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A B S T R A C T   

With the continued adoption of passive acoustic monitoring as a tool for rapid and high-resolution ecosystem 
monitoring, ecologists are increasingly making use of a suite of acoustic indices to summarise the sonic envi-
ronment. Though these indices are often reported to well represent some aspect of the biology of an ecosystem, 
the degree to which they are confounded by various extraneous sonic conditions is largely unknown. We con-
ducted an aural inventory across 23 field sites in Okinawa to identify the number of unique animal sounds 
present in recordings. Using these values of ‘measured richness’, we then examined how the performance of 11 
commonly-used acoustic indices varied across a range of sonic conditions (including in the presence and absence 
of insect stridulations, audible wind or rain, and human-related sounds). Our analysis identified both well- and 
poor-performing acoustic indices, as well as those that were particularly sensitive to sonic conditions. Only two 
indices reflected measured richness across the full range of sonic conditions examined. A few indices were 
relatively insensitive to extraneous sonic conditions, but no index correlated with measured richness when 
masked by sound from broadband stridulating insects. Our results demonstrate considerable sensitivity of most 
commonly used acoustic indices to confounding sonic conditions, highlighting the challenges of working with 
large acoustic datasets collected in the field. We make practical recommendations for acoustic index use based on 
study design, with the aim of identifying the suite of acoustic indices with greatest utility as indicators for rapid 
biodiversity monitoring and management of the world’s natural soundscapes.   

1. Introduction 

The nascent field of ecoacoustics focuses on the properties and dy-
namics of biological sound while considering the acoustic environment 
in which sound is produced (Servick, 2014; Sueur and Farina, 2015). 
The field extends bioacoustics by shifting away from identifying indi-
vidual species and their vocal properties (e.g. Aide et al., 2013) towards 
quantifying the ‘soundscape’—the suite of all observable sounds pro-
duced in an ecosystem (Pijanowski et al., 2011; Pijanowski et al., 
2011b). Ecoacoustics is rooted in the idea that all vocalising animals 
compete for niche space in the sensory environment (Krause, 1987). 
Since acoustic space is limited, animals must partition the soundscape 
across temporal and frequency domains to be heard (Marín-Gómez et al., 
2020; Slabbekoorn, 2018). This, in turn, means that soundscapes can 
represent ecosystem condition, since more diverse systems should 

exhibit increasingly structurally complex and diverse use of acoustic 
space (Dumyahn and Pijanowski, 2011; van der Lee et al., 2020). 
Accordingly, soundscapes are often considered a proxy for various facets 
of ecological communities, including their diversity (Gasc et al., 2013; 
Harris et al., 2016; Mammides et al., 2017), abundance (Boelman et al., 
2007; Buxton et al., 2018; Pieretti et al., 2011), and biomass (Elise et al., 
2019). 

With recent advances in recording, processing and data-storage 
technology, passive acoustic monitoring is becoming increasingly trac-
table on even a moderate research budget (Gibb et al., 2019). Acoustic 
monitoring approaches have several advantages over traditional survey 
techniques, including their ability to produce data on a fine temporal 
scale (Ross et al., 2018), capture long-term trends (Sueur et al., 2019), 
include or target rare species (Znidersic et al., 2020), and facilitate 
surveys of remote or challenging environments (Burivalova et al., 
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2019a). Accordingly, there is growing interest in using soundscapes to 
ask ecological questions (Burivalova et al., 2019; Deichmann et al., 
2018; Lomolino et al., 2015; Sugai et al., 2019) and in establishing 
acoustic recording protocols to monitor changes in the soundscape 
through time and space (Gasc et al., 2018; Ross et al., 2018; Sethi et al., 
2020; Sueur et al., 2019). 

Since the development of ecoacoustics as a field, there has been a 
proliferation of acoustic indices that aim to characterise the ecology of a 
system (Kasten et al., 2012; Pieretti et al., 2011; Sueur et al., 2014). Most 
such indices work by summing or contrasting the acoustic power within 
different frequency ranges. Sueur et al., (2014) reviewed the range of 
indices for summarising the soundscape, while recognising that there is 
never likely to be a single value that accurately represents all levels of 
local or regional biodiversity. Although some acoustic indices may 
correlate—positively or negatively—with species richness (Depraetere 
et al., 2012; Jorge et al., 2018), inconsistencies in these relationships 
(Bradfer-Lawrence et al., 2020) have led to concerns over their broad 
applicability across taxa and habitats (Gibb et al., 2019; Mammides 
et al., 2017). 

However, soundscapes are rich in information beyond biological 
signals that indicate the presence of particular animals. For example, 
soundscapes may provide information on landscape or habitat structure 
(Burivalova et al., 2019; Fuller et al., 2015), the presence of particular 
weather conditions or storms (Sánchez-Giraldo et al., 2020), back-
ground levels of anthropogenic noise and its change (Gill et al., 2017), or 
the presence and identity of atypical sounds such as illegal logging ac-
tivity (Sethi et al., 2020). Moreover, soundscapes include valuable in-
formation on the phenology (e.g. Oliver et al., 2018), and temporal 
dynamics of vocalising animals (Gottesman et al., 2020; Marín-Gómez 
et al., 2020), including disruptive broadband insect choruses (Hart et al., 
2015). Although this study focuses on the ability of acoustic indices to 
act as proxies for biodiversity, we acknowledge the myriad ways 
soundscapes and acoustic indices provide information beyond merely 
acting as biodiversity indicators. 

The ability of acoustic indices to reflect some facet of biodiversity 
(that is, their performance) may be sensitive to a range of conditions. For 
example, human-related sounds (‘anthropophony;’ Kasten et al., 2012), 
interfere with animal communication, particularly in the lower fre-
quency range, and several acoustic indices may consequently perform 
poorly in urban areas (Fairbrass et al., 2017). Similarly, soniferous in-
sects, particularly stridulating orthopterans and cicadas, can mask other 
animal sounds with their broadband choruses (Hart et al., 2015). Sonic 
conditions such as these could, therefore, decouple acoustic indices from 
the biology they supposedly represent. Consequently, there is a need to 
examine the change in performance (henceforth sensitivity) of different 
acoustic indices to a broad range of sonic contexts in order to identify a 
best performing index or suite of indices across these conditions with 
utility for biodiversity monitoring (Eldridge et al., 2018; Harris et al., 
2016). 

Here, we test the performance of 11 commonly used acoustic indices 
across a range of sonic conditions. Our aim is to identify whether 
particular indices outperform others as biodiversity indicators across 
contexts. We use an aural inventory approach to manually count unique 
biotic sound types (similar to vocalising species richness) from audio 
samples collected as part of the OKEON Churamori Project, comprising 
>13,800 min of recordings from across the island of Okinawa (‘Okina-
wajima’), Japan (Ross et al., 2018). We use these data to compare the 
performance—measured as the strength of relationships (positive or 
negative) with richness—of acoustic indices across three sets of sonic 
conditions, namely in the presence and absence of each of anthro-
pophony, soniferous insects, and geophony (wind, rain etc.). Based on 
our findings, we then provide guidance on which indices are likely to 
perform well for a given study, and we make recommendations for 
future acoustic surveys to make best use of acoustic indices as indicators 
of biodiversity. 

2. Methods 

2.1. Acoustic monitoring 

This study was part of the OKEON Churamori Project (Okinawa 
Environmental Observation Network; OKEON 美ら森プロジェクト) in 
Okinawajima, the largest island of the Ryukyu archipelago, Japan. 
OKEON (www.okeon.unit.oist.jp) uses a suite of complementary moni-
toring techniques to monitor Okinawa’s ecosystems in space and time. 
At each of the project’s 24 field sites, representing the full range of land 
cover types on the island, a Song Meter SM4 recorder (Wildlife Acoustics 
Inc., Concord, MA, USA) has been installed on a tree at approximately 
breast height (~1.3 m), since at least February 2017 (Ross et al., 2018). 
These devices are used to record sound at default gain settings (+16 dB) 
with two omnidirectional microphones. Recorders are programmed on a 
recording schedule of 10-min at the beginning of each hour and half- 
hour (i.e. 10-min on, 20-min off). Data are saved in stereo WAVE 
format at a sampling rate of 48-kHz to an SD card, which is collected on a 
two-week field rotation schedule when batteries and SD cards are 
replaced. Data are then archived with the Okinawa Institute of Science 
and Technology’s high-performance computing centre. 

Overall, Okinawajima presents a challenging sonic environment in 
which to monitor biological sound. Okinawa’s North-South urbanisation 
gradient results in considerably more anthropophony in the South than 
in the forested North of the island (Ross et al., 2018). Geophony is 
common from late summer through winter, particularly during rainy 
season and typhoon season, when Okinawajima often experiences heavy 
winds and rain in short bursts. Summer soundscapes are dominated by 
cicada choruses during daytime and stridulating orthopterans at night. 
Anuran choruses are common year-round, but peak during breeding 
season (usually winter-spring but breeding season varies by species). 
Okinawajima has a rich avifauna (McWhirter et al., 1996), including 
several species endemic to the Northern Yanbaru forest (Itô et al., 2000) 
and migratory species such as the Ruddy Kingfisher (Halcyon coro-
manda) and Grey-faced Buzzard (Butastur indicus). Nocturnal Ryukyu 
Flying Foxes (Pteropus dasymallus) are also common across the island, 
including in urban areas. Most field sites are within audible distance of a 
road (Ross et al., 2018), and some recordings include daily tests of the 
typhoon warning system. Commercial aeroplane traffic and military 
activity (including aircraft noise and occasional audible gunshots) make 
additional contributions to the anthropogenic component of Okinawa’s 
soundscape (Cox, 2010). 

2.2. Aural inventory 

We conducted an aural inventory by selecting 64 recordings of 10- 
min duration from each of 23 OKEON field sites (Ross et al., 2018); 
one site was excluded due to a mismatch in the temporal extent of 
available data. To ensure recordings were equally representative of both 
seasons and time-of-day at each site, they were selected from the middle 
month of each of Okinawa’s seasons (January, April, July, and October), 
from four dates within each season (the 5th, 10th, 15th and 20th of each 
month), and at each of four times of day (midnight, midday, and two 
samples that aimed to capture dawn and dusk choruses at sunrise and 
sunset, respectively). Dawn chorus times were adjusted seasonally using 
the closest recording before the observed sunrise time for each season, 
and after observed sunset for the dusk chorus. This resulted in a total of 
13,860-min of continuous audio data across all sites. 

We counted the number of unique biotic sound types (animal sounds 
including birds, insects, frogs, geckos etc.) in each 10-minute recording 
(following Depraetere et al., 2012; Machado et al., 2017). This aural 
inventory approach comprised listening to recordings while visually 
inspecting spectrograms produced via Fast Fourier Transformation 
(window size = 256) in Kaleidoscope Pro (ver 5.1.8; Wildlife Acoustics 
Inc., Concord, MA, USA). Biotic sound-type richness—henceforth 
‘measured richness’—was quantified as the number of distinct sound- 
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types corresponding to unique species based on their spectral properties 
and cross-referenced with appropriate databases to prevent over- 
splitting sound classes (e.g. www.xeno-canto.org). 

For each recording, we noted the presence or absence of three 
distinct sonic conditions (Table A1). If there was audible human-related 
sound in the recording, we marked the recording as anthropophony 
present. We also noted the presence or absence of audible geophony (e.g. 
wind, rain) in each recording. Finally, if the recording contained audibly 
stridulating soniferous insects, we marked the recording as insects pre-
sent. Note that this classification includes both broadband sounds pro-
duced by nocturnal orthopterans and the sonically disruptive cicada 
activity characteristic of Okinawa’s summertime, though these cate-
gories can be separated by time-of-day. The total biodiversity of a system 
includes stridulating insects, but these insects contribute ambient long- 
duration broadband sound to the soundscape rather than transient an-
imal signals such as birdsong (Hart et al., 2015), justifying inclusion of 
insect sounds both as biotic signal and as a potentially confounding sonic 
condition. 

2.3. Acoustic index processing 

For each 10-minute recording, we calculated a number of commonly 
used acoustic indices (Table A2) in R (ver 4.0.0; R Core Team, 2020) 
using the seewave (ver 2.1.6; Sueur et al., 2008a) and soundecology (ver 
1.3.3; Villanueva-Rivera and Pijanowski, 2018) packages. These indices 
were acoustic complexity (ACI, Pieretti et al., 2011); acoustic diversity 
(ADiv) and acoustic evenness (AEve, Villanueva-Rivera et al., 2011); the 
bioacoustic index (BioA, Boelman et al., 2007), and the related acoustic 
entropy (H) and temporal entropy indices (Ht, Sueur et al., 2008b); 
acoustic richness (ARic) and the median of the amplitude envelope (M, 
Depraetere et al., 2012); and the normalised difference soundscape 
index (NDSI), calculated by combining two component indices which we 
also analysed separately, anthropophony (NDSIAnthro) and biophony 
(NDSIBio, Kasten et al., 2012). Though various subsets of these indices 
have been related previously to species richness estimated with point 
counts in the field or via an aural inventory approach (Table A2) no 
study we are aware of has examined such a comprehensive set of indices 
across the broad range of sonic conditions considered here (Bradfer- 
Lawrence et al., 2020). 

2.4. Statistical analyses 

We first constructed a correlation matrix from all 11 acoustic indices 
to determine how suites of indices may provide congruent or distinct 
information about the soundscape. We then tested the performance of 
the various acoustic indices by relating each index (Table A2) to the 
measured richness for each sound recording across all sites and sonic 
conditions (n = 1386). To test the significance of relationships with 
richness, we fitted generalised linear mixed models (GLMMs) and used a 
model selection approach to choose from a full model that included the 
effect of site-specific measured richness on acoustic index values, while 
accounting for the influence of site and time-of-day as random effects. 
Models were produced using a beta distribution in the glmmTMB 
package (ver 1.0.1; Brooks et al., 2017). The beta distribution allows our 
models to cope with a range of data distributions including zero- 
inflation (Ferrari and Cribari-Neto, 2004). In all cases, we used the 
Akaike Information Criterion (AIC) to assess model fit, and model 
simplification was based on maximum likelihood estimation to allow 
comparison of models with different fixed-effects structures. We 
assessed the support for each model component in the best fitting model 
by comparing AIC and using likelihood ratio tests to indicate the sig-
nificance of model term removal. We measured performance as the 
model slope of the acoustic index ~ measured richness relationship, 
with the t-statistic of the model slope indicating whether the slope dif-
fers from zero. Larger absolute model slopes represent stronger re-
lationships with measured richness, but we opted to preserve 

information on the direction (positive or negative) of this relationship by 
including the sign of the relationship in index performance values. 

Acoustic index values vary considerably among indices and are often 
skewed, so we scaled values by dividing by their maximum for each 
index except NDSI (Bradfer-Lawrence et al., 2020); NDSI is bounded − 1 
to 1 and so was scaled instead using (NDSI + 1)/2 (Fairbrass et al., 
2017). We treated measured richness as a site-specific property by using 
the mean of all measured richness values per site in our GLMMs. Hence, 
richness was a zero-bounded continuous variable rather than a value per 
recording (Bradfer-Lawrence et al., 2020). 

Seasonal patterns of animal activity may obscure the relationship 
between acoustic indices and measured richness if ephemeral animal 
sounds do not make the greatest contribution to the soundscape (Hart 
et al., 2015). We therefore additionally fitted all GLMMs with the 
interaction between season and measured richness as a fixed effect. To 
account for site-specific differences in seasonal richness changes, 
measured richness was taken as the mean richness per site per season. 
Since the interaction effect of season was always included in the best 
performing model (Table A3), we assessed performance of acoustic 
indices for each season separately. 

To establish whether there were certain indices that consistently 
outperformed others across our chosen range of sonic conditions, we 
fitted GLMMs between acoustic indices and richness as above, again 
with site and time-of-day as random effects, but with an interaction 
effect for each of the three sets of focal sonic conditions (Table A1). We 
measured performance as the model slope for the relationship between 
each acoustic index (Table A2) and measured richness in the absence of 
our three potentially confounding sonic conditions (Table A1). To 
quantify the sensitivity of each index to the various sonic conditions, we 
took the inverse of the absolute change in model slope in the presence 
and absence of a sonic condition as a measure of whether the relation-
ship between indices and measured richness improves or declines in its 
presence. We used the inverse of absolute slope change because doing so 
produces intuitive sensitivity scores which increase as acoustic indices 
are more affected by a sonic condition. Using t-statistics, we noted 
whether model slopes differed from zero in the presence of each sonic 
condition, regardless of the index’s sensitivity to the condition. Finally, 
to determine whether the sensitivity of acoustic indices varied across 
seasons, we constructed the same GLMMs but with a three-way inter-
action between measured richness, each sonic condition in turn, and 
season (Appendix A1.2). 

3. Results 

We found two suites of positively correlated acoustic indices (Fig. 1). 
One comprised NDSI, NDSIBio, BioA, ADiv, and H which positively 
correlated and AEve and NDSIAnthro which also positively correlated but 
were negatively related to the aforementioned indices (Fig. 1). The 
remaining indices (that is, ARic, Ht, ACI, and M) were largely inde-
pendent of each other, though ARic and Ht correlated positively (Fig. 1). 

3.1. Acoustic index performance 

When considering the full range of sonic conditions included in our 
study, and ignoring seasonality, most acoustic indices performed poorly, 
and did not reflect measured richness (Fig. 2). In fact, only Ht was 
associated significantly with richness (t = -2.01, P = 0.044) irrespective 
of conditions, though the performance of ARic, which had the greatest 
absolute model slope, was bordering on statistical significance (t =
-1.95, P = 0.051). 

For all indices, the best performing model always included the 
interaction effect of season on measured richness (Table A3). For a given 
season the identity of the best performing index varied, with some 
indices performing better in particular seasons (Fig. 2B, S1). ARic and Ht 
still performed best overall, with significant relationships during spring 
and autumn for both indices, plus for winter in the case of Ht. During 
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winter, NDSIAnthro and NDSIBio were, respectively, positively (t = 2.2, P 
= 0.028) and negatively (t = -2.45, P = 0.014) related to measured 
richness, while ACI related positively to measured richness in spring (t 
= 2.51, P = 0.012). Only one index, H, was significantly related to 
measured richness during summer (t = 1.97, P = 0.049; Fig. 2B). 

3.2. Acoustic index sensitivity 

There were only a few cases for which the underlying index ~ 
richness relationship was significant in the presence of our potentially 
confounding sonic conditions. The performance of Ht increased and the 
index remained significantly related to richness in both the presence of 

geophony (slope = -0.3, t = − 2.12, P = 0.034) and anthropophony 
(slope = -0.29, t = − 2.09, P = 0.037). The performance of ARic also 
increased in the presence of anthropophony (ARic ~ richness slope =
− 0.49, t = − 2.01, P = 0.044). However, none of our focal acoustic 
indices were ever related significantly to measured richness in the 
presence of insect noise (P > 0.05). None of the remaining indices had 
index ~ richness relationships that differed significantly from zero in the 
presence of anthropophony, geophony or insect noise, even if their 
performance increased in the presence of one of these sonic conditions 
(Fig. 3). 

We found consistent results across indices in their sensitivities to 
different sonic conditions. Three indices (ADiv, AEve, BioA) showed a 

Fig. 1. Pairwise relationships between acoustic indices. Size and colour of circles represents the correlation coefficient (Spearman’s rho) between pairs of acoustic 
indices. Significance level of pairwise correlations is represented with * (P < 0.05), ** (P < 0.01) and *** (P < 0.005). We found one main suite of positively 
correlating indices, comprising NDSI, NDSIBio, BioA, ADiv, H, AEve, and NDSIAnthro. 
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significant decrease in absolute model slope when anthropophony was 
present, and three (BioA, ARic, M) performed significantly worse in the 
presence of geophony. Conversely, six indices (ACI, Ht, NDSIAnthro, 
AEve, ARic, M) had significantly lower absolute model slopes in the 
presence of insect noise, while H performed significantly better in the 
presence than in the absence of insect noise (t = 3.65, P < 0.001, Fig. 3). 
However, H still did not correlate with measured richness when insect 
noise was present (slope = 0.18, t = 1.2, P = 0.23). 

None of the acoustic indices in this study were affected significantly 
by all three sonic conditions. The performance of both NDSI and NDSIBio 
was not sensitive to the presence of any of our focal sonic conditions (P 
> 0.05; Fig. 3). Moreover, we found that season influenced the sensi-
tivity rankings of indices and the identity of the sonic conditions to 
which many indices were most sensitive (Fig. A2-A4). However, some 
indices (e.g. ACI) were notably less affected by season than others. 

4. Discussion 

Our study addresses the utility of different acoustic indices in 
reflecting a meaningful facet of biodiversity (that is, ‘measured rich-
ness’) across sonic conditions. We found that acoustic richness (ARic) 
and the temporal entropy index (Ht) outperformed other indices in terms 
of their relationship with measured richness. We also identified indices 
that were relatively insensitive to confounding sonic conditions (H, 
NDSI, NDSIBio). Practical users of these indices should take into 
consideration their performance across a relevant range of sonic con-
ditions. When designing acoustic studies, researchers should tailor the 
selection of appropriate biodiversity facet(s) and sonic conditions to 
include in models to study design (Gasc et al., 2013, 2018; Harris et al., 
2016; Hart et al., 2015). These may differ from our chosen conditions, 
particularly when considering aquatic soundscapes for example 

(Gottesman et al., 2020; van der Lee et al., 2020). Consideration of both 
performance and sensitivity across sonic conditions when selecting 
acoustic indices will be particularly important as ecoacoustics shifts 
increasingly towards answering questions of broad ecological interest 
(Gasc et al., 2018; Lomolino et al., 2015; Sueur et al., 2019). 

We found that Ht was related negatively to richness, consistent with 
other tests of this index (Buxton et al., 2018; Eldridge et al., 2018). 
Acoustic richness was also related negatively to measured richness here 
and elsewhere (Mammides et al., 2017; but see Depraetere et al., 2012). 
Other studies testing the performance of acoustic indices have not 
typically considered such a broad range of sonic conditions and land 
cover types as our study, likely contributing to the inconsistencies 
among studies testing the performance of particular acoustic indices 
(Bradfer-Lawrence et al., 2020; Eldridge et al., 2018; Fairbrass et al., 
2017; Fuller et al., 2015; Machado et al., 2017; Mammides et al., 2017; 
Zhao et al., 2019). Our finding of a few well-performing indices is then 
particularly noteworthy given that our models included a range of 
confounding sonic conditions most often excluded in studies testing the 
performance of acoustic indices (Buxton et al., 2018; Harris et al., 2016). 

Acoustic indices were related significantly to measured richness in 
only three cases. Despite its high sensitivity to insect stridulations and to 
geophony both here and elsewhere (Depraetere et al., 2012), ARic 
performed well in the presence of anthropogenic sound. This may be a 
product of ARic’s calculation method; acoustic richness is a function of 
both M and temporal entropy (Depraetere et al., 2012), and anthro-
pophony is typically associated with temporally invariable low- 
frequency patterns in the soundscape (Pieretti et al., 2011). Ht was 
significantly related to measured richness under two sonic conditions. Ht 
correlated with richness in the presence of geophony, but to our 
knowledge, the performance of Ht has not been tested previously under 
these conditions; the index was developed and tested by Sueur et al., 

Fig. 2. Acoustic Index performance. Performance (that is, the model slope of the acoustic index–mean site-level measured richness relationship) across all data (A) 
and separated by season (B). Values further from 0 indicate stronger relationships. Asterisks represent significant model slopes (two-sided test, P = 0.05). Indices are 
ordered top–bottom by absolute model slope values. 
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(2008b) after applying a high-pass filter to remove the sonic effects of 
wind. Ht also performed well in the presence of anthropophony, and 
Depraetere et al., (2012) note that Ht was not affected by anthropogenic 
background noise in their study. Both NDSI and NDSIBio were insensitive 
to the three sonic focal conditions, likely because NDSI compares a ratio 

of acoustic energy in high frequency to low frequency bands, making it 
relatively insensitive to broadband sounds of evenly distributed ampli-
tude across frequencies, while NDSIBio excludes frequency bands asso-
ciated with anthropophony (Kasten et al., 2012). 

When conducting an aural inventory, long-duration broadband 

Fig. 3. Sensitivity of acoustic indices to extraneous sonic conditions. Sensitivity is the inverse of the absolute difference in model slope (that is, change in per-
formance) of the acoustic index–mean site-level measured richness relationship between models where our three focal sonic conditions are absent (baseline) versus 
present. Sensitivity values below one indicate an increase in the strength of the model slope (performance improves), while values above one indicate a decrease in 
model slope (performance declines) under a given sonic condition—that is, in the presence of audible anthropophony (purple), geophony (turquoise) and broadband 
insects (lime green). Asterisks represent significant differences between model slopes (two-sided test, P = 0.05) based on t-statistics. Indices are ordered top–bottom 
by sensitivity values. 
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insect sounds contribute both signal and noise to the soundscape (Hart 
et al., 2015). Insect noise consistently reduced the performance of all 
acoustic indices, with only BioA being insensitive to, though not related 
significantly to, richness in the presence of broadband insect stridula-
tions. Eldridge et al., (2018) suggested that BioA is robust to insect noise 
because it is calculated across a limited range of frequency bands, 
largely excluding confounding effects of high frequency insects noise 
and low frequency anthropophony and geophony. We also found sea-
sonal effects on both the performance and sensitivity of many acoustic 
indices, with H being least sensitive to seasonality (see also Mammides 
et al., 2017), though the generality of seasonal differences in acoustic 
index performance is doubtful; seasonal effects likely depend on features 
of the acoustic environment determined by landscape configuration and 
vocalising species composition (Burivalova et al., 2019; Deichmann 
et al., 2018; Fuller et al., 2015; Sethi et al., 2020). 

Several acoustic indices have been proposed as being particularly 
capable of accounting for potentially confounding sonic conditions 
(Eldridge et al., 2018; Fairbrass et al., 2017; Kasten et al., 2012; Pieretti 
et al., 2011). For example, we found that ACI was insensitive to most 
background sounds with the exception of insect noise (see also Eldridge 
et al., 2018; Pieretti et al., 2011). However, its poor performance makes 
ACI a poor indicator of species richness (Mammides et al., 2017). Of the 
indices designed to be insensitive to anthropophony—ACI, ADiv, BioA, 
NDSI (see Fairbrass et al., 2017)—biophony (NDSIBio) was most robust 
to anthropogenic noise. 

Though many indices did not reflect measured richness in our study, 
their robustness to sonic conditions (e.g. BioA’s robustness to insect 
noise, or biophony’s low sensitivity to anthropophony) makes them 
candidate ecological indicators should it be demonstrated that such 
indices reflect well a meaningful facet of biodiversity or habitat quality 
(Elise et al., 2019; Gasc et al., 2013). Until such time, the burden of proof 
remains on individual ecoacoustic studies to choose acoustic indices that 
can be interpreted meaningfully. Taken together, Ht, ARic, and perhaps 
also NDSI, or NDSIAnthro may be the most suitable indicators of richness 
under the full range of sonic conditions included in this study (Table 1). 
In the case of Ht, this index fulfilled both desirable conditions: 1) it 
correlates with richness, and 2) performs comparatively well across the 
range of sonic conditions tested, though it remains sensitive to insect 
noise. In exceptional circumstances, such as with heavy cicada activity, 
it may be preferable to use a less correlated but robust index in the face 
of a particular disturbance (Table 1), but we recommend cautioned 
interpretation of results in such cases. 

As the suite of acoustic indices available for ecologists to rapidly 
summarise audio recordings continues to grow, there will no doubt be 
continued debate surrounding the existence of a single best index (Sueur 
et al., 2014). Yet this accumulation of indices may also lead to redun-
dancy. We found that several of the acoustic indices most common in the 
literature, including our two best performing indices (ARic and Ht), were 
highly correlated. However, redundancy is unlikely since acoustic 
indices often relate to different aspects of the overall soundscape 
(Bradfer-Lawrence et al., 2019). Equally, indices may reflect different 
features of ecological communities and their dynamics. We have focused 
on the richness of biological sounds, but acoustic indices may reflect 
additional dimensions of biodiversity including abundance, evenness, 
and functional or phylogenetic diversity (Elise et al., 2019; Gasc et al., 
2013; Harris et al., 2016; Mammides et al., 2017; Pieretti et al., 2011). 

The proliferation of ecoacoustic research brings with it an abundance 
of methodological refinement (Bradfer-Lawrence et al., 2019) and scores 
of new acoustic indices (Sueur et al., 2014). To remedy the disparity 
among previous studies, Bradfer-Lawrence et al., (2020) suggested 
considering species richness an emergent site-level characteristic in 
studies of acoustic index performance. In doing so, they revealed 
consistent soundscape patterns across indices, whereby sites with higher 
species richness had more uneven soundscapes (Bradfer-Lawrence et al., 
2020). We find support for this pattern with two indices not included in 
their study: Ht and ARic. Ht was related negatively to measured richness, 

meaning that as site-level species richness increases, the temporal 
evenness of the soundscape decreases (Sueur et al., 2008b). Further, 
since acoustic richness values are a ranked function of both temporal 
entropy and the median of the amplitude envelope (M) (Depraetere 
et al., 2012), the decrease in acoustic richness we observed with 
increased site-level richness likely reflects an increase in soundscape 
amplitude rather than in evenness. Overall, we can thus infer that sites 
with higher richness of vocalising species exhibit more structurally 
complex (less even) but more acoustically active (louder) soundscapes 
(Bradfer-Lawrence et al., 2020; Dumyahn and Pijanowski, 2011). 
Remaining discrepancies between the results of many previous studies 
considering acoustic index performance may result from their sensitivity 
to particular sonic conditions (Eldridge et al., 2018; Harris et al., 2016). 
Indeed, our finding that most acoustic indices did not relate significantly 
to species richness—even when accounting for data distribution and 
zero-inflation—is likely a consequence of both seasonality and the wider 
range of sonic conditions considered in this study than in previous tests 
of acoustic index performance (Bradfer-Lawrence et al., 2020; Buxton 
et al., 2018; Harris et al., 2016). 

Though we often lack the basic knowledge of species occurrences 
needed to interpret ecoacoustic results in a meaningful way (Machado 
et al., 2017), our methodological framework considering both perfor-
mance and sensitivity to a range of relevant sonic conditions should 
facilitate appropriate and targeted use of acoustic indices. We thus 
recommend ground truthing acoustic indices for a given context to 
better interpret results, as we have described. We conclude that, with 
suitable guiding principles such as those outlined here (Table 1), and 
when ensuring that acoustic indices reflect an ecologically meaningful 
facet of biodiversity, such indices have the potential to provide a 

Table 1 
Recommendations for acoustic index use under different sonic conditions. 
Recommended acoustic indices based on the results of this study and others 
when handling audio data including different conditions: presence of geophony, 
anthropophony, broadband insect stridulations, or study designs including 
different seasons. All/unknown is when not specifically considering any of the 
above conditions, but all may be present in the study design, hence the recom-
mendations in this category are conservative recommendations for where sonic 
conditions are highly variable.  

Study 
Conditions 

Recommended 
Indices 

Details 

All/unknown Ht, ARic, 
NDSIAnthro, NDSI 

Across all sonic conditions, Ht and ARic 
performed best, followed by NDSIAnthro. 
NDSI performed less well but was 
insensitive to all three sonic conditions.  
Bradfer-Lawrence et al., (2020) found that 
species rich sites exhibit temporally 
variable soundscapes, and we observed 
this pattern in our study. 

Anthropophony Ht, ARic, NDSIBio ARic and Ht were related significantly to 
richness in the presence of anthropophony 
in our study and in that of Depraetere 
et al., (2012). NDSIBio was insensitive to 
anthropophony here and elsewhere ( 
Fairbrass et al., 2017; Kasten et al., 2012). 

Geophony Ht, ACI Ht was related significantly to richness in 
the presence of geophony in our study. 
ACI was insensitive to geophony here and 
in Sánchez-Giraldo et al. (2020), but did 
not correlate with richness. 

Broadband 
Insects 

BioA BioA was least sensitive to insect 
stridulations in our study. Eldridge et al., 
(2018) found BioA largely ignores high- 
frequency insect noise. 

Multiple Seasons Ht, ARic, NDSI, H Ht and ARic did not differ largely between 
seasons in their performance. NDSI was 
not significantly affected by any sonic 
conditions when considering seasons. We 
found H was fairly robust to seasonality, as 
did Mammides et al., (2017). NB: seasonal 
effects likely differ among studies.  
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significant contribution to ecological monitoring in complex acoustic 
environments. 
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