was reported (Al-Hajj et al., 2003). Serial tumor transplantation assay combined with 

limiting dilution assay are the gold standards to identify the cell-of-origin of cancers and to 

assess the CSCs’ self-renewal property as well as tumorigenic potential by testing their ability 

to regenerate new tumors and to maintain tumor propagation in mice. By transplanting 

increasingly diluted single-cell preparations, limiting dilution assay enables the determination 

of minimum CSC frequency that can regenerate a xenograft tumor. Like adult tissue stem cells, 

CSCs can be identified and isolated based on specific antigen profiles. Most of these markers 

are also present on human embryonic stem cells or adult tissue stem cells. For breast cancer, 

CSCs were initially characterized by surface markers CD44+/CD24low/- and had since been 

established as the minimum requirement for isolating breast CSCs (Al-Hajj et al., 2003). A 

plethora of other markers were later identified, including CD133, epithelial cell adhesion 

molecule (EpCAM), CD49f, CXCR4, and ALDH1, that are also commonly used to define CSC 

population in other tumors (Ginestier et al., 2007; Meyer et al., 2010; Kim and Ryu, 2017).  
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 CD44 is a transmembrane glycoprotein that engages with many ECM proteins for tissue 

adhesion and migration. It has a molecular weight of 85-200 kDa and is expressed ubiquitously 

throughout the body tissues. Other than hyaluronan, a glycosaminoglycan which serves as the 

major ligand, proteins like collagen, laminin, fibronectin, osteopontin, and matrix 

metalloproteinases were also found to bind CD44 in various cell types (Jalkanen and Jalkanen, 

1992; Underhill, 1992; Weber et al., 1996; Yu and Stamenkovic, 1999). Its interaction with 

these proteins had been implicated for tumor progression. Unsurprisingly, breast tumors that 

highly express CD44 are linked to a malignant phenotype and have significantly worse 

prognosis and overall survival (Tse et al., 2005; Mayer et al., 2008). CD24, on the other hand, 

is a 38-70 kDa mucin-type glycoprotein that is bound to the cell membrane via a 

glycosylphosphatidylinositol (GPI)-anchor. It binds to P-selectin, which is often found on the 

surfaces of endothelial cells and platelets, to regulate cell adhesion and proliferation (Aigner 

et al., 1995, 1997). In breast cancer, the exact role of CD24 in driving tumorigenesis and 

metastasis remains controversial. On the one hand, CD24 was found to be overexpressed by 

most primary breast carcinoma, and are associated with tumor growth and metastasis (Fogel et 

al., 1999; Kristiansen et al., 2003; Baumann et al., 2005). On the other hand, downregulation 

of CD24 both in messenger RNA (mRNA) and protein levels was associated with an invasive 

phenotype; cells expressing low levels of CD24 had higher tumorigenic potential in 

immunocompromised mice (Schindelmann et al., 2002; Schabath et al., 2006). One possible 

explanation to this conflicting evidence is that CD24 expression level inversely correlates with 

ER status, which explains the high expression of CD24 in triple-negative breast cancer cells in 

contrast to their ER-positive counterparts (Kaipparettu et al., 2008). Therefore, it is important 

to assess the relevance of the individual CSC markers before they are used to define the CSC 

population in different tumor subtypes. Nevertheless, the high prevalence of CD44+/CD24low/- 
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phenotype in breast cancer signals tumor aggressiveness and may predict poor prognosis, 

particularly in triple-negative breast cancer (Idowu et al., 2012; Wang et al., 2017).  

 Due to extensive similarities between normal stem cells and cancer stem cells, it was 

postulated that CSCs are derived from stem cells of normal breast tissues with deregulated 

signaling pathways, including Notch, WNT, Hippo, and Hedgehog signaling. However, this 

hierarchical model of explanation was challenged when some evidence emerged to suggest that 

breast CSCs and non-CSCs are interconvertible, and that phenotypic transition is common 

among cancer cells (Meyer et al., 2009; Chaffer et al., 2011; Gupta et al., 2011; Iliopoulos et 

al., 2011; Kim et al., 2013). The underlying mechanism of such interconversions can be 

attributed to a process called epithelial-mesenchymal transition (EMT), a key embryonic 

developmental program that also orchestrates cancer invasion and metastasis (Figure 1.1). 

EMT is often driven by a set of transcription factors which include Snail, Slug, TWIST1, ZEB1 

and ZEB2, resulting in a loss of epithelial cell polarity and cellular adhesions (loss of E-

cadherin) and an acquisition of a mesenchymal, motile phenotype (expression of vimentin and 

N-cadherin) (Nieto et al., 2016). Indeed, EMT was found to be responsible for the generation 

of breast CSCs as revealed by the high expression of EMT-associated genes in 

CD44+/CD24low/- cells and an increase of CSCs in mice with an activated EMT program (Mani 

et al., 2008; Morel et al., 2008). Other studies analyzing the role of EMT transcription factors 

supported this hypothesis that an activation of EMT in cooperation with other stem cell-related 

transcription factors like Sox9 led to breast cancer cell plasticity and enhanced tumorigenicity 

(Guo et al., 2012; Chaffer et al., 2013; Hollier et al., 2013; Ye et al., 2015).  
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Figure 1.1 Epithelial-to-mesenchymal transition and cancer stem cells’ fate transition 

The transition of non-cancer stem cells (non-CSCs) to CSCs is triggered by a transcriptional 

program called epithelial-to-mesenchymal transition (EMT) via a set of transcription factors to 

drive loss of epithelial characteristics and acquisition of mesenchymal markers and traits. In 

breast cancer, CSCs are marked with CD44+ and CD24-. (Created with BioRender.com)  

 

 To complicate the picture further, breast CSCs were found to transition between 

epithelial and mesenchymal states with each occupied anatomically distinct locations- central 

versus tumor invasive front within a tumor, and played disparate functions in proliferation or 

invasion, respectively (Liu et al., 2014). The association between EMT program and CSCs can 

also explain the enhanced tumor colonization, invasion, and metastasis of CSCs that is 

equivalent to an acquired mesenchymal phenotype. It was proposed that the transition of non-

CSCs into CSCs after EMT program activation may serve as the entry point for CSCs to 

disseminate to distant tissues and to initiate metastatic growths (Lawson et al., 2015; del Pozo 

Martin et al., 2015; Schmidt et al., 2015). Last but not least, it has also been discovered that 

breast CSCs with a distinct genetic program and residing in a unique stem cell niche are 

resistant to conventional chemotherapy and radiotherapy (Phillips et al., 2006; Li et al., 2008; 
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Creighton et al., 2009; Gómez-Miragaya et al., 2017). In particular, Creighton and colleagues 

demonstrated that CD44+/CD24low/- cells retain an increased expression of mesenchymal 

markers in residual tumors after endocrine therapy and chemotherapy, highly suggesting the 

close links between EMT, CSCs and therapy resistance (Creighton et al., 2009). The unique 

characteristics of breast CSCs and the dynamic transition of cellular states governed by EMT 

program in breast cancer have undeniably posed a significant challenge for clinical treatment 

of metastatic and tumor relapse of breast cancers.  

 

 1.4 Desmoplastic stroma is an example of malignant tumor microenvironment 

best represented by pancreatic cancer  

In normal tissue, the collective complex surrounding the tissue called ‘stroma’ is made 

up of cellular components (fibroblasts and immune cells), vasculatures and interstitial 

extracellular matrix (ECM). The stroma plays a major role in maintaining normal tissue 

homeostasis and architecture, controlling the dynamic of cell growth and proliferation, and is 

involved in signal transduction. Similarly, tumor surrounding is also composed of a 

microenvironment that consists of both neoplastic and non-neoplastic cells as well as a 

dynamic ECM to sustain tumor survival, progression and metastasis (Bissell and Hines, 2011).  

One of the striking biological characteristic of PDAC in comparison to other tumor 

types is the extensive desmoplastic reaction around the tumor mass which make up the stroma 

and constitutes tumor microenvironment (Whatcott et al., 2015a). Desmoplastic reaction or 

desmoplasia is a pathological term used to describe the excessive stromal and fibrotic reaction 

as a result of inflammation that occurs around a tissue leading to a change in the extracellular 

architecture. In essence, desmoplasia in a tumor is analogous to a wound that does not heal, 

which is characterized by an activation of myofibroblasts involved in wound healing processes 

and extracellular matrix reorganization (Dvorak, 1986).  



Chapter 1 | Introduction to tumor heterogeneity and cellular plasticity 
  

 

13 

PDAC tumor microenvironment consists of a heterogeneous assortment of extracellular 

matrix proteins like collagen, fibronectin, laminin, proteoglycans and hyaluronan (Figure 1.2) 

(Feig et al., 2012; Neesse et al., 2019).                    

        
Figure 1.2 Illustration of pancreatic adenocarcinoma’s tumor microenvironment (TME) 

Pancreatic adenocarcinomas are often surrounded by a thick layer of matrix proteins consisting 

of collagen, fibronectin, laminin, hyaluronan, proteoglycans, produced by activated fibroblasts, 

called cancer associated fibroblasts (CAFs) or myofibroblast. (Created with BioRender.com)          

                             

Similar to inflammatory breast tumors, fibroblasts, immune cells and blood vessels that 

nourishes the tumor are the cellular components that are ubiquitously found within the TME 

of a pancreatic tumor (Figure 1.2). What differentiates the TME of PDAC from other tumors 

is the abundance of stromal fibroblasts, known as pancreatic stellate cells or myofibroblasts. In 

cancer, they are often referred to as cancer associated fibroblasts (CAFs). Pancreatic stellate 

cells were found to be present in both normal and diseased human pancreas (Bachem et al., 
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1998, 2005). They are thought to be originated from the bone marrow (Sparmann et al., 2010; 

Scarlett et al., 2011). In healthy pancreas, pancreatic stellate cells are considered quiescent, and 

present in low abundance adjacent to the basolateral sides of pancreatic acinar cells or along 

the pancreatic ducts and in between acini (Watari et al., 1982; Naoki, 1990; Apte et al., 1998; 

Bachem et al., 1998). However, when activated during acute and chronic inflammatory 

diseases (Apte et al., 1999), pancreatic stellate cells secrete collagen into the surrounding that 

drives pancreatic fibrosis (Haber et al., 1999) and progression of PDAC (Apte et al., 2004).  

On the other hand, hyaluronan, a glycosaminoglycan highly accumulated in the PDAC 

stroma (Fries et al., 1994; Theocharis et al., 2000), which binds to cell surface receptor CD44 

(Abetamann et al., 1996), is excessively synthesized and secreted by PDAC cells (Mahlbacher 

et al., 1992) or as a result of interaction with CAFs (Knudson et al., 1984). One particular study 

showed that forced expression of hyaluronan synthase 3 (HAS3) in PDAC and accumulation 

of extracellular hyaluronan promoted tumor growth via EMT program (Kultti et al., 2014). In 

addition, excess hyaluronan deposition in the TME raised tumor interstitial pressure and 

impaired vascular perfusion, which compromised drug delivery to the tumor (Provenzano et 

al., 2012; Jacobetz et al., 2013), and led to a poor prognosis for patients bearing hyaluronan-

rich PDAC tumors (Cheng et al., 2013). Indeed, more evidence unveiled that a dense 

desmoplastic stroma in PDAC acts as a physical barrier to the delivery of chemotherapeutic 

drugs or to protect cancer cells from radiotherapy (Olive et al., 2009; Mantoni et al., 2011; 

Provenzano et al., 2012; Jacobetz et al., 2013). Another study reported that inhibition of the 

crosstalk between CAFs and PDAC cells via Vitamin D receptor reduced tissue inflammatory 

fibrotic reaction and enhanced responsiveness to the cytotoxic agent (gemcitabine) (Sherman 

et al., 2014). Furthermore, CAFs were also found to induce adaptive transcriptional programs 

in PDAC cells involving cell cycle, DNA replication, and metabolic pathway via histone 

acetylation, which in turn drive cancer progression (Sherman et al., 2017). In patients, an 
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activated stroma index, which measures the ratio of area stained for smooth muscle actin of 

stromal fibroblasts to the area stained for collagen or a high expression of fibroblast activation 

protein (FAP) in the stroma adjacent to the tumor, are indicative of poor prognosis in PDAC 

(Erkan et al., 2008; Cohen et al., 2008). Collectively, these findings had led to the emergence 

of anti-stromal therapy as a promising approach for PDAC.  

However, contradictory evidence emerged later which suggested that targeting the 

tumor stroma by depleting the CAFs or stroma compartments in PDAC transgenic mouse 

models led to a more undifferentiated, aggressive phenotype (Özdemir et al., 2014; Rhim et al., 

2014), arguing the rationale of targeting the tumor stroma for PDAC. This may partly explain 

the lack of benefits in terms of clinical outcomes of using stromal inhibitors, including 

hedgehog inhibitors and hyaluronidase in combination with conventional chemotherapeutic 

drug in metastatic PDAC, as evidenced by two recently failed clinical trials (De Jesus-Acosta 

et al., 2020; Tempero et al., 2020). These results caution the approach of anti-stromal strategy 

in PDAC treatment and demand a more comprehensive understanding of the tumor stroma 

using appropriate experimental approaches.     

 

1.5 Problem statements and aims 

While a great deal of knowledge had been uncovered about tumor heterogeneity and 

cellular plasticity, in reality, this does not align with the improvement in cancer treatment. It is 

clear that both CSCs and tumor microenvironment contribute to the complexity of tumor 

biology, and that they have important implications for clinical treatment. As shown in the 

example of breast cancer, dynamic transition between non-CSCs and CSCs further complicates 

the simplistic notion of targeting CSCs which explains the impartial efficiency of anti-CSC 

therapies despite years of research into them. Targeting the tumor heterogeneity as a whole 

would be out of the scope of this thesis, I would however take on a reductionist approach to 
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target the breast CSCs, an important component that brings about the tumor heterogeneity.  One 

practical approach may involve the understanding of transcriptional regulation of CSCs and 

harnessing the power of transcriptional control to alter the CSCs’ phenotype into a less 

aggressive and more differentiated state, by taking advantage of the cellular plasticity 

governing the transition between CSC and non-CSC state. Such approach is analogous to the 

successful example of differentiation therapy with all-trans retinoic acid (ATRA) in acute 

promyelocytic leukemia (APL). To address this hypothesis, the following aims had been set 

out: 

Aim 1: To investigate the transcriptional control of CSC’s surface marker, CD44 by microRNA 

(miRNA)  

Aim 2: To study the effects of overexpression or inhibition of miRNAs in CSCs’ control by 

harnessing the ability of miRNA to regulate gene transcription 

Aim 3: To elucidate molecular mechanisms of the action of miRNA in altering CSCs’ and non-

CSCs’ phenotypes  

 Meanwhile, the understanding of TME is paramount for the treatment of pancreatic 

cancer. Previous conflicting studies and failure of clinical trials of using anti-stromal therapies 

had taught us that we are still far from fully comprehending the PDAC’s complex TME. The 

advent and proper optimization of physiologically relevant in vitro and in vivo PDAC models 

may circumvent this problem. However, these models are still hard to come by, therefore in 

order to preliminary test certain biological agents for their feasibility to modulate the TME as 

a potential PDAC treatment at a preclinical level, cancer cell lines still offer a less expensive 

and less time-consuming alternative. For this part of the thesis, I tested a designed biomaterial 

made up of biological peptides on PDAC cell lines with the following aim in mind: 
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Aim 4: To investigate the functional effects and mechanisms of action of an ECM-derived 

synthetic peptide to alter PDAC cells’ phenotype  

 Upon addressing these aims, this thesis will provide insights into the potential 

approaches for modulating cellular plasticity due to CSCs and TME in hard-to-treat cancers.   



 

 

 

 

Chapter 2 
 

Role of microRNA-96 (miR-96) in controlling breast 

cancer stem cells 
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2.1 Introduction 

2.1.1 Expression and role of CD44 in breast cancer stem cells  

 CD44 is a cell adhesion molecule that primarily functions by tethering cells to 

extracellular matrix ligands to activates intracellular signaling cascades. CD44, which belongs 

to the family of transmembrane glycoprotein, binds hyaluronan as its main ligand (Aruffo et 

al., 1990), but also interacts with other extracellular ligands and components of extracellular 

matrix to direct cell behaviors in response to the cellular environment (Ponta et al., 2003). Due 

to its binding to various ligands and matrix proteins, it is widely expressed in mammalian cells 

including lymphocytes, endothelial cells, epithelial cells, fibroblasts, and keratinocytes to 

regulate tissue homeostasis and function.  

The cellular functions are highly dependent on the expression of CD44 variants and 

posttranslational modifications such as N- and O-glycosylation. Though CD44 proteins are 

encoded by a single, highly conserved gene containing 20 exons spanning a length of 60 

kilobases, extensive alternative splicing of CD44 transcripts between exon 5 and 14 results in 

an array of CD44 variant isoforms (CD44v) on top of the standard CD44 isoform (CD44s), 

which is devoid of all variable exons (Screaton et al., 1992). It has been reported that the variant 

exons are present in the stem structure of extracellular portion of CD44, and their inclusion is 

controlled by mitogenic signal such as mitogen-activated protein kinase (MAPK) pathway that 

regulates alternative splicing (König et al., 1998; Matter et al., 2002; Weg-Remers et al., 2001). 

The large CD44 splice variants that are often found in cancer cells have important functional 

significance in tumorigenesis and cancer progression. The first evidence of correlation between 

CD44v and metastatic potential was found in metastasizing rat pancreatic tumor and mammary 

adenocarcinoma cell lines in 1991 (Günthert et al., 1991). This finding was followed by the 

development of an anti-CD44v monoclonal antibody that effectively blocked metastatic spread 

into lymph nodes and lungs in a highly malignant tumor cell line (Seiter et al., 1993). Indeed, 
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a multitude of reports demonstrated that the expression of CD44v isoforms indicate tumor 

aggressiveness, high metastatic potential, and poor prognosis in breast cancer (Dall et al., 1995; 

Iida and Bourguignon, 1995; Kaufmann et al., 1995; Rodriguez et al., 1995).  

Interestingly, plasticity between CD44 splice isoforms also exists, and it brings about 

significant influence on cellular activities. Comprehensive analysis of CD44 revealed that 

though generally overexpressed, there is a heterogenous expression pattern of CD44 isoforms 

found across different molecular subtypes and among CSCs that are marked by 

CD44+/CD24low/-  or ALDH1 (Olsson et al., 2011a). CD44 splice variants are able to undergo 

isoform switching to CD44s to activate Akt signaling during EMT in breast epithelial and 

tumor cells (Brown et al., 2011). Further studies showing the effect of EMT transcription 

factors, Snail, in repressing splicing factor (Reinke et al., 2012), reinforced the relationship 

between isoform switching of CD44 and EMT, which modulates cellular phenotype and drives 

breast cancer metastasis (Shapiro et al., 2011; Xu et al., 2014). Similar isoform switching 

mechanism was also observed in metastatic mouse mammary cells and human 

CD44+/CD24low/- CSCs, but in an opposite manner from CD44s to CD44v, which led to 

increased lung metastases, suggesting that CD44v correlates with poor prognosis in breast 

cancer patients (Yae et al., 2012; Hu et al., 2017). A more recent study using data from RNA 

sequencing also reported that alternative splicing centrally regulates CD44 isoform expression 

in human breast CSCs. The researchers reported that CD44s is the predominant isoform 

expressed in CSCs, and is upregulated in triple-negative breast cancer; they functionally govern 

tumor initiation process via an activation of platelet-derived growth factor receptor beta 

(PDGFRb) signaling pathway (Zhang et al., 2019a). The use of distinct experimental models, 

cancer cell lines versus human bulk tumor data from The Cancer Genome Atlas (TCGA) or 

intravenous tumor xenotransplantation versus HER2/neu breast cancer mouse model might 

have accounted for the conflicting findings. Nonetheless, it is well established that 
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overexpression of CD44 in general plays a role in tumor formation and metastasis in breast 

carcinoma.  

 Other than the presence of CD44 variant isoforms, the encoded CD44 peptide can also 

be post-translationally modified by N- and O-linked glycosylation. CD44v3, in particular, 

possesses unique motif that allows the addition of heparan sulfate and chondroitin sulfate, 

which in return bind growth factors like heparin-binding epidermal growth factors (HB-EGF) 

and basic fibroblast growth factors (bFGF) (Bennett et al., 1995; Jackson et al., 1995; 

Greenfield et al., 1999). As revealed by multiple molecular studies, CD44v3 also functions by 

interacting with coreceptors such as matrix metalloproteinase 9 (MMP-9), Tiam1, and RhoA-

specific guanine nucleotide exchange factor (p115RhoGEF) that activates cytoskeleton-related 

Rho family of GTPase, Rac and Rho to mediate breast tumor cell migration and invasion 

(Bourguignon et al.,1998, 1999, 2000, 2003; Kalish et al., 1999). It is therefore not surprising 

that the expression of CD44v3 in breast carcinomas correlates with metastases to the lymph 

nodes (Ryś et al., 2003). Other studies had also demonstrated that the interaction between 

hyaluronan, osteopontin or matrix metalloproteinases with CD44 triggers a variety of 

downstream signaling molecules including phosphoinositide 3-kinase (PI3K), MAPK, 

transforming growth factor-b (TGF-b), and Rho GTPases that result in cancer cell growth, 

migration, invasion, angiogenesis, bone metastasis, and chemoresistance (Senbanjo and 

Chellaiah, 2017; Chen et al., 2018).   

 

2.1.2 miRNAs are dysregulated in breast cancer  

 It is known that CD44 expression is regulated by various transcription factors including 

well-known tumor suppressor p53 (Godar et al., 2008) and epigenetic mechanism like DNA 

methylation (Müller et al., 2010; Rauscher et al., 2015). However, there is also a number of 

reports that investigated the regulation of CD44 by miRNAs. MicroRNAs are a family of 
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evolutionary conserved, short, single-stranded, non-coding RNAs typically made up of 19 to 

25 nucleotides that can bind to the 3’-untranslated region (3’UTR) of target mRNAs to cause 

translational suppression and mRNA degradation (Ha and Kim, 2014). Briefly, their biogenesis 

involves a transcription by RNA polymerase II/III ( Lee et al., 2004; Borchert et al., 2006) to 

generate the primary transcripts (pri-miRNAs), which are later processed by a microprocessor 

complex, Drosha-DGCR8 to form a hairpin structure called precursor transcripts (pre-miRNAs)  

(Lee et al., 2003; Gregory et al., 2004; Han et al., 2004, 2006; Morlando et al., 2008). Next, 

the pre-miRNAs are transported from nucleus into the cytoplasm to undergo loop-cleavage by 

Dicer, a RNase III (Hutvágner et al., 2001; Ketting et al., 2001; Lee et al., 2002; Basyuk et al., 

2003) to generate mature miRNA/miRNA duplexes, which are loaded into an Agonaute (Ago) 

protein to form a RNA-induced silencing complex (RISC) where the passenger strand is 

cleaved leaving one mature miRNA strand (Hammond et al., 2000; Matranga et al., 2005; 

Miyoshi et al., 2005; Leuschner et al., 2006; Kawamata et al., 2009; Yoda et al., 2010). Once 

the effector complex termed miRNA-containing RNA-induced silencing complex (miRISC) 

containing mature miRNA, Ago protein, glycine-tryptophan protein of 182 kDa (GW182), and 

other proteins is formed, the mature miRNA can then exert its effect by binding to the 3’UTR 

of target mRNAs complementary to the miRNA’s seed sequence (nucleotide 2 to 8 from the 

5’-end of miRNA) ( Lai, 2002; Lewis et al., 2003; Eulalio et al., 2008; Filipowicz et al., 2008; 

Fabian and Sonenberg, 2012). As a result of this interaction, deadenylase complex CCR4-NOT 

or PAN2-PAN3 is recruited to shorten the poly(A) tail of target mRNA to induce mRNA 

degradation or translational repression (Yamashita et al., 2005; Wu et al., 2006). Due to the 

short seed sequence of miRNA and their imperfect complementarity to target mRNAs in 

inducing translational repression (Saxena et al., 2003; Zeng et al., 2003; Doench and Sharp, 

2004), it is not uncommon that a single miRNA can bind multiple target mRNAs and vice versa 

(Lewis et al., 2005; Lim et al., 2005). The complementary base pairing of a miRNA with 
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multiple mRNAs had prompted the development of computational approaches to identity 

putative target mRNAs of documented miRNAs (Lewis et al., 2003; John et al., 2004; 

Kiriakidou et al., 2004; Krek et al., 2005).  

Because of the complex interaction between a miRNA and multiple mRNAs, any 

dysregulation in miRNA expression can lead to functional impairment of tissues causing 

diseases like cardiovascular disorders and cancers (Hwang and Mendell, 2006; Mendell and 

Olson, 2012). In human cancers, it was discovered that majority (> 50%) of miRNA genes are 

frequently located at cancer-associated genomic regions or fragile sites such as regions of 

deletion, amplification or chromosomal rearrangement (Calin et al., 2004). Two 

comprehensive expression studies had uncovered that there is a global dysregulation of 

miRNAs in human tumors, and identified common cancer-associated miRNA signatures across 

various human cancers (Lu et al., 2005; Volinia et al., 2006). By developing a bead-based flow 

cytometric profiling which uses fluorescently-labeled oligonucleotide-capture probes 

complementary to miRNAs of interest and coupled with polymerase chain reaction (PCR) to 

systematically analyzed the miRNA expression, Lu and colleagues found that miRNAs are 

generally downregulated in tumors compared with normal tissues, and that the clusters of 

miRNA profiles recapitulated the developmental origin and differentiation status of tumors (Lu 

et al., 2005). On the other hand, using a large-scale microarray analysis, Volinia and colleagues 

identified 36 overexpressed miRNAs and 21 downregulated miRNAs in tumors when 

compared to normal tissues; their aberrant expression correlated well with the expression of 

known oncogenes or tumor suppressors in each cancer type (Volinia et al., 2006). For instance, 

the reduced expression of miR-20a coincided with increased expression of transforming 

growth factor b receptor II (TGFBR2) in breast cancer which signals a poor prognosis in TNBC 

patients (Buck et al., 2004; Volinia et al., 2006). In parallel, a microarray expression study 

involving 76 human breast cancer samples that encompass various clinicopathologic states and 
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10 normal breast samples reported 29 deregulated miRNAs, of which 15 of them can be used 

as a signature to distinguish tumor from normal breast tissues and a few aberrantly expressed 

miRNAs, for instance, miR-21 (upregulated), let-7, miR-145 and miR-9-3 (downregulated) 

could suggest cancer progression to high tumor grade or metastasis (Iorio et al., 2005).  

Numerous studies have also found other miRNAs that are differentially expressed in breast 

cancer and depending on the role of target genes in tumorigenesis, they can be generally 

subdivided into either oncogenic miRNAs (oncomiRs) or tumor suppressor miRNAs. These 

miRNAs have profound influence on cancer processes including cell proliferation, cell cycle 

regulation, metastasis and invasion, control of cell death, and angiogenesis (Loh et al., 2019). 

In breast CSCs, miRNA expression is also dysregulated. A few such miRNAs where 

their functions in breast CSCs had been elucidated are worth to be mentioned. For instance, a 

widely-studied downregulated miR-200 family members (miR-141, miR-200a, b and c, and 

miR-429) in breast cancers were found to modulate the expression of stem cell and EMT-

related genes such as Krüppel-like factor family (KLF4) (Wellner et al., 2009), polycomb 

complex protein BMI1 (Shimono et al., 2009), suppressor of zeste 12 (SUZ12) (Iliopoulos et 

al., 2010), and ZEB1/ZEB2 (Burk et al., 2008; Gregory et al., 2008; Korpal et al., 2008; Park 

et al., 2008), leading to activation of EMT program and increased breast CSCs (Shimono et al., 

2009; Polytarchoua et al., 2012; Knezevic et al., 2015). Similarly, let-7 is significantly 

downregulated in breast CSCs and restoration of let-7 expression resulted in decreased cell 

proliferation, in vitro mammosphere formation, in vivo tumor formation and metastasis in an 

immunosuppressed mouse model (Yu et al., 2007). Another tumor suppressor miR-34a, a direct 

downstream effector of p53 (He et al., 2007), that are often inactivated by promoter 

methylation (Lodygin et al., 2008), plays key roles in cell fate commitment in mammary gland 

progenitors and breast cancer cell differentiation; they control breast CSCs by targeting WNT 

and Notch signaling (Kang et al., 2015; Bonetti et al., 2019). These findings are in line with 
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other studies reporting roles of miR-34 in CSCs in other cancers. For example, miR-34 

suppresses prostate cancer, pancreatic cancer, and medulloblastoma CSCs by repressing CD44 

or Notch signals (Ji et al., 2009; de Antonellis et al., 2011; Liu et al., 2011). Conversely, 

oncomiRs like miR-31 (Lv et al., 2017), miR-155 (Zuo et al., 2018) and miR-221/222 (Stinson 

et al., 2011; Li et al., 2016) are often found to be upregulated in breast CSCs to promote CSCs’ 

self-renewal, tumorigenesis, and metastasis.  

 

2.1.3 Pathological roles of miR-96 in breast cancer and CSCs 

 Other than the miR-200 family that was extensively investigated, another miRNA 

cluster, miR-183-96-192, hereafter called miR-183 cluster, was also reported to be significantly 

downregulated in human breast CSCs (CD44+/CD24low/- subpopulation), normal human and 

murine mammary stem cells compared to non-tumorigenic cancer cells and normal breast 

epithelial cells (Shimono et al., 2009). It was confirmed that miR-183 cluster cooperates with 

miR-200 and miR-203 in repressing stem cell factors, like BMI1 in pancreatic and colorectal 

cancer cells, and their expressions are tightly regulated by the EMT activator, ZEB1 (Wellner 

et al., 2009). This was further reinforced by another study which showed that loss of p21, a 

downstream effector of p53, induces EMT by downregulating miR-183 cluster (Li et al., 

2014b). Conversely, when miR-183 and miR-96 without miR-182 were reintroduced to the 

p21-deficient colorectal cancer cells, EMT-related genes, such as ITGB1, KLF4, SLUG and 

ZEB1 were repressed, which led to inhibition of cell migration and invasion (Li et al., 2014b). 

However, there has not been any follow-up studies that specifically investigated and elucidated 

the roles of miR-183-96-182 in breast CSCs which serves as the main rationale of this study.    

 The miR-183 cluster is made up of paralogous miR-183, miR-96 and miR-182 that 

share sequence homology and chromosomal proximity (Weston et al., 2006; Xu et al., 2007). 

It is highly conserved, and its expression is tightly regulated during normal development and 
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maturation of sensory organs (Pierce et al., 2008; Sacheli et al., 2009; Weston et al., 2011). 

They have also been reported to be critically upregulated in cancers (Lehmann et al., 2010; Lin 

et al., 2010; Hannafon et al., 2011; Giricz et al., 2012; Zhang et al., 2013). The upregulation of 

miR-183 cluster in breast cancer was found to be correlated with poor clinical presentation and 

prognosis (Song et al., 2016). Although generally all three miRNAs within the cluster were 

invariably upregulated in breast tumor tissues, there is growing evidence hinting that the roles 

played by each miRNA within the cluster might differ in breast cancer (Zhang et al., 2013). 

This is partly due to the fact that the 3 miRNAs of miR-183 cluster have similar but slightly 

different seed sequences (Wang et al., 2012), despite having overlapping sets of target mRNAs 

(Fogerty et al., 2019). To investigate this using a reductionist approach, I have chosen to look 

into and summarize the literatures published on miR-96 or miR-96 in combination with miR-

182 and/or miR-183 in breast cancer (Table 1).   

 

Table 1 List of gene targets and functions of miR-96 in breast cancer 

miRNA Target Genes Function Reference 

miR-96, 182 FOXO1 Promote cell viability and proliferation (Guttilla and White, 
2009) 

miR-96 FOXO3a Promote growth by enhancing G1/S transition (Lin et al., 2010a) 

miR-96 RAD51, REV1 Decrease homologous recombination and improve 
sensitivity to cisplatin and PARP inhibition (Wang et al., 2012) 

miR-96 RECK Promote proliferation and invasion (Zhang et al., 2014) 

miR-96, 182, 
183 RAB Promote proliferation and migration (Li et al., 2014a) 

miR-96, 182, 
183 BRMS1L, GHR Promote EMT and invasion stimulated by human 

growth hormone (Zhang et al., 2015) 

miR-96, 182 PALLD Inhibit migration and metastasis (Gilam et al., 2016) 

miR-96 PTPN9 Promote proliferation, migration, and invasion (Hong et al., 2016) 
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miR-96-5p FOXO Promote proliferation by inhibiting autophagy and 
apoptosis, enhance migration and invasion (Shi et al., 2017) 

miR-96 ABCA1 Promote proliferation by suppressing apoptosis (Moazzeni et al., 
2017) 

miR-96 MTSS1 Promote migration  (Xie et al., 2018) 

miR-96-5p CTNNB1 Inhibit proliferation and invasion (Gao et al., 2020) 
 

 Given the conflicting data presented, it is impossible to deduce that miR-96 plays its 

role either as an oncogene or a tumor suppressor in breast cancer. The use of different miRNA 

mimic or inhibitor, cell lines or clinical breast tumor tissue samples, and experimental 

approaches may have contributed to the discrepancies in findings. However, it is rather 

interesting to find that when it is common consensus that miR-183 cluster is upregulated in 

breast cancer, its expression is ironically downregulated in breast CSCs (Shimono et al., 2009), 

suggesting that miR-96 plays distinct roles in regulating CSCs’ self-renewal and breast cancer 

oncogenesis. To understand this phenomenon, I set out to investigate how miR-96 controls 

breast CSCs by paying particular attention on the expression of CD44 which governs the stem 

cell function.  

 

2.2 Materials and Methods 

Cell culture 

All cell lines were obtained from ATCC®. MCF7 and SK-BR3 cells were cultured in RPMI 

1640 medium containing 10% fetal bovine serum (FBS) (GIBCO) and 1% 

penicillin/streptomycin. MDA-MB231, MDA-MB468, ZR-75-1, and HEK293T cells were 

cultured in high-glucose DMEM with 10% FBS and 1% penicillin/streptomycin. MCF10A 

cells were cultured in DMEM/F12 (Invitrogen) containing 5% horse serum, 20 ng/mL EGF, 

0.5 mg/mL hydrocortisone, 100 ng/mL cholera toxin, 10 µg/mL insulin, and 1% 

penicillin/streptomycin. Cells were maintained at 37°C and 5% CO2. 
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Transfection 

Cells were plated in 6-well plates at a density of 200,000 cells/well. Transfection reagents were 

prepared by mixing 5 µL Lipofectamine® RNAiMax reagent (Thermo Fisher Scientific) in 250 

µL of reduced serum medium OPTI-MEM (Thermo Fisher Scientific). mirVanaTM miR-96 

mimic (miRbase ID: hsa-miR-96-5p)- a small, double-stranded RNA that mimics endogenous 

precursor miRNAs or inhibitor (anti-miR™ miRNA Inhibitor)- a single-stranded, RNA 

oligonucleotide that binds to and inhibits the activity of endogenous miRNAs (Ambion) was 

diluted to a final concentration of 16 nM in OPTI-MEM. The mixture of miR-96 

mimic/inhibitor and RNAiMax was incubated at room temperature for 10 min before adding it 

to the cell mixture in culture medium. Untreated and mock-treated samples (cells that were 

transfected with Lipofectamine® RNAiMax only) without the miR-96 mimic or inhibitor were 

used as controls.  

 

Staining and flow cytometry analysis 

After treatment for 72 h, cells were detached by trypsinization and centrifuged. Cell pellets 

were resuspended in PBS with 2% FBS containing anti-human FITC-conjugated CD44 (clone 

BJ18) antibodies (Biolegend®) and PE-conjugated anti-human CD24 (clone ML5) antibodies 

(Biolegend®) at a concentration of 1:1000. Anti-human IgG antibodies were used to determine 

the positive subsets of cells from background staining. Cells were incubated on ice in the dark 

for 30 min. Cells were washed 3 times with PBS before being analyzed by flow cytometry. 1 

µg/mL 7-AAD was used as a viability dye (Sigma). Analysis was performed using a 

FACSAriaTM III cell sorter system (BD Biosciences, San Jose, CA, USA) and data was plotted 

and quantified using FlowJoTM software Version 10 (Becton, Dickinson and Company, 2019).  

 

Sphere formation assay 
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Cells were harvested and dissociated by trypsinization after treatment for 72 h. Single cells 

(100 cells/well) were plated on 24-well ultra-low attachment tissue culture plates (Corning). 

Briefly, cells were cultured in Mammary Epithelial Basal Medium (Lonza) containing 10 

ng/mL EGF, 10 ng/mL bFGF, and B27 up to 14 days. Tumorspheres were measured and 

imaged using a Nikon Eclipse TS100 inverted microscope (Nikon Instruments, Tokyo, Japan) 

with a 4x objective lens. The number of tumorspheres over 50 µm was counted. 

 

Determination of miRNA and mRNA expression levels  

Total RNA was extracted using ISOGEN-II (Nippon Gene, Japan) reagent. For mRNA 

quantification, cDNA was synthesized from 1 µg of total RNA with Prime ScriptTM RT reagent 

(TAKARA, Japan). For miRNA quantification, miRNAs were extracted using an 

miRVANATM miRNA Isolation Kit (Life Technologies) following the manufacturer’s 

instructions. Reverse transcription and quantitative real-time PCR were performed using 

Taqman® Small RNA Assays (Applied Biosystems) following the manufacturer’s protocol. 

Quantitative real-time PCR (RT-PCR) was performed on a ViiA 7 Real-Time PCR System 

(Thermo Fisher Scientific) using SYBR Premix Ex Taq II Master Mix (TAKARA, Japan). 

GAPDH expression level was used for mRNA normalization while U6 snRNA was used for 

miRNA normalization. Primers employed in quantitative RT-PCR are listed in Table 4 in 

Chapter 3.2. 

 

Mouse xenotransplantation and tumorigenicity assay 

Animal experiments were performed in accordance with protocol approved by the Animal 

Experiment Review Committee of Okinawa Institute of Science and Technology Graduate 

University. Untreated, mock and miR-96 mimic-treated cells were harvested using 

trypsinization and centrifugation. 1x106 cells were resuspended in 150 µL 100% Matrigel 
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before being injected subcutaneously into the flanks of 8-week old female BALB/c nu/nu nude 

mice. Three mice were used for each group. Four weeks after transplantation, mice were 

euthanized, and tumors were harvested. Tumor size and mass were measured with calipers and 

a precision balance, respectively, before they were lysed with lysis buffer from miRVANATM 

miRNA Isolation Kit (Life Technologies) for RNA extraction. Tumor volume (mm3) was 

calculated using the formula: (!")(
!
") × #

$. 

 

DNA or plasmid constructs and luciferase assays 

For luciferase reporter assays, the full-length 3’UTR and promoter region, 2000 and 1000 base 

pairs (bp) upstream of transcription start site (TSS), of CD44 were amplified from human 

genomic DNA and cloned upstream of Firefly luciferase vector, Luc2 (Promega). The primer 

sequences used for cloning are presented in Table 2. HEK 293T cells were first transfected 

with 8 nM miR-96 mimic or inhibitor. A day later, they were then transfected with 50 ng of 

Luc2 constructs containing CD44 3’UTR or promoters, together with 10 ng of Renilla 

Luciferase reporter plasmid as a control. Twenty-four hours later, culture media containing 

transfection reagents was removed and cells were washed twice with PBS. Luciferase activities 

were analyzed following the Promega Dual-Luciferase® Reporter Assay’s (Promega) protocol 

and measured by Centro XS3 LB 960 Microplate Luminometer (Berthold Technologies, 

Wildbad, Germany). Relative luciferase activities were calculated as ratios of Firefly to Renilla 

luciferase index.  
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Table 2 Primers used for luciferase reporter vector cloning  

Gene Forward primer Reverse primer 

CD44 3’UTR 
AATCTCTAGACACCTACACCATTATC

TTG 

AATCTCTAGAATGTTAGCCTTTTA

ATAT 

CD44 promoter 
(2000 bp 
upstream of TSS) 

AATCAAGCTTTGGCATAGCTTACACC

TTGT 

AATCAAGCTTTGGGTTCAGCCTTT

GGCCTC 

CD44 promoter 
(1000 bp 
upstream of TSS) 

AATCAAGCTTAGATAGATATAGAGTT

ATC 

AATCAAGCTTTGGGTTCAGCCTTT

GGCCTC 

HB-EGF 3’UTR 
AATCTAGAGAGAGACTTGTGCTCAAG

GA 

AATCTCTAGATGGAATAAGGGTTA

TCTTTATTTG 

 

Statistics 

Results are presented as means ± SD for at least three repeated individual experiments for each 

group. Statistically significant differences between mean values were determined using two-

tailed Student’s t-test (***p < 0.001, **p < 0.01 and *p < 0.05), unless otherwise specified. 

 

2.3 Results 

2.3.1 miR-96 is differentially expressed in various breast cancer cell lines and in breast 

CSCs 

 Compared to MCF10A (a normal mammary epithelial cell line), all studied human 

breast cancer cell lines that encompass various histological types and molecular signatures, 

including estrogen and progesterone status, except for MDA-MB231, showed significantly 

increased expression of miR-96 (Figure 2.1). MCF7, an ErbB2/HER2 negative, estrogen and 

progesterone receptor-positive cell line, and SK-BR3, an ErbB2/HER2-positive cell line, 

demonstrated exceptionally high expression of miR-96.  
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Figure 2.1 miR-96 is highly expressed across various breast cancer cell lines  

miR-96 expressions were measured by quantitative RT-PCR in breast cancer cell lines derived 

from various histological subtypes and molecular signatures (MCF7 (ER+/PR+/HER2-), MDA-

MB468 (TNBC), MDA-MB231 (TNBC), and SK-BR3 (HER2+)) compared to normal 

mammary epithelial cells, MCF10A. Results are presented relative to U6 snRNA expression. 

Data represent three independent experiments (**p < 0.01, *p < 0.05, and n.s- not significant). 

Error bars represent means of three independent experiments ± S.D. (N=3). 

 

 Next, I isolated CSCs by surface expression of CD44 and CD24 using flow cytometry 

from the following three cell lines expressing high miR-96 level: MCF7, MDA-MB468, and 

SK-BR3. When the CSCs (CD44+/CD24low/- subpopulation) were assessed for their expression 

of miR-96 by quantitative real-time PCR after RNA extraction, I found significant reduction 

of miR-96 copies in CSCs as compared to their non-CSCs counterpart across all three cell lines 

(Figure 2.2). The difference in the level of miR-96 expression between CSCs and non-CSCs 

was especially great in MCF7 cells. Following this observation, I hypothesized that miR-96 

downregulation is needed for CSCs’ functions and hence further upregulation of miR-96 can 

potentially reduce CSCs population within breast cancer. In order to address the effect of miR-

96 on tumorigenesis, I have selected MCF7 (CD44low) and MDA-MB468 (CD44high) for further 

investigation.  
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             CSC (CD44high, CD24low/-); non-CSC (CD44-, CD24high) 

Figure 2.2 Expression of miR-96 in CSCs versus non-CSCs 

Expression of miR-96 was measured between CSCs (CD44+/CD24low/-) and non-CSCs (CD44-

/CD24high) of three breast cancer cell lines isolated by flow cytometry based on CD44 and 

CD24 expression. Results are presented relative to U6 snRNA expression. Data represent three 

independent experiments (***p < 0.001, **p < 0.01 (t-test, two-tailed)). Error bars represent 

means of three independent experiments ± S.D. (N=3). 

 

2.3.2 Overexpression of miR-96 reduced the breast CSCs population  

 First of all, I optimized the concentration of miR-96-5p mimic (precursor miRNA) or 

inhibitor (anti-miR) and found that 16 nM sufficiently enhanced or repressed, respectively, the 

miR-96 level in both MCF7 and MDA-MB468 cells (Figure 2.3a & b). These treatments were 

highly specific in modifying miR-96 levels without affecting expression of other miRNAs in 

the same cluster, miR-182 and miR-183 (Figure 2.3c).  
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Figure 2.3 Confirmation of miR-96, 182 and 183 levels upon treatment with miR-96 

mimic and inhibitor 

miR-96 expression, as measured by quantitative RT-PCR in a. MCF7 and b. MDA-MB468 

cells transfected with miR-96 mimic and inhibitor. c. miR-182 (left) and miR-183 (right) 

expressions were also quantified in miR-96 mimic- and inhibitor-treated MCF7 cells. Results 

are presented relative to U6 snRNA expression. Error bars represent means of three independent 

experiments ± S.D. (N=3). (***p < 0.00, **p < 0.01 (t-test, two-tailed)).  
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 To probe the effects of these molecules on the expression of breast CSC markers, upon 

treatment with miR-96 mimic or inhibitor, staining of cells with anti-CD44 and CD24 

antibodies followed by flow cytometry analysis were carried out. Results revealed a significant 

reduction in the CSC population (CD44+, CD24-) in MCF7 cells treated with an miR-96 mimic, 

while a tremendous increase of CSCs occurred in those transfected with miR-96 inhibitor 

(Figure 2.4a). For CD44high cell line, MDA-MB468, I focused on the CD44 level after 

transfection and found that there was also a partial reduction in the expression after miR-96 

mimic treatment (Figure 2.4b).  

      

               

      

Figure 2.4 Surface expression of CD44 upon transfection with miR-96 mimic or inhibitor 

a. Surface staining of CD44 and CD24 on MCF7 cells analyzed by flow cytometry after 

treatment with miR-96 mimic or inhibitor for 72 h. Numbers in outlined areas indicate the cells 

0

0.5

1

1.5

2

Untreated Mimic Inhibitor

Pe
rc

en
ta

ge
 o

f C
SC

s 
(%

)

CSCs (CD44+, CD24-)

*p= 0.019

*p= 0.018

CD24 

CD44 

SSC 

CD44 

96.5 

10 1 10 2 10 3 10 4 10 5 
0 

50K 
100K 
150K 
200K 
250K 

95.4 

10 1 10 2 10 3 10 4 10 5 
0 

50K 
100K 
150K 
200K 
250K 

Untreated Mock 

79.6 

10 1 10 2 10 3 10 4 10 5 
0 

50K 
100K 
150K 
200K 
250K 

93.3 

10 1 10 2 10 3 10 4 10 5 
0 

50K 
100K 
150K 
200K 
250K 

Mimic Inhibitor 

MCF7 

0

20

40

60

80

100

120

Untreated Mock Mimic Inhibitor

Pe
rc

en
ta

ge
 o

f C
D

44
+

ce
lls

 (%
)

**p= 0.0033

**p= 0.0039

MDA-MB468 

a. 

b. 

% 

% 

% 

% 



Chapter 2 | miR-96 regulates breast cancer stem cells 
 

 

36 

in CSC populations. Arrows show the shift of treated cells (blue dots) away from or towards 

CSC populations in relation to untreated/control cells (red dots). Average percentage of CSCs 

(CD44+, CD24-) in each group was quantified and presented using a box and whisker plot on 

the right. b. Dot plots showing surface staining of CD44 on triple-negative MDA-MB468 

breast cancer cells after treatment with miR-96 mimic or inhibitor for 72 h. CD44+ population 

is marked in the box and the percentage of CD44+ cells is shown on top of the box. Average 

percentage of CD44+ cells were quantified in each group and presented in the bar chart on the 

right. Data represent three independent experiments (**p < 0.001, *p < 0.05 (t-test, two-tailed)). 

 

 In conjunction with this finding, a sphere formation assay was performed to investigate 

the potential of tumor growth in vitro. Consistent with flow cytometry results, after 14 days of 

culture under serum-free and ultra-low attachment conditions, tumorspheres generated from 

miR-96 mimic-treated cells were much smaller and fewer in number compared to untreated or 

inhibitor-treated tumorspheres (Figure 2.5a & b). In contrast to MCF7, the sphere forming 

ability of MDA-MB468 was not as effective under such culture condition.   

 

 

 

Figure 2.5 Sphere forming ability of cells transfected with miR-96 mimic or inhibitor 
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Representative images of a. MCF7 and b. MDA-MB468 tumorspheres. The sphere forming 

ability was evaluated by culturing the 72 h-mimic or inhibitor-transfected cells in serum-free 

medium for 14 days. Scale bar represents 200 µm. Number of tumorspheres over 50 µm was 

quantified in each group and presented in the bar charts below the images. Data represent three 

independent experiments (***p < 0.001, **p < 0.01, *p < 0.05, and n.s- not significant (t-test, 

two-tailed)).  

 

2.3.3 In vivo tumor growth was stunted by cells overexpressing miR-96  

 To verify the in vitro findings, I expanded the study by subcutaneously grafting miR-

96 mimic-treated MCF7 and MDA-MB468 cells into immunocompromised nude mice for an 

in vivo tumor growth assay. After a course of 28 days, tumors were excised and examined 

(Figure 2.6a). The effect of transfection- upregulation of miR-96 by mimic was sustained as 

revealed by miR-96 expression analysis using quantitative RT-PCR (Figure 2.6b). However, 

the inhibitor did not sufficiently suppress the miR-96 level in growing tumors and so, the 

tumors were not assessed further. Both miR-96 mimic-treated MCF7 and MDA-MB468 cells 

had significantly smaller tumor volumes and masses in comparison to untreated or mock-

treated samples (Figure 2.6c & d). Taken together with in vitro results, this suggests that while 

miR-96 is naturally downregulated in breast CSCs, its forced overexpression led to a reduction 

of CSCs, which subsequently restricted tumor growth in vivo, implying that miR-96 potentially 

regulates breast CSCs.  
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Figure 2.6 In vivo xenotransplantation of untreated, mock-treated, and miR-96 mimic-

treated breast cancer cells  

a. Images of untreated, mock-treated, and miR-96 mimic-treated MCF7 (left) and MDA-

MB468 (right) tumors formed after xenografted subcutaneously into nude mice and excised 

for examination 28 days post-transplantation. b. miR-96 expression level of tumors from each 

experimental group as analyzed by quantitative RT-PCR. RNAs were isolated from 

homogenized tumors after excision. Results are presented relative to U6 snRNA expression. c. 

Tumor volume (mm3) was calculated based on the width (x) and length (y) of each tumor 
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measured with calipers. Average tumor volume from three biological replicates were quantified. 

d. Average tumor mass of each experimental group (***p < 0.001, **p < 0.0, *p < 0.05 (t-test, 

two-tailed)). 

 

2.3.4 miR-96 suppressed CD44 expression via transcriptional control 

 I was intrigued by the significant reduction of CD44 in both CD44high and CD44low cell 

lines after overexpression of miR-96. As discussed earlier, CD44 is a well-known stem cell 

marker that participates in mediating EMT and stem cell renewal. The current findings coupled 

with other studies that had reported the low expression of miR-96 in CD44high/+ CSCs 

subpopulation point that miR-96 potentially regulates CD44 expression. To test this hypothesis, 

I first performed quantitative RT-PCR to verify that CD44 mRNA was suppressed upon 

treatment with miR-96 in both MCF7 and MDA-MB468 cells (Figure 2.7). The splice variant 

of CD44, CD44v3 mRNA, commonly found in aggressive type breast tumors was also 

significantly downregulated by miR-96 (Figure 2.7).  
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Figure 2.7 miR-96 suppressed CD44 and CD44v3 mRNA levels 

Quantitative RT-PCR analysis of CD44 and CD44v3 mRNA in miR-96 mimic-treated MCF7 

(upper panel) and MDA-MB468 (lower panel) cells. Results are presented relative to GAPDH 

expression. Error bars represent means of three independent experiments ± S.D. (N=3) (**p < 

0.0, *p < 0.05 (t-test, two-tailed)). 

 

 In order to identify the possibility that CD44 mRNA is a direct target of miR-96, I 

performed luciferase assays by cloning the full length CD44 3’UTR into the pGL4.10 

luciferase reporter vector. The pGL4.10-CD44 3’UTR vector, together with the control 

luciferase vector, pRL-TK Renilla luciferase vector, and miR-96 mimics were co-transfected 

into HEK293T cells that express miR-96 weakly. Surprisingly, the luciferase activity was not 

suppressed by the miR-96 mimic (Figure 2.8a). This result verified the finding from the 

TargetScan (a miRNA targets’ computational prediction tool developed based on sequence 

evolutionary conservation) (Lewis et al., 2005; Agarwal et al., 2015) that predicts the 3’UTR 

of CD44 does not harbor a target site complementary to the seed sequence of miR-96-5p.  
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Figure 2.8 CD44 transcription was suppressed by miR-96 through its promoter instead 

of 3’UTR 

a. Relative luciferase activity of Firefly luciferase Luc2 constructs containing 3’UTR of CD44 

mRNA after treatment with miR-96 mimic. HEK293T cells were co-transfected with Firefly 

and Renilla luciferase plasmids. Levels of Firefly and Renilla luciferase were measured. Firefly 

luciferase expression was normalized to Renilla luciferase level. b. The promoter region of 

CD44 spanning 2000 (left) or 1000 base pairs (right) upstream of the transcription start site 

(TSS) was cloned into the luciferase Luc2 plasmid. Relative luciferase activity was measured 

as described previously. Error bars represent means of three independent experiments ± S.D. 

(N=3) (**p < 0.0, *p < 0.05, and n.s- not significant (t-test, two-tailed)). 

 

Intrigued by this result, I speculated that the promoter region of CD44 was targeted 

indirectly by miR-96, leading to its downregulation. To verify this, I cloned the CD44 promoter 

region, 2000 base pairs upstream of the transcription start site (2000 bp upstream of TSS) or 

1000 bp upstream of TSS into the pGL4.10 luciferase reporter vector and performed luciferase 

activity assay in the presence of miR-96. Upon co-transfection with miR-96 mimic, I observed 

a profound reduction in luciferase activity in CD44 2000 bp upstream of TSS promoter vector, 

but not in CD44 1000 bp upstream of TSS promoter vector (Figure 2.8b), implying that the 

promoter region between 1000 and 2000 bp upstream of TSS of CD44 harbors binding sites 

for transcriptional factors influenced by miR-96 that control CD44 expression.  

 

2.4 Discussion 

2.4.1 Differential expression of miR-96 contributes to heterogeneity of breast cancer 

cells 

 First of all, miR-96 is generally upregulated with varying level across different subtypes 

of breast cancer cells as reported by others who found that miR-96-5p is overexpressed in  

MCF7, MDA-MB231, ZR-75-1, SKBR3, and MDA-MB468 (Lin et al., 2010; Song et al., 2016; 
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Shi et al., 2017). However, it is interesting to find that the non-coding RNA, miR-96 is 

differentially expressed in distinct population of cells within a cancer cell line or tumor. Since 

breast CSCs only occupy a small portion of a tumor, their differential genetic makeup is often 

trumped by non-CSCs that make up the tumor bulk. Hence, the overall genetic or epigenetic 

profiles of tumor do not offer a full representation of the tumor phenotype. In the present study, 

the result of downregulation of miR-96 in breast CSCs carrying high CD44 expression and low 

CD24 levels complemented the findings reported by another group that demonstrated 

downregulation of miRNA clusters including miR-200 and miR-183 in breast CSCs (Shimono 

et al., 2009). This showcases the diversity of genetic and epigenetic landscape of cancer cells 

which contributes to tumor heterogeneity and its relevance to challenges for clinical oncology. 

There has been conflicting data about the role of miR-96, however, it is clear that miR-96’s 

action varies among distinct subpopulation of cells. Hence, by keeping the importance of tumor 

heterogeneity in mind, I would like to propose that instead of dichotomizing a miRNA to either 

an oncogenic or tumor suppressive miRNA, it would be more appropriate that the role and 

function of a miRNA are examined in the context of cellular composition and phenotype.  

 

2.4.2 miR-96 is capable of transforming breast CSCs’ cell fate by altering their mRNA 

and protein expression 

 Following the observation of differential expression of miR-96 in CSCs versus non-

CSCs, I showed that it was possible to modulate tumor plasticity by overexpressing a miRNA 

capable of altering the expression of CSCs’ marker. It is important to note that the reduction 

of CSC population after forced expression of miR-96 was largely caused by the suppression of 

CD44. In MCF7, this is accompanied by an increase of CD24 expression. MCF7 is an estrogen 

receptor a (ERa) positive cell line whereby most of the cells are negative for CD24. A re-

expression of CD24 could be a result of a downregulation of repressor for CD24 by miR-96 
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since one miRNA can have multiple targets. One of the mechanisms worth to be investigated 

is the ERa pathway that has been shown to mediate repression of CD24 in breast cancer cells 

(Kaipparettu et al., 2008). Meanwhile, KLF4 mRNA that encodes a well-known transcription 

factor important for stem cell function and somatic reprogramming, was also found to be 

simultaneously downregulated in miR-96-overexpressed MCF7 cells (Figure 2.9). In fact, 

KLF4 was found to be modulated by miR-96 and miR-183 which inhibited induction of EMT 

in p21-deficient colorectal cancer cells (Li et al., 2014b). This simultaneous repression of KLF4 

and CD44 may present as an added advantage of miR-96 for tumor suppression in breast 

cancers that also commonly overexpress KLF4 from early to late stage tumors (Foster et al., 

1999, 2000; Pandya et al., 2004). 

               

Figure 2.9 KLF4 mRNA expression in miR-96 mimic or inhibitor-treated MCF7 

The mRNA expression of MCF7 was analyzed by quantitative RT-PCR after treatment with 

miR-96 mimic or inhibitor for 72 h. Results are presented relative to GAPDH expression. Error 

bars represent means of three independent experiments ± S.D. (N=3). 

 

 Furthermore, it would be interesting to see how miR-96 influences the EMT program 

in breast cancer cells since CD44, EMT, and CSCs are closely related. To start with, it would 

be worthwhile looking into the changes within the EMT transcription factors, especially ZEB1 

that had been shown to have a reciprocal regulation on a few commonly downregulated 

miRNAs, including miR-200 and miR-183 clusters in CSCs across different tumors (Burk et 
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al., 2008; Wellner et al., 2009; Li et al., 2014b). This would be followed by a thorough 

investigation into EMT-related functional phenotypes like cancer cell invasion and migration.     

 The alteration of CD44 and cellular behaviors discovered in this study implies that the 

plasticity that is exhibited by CSCs enables them to transition from a stem cell state to a non-

stem cell state (Kreso and Dick, 2014). This transition of cellular phenotype from a dormant, 

capable of self-renewal and treatment-resistant CSC into a proliferative and differentiated state 

may sensitize tumors to chemotherapeutic agents, in particular cytotoxic drugs. On top of this, 

the reduction of CSC population may effectively prevent tumor relapse caused by CSCs’ high 

tumorigenic potential as suggested by the in vivo xenotransplantation study showing a 

suppression of tumor growth by pre-treatment with a single miRNA. However, a more 

comprehensive in vivo study is required to analyze the phenotypic and functional changes, such 

as tumor invasion and metastasis with repeated doses of miR-96 mimic into the body or directly 

into the tumor. Nevertheless, this study highlights the concerted regulation of genes by a non-

coding RNA in modulating cancer cell plasticity.  

 

2.4.3 Possible mechanisms of CD44 downregulation by miR-96 

 Both the mRNA and protein level of CD44 had been significantly altered by 

overexpression of miR-96. Although it is proven that CD44 mRNA is not a direct target of 

miR-96, it is clear that the transcription of CD44 had been modulated via its promoter region. 

This is in contrast to the direct mechanism of action of other miRNAs on CD44 expression, for 

example, miR-143 or miR-34a which directly binds to the 3’UTR of CD44, leading to a 

reduction in breast (Yang et al., 2016) and prostate CSCs (Liu et al., 2011), respectively. To 

investigate this further, I performed luciferase reporter assay to nail down the promoter region 

that is affected by miR-96, which lies between 1000 and 2000 base pairs upstream of the 

transcription start site of CD44. When I searched the nucleotide sequence of this particular 
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region for potential binding by transcription factors using JASPAR database (Sandelin, 2004), 

among the predicted transcription factors, Forkhead box O3 (FOXO3), a transcription factor 

of the FOXO protein family stood out as the most probable transcriptional activator that may 

interact with CD44 mRNA through one of the three consensus binding sites (Table 3 & Figure 

2.10). As a matter of fact, FOXO3 had been proven as a direct target of miR-96 in human breast 

cancer cells (Lin et al., 2010b). Other studies in pancreatic cancer cells had also discovered 

that FOXO3 is essential for the expression of CD44, and knockdown of FOXO3 led to reduced 

pancreatic CSCs, supporting the relationship between FOXO3 and CD44 (Kumazoe et al., 

2017a, 2017b). A rescue experiment to re-express FOXO3 protein in cells treated with miR-96 

mimic would offer an explanation to the regulation of CD44 by FOXO3. This can be further 

confirmed by creating mutation on the predicted miR-96 binding site of FOXO3 gene using 

mutagenesis assay and assess the effect on CD44 transcription when cells are transfected with 

mutated FOXO3 plasmids and miR-96 mimic.  

 

Table 3 Predicted FOXO3 transcription factor binding sites within the promoter region 

of CD44 (1000 to 2000 base pairs upstream of TSS) identified by JASPAR 

 

Matrix 
ID 

Name Score Relative scorea Sequence 
ID 

Startb Endb Strand Predicted 
sequence 

MA0157.2 FOXO3 13.9794 0.988952870708 CD44 128 135 - GTAAACAT 

MA0157.2 FOXO3 7.25641 0.853368072115 CD44 256 263 + ATAAACAG 

MA0157.2 FOXO3 5.03513 0.808570692417 CD44 216 223 - ATCAACAT 
 

a The relative score is provided by JASPAR according to the similarity of motif sequence. 
b The start and end binding sites correspond to the mRNA sequence 2000 base pairs upstream of TSS of CD44 

from 5’®3’. 
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Figure 2.10 Top match FOXO3 (MA0157.2) binding motif in logo format for CD44 

promoter  

 

 While performing analysis using miRNA targets’ prediction tool, TargetScan, one of 

the top putative targets of miR-96, heparin-binding epidermal growth factors (HB-EGF) 

appears to be an interesting molecule, given its close relationship with CD44. As mentioned in 

the introduction, heparan sulfate-modified CD44, in particular, CD44v3 isoform harbors 

unique motif that binds HB-EGF on the cell surface (Bennett et al., 1995; Greenfield et al., 

1999). In breast tumor cells, CD44v3-heparan sulfate was found to contain additional growth 

factor binding site (Kalish et al., 1999b), and its expression is associated with breast CSCs 

(Olsson et al., 2011b). The finding that CD44v3 mRNA expression was also altered in miR-96 

mimic-treated cells hinted that there might be another mechanism possibly driven by HB-EGF 

downregulation in modulating CD44 expression in breast CSCs. To delve into this hypothesis, 

a series of experiments were carried out and will be presented in the next chapter.  

 In this study, I have also investigated a triple-negative breast cancer (TNBC) cell line, 

MDA-MB468, in which nearly all cells express CD44. They showed partial reduction of CD44 

expression after treatment with miR-96 mimic (Figure 2.4b). The partial suppression of CD44 

expression in these cells might be due to additional regulation of CD44 imposed on these 
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CD44high cells. Of note, there is a difference in epigenetic regulation of CD44 in TNBC vs non-

TNBC, in which hypomethylation of CD44 has been observed in TNBC tumor samples 

(Kagara et al., 2012). 

 As I was analyzing the in vivo data, I found that even though miR-96 mimic-treated 

cells had suppressed tumor growth, the CD44 expression of these tumors did not show obvious 

differences between the untreated and miR-96 mimic-treated groups (Figure 2.11). I speculate 

that this happened due to two reasons: (1) since CD44 is a cell adhesion molecule, the presence 

of extracellular matrix proteins within an in vivo environment might have contributed to the 

retention or re-expression of CD44 during tumor growth, and (2) the cancer cells were pre-

treated with miR-96 mimic before xenografted into nude mice, so it is likely that a continuous 

supply or a greater dose of miR-96 is needed to cause a sustained suppression of CD44. 

Nevertheless, an initial reduction in CSCs caused by a pre-treatment with miR-96 mimic had 

effectively suppressed tumor growth in the breast cancer cells. 

 

 

Figure 2.11 CD44 mRNA levels in xenografted tumors  

The mRNA expression of CD44 in excised tumors from untreated, mock-treated, miR-96 

mimic-treated MCF7 (left), and MDA-MB468 (right) samples was measured using quantitative 

RT-PCR analysis. Results are presented relative to GAPDH expression.  
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 Other than the shortfall in the animal experimental setup, another major limitation of 

the current study is the lack of strong evidence in proving the link between CD44 and miR-96 

in governing the function of breast CSCs. The lack of effectiveness of miR-96 inhibitor in 

suppressing miR-96 expression signals the limitation of performing such experiments using 

transient transfection with miR-96 mimic or inhibitor.  In order to circumvent this issue and to 

strengthen the hypothesis, a stable transfection using lentiviral vectors with miRNA precursor 

or anti-miRNA sequence inserted into the expression construct, which had been proven 

effective even in an in vivo setting, should be conducted (Mishima et al., 2016). 

   

  



 

 

 

 

Chapter 3 
 

Heparin-binding Epidermal Growth Factors (HB-EGF) 

mediates the control of CD44 and cell proliferation in 

breast cancer



Chapter 3 | HB-EGF controls CD44 and cell proliferation in breast cancer 
 

 

50 

3.1 Introduction 

3.1.1 HB-EGF regulates tissue homeostasis through EGF receptor and CD44 

 Heparin-binding epidermal growth factor (HB-EGF) is a mitogenic factor that belongs 

to the EGF family. As the name suggests, it contains both an EGF-like domain and a unique 

21-residue N-terminal heparin-binding domain that facilitate binding to the EGF receptor and 

interact with heparin and heparan sulfate on cell surface, respectively (Higashiyama et al., 1991, 

1993; Besner et al., 1992; Thompson et al., 1994). It was first identified as a secreted protein 

from conditioned medium of cultured human macrophages and monocytes (Besner et al., 1990; 

Higashiyama et al., 1991). Before being secreted into the extracellular space, HB-EGF is 

expressed as a transmembrane protein in a precursor form called pro-HB-EGF (Higashiyama 

et al., 1992). The membrane-anchored pro-HB-EGF needs to be cleaved by proteases such as 

disintegrin and metalloproteinase (ADAM) and matrix metalloproteinase (MMP), a process 

termed ectodomain shedding, to yield soluble, transmembrane and carboxy-terminal domains 

of HB-EGF (Raab et al., 1994; Goishi et al., 1995; Suzuki et al., 1997; Izumi et al., 1998).  

 The mature, soluble form of HB-EGF functions in an autocrine or paracrine manner by 

acting as a potent mitogen for fibroblasts, smooth muscle cells, and keratinocytes 

(Higashiyama et al., 1991; Marikovsky et al., 1993). It can bind EGF receptors, ErbB1, and 

ErbB4, to trigger receptor dimerization and tyrosine phosphorylation of receptor kinase domain 

(Higashiyama et al., 1991; Riese et al., 1996; Elenius et al., 1997), which consequently results 

in activation of mitogenic signaling cascades such as MAPK, PI3K/Akt, protein kinase C, and 

stress-activated protein kinase (Yarden and Sliwkowski, 2001). The result of this binding leads 

to cellular proliferation, migration, cell adhesion, and differentiation. Following ectodomain 

shedding, the cytoplasmic tail of pro-HB-EGF is also cleaved to form a carboxyl terminal 

fragment of HB-EGF termed HB-EGF-C, which also interacts with other intracellular 

molecules to exert biological effects (Nanba et al., 2003; Kinugasa et al., 2007). Meanwhile, 
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the membrane-bound pro-HB-EGF remains biological active and can interact in a juxtacrine 

manner with other membrane molecule like CD9 (Higashiyama et al., 1995; Sakuma et al., 

1997) or transactivate EGFR on adjacent neighboring cells to potentiate cell adhesion and 

survival (Miyoshi et al., 1997; Prenzel et al., 1999; Dong et al., 2005). One unique property of 

the membrane-bound HB-EGF is that it possesses the ability to bind diphtheria toxin (Naglich 

et al., 1992; Mitamura et al., 1995; Louie et al., 1997).  

 HB-EGF is widely expressed in various tissues within the body, including skeletal 

muscle, lung, brain, heart, and skin (Abraham et al., 1993). It plays important normal 

physiological roles, for example blastocyst implantation (Das et al., 1994), proper heart 

organogenesis (Iwamoto et al., 2003), and skin wound healing (Marikovsky et al., 1993; 

Shirakata et al., 2005). Together with other EGF family member proteins, HB-EGF is also 

expressed in the mammary gland interacting with ErbB receptors throughout the entire stages 

of development, including pregnancy and lactation (Schroeder and Lee, 1998). For instance, 

the expression of ErbB4 receptor and its function in directing downstream signaling is crucial 

for mammary ductal morphogenesis, differentiation, and lactation (Jones et al., 1999; Long et 

al., 2003; Tidcombe et al., 2003). In postpartum mammary glands,  pro-HB-EGF had been 

found to colocalize and assemble with heparan sulfate-modified CD44, namely CD44v3, and 

MMP-7 on the luminal epithelium, whereby upon proteolytic cleavage, activates its receptor, 

ErbB4 (Yu et al., 2002). Without CD44, the mammary glands failed to develop enlarged 

lobuloalveolar tissues with MMP-7, and heparan sulfate proteoglycan redistributed to the basal 

instead of the luminal side of epithelium, leading to a lack of production of mature HB-EGF, 

reduced ErbB4 activation, and subsequent cell death (Yu et al., 2002). This study underscores 

the importance of heparan sulfate-modified CD44, CD44v3 isoform, in regulating the 

presentation of pro-HB-EGF (Bennett et al., 1995), and its subsequent proteolytic cleavage by 
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MMP-7 (Prenzel et al., 1999) to ensure normal mammary gland development and tissue 

homeostasis.  

 

3.1.2 HB-EGF pathway mediates transcriptional regulation of genes closely related to 

cancer  

 Despite activating mitogenic signaling pathways, HB-EGF had also been reported to 

function as a transcription factor in various tissues. It is therefore not uncommon to find HB-

EGF overexpressed in cancers. First of all, HB-EGF serves as a transcriptional target of p53, 

which in turn initiates a feedback loop to counteract growth suppression. Under stress condition, 

p53 activation induces the upregulation of HB-EGF that subsequently triggers sustained 

activation of MAP kinases, Ras and Raf to protect cells from stress-induced apoptosis (Lee et 

al., 2000; Fang et al., 2001). The researchers continued to demonstrate that upon activation of 

p53 by oxidative or genotoxic stress in various normal and cancerous cell lines, the 

upregulation of HB-EGF drove MAPK-mediated induction of an enzyme, cyclooxygenase 2 

(COX-2), which is responsible for prostaglandin synthesis in response to extracellular stimuli, 

to protect cells against apoptosis (Han et al., 2002). In prostate cancer cells, it had been shown 

that mutant p53 induced an early response transcription factor, Egr-1, which enhanced 

transcription and secretion of EGFR ligands including HB-EGF via the activation of MAPK 

pathway, presenting an autocrine feedback loop for sustained cell proliferation (Sauer et al., 

2010).   

 Hypoxia is a common feature of highly malignant tumors in which the lack of oxygen 

triggers a transcriptional program via hypoxia-inducible factor (HIF-1) and vascular 

endothelial growth factor (VEGF) to induce new blood vessel formation or angiogenesis. In 

epidermal keratinocytes, hypoxia was found to induce enhanced expression of HB-EGF, 

followed by activation of MAPK and PI3K/Akt pathways, which increased VEGF production 
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to cause mitogenesis and chemotaxis (Nakai et al., 2009). Similarly, in bladder and breast 

cancer, overexpression of HB-EGF in tumor-bearing mice resulted in an increase of VEGF and 

tumor angiogenesis (Ongusaha et al., 2004; Yotsumoto et al., 2013). In highly malignant 

glioblastoma cells, hypoxia was able to induce secretion of microvesicle-coupled tissue factors 

to activate HB-EGF in endothelial cells (Svensson et al., 2011).  

 The cytoplasmic tail of pro-HB-EGF also undergoes cleavage by protease during 

ectodomain shedding of soluble HB-EGF to produce HB-EGF-C. HB-EGF-C is known to 

interact with gene promoter to regulate transcriptional activities. Subsequent to cleavage, HB-

EGF-C is capable of translocating from plasma membrane into the nucleus to cause nuclear 

exclusion of a transcriptional repressor, promyelocytic leukemia zinc finger (PLZF) (Nanba et 

al., 2003). PLZF is known to repress Cyclin A transcription and causes inhibition of entry into 

S phase of cell cycle (Yeyati et al., 1999). As a result of nuclear export of PLZF upon entry of 

HB-EGF-C into the nucleus, Cyclin A transcription is disinhibited, leading to cell cycle 

progression and cellular proliferation (Nanba et al., 2003). Under similar mechanism, the 

nuclear translocation of HB-EGF had also shown to reverse the transcriptional repression of 

Cyclin D2 gene by another PLZF-related transcriptional repressor, B-cell lymphoma 6 (BCL6) 

(Dhordain et al., 2000; Kinugasa et al., 2007). On top of this, HB-EGF-C can complex with a 

pro-survival chaperone protein, Bcl-2-associated anthanogene 1 (BAG-1), which acts 

synergistically with HB-EGF-C to inhibit apoptosis in cells (Lin et al., 2001; Hung et al., 2014). 

These studies highlighted the role of HB-EGF in transcriptional control of cell growth-related 

genes which explains why HB-EGF is often upregulated in human cancers. A simplified 

illustration is presented below to summarize the molecular interactions and mechanisms of HB-

EGF (Figure 3.1). 
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Figure 3.1 Illustration depicting the molecular interactions of HB-EGF  

The precursor form, pro-HB-EGF, interacts with the CD44 variant isoform, CD44v3, on the 

cell membrane of luminal epithelium and activates matrix metalloproteinase, MMP7, to cleave 

pro-HB-EGF into secreted HB-EGF and HB-EGF-C, from the extracellular and cytoplasmic 

tail, respectively. Secreted, mature HB-EGF interacts with EGF receptors, ErbB1 or ErbB4, to 

activate downstream signaling, for instance MAPK which eventually leads to nuclear 

translocation of effector molecule, ERK to transcriptionally activate genes related to cell 

proliferation and survival. On the other hand, HB-EGF-C enters the nucleus to displace 

transcriptional repressor such as PLZF or BCL6, triggering transcription of genes related to 

cell cycle progression. (Created with BioRender.com) 

    

3.1.3 Alteration of HB-EGF expression can lead to tumor attenuation  

 HB-EGF overexpression had been documented in human breast cancers (Ito et al., 

2001). HB-EGF is found to be frequently co-expressed with other EGF ligands in breast cancer, 

and its expression correlates positively with histopathological grade (Révillion et al., 2008). 
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Zhou and colleagues reported that secreted HB-EGF from HB-EGF-overexpressing breast 

cancer cells acted in an autocrine fashion to induce EGFR activation and MMPs expression, 

resulting in increased tumor invasion through invadopodium formation, tumor cell 

intravasation into blood vessels, and lung metastases in mouse xenografts (Zhou et al., 2014). 

The enhanced intravasation of HB-EGF-expressing cells can also be attributed to the induction 

of integrin expression levels by HB-EGF that triggers selectin-mediated adhesion of cancer 

cells to the endothelial walls (Narita et al., 1996). 

 Due to the finding that diphtheria toxin is able to bind to pro-HB-EGF (Naglich et al., 

1992), a non-toxic mutant diphtheria toxin, CRM197, was found to inhibit the mitogenic effects 

of HB-EGF on human cells (Mitamura et al., 1995). Studies using CRM197 had reported 

effective tumor growth inhibition by blocking MAPK and PI3K/Akt activation in aggressive 

TNBC and treatment-resistant breast cancer cells (Yotsumoto et al., 2010). Intravenous 

administration of CRM197 in immunocompromised mice grafted with human TNBC cells also 

showed effective reduction in tumor volume (Nam et al., 2016), which initiated an ongoing 

clinical trial in advanced TNBC patients.  

 Other than using CRM197 or neutralizing antibodies, there is also a possibility of 

altering HB-EGF expression using miRNAs. There is an increasing body of evidence showing 

physiological regulation of HB-EGF by a variety of microRNAs in cells or tissues, for example 

mast cells (Molnár et al., 2012), bone cells (Yu et al., 2013; Yang et al., 2014), skin (Li et al., 

2015), and trophoblast cells (Jain et al., 2016). In treatment-resistant head and neck squamous 

cell carcinoma cells, addition of miR-212 mimic was found to inhibit HB-EGF and thus, induce 

sensitivity to EGFR inhibitor therapy (Hatakeyama et al., 2010). Inspired by a study 

demonstrating the ability of miR-96 to target HB-EGF in osteoblast and bone marrow-derived 

mesenchymal stem cells, which promotes osteogenic differentiation (Yang et al., 2014b), I 

hypothesized that miR-96 may also suppress breast CSCs’ activity and cellular proliferation 
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through HB-EGF downregulation. To address this hypothesis, I have performed knockdown 

experiments using small interfering RNAs (siRNAs) against HB-EGF and compared the effects 

to cells treated with miR-96 mimic.  

 

3.2 Materials and Methods 

Transfection 

To knockdown HB-EGF, small interfering RNAs targeting HB-EGF (siHB-EGF) (Invitrogen) 

were first diluted to a final concentration of 16 nM in 250 µL OPTI-MEM. This mixture was 

then added with 5 µL Lipofectamine® RNAiMax reagent in 250 µL OPTI-MEM and incubated 

for 10 min at RT. A scrambled siRNA (sense strand: UUCUCCGAACGUGUCACGUTT; 

antisense strand: ACGUGACACGUUCGGAGAATT) was used as a negative control 

(siCTRL).  

 

DNA or plasmid constructs and luciferase assays 

For luciferase reporter assays, the full-length 3’UTR of HB-EGF were amplified from human 

genomic DNA and cloned upstream of Firefly luciferase vector, Luc2 (Promega). The primer 

sequences used for HB-EGF 3’UTR cloning were presented in Table 2 (Chapter 2.2). 

Transfection and luciferase assay were conducted using HEK 293T cells and Promega Dual-

Luciferase® Reporter Assay’s (Promega) as described in Chapter 2.2. Relative luciferase 

activities were calculated as ratios of Firefly to Renilla luciferase index.  

 

Determination of miRNA and mRNA expression levels  

Total RNA was extracted using ISOGEN-II (Nippon Gene, Japan) reagent. For mRNA 

quantification, cDNA was synthesized from 1 µg of total RNA with Prime ScriptTM RT reagent 

(TAKARA, Japan). The quantification of miRNA and mRNA transcripts were performed using 
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quantitative RT-PCR as described in Chapter 2.2. GAPDH expression level was used for 

mRNA normalization while U6 snRNA was used for miRNA normalization. Primers employed 

in quantitative RT-PCR are listed in Table 4 below. 

 
Table 4 List of primers used for quantitative RT-PCR 

Gene Forward primer Reverse primer 

KLF4 GCGGCTTCGTGGCCGAGCTC CGTACTCGCTGCCAGGGGCG 

HB-EGF GGTGGTGCTGAAGCTCTTTC GCTGGTCCGTGGATACAGTG 

CD44 CGGACACCATGGACAAGTTT GAAAGCCTTGCAGAGGTCAG 

CD44v3 GCACTTCAGGAGGTTACATC CTGAGGTGTCTGTCTCTTTC 

GAPDH GAAGGTGAAGGTCGGAGTCA TTGATGGCAACAATATCCACTT 

 

Staining and flow cytometry analysis 

Cells were detached by trypsinization and centrifuged after treatment. Cell pellets were 

resuspended in PBS with 2% FBS containing anti-human FITC-conjugated CD44 (clone BJ18) 

antibodies (Biolegend®) at a concentration of 1:1000. Anti-human IgG antibodies were used to 

determine the positive subsets of cells from background staining. Cells were incubated on ice 

in the dark for 30 min. Cells were washed 3 times with PBS before being analyzed by flow 

cytometry. 1 µg/mL 7-AAD was used as a viability dye (Sigma). Analysis was performed using 

a FACSAriaTM III cell sorter system (BD Biosciences, San Jose, CA, USA). 

 

Sphere formation assay 

Both control and siHB-EGF-treated cells were harvested, and single cells (100 cells/well) were 

plated on 24-well ultra-low attachment tissue culture plates (Corning) in serum-free culture 

medium containing 10 ng/mL EGF, 10 ng/mL bFGF, and B27 up to 14 days. Tumorspheres 
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were measured and imaged using a Nikon Eclipse TS100 inverted microscope (Nikon 

Instruments, Tokyo, Japan) with a 4x objective lens. The number of tumorspheres over 50 µm 

was counted.  

 

Cell proliferation assay 

After transfection for 72 h, the untreated and siHB-EGF-treated cells were harvested by 

trypsinization after the removal of cell culture medium. The number of cells in each well was 

quantified using hematocytometer. The average cell numbers were calculated from at least 3 

wells for each group.  

 

Cell cycle analysis 

Cells were fixed in 70% pre-chilled (-20°C) ethanol overnight. After centrifugation, cells were 

stained with 10 µg/mL propidium iodide (Sigma) in PBS containing 2% FBS and RNase A for 

30 min at RT. Analysis was conducted on a BD FACSCalibur flow cytometer (BD Biosciences, 

San Jose, CA, USA) and data were analyzed with FlowJoTM Version 10 (Becton, Dickinson 

and Company, 2019). 

 

Western blot analysis 

Cells were lysed in lysis buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1% 

NP-40, complete protease inhibitor cocktail (Roche)) and incubated on ice for 20 min before 

protein lysates were collected by centrifugation. Protein concentrations were measured using 

the Pierce® BCA protein assay (Thermo Scientific). Lysates were resolved by SDS-PAGE and 

transferred to PVDF membranes before blocking with 5% skim milk in TBS-T solution for 1 

hour at RT. Membranes were incubated with anti-Retinoblastoma (RB) (BD Pharmigen, clone 

G3-245, cat# 554136), anti-Cyclin A (Santa Cruz, clone E72.1, cat# sc53232), and anti-
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GAPDH (Cell Signaling Technology, clone 14C10, cat# #2118L) at 4°C overnight. This was 

followed by secondary incubation with antibodies conjugated to horseradish peroxidase (GE 

Healthcare). Protein bands were detected with Western Lightning Plus-ECL, Enhanced 

Chemiluminescence Substrate (PerkinElmer, Waltham, MA, USA).  

 

Statistics 

Results are presented as means ± SD for at least three repeated individual experiments for each 

group. Statistically significant differences between mean values were determined using two-

tailed Student’s t-test (***p < 0.001, **p < 0.01 and *p < 0.05), unless otherwise specified. 

 

3.3 Results 

3.3.1 miR-96 regulates HB-EGF transcription by binding to its 3’untranslated region 

(UTR) 

 HB-EGF mRNA appeared to be a likely target of miR-96 according to TargetScan’s 

prediction where its 3’-UTR harbors a binding site complementary to the seed sequence of 

miR-96 (Figure 3.2a). As mentioned earlier, HB-EGF, which is usually overexpressed in breast 

cancer, is strongly associated with CD44 (Yu et al., 2002). This prompted me to postulate that 

CD44 suppression might be a consequence of HB-EGF downregulation by miR-96. To validate 

this hypothesis, I first performed quantitative RT-PCR using MCF7 cell lysates to quantify the 

HB-EGF mRNA transcript level upon transfection with miR-96 mimics. Indeed, similar to 

CD44 and CD44v3, HB-EGF mRNA expression was also significantly suppressed (Figure 

3.2b). Next, I assessed the ability of miR-96 to regulate the 3’UTR of HB-EGF mRNA using 

a luciferase reporter assay as described earlier. The 3’UTR of HB-EGF mRNA, containing the 

predicted target sequence, was cloned into a pGL4.10 luciferase vector. Addition of miR-96 
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effectively suppressed the luciferase activity of the pGL4.10-HB-EGF 3’UTR vector by 

approximately four-fifth (Figure 3.2c). This finding verified that HB-EGF is a bona fide target 

of miR-96 via 3’UTR binding that induces mRNA degradation.  

 

 

   

  

Figure 3.2 miR-96 represses HB-EGF transcription by binding to its 3’UTR 

a. The 3’UTR of HB-EGF is predicted to harbor a binding site (marked in red) for miR-96 

according to the prediction tool TargetScan (release 7.1, MIT). b. Quantitative RT-PCR of HB-

EGF mRNA expression in miR-96 mimic-treated MCF7 cells. Results are presented relative 

to GAPDH expression.  c. Relative luciferase activity of luciferase constructs containing 

3’UTR of HB-EGF mRNA after treatment with miR-96 mimic in HEK293T cells. Experiments 

were performed as described in Chapter 2. Error bars represent means of three independent 

experiments ± S.D. (N=3).   

 

3.3.2 Downregulating HB-EGF expression led to CD44 suppression 

 Both CD44 and HB-EGF were simultaneously repressed by miR-96, but by seemingly 

different mechanisms, the former by promoter activity suppression while the latter by direct 

binding to 3’UTR causing mRNA inactivation. How miR-96 represses CD44 transcript and led 
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to downregulation of CSCs remain unresolved. To interrogate if HB-EGF regulates the 

transcription of CD44, I knocked down the HB-EGF level with small interfering RNAs (siHB-

EGF) in both studied cell lines (Figure 3.3) and analyzed the expression of CD44. A siRNA 

targeting HB-EGF downregulated both CD44 and CD44v3 mRNA effectively in MCF7 and 

MDA-MB468 cells (Figure 3.3), as analyzed by quantitative RT-PCR.  

   

                   

Figure 3.3 Expression of HB-EGF, CD44, and CD44v3 mRNA transcripts after HB-EGF 

knockdown 

Quantitative RT-PCR analysis of a. MCF7 and b. MDA-MB468 cells after treatment with 

siHB-EGF for 72 h for the expression of HB-EGF to confirm successful knockdown, CD44 

and CD44v3. Results are presented relative to GAPDH expression. Error bars represent means 

of three independent experiments ± S.D. (N=3) (***p < 0.001, *p < 0.05 (t-test, two-tailed)). 
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 When I analyzed the protein expression of CD44 by flow cytometry, albeit less 

pronounced than the effects caused by miR-96 overexpression, siHB-EGF also repressed their 

expression on the cell surface in both MCF7 and MDA-MB468 (Figure 3.4). Both the mRNA 

and protein expressions were simultaneously repressed by loss of HB-EGF, implying that 

CD44 expression is controlled by HB-EGF.   

  

                

Figure 3.4 HB-EGF knockdown also suppressed CD44 protein expression on cell surface 

Surface staining of CD44 on a. MCF7 and b. MDA-MB468 cells analyzed by flow cytometry 

after knockdown of HB-EGF (siHB-EGF) vs scrambled siRNA (siCTRL). Representative dot 

plots of cells with and without HB-EGF knockdown are presented with CD44+ population 

marked in the box (left). Average percentage of CD44+ cells in each group, as determined by 

FlowJo software in triplicate was calculated (right). Error bars represent means of three 

independent experiments ± S.D. (N=3) (***p < 0.001, **p < 0.01 (t-test, two-tailed)).    

 

 In order to analyze the functional effect of CD44 suppression as a result of HB-EGF 

knockdown, sphere formation assay was performed. In line with the results obtained from miR-

2.57% 

10 0 10 1 10 2 10 3 10 4 
0 

200 
400 
600 
800 
1.0K 

1.11% 

10 0 10 1 10 2 10 3 10 4 0 
200 
400 
600 
800 
1.0K 

siCTRL siHB-EGF  

SSC 

CD44 
0

0.5

1

1.5

2

2.5

3

3.5

siCTRL siHB-EGF
Pe

rc
en

ta
ge

 o
f C

D
44

+
ce

lls
 

(%
)

*** p= 0.0007

siCTRL siHB-EGF  

SSC 

CD44 

96.0% 

10 0 10 1 10 2 10 3 10 4 
0 
200 
400 
600 
800 
1.0K 

88.9% 

10 0 10 1 10 2 10 3 10 4 
0 
200 
400 
600 
800 
1.0K 

0
10
20
30
40
50
60
70
80
90

100

siCTRL siHB-EGF

Pe
rc

en
ta

ge
 o

f C
D

44
+

ce
lls

 (%
)

** p= 0.0076 

MCF7 

MDA-MB468 

a. 

b. 



Chapter 3 | HB-EGF controls CD44 and cell proliferation in breast cancer 
 

 

63 

96 mimic transfection, HB-EGF knockdown in breast cancer cells also led to attenuation of 

tumorsphere formation in vitro (Figure 3.5). In MDA-MB468, none of the single cells 

effectively formed tumorspheres after HB-EGF knockdown.  

         

 

Figure 3.5 Knockdown of HB-EGF reduced sphere forming ability of breast cancer cells  

Representative images of siCTRL or siHB-EGF-treated a. MCF7 and b. MDA-MB468 

tumorspheres (upper panels) cultured in serum-free, low-attachment condition for 14 days. 

Average number of tumorspheres (> 50 µm) was calculated from triplicate wells and presented 

as bar charts for each group (lower panels). Scale bar represents 100 µm. Error bars represent 

means of three independent experiments ± S.D. (N=3) (***p < 0.001, **p < 0.01, and *p < 

0.05 (t-test, two-tailed)). 
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by cell viability staining of 7-AAD during flow cytometry analysis. Instead, both the miR-96 

mimic and siHB-EGF-treated cells appeared to grow at a much slower rate than the controls.  

 

  

Figure 3.6 Cell numbers after treatment with miR-96 mimic or siHB-EGF for 72 h  

After 72 h transfection with miR-96 mimic (upper panels) and HB-EGF siRNA (lower panel), 

MCF7 (left) and MDA-MB468 cells (right) were trypsinized and quantified using 

hematocytometer and the average cell number was calculated. Error bars represent means of 

three independent experiments ± S.D. (N=3) (***p < 0.001, *p < 0.05 (t-test, two-tailed)). 
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3.7a). Similar phenomenon was observed in siHB-EGF-treated MCF7 cells (Figure 3.7b). This 

finding was supported by Western blots showing suppression of Cyclin A protein expression 

in cells overexpressing miR-96 (Figure 3.7c), whereby it is required from the beginning of S 

phase for DNA replication in mammalian cells (Girard et al., 1991; Pagano et al., 1992). 

Increased levels of the unphosphorylated form of retinoblastoma protein (RB) (Figure 3.7c) in 

cells treated with miR-96 mimic, further reaffirmed the hypothesis that cell cycle arrest serves 

as the main reason for reduced cell proliferation.         
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Figure 3.7 miR-96 mimic and HB-EGF knockdown caused cell cycle arrest  

Histogram plots of flow cytometry analysis of a. miR-96 mimic vs untreated and b. siHB-EGF- 

vs siCTRL-treated MCF7 cells. Percentage of cells in S-phase for treated samples is marked 

with red arrows. Average percentage of cells in each cell cycle phase as determined by DNA 

content using Propidium Iodide staining fluorescence was quantified and compared between 

the treated cells vs control. Error bars represent means of three independent experiments ± S.D. 

(N=3). c. Immunoblot analysis of Cyclin A and RB in MCF7 lysates. GAPDH serves as a 

loading control. 
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motility, and invasion by inhibiting its downstream signaling pathways including MAPK and 

PI3K/Akt. On top of that, HB-EGF-C which acts as a transcriptional regulator may also impact 

cellular growth by disinhibiting the transcription of cell cycle genes by displacing 

transcriptional repressor from their promoters. To this end, I have conducted cell cycle analysis 

on HB-EGF knockdown and miR-96 mimic-treated breast cancer cells and found that there is 

a significant increase of cells arresting in G1-phase of the cell cycle together with a reduction 

in cells entering S phase in both groups. The arrest in G1-S phase transition in miR-96 mimic-

treated cells was consistent with the finding of decrease of Cyclin A protein, an important 

molecule present at the onset of S phase to regulate DNA replication and throughout the G2-

phase to play a role in activation of mitosis (Girard et al., 1991; Pagano et al., 1992). In this 

study, the downregulation of Cyclin A exerted a stronger effect on entry into S-phase and hence, 

resulted in an accumulation of cells cycling in G1 phase. Taken together with the result of 

decreased phosphorylated form of RB protein which is critical for releasing E2F transcription 

factors to allow the expression of genes necessary for S-phase progression (Weinberg, 1995), 

the reduction of cell growth in the miR-96 mimic-treated cells can be attributed to cell cycle 

arrest at G1-S phase caused by loss of HB-EGF. To investigate whether or not this is a result 

of sustained binding of transcriptional repressor PLZF on Cyclin A promoter, a chromatin 

immunoprecipitation using anti-PLZF antibody and DNA sequencing of the bound chromatin 

should be carried out in the future. The results obtained thus far had demonstrated an anti-

proliferative effect of targeting HB-EGF in breast cancer cells.  

 

3.4.2 HB-EGF also regulates CD44 in breast CSCs 

 Because of the close interaction between HB-EGF and CD44 on cell surface that 

regulates HB-EGF activities, I was interested to see if targeting HB-EGF has any effect in the 

CD44 expression as well. As expected, the mRNA transcripts of CD44 and CD44v3 were 
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simultaneously decreased upon knockdown of HB-EGF in both CD44low (MCF7) and CD44high 

(MDA-MB468) breast cancer cell lines. This is also followed by a significant suppression in 

the CD44 expression on the cell surface as revealed by flow cytometry results. The loss of 

CD44 expression, a well-known cell adhesion molecule and CSC marker, was accompanied 

by a reduction of tumorsphere formation in vitro, possibly due to an impaired self-renewal 

ability of cancer cells. A further in vivo animal xenotransplantation experiment looking into 

tumor growth, intravasation, and metastasis may confirm the above findings and complement 

previous studies that had reported the advantages of targeting HB-EGF in controlling tumor 

growth and metastasis.  

 The results of the effect of knocking down HB-EGF on CD44 mirror the findings 

obtained from overexpressing miR-96 in the breast cancer cells. Since, miR-96 targets HB-

EGF directly through complementary binding on 3’UTR of the gene but not CD44, the 

mechanism behind control of CD44 by HB-EGF remains elusive. One possible mechanism is 

via the transcriptional repression exerted by either PLZF or BCL6. To examine this possibility, 

I searched the promoter sequence of CD44 for potential binding motifs by the transcriptional 

repressors using JASPAR database and discovered that in between nucleotide sequence 1000 

and 2000 bp upstream of TSS of CD44, there is a consensus DNA binding site for BCL6, 5’- 

TTCCTAGAA-3’ (Table 5 & Figure 3.8). This prediction is supported by a study conducted 

in B lymphocytes which showed that CD44 is one of the target genes of BCL6 during B cell 

activation and differentiation and its dysregulation also contributes to lymphomagenesis 

(Shaffer et al., 2000). To confirm this, chromatin immunoprecipitation using anti-BCL6 

antibody should be carried out to determine increased binding of BCL6 on CD44 promoters in 

HB-EGF knockdown and miR-96 mimic-treated cells. Once again, this study highlights the 

diverse mechanisms employed by HB-EGF in regulating gene transcription and expression via 
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intermediate molecules and therefore, demonstrating additional benefit of targeting HB-EGF 

in breast cancer.   

 

Table 5 Predicted BCL6 transcriptional repressor binding site within the promoter 

region of CD44 identified by JASPAR 

 

Matrix 
ID 

Name Score Relative score a Sequen
ce ID 

Start 

b 
End 

b 
Stran
d 

Predicted sequence 

MA0463.2 BCL6 8.52116 0.805883709044 CD44 581 596 + CCCTTCTCTAGGAATG 
 

a The relative score is provided by JASPAR according to the similarity of motif sequence. 
b The start and end binding sites correspond to the mRNA sequence 2000 bp upstream of TSS of CD44 from 

5’®3’. 

                      

                  

Figure 3.8 Predicted BCL6 (MA0463.2) binding motif sequence logo for CD44 promoter 

from JASPAR 

 

3.4.3 miR-96 has combinatorial effects by targeting oncogenes  

 The current study had demonstrated the heterogenous effects of miR-96 mimic on 

breast cancer cells. First of all, the downregulation of CD44 led to attenuation of breast CSC 

population and hence, slowed tumor formation. Secondly, repression of oncogenes by miR-96 

resulted in growth suppression. Suppression of CSC marker, CD44 by miR-96 is shown to be 

directed by two possible transcriptional control mechanisms: (1) downregulation of FOXO3 

which serves as an activator for CD44 transcription and (2) sustained binding of a 
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transcriptional repressor, BCL6 on CD44 regulatory region caused by a downregulation of HB-

EGF. This study had mainly focused on the transcriptional regulation of CD44, however in  

future studies, it would be interesting to investigate the disrupted protein interaction between 

CD44 and HB-EGF on the cell membrane as a result of miR-96 overexpression, and how this 

influences the proteolytic action of MMP, ErbB4 binding as well as the activation of 

downstream EGF signaling.  

 HB-EGF, an oncogene which has been found upregulated in breast cancer cells seems 

to be the central mediator of miR-96. On the one hand, it controls the expression of CD44 that 

plays a crucial role in stem cell regulation. On the other hand, its indirect role of acting as a 

transcription factor in cell cycle progression also contributed significantly to the process of 

tumorigenesis. In this study, I reiterated the mechanism of HB-EGF in controlling cell cycle 

transition from G1 to S-phase, via transcriptional repression of a cell cycle gene, Cyclin A. 

Another possible mechanism that was not explored in the current study was the effect on EGF 

and PI3K/Akt signals due to direct downregulation of HB-EGF. If the mitogenic signaling 

pathways were also proven to be suppressed, this would add another layer of negative control 

of cellular proliferation by miR-96 via HB-EGF. Overall, the results had revealed the 

multifaceted effects of a single miRNA in targeting a highly pleiotropic gene and demonstrated 

enhanced benefits of using miR-96 mimic in controlling tumor growth.  

 To supplement these in vitro findings, comprehensive in vivo experiments examining 

the mechanistic controls of HB-EGF as well as functional effects of targeting HB-EGF should 

be performed. Because of the heterogeneous expression of HB-EGF in various cell types 

including macrophages (Higashiyama et al., 1991), particular attention should be paid on the 

relevance of transcription factors’ regulation by HB-EGF in an immune-intact in vivo 

environment. It has been shown that tumor-associated macrophages highly express and secrete 
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HB-EGF into the tumor microenvironment which induces tumor cell chemotaxis in patients 

with invasive breast cancer patients (Vlaicu et al., 2013).  

 In conclusion, this thesis had thus far examined and demonstrated the diverse and 

concerted transcriptional controls driven by a non-coding RNA, miR-96 in modulating breast 

cancer cells’ fate and plasticity via two different target genes, FOXO3 and HB-EGF which led 

to an overall tumor growth suppression. HB-EGF plays a dual role in regulating cancer stem 

cell fate as well as in controlling cell proliferation, which serves as a great candidate for anti-

cancer therapy. Although the experiments had not been done extensive enough to 

comprehensively analyze the regulatory controls and functional effects of miR-96 including 

taking into consideration other target genes, the findings presented can still serve as 

foundational insights for further in-depth studies into the advantages of miR-96 or anti-HB-

EGF in breast cancer therapy. However, it is important to note that it is still early to suggest 

the promising use of miR-96 as an add-on anti-tumor drug in clinical practice. Careful design 

of the drug delivery system for miR-96 which includes the use of drug carrier such as 

nanoparticles that are compatible with sustainable delivery, functionalization with a specific 

target of breast tumor tissues as well as the possible routes of administration should be 

considered. On top of this, it is also important to take note of the potential side effects or off-

targets while considering the systemic use of miR-96 since miR-96 is expressed in sensory 

tissues, and that miR-96 also targets other genes or proteins which are widely expressed by 

other tissues, for instance physiological expression of HB-EGF by immune cells.   
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4.1 Introduction 

4.1.1 Desmoplastic reaction of pancreatic cancer influences metastatic behaviors 

 The desmoplastic TME that is manifested by an abundance of extracellular matrix 

components surrounding the tumor has been widely studied and regarded as a malignant 

property of PDAC. One of the most recognized roles of TME is its ability to drive metastasis, 

a common clinical presentation in PDAC patients and a major cause of cancer-related death. 

This is exemplified by the finding that desmoplasia in primary and metastatic tumors of PDAC 

are negatively correlated with patient survival (Whatcott et al., 2015b). One of the mechanisms 

exploited by desmoplasia in promoting metastasis is by creating a hypoxic microenvironment.  

In contrast to normal pancreas, pancreatic tumor is surrounded by low density of vasculatures 

in its fibrotic stroma which leads to hypoxia and increased expression of hypoxia-inducible 

factors (HIFs) in PDAC (Couvelard et al., 2005; Miyake et al., 2008; Erkan et al., 2009). This 

is further exacerbated by the fact that hypoxia induced secretion of extracellular matrix proteins 

including collagen and fibronectin into the TME (Erkan et al., 2009), fueling a vicious hypoxia-

fibrosis cycle. It is now well established that hypoxia triggers downstream signaling pathways 

in PDAC via HIFs that result in pancreatic tumor progression and metastasis (Diaz and Yuen, 

2014; Miller et al., 2015; Zhao et al., 2015; Zhou et al., 2018). For example, the upregulation 

of HIF-3a transcriptionally activates actin-regulatory network genes, including Rho-associated 

coiled-coil containing protein kinase 1 (ROCK1) and RhoC, stimulating F-actin polymerization 

which promotes cancer invasion and migration (Zhou et al., 2018).  

 Next, the heterogenous signaling present in the tumor stroma also contributed to the 

metastatic behaviors of PDAC. TGF-b, Sonic Hedgehog (Shh), hepatocyte growth factors 

(HGF), prostaglandins, chemokines, and cytokines like interleukins are among the myriad of 

soluble factors that can be found in the PDAC’s tumor stroma (Zhang et al., 2019b).  

Upregulation of secreted factors by myofibroblasts like HGF and insulin-like growth factor-1 
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(IGF-1) can cooperate and mediate downstream signaling in PDAC, activating invasion and 

metastatic programs (Rucki et al., 2017). While some of the these signaling molecules interact 

with PDAC cells in a paracrine manner to induce metastasis, other soluble factors like 

interleukins and chemokines had been instrumental in inducing an immunosuppressive 

microenvironment by modulating immune cell infiltration and immune functions which 

exacerbate the malignant behaviors of PDAC (Liu et al., 2019).  

 ECM stiffness caused by deposition of matrix proteins is increasingly recognized as a 

driver of tumor cell migration and invasion. At specific stiffness as measured by atomic force 

microscopy (AFM), focal adhesion-rich invadopodia is formed and invadopodia-associated 

ECM degradation is activated, initiating cell invasion (Alexander et al., 2008). In sensing a 

stiff ECM, cancer cells may respond by activating biochemical pathways to increase collagen 

crosslinking, focal adhesions, followed by an enhanced PI3K and integrin signaling pathways 

which drive invasion (Levental et al., 2009). Very often, the process of mechanical activation 

of biochemical pathways termed mechanotransduction causes stimulation of cell cycle 

progression, EMT, and cell motility (Broders-Bondon et al., 2018).  In PDAC, early study had 

reported that the synthesis of type I collagen by myofibroblasts increased survival and 

malignant potential of PDAC cells (Armstrong et al., 2004). Recent studies reinforced the 

notion of ECM rigidity in inducing malignant and metastatic behaviors of PDAC cells. For 

example, Rice and colleagues demonstrated that increased ECM rigidity during tumor 

progression is associated with EMT activation that underlies cancer aggressiveness and 

resistance to chemotherapeutic drug, paclitaxel (Rice et al., 2017). Similarly, the stiffness of 

pancreatic cancer cells has been found to be positively correlated with their invasiveness 

(Nguyen et al., 2016). Taken together, the complexity of TME contributes to the aggressiveness 

of PDAC via a variety of mechanisms. Clinically, this translates to a substantial barrier for 

effective PDAC treatment, leading to a dismal prognosis.  
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 4.1.2 Laminin-integrin interaction plays important roles in physiological and 

pathological cellular functions  

 Laminins are made up of a family of large (ranging approximately 400 to 800 kDa) 

heterotrimeric multidomain proteins composed of a, b, g chains (Aumailley et al., 2005). 

Together with type IV collagen, they constitute the bulk of basement membrane proteins by 

forming insoluble networks to provide a structural rigidity to the basal side of epithelium and 

endothelium. Because of their abundance and importance in maintaining basement membrane 

integrity, laminins are involved in processes regulating cell adhesion, differentiation, motility, 

survival, and are critical for both development and tissue homeostasis. To exert their cellular 

function, laminins bind to membrane receptors like integrins, the most common binding 

partners, to induce intracellular signaling pathways. The specific structural domains of a1, a2, 

a5, and g2 chains of laminins are able to bind to several integrin isoforms including a1b1, 

a2b1, a3b1, and aVb3 (Colognato-Pyke et al., 1995; Colognato et al., 1997; Decline and 

Rousselle, 2001; Nielsen and Yamada, 2001; Sasaki and Timpl, 2001).  

 Integrins are ubiquitously expressed as cell surface membrane receptors. They are 

heterodimeric proteins that possess bidirectional signaling abilities to mediate intracellular to 

extracellular signals (inside-out) and extracellular to intracellular signals (outside-in) 

(Harburger and Calderwood, 2009). On the extracellular side, the receptor domains of integrins 

bind ECM proteins which then relay the biochemical signals intracellularly via its cytoplasmic 

tail linkage with the cytoskeletal network to induce cellular responses. Once outside-in 

signaling is triggered, a series of biochemical signals, which include among others, focal 

adhesion kinase (FAK), Src-family kinase, integrin-linked kinase (ILK), and Rho GTPase are 

activated (Harburger and Calderwood, 2009). On the flip side, the extracellular domains of 

integrins are capable of undergoing conformational changes to influence ligand binding in 

response to intracellular signal molecules interacting with the their cytoplasmic domains 
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(Calderwood, 2004). The complex bidirectional signaling networks resulting from the binding 

between laminins and integrin receptors are essential for important cellular processes, and 

hence their dysregulation which follows by a disruption in ECM also promotes activities like  

cancer cell migration and tumor invasion during metastasis (Hamidi and Ivaska, 2018).  

 During the invasion process, the configuration of basement membrane is significantly 

altered in malignant tumors due to proteolytic degradation and penetration of tumor cells 

(Barsky et al., 1983). The same happens to the expression pattern and composition of laminins. 

Among all the laminin chains, laminin a5 has been found to be expressed universally in all 

epithelial tumors, and its expression pattern is disrupted in the invasive fronts in multiple 

malignant tumors (Määttä et al., 2001). Laminin a1, however, is sparingly distributed in 

thyroid, ovary, and breast carcinomas (Määttä et al., 2001). In PDAC, more invasive, less 

differentiated subtype of tumors were found to synthesize more laminin in an in vitro setting; 

their basement membrane is often less structured than their less invasive, more differentiated 

counterparts (Haberern-Blood et al., 1987). In particular, laminin-332 or formerly termed 

laminin-5, made up of a3, b3 and g2 chains, is haphazardly deposited in the basement 

membrane and adhered by PDAC to drive migration (Tani et al., 1997). The overexpression of 

b3 chain of laminin-332 has been recently reported to associate with less differentiated, 

advanced phenotype, and poor survival (Chen et al., 2015).  

 On the other hand, integrin signaling has been found to be one the 12 core signaling 

pathways that have been uncovered to be genetically altered in most PDAC with representative 

integrin and laminin genes such as ITGA4, ITGA9, ITGA11, LAMA1, LAMA4, LAMA5, FN1, 

ILK (Jones et al., 2008). Genome-wide DNA methylation analysis of untreated resected 

PDACs also found that ITGA2 locus is often hypomethylated causing high gene expression 

that is negatively correlated with survival rate (Nones et al., 2014). Integrin b1 expression was 

found in a several PDAC cell lines, and their expressions with the heterodimer partners, a2, 
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a5 and a6, are correlated with increased cellular adhesion to collagen, fibronectin, and laminin, 

respectively, that drives invasion (Arao et al., 2000). Through interacting with type I collagen, 

integrin a2b1 is implicated to mediate malignant properties including cellular proliferation and 

migration in multiple PDAC cell lines (Grzesiak and Bouvet, 2006). The interaction between 

integrin and collagen is further complicated by the fact that specific genotype of PDAC, for 

instance, loss of TGF-b signaling in a KRAS-driven PDAC mouse model, dictates the 

phenotype of fibrillar collagen deposited in TME and hence, altering the tissue tension and 

tumor progression (Laklai et al., 2016). Other than binding to collagen, another study reported 

that in a particular PDAC cell line, MIA PaCa2, which lacks collagen-binding integrins, a6b1 

and a3b1 mediate the cellular adhesion and migration on laminin by enhanced secretion of 

chemokine, CXCR4 and IL-8 that further exacerbate the malignant phenotype (Grzesiak et al., 

2007). In contrast, Walsh et. al. showed in an in vitro setting that knocking down the expression 

of ITGB1, ITGA5 and ITGA6 in a sub-clone of PDAC cell line, MIA PaCa2, rendered the cells 

less anchorage-dependent and more invasive through extracellular matrix (Walsh et al., 2009). 

It is therefore important to note that because of the intricate relationship between ECM proteins 

and integrins, manipulating their expression may have a profound effect on cellular behaviors 

and functions.  

 

4.1.3 The potential of bioinspired self-assembling peptides in cancer therapy 

 The discovery of unique self-assembling property of short peptides derived from native 

proteins had expanded the field of peptide engineering for various applications including 

biomedical purposes. Early studies demonstrating the self-assembly property of biologically-

inspired short peptides include chemically synthesized peptide of Escherichia coli fimbriae 

which self-assembled to mediate attachment of bacteria to eukaryotic cells (Abraham and 

Beachey, 1987), aggregation of amyloid peptides resembling Alzheimer’s amyloid plaques 
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(Burdick et al., 1992), hydrophobic a-helical peptides aggregate to form voltage-gated ion 

channel in the lipid bilayer membrane (Yukio and Kimura, 1992), and an alternating 

hydrophobic and hydrophilic peptide sequence of a yeast protein that adopted a b-sheet 

structure aggregated under specific circumstances (Zhang et al., 1993). These studies had 

provided a selection of building blocks for self-assembled peptide structures containing 

different amino acids, peptide chains or motifs. Among them, the simplest building block is 

diphenylalanine peptide (L-Phe-L-Phe; FF), two aromatic amino acids that are found in 

Alzheimer’s b-amyloid peptide. It has been shown by multiple studies that the dipeptides self-

assemble into supramolecular hydrogels of distinct ordered structures such as nanotubes or 

nanofibers, depending on the configuration (Reches and Gazit, 2003; Mahler et al., 2006; Yang 

et al., 2006). Under mild conditions or specific modifications, the dipeptide assembles into a 

rigid hydrogel structure based on p-p stacking interactions between the aromatic rings (Mahler 

et al., 2006; Smith et al., 2008). This design was later enhanced by adding an extra 

phenylalanine to produce a triphenylalanine peptide (L-Phe-L-Phe-L-Phe; FFF) that adopts a 

conformation with phenyl rings orienting outward to form intermolecular p-p stacking 

interactions (Tamamis et al., 2009; Han et al., 2010;). The triphenylalanine peptides can self-

assemble into larger b-sheet-like supramolecular structures including nanospheres, nanorods 

and diverse shapes resembling helical-ribbons, needle-like, and leaf-like nanostructures (Guo 

et al., 2014; Mayans et al., 2017).  

 These self-assembling peptides offer several advantages including ease for biological 

functionalization, biocompatibility with lack of immune or inflammatory responses, and 

biodegradability. Because of these properties, they have been actively explored for potential 

biomedical applications for tissue engineering, disease modeling and cancer therapy. For 

example, functionalizing the self-assembling blocks with peptide sequence or motifs of ECM 

protein may produce synthetic hydrogel scaffolds for study of cell-matrix interactions or tissue 
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regeneration. For cancer therapy, self-assembling dipeptides can be used for direct targeting of 

cancer cells or delivery of drugs. For instance, paclitaxel-conjugated self-assembling hydrogel 

with a cleavable site by esterase was synthesized and shown to induce nanofiber formation 

intracellularly upon enzymatic cleavage which led to cell death (Yang et al., 2007). Using 

triphenylalanine self-assembling block together with diglutamate, Mao and colleagues 

conjugated two drugs, dexamethasone and paclitaxel via disulfide linkage to produce a co-

delivery hydrogel to target cancer cells (Mao et al., 2012). Self-assembling block 

functionalized with integrin binding sequence, a tripeptide RGD, derived from fibronectin, and 

conjugated with curcumin, a hydrophobic polyphenol by disulfide linkage to form a 

hydrogelator, had been demonstrated to target integrins overexpressed on tumor cells, whereby 

upon RGD cleavage, the release of curcumin also exerted cytotoxic effect on tumor cells (Yang 

et al., 2014a). These studies offer initial insights into the potential of self-assembling peptides 

in cancer therapy at a preclinical level.  

 In this study, inspired by the laminin-integrin interaction within the TME, a self-

assembling peptide combining a triphenylalanine sequence and a short laminin peptide was 

used to examine the functional as well as molecular effects on pancreatic cancer cells that 

overexpress specific integrins. This study aims to preliminary assess the potential of such 

peptide on altering the cell fate of PDAC cells in vitro before more advanced experiments on 

evaluating its potential clinical application are conducted.   
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4.2 Materials and Methods 

Cell lines 

Human pancreatic adenocarcinoma cell lines, PANC-1 (TKG0606) and MIA PaCa-2 

(ATCC® CRL-1420™) were obtained from RIKEN BioResource Research Center (BRC) Cell 

Bank, Japan and American Type Culture Collection (ATCC, USA), respectively, prior to the 

start of the experiment. PANC-1-GFP cells were created by Dr. Shirai of Cell Signal Unit, 

OIST Graduate University by transfecting GFP plasmid into PANC-1 cells obtained from 

RIKEN BRC Cell Bank. PANC-1 and PANC-1-GFP were maintained in RPMI1640 medium 

(GIBCO®) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin 

while MIA PaCa-2 was maintained in high glucose DMEM medium (GIBCO®) supplemented 

with 10% fetal bovine serum, 2.5% horse serum and 1% penicillin/streptomycin at 37°C and a 

humidified atmosphere of 5% CO2.  

 

Peptide synthesis 

The peptides were designed by the Bioinspired Soft Matter Unit and were synthesized and 

purchased from GL Biochem (Shanghai) Ltd. China and provided in a powder form with a 

purity of 99%. Amino acid sequence analysis was performed by mass spectrometry.  

 

Transmission electron microscopy (TEM) imaging 

10 µl of peptide solution was added and allowed to stand for 30 s at room temperature on a 

glow-discharged, thin carbon film-coated copper grid (400 mesh). The grid was washed with 

deionized water once before staining with 1.0% (w/v) uranyl acetate solution for 30 s. After 

washing with deionized water twice, the grid was air-dried. Images were taken under high 

vacuum condition using transmission electron microscope JEM-1230R (JEOL, Japan).  
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Ultraviolet-visible (UV-vis) spectroscopy 

Peptide solution was added into a cuvette with a path length of 1 cm. The UV-vis spectra were 

collected using a NanoDrop 2000c spectrophotometer (Thermo Scientific, USA) with a range 

of detection set between 250 and 700 nm and the spectral resolution set at 1.0 nm.  

 

Cell viability assay 

PANC-1 cells (5x103/well) and MIA PaCa-2 cells (7x103/well) were plated in 96-well plates 

in triplicates and were allowed to grow overnight. Cells were then treated with the peptides at 

desired concentrations and durations. At the end of incubation, 10 µl of 3-(4,5-dimethylthiazol-

2-yl)-2, 5-diphenyltetrazolium bromide (MTT) solution was added into each well and 

incubated for 4 h at 37°C in dark. Next, 100 µl of 10% (w/v) sodium dodecyl sulfate (SDS) 

solution was added to solubilize the purple formazan. Absorbance was measured using a 

microplate reader at the wavelength of 570 nm.  The cell viability values for all samples were 

expressed as a percentage relative to the untreated (control) condition set at 100%.  

 

Wound healing assay 

PANC-1 (3x104/well) and MIA PaCa-2 cells (4x104/well) were seeded into each well of a 96-

well ImageLock culture plate (Essen BioScience, USA) with culture media containing 10% 

FBS. After achieving near 100% confluency, cells were starved using culture medium 

containing 2% FBS for 4 h. Next, homogenous scratch wounds of 700-800 µm in width were 

made on each well using WoundMakerTM (Essen BioScience, USA). After washing twice with 

PBS to remove detached cells, cells were treated with varying concentration of peptide solution 

diluted in culture medium containing 2% FBS. Cells were imaged every 6-hour using 10% 

objective lens of IncuCyte® S3 Live Cell Analysis Systems (Essen BioScience, USA). To 

measure the cell migration rate, a confluence mash based on images taken at time point 0 h was 
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defined by IncuCyte® software analysis tool and the percentage of wound confluence at each 

time point was quantified. Cells were seeded in triplicates for each treatment condition.  

 

Western blot analysis 

Cells were lysed in lysis buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 1% 

NP-40, complete protease inhibitor cocktail (Roche)) and incubated on ice for 20 min before 

protein lysates were collected by centrifugation. Protein concentrations were measured using 

the Pierce® BCA protein assay (Thermo Scientific). Lysates were resolved by SDS-PAGE and 

transferred to PVDF membranes before blocking with Blocking One blocking buffer (Nacalai 

Tesque) for 1 hour at RT. Membranes were incubated with anti-ROCK1 (Abcam, clone 

EP786Y, cat# ab45171) and anti-GAPDH (Abcam, clone 6C5, cat# ab8245) at 4°C overnight. 

This was followed by secondary incubation with antibodies conjugated to horseradish 

peroxidase (GE Healthcare). Protein bands were detected with Western Lightning Plus-ECL, 

Enhanced Chemiluminescence Substrate (PerkinElmer, Waltham, MA, USA). 

 

Transwell® invasion assay 

24 well culture plate with transwell permeable supports with 8 μm pores (Corning, MA, USA) 

was used to assess the invasion ability of cells. The upper surface of the transwell inserts were 

coated with 100 µl Matrigel matrix diluted in 0.01M Tris (pH 8.0), 0.7% NaCl buffer to a final 

protein concentration of 250 µg/mL at 37°C for 2 h. Cells were trypsinized, centrifuged and 

resuspended in culture medium containing 2% FBS and respective concentration of peptide 

solution. 3x103/mL cell suspension was seeded into the transwell insert (300 µl/well) while the 

bottom chamber was filled with 500 µl of culture medium containing 10% FBS. After 48 hours 

of incubation at 37°C, the culture medium was removed, and a cotton swab moistened with 

medium was used to remove non-invading cells in the apical side of transwell inserts. Cells 
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that had invaded to the basal side were fixed in 100% methanol for 10 min and stained with 

crystal violet solution for 15 min. The membrane was washed with deionized water till excess 

crystal violet solution was removed. After the membrane was air-dried, cells were imaged 

using an inverted microscope. Invaded cells were counted using automated counting plugin in 

ImageJ analysis software. Cells were seeded in triplicates for each treatment condition.  

 

Scanning electron microscopy imaging  

Both untreated and treated cells were cultured on a 3.5 cm glass bottom dish. After incubation 

for desired treatment time, culture medium was removed, and cells were washed with PBS 

three times before fixation was performed using 2.5% glutaraldehyde in 0.1 M cacodylate 

buffer for 2 h at room temperature. After rinsing for three times with 0.1 M cacodylate buffer, 

the samples were post-fixed with 1% osmium tetraoxide in 0.1 M cacodylate buffer for 30 min 

at room temperature. They were then washed three times with deionized water for 5 min, 

followed by gradual dehydration using a graded series of ethanol (70, 80, 90 and 95%, 3 min 

each) and lastly, 100% ethanol twice for 3 min each. The samples were rinsed with t-butanol, 

three times for 3 min each and freeze-dried overnight. After coating with platinum, the samples 

were imaged using a Quanta 250 FEG scanning electron microscope (FEI, USA) at an 

accelerated voltage of 5kV.  

 

RNA extraction and next generation sequencing 

Total RNA of untreated and treated PANC-1 cells for three time points (6, 12 and 36 h) were 

extracted using 1 mL TRIzol® reagent for each 10 cm tissue culture plate following 

manufacturer’s instruction. RNA purity was evaluated by spectrophotometry using 

NanoPhotometer® (INPLEN, CA, USA) and concentration was measured using Qubit® 3.0 

Fluorometer (Life Technologies, CA, USA) and 2100 RNA Nano 6000 Assay Kit (Agilent 
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Technologies, CA, USA). mRNA library preparation was carried out using TruSeq Stranded 

mRNA Library Prep Kit (Illumina, CA, USA) with polyA-Oligo(dT)-based purification 

method, followed by fragmentation into short fragments. Double-stranded cDNA was 

synthesized, end-repaired, ligated to Illumina adapters and PCR amplified. The cDNA library 

sequencing was performed by Annoroad Genome Technology Corporation (Beijing, China) 

using NovaSeq 6000 System (Illumina) with three biological replicates for each condition.  

 

RNA sequencing data analysis 

Paired-end reads were mapped to the Homo sapiens reference genome GRCh38.87 from 

Ensembl. Measurement of transcript abundance for each replicate was performed using 

Fragments per Kilobase per Million Mapped Fragments (FPKM) method. For differential 

expression analysis, DESeq2 was carried out by comparing the FPKM values of treated 

samples to the controls and log2 fold change ³ 1 and adjusted p value < 0.05 were used as cut-

off. Significantly upregulated and downregulated genes were subjected to Gene Ontology (GO) 

enrichment analysis using Database for Annotation, Visualization and Integrated Discovery 

(DAVID) v6.8 bioinformatics tools (https://david.ncifcrf.gov) (Huang et al., 2009a, 2009b). 

 

Extracellular Acidification Rate assays 

The extracellular acidification rate (ECAR) was measured using the Seahorse XFe 96 

Extracellular Flux Analyzer (Seahorse Bioscience). Cells were prepared according to Seahorse 

XF Glycolysis Stress Test Kit’s (Agilent Technologies) instruction. Briefly, 8x103 cells were 

seeded into a Seahorse XF 96 cell culture microplate and allow to grow overnight before 

treatment for different time points was initiated. At the end of the treatment, medium was 

removed, and cells were washed twice with PBS, followed by incubation with Seahorse XF 

Base Medium in a 37°C non-CO2 incubator for 45 min prior to the assay. To measure ECAR, 
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glucose, oligomycin (an oxidative phosphorylation inhibitor), and 2-DG (glycolytic 

hexokinase inhibitor) were sequentially injected into each well at the indicated time points. 

Data were analyzed by Seahorse XF-96 Wave software and ECAR is reported as mpH/min.   

 

Metabolic assays 

To measure level of ATP, lactate and lactate dehydrogenase activity, CellTiter-Glo® 2.0 Assay 

(Promega, WI, USA), Lactate Colorimetric Assay Kit II (BioVision) and Lactate 

Dehydrogenase Activity Colorimetric Assay Kit (BioVision) were used, according to the 

manufacturer’s protocols.  

 

For ATP concentration analysis, PANC-1 cells (8x104/well) were seeded into a 96-well tissue 

culture plate and allowed to grow overnight before adding the peptide compound for 6, 12, 24 

and 36 h. Once treatment incubation was completed, 100 µl of CellTiter-Glo® 2.0 Reagent 

was added into each well. To induce cell lysis, the contents were mixed for 2 minutes on an 

orbital shaker before incubating at room temperature for 10 minutes. The mixture was then 

transferred to a dark 96-well plate and luminescence was recorded on a luminometer. The 

measured values of treated samples were normalized to controls.  

 

For lactate and lactate dehydrogenase concentration measurement, PANC-1 cells (2.5x105/well) 

were seeded on a 6-well tissue culture plate and treated with peptide compound for the desired 

duration. After treatment, cells from each condition were trypsinized and centrifuged. 2x105 

cells were collected and homogenized by 100 µl of lactate or lactate dehydrogenase assay 

buffer. Cell lysates were then centrifuged at 1.2x104 rpm for 15 min and the supernatant was 

assessed by adding reaction mixture prepared from the Lactate Colorimetric Assay Kit II 

(BioVision) and Lactate Dehydrogenase Activity Colorimetric Assay Kit (BioVision), 
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respectively. After incubating at 37°C for 30 min in dark, the absorbance was measured at 450 

nm in a microplate reader. Values were normalized to the control samples.  

 

Animal xenotransplantation experiment 

Animal experiments were performed in accordance with protocol approved by the Animal 

Experiment Review Committee of the institute. First, 1.5x106 PANC-1 cells were harvested 

and resuspended in 100 µl Matrigel®. They were then xenografted subcutaneously into the 

flanks of 6-week old, female BALB/c nu/nu nude mice. Once the tumors were detected, control 

and treated mice, 3 for each group, were injected with 70 µl vehicle (deionized water containing 

5% DMSO) or peptide compound (50 mg/kg dissolved in deionized water containing 5% 

DMSO) peritumorally, every 3 days up to a maximum of 5 doses. The tumor growth was 

monitored by total radiant efficiency ([p/s]/ [µW/cm2]) prior to each treatment injection using 

IVIS® Spectrum In Vivo Imaging System (PerkinElmer, USA). Twenty-five days after 

xenografting, the tumors were dissected. Tumor size and mass were measured using calipers 

and a precision balance, respectively. Tumor volume (mm3) was calculated using the formula: 

(!")(
!
") × #

$ . 

 

Statistics 

Results are presented as means ± SEM for at least three repeated individual experiments for 

each group. Statistically significant differences between mean values were determined using 

two-tailed Student’s t-test (***p < 0.001, **p < 0.01, and *p < 0.05), unless otherwise specified. 
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4.3 Results 

4.3.1 Design and characterization of laminin-derived self-assembling (LDSA) peptides 

The peptide compound, FFFIKLLI, is designed by conjugating the IKLLI sequence that 

is derived from the a1 chain of laminin-1, with three phenylalanine amino acids (FFF) that 

promote self-assembly. For simplicity, the peptide is referred to as laminin-derived self-

assembling peptide (LDSA) from this point onwards. The peptide sequence and chemical 

structure are illustrated in Figure 4.1a.  IKLLI-containing peptide had been shown in a previous 

study to possess the ability to interact with cells and alter biological activities through its 

heparin-binding and by binding to integrin a3b1 (Tashiro et al., 1999). By conjugating the 

peptide with triphenylalanine peptide, self-assembly was enabled through the intermolecular 

p-p stacking between the aromatic side chains and the hydrogen-bonding interactions between 

the charged termini (Tamamis et al., 2009; Guo et al., 2014). Due to high hydrophobicity of 

the peptide, I first dissolved the peptide powder in a small amount of DMSO, followed by 

diluting it to the desired concentration using deionized water. When the peptide solution was 

subjected to TEM imaging, the peptide assumed an organized nanofiber structures of tubular 

morphologies with a width of approximately 50 nm (Figure 4.1b). UV-vis spectroscopy results 

confirmed the presence of high phenylalanine content in the peptide solution whereby a 

concentration-dependent, characteristic absorption peak around 250- 260 nm was observed 

(Figure 4.1c).  
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Figure 4.1 Chemical structure and characteristics of LDSA peptide 

a. The chemical structure of the peptide is illustrated with the self-assembling block, 

triphenylalanine (FFF) marked in black and the laminin-derived peptide (IKLLI) marked in 

red. b. Representative TEM image of nanofibers formed by 200 µM LDSA peptides dissolved 

in deionized water containing 1.0% (v/v) DMSO. The width of the nanofiber is measured 

between the white lines and arrows. Scale bar represents 200 nm. c. UV-vis absorption of the 

peptide dissolved in deionized water and DMSO to various concentration.  

           

4.3.2 LDSA peptides suppressed pancreatic cancer cell migration and invasion in vitro 

To assess the biological effects of the peptides, I had used two common pancreatic 

adenocarcinoma cell lines, PANC-1 and MIA PaCa-2, for in vitro experiments. First of all, I 

tested the viability of cells upon treatment with varying concentrations of the peptide solution 

diluted in culture medium for 24, 36 and 72 h using MTT assay. Interestingly, the LDSA 

peptide fiber did not have an apparent influence of cell proliferation or cell growth, even at 

concentration as high as 200 µM (Figure 4.2).  
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Figure 4.2 MTT viability assay of LDSA peptide treated PDAC cell lines  

The viability of PDAC cell lines, PANC-1 (upper panel) and MIA PaCa-2 (lower panel) was 

evaluated using MTT after treatment with LDSA peptide solution dissolved in culture medium 

to concentrations of 20, 50, 100 and 200 µM for 24, 48 and 72 h. Results are presented in 

percentage relative to the control (untreated) samples. Data represents the mean ± standard 

error of mean (SEM). 

 

 Next, to study the effect of LDSA peptides on cell movement, I performed wound 

healing assays by tracking the collective movement of pancreatic cancer cells towards the 

scratched wound using live cell imaging. Both cell lines responded with a dose-dependent 

migration inhibitory effect by the LDSA peptides (Figure 4.3 a, b & c). Especially for PANC-

1, the inhibition effect was especially great at concentration of 200 µM where cell movement 

was slowed by 50% (Figure 4.3a & b).  
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Figure 4.3 Migration assay of PDAC cells upon treatment with LDSA peptides 

a. Representative images of GFP-labelled PANC-1 untreated or treated with LDSA peptides at 

increasing concentration at initial (0 h) and end of migration assay (72 h) tracked by Incucyte® 

S3 Live Cell Analysis Systems. The percentage of wound confluence, areas occupied by GFP-

labelled b. PANC-1, and c. MIA PaCa-2 at each time point was quantified and presented in the 

line graphs (left). The wound confluence at endpoints 72 h (PANC-1) and 96 h (MIA PaCa-2) 

was further quantified and analyzed for statistical significance as shown in the bar graphs 
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(right). Data represents the mean ± standard error of mean (SEM) of three independent 

experiments.  

 

 To further reinforce the observation that LDSA peptides inhibited cell movement, 

LDSA peptide treated PANC-1 cells were subjected to protein extraction and Western blotting 

for ROCK1, an actomyosin regulatory protein that has been found to be prominently expressed 

in pancreatic adenocarcinoma to promote invasive growth (Kaneko et al., 2002; Rath et al., 

2017).  In line with the wound healing assay data, ROCK1 expression was decreased in treated 

cells in a concentration-dependent fashion (Figure 4.4a). Lastly, in order to confirm that the 

inhibitory effect on migration was caused by the self-assembly of peptides induced by 

triphenylalanine (FFF), I have also included a control sample that was treated with IKLLI 

peptide only. The result demonstrated that IKLLI by itself did not exert any inhibition in the 

collective cell movement across the scratched wound (Figure 4.4b), and hence, the 

triphenylalanine sequence is pivotal in inducing self-assembly of the peptide in order to exert 

a significant effect on cells’ biological functions.  

  

Figure 4.4 Confirmation of migration inhibition by LDSA peptides  

a. PANC-1 that were treated with LDSA peptides for 48 h were lysed and proteins were 

extracted for Western blot using anti-ROCK1 antibodies. GAPDH was used as a loading 

control. b. Migration assay measuring percentage of wound confluence by control, IKLLI and 

FFFIKLLI-treated GFP-labelled PANC-1 tracked for 72 h. Data represents the mean ± standard 

error of mean (SEM) of three independent experiments.  
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Since wound healing assay was carried out in 2D, to investigate the response of cells in 

a 3D configuration, a transwell® invasion assay was performed. Cells were seeded on a 

transwell insert coated with Matrigel® for 48 h, and cells that had invaded the Matrigel® to the 

bottom side of the insert were stained and quantified. The results showed that the invasive 

ability of both cell lines was greatly inhibited (Figure 4.5). For PANC-1, the inhibition effect 

was pronounced and followed a concentration-dependent manner with almost no cells invaded 

at a concentration of 200 µM. On the other hand, though LDSA peptides successfully inhibited 

the invasion of cells over Matrigel in MIA PaCa-2, the effect was not as great as PANC-1 cells. 

The discrepancy in the inhibitory effect of both cells lines may be accounted by the difference 

in their integrin expression on the cell membrane as reported by a previous study which 

discovered that PANC-1 cells express higher level of most integrin subunits than MIA PaCa-2 

(Grzesiak and Bouvet, 2006).  

 

 

                

 

Figure 4.5 Invasion ability of PDAC cells after treatment with LDSA peptides  

The three-dimensional invasion abilities of a. PANC-1 and b. MIA PaCa-2 were evaluated 

using Matrigel®-coated transwell inserts. Cells that had successfully invaded over the 

Matrigel® to the bottom side of the inserts were stained and quantified. Data represents the 

mean ± standard error of mean (SEM) of three independent experiments.  
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4.3.3 LDSA peptides bound cell surface and altered cell shape 

To elucidate how the LDSA peptide affects migration and invasion of pancreatic cancer 

cells, I used scanning electron microscopy to image cells after treatment with the LDSA 

peptides. Since 200 µM exerted the greatest inhibition on both cellular migration and inhibition 

without compromising the cell viability, this concentration had been chosen to evaluate the cell 

morphology after treatment for 6, 12, 24 and 36 h. Upon treatment, the LDSA peptide started 

to self-assemble to form an organized nanofibrous meshwork on the apical cell surface as early 

as 6 h (Figure 4.6). With time, the nanofibers grew to cover a larger area of the cell membrane 

and at 36 h, the entire PANC-1 cells were covered by an aggregate of nanofibrous meshwork. 

It is interesting to note that the nanofibrous meshwork also extended to cover the lamellipodia 

of the cells and cell edges (Figure 4.6, white arrow), signifying that the LDSA peptide has a 

high specificity to cell surface membrane. Apart from this, the treated PANC-1 cells presented 

with a more elongated, fibroblast-like morphology as compared to the control cells that assume 

a cuboidal, epithelial-like morphology.  

In contrast, the nanofibers that formed on MIA PaCa-2 cell membrane altered the 

initially fibroblast-like cells to become more rounded and epithelial-like. The nanofibrous 

meshwork also did not show a uniform aggregate on the MIA PaCa-2 cells, even at extended 

incubation period of 36 h. This difference in the binding of LDSA peptide fibers in these two 

PDAC cell lines may be a result of differential expression of integrin on each cell surface as 

discussed earlier, and it goes parallel with the results generated from wound healing and 

invasion assays. As in wound healing assay, an IKLLI-treated only sample was included to 

support the fact that triphenylalanine is essential in the formation of peptide self-assembly on 

cell surface.  
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Figure 4.6 Scanning electron micrographs showing binding of LDSA peptide fibers to the 

cell membrane 

FFFIKLLI peptides formed nanofibrous network on the apical membrane of PANC-1 and MIA 

PaCa-2 after treatment for time periods of 6, 12, 24 and 36 h, but not on control or IKLLI-

treated cells. The nanofibers also extended to cell edges and lamellipodia (white arrow). 

 

4.3.4 LDSA peptides changed the global transcriptome of pancreatic cancer cells 

Following the above findings, I next investigated the molecular changes in the LDSA-

treated cells that had brought about the phenotypic alterations. To do this, I isolated RNAs 

from untreated (control) and 6, 12 and 36 h LDSA peptide-treated PANC-1 cells and subjected 

them to RNA sequencing to determine their gene expression profiles. 
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Figure 4.7 Differentially expressed genes in LDSA peptide-treated PANC-1 cells by RNA 

sequencing 

a. Volcano plots showing differentially expressed genes at 6, 12, and 36 h post-treatment. 

Yellow and blue dots indicate significantly upregulated and downregulated genes (fold 

change >2, p< 0.05), respectively. b. Venn diagram summarizing the overlap between 

differentially expressed genes at 6, 12 and 36 h time points. The number of genes that are 

shared by two time points is indicated by the overlap between the two circles. c. Heatmap of 

hierarchical clustering indicating differentially expressed genes (rows) between all samples 

including controls. 
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downregulated genes (2128 genes) than the upregulated ones (76 genes) (Figure 4.7a). The 

differentially expressed genes showed a high degree of overlap between 12 h and 36 h treated 

samples and very little overlap between 6 h and 36 h treated samples, as depicted in the Venn 

diagram (Figure 4.7b). Similarly, hierarchical clustering analysis of the differentially 

expressed genes revealed that 12 h and 36 h treated samples formed a cluster while the control 

and 6 h treated samples clustered closely to each other (Figure 4.7c).  

Gene Ontology (GO) analysis is useful in dissecting the biological processes and 

molecular functions of a vast number of differentially expressed genes in order to create a better 

understanding of the molecular changes in the treated samples. To do this, a list of significantly 

upregulated or downregulated genes for each time point was uploaded to DAVID 

bioinformatics tool (Huang et al., 2009b). In terms of biological processes, the upregulated 

genes found at 6 h treated samples are related mostly to inflammatory and immune responses 

including NF-kappaB signaling as well as extracellular matrix organization and actin 

cytoskeleton regulation whereas the downregulated genes are highly related to signal 

transduction and cell division (Figure 4.8a). As for the molecular functions, the upregulated 

genes are involved in poly(A) RNA, receptor, heparin, integrin, and heparin binding while the 

downregulated genes are involved in DNA, actin, syntaxin, and calcium-dependent 

phospholipid binding (Figure 4.8a).  

 In contrast, an entirely different landscape of biological processes and molecular 

functions was represented by the differentially expressed genes for 12 h or 36 h treated samples. 

Genes that were upregulated after 12 h of treatment play function in oxidation-reduction 

process, protein transport, rRNA processing, response to lipopolysaccharides, tumor necrosis 

factor (TNF) signaling, and extracellular matrix organization while downregulated genes play 

important and diverse biological functions like DNA transcription, cell division, protein 

phosphorylation, ubiquitination, and DNA repairs (Figure 4.8b). At the first glance, most of 
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the upregulated and downregulated genes are molecularly related to protein binding. 

Meanwhile, metal ion, DNA, and ATP binding were also significantly represented in the 

downregulated gene sets. Since there were a low number of upregulated genes in 36 h treated 

samples and the gene sets required for each functional analysis was less than 5, they are 

excluded from the GO analysis. The biological processes and molecular functions that are 

represented by the downregulated genes of 36 h-treated samples are quite similar to those of 

12 h-treated samples, with DNA replication and protein binding appeared as the top represented 

biological process and molecular function, respectively (Figure 4.8c).  

 Collectively, these results showed that treatment with LDSA peptides induced a 

dynamic change in the PANC-1 cells at a molecular level. Based on this data, I speculate that 

upon treatment, the cells initially responded by upregulating a transient inflammatory and 

immune response as well as extracellular matrix reorganization due to the binding of the 

peptide nanofibers on the cell membrane which was also shown by an increase in molecules 

that are receptor, heparin or integrin related. However, at 12 h and 36 h after treatment, the 

molecular dynamics changed vastly and the downregulated genes are mainly involved in 

important cellular processes that are highly ATP-dependent like, DNA transcription, DNA 

replication, cell division, protein functions, and signal transduction.  
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Figure 4.8 Gene Ontology enrichment analysis of differentially expressed genes      

DAVID functional Gene Ontology analysis of significantly downregulated and upregulated 

genes at a. 6 h b. 12 h and c. 36 h post-treatment with LDSA peptides. Biological processes 

are highlighted with blue bars while molecular functions are highlighted with green bars. x-

axis represents the number of genes within each category.   
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4.3.5 LDSA peptides altered the metabolic activities of cancer cells 

 Adenosine 5’-triphosphate (ATP) is the molecular currency of intracellular energy 

transfer that is essential for multiple cellular processes. To evaluate if the LDSA peptides affect 

the ATP production within the treated cells, I first conducted a metabolic assay to measure the 

ATP level within cells using luminescence method. The ATP concentration initially increased 

6 h after treatment, and gradually decreased from 12 h up to 36 h where there was a significant 

drop in the ATP level compared to basal level (Figure 4.9a). Since cancer cells primarily utilize 

aerobic glycolysis instead of oxidative phosphorylation for energy production and produce 

lactate from pyruvate in the presence of oxygen, a phenomenon termed ‘Warburg effect’ 

(Warburg et al., 1927; Warburg, 1956), it is reasonable to postulate that a decrease of cellular 

ATP concentration in the treated cancer cells is associated with a drop in lactate production. 

To confirm such phenomenon, I conducted metabolic assays to quantify the cellular lactate 

concentration and lactate dehydrogenase (LDH) enzyme levels using colorimetric analysis. 

Similar to ATP production level, both cellular lactate and lactate dehydrogenase concentrations 

were elevated initially at 6 h and followed by a decline from 12, 24 h to a significant drop at 

36 h (Figure 4.9b & c).  

 The above findings revealed that there was an impairment in glycolysis in cells treated 

with LDSA peptides, I followed up the experiment by running a glycolytic stress test. As 

expected, though all treated cells responded to the exogenous glucose as the control cells, when 

oligomycin, an ATP synthase complex V inhibitor, was added, the cellular response by 

extracellular acidification rate (ECAR) production was diminished, most significantly at 36 h 

(Figure 4.9d), suggesting a decrease in the capability of the cells to respond to an energetic 

demand, referred to as ‘glycolytic reserve’, of the treated cells (Figure 4.9e). These data 

suggest that an impairment of glycolysis causes a lack of ATP production, which in return 
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contributed to the reduction in ATP-dependent cellular processes and similarly, inhibits an 

energy-demanding tasks like cell migration and invasion.  

 

      

Figure 4.9 Metabolic assays of LDSA peptide-treated PANC-1 cells   

a. CellTiter-Glo® 2.0 bioluminescence assay was used to measure the ATP level within the 

cells after treatment with FFFIKLLI (LDSA peptides) for 6, 12, 24 and 36 h. b. Calorimetric 

assay measuring lactate production by cells. Results are represented as lactate concentrations 

at each time points relative to the control. c. Calorimetric assay measuring the activity of lactate 
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dehydrogenase (LDH) in cells. Results are represented as LDH concentrations at each time 

point relative to the control. d. Extracellular acidification rate (ECAR) by control and treated 

cells at basal level and after sequential injections of indicated compounds: glucose (10 mM), 

oligomycin (1.0 µM), and 2-deoxy-D-glucose (2-DG) (50 mM). Glycolytic reserve which 

measures the maximum ability of a cell responding to an energetic demand is indicated by the 

slope after addition of oligomycin. e. Average value of glycolytic reserves of control and 36 h-

treated cells were quantified and compared. T1, T2 and T3 correspond to time point 

measurements after addition of oligomycin indicated in d. Data represents the mean ± standard 

error of mean (SEM) of three independent experiments (**p < 0.01 (t-test, two-tailed)).  

 

4.3.6 Animal xenotransplantation study revealed the effect of LDSA peptides on tumor 

growth in vivo 

 To supplement the in vitro findings, an animal xenotransplantation study was carried 

out by first, xenografting PANC-1-GFP cells subcutaneously into BALB/c nu/nu nude mice, 

followed by treating the formed tumors with LDSA peptides peritumorally every 3 days for up 

to 5 doses (Figure 4.10a). Live in vivo animal imaging was used to track the growth of PANC-

1-GFP tumors by measuring the total radiant efficiency of GFP signals in the vehicle-treated 

(control) or LDSA peptide-treated group. Upon treatment with the first dose of LDSA peptide, 

the tumors started to grow slower than the control ones up until the end of the experiment 

(Figure 4.10b & c). The health of the mice for both groups remained healthy as monitored by 

body weight measurement every 3 days throughout the experimental period (Figure 4.10d). As 

expected, the treated tumors were much smaller than the control tumors, both in terms of 

volume and mass, as revealed by the measurements done after dissection (Figure 4.10e, f & g). 

These in vivo findings supplemented the potential of the LDSA peptides in suppressing tumor 

expansion, including possible invasion into the surrounding tissues.  
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Figure 4.10 In vivo study of LDSA treatment on xenografted PANC-1 tumors in nude 

mice 
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a. Timeline summarizing the experimental setup and procedure during the entire duration of in 

vivo experiment. b. In vivo fluorescence images of PANC-1-GFP subcutaneous tumor-bearing 

mice at day 7 when tumors were detected and at day 25 before the dissection, treated with 

vehicle (control, deionized water containing 5% DMSO) or LDSA peptide compound (treated, 

50 mg/kg dissolved in deionized water containing 5% DMSO). c. Fluorescence signals 

measured by IVIS Spectrum Imaging System at each time point are presented as total radiant 

efficiency. d. Body weight of the mice was measured using weighing balance before each 

injection of LDSA peptide to monitor the health status of the mice. e. Images of excised control 

and LDSA-treated tumors on day 25 post-transplantation. f. Tumor mass was measured, and 

the average of each experimental group is presented. g. Tumor volume (mm3) was calculated 

based on the width (x) and length (y) of each tumor measured with calipers. Average tumor 

volume from three biological replicates were quantified. Data represents the mean ± standard 

error of mean (SEM), (**p < 0.01, *p < 0.05 (t-test, two-tailed)). 

 

4.4 Discussion 

4.4.1 Self-assembly peptide containing sequence of laminin helped guide binding to the 

cancer cell membrane 

The LDSA peptide was designed and synthesized by combining a fragment of a1 chain 

of laminin-1 with a self-assembling block, triphenylalanine. Unfortunately, the peptide design 

did not take into consideration the expression of laminin or its associated integrin receptors in 

PDAC tumors, which led to the difficulty in demonstrating the binding of peptides to the 

integrin receptors. Confocal imaging studies investigating the expression and engagement of 

integrin receptors using immunofluorescence on LDSA peptide-bound cells had been 

inconclusive. This is hindered by the fact that the large-sized LDSA peptides also randomly 

captured immunofluorescence antibodies, possibly due to binding complementarity or size 

restriction.   

 The effects observed are likely caused by self-assembling of the peptides while the 

biologically relevant part of laminin sequence serves as a guide to anchor the peptides to the 
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cell membrane as shown in the scanning electron microscopic images. In normal pancreas, it 

has been reported that in contrast to laminin b1 and g1 chains, a1-chain of laminin-1 was 

practically absent in the adult pancreatic parenchyma (Virtanen et al., 2000; Jiang et al., 2002). 

Furthermore, there is no direct evidence of interaction of laminin a1 and integrin in human 

PDAC specimen described in the literature so far, making the hypothesis of binding of the 

LDSA peptide to integrin receptors obsolete.  

Moreover, the adhesiveness of the LDSA peptide to the cell membrane should be 

assessed in a greater detail. This is particularly important to show that the peptide has a strong 

affinity to the cellular membrane in order to exert its effects. Preliminary experiment had been 

carried out by coating the cell culture dishes with LDSA peptide or Matrigel (control), a 

basement membrane derived from the TME of a mouse sarcoma, called Engelbreth-Holm-

Swarm (EHS) tumor (Kleinman et al., 1986; Danielson et al., 1992), where laminin is of 

abundance, before seeding the cancer cells. The adhesiveness of cells was next evaluated by 

measuring the number of cells remained after digesting with EDTA. However, the 

adhesiveness of cells to LDSA peptides was not superior to that of Matrigel, a natural ECM 

(Figure 4.11). This also implies that the LDSA peptides may be subjected to proteolysis by 

proteases such as matrix metalloproteinases that are present in the in vivo TME. This should 

be confirmed by administering the LDSA peptide in vivo to analyze its pharmacokinetics 

including bioavailability within the tissues, biodegradability, and half-life.  
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Figure 4.11 Cell adhesion and peptide digestibility assay of LDSA peptides versus 

Matrigel 

Cells that adhered to tissue culture wells coated with either FFFIKLLI (LDSA peptide) or 

Matrigel® overnight were imaged and the average area occupied by adhered cells were 

quantified. Peptide digestibility assay was performed by treating adhered cells with EDTA. 

Cells that remain adhered to the FFFIKLLI peptide or Matrigel®-coated wells after digestion 

were imaged, and the average area occupied by cells were measured.   

 

4.4.2 LDSA peptides physically restricted the cell motility in PDAC cells  

The LDSA peptides not only suppressed cellular migration in a 2D setting, they also 

possess the ability to restrict PDAC cell invasion in a 3D setting. The cell migration machinery 

was affected by the binding of the self-assembled LDSA peptides on PDAC cell membrane. 

This result was supported by the suppression of ROCK1, a serine/threonine protein kinase 

downstream of small GTPase RhoA which functions as a inducer of actomyosin contractility 

and actin stress fiber formation (Kimura et al., 1996; Amano et al., 1997) through 

phosphorylation of substrates, including myosin light chain 2 (MLC), MLC phosphatase, and 

LIM domain kinase 1 and 2 (LIMK), to regulate cell migration and invasion (Ridley, 2001; 

Julian and Olson, 2014). In fact, ROCK1 had been shown to be upregulated in PDAC cell lines 

and tissue samples, and its downregulation by morpholino oligo antisense (Kaneko et al., 2002) 
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or small molecule inhibitors (Vennin et al., 2017; Whatcott et al., 2017; Rath et al., 2018) had 

been proven to be effective at blocking cell migration, tumor proliferation, invasion, metastasis, 

and activation of stromal fibroblast.  

The mechanism underlying the suppression of ROCK1 in PANC-1 cells by the ITGA 

peptides remains to be elucidated. However, in view of the widespread binding of LDSA 

peptides on the cell membrane, it is likely that the physical tension exerted by the self-

assembling nanofibers had also restricted the motility and contractility of the cells, leading to 

loss of molecules involved in stress fiber contraction. As a matter of fact, RhoA, the upstream 

molecule of ROCK1 is known to be involved in forming integrin-based cell-matrix contacts, 

called focal adhesions in response to mechanical stresses in the ECM (Nobes and Hall, 1995; 

Rottner et al., 1999; Ridley, 2001). To examine this hypothesis, a mechanical experiment using 

atomic force microscopy (AFM) should be performed to reveal the tensile force of the 

nanofibers exerted to the cells, followed by biochemical studies of mechanosensing proteins 

including focal adhesion molecules, cytoskeletal scaffolding proteins or downstream Rho 

GTPases.  

 

4.4.3 Limitations of the in vitro study and proposal of better models to study LDSA 

peptide in PDAC 

Though this study was conducted using two established human PDAC cell lines, they 

are not optimal to assess the development of effective anti-PDAC therapies preclinically for 

three reasons: (1) they do not represent a heterogenous nature of PDAC, (2) they have been 

selected for its growth advantage in a monolayer, and (3) a lack of proper tumor architecture 

and tumor microenvironment (Gillet et al., 2013).  

As discussed earlier, PDAC is well characterized with an extensive desmoplasia 

consisting of dense ECM and fibroblasts within its tumor microenvironment (Xie and Xie, 
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2015; Neesse et al., 2019). To properly evaluate the effects of LDSA peptide that was designed 

and constructed based on the sequence of an extracellular matrix protein, it is therefore more 

appropriate to conduct the experiments using a pathologically relevant model, for instance in 

vitro 3D PDAC model. In fact, Matrigel is widely used in in vitro 3D tissue culture. It is made 

up of primarily laminin, type IV collagen, entactin, and heparan sulfate proteoglycan (perlecan) 

(Kleinman and Martin, 2005), that are also commonly found in a TME. In 2015, two studies 

simultaneously reported that Matrigel together with a cocktail of growth factors in culture 

medium had been successfully used to establish normal and cancerous murine and human 3D 

pancreas tissue in vitro, termed organoids, from pancreatic ductal cells or pluripotent stem cells 

(Boj et al., 2015; Huang et al., 2015). The cultured organoids largely recapitulate major 

biological functions and the in vivo tissue architecture. Since then, the established organoid 

culture techniques have been employed widely to become a common model for researches into 

pancreatic cancer biology as well as for novel therapeutic screening and evaluation. Such 

culture system allows us to test how LDSA peptide penetrates the Matrigel and interfere with 

the interaction between cultured ductal tissues and the surrounding matrix in vitro as well as to 

evaluate the biological responses such as migration and invasion.  

Similarly, organoids consisting normal pancreatic, preneoplastic, and immune cells 

should also be included to study the response of heterogenous assortment of cells to the LDSA 

peptide during various stages of disease progression. The flexibility of organoid culture system 

has enabled the modulation of TME and cell-to-cell interaction to match different study aims 

and to answer research questions in a holistic manner. The finding of activation of 

inflammatory and innate immune response at 6 hours after treatment from the RNA sequencing 

data can be functionally validated and the immunogenic effect of LDSA peptide can be 

investigated using established organoid model which successfully incorporates tumor immune 
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microenvironment including tumor-associated macrophages and tumor-infiltrating T-

lymphocytes (Neal et al., 2018; Tsai et al., 2018).  

 

4.4.4 LDSA peptides restricted cancer cells’ energy production leading to global 

shutdown of cellular functions 

 The metabolic activity of the PDAC cells treated with LDSA peptides had been altered 

in a dynamic fashion where energy production switched from increased glycolysis in the initial 

period of treatment, generating higher amount of ATP and lactate, to an overall reduction after 

a prolonged period of treatment. Correlating this results with the RNA sequencing data, it is 

plausible that the initial engagement of LDSA peptides with the cell surface membrane 

triggered an increase in demand for energy for cells to accommodate cellular activities like 

immune response and extracellular matrix protein production which led to an eventual 

exhaustion, as exemplified by the decrease in glycolysis, ATP production, and downregulation 

of ATP-related cellular activities at 36 h. On the other hand, a gradual increase of LDSA 

peptide binding to the cells and a formation of tight nanofibrous meshwork over time may also 

limit the access of macronutrients or oxygen present in the culture medium. Attempt to 

investigate the glucose uptake ability of treated cells was conducted, however, no conclusive 

results could be drawn from the findings. Meanwhile, according to the RNA sequencing data, 

there was no changes to the mammalian target of rapamycin (mTOR) signaling pathway which 

acts as the central regulator of cell metabolism for growth, proliferation, and survival (Laplante 

and Sabatini, 2009). Likewise, hypoxia signaling was also largely intact except for a significant 

decrease HIF1A transcripts at 12 h, followed by an increase at 36 h. However, this change has 

to be further confirmed using gene and protein expression studies.  

 Since metabolic reprogramming is common among human malignancies and it 

contributes to the evolution of cancer (Ward and Thompson, 2012; Faubert et al., 2020), it is 
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possible that the reduction of glycolytic capacity at later time points coincides with a metabolic 

switch where cells rely on mitochondrial oxidative phosphorylation for energy production. 

Nonetheless, it is interesting to find that there was a widespread downregulation of biological 

functions which are highly ATP-dependent in cells after 12 hours of treatment even though the 

cells remain viable after 72 hours as shown in the cell viability assay. To understand this 

phenomenon, further studies should also include looking into cellular senescence and 

dormancy to determine the ultimate cellular phenotype changes caused by the LDSA peptide.  

 

4.4.5 Comprehensive in vivo analysis of the effect of LDSA peptides 

The in vivo analysis in this study was performed using a subcutaneous model of tumor 

xenograft using an established human PDAC cell line. This approach possesses significant 

weaknesses that limit their ability to adequately evaluate the therapeutic responses in a 

preclinical setting. The two main reasons for its inferiority are: 1) lack of stromal infiltration 

and adequate TME to support tumor growth in subcutaneous transplantation, 2) the murine 

models of xenografts are immunocompromised hindering the assessment of therapeutic effect 

in the presence of immune cells.  

Though the results presented suggested that there was an effect on tumor growth and 

possibly invasion by the peritumoral injection of LDSA peptide, a more comprehensive in vivo 

analysis using biologically relevant model is needed to ensure that the results are reliable and 

clinically relevant. Genetically-engineered PDAC mouse model bearing mutations in Kras and 

Trp53 that targets the pancreas specifically using Cre-lox technology, named LSL-

KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) mouse model of PDAC, is by far the most 

reliable tool for preclinical drug studies for its close recapitulation to many clinical, 

histopathological, and immunocompetent features of PDAC (Hingorani et al., 2005; Lee et al., 

2016). In addition, KPC mice encompass a full spectrum of PDAC development, with normal 
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pancreata at birth and developed precursor lesion, pancreatic intraepithelial neoplasia (PanIN), 

before accelerated into PDAC stage with metastases found in approximately 80% of the 

animals (Hingorani et al., 2003, 2005). Since LDSA peptide aims to suppress metastasis of 

pancreatic tumor, preferably at an early and less-aggressive stage, KPC mice should be used to 

investigate its effectiveness both at PanIN and PDAC stages.   

Another murine model that is more clinically relevant is patient-derived tumor 

xenografts (PDX), where tumor tissues together with their surrounding stroma that were 

surgically removed from PDAC patients are transplanted into a mouse body for growth. In 

particular, an orthotopic approach (tumor tissues are transplanted directly into the organ where 

the tissue is originated from) instead of a subcutaneous approach should be conducted. Earlier 

studies had demonstrated that such approach yielded PDXs that retain morphological 

characteristics of the original human PDAC specimen and successfully recapitulated the 

metastatic activity of primary tumors (Fu et al., 1992; Loukopoulos et al., 2004). Furthermore, 

orthotopically transplanted PDAC cell lines also showed acquisition of malignant EMT traits 

such as loss of E-cadherin than subcutaneously transplanted PDAC cell lines, suggesting the 

importance of a proper TME in attaining malignant behaviors (Takahashi et al., 2018).  

 Even with the use of proper murine model for in vivo evaluation, the challenge of route 

of administration of LDSA peptides remains. LDSA peptide presents as hydrogel, and its 

viscosity hinders it from being administered via oral or intravenous route. Because of its low 

specificity, intraperitoneal use also poses significant difficulty for precise targeting. The only 

viable option is direct delivery into the peritumoral region using ultrasound-guided injection 

through the abdominal route, though feasible but not ideal in a clinical setting. I had attempted 

such approach for orthotopic tumor transplantation, however, because of the lack of expertise 

and support as well as the availability of proper equipment setup, this approach was eventually 

abandoned.  
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In addition, the need of repetitive dosing of LDSA peptides hints that the tumors may 

regrow in the absence of LDSA peptide. This is also evidenced by the continuous tumor growth 

in the treated group even after multiple injections and may be explained by the lack of 

specificity of the LDSA targets as well as the biodegradability of the peptides (Figure 4.11). 

In my opinion, given the known characteristic of self-assembling peptides in solution, the 

initial design conceptualization should have taken into consideration route of administration of 

the peptide in vivo.  

 To supplement the results obtained from in vitro experiments, below are the biological 

assays that need to be carried out. First, assessment of pharmacokinetics of the LDSA peptide 

in the peritumoral region with a special focus on its bioavailability, distribution among the 

normal and cancerous tissues, metabolism, and half-life. Second, tumor invasion into 

surrounding normal tissues assessed by in vivo imaging using fluorescently labeled tumor cells 

and histological evaluation of tumor samples and its basement membrane after dissection. 

Third, tumor metastasis into distant organs, both micro and macrometastases, can be studied 

by in vivo imaging and assessment of all tissue organs using histopathology with particular 

attention to common metastatic sites like liver, peritoneum, lungs, and lymph nodes. Fourth, 

functional analysis of indicators of cancer dissemination that are present in the bloodstream, 

for example circulating tumor cells (CTCs) and exosomes. Of note, CTCs and cancer-cell 

derived exosomes have been implicated in pancreatic cancer progression and metastasis 

(Kulemann et al., 2015; Melo et al., 2015; Qiu et al., 2018). For instance, PDAC-derived 

exosomes containing high level of migration inhibitory factor (MIF) induced pre-metastatic 

niche formation in the liver (Costa-Silva et al., 2015). In the same year, another published study 

showed that distinct integrin expression on tumor-derived exosomes from various cancer types 

including PDAC direct organ-specific metastasis by interacting with target organ ECM 

(Hoshino et al., 2015). Therefore, it would be interesting to analyze the distribution of PDAC-
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specific, integrin-bearing exosomes in the bloodstream of mice that are treated with LDSA 

peptide in order to comprehensively evaluate its clinical efficacy. 

 

4.4.6 The potential of using LDSA peptides in combination with conventional therapy to  

prevent metastasis and relapse in PDAC 

 Since LDSA peptides did not induce any cytotoxic effect on PDAC cells, its clinical 

application is very limited in oncology. However, it can be potentially useful as an add-on 

therapy to suppress metastasis with conventional cytotoxic chemotherapeutic drug like 

gemcitabine for metastatic PDAC. Once again, this would need to be evaluated in both in vitro 

and in vivo settings using appropriate experimental models. It is not uncommon that most 

preclinical studies and clinical trials are conducted in an adjuvant setting to evaluate the add-

on value of novel therapeutics in clinical outcomes, which include overall response rate, 

progression-free survival, and overall survival. Such experiments are also needed to determine 

if the nanofibrous meshwork formed on the cells or tumor’s surrounding impedes the delivery 

of cytotoxic drugs or renders the cells resistant to the cytotoxic effect of chemotherapy due to 

major alteration to the biological activities of the cancer cells. 

 In the present study, there is a lack of evidence showing the specificity of binding of 

LDSA peptide to the integrin receptors on the pancreatic cancer cells. Instead, the LDSA 

peptides had been shown to have widespread effects on the cellular phenotypes and functions 

that extend beyond targeting the integrin signaling pathway. This can be explained partially by 

the extensive, non-specific binding of the peptide nanofibers on the cellular membrane. This is 

merely a preliminary study to explore the preclinical effects of LDSA peptide, and since the 

potential clinical use of LDSA peptide remains largely elusive, it is important not to take the 

results of this part of the thesis literally.  
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Conclusion and Summary 

 Tumor heterogeneity and cellular plasticity continue to pose a great challenge for 

clinical cancer treatment. This property of cancer remains a topic of intensive research 

investigation. This thesis investigated cancer cell plasticity using biological agents, 

microRNAs and extracellular matrix-derived self-assembling peptides, in breast and pancreatic 

cancer cell, respectively.  

 First of all, in order to fulfill the primary aims of targeting cancer stem cells, I had 

discovered a microRNA, miR-96, which can transcriptionally regulate the CSC’s surface 

marker CD44 in breast cancer cells. By overexpressing miR-96 which is often downregulated 

in breast CSCs using exogenous mimic, I demonstrated the effect of tumor growth inhibition 

and uncovered the molecular mechanism behind the suppression of CD44. This is summarized 

in the illustration below (Figure 5.1). 

                       
Figure 5.1 Illustration summarizing the transcriptional control of CD44 by miR-96 in 

non-CSCs and CSCs (Created with BioRender.com) 
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 Secondly, I investigated additional effect of miR-96 mimic in controlling cancer cell 

growth by targeting HB-EGF, a commonly upregulated oncogene in breast cancer which plays 

roles by using its extracellularly secreted molecule that binds EGF receptor to mediate 

intracellular signaling and an intracellular portion, HB-EGF-C that transcriptionally control 

expression of genes related to cell cycle and CSC’s marker, CD44 through nuclear exclusion 

of transcriptional repressors. The transcriptional regulation of Cyclin A and CD44 by HB-EGF-

C and the effects of miR-96 mimic are summarized in a schematic illustration below (Figure 

5.2).  

        

Figure 5.2 Schematic illustration showing the transcriptional control of Cyclin A and the 

estimated mechanism of control of CD44 genes by HB-EGF-C as well as the molecular 

and functional effects of miR-96 mimic (Created with BioRender.com) 

*estimated 
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 Lastly, I investigated the preliminary effects of a self-assembling biomaterial designed 

based on a peptide sequence derived from an extracellular matrix protein, laminin, on 

pancreatic cancer cells. The biomaterial self-assembled into a nanofibrous network on cellular 

membrane that expresses integrin and altered the cell fate including a myriad of cellular 

processes and metabolic activities. The extensive effects of the biomaterial are summarized in 

the illustration below (Figure 5.3). 

        

Figure 5.3 Illustration depicting the binding of laminin-derived self-assembling peptides 

to cell membrane and their effects on pancreatic cancer cells (Created with BioRender.com) 

 Although filled with limitations as discussed in each chapter, this thesis reaffirms the 

unique property of cancer cell plasticity which can be harnessed as a target to control the 

hallmarks of cancer including sustained growth and proliferation, tumor invasion, and 

metastasis using exogenous biological agents.   
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