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Abstract

Edge fracture is a viscoelastic instability characterized by the sudden indentation of a fluid’s free surface when the fluid is subjected to a high
enough shear rate. During shear rheometry, the fracture can invade the fluid sample, decreasing its contact area with the rheometer fixture and
rendering the measurement of viscosity and normal stresses at high-shear rates invalid. Edge fracture can also induce apparent shear banding
in the fluid, complicating the interpretation of experimental results. Over the past several decades, empirical and theoretical research has
unraveled the physics underlying edge fracture. The knowledge obtained has allowed rheologists to develop techniques to minimize the
adverse effect of fracture in their experiments. In recent years, edge fracture has also been used to break up viscoelastic liquid bridges quickly
and cleanly, showing its potential to be adapted to the design of functional dispensing nozzles. This Perspective article aims to give a histori-
cal overview of edge fracture and suggests research directions to develop methods for suppressing or harnessing the phenomenon to benefit
applications of both fundamental and technological importance. © 2023 Author(s). All article content, except where otherwise noted,
is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1122/8.0000625

I. INTRODUCTION

The cone-and-plate and parallel-plate fixtures are com-
monly used for the shear rheometry of highly viscous fluids.
However, liquids such as molten polymers and particulate
suspensions are rheologically complex. For instance, they
can develop normal stresses in the flow when subjected to
shear. When the second normal stress difference is suffi-
ciently large, edge fracture can occur, causing a sudden
indentation of the fluid’s free surface (Fig. 1). The fracture
can invade the fluid sample and decrease the contact area
between the sample and the rheometer fixture, rendering rhe-
ological measurement results invalid at high-shear rates
[1–9]. It can also induce apparent shear bands in the fluid
bulk, making the interpretation of experimental results chal-
lenging [10].

Due to the adverse effect of edge fracture on rheometry,
numerous experimental and theoretical studies have been per-
formed over the past several decades to understand the phe-
nomenon. The knowledge obtained has enabled rheologists
to formulate strategies to suppress edge fracture. In recent
years, constructive efforts have also been made to use edge
fracture to destabilize viscoelastic liquid bridges quickly and
cleanly [11–13]. This Perspective article aims to give an
overview of edge fracture research and point out research
directions that may help further suppress edge fracture or use
edge fracture to benefit scientific and technological applica-
tions. The focus will be on viscoelastic fluids; however,
examples with plasticity effects involved will also be

discussed. Whenever possible, theoretical and numerical pre-
dictions will be compared to empirical evidence.

II. RELEVANT DIMENSIONLESS NUMBERS

The response of a complex fluid to the shearing motion
imposed by a rheometer depends on how inertia, elasticity,
plasticity, and capillarity interact. Gravity is negligible as rhe-
ological experiments are typically performed at a small
length scale of O(1 mm). It is helpful to define the relevant
dimensionless numbers to facilitate our historical overview of
edge fracture research.

Considering a fluid of density ρ, zero-shear viscosity η0,
relaxation time τ, yield stress σy, and interfacial tension Γ
subject to a characteristic shear rate of _γ ¼ U=L, where U
and L are the characteristic flow velocity and length scale,
the fluid response is governed by five dimensionless
numbers. With σc ¼ η0 _γ the characteristic shear stress, the
Reynolds number Re ¼ ρU2=σc is the ratio of inertial and
viscous stresses. Assuming that the Newtonian contribution
to η0 is negligible compared to the non-Newtonian contribu-
tion, the Weissenberg number Wi ¼ τη0 _γ

2=σc ¼ τ _γ is the
ratio of elastic and viscous stresses. The Bingham number
Bn ¼ σy=σc is the ratio of yield stress and viscous stress, and
the capillary number Ca ¼ σcH=Γ ¼ η0U=Γ is the ratio of
viscous stress and the Laplace pressure. There is also the
normal stress ratio Ψ ¼ �N2=N1, where N1 ¼ σθθ � σzz and
N2 ¼ σzz � σrr are the first and second normal stress differ-
ences, and σrr, σθθ, and σzz are the shear-induced radial, azi-
muthal, and axial normal stresses, respectively.

The Weissenberg number Wi deserves attention, as the
elastic stress it characterizes is the first normal stress differ-
ence N1 [14]. Such a definition of Wi stems from the upper-
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convected Maxwell model proposed by Oldroyd [15]. In the
context of edge fracture, a more relevant dimensionless
number is the Tanner number

Tn ; 2ΨWiCa ¼ jN2jL
Γ

(1),

which is the ratio of the second normal stress difference and
the Laplace pressure. The naming of Tn was suggested by
Professor Gareth H. McKinley in 2021 during the Princeton
Center for Theoretical Science Workshop on Viscoelastic
Flow Instabilities and Elastic Turbulence, in recognition of
Professor Roger I. Tanner’s contribution to the understanding
of edge fracture. The current authors then used the dimen-
sionless number in several edge fracture studies [11–13,16].
The relevance of Tn to edge fracture will become obvious in
Sec. III.

III. ONSET OF EDGE FRACTURE

A. Edge fracture as a viscoelastic phenomenon

Early principal studies regarding the onset of edge fracture
were done by Hutton [1–3], who photographed the phenome-
non and conducted critical experiments revealing the visco-
elastic nature of the instability. Using a rheometer equipped
with a cone-and-plate fixture, Hutton [1] performed shear
start-up experiments on a silicone oil with zero-shear viscos-
ity η0 ¼ 28:8 Pa s and interfacial tension Γ ¼ 21:5 mNm�1.
Step shear rates of different magnitudes _γ were applied, and
the corresponding shear stress responses σ were recorded as
functions of time t (Fig. 2). For intermediate values of _γ, σ(t)
plateaued soon after the step shear rate was applied.
However, when _γ was sufficiently high, σ(t) dropped over
time. The higher the applied shear rate _γ, the sooner the drop
began, and the greater the magnitude of the drop. Such a fall
in σ(t) was attributed to the conical fracture nucleated on the
silicone oil’s free surface, which tended to grow radially
inward to the sample’s bulk, decreasing the effective shear-
ing area of the sample and hence lowering the torque mea-
sured by the rheometer. As long as the fluid sample was not
expelled from the rheometer fixture, the fall in σ(t) was
observed to be recoverable. When a subsequent _γ of interme-
diate magnitude was applied, σ(t) would reach the

corresponding plateau value (see dashed lines in Fig. 2). This
ruled out the possibility that the drop in σ(t) and the fracture
at high-shear rates were caused by the shear degradation of
the silicone oil.

Hutton then tracked the temperature rise of the silicone oil
during the step shear experiments, which was negligible,
indicating that neither the fall in σ(t) nor the nucleation of
fracture was caused by the heating of the fluid sample. They
also performed the same step shear experiments by replacing
the silicone oil with Newtonian mineral oils of lower viscos-
ity. Signatures of turbulence were not observed in the range
of the shear rates tested. From this, Hutton concluded that the
fracture of the silicone oil was not caused by turbulence
either. One critical observation that Hutton made was that the
silicone oil tended to climb up the rotating part of the
cone-and-plate fixture when the fracture occurred, resembling
the rod-climbing phenomenon reported by Weissenberg [17].
This implied that the silicone oil was viscoelastic, leading to
the author’s supposition that the fracture was an elastic
effect.

Postulating that fracture would occur when the elastic
energy is sufficient to supply energy for creating new sur-
faces, Hutton derived the following criterion for the fracture
phenomenon to occur:

N1 . k
Γ

H
, (2)

with N1 the first normal stress difference and k a numerical
constant related to the fraction of elastic energy converted
into surface energy. For the parallel-plate fixture, H refers to
the gap size. For the cone-and-plate fixture, H ¼ Rpf, where
Rp and f are the plate radius and cone angle, respectively.
Experiments using silicone oils of different zero-shear vis-
cosity and cone-and-plate fixtures of different Rpf were per-
formed, which verified the relation regarding the critical first
normal stress difference N1c / 1=Rpf predicted in Eq. (2).

FIG. 1. Edge fracture instability of silicone oil in a cone-and-plate rheome-
ter of cone angle 4� and plate radius 3.25 cm at a shear rate of 7.2 s�1. (a)
Before fracture. (b) During fracture. Reproduced with permission from
Hutton, Rheol. Acta 8(1), 54–59 (1969). Copyright 1969, Springer Nature.

FIG. 2. Shear stress response σ as a function of time t at different applied
step shear rates _γ of a silicone oil. The decrease in σ(t) for _γ ¼ 1060 and
1200 s�1 was caused by edge fracture. Reproduced with permission from
Hutton, Nature 200(4907), 646–648 (1963). Copyright 1963, Springer
Nature.
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The same fracture phenomenon was observed in a
parallel-plate fixture in a subsequent study [3]. Since theory
predicted that secondary flows due to elastic forces could not
occur in a parallel-plate fixture of infinite radius, the possibil-
ity of them causing fracture was low, suggesting that the frac-
ture was an interfacial instability rather than a bulk
instability, hence the name edge fracture. Incidentally,
Hutton [2] also attempted to employ their criterion of edge
fracture to explain melt fracture, the surface distortions typi-
cally observed in molten polymers extruding through a capil-
lary at high-shear rates [18], by assuming that the
phenomenon was caused by the cohesive failure within the
polymer bulk. Several scholars [19,20] later adapted
Hutton’s idea in developing their models for melt fracture.

B. The Tanner–Keentok criterion

The criterion proposed by Hutton [1–3] offered an essen-
tial insight that edge fracture is an elastic phenomenon.
However, it was deduced based on energy arguments. The
first normal stress difference N1 was believed to be responsi-
ble for nucleating the fracture simply because its magnitude
for most viscoelastic fluids was more significant than the
second normal stress difference N2. This assumption was
later questioned by Tanner and Keentok [4], who derived
their criterion of edge fracture based on fracture mechanics
principles.

Tanner and Keentok [4] considered the steady shear flow
of a second-order fluid in a parallel plate fixture with a plate
radius Rp much larger than the gap size H, approximating the
planar Couette geometry. A preexisting semicircular crack of
diameter 2a � H was assumed on the free surface of the
fluid sample. Imposing the no-penetration and zero-shear
stress boundary conditions on the free surface and balancing
the maximum radial normal stress to the Laplace pressure on
the crack, Tanner and Keentok derived their criterion for
edge fracture

jN2j . 2Γ
3a

: (3)

When the criterion is satisfied, the second normal stress dif-
ference N2 will deepen the crack; otherwise, the Laplace
pressure Γ=a will close the crack. The criterion can alterna-
tively be expressed in terms of the Tanner number [Eq. (1)]
as

Tn ¼ jN2j
Γ

2a .
4
3
: (4)

The first normal stress difference N1 is not involved as it was
canceled out during the derivation of Eq. (3). However, one
must note that N1 could affect the propagation dynamics of
the fracture, which Tanner and Keentok did not consider in
their model.

Using a rheometer equipped with a cone-and-plate or a
parallel-plate fixture, Tanner and Keentok then characterized
different fluids’ normal stress and edge fracture behaviors.
The measured critical second normal stress differences N2c

seemed to agree with Eq. (3). However, when calculating the
right-hand side of the criterion, the authors assumed
the same crack size of a for all fluid samples tested. This was
a critical assumption, as the value of a was obtained
from a single measurement of silicone oil with a zero-shear
viscosity η0 ¼ 10:6 Pa s, zero-shear second normal stress
coefficient Ψ2,0 ; N2= _γ

2 ¼ 5 mPa s�2, and interfacial tension
Γ ¼ 20:3 mNm�1 at a specific shear rate.

The Hutton and the Tanner–Keentok criteria could be
obtained using dimensional analysis arguments [4]. They
only differ in their assumptions regarding the governing
normal stress difference. Hutton assumed that the first
normal stress difference N1 was responsible for edge fracture,
while Tanner and Keentok argued that it was the second
normal stress difference N2. Lee et al. [5] performed a critical
study disproving the Hutton criterion. They considered six
polymer solutions with normal stress ratio 0 � Ψ � 0:3,
where Ψ ¼ �N2=N1 and roughly, the same interfacial
tension Γ ¼ 30 mNm�1. A cone-and-plate fixture flush-
mounted with four miniature pressure transducers was used
to measure the critical normal stress differences N1c and N2c

at which edge fracture occurred (Fig. 3). N1c varied almost an
order of magnitude among the five fluid samples with Ψ . 0
that underwent fracture. For the sample with Ψ ¼ 0, edge
fracture was not observed within the shear rate range tested.
These two pieces of evidence offered counterexamples to the
Hutton criterion. In contrast, the magnitudes of N2c were
almost the same, supporting the Tanner–Keentok criterion.

Subsequently, Huilgol et al. [6] reexamined the planar
Couette flow of a second-order fluid considered by Tanner
and Keentok [4]. Assuming that the velocity field is azi-
muthal, they showed that the zero-shear stress boundary

FIG. 3. Critical first and second normal stress differences N1c (filled
symbols) and N2c (empty symbols) of edge fracture as a function of the
normal stress ratio Ψ ¼ �N2=N1. N1c and N2c were normalized by the values
observed for the fluid sample having the largest Ψ. Reproduced with permis-
sion from Lee et al., Rheol. Acta 31(3), 306–308 (1992). Copyright 1992,
Springer Nature.
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condition on the fluid’s free surface would require that

Ψ2(∇w � n)(n� ∇w) ¼ 0, (5)

where w is the azimuthal velocity component and n is the
unit normal vector to the fluid’s free surface. The flow that
Tanner and Keentok considered satisfied the above condition
as the no-penetration boundary condition ∇w � n ¼ 0 was
assumed in the derivation of their edge fracture criterion.
Huilgol et al. also showed that the radial normal stress acting
on the semicircular crack assumed by Tanner and Keentok
was indeed tensile. The authors further noted that Eq. (5)
could also be satisfied by demanding that the surface normal
be parallel to the velocity gradient, i.e., n� ∇w ¼ 0. Such a
condition was claimed to be possible after the fracture had
penetrated the fluid sample, with its free surface taking on a
profile nearly parallel to the fixture plates. In such a case, the
normal stress would tend to compress the fracture surface,
closing the crack and stopping its propagation.

The theoretical prediction of Huilgol et al. regarding the
normal stress distributions around the fracture surface was
later tested by Keentok and Xue [7]. The authors simulated
the planar Couette flow using the Phan-Thien–Tanner model
[21]. A rectangular crack of fixed width and depth was
assumed on the liquid-air interface, located symmetrically
halfway between the plates. The no-slip boundary condition
was imposed on the parallel plates, while the no-penetration
and zero-shear stress boundary conditions were imposed on
the liquid-air interface. The finite volume method was
employed to obtain the numerical solutions for the velocity
and stress fields. Although the meniscus of the fluid was not
modeled as a free surface, the simulated normal stress distri-
butions around the fracture agreed with the analysis of
Huilgol et al. [6]

Keentok and Xue also experimentally investigated the
edge fracture behavior of a wide range of fluids, including
three silicone oils, two Boger fluids, a lubricating grease, and
a toothpaste. The authors made several important observa-
tions. First, the Boger fluids with second normal stress coef-
ficients Ψ2 � 0 did not undergo edge fracture, agreeing with
the Tanner–Keentok criterion [4]. Second, the diameter a of
the semicircular crack increased when the gap size H of the
rheometer fixture was increased; however, a=H was not a
constant but inversely proportional to H. Third, the ratio
3aN2c=2Γ appeared to increase with the Reynolds number
Re ¼ ρR2

pΩ=η0, where Ω is the rotational speed of the rheom-
eter cone or plate, suggesting that inertia tends to oppose edge
fracture. As a side note, the authors indicated that measuring
N1 and N2 of the lubricating grease was difficult. Potentially,
the problem was caused by the finite yield stress in the fluid,
which could shift the normal stress signal baseline and thus
interfere with the measurement [22].

C. Edge fracture and shear banding

Intense shearing can often induce localized velocity bands
of different shear rates, aka shear bands, in a rheologically
complex fluid [23–30]. Its underlying physics has been con-
stantly debated, especially for entangled polymers where

artifacts such as wall slip and edge fracture can affect the
interpretation of experimental results [10,31–44]. It has also
been shown that flow-induced nonuniformity of the polymer
concentration is related to shear banding [45–51]. The litera-
ture regarding shear banding is vast; interested readers are
referred to the excellent reviews written by Wang [29] and
Germann [30]. The current article will focus only on studies
where shear banding was deemed essential to developing
edge fracture and vice versa.

Using an entangled 10 wt. % polybutadiene in oligomeric
butadiene solution with roughly 47 entanglements per chain,
Tapadia and Wang [31,32] observed a discontinuity in the
flow curve when performing rheological experiments in the
cone-and-plate, parallel plate, and concentric cylinder fix-
tures. The small amplitude oscillatory shear (SAOS) test
result showed a typical shear thinning behavior. However, as
the shear stress varied across a critical value in the controlled
stress flow sweep experiment, the apparent steady-state shear
rate jumped discontinuously, spanning two to three decades
of shear rates. As the shear rate varied in a controlled-rate
flow sweep, the shear stress seemed to plateau over two to
three decades of shear rates, corresponding to the discontinu-
ous jump. The authors interpreted their observations as the
consequence of an entanglement-disentanglement transition
of the polymer molecules, similar to the solid-liquid transi-
tion of a yield stress fluid.

In a subsequent study, Inn et al. [33] repeated Tapadia
and Wang’s experiments and obtained a similar flow curve
using the same polymer solution and an additional 7.5 wt. %
solution. However, they noticed that edge fracture occurred
when the shear stress was increased in the controlled stress
flow sweep experiment. Hence, the entanglement-
disentanglement transition that Tapadia and Wang proposed
might be an experimental artifact caused by the fracture. The
disagreement between the two interpretations ignited several
works concerning whether the flow curve of the entangled
polymer solution is monotonic. In some of those works, edge
fracture in the concentric cylinder fixture was reported (e.g.,
Fig. 4), and new ideas to mitigate edge fracture were pro-
posed [34–52]. Those mitigation methods will be the focus
of Sec. IV. As a side note, Inn et al. also observed that if the
flow sweep experiment was conducted in reverse, where suf-
ficiently high applied shear stress was first applied and grad-
ually decreased, edge fracture appeared less severe. The
effect of fracture became more pronounced when the applied
shear stress was reduced. Such a stabilizing effect remains
unexplained; it may be due to the fluid sample’s wall slip
typically observed for entangled polymers subjected to
high-shear stress [26,29], which tends to suppress edge
fracture [53].

The possibility that edge fracture can lead to apparent
shear banding has major implications for rheologists. As a
result, research has also been carried out to uncover the
effect of edge disturbance on rheological measurements. For
instance, Schweizer and Stöckli performed simultaneous
shear start-up tests and particle tracking velocimetry on a
monodisperse and a polydisperse polystyrene melt. A total of
21 pretreatment protocols were considered, which involved
cone-and-plate fixtures of two different cone angles f,
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different loading gap sizes for the polymer melt sample, dif-
ferent temperatures and duration for conditioning the
sample’s edge, and different temperatures and duration for
equilibrating the sample. Those protocols allowed samples
with different initial edge profiles to be prepared. The
authors categorized the edge profiles into ideal, convex, and
concave. For an ideal edge, the polymer melt completely
wets the rheometer plate. The sample wetting radius rw and
the surface radius of curvature rc equal the plate radius Rp;
the sample surface is part of a sphere centered on the
cone-and-plate fixture’s rotation axis. In such a case, the
authors observed that the azimuthal flow velocity vx mea-
sured on the sample’s surface varies linearly to the y axis,
i.e., dvx=dy is a constant, agreeing with the theoretically pre-
dicted velocity profile for the cone-and-plate fixture
[Fig. 5(a)]. For a convex edge, rc is positive and smaller than
Rp. The measured velocity profile on most parts of the
sample’s surface was linear, with the shear rate being lower
than the theoretical prediction, except close to the cone and
the plate, where two high-shear rate layers were observed
[Fig. 5(b)]. For a concave edge, rc is negative. The measured
velocity profile was nonlinear, with a high-shear rate layer in
the sample’s vertical midplane [Fig. 5(c)]. The authors spec-
ulated that the nonideal convex and concave edges could
lead to an inhomogeneous distribution of the second normal
stress difference N2, which could amplify the curvature of
the sample’s surface, leading to edge fracture, in turn making
the velocity profile even more nonlinear and forming the
experimentally observed high-shear rate layers.

D. The Skorski–Olmsted criterion

Aiming to clarify the relation between shear banding and
edge fracture, Skorski and Olmsted [39] analyzed how shear
banding could induce fracture in a planar Couette geometry.

They considered the force balance, continuity, and smooth-
ness of the fluid’s free surface. With h _γi being the applied
average shear rate, _γ1, _γ2 being the lower and upper shear
rate values delimiting the shear stress plateau in the flow
curve, ψ being the contact angle on each plate of the geome-
try, ΔN2 , 0 being the difference in the second normal stress
differences across the two shear bands, Γ being the interfacial
tension, and H being the geometry gap size, the dimension-
less radii of curvature R̂1 and R̂2 of the two free fluid surfaces
enclosing the shear bands are

R̂1 ¼ 1
�2 cosψ � ŵ2A

, (6)

R̂2 ¼ 1
�2 cosψ þ ŵ1A

(7),

where ŵ1 ¼ ( _γ2 � h _γi)=( _γ2 � _γ1) and ŵ2 ¼ (h _γi � _γ1)=
( _γ2 � _γ1) are the normalized shear bandwidths and
A ¼ �HjΔN2j=Γ is the so-called distortion parameter. By
requiring the two free fluid surfaces not to have an infinite
slope or pass through each other, Skorski and Olmsted
derived the surface integrity conditions

j(ŵ2 � ŵ1) cosψ � ŵ2Aj , 1, (8)

�1� cosψ ,
ŵi

R̂i
, 1� cosψ : (9)

The contact angle ψ is defined by the interfacial properties of
the fluid and fixture plates. For a given flow curve showing

FIG. 4. Development of edge fracture in polybutadiene in oligomeric buta-
diene solution subjected to a constant torque of 200 mN for 15 s followed by
a shear rate of 5 s�1 for 85 s in a concentric cylinder fixture. Edge fracture
can be seen at 15 s, causing the apparent sample height to decrease as time
proceeds. The broken red line at 30 s represents the initial sample height; the
solid red line represents the apparent sample height after the occurrence of
edge fracture. Reproduced with the permission from Hu, J. Rheol. 54(6),
1307–1323 (2010). Copyright 2010, AIP Publishing LLC.

FIG. 5. The effect of the (a) ideal, (b) convex, and (c) concave edge profiles
on the fluid sample’s surface velocity profile in a cone and plate rheometer
fixture at different times t. Reproduced with the permission from Schweizer
and Stöckli, J. Rheol. 52(3), 713–727 (2008). Copyright 2008, AIP
Publishing LLC.
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shear banding, the shear bandwidths ŵ1 and ŵ2 are uniquely
determined by h _γi. Hence, whether the surface of a fluid sub-
jected to a specific shear rate satisfies Eqs. (8) and (9) is
solely determined by the distortion parameter A. For
�2 , A , 0, the integrity conditions are satisfied for all ψ .
For A , �2, the conditions are violated by some ψ . While
for A , �4, the conditions are violated for all ψ . By fitting
the Johnson–Segalman [54] and Giesekus [55,56] constitu-
tive models to flow curves of wormlike micellar solutions
[57,58] and entangled polymer solutions [36] showing shear
banding, the authors showed that the surface integrity crite-
rion A , �2 could predict the onset of edge fracture in those
experiments reasonably well. In terms of the Tanner number
[Eq. (1)], the criterion can be restated as

Tn ¼ jΔN2j
Γ

H . 2, (10)

which assumes the same form and the same order of magni-
tude O(1) as Eq. (4), showing the similarity of the fracture
caused by shear banding to that caused by simple shear as
studied by Tanner and Keentok [4].

E. The Hemingway–Fielding criterion

The Tanner–Keentok and Skorski–Olmsted models could
explain the roles of the second normal stress difference and
the Laplace pressure in inducing edge fracture. However,
they have multiple weaknesses in a theoretical sense. First,
the two models were derived from the static force balance
across the fluid’s free surface, whereas edge fracture is a
dynamic process. Second, the Tanner–Keentok model
assumed a preexisting semicircular crack of diameter a,
which lacked a physical explanation [4]. Third, the Skorski–
Olmsted model only showed that shear banding could induce
fracture; whether fracture can cause apparent shear banding
in the fluid remained unclear [39].

To resolve these problems, Hemingway and Fielding [8]
performed linear stability analysis on the planar Couette flow
using the Johnson–Segalman and Giesekus models. In the
limit of low Weissenberg number Wi ¼ τ _γ � 1 where both
models reduce to the second-order model, the authors
derived that

1
2
Δσ

djN2( _γ)j
d _γ

�
dσ

d _γ
.

2πΓ
H

, (11)

which provided an essential insight that the jump in the shear
stress Δσ between the fluid and the outside medium may also
contribute to the development of edge fracture. For the
second-order model, N2 ¼ Ψ2 _γ

2, where the second normal
stress coefficient Ψ2 is a constant. Further assuming that the
medium surrounding the fluid sample is air, which has a vis-
cosity negligible compared to the fluid viscosity, gives
Δσ ¼ σ ¼ η0 _γ. In such a case, the Hemingway–Fielding cri-
terion [Eq. (11)] reduces to the Tanner–Keentok criterion
[Eq. (3)] as

jN2j . 2πΓ
H

(12),

with the dominant wavelength of the free surface instability
H=2π replacing the crack radius a assumed by Tanner and
Keentok. In terms of the Tanner number [Eq. (1)], the crite-
rion can be written as

Tn ¼ jN2j
Γ

H

2π
. 1: (13)

Phase-field simulations of the planar Couette flow by the
same authors using the Johnson–Segalman and Giesekus
models showed that Eq. (11) could predict the onset of edge
fracture for Wi , 1 [8]; a state diagram and the correspond-
ing snapshots of the phase-field simulation predicted by the
Giesekus model are shown in Fig. 6. Nonetheless, the predic-
tions are yet to be experimentally verified.

To study the interplay between edge fracture and shear
banding, Hemingway and Fielding [10] then simulated the
planar Couette flow of fluids having either a monotonic or

FIG. 6. Simulated state diagram of a Giesekus fluid sheared in a planar
Couette flow geometry in the space of dimensionless surface tension Γ=GH
and Weissenberg number Wi. d is the edge fracture’s penetration depth into
the fluid sample. Black solid line: numerically measured edge fracture
threshold. Red dashed line: prediction of the Hemingway–Fielding criterion
[Eq. (11)]. (a)–(e) Snapshots of the phase-field simulation corresponding to
the state points labeled in the state diagram. ~_γ is the frame invariant shear
rate. Reproduced with the permission from Hemingway and Fielding,
J. Rheol. 63(5), 735–750 (2019). Copyright 2019, AIP Publishing LLC.
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nonmonotonic flow curve by varying the material parameters
of the Johnson–Segalman and Giesekus models. For fluids
with a monotonic flow curve, slight disturbances on their
free surface were found to cause an apparent shear banding
in the fluid bulk [e.g., Fig. 6(b)]. For a fixed interfacial
tension value, the degree of edge disturbance and apparent
shear banding increased as the fluid was set to be more
shear-thinning. Increasing the interfacial tension could sup-
press the occurrence of apparent shear banding. For fluids
having a nonmonotonic flow curve, in the shear rate regime
where the bulk flow was not shear banded, the interface
remained undisturbed if the interfacial tension was suffi-
ciently high; otherwise, it was constantly disturbed. The
authors also compared the ability of the Hemingway–
Fielding [Eq. (11)] and Skorski–Olmsted [Eqs. (8) and (9)]
criteria to predict the simulated onset of edge fracture due to
shear banding. While the former could predict the fracture
onset reasonably well, the latter over-predicted it.
Hemingway and Fielding attributed such a disagreement to
the presence of secondary flows near the fluid’s free surface,
which broke down the assumptions made by Skorski and
Olmsted [39]. However, it is crucial to recall that during the
derivation of the Hemingway–Fielding criterion [Eq. (11)],
Wi � 1 was assumed [8]. Hence, the agreement between the
criterion and the simulated edge fracture onset at high-shear
rates with Wi . 1 was likely coincidental. The authors also
stressed this point in their discussion. The findings of
Hemingway and Fielding are of fundamental importance to
the research of shear banding; they enforced the view that
edge effects must be eliminated if one desires to study the
phenomenon experimentally.

F. The Tanner number Tn

The Tanner–Keentok criterion was constructed to predict
edge fracture for second-order fluids [4]. On the other hand,
the Skorski–Olmsted criterion was proposed for shear
banding fluids [39]. The Hemingway–Fielding criterion
unified the two criteria as it was constructed based on the
Johnson–Segalman and Giesekus models, which reduce to
the second-order model for Wi � O(1) and show shear
banding behavior for Wi [ O(1) if suitable material parame-
ters are chosen [8,10].

Expressing the edge fracture criteria in terms of the
Tanner number [Eq. (1)] resulted in Eqs. (4), (10), and (13),
which all satisfy the condition Tn≳1. Hence, the edge frac-
ture criterion can be generalized as follows:

Tn ¼ jN2jL
Γ

	 O(1), (14)

with L being the characteristic length scale of the flow of
interest. The second normal stress difference will dominate
for Tn 	 O(1); edge fracture will likely occur. Otherwise, the
Laplace pressure will stabilize the fluid’s free surface. For
two reasons, we argue that Tn is more suitable than Wi in the
context of edge fracture. First, Tn is defined based on the
theory of fracture; it describes more accurately the relevant
stresses than Wi. Second, Tn has a more well-defined critical

value of O(1) to predict fracture than Wi; for instance, edge
fracture is predicted for Wi � O(1) in the Tanner–Keentok
and Hemingway–Fielding models and Wi [ O(1) in the
Skorski–Olmsted model.

IV. MITIGATION OF EDGE FRACTURE

Because of its adverse effects on rheometry, different
strategies have been employed over the past several decades
to mitigate edge fracture. Some prominent examples will be
discussed in this section.

A. Strategies based on edge fracture criteria

The Hemingway–Fielding criterion states that the Laplace
pressure tends to oppose the action of the second normal
stress difference. Hence, the simplest way to delay the onset
of edge fracture is to decrease the gap size H of the parallel-
plate fixture (or Rpf of the cone-and-plate fixture). Hutton’s
experimental results [1–3] verified the applicability of this
method. However, one must be cautious that the technique
may lead to incorrect rheological measurement results if H is
too small, as the gap error due to nonparallelism and zeroing
procedure of the parallel plates will become increasingly
important; calibration procedures have to be employed to
correct for the gap error [59–62]. On the other hand, for the
cone-and-plate fixture, a small cone angle f can lead to
wrong normal stress measurement results, as the shear-
induced first normal stress difference N1 tends to push the
cone and plate apart, introducing a squeeze flow with a relax-
ation time scale τs ¼ 6πRpη0=KAf

3, where KA is the rheome-
ter’s axial stiffness [63].

The Laplace pressure can also be increased by sealing the
fluid sample’s free surface with a sealant such that the
sample-sealant interface has a higher interfacial tension. In
their study of the rheology of hydroxypropyl cellulose liquid
crystalline aqueous solution, Grizzuti et al. [64,65] used
mercury, a liquid metal, as the sealant to prevent their fluid
sample from evaporating. They observed that edge fracture
could be delayed for around two decades of shear rate,
so they had to stop their measurement due to the stress
transducer overload. Keentok and Xue [7] later explained
Grizzuti et al.’s observation using the Tanner–Keentok crite-
rion. However, even though using mercury as the sample
sealant could delay edge fracture, the method did not receive
much attention from the rheology community. This is likely
due to the toxicity of mercury as it evaporates [66].

To solve the toxicity problem, in their recent study, Chan
et al. [16] replaced the mercury with the nontoxic liquid
metal galinstan, a eutectic alloy composed of gallium,
indium, and tin [67], a material commonly used by computer
enthusiasts to cool down their hardware. Using a well-
characterized silicone oil with interfacial tensions of
Γa ¼ 20:6 mNm�1 and Γg ¼ 496 mNm�1 with air and
galinstan, respectively, the authors showed that sealing the
fluid sample with galinstan can delay fracture occurrence by
a decade of shear rate compared to the conventional
cone-and-plate fixture. This makes it a promising method for
preventing, rather than simply suppressing, the adverse
effects of edge fracture.
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B. Guard ring assembly

Removing the fluid sample’s free surface from the rheome-
ter rim can also delay edge fracture. To characterize the shear
and normal stress behaviors of a set of viscoelastic suspensions
made of silicone oils and glass microbeads, Mall-Gleissle et al.
[68] installed a guard ring assembly onto the cone-and-plate
fixture. The guard ring (designed by Gleissle [69]) created a
well containing the fluid sample, which eliminated the
sample’s free surface from the fixture’s rim, extending the mea-
suring shear rate range by approximately two to three times
without affecting the normal stress measurement. However, a
correction procedure for the shear stress measurement was nec-
essary to compensate for the extra torque from the excess fluid
sample between the shearing gap and the guard ring. This
involved vertically shifting the flow curve obtained with the
guard ring to match that obtained without.

Pieper and Schmid [70] later investigated how using
guard rings may affect the flow field in a parallel-plate
fixture for different fluid samples, including a Newtonian
fluid (mixture of polyethylene glycol, a sodium iodine
aqueous solution, and the nonionic surfactant Triton-X100),
a set of suspensions made of the Newtonian fluid and poly-
methyl methacrylate microparticles, and a strongly shear-
thinning Xanthan gum solution. Particle image velocimetry
showed that the existence of the guard ring would cause the
parallel-plate flow to deviate from the theoretical prediction.
The deviation was observed to be more severe as the fluid
sample became more shear-thinning. Hence, the shear rate
can be challenging to define in the presence of a guard ring,
especially when the fluid has a non-Newtonian viscosity. As
the guard ring violates the boundary condition for simple vis-
cometric flows, it should be avoided whenever possible.

C. Cone-partitioned plate fixture

Another method to mitigate edge fracture is the cone-
partitioned plate (CPP) fixture, a modification of the
cone-and-plate fixture in which the plate is divided into two
portions: an inner disk of radius Ri that is coupled to the
stress transducer and an outer ring of radius Ro that is
mounted to the rheometer frame. An in-depth analysis and
historical overview of the fixture is beyond the scope of the
current article; interested readers are referred to the excellent
articles written by Vlassopoulos and coworkers [71,72]. In
what follows, we will briefly mention the history of the CPP
fixture, focus on studies that are deemed closely related to
edge fracture and discuss some limitations of the fixture and
the ways around them.

The fixture was originally designed by Meissner et al.
[73] to measure the normal stress differences N1 and N2 of a
low-density polyethylene melt but not to suppress the
adverse effect of edge fracture. The radial distribution of the
axial normal stress across the plate was shown to be

σzz(r) ¼ σzz(Rs)þ (N1 þ 2N2) ln
r

Rs
, (15)

with r being the radial distance from the plate’s center and
Ri � Rs � Ro being the radius of the fluid sample.

Integrating 2πrσzz(r) from r ¼ 0 to Rs gave the total normal
force exerted by the sample

Fs ¼ π

2
R2
sN1: (16)

Meanwhile, integrating 2πrσzz(r) from r ¼ 0 to Ri gave the
relation

FiR2
s

FsR2
i

¼ 1þ 2 1þ 2N2

N1

� �
ln
Rs

Ri
(17),

where Fi is the normal force acting on the inner disk. Since Rs

and Ri were both known quantities, by measuring N1 using a
conventional cone-and-plate fixture and Eq. (16), the authors
were able to measure N2 using the cone-and-partitioned plate
fixture and Eq. (17).

Realizing the accessory’s potential in mitigating the
adverse effects of edge fracture, Schweizer [74–76] con-
ducted experiments to compare the conventional
cone-and-plate fixture and the CPP fixture having the same
cone angle. The author first applied a step shear rate of dif-
ferent magnitudes _γ to a polystyrene melt and recorded the
start-up viscosity η ; σ= _γ over time t, where σ is the shear
stress response. For the cone-and-plate fixture, at a suffi-
ciently high-shear rate, η(t) decreased over time due to the
penetration of edge fracture into the fluid sample. However,
for the CPP fixture, η(t) could reach a steady state before
dropping in magnitude, as long as Rs was sufficiently bigger
than Ri. This signified that the time needed for the flow to
become steady was shorter than that for the fracture to propa-
gate to the central measurement area of the partitioned plate.
Plotting the steady-state value of η(t) versus _γ allowed
Schweizer to extend the shear rate range of the flow curve to
around three times; the upper limit was not given by edge
fracture, but the stress transducer overload at high-shear rates.
The flow curve obtained using the CPP fixture was validated
by the lower shear rate data obtained by the conventional
cone-and-plate fixture and the even higher shear rate data
obtained by a capillary rheometer.

Despite the controversial interpretation of the results, the
CPP fixture had also been employed to study the shear
banding of entangled polymers [37,42–44]. To characterize
the shear rheology of a set of polybutadiene in oligomeric
butadiene solutions, Wang and Ravindranath [37,43]
attempted to eliminate edge effects by wrapping a plastic
film around the outer ring of the partitioned plate, which
stayed stationary regardless of the cone rotation. The authors
claimed that the cone-partitioned plate fixture and the
wrapped plastic film could effectively eliminate the free
surface of the fluid sample, hence preventing the occurrence
of edge fracture. However, Li et al. [42,44] later criticized
the film wrapping method and performed particle tracking
velocimetry [77] on a similar set of polymer solutions
sheared by a parallel-plate fixture. They showed that sur-
rounding the rim of the plates with a plastic ring could initi-
ate apparent shear banding at a lower Wi. For instance, the
shear banding was observed at Wi ¼ 5 when the fluid
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sample was sheared in a conventional parallel-plate fixture
but at a lower value of Wi ¼ 2:8 when the plastic ring was
installed. The authors provided an ad hoc explanation for
their observation: surrounding the fluid’s free surface with
the plastic ring might have changed the nature of the edge
fracture but not eliminated it. This can be further illustrated
by the Tanner number Tn. For the parallel-plate flow without
installation of the plastic ring, the characteristic velocity U
and length scale L is the rim velocity Urim and the fixture gap
size H, respectively. Installing the plastic ring will introduce
a new length scale: the clearance h , H between the ring
and the plate. Recall from Eq. (1) that

Tn ¼ 2Ψ
τU

L

η0U

Γ
/ 1

L
: (18)

The existence of the plastic ring will, in effect, increase the
characteristic Tanner number of the parallel-plate flow by a
factor of H=h, given that Urim is fixed. This could explain
why Li et al. [42] observed shear banding at a lower Wi
when the plastic ring was installed as they defined Wi based
on their gap size H [ O(1 mm) and ignored the potentially
more relevant clearance h [ O(0:1 mm). Hence, somewhat
counterintuitively, covering the fluid’s free surface in a rhe-
ometer fixture without completely sealing it may render edge
fracture more likely to occur. Nonetheless, this supposition is
yet to be tested by experiments.

The CPP fixture, despite being a powerful tool, can only
mitigate the negative effects of edge fracture but cannot
prevent its occurrence. Attempting to circumvent such a
problem, Li and Wang [78] modified the partitioned plate to
include a conical outer ring. This way, the sample edge has a
height of H . Rif. When a strain γ is applied to the fluid
sample in the inner measurement region, the sample edge
will experience a strain of smaller magnitude (Rif=H)γ. By
monitoring the motion of the tracking particles and alumi-
num oxide powder on the sample edge, the authors showed
that using such a fixture design could eliminate edge effects
in step strain and large amplitude oscillatory shear experi-
ments. Nonetheless, it is unclear if the fixture design can
also eliminate edge effects in shear start-up experiments.

Another problem of the CPP fixture is related to the mea-
surement of N2, whose error increases significantly as Rs is
close to Ri. To overcome this problem, Schweizer and
Schmidheiny [79] developed a CPP fixture with three parti-
tions, abbreviated as the CPP3 fixture. The fixture’s parti-
tioned plate consists of three portions: an inner disk of radius
Ri, a middle ring of radius Ro1 surrounding the inner disk,
and an even larger outer ring of radius Ro2 surrounding both
the inner disk and the middle ring. The inner disk and the
middle ring can measure normal force signals separately,
allowing Eqs. (16) and (17) to be used to measure N1 and N2

without having to perform experiments using a conventional
cone-and-plate fixture. Meanwhile, the outer ring serves the
purpose of shielding edge fracture off. Despite its great
potential in measuring normal stresses, the authors stressed
that the CPP3 fixture is not ideal for measuring viscosity as
the torque measurement is performed solely by the rather
small inner disk.

Finally, it is essential to note that the CPP fixture was
designed primarily for polymer melts having a zero-shear
viscosity η0 	 O(1000 Pa s). Caution has to be paid when
fluid samples of lower viscosity are used; the shear-induced
normal stress may push the fluid into the thin gap between
the partitioned plate’s inner disk and outer ring, affecting the
normal stress measurement. In such a case, preshearing the
sample and zeroing the normal stress transducer before an
experiment will be necessary. Another problem is that when
the temperature is controlled with a convection oven, it
becomes difficult at elevated temperatures to maintain both
the inner disk and the outer ring of the partitioned plate at
the same temperature. Installing an electric heating unit will
be necessary for such a case [79].

V. EDGE FRACTURE OF LIQUID BRIDGES

In their landmark paper over half a century ago, Hutton
wrote, “It is expected that the fracture phenomenon will be
important in a number of other applications of fundamental
and technological importance, but its occurrence will depend
on the geometry of the device in which the liquid is
sheared.” [1] Nonetheless, most research on edge fracture
was performed in the standard cone-and-plate and parallel-
plate fixtures, focusing on mitigating the phenomenon in rhe-
ometry rather than harnessing it for practical applications. So
far, only three studies have considered edge fracture in a non-
rheometry setting and proposed harnessing the phenomenon
to help dispense rheologically complex fluids efficiently.

Rheologically complex fluids can store energy elastically.
Because of this, when such fluids are dispensed, stable liquid
bridges can form between the dispensing nozzle and the sub-
strate. Lifting the nozzle is a common way to destabilize
those liquid bridges. However, as the dispensing distance
increases, the liquid bridge’s length also increases. In such a
case, the pinchoff of the liquid bridge leads to a long capil-
lary tail forming, which may fall randomly onto and contami-
nate the substrate. This is known as the stringing problem. To
solve the stringing problem, Chan et al. [11,12] proposed
using torsion instead of an extension to destabilize liquid
bridges. To model a dispenser, they constructed a simple
setup consisting of a pair of parallel plates of radius
Rp ¼ 3 mm, one of which could translate vertically to set the
liquid bridge height H and another that could rotate unidirec-
tionally at angular speed Ω to apply torsion to the liquid
bridge. The fixed liquid bridge volume V was controlled via
a positive displacement pipet or trimming of the excess fluid
at a small H. Using the setup, the authors studied how
torsion could destabilize liquid bridges made of a wide range
of fluids with different rheological complexity levels.

A. Weakly viscoelastic liquid bridges

Chan et al. [11] first considered liquid bridges made of
weakly viscoelastic silicone oils. The focus was on a silicone
oil of interfacial tension Γ ¼ 20:6 mNm�1, similar to the
fluids used in the early studies of edge fracture by Hutton
[1–3] and Tanner and Keentok [4]. Its rheology could be
fitted with the three-mode Giesekus model [55,56], which
gave a zero-shear viscosity η0 ¼ 58:6 Pa s, relaxation time
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τ ¼ 3:42 ms, and normal stress ratio Ψ ¼ 0:24. By rotating
the plate at a speed of Ω [ O(10 rad s�1), the authors
observed an indent of size 2a � 0:2 mm forming on the
liquid bridge’s free surface, which tended to propagate
toward the bridge center (Fig. 7). The indent propagation
caused the liquid bridge neck radius R to decay in a power-
law fashion, i.e., R(t)/ t�β (Fig. 8), where β is the power-
law index. The indent could even pinchoff the liquid bridge
at a sufficiently high Ω [ O(100 rad s�1), as illustrated in
Fig. 7. The indentation phenomenon of the silicone oil
bridge closely resembled the edge fracture of silicone oil
photographically captured by Hutton [3] (see Fig. 1), leading
to the authors’ supposition that their observations share the
same underlying physics as edge fracture.

By dimensional analysis, Chan et al. [11] argued that the
indentation process was solely governed by the Tanner
number Tn. At that time, it was unclear what the characteris-
tic length scale was and whether the first or second normal

stress difference caused the indentation phenomenon. Hence,
they used the neck radius R as the characteristic length scale
and neglected the normal stress ratio Ψ in their definition of
Tn. They also neglected the factor of two. For the sake of
consistency, however, we shall adhere to the definition of Tn
as given in Eq. (1) and use it to reinterpret the results of
Chan et al. [11] Using the indentation size 2a as the charac-
teristic length scale, Tn can be expressed based on the param-
eters of the three-mode Giesekus model as

Tn ¼ Ψτη0
R2Ω2

a2
a

Γ
: (19)

For a typical R [ O(1 mm) and Ω 	 O(10 rad s�1),
Tn 	 O(1), satisfying the edge fracture criterion given in Eq.
(14), supporting the author’s supposition that the indentation
phenomenon was caused by edge fracture.

Chan et al. [11] also performed finite element simulations
using the three-model Giesekus model to provide further evi-
dence of edge fracture. They varied the mobility parameter α
in the constitutive model, effectively changing the model
fluid’s normal stress ratio Ψ. Changing α would also change
the shear thinning behavior of the fluid; however, as the
focus was on the indent formation process during which the
shear rate was _γ � RpΩ=H [ O(100 s�1), the shear thinning
effect could safely be neglected. The results of Chan et al.
showed that the indent formation speed was positively corre-
lated to the magnitude of N2, but not N1, on the indentation
tip. Hence, like edge fracture, the indentation process was
driven by N2. Furthermore, the action of N2 was to compress
the indent while pulling it radially inward toward to liquid
bridge center, agreeing with the theoretical analysis of edge
fracture by Huilgol et al. [6]

B. Dynamic similarity and scaling of edge fracture

The dimensional analysis by Chan et al. [11] predicted
that the edge fracture of the liquid bridge made of silicone oil
was solely governed by the Tanner number Tn. For two vis-
coelastic liquid bridges, as long as their Tn are the same,

FIG. 7. Edge fracture of a weakly elastic liquid bridge made of silicone oil under an applied rotational speed of Ω ¼ 222 rad s�1. Top row: experimental snap-
shots (left) and simulated azimuthal velocity vθ (right). Middle row: simulated radial and axial velocities vr (left) and vz (right). Bottom row: simulated first and
second normal stress differences N1 (left) and N2 (right). Scale bar: 1 mm. Reproduced with permission from Chan et al., Proc. Natl. Acad. Sci. U.S.A.
118(24), e2104790118 (2021). 2021 Author(s), licensed under a Creative Commons Attribution 4.0 License.

FIG. 8. Radius evolution R(t) of silicone oil bridges of H ¼ 2:5 mm under
different rotational speeds Ω. Symbols: experimental measurements. Solid
lines: numerical predictions by the three-mode Giesekus model. Reproduced
with permission from Chan et al., Proc. Natl. Acad. Sci. U.S.A. 118(24),
e2104790118 (2021). 2021 Author(s), licensed under a Creative Commons
Attribution 4.0 License.
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their edge fracture dynamics will be the same. Verifying such
a dynamic similarity [80] requires showing that the edge frac-
ture process only depends on the Tanner number Tn. To
provide more evidence to support their dimensional analysis,
the authors systematically varied in the Giesekus model the
viscosity from η0 to η00 and interfacial tension from Γ to Γ0

while keeping the relaxation time τ and mobility parameter α
(hence the normal stress ratio Ψ) the same. Their simulation
results showed that as long as the capillary velocity
vcap ; Γ0=η00 of the liquid bridge was the same, R(t) would
overlap until Tn became lower than a critical value of
Tnc ¼ 1:7 [ O(1) [Figs. 9(a) and 9(b)]. The distributions
of the dimensionless second normal stress difference
N*
2 ; N2=η00Ω were seemingly indistinguishable among the

liquid bridges as well for Tn . Tnc, [Figs. 9(c) and 9(d)].
Besides simulation, Chan et al. performed additional liquid
bridge experiments using silicone oils with the same interfa-
cial tension Γ but different viscosity η0 and relaxation time τ.
Recall that the authors used Tn=2Ψja¼R as their Tanner
number. Hence, the normal stress ratio Ψ of those silicone
oils was not reported; nonetheless, from the values reported
by Keentok and Xue [7], Ψ of those silicone oils was likely
the same. Plotting the power-law index β versus Tn=2Ψ with
the plate radius Rp as the characteristic length scale, the data
points were seen to collapse onto a single curve, providing
further evidence to support the dimensional analysis predic-
tion regarding the sole dependence of Tn.

On the other hand, the experimental and simulation results
of Chan et al. [11] showed that the liquid bridge radius
exhibited power-law decay behavior R(t)/ t�β during frac-
ture. Considering an arbitrary change in time t ! μt, the

ratio R(μt)=R(t) ¼ μ�β is independent of t, i.e., R differs only
by a constant factor when viewed at a different time scale.
Such self-similarity hinted that the edge fracture process
might be scale-invariant [80], which led the authors to antici-
pate that a similarity solution might be constructed to explain
the power-law decay behavior of R(t). If such a solution
exists, rheological quantities such as the second normal stress
difference N2 could be obtained simply by tracking the
power-law index β.

C. Beyond weak viscoelasticity

Besides the weakly viscoelastic silicone oils, the fracture
of liquid bridges made of fluids having different levels of
rheological complexity was also reported. Chan et al. [12]
considered a dilute solution of high molecular weight
polystyrene dissolved in oligomeric styrene, which is
a Boger fluid with an almost constant shear viscosity
η0 ¼ 43:9 Pa s, relaxation time τ ¼ 5:29 s, and interfacial
tension Γ ¼ 40:5 mNm�1. The authors identified by dimen-
sional analysis that the liquid bridge deformation depended
on two dimensionless numbers. First, there was the Tanner
number Tn=Ψ ¼ τη0RΩ

2=Γ. Like their previous study, the
authors did not include Ψ and used R as the characteristic
length scale in their definition of the Tanner number; in fact,
they could not obtain Ψ by shear rheometry since its value is
very close to zero for Boger fluids [7]. Then, there was the
elastocapillary number Ec ¼ τΓ=η0R, typically seen in the
context of exponential self-thinning of viscoelastic fluid
threads [81]. By inspecting the dependence of Tn=2Ψ and Ec
on R, the authors speculated that the liquid bridge would thin

FIG. 9. Simulated edge fracture dynamics of liquid bridges with different viscosity η00 and interfacial tension Γ0. [(a) and (b)] Radius evolution R(t) of liquid
bridges with H ¼ 2:5 mm subjected to a rotational speed Ω of (a) 170 and (b) 220 rad s�1. Each color represents one of the four capillary velocities
vcap ; Γ0=η00 shown in the right box. [(c) and (d)] Distributions of the dimensionless second normal stress difference N*

2 ; N2=η0Ω of liquid bridges with the
same vcap subject to Ω ¼ 170 rad s�1, corresponding to the two orange curves labeled (c) and (d) with arrows in (a). Scale bar: 1 mm. Reproduced with permis-
sion from Chan et al., Proc. Natl. Acad. Sci. U.S.A., 118(24), e2104790118 (2021). 2021 Author(s), licensed under a Creative Commons Attribution 4.0
License.

959PERSPECTIVE ON EDGE FRACTURE



exponentially over time as R became sufficiently small. They
observed such behavior for Ω [ O(1 rad s�1). Complementary
finite element simulation revealed that torsion induced a nega-
tive N2 at the liquid bridge’s neck, similar to edge fracture,
bringing the bridge to the elastocapillary thinning state sooner.
As a side note, such a phenomenon may be used to estimate
the order of magnitude of Ψ for the Boger fluid. Assuming
that R [ O(1 mm), a [ O(0:1 mm), and Tn [ O(1) will give
Ψ [ O(0:01), which agrees with a previous report that
Ψ ¼ 0:01+ 0:01 for a Boger fluid made of polyisobutylene
dissolved in oligomeric polybutene [82]. For Ω [ O(10 rad s�1),
helical wrinkles could be observed on the liquid bridge
surface as it was twisted. The bridge’s top and bottom fluid
reservoirs were seen to approach each other, leading to an
elastic instability before the bridge could break up. The
process was visually similar to the Weissenberg rod-climbing
phenomenon [17] but with the solid rod being replaced with
a “liquid rod.” For Ω [ O(100 rad s�1), the thinning speed
of the liquid rod becames faster than the climbing speed of
the fluid reservoirs, and the liquid bridge breakup was
observed.

Subsequently, Chan et al. [13] studied the edge fracture of
liquid bridges made of a thixotropic elastoviscoplastic
(TEVP) thermal paste, demonstrating that fracture can also
be used to break TEVP bridges. By dimensional analysis,
they predicted that when Tn [ O(1), the Bingham number
would be Bn [ O(10�2). Hence, the effect of plasticity is
negligible when edge fracture occurs. Complementary finite
element simulation using a phenomenological TEVP consti-
tutive model verified their prediction.

VI. SUMMARY AND OUTLOOK

Alongside the Weissenberg rod-climbing effect [17] and
the elastocapillary self-thinning of elastic fluid threads [81],
edge fracture is one of the few viscoelastic instabilities with a
solid theoretical basis supported by extensive experiments.
Previous research on edge fracture has primarily focused on
mitigating the phenomenon. Techniques such as thin-gap rhe-
ometry and geometries such as the guard ring assembly and
CPP fixture have been developed for this purpose. However,
there is still a lack of research on harnessing the fracture phe-
nomenon. Additionally, the rheology community has
neglected promising mitigation strategies that merit further
investigation. The study of edge fracture is full of opportuni-
ties to be explored and problems to be solved.

A. Edge fracture of non-Brownian suspensions

Edge fracture can also occur in non-Brownian suspen-
sions, such as greases and pastes, which play a critical role in
various industrial applications such as food engineering,
additive manufacturing, and electronic packaging. Despite
their importance, most research on edge fractures has focused
on polymeric fluids. For instance, the most recent theory of
fracture, developed by Hemingway and Fielding [8], is based
on the Johnson–Segalman and Giesekus constitutive models
for polymeric fluids. Hence, it is unclear whether this theory
can be applied to suspensions. Although some studies on
edge fractures in suspensions exist, most of them focus on

yield stress fluids. Furthermore, those studies are mainly
descriptive [83,84], potentially because of the difficulty of
measuring normal stress differences due to interference from
the material’s yield stress. Recently, a new method for mea-
suring normal stress in yield stress fluids using the large
amplitude oscillatory shear test at low frequency has been
proposed by de Cagny et al. [22]. This method is applicable
in any laboratory with a stress-controlled rotational rheometer
and could be used to study edge fractures in suspensions.
Additionally, Tanner and Dai [85] suggested that a stability
analysis using the Reiner–Rivlin model could provide new
insights into the edge fracture of suspensions. In their subse-
quent studies [86,87], the authors further proposed using the
Thompson–de Souza Mendes model [88] and a two-part
composite variant composed of the Thompson–de Souza
Mendes model and a multimode Oldroyd-B model to
describe non-Brownian suspensions; those models might also
be useful for the stability analysis.

B. Liquid metal sealing

As discussed in Sec. IV A, sealing the fluid sample’s free
surface with the nontoxic liquid metal galinstan can delay
edge fracture [16]. However, one point deserves attention.
The critical Tanner number Tnc at which fracture occurred
for the silicone oil sealed with galinstan was estimated to be
O(10), deviating from the edge fracture theories, which
predict Tnc [ O(1). One possible explanation is that the cen-
trifugal force exerted by the liquid metal on the silicone oil
could oppose the second normal stress difference, pulling the
fracture backward as it develops. Another explanation is that
as the interfacial tension of the free surface increases, the
fracture’s penetration depth will decrease, suppressing its
negative influence on shear rheometry. To our knowledge,
there has been no systematic experimental study of this phe-
nomenon. One piece of evidence comes from Hemingway
and Fielding [8]; their phase-field simulation showed that
increasing the interfacial tension can lead to a lower penetra-
tion depth of the fracture (see the state diagram in Fig. 6).
Another indirect evidence comes from Chan et al. [see
Fig. 9(a), black and orange solid lines], who showed by sim-
ulations that halving the viscosity while keeping the interfa-
cial tension constant could increase the neck radius Rc at
which edge fracture halts in the liquid bridge [11].
According to Eq. (19), assuming that Tnc is a constant when
fracture halts will give the relation R2

c / Γ=η0. The effect of
halving η0 is the same as doubling Γ. Hence, increasing Γ
shall lead to a larger Rc, i.e., a smaller penetration depth of
the fracture. From a physical point of view, such an explana-
tion makes sense, as fracturing is a process of creating new
surfaces and increasing surface energy [89]. Given that the
work done by the second normal stress difference N2 is the
same, as Γ increases, the surface area that can be created will
be more limited. Experiments and simulations are needed to
test which explanation is true. Nonetheless, it is expected that
the galinstan sealing method can be applied with the CPP
fixture, extending the measurable range of the shear rate even
further. Overfilling the fluid sample in the CPP fixture can
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ensure that the liquid metal will completely wet the fluid
sample.

C. Dynamics of edge fracture

The torsional instability of liquid bridges studied by
Chan et al. [11] provided insights regarding the dynamics of
edge fracture. The fracture process solely depends on the
Tanner number Tn, implying dynamic similarity. The
neck radius R(t) of the liquid bridge undergoing fracture
showed power-law decay, suggesting self-similarity and scale
invariance of the fracture process. Nonetheless, there is insuf-
ficient information on whether edge fracture is truly
scale-invariant. Verifying so requires demonstrating the self-
similarity of the velocity and stress fields during fracture
propagation.

In turn, this requires deriving a simple physical model,
which would still incorporate the necessary physics to predict
the onset and subsequent evolution of edge fracture. The sim-
plified Couette geometry studied by Hemingway and
Fielding [8] could be an excellent candidate for this purpose.
The fluid is sheared in a planar slab at a rate _γ. This geome-
try approximates the cone-and-plate and parallel-plate fix-
tures when the plate radius is much larger than the cone
angle or gap size. Additional assumptions can be made in
favor of reducing the flow parameters. Inertia can be
neglected, assuming creeping flow. The same holds for
gravity. A fully developed flow can be assumed in the flow
direction. The three-phase contact lines formed by the fluid,
the surrounding air, and the solid plates can be considered
pinned. This means that the contact lines are not allowed to
move tangentially to the wall, and the contact angle is calcu-
lated implicitly from the flow field. The viscosity of the sur-
rounding air can also be neglected. Finally, the quasilinear
lower convected Maxwell model can be used to describe the
fluid sample’s rheology. This constitutive equation predicts a
nonzero N2, featuring only two rheological parameters: the
relaxation time τ and the polymeric viscosity ηp. Moreover,
the lower convected Maxwell mode predicts strong normal
stresses that increase quadratically with increasing shear rate,
which would prolong the power-law fracture propagation
regime. Under these assumptions, the problem shall be gov-
erned solely by the Tanner number Tn. Although the
problem remains three-dimensional, all flow variables (veloc-
ity, pressure, stresses, and free surface height) depend only
on the gradient and vorticity directions. The simplified
system of partial differential equations can be solved numeri-
cally to obtain the minimum sample radius R versus time t
and check whether it depends solely on Tn. Assuming that R
is the only length scale, the flow variables around the indent
can be rescaled at different time instants and compared to
each other to see whether edge fracture is self-similar. A
potential characteristic length scale as for such a rescaling
procedure may be obtained by requiring the governing
dimensionless number, in this case, Tn, to be a constant
during the fracture process, giving as / Γ=jN2j. A comple-
mentary approach would be to describe the fluid as an elastic
solid, assuming dominant elastic effects and negligible stress
relaxation. Eggers et al. [90] recently implemented this idea

to derive a similarity solution for the elastocapillary breakup
of polymeric threads.

D. Functional dispensing nozzles

Torsion can induce edge fracture and destabilize visco-
elastic liquid bridges without extending them, avoiding the
stringing problem. This may help improve the efficiency of
processes such as 3D printing and electronic packaging that
require rheologically complex fluids to be dispensed quickly
and cleanly. Also, this may allow materials previously
thought unprintable, such as those with high elasticity or
high yield stress, to be printed. However, from an engineer-
ing point of view, designing a fluid dispensing nozzle that
can rotate can be difficult. Nonetheless, such nozzle designs
have already been proposed for 3D printing. For instance,
Raney et al. [91] employed a rotatable nozzle to control the
fiber orientation in their 3D-printed fiber-epoxy composite
materials. On the other hand, Löffler and Koch [92] designed
a nozzle with a slot-shaped opening to vary the linewidth of
the dispensed fluid without having to use multiple nozzles.
Potentially, these designs can be used to test the idea of har-
nessing edge fracture to break liquid bridges for dispensing
purposes.
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