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Abstract

In this thesis, I model the 1D diffusion and unbinding of Cas9 on/from DNA. Cas9 plays
a key role in the CRISPR/Cas (CRISPR-associated protein) system. CRISPR (Clus-
tered Regularly Interspaced Short Palindromic Repeats) are regions of a prokaryote
DNA in which palindromic sequences are interspaced by sequences of foreign origins.
These foreign sequences can be transcribed into guide RNAs. Cas9 is an enzyme that
combines with guide RNA and afterwards can recognize and cleave DNA strands that
are complementary to the guide RNA. However, it is not clear how does Cas9 iden-
tify its target. The protospacer adjacent motif (PAM) is a “NGG” segment on DNA.
The recognition of PAM is the initial stage of the target searching mechanism. Experi-
ments suggest that Cas9 uses 3D diffusion combined with 1D diffusion along the DNA, a
mechanism termed facilitated diffusion. My model explains the distribution of binding
events observed in experiments and predicts biophysically relevant parameters. I then
analyze the behavior of Cas9 on a generic DNA with disordered assortment of PAMs
by using an analogy with Anderson localization in condensed matter physics. I then
propose a model of the off-target behavior (specificity) of Cas9. From the measured
rates, I determine the energy landscapes of on-target and off-target DNA sequences,
and the thermodynamic parameters in double strand DNA and DNA-RNA hybrids.
Finally, from a perspective of two-mode target recognition strategy, I investigate the
effect of PAM and its binding energy on the efficiency of Cas9 in the facilitated diffusion
process.
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Abbreviations

bp base pair(s)
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

gRNA guide RNA
LHS left hand side

MFPT mean first passage time
ODE ordinary differential equation
PAM protospacer adjacent motif
RDR reversibility-determining region
RHS right hand side

TF transcription factor
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Chapter 1

Introduction

This thesis is a biophysical study of the target-searching and recognition of the Cas9
protein on DNA. This project extends the theory of facilitated diffusion of proteins
such as TF (transcription factor) and deepens our understanding of Cas9. The thesis
is organized as follows. In chapter 1, I introduce the CRISPR/Cas system and specif-
ically Cas9. I then qualitatively introduce the concept of facilitated diffusion and its
possible role in Cas9 searching. Chapter 2 reviews the theory of Anderson localization
and facilitated diffusion in a quantitative way. In chapter 3, I introduce my model
of Cas9 one dimensional searching. The model explains the distribution of binding
events observed in experiments, and predicts biophysically relevant parameters. I then
analyze the behaviour of Cas9 on a generic DNA by using an analogy with Anderson
localization. Chapter 4 investigates the efficiency of Cas9 from a perspective of a two-
mode target recognition strategy. In chapter 5, I propose a model of the off-target
behaviour (specificity) of Cas9. Chapter 6 presents my conclusions.

1.1 Introduction to Cas9

1.1.1 The CRISPR-Cas system

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas (CRISPR-
associated protein) are the immune systems of prokaryote cells. They were originally
found in Escherichia coli [Ishino et al., 1987, Mojica et al., 2000]. A sketch of the
CRISPR-Cas system from [Bonomo and Deem, 2018] is shown in fig 1.1. CRISPR
are palindromic sequences repeated for several times in the DNA [Jansen et al., 2002].
They are found in approximately 50% of sequenced bacterial genomes and about 90%
of sequenced archaea [Hille et al., 2018]. Neighbouring palindromic sequences are in-
terspaced by sequences of foreign origins, usually derived from DNA fragments of bac-
teriophages that had previously infected the prokaryote [Barrangou et al., 2007]. In
contrast to the palindromic sequence, these fragments (spacers) are different from each
other. Foreign sequences in CRISPR can be transcribed into RNA. Those short RNA
molecules, which are named guide RNA [Brouns et al., 2008], are then combined with
Cas proteins [Van Der Oost et al., 2014]. The complex they form is called a ribonucle-
oprotein (RNP).

1



2 Introduction

Figure 1.1: The functioning of CRISPR-Cas immune system. Different spacers are
shown by different colours, and the blue squares between them are the repeated palin-
dromic sequences. gRNA is composed of crRNA (CRISPR RNA) and tracrRNA (trans-
activating crRNA). The latter plays a role in the maturation of the former. These
details are omitted in the sketch as well as in the text, and are irrelevant to this thesis.
From [Bonomo and Deem, 2018]

Cas is a DNA endonuclease enzyme. RNPs are able to recognize and cleave DNA
strands that are complementary to the guide RNA, and therefore damage DNA molecules
that are identical to the foreign sequences stored in CRISPR. In this way, CRISPR
and Cas act as the immune system in prokaryotes, to identify and destroy invading
DNA segments, such as those of viruses [Westra et al., 2012]. Once a bacteria colony
is infected by a virus that was not been encountered before, the surviving bacteria
would incorporate a DNA fragment from the new virus into CRISPR, and be able to
defend themselves therefrom [Fineran and Charpentier, 2012]. Since CRISPR is inher-
ited by daughter cells when bacteria divide, the immune ability for a particular virus is
inherited as well. The whole immune process can be divided into 3 stages: adaptation
of foreign DNA, expression into gRNA, and interference [Bonomo and Deem, 2018].

1.1.2 A general survey of Cas9

There are 3 major types of Cas proteins, based on their genetic content and structural
differences [Makarova et al., 2017a, Makarova et al., 2017b]. The Cas9 found in Strep-
tococcus pyogenes is a prototype in type II. Cas9 assembles a guide RNA (gRNA),
and forms a RNP complex which recognizes and destroys the invading genetic seg-
ment [Gasiunas et al., 2012]. Its target is a 23 base pair double strand DNA sequence
composed of two parts. The first part is a “NGG” sequence called PAM (protospacer ad-
jacent motif), in which the “N” can be any base [Anders et al., 2014]. The second part
is a 20 base pair sequence, complementary to the gRNA, that is found upstream of the
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Figure 1.2: Cas9 and its target, with the PAM marked in yellow. The gRNA (in red)
is forming a heteroduplex with the target sequence.

PAM [Mojica et al., 2009]. Studies on the target searching mechanism of Cas9 by single
molecule method and in bulk show a general picture of on-target binding, in which Cas9
recognizes the PAM first, then DNA melts, followed by formation of the heteroduplex,
and finally cleavage [Szczelkun et al., 2014, Martens et al., 2019, Globyte et al., 2019]
[Boyle et al., 2017, Sternberg et al., 2014]. A sketch of Cas9 recognizing its target is
shown in fig 1.2.

Cas9 can transiently bind to a PAM even in the absence of a neighboring target
[Globyte et al., 2019, Jones et al., 2017]. In this case, the dsDNA does not melt, and
the binding to the PAM and its neighbouring base pairs lasts about 3 seconds
[Globyte et al., 2019]. If the PAM is next to a perfectly matched target, a control
experiment in [Sternberg et al., 2014] shows that the nucleating of the RNA-DNA het-
eroduplex starts from the position next to the PAM, and proceeds sequentially towards
the distant end of the target. The control experiment excludes the unsequential possi-
bility that the nucleation of the RNA–DNA heteroduplex starts at any other position
of the target farther from PAM. Although sequential, the unwinding process does not
proceed at constant speed and can be divided into different stages. [Ivanov et al., 2020]
used a single-molecule technique called rotor bead tracking (RBT) to investigate the
dynamics of Cas9 R-loop formation and collapse. By recording the DNA unwinding
angle and the corresponding number of base pairs, they found that there is a interme-
diate state between the closed (i.e. unwound) state and the open R-loop state. This
intermediate state corresponds to 9 to 10 base pair unwinding. The transitions be-
tween this state to/from both the closed state and the open state are instantaneous,
compared with the time the DNA spend within these three states. [Gong et al., 2018]
also showed that the R-loop formation is a two step process, corresponding to the
adjustments of two domains of Cas9.
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Figure 1.3: The three states observed in [Ivanov et al., 2020]. C, I, O represents
closed, intermediate, and R-loop (open) state, respectively. 1, 2, 3 are on-target cases,
2a, 3a and 3b are different off-target cases. The number of base pairs is only schematic.
From [Ivanov et al., 2020].

The transition time from PAM binding to formation of the R-loop is hard to measure
due to experimental time resolution. But an estimate is within approximately 0.1 sec-
ond [Ivanov et al., 2020], as also supported by previous studies [Sternberg et al., 2014,
Singh et al., 2016, Jones et al., 2017, Singh et al., 2018, Gong et al., 2018].

1.1.3 Specificity of Cas9: observed properties and modelling
works

The off-target case, in which the PAM is next to a target but with a few base pairs’
mismatches, is key to understand specificity of Cas9. Specificity is important because,
besides on-target (perfectly matched) sequence, Cas9 can also bind and cleave some off-
target sequences [Boyle et al., 2017, Bonomo and Deem, 2018]. Experiments focusing
on the off-target behaviour often use dCas9, which is a variation of Cas9 without the
amino acid residue for cleavage.

Important features observed in experiments are listed in the following.
[Ivanov et al., 2020] studied the off-target behaviour for a small set of mismatched

sequences. They found that:

• For most of the mismatched sequences, they observed a single intermediate state.
Only in a minority of cases, the position of this intermediate state is different, or
there are more intermediate states (2 or 3). In on-target and different off-target
cases, the transition rates from the closed state/R-loop state to the intermediate
state and vice versa are all different. The three states are represented in fig 1.3.

We denote the PAM sequence base pairs by -3, -2 and -1, and ”NGG” is called
the canonical PAM, with any modified version been called noncanonical PAM. To be
consistent with the notation for the PAM, the 20 base pair sequence complementary
to the gRNA is marked from 1 to 20, from the base pair next to the PAM to the
most distant pair. A figure showing the numbering and different regions defined in this
subsection is shown fig 1.4.

[Boyle et al., 2017] measured the apparent association rates, the equilibrated occu-
pancy after incubation, and finally the apparent dissociation rates for all possible 1 or
2 base pair substitutions of the 23 base pair target. In such a way, a library of the
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Figure 1.4: The numbering convention of the target. Yellow: PAM, green: seed
region, blue: RDR (reversibility-determining region).

dCas9 quantitative behaviour was built for every modified (up to 2 base pair) targets.
Important features include:

• Rates constant in time. The association/disassociation rates they measured
are nearly constant for a long time interval (more than 1500 seconds) for all
sequences except for those with a negligible binding rate.

• Cannonical & noncanonical PAM. The apparent association rates of targets
with noncanonical PAM is low, as observed by previous studies. However, the
equilibrated occupancy of the NGA and NAG PAMs are larger than that of other
noncanonical PAMs.

• The seed region. Investigation of single mismatches in that sequence (but
with a canonical PAM) reveals a “seed region” from 1 to 8, where substitutions
significantly reduce the apparent association rate. For more distant single mis-
matches, the decrease is no more than twofold. Similar to the PAM, mismatches
at the same position but with different bases lead to different rates. Although
the seed region strongly affects the apparent on-rate, mismatches within it do
not appreciably decrease the equilibrium occupancy.

• Nonlinearity in double-mismatches. By "Nonlinearity" we mean that dou-
ble mismatches have larger energy barriers for association than the sum of the
energy barriers of the corresponding two single mismatches. This effect is more
pronounced for sequence beyond the seed region. In particular, if one or both
mismatches are in the 8 to 11 region, this nonlinearity is very strong and the asso-
ciation rate is quite low. In general, unlike single mismatches, double mismatches
markedly reduce the long-time occupancy.

• The reversibility-determining region The dissociation rate is large when
there are one or more mismatches in the so-called ”reversibility-determining re-
gion” (RDR), that is from position 8 to 17. If there are no mismatches in this
region, the off rate is quite low. In contrast, the seed region plays a vital role
in association/equilibrium case but is of no account here. The time scale was
proved to be important for this. When the association time before unbinding
was 45 mins rather than more than 10 hours, the PAM and seed region was
found to be as important as the RDR region.

The mechanism of Cas9 recognition may be inferred from these observations. A
model of strand invasion, in which a single-stranded nucleoprotein filament moves into
the similar or identical recipient DNA duplex, should be able to explain the different
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role of different regions among the sequence, their synergetic behaviour, different time
scales, and other properties.

Each existing model of the specificity of Cas9 has its unique advantages. For exam-
ple, [Klein et al., 2018] builds a relatively simple model that performs well in general.
However, most models are not be able to describe all important features listed above
[Josephs et al., 2015, Klein et al., 2018, Khakimzhan et al., 2020, Marklund et al., 2022].
Others are very successful in explaining all of the key features, but have other dis-
advantages. For example, [Feng et al., 2021] contains ad hoc fitting parameters (a
uniform "compensation energy" in every unwinding steps). Another example is the
very recent [Eslami-Mossallam et al., 2022] that did not consider that the associa-
tion/disassociation rates are constant in time, as mentioned earlier in this subsection.
Its assumptions are also oversimplifying, for example, for a certain mismatch position,
they do not distinguish mismatch base pair types.

1.2 Facilitated Diffusion and Cas9

1.2.1 Introduction to facilitated diffusion

Many proteins such as transcription factors (TF) act by binding to particular sites
on the DNA, in such a way to regulate the corresponding gene expression. The fa-
cilitated diffusion discussed here is in this context of protein finding their target site
on DNA. It was first reported that lacI repressor could find its target site approxi-
mately two orders of magnitude faster than predicted by 3D diffusion only (i.e. diffu-
sion in cytoplasm and random collision) [Riggs et al., 1970]. Then, a series of seminal
papers [Berg et al., 1981, Winter and Von Hippel, 1981, Winter et al., 1981] proposed
that the TF may combine 1D diffusion (sliding) along the DNA with 3D diffusion to
locate its target. The sensitivity of the result to salt concentration [Riggs et al., 1970]
was interpreted as evidence that the DNA electrostatically attracts the protein, which
provided a physical mechanism for sliding. By using realistic parameters from ex-
periments, [Dahirel et al., 2009] theoretically demonstrated that, for sequence specific
DNA-binding proteins such as transcription factors and restriction enzymes, sliding by
electrostatical force is possible. Besides sliding, other mechanisms such as hopping,
i.e, the possibility for proteins to briefly detach from DNA and then reattach at short
distance, were also proposed in [Berg et al., 1981].

In order to fulfill its biological function, a TF needs to bind its target site tightly,
but from the energetic aspect this requires a large binding energy difference between
different sequences. This conflict is termed the paradox of speed and stability in
facilitated diffusion. For 1D diffusion, theory shows that a rough energy landscape
results in a smaller effective diffusion constant [Zwanzig, 1988], hence reducing the ef-
ficiency of sliding. Many possible solutions and mechanisms have been proposed to re-
solve this paradox [Slutsky and Mirny, 2004, Mirny et al., 2009, Sheinman et al., 2012,
Cencini and Pigolotti, 2018].
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1.2.2 Cas9 searches its target by facilitated diffusion?

Experimental evidences on whether Cas9 performs facilitated diffusion are inconsistent
with each other [Sternberg et al., 2014, Singh et al., 2016, Globyte et al., 2019]. One
way of probing the search dynamics of Cas9 is to experimentally measure the distribu-
tion of Cas9 molecules bound along the DNA. For example by single-molecule study
using DNA curtains [Sternberg et al., 2014]. This work did not observe sliding, but
found that Cas9 is localized in regions that extend for hundreds of base pairs length
around targets. Another study [Singh et al., 2016] did not find evidence of sliding
either.

Single-molecule FRET (Forster resonance energy transfer) technique was used to
study how Cas9 interacts with the PAM in [Globyte et al., 2019]. FRET enables mon-
itoring of the real-time position of the protein relative to a specific position on the
DNA contour. In the absence of PAM, binding of Cas9 on DNA can only last for a
very short time interval before detachment. The number of Cas9-DNA binding events
decays exponentially with the binding duration, implying a constant dissociation rate.
In the presence of one or more PAM(s), one observes appreciably longer binding events.
These long events present another approximately exponential behaviour, with a much
longer characteristic time scale, in which the Cas9 is found to be searching the DNA
sequence near the PAM, or translocating between PAMs in the multi-PAM case. This
phenomenon is termed “double exponential decay” in [Globyte et al., 2019]. The main
experimental results are summarized in Fig 1.5 [Globyte et al., 2019]. Along with the
observation that Cas9 can move between PAMs in multi-PAM experiments, the re-
sults in [Globyte et al., 2019] reveal that Cas9 not only uses 3D diffusion as suggested
before [Sternberg et al., 2014], but also 1D diffusion along the DNA. Moreover, the
sliding length suggested by [Globyte et al., 2019] is much shorter than the hundreds of
base pairs suggested by [Sternberg et al., 2014].

Although conflicting upon whether Cas9 can sliding, the double exponential decay
is also observed in [Sternberg et al., 2014] with lifetime of about 3.3s and 58s, and
observed in [Singh et al., 2016], too. In relative systems, such as in type I CRISPR-
Cas systems, the pause time of Tfu (Thermobifida fusca) complex Cascade on DNA
shows a double exponential behaviour as well, with the short and long half life being
1-3s and 50s, respectively [Dillard et al., 2018].

[Hammar et al., 2012] discusses the binding of transcription factors (TF) on lac
operators, in which there is a similar phenomenon with results observed for Cas9.
There is interference between two lac operators on DNA due to facilitated diffusion.
Here “interference” means that the distance between the two operators can change
the detachment rates and other observables. This effect can be derived quantitatively
[Hammar et al., 2012]. Different distances between neighbouring PAMs also leads to
different behaviour of Cas9 [Globyte et al., 2019]. This is another evidence that Cas9
adopts facilitated diffusion.

Similar to the paradox of speed and stability in TF, it is possible that there is also a
trade-off in the context of Cas9, i.e. spending too much time to investigate the vicinity
of each PAM would slow the searching task, but skimming too quick over PAMs might
risk missing the target sequence. This trade-off might exist, regardless of whether Cas9
searches by facilitated diffusion or not.
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Figure 1.5: From [Globyte et al., 2019]. A: Cas9 dwelltimes (average durations of
DNA binding events) with standard errors. Binding events are divided into short and
long events (no 20 base pair here). Only short (black) bindings are present when there
is no PAM but both short and long (gray) exist when there is PAM, and the length of
the long binding event increases with the number of PAMs. B: histogram of binding
events by their time interval, both in logarithm plot. The upper panel of no PAM shows
a fast exponential decay, implying a constant large detachment rate. The bottom panel
of 1 PAM displays a slower exponential decay (the part of the blue curve that diverges
from the red), apart from the red fast exponential decay which is still present at short
times. This slower decay implies another constant but smaller detachment rate, and
hence a double exponential behaviour (the entire blue curve).



Chapter 2

Theoretical preliminaries

In this chapter, I review two existing theories/results that are crucial for my work. The
first section is about Anderson localization, that will be used in chapter 3. The second
section is about the average searching time in facilitated diffusion and will be used in
chapter 4.

2.1 Anderson localization
The idea of Anderson localization is related to the absence of wave diffusion in a
disordered medium [Anderson, 1958]. Anderson considered a electron wave function
in a lattice in which the potential energy of each site is random. He proved that the
electron eigenstates are no longer Bloch functions, and some eigenstates are localized,
in the sense that the magnitude of the wave function decays exponentially in space.
Localization can also occur in classical systems, for example in the 1D oscillator chain
shown in fig 2.1.

The Anderson model considers a 1D lattice, in which the amplitude of the wave func-
tion at site n is ψn. The wave function satisfies the discretised stationary Schrödinger
equation:

−ψn+1 − ψn−1 + 2ψn + Vnψn = Eψn (2.1)

in which the first three terms on LHS come from the discretised Laplace operator
acting on ψn, Vn is the random potential on site n and E is energy. Constants such as
the mass and ℏ are rescaled to 1. Then, for a localized eigenstate with its amplitude
peaked at n∗, the envelope of its magnitude decays exponentially. This means that
[Crisanti et al., 2012]

|ψn| ≤ |ψn∗|e−c|n−n∗|, (2.2)

where c is a constant. The localization length γ is defined as

γ−1 = − lim
|n|→∞

1

|n|
⟨ln |ψn|⟩, (2.3)

9
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Figure 2.1: Normal modes of a 1D oscillator system, in which 25 light atoms and 25
heavy atoms are connected by identical springs. The left panel shows more extended
normal modes with lower frequencies. The right panel shows several strongly localized
normal modes with intermediate and high frequencies. From [Ishii, 1973], originally
from [Dean and Bacon, 1963].

where the average is taken over the disorder. The position of n∗ and the value of
|ψn∗ | do not matter because of the |n| → ∞ limit. However, for an arbitrary E and
some (left) boundary conditions ψ0 and ψ1, one cannot calculate γ by first iterating
Eq. (2.1) to obtain ψn, then using this definition. To show why this does not work,
and also to find a viable alternative, we have to introduce the tool of transfer matrix.

We introduce the vector ψn = (ψn, ψn−1) and the transfer matrix

T̂n =

(
2 + E + Vn −1

1 0

)
. (2.4)

With these definitions, we rewrite Eq. (2.1) as

ψn+1 = T̂nψn (2.5)

and therefore

ψN =
N−1∏
n=1

T̂nψ1. (2.6)

Vn are mutually independent, identically distributed random quantities, so T̂n are
independent and identically distributed (i.i.d.), symplectic random matrices. Then, the
Furstenberg theorem [Furstenberg, 1963, Matsuda and Ishii, 1970, Furstenberg, 1971]
[Ishii, 1973] shows that for any nonzero ψ1, the modulus of the vector of site N , |ψN |
satisfies

lim
N→∞

1

N
⟨ln |ψN |⟩ = Λ1 > 0, (2.7)
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with probability 1, as long as the transfer matrices satisfy some mild conditions:
essentially, for common problems in physics, the only key requirement is that in the en-
semble of T̂n, there are at least two elements with no common eigenvectors [Ishii, 1973].
Here, Λ1 is the maximum Lyapunov exponent.

This result implies that, for almost any (left) boundary condition ψ1, ψN does not
decrease, but increase exponentially with N with a rate Λ1 (specifying ψ1 is the same
as specifying one number only, since only the ratio ψ1/ψ0 matters). This is because,
for a given ψ1/ψ0, a right boundary condition and a given realization of the random
sequence Vn, an arbitrary E is not a eigenvalue. For such a given system, only when
E is equal to an eigenvalue En, the exponential growth of ψn starting from the left
boundary can match the other exponential growth (with decreasing n) of ψn from the
right boundary, at some peak position n∗ in the middle.

In such a eigenstate, the localization length γ is equal to the inverse of Λ1 com-
puted by transfer matrices and Eq. (2.7) with E = En. This statement is called the
Borland conjecture [Borland, 1963]. In situations where this conjecture holds, one can
numerically calculate γ using transfer matrices:

γ−1 = Λ1(E) = lim
N→∞

1

N
ln |ψN(E)| = lim

N→∞

1

N
ln

∣∣∣∣∣Tr
N∏

n=1

T̂n

∣∣∣∣∣ . (2.8)

The value of Λ1(E) does not depend on the realization of the disorder and ψ1

because of the Furstenberg theorem.
One way to solve the spectrum of a 1D disordered system is as follows

[Herbert and Jones, 1971, Thouless, 1972]. For a fixed ψ1/ψ0, ψN is a polynomial of
degree N − 1 in E. Therefore

ψN = A
N∏

n=1

(En − E) , (2.9)

where En are the zeros of ψN and A is a normalization factor that does not grow
with N . This can be seen easily by calculating the coefficient of EN−1. Then, En

are the eigenvalues of a chain satisfying the boundary conditions of the fixed value of
ψ1/ψ0 and ψN = 0. Each factor on the RHS of Eq. (2.9) can be positive or negative
depending on whether E is smaller or larger than En, so

(En − E) = |En − E|eiπθ(E−En), (2.10)

where θ is the Heaviside step function. Substitude this expression into Eq. (2.9) we
have

1

N
lnψN(E) =

1

N

N−1∑
n=1

ln |En − E|+ iπ

N

N−1∑
n=1

θ(E − En) +
1

N
lnA. (2.11)

Eq. (2.11) is known as the Herbert-Jones-Thouless formula [Herbert and Jones, 1971].
Another proof by using Green’s function is in [Thouless, 1972]. Numerically, one can
calculate ψN(E) by transfer matrices and then vary E. Wherever ψN(E) changes sign,
this implies that E has reached an eigenvalue En. When N is large, the spectrum is
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not sensitive to either the given boundary conditions of ψ1/ψ0 and ψN = 0, or the
realization of the sequence T̂n. In the limit N → ∞, it only depends on the probability
distribution of T̂n.

2.2 The average time to reach a specific target in fa-
cilitated diffusion

This section presents a derivation of the average time to reach a specific target in
facilitated diffusion, which will be generalized in my work in chapter 4. The main body
of this section comes from [Hachmo and Amir, 2022], and will not be cited repeatedly
in this section.

In [Hachmo and Amir, 2022], the DNA chain is modelled as a continuous 1D seg-
ment of length 2L, with position denoted by x, with −L ≤ x ≤ L. An unique target
is at the origin. During a 1D search round, a protein bound at any x ̸= 0 can either
detach with a constant rate k, or diffuse to x − δx or x + δx within time δt. The
constant diffusion rate is D = (δx)2

2δt
.

A 1D search round ends with a detachment event. After that, the protein undergoes
a 3D diffusion round of duration t3D, where t3D is drawn from a certain probability
distribution. Then the protein reattaches, with a equal probability to land on any x. In
such a way, 1D and 3D diffusion rounds alternate, until the protein reaches the target
at x = 0.

The goal here is to calculate the average time ⟨T0⟩ to reach the target starting from
a 1D diffusion, with the initial binding position given by a uniform distribution.

2.2.1 Probability to find the target in a 1D round

We call p(x) the probability to find the target in a 1D round, given that the process
started at position x. This is a time independent function that only depends on x.

We consider a protein bound at position x at time t. If it eventually succeeds in
reaching x = 0 without detachment in this round, then during t to t+ δt, it diffuses to
either x−δx or x+δx but not detaching. The probability of not detaching is (1−kδt),
and the probabilities of diffusing to the left and to the right are equal. A recursion
relation for p(x) can be written as

p(x) =
1− kδt

2
p(x+ δx) +

1− kδt

2
p(x− δx). (2.12)

Subtracting p(x) and dividing by δx2 on both sides, in the limit δx→ 0 we obtain

d2p(x)

dx2
=

k

D
p(x). (2.13)

Since we assumed that the DNA chain is very long, we can solve it in the infinite
1D space (−∞,+∞). Considering that p(0) = 1, the solution is
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p(x) = exp

(
−
√
k

D
|x|

)
. (2.14)

2.2.2 The mean first passage time and the mean failed search
time

We denote by T (x) the mean first passage time (MFPT) given that the protein started
at x. This is the mean time to reach the target in a 1D diffusion round normalized by
the number of all trajectories, i.e. those that failed do not contribute to the numerator
of Tn, but they are still counted in the denominator. This means that

T (x) =
N s∑
i=1

t1D,i(x)/N , (2.15)

where N is the total number of trajectories starting from x, N s the number of
successful trajectories, and t1D,i(x) is the time spent by the i-th trajectory that reached
x = 0. Similarly, the mean failed search time, given the protein started at x, is denoted
by T f (x). This is the mean time of 1D diffusion contributed by trajectories that failed
to reach the target before detachment, normalized by the number of all trajectories,

T f (x) =
N f∑
i=1

tf1D,i(x)/N , (2.16)

where N f is the number of failed trajectories, and tf1D,i(x) is the time spent by the
i-th trajectory before detachment. By definition, N s +N f = N .

Both T (x) and T f (x) are time-independent functions, but a recursion relation can
be written by considering what happens in a time interval δt. For T (x). Similar to
Eq. (2.12), the protein diffuse to both the left and right by δx with equal probabilities
(1−kδt)

2
. These events contribute to T (x) as (1−kδt)

2
T (x − δx) and (1−kδt)

2
T (x + δx),

respectively. Since a time δt has passed, T (x) includes another term δt but decreased
by a factor of p(x), because the trajectories that detached (with probability 1− p(x))
do not contribute to T (x). Therefore we have

T (x) = δtp(x) +
(1− kδt)

2
(T (x+ δx) + T (x− δx)) . (2.17)

By similar rearrangement as in Eq. (2.13), we have

d2T (x)

dx2
− k

D
T (x) +

1

D
p(x) = 0. (2.18)
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Given the expression of p(x) in Eq. (2.14), and the boundary conditions T (0) = 0,
T (∞) = 0, the solution to this ODE is

T (x) =
|x|

2
√
kD

exp

(
−
√
k

D
|x|

)
. (2.19)

The recursion relation for T f (x) follows the same logic as that for T (x), Eq. (2.17).
The only change is to replace p(x) by 1− p(x):

T f (x) = δt(1− p(x)) + (1− kδt)
T f (x+ δx) + T f (x− δx)

2
. (2.20)

The ODE then follows:

d2T f (x)

dx2
− k

D
T f (x) +

1

D
(1− p(x)) = 0. (2.21)

By substituting again Eq. (2.14), the solution is

T f (x) = − |x|
2
√
kD

exp

(
−
√
k

D
|x|

)
+

1

k

[
1− exp

(
−
√
k

D
|x|

)]
. (2.22)

2.2.3 The expression for ⟨T0⟩
We denote the starting position of the i-th 1D diffusion as xi. We introduce the
following notations:

• The time spent in the successful i-th 1D search is t1D(xi).

• The time spent in a failed i-th 1D search is tf1D(xi).

• The time spent in the 3D search after the i-th failed 1D search is ti3D.

These quantities are stochastic.
We denote the inital 1D diffusion by subscript 0. Then the total search time T0 is:

T0 = p(x0)t1D(x0) + (1− p(x0))p(x1)×
(
tf1D(x0) + t1D(x1) + t03D

)
+(1− p(x0))(1− p(x0))p(x1)×

(
tf1D(x0) + tf1D(x1) + t03D + t13D

)
+ ...

=
∞∑
i=0

p(xi)

(
t1D(xi) +

i−1∑
j=0

(
tf1D(xj) + tj3D

))
×

i−1∏
j=0

(1− p(xj)) .

(2.23)

We now take the mean on both sides. The mean ⟨...⟩ is over the position x as
well as over stochasticity. All 1D diffusion rounds start from a uniformly distributed
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position. Therefore, for any quantity a in the expression, we have ⟨a(xi)⟩ = ⟨a(xj)⟩, so
we can drop the subscipt associated with a specific starting position and write it just
as ⟨a(x)⟩ (after the ⟨...⟩ operation, it does not depend on x). Note also that different
1D/3D rounds are independent. We then arrive at the following expression:

⟨T0⟩ =
∞∑
i=0

(
⟨p(x)t1D(x)⟩ (1− ⟨p(x)⟩)i + i ⟨p(x)⟩

〈
tf1D(x) (1− p(x))

〉
(1− ⟨p(x)⟩)i−1

+i ⟨p(x)⟩ ⟨t3D⟩ (1− ⟨p(x)⟩)i
)

=
⟨p(x)t1D(x)⟩

⟨p(x)⟩
+

〈
(1− p(x))tf1D(x)

〉
⟨p(x)⟩

+ ⟨t3D⟩
1− ⟨p(x)⟩
⟨p(x)⟩

.

(2.24)

The quantity ⟨p(x)⟩ = 1
2L

∫ L

−L
p(x)dx can be calculated using Eq. (2.14). ⟨p(x)t1D(x)⟩

and
〈
(1− p(x))tf1D(x)

〉
are by definition 1

2L

∫ L

−L
T (x)dx and 1

2L

∫ L

−L
T f (x)dx, respec-

tively. So by using Eqs. (2.19) and (2.22), the final expression is

⟨T0⟩ =
L

√
kD(1− e

√
k
D
L)

− 1

k
+ ⟨t3D⟩

(√
k

D

L

1− e
√

k
D
L
− 1

)

≈ L√
kD

+ ⟨t3D⟩L
√
k

D

(2.25)

In this expression, we neglected terms that are not proportional to L, assuming
that L is very large.





Chapter 3

Interaction of Cas9 with PAM

My own work begins in this chapter. Most of this chapter is taken from my paper
Search and localization dynamics of the CRISPR-Cas9 system [Lu et al., 2021] apart
from this introduction part. There are only some minor changes, in order to fit it into
the context of this thesis. Appendices A to D of this thesis are similarly taken from the
supplements of [Lu et al., 2021]. In this project, we consider the interaction of Cas9
with PAM, without the 20 bp main target. First, we show that a facilitated diffusion
model quantitatively explains the dynamics of Cas9 observed in single-molecule ex-
periments. We then introduce a mapping between facilitated diffusion and Anderson
localization. This approach permits us to determine the localization length of Cas9 on
typical long DNA strands and explain the discrepancy between the sliding length in
[Globyte et al., 2019] and the localization length in [Sternberg et al., 2014] in terms of
a hopping mechanism. The mapping presented in this chapter can be used to study
the dynamics of other DNA binding proteins, such as transcription factors.

3.1 Equally spaced PAMs

We consider a Cas9 protein that binds on a DNA chain of length N and slides along
it before detaching, see Fig. 3.1. Our aim is to quantify the distribution of duration
of binding events depending on the arrangement of specific PAM sites along the DNA
chain. We introduce the probability pn(t) that Cas9 is bound at site n at time t, given
that it had attached on the DNA at time t = 0. Each site represents a nucleotide
position n = 1 . . . N . We assume attachment to be non specific, so that pn(t = 0) =
1/N .

We distinguish between two types of DNA sites. PAM sites are those at the begin-
ning of a PAM sequence, where Cas9 can bind specifically. We consider every other site
as non-specific, including the two other base pairs constituting a PAM, see Fig. 3.1.
We call En the binding energy of Cas9 at position n. We assume that all non-specific
sites have the same binding energy En = 0. If n is a PAM site, then En = −β, with
β > 0. All energies are expressed in units of kBT , where kB is the Boltzmann constant
and T the temperature. Our aim is to analyze single binding events and therefore we
do not consider rebinding after detachment.

The probabilities pn(t) evolve according to the master equation

17
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d

dt
pn(t) = Dn,n+1pn+1 +Dn,n−1pn−1 − (Dn+1,n +Dn−1,n + kn)pn, (3.1)

in whichDn,m = DeEm and kn = keEn , where the diffusion rateD and the unbinding
rate k are given parameters. We impose vanishing fluxes at the boundaries, D0,1 =
D1,0 = DN,N+1 = DN+1,N = 0. This choice of rates satisfies the detailed balance
condition Dn,me

−Em = Dm,ne
−En .

Diffusion

Detachment

PAM

G GG G

Figure 3.1: Scheme of the model. PAM sites and non-specific sites are shown in yellow
and blue, respectively. The second and third bases of PAM sequences are considered
as non-specific sites (light blue). Green arrows represent sliding rates and black arrows
represent unbinding rates, see Eq. (3.2). Thicker arrows correspond to larger rates.

We express the model in vector notation by defining p(t) = (p1(t), p2(t) . . . pN(t)).
We write Eq. (3.1) as dp/dt = Âp, where the elements Am,n of the matrix Â are given
by

Am,n =

{
DeEn if |n−m| = 1
−(k + 2D)eEm if n = m.

(3.2)

The formal solution to the master equation is p(t) = eÂtp(0), where p(0) is the uniform
initial condition. The eigenvalue equation associated with the master equation is

Âψ = −λψ. (3.3)

Equation (3.3) is solved by a set of eigenvalues λ = λ1, λ2, . . . λN and associated right
eigenvectors ψ = ψ(1),ψ(2), . . .ψ(N), assumed to be normalized. The solution of the
master equation can be decomposed into eigenvalues

p(t) =
N∑
i=1

e−λitciψ
(i), (3.4)

where the coefficients ci are determined by the initial condition. Because of detachment,
one has limt→∞ pi(t) = 0 for all i. This fact and the detailed balance condition imply
that all eigenvalues must be real and positive. We sort the eigenvalues so that λ1 is
the smallest one.

The total probability that Cas9 is still bound at a time t is given by P (t) =
∑

n pn(t).
Since we are considering a single binding event, P (t) is a decreasing function of t. We
define the instantaneous detachment rate g(t) = −d/dt P (t). Single-molecule exper-
iments [Sternberg et al., 2014, Singh et al., 2016, Globyte et al., 2019] observed that



3.1 Equally spaced PAMs 19

the temporal decay of g(t), and therefore of P (t), is characterized by two distinct
exponential slopes at short and long times.

To understand these two regimes, we focus on P (t) and define its instantaneous
exponential slope K(t) = −d/dt lnP (t). We also define the total probability PPAM(t) =
[
∑

n∈PAM pn(t)]/P (t) of Cas9 being bound to a PAM site at time t, given that it had
not detached yet. By summing Eq. (3.1) over n, we find that

K(t) = k [1− PPAM(t)] + ke−βPPAM(t). (3.5)

Considering that 0 ≤ PPAM(t) ≤ 1, the slope K(t) is limited by the two unbinding
rates:

ke−β ≤ K(t) ≤ k. (3.6)

The value of K(t) in this range is determined by PPAM(t). Since the initial distri-
bution is uniform, at short times PPAM is equal to the fraction of PAM sites. Given
that this fraction is usually small, Eq. (3.5) implies K(t) ≈ k at short times. In the
long time limit, Eq. (3.4) leads to conclude that K(t) = λ1.

Experiments in [Globyte et al., 2019] measured the distribution of Cas9 binding
events on DNA sequences containing from 0 to 5 PAM sites . We jointly fitted the
parameters k, β, and D to these six experiments, see Fig. 3.2a. Solutions of the master
equation (3.1) with the best-fit parameters reproduce the double exponential behavior
and fit well the experimental data, see Fig. 3.2b. The fitted values of the parameters are
k = 1.94±0.10 s−1, β = 3.34±0.07, and D = 52±9 bp2s−1. Experiments on a different
variant of Cas9 find differences in binding energy between PAM and near-cognate sites
that are comparable with our estimate of β [Farasat and Salis, 2016]. A more detailed
model where each non-PAM sequence is characterized by a different binding energy,
leads to similar fitted values of the corresponding rates, see appendix. These evidences
support robustness of our results.

At increasing number of PAM sites, the second slope in Fig. 3.2a becomes signifi-
cantly less steep than the first. According to Eq. (3.5), this means that, at long times,
Cas9 is much more localized on PAM sites compared with short times. Inspecting
the eigenvectors ψ(1) associated with the smallest eigenvalue λ1 confirms this idea, see
Fig. 3.2c.

To gain further insight into the dynamics observed in Fig. 3.2b, we analytically
compute λ1 and its eigenvector for an infinitely long chain with a single PAM site at
n = 0. For |n| > 1, the eigenvector satisfies

−λ1ψ(1)
n = D

(
ψ

(1)
n+1 + ψ

(1)
n−1 − 2ψ(1)

n

)
− kψ(1)

n . (3.7)

We assume a solution of the form ψn ∝ e−|n|/ℓ where |n| > 0 and we define ℓ as the
sliding length. This solution is inspired by the continuous approximation to Eq. (3.7).
Substituting into Eq. (3.7) we obtain

k − λ1 = 2D[cosh(1/ℓ)− 1]. (3.8)

By expanding the cosh at first order we find ℓ ≈
√
D/(k − λ1). This is expected
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Figure 3.2: (a) Arrangements of PAM sites used in the experiments in
[Globyte et al., 2019]. Line colors correspond to the different curves in panel b. The
figure shows only the portion of the DNA sequence of length N = 98 where the PAM
sites are located. (b) Comparison of the prediction of our model (lines) with exper-
iments [Globyte et al., 2019] (points). Model parameters are determined by jointly
fitting the experimental data for j = 0 . . . 5 PAM sites using maximum likelihood, see
Appendix A. (c) Eigenvectors ψ(1) for j = 1 . . . 5.

because ψn ∝ e−
√

k−λ1
D

|n| is exactly the solution to the continuous approximation of
Eq. (3.7). Note that λ1 ≤ k due to Eq. (3.6). The three unknown λ1, ℓ and ψ0

(essentially the ratio ψ0/ψ±1) can be determined from Eq. (3.8) and the equivalents of
Eq. (3.7) for n = 0 and |n| = 1. Substituting the fitted parameters of Fig. 3.2, we find
ℓ ≈ 6.2 bp. The relative error of λ1 obtained from this analytical solution to that of
the numerical result is about 0.5%. Besides, the ψ(1) from the analytical solution is
indistinguishable from the numerical one except at the two ends of the DNA chain. In
fact in the continuous limit and for a infinitely long chain the analytical solution will
be exact.

Both our model and experiments [Globyte et al., 2019] show that the lifetime of long
binding events increases at increasing number of PAMs, see Fig. 3.2b. In the model,
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this means that λ1 is a decreasing function of the number of PAMs. This effect can
be explained by interference among PAM sites, i.e. the fact that the eigenvector ψ(1)

for j PAM sites is not simply a superimposition of j single-PAM eigenvectors, unless
the interval between the PAM sites is much larger than ℓ. Only in this limit binding
events around each PAM site behave independently, and the long-time exponential
slope becomes independent of the number of PAM sites, see Fig. 3.3. At shorter
intervals, interference leads to an increase in target occupancy. This implies that, at
large t, PPAM(t), and therefore the typical lifetime of binding events 1/λ1, are decreasing
functions of the interval between the PAM sites, see Eq. (3.5) and Fig. 3.3.

10 20 30 40
Interval (base pairs)

0.3

0.4

0.5

0.6

λ 1 1PAM
2PAM
3PAM
4PAM
5PAM

Figure 3.3: Interference between j = 1 . . . 5 equally spaced PAM sites on an infinite
DNA chain. Lowest eigenvalue λ1 as a function of the interval between the PAM sites.
Points are obtained by numerically diagonalizing the matrix Â corresponding to each
case, with N = 220. The horizontal line marks the value of λ1 for a single PAM
sequence, from the solution of Eq. (3.7).

In summary, we found that the distribution of a Cas9 molecule in a region of DNA
containing several PAM sites tends to be localized.

3.2 Generic DNA and disordered assortment of PAMs

We now study the behavior of Cas9 on a very long stretch of DNA including a disordered
assortment of PAM sites. The theory of Anderson localization predicts that, in such
disordered one-dimensional systems, eigenvectors are exponentially localized:

ψn ∼ e−
|n−n∗|
γ(λ) , (3.9)
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in the limit n→ ∞. Here n∗ is the location of the eigenvector peak as in chapter 2 and
γ(λ) is the localization length associated with the eigenvalue λ. Unlike wave functions,
here ψn is real so there is no need to take the modulus. The localization length γ
can be thought as the generalization of the sliding length ℓ: the former is defined for
an arbitrary disordered DNA chain and for the envelope of a eigenvector, whereas the
latter is defined for a single target. Our hypothesis is that the localization length
associated with the smallest eigenvalues of Cas9 dynamics can explain the results of
DNA curtains experiments [Sternberg et al., 2014].

We sharpen the analogy between our problem and the Anderson localization by
rescaling the components of our eigenvectors by the Boltzmann weight, fn = ψn exp(En).
With this transformation, Eq. (3.3) assumes the same form for PAM and non-PAM
sites:

fn+1 + fn−1 −
(
2 +

k − λe−En

D

)
fn = 0. (3.10)

This equation is formally similar to the discrete Schrödinger equation (2.1). It can be
solved by the transfer matrix method. We introduce the vector fn = (fn, fn−1) and the
transfer matrix takes the form

T̂n =

(
2 + k−λe−En

D
−1

1 0

)
. (3.11)

With these definitions, we rewrite Eq. (3.10) as

fn+1 = T̂nfn (3.12)

and therefore

fN =
N−1∏
n=1

T̂nf1. (3.13)

We assume that, in a typical long DNA sequence, each site n has a probability 1/16 to
be a PAM site, thereby affecting the value of En in the corresponding matrix Tn. As
explained in chapter 2, Eq. (3.13) expresses the solution of the eigenvalue equation as
a product of random matrices.

The localization length γ can be calculated from this product with Herbert- Jones-
Thouless forumula. In this situation Eq. (2.11) and (2.8) reads

1

N
ln fN(λ) =

1

N

N−1∑
n=1

ln |λn − λ|+ iπ

N

N−1∑
n=1

θ(λ− λn) +
1

N
lnA (3.14)

and

Λ1(λ) = lim
N→∞

1

N
ln fN(λ) = lim

N→∞

1

N
ln

(
Tr

N∏
n=1

T̂n

)
. (3.15)

The transfer matrices for a PAM site and a non-PAM site do not share eigenvector,
so the Furstenberg theorem is satisfied, then Λ1(λ) is independent of the realization of
the disorder and of the choice of f1.
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The validity of the Borland conjecture for our class of systems is supported by
numerical and theoretical studies [Ishii, 1973, Matsuda and Ishii, 1970]. Therefore,
the inverse of the real part of Λ1(λ) can be identified with the localization length γ(λ).
Further, Eq. (3.14) links the imaginary part of Λ with the cumulative density of states.
Computing Λ1(λ) from the product of transfer matrices, we find that the localization
length for the whole spectrum is always shorter than 11 base pairs, see Fig. 3.4b.
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Figure 3.4: (a) Cumulative density of states (DOS) and (b) localization length as
function of λ for the nearest neighbour model, Eq. (3.1), computed using Eq. (3.14).
Results obtained by the transfer matrix method agree with those obtained by direct
diagonalization. The DNA chain length is N = 106 for the transfer matrix method
and N = 5000 for the direct diagonalization. (c) Cumulative DOS and (d) localization
length for the hopping model expressed by Eq. (3.16), computed using Eq. (3.17). In
this case, the DNA chain length is N = 2000.

We remark that the disordered arrangement of PAM sites is crucial for this result.
In a long DNA chain containing a periodic arrangement of PAM sites, the eigenvectors
are extended rather than localized, see Appendix C.

The localization lengths in Fig. 3.4 are much shorter than those observed in DNA
curtains experiments [Sternberg et al., 2014]. We assume that this discrepancy can be
explained by the following idea. Measuring the distribution of Cas9 in an experiment
amounts to performing an “ensemble average” which is potentially affected by search
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mechanisms other than sliding (such as hopping). In contrast, FRET experiments
focus on individual sliding events, which are unaffected by such mechanisms.

To test this idea, we generalize our model to include hopping. In a hopping event,
Cas9 detaches and then reattaches to the DNA at a short distance. This amounts to
include in our master equation diffusion among non-nearest neighboring sites:

Dm,n = DeEnh(|n−m|), (3.16)

where h(n) is a positive decreasing function characterizing the probability of hop-
ping events at a given distance n relative to sliding events. We impose h(1) = 1, so
that nearest-neighbor sliding is consistent with Eq. (3.2). We determine the func-
tion h(n) from the solution of a diffusion equation in cylindrical coordinates, see
[Lomholt et al., 2009] and Appendix D. Unbinding rates in the hopping model are the
same as in Eq. (3.2). For models with next to nearest neighbor interactions, such as
our hopping model, the localization length can not be computed using Eqs. (3.14) and
(3.15), see [Biddle et al., 2011]. We therefore estimate the localization length by a more
direct strategy, although computationally heavier. Assuming that a given eigenvector
ψ(i) associated with an eigenvalue λi is localized, we obtain from Eq. (3.9) that

γ(λi) ∼ − (N − 1)

ln
[
ψ

(i)
1 ψ

(i)
N

] . (3.17)

In this case, the localization length associated with the lowest eigenvalues is on the
same order of the experimentally measured one (hundreds of base pairs, see Fig. 3.4d).

In conclusion, in this chapter we studied the search dynamics of Cas9 along the
DNA. We have shown that the predictions of a facilitated diffusion model with a short
sliding length are consistent with the result of single-molecule FRET experiments. By
applying the theory of Anderson localization, we have argued that a hopping mechanism
can explain how Cas9 is generically distributed along the DNA.

The mapping to Anderson localization introduced in this chapter is a powerful tool
that can be applied to any protein performing facilitated diffusion, such as transcription
factors.



Chapter 4

The total search time in a
motif-guided search mechanism

The work in this chapter will form the basis of a future manuscript. We consider
the recognition of the 20 bp target complementary to the gRNA in the context of
facilitated diffusion of Cas9. Our focus is to estimate the mean total search time until
recognition, and how the energy and density of PAMs affect it. We will see that the
trade-off discussed at the end of chapter 1 is indeed present in this context. That
is, being too fast when scanning PAMs might risk missing the target sequence, hence
longer total search time. But spending more time on the vicinity of each PAM also
leads to longer total search time.

4.1 The model with the recognition mode

As in chapter 3 we model the DNA as a discrete lattice. The Cas9 can detach and
diffuse with rates

kn = k exp(En)

Dm,n = D exp(En), |m− n| = 1
(4.1)

We assume the total length of the DNA is 2L+ 1 bp such that n ∈ [−L;L], with a
unique target sequence complementary to the gRNA. At the two boundaries n = ±L,
the boundary condition is D±(L+1),±L = 0. The PAM next to the unique target is
located at the origin n = 0. Since we now consider a generic disordered DNA, for any
site n ̸= 0, the energy En is a random variable draw from a probability distribution
independent of n. This is our homogeneous assumption for Cas9 in the sliding mode.
This assumption does not hold in more complicated cases, e.g. for TFs, there can be
a energy funnel around the target [Cencini and Pigolotti, 2018]. A given DNA chain
corresponds to a given sequence of En, representing the energy landscape of that DNA
for Cas9.

We call the state of successfully forming a hybrid of gRNA and the target sequence
as the recognition mode (R-mode). The state in which the Cas9 can diffuse and detach
is the sliding mode. The Cas9 can only transit to the R-mode from the origin, with
a rate fT (E0) (T for target). fT (E0) is a functions of E0 only. Once the R-mode is

25
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Figure 4.1: A sketch of the model. Circles represent states of the Cas9. Blue and
yellow circles represent base pairs on the DNA, and yellow circles represent the starting
base pair of a PAM. These are the same as in Fig. 3.1. In contrast, here light blue
circles represent the 20 bp target sequence.

reached, the search process is successfully completed. A sketch of the model is shown
in Fig. 4.1

Cas9 that detaches before finding the unique target would then do a 3D diffusion
round, with duration given by t3D. This is a stochastic quantity draw from a given dis-
tribution. After the 3D diffusion round, Cas9 lands on any site with equal probability,
and starts its 1D search again.

In this chapter we do not consider hopping. The first reason is that there is no
clear cut between a short detaching before reataching and a hopping event. In this
type of process, the geometry of DNA can play an important role: in a DNA curtain
experiment, DNA chains are straightened, therefore the Cas9 is very likely to reattach
to a nearby site relative to its detaching position. In contrast, in a in vivo searching
scenario, the DNA chain is rather free so as a first approximation it is reasonable to
assume that the rebinding site is randomly distributed. In such a way, the hopping
mechanism is at least partly included in the model stated above. Secondly, focus-
ing on diffusion can keep the physics relatively simple, without losing the essential
mechanisms.

4.1.1 Model parameters

We estimate fT (E0) where E0 equals the energy of a NGG PAM from experimental
results in [Ivanov et al., 2020]. These results show that a R-loop forms approximately
100ms after Cas9 binding, so we take fT (E0) = 10s−1. To directly measure this rate
is hard, because this timescale is beyond experiment time resolution, e.g., 0.1 second
for FRET.

fT (E0) is the only additional parameter we need for the model. It should satisfy
fT (E0) ∝ exp(∆G), where ∆G is the energy difference of the PAM state and the R-
loop state in units of kBT . But changing E0 possibly only changes the starting energy
baseline of the melting process, and does not necessarily change ∆G. Therefore we
assume fT (E0) = 10s−1 independent of E0 throughout this chapter.

We use two kinds of energy landscape in simulation. The first is the same as in
chapter 3, i.e. En = 0 with a probability of 15/16, and En = β with a probability of
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1/16. The values of k and D are those obtained in chapter 3. In the second kind, the
landscape is the same as in the Appendix B, i.e. there are 16 possible values that En

can take with equal probability, corresponds to all possible bp couples, and En = −4.47
for GG. The k and D values are those from Appendix B as well.

In both of these cases, we only change the energy of the PAM (E0 and other PAMs),
and investigate how this affect the (average) total searching time. We take for t3D a
constant value of 1.39s. We choose a genome size of 2L+1 = 5001 (comparable to that
of a small bacteriophage genome). The simulation always starts from a 1D diffusion
with a uniformly distributed initial condition. For each value of PAM energy, at least
1000 trajectories are simulated, each until it reaches the R-mode. Then we compute
the average total searching time for that PAM energy ⟨Ttot⟩, along with its standard
deviation, as its error.

4.1.2 Simulation results

Our simulations reveal a mininum in ⟨Ttot⟩ as a function of the PAM energy, see fig 4.2.
This confirms the presence of a trade-off: If the PAM energy is too low, the Cas9 will
waste too much time on PAMs other than the origin, hence increasing ⟨Ttot⟩. But if
the PAM energy is too high, there is a possibility of diffusing away before transit to
the R-mode. This may even lead to a further detachment, hence increasing ⟨Ttot⟩ as
well.

Figure 4.2: ⟨Ttot⟩(s) as a function of PAM energy. For the blue data sets, the
probability distribution of EN is the same as that in section 3.2 and for the orange, the
bp-dependent model as in Appendix B. The latter model has different energy reference
point from the former (as explained in appendix B, the zero energy corresponds to the
non-canonical PAM with the highest energy), so orange data points have been shifted
horizontally to match their energy reference point.
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Near the minimum position, too many trajectories are needed to make the error
bar of ⟨Ttot⟩ small enough. Also longer simulation time is needed for longer genome.
To encompass these issues, we attempt the possibility to predict ⟨Ttot⟩ analytically in
the next section.

4.2 Analytical prediction of ⟨Ttot⟩
We denote the stochastic total search time by Ttot. In this chapter, we redefine the
average denoted by ⟨...⟩ with one more operation compared with the definition in chap-
ter 2: average over different energy landscape, besides over stochasticity of trajectories
and over the initial position n.

4.2.1 ⟨T0⟩ for a rough and disordered energy landscape

To derive an expression for ⟨Ttot⟩, we need to first generalize the calculation in section
2.2 to a rough, disordered energy landscape and also discrete lattice. ⟨T0⟩ is now the
average time to reach the origin.

In parallel with the p(x) in chapter 2, we call pn the probability to find the target
within a 1D process, given the process started at position n. We recall that this is
a time independent function. In the general case with diffusion and detaching, its
recursion relation can be written as

pn =
Dn+1,n

Dn+1,n +Dn−1,n + kn
pn+1 +

Dn−1,n

Dn+1,n +Dn−1,n + kn
pn−1. (4.2)

Given our model Eq. (4.1), this equation becomes

pn =
D

2D + k
(pn+1 + pn−1) (4.3)

and then

pn+1 + pn−1 − 2pn =
k

D
pn. (4.4)

Since p0 = 1 and we assumed the DNA chain is very long, the solution is

pn = exp (−α|x|) (4.5)

in which α ≡ cosh−1
(
k+2D
2D

)
.

The continuous version of Eq. (4.4) above, assuming k(x) = k exp(E(x)) and
D(x) = D exp(E(x)) is
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d2p(x)

dx2
=

k

D
p(x), (4.6)

whose solution is

p(x) = exp

(
−
√
k

D
|x|

)
. (4.7)

The above two equations are the same as Eqs. (2.13) and (2.14) in chapter 2. This is
because, for the model defined by Eq. 4.1, Eq. (4.4) and Eq. (4.6) are exactly the same
for all n and x, respectively, independent of the distribution of En or E(x), since the
exp(En) factor cancels out. So the solution is also independent of the energy landscape.

In parallel with T (x), we denote the MFPT (given it started at n) by Tn. This is
the mean time to reach the origin rather than the R-mode. The details in its definition
are the same as for T (x). It is also a time independent function, and its recursion
relation can be written by considering what happens in a time interval δt:

Tn = Tn(1− knδt−Dn+1,nδt−Dn−1,nδt) + δtpn +Dn+1,nδtTn+1 +Dn−1,nδtTn−1.
(4.8)

For the model of Eq. (4.1), this simplifies to

Tn+1 + Tn−1 − 2Tn −
k

D
Tn +

exp(En)

D
pn = 0 (4.9)

The continuous version of this equation, using k(x) = k exp(E(x)) and D(x) =
D exp(E(x)) is

d2T (x)

dx2
− k(x)

D(x)
T (x) +

1

D(x)
p(x) =

d2T (x)

dx2
− k

D
T (x) +

e−E(x)

D
p(x) = 0,

(4.10)

with the boundary condition T (0) = 0, T (∞) = 0.
In the rest of this subsection, the focus will be on the continuous model, since it is

easier to solve analytically, and also because we shall see that the result can be applied
with very high accuracy to the discrete model.

Apart from the case considered in chapter 2 where E(x) ≡ 0, we cannot solve
Eq. (4.10) directly, but since what we need is just ⟨T (x)⟩, we can proceed as follows.

The average over x and ensemble average (over different energy landscapes) com-
mute, so we first take the ensemble average of Eq. (4.10). Let us denote the en-
semble average by T (x) (and the same for other quantities). By our definitions,
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1
2L

∫ L

−L
T (x)dx = ⟨T ⟩ = ⟨p(x)t1D(x)⟩, etc. Note that ensemble average and deriva-

tives commute as well, so that we have:

d2T (x)

dx2
− k

D
T (x) +

exp(−E(x))
D

p(x) = 0. (4.11)

As we showed, in this model p(x) is the same for all members of the ensemble, so
that p(x) = p(x) and exp(−E(x))p(x) = exp(−E(x))p(x). Now, since exp(−E(x)) is
a constant (independent of x) due to homogeneity, we can solve the above equation
in parallel with Eq. (2.18). The solution is just Eq. (2.19) multiplied by a factor of
exp(−E(x)):

T (x) = exp(−E(x)) |x|
2
√
kD

exp

(
−
√
k

D
|x|

)
. (4.12)

We define the mean failed search time T f
n , in parallel with T f (x) defined in chapter

2, as the mean time of 1D diffusion contributed by the trajectories that failed to reach
the origin before detachment. Here, for a rough energy landscape, the equation for
T f (x) is the same as that of T (x) but with p(x) replaced by 1 − p(x). The following
calculations are also similar. The counterpart of (4.11) is

d2T f (x)

dx2
− k

D
T f (x) +

exp(−E(x))
D

(1− p(x)) = 0. (4.13)

and its solution is

T f (x) = exp(−E(x))

(
− |x|
2
√
kD

exp

(
−
√
k

D
|x|

)
+

1

k

[
1− exp

(
−
√
k

D
|x|

)])
.

(4.14)

The calculation of ⟨T0⟩ can be done following the same steps as in subsection 2.2.3
until Eq. (2.24):

⟨T0⟩ =
⟨p(x)t1D(x)⟩

⟨p(x)⟩
+

〈
(1− p(x))tf1D(x)

〉
⟨p(x)⟩

+ ⟨t3D⟩
1− ⟨p(x)⟩
⟨p(x)⟩

. (4.15)

The average ⟨p(x)⟩ = 1
2L

∫ L

−L
p(x)dx is also unchanged since p(x) stays the same.

⟨p(x)t1D(x)⟩ and
〈
(1− p(x))tf1D(x)

〉
are given by 1

2L

∫ L

−L
T (x)dx and 1

2L

∫ L

−L
T f (x)dx,

respectively, So by using Eq. (4.12) and (4.14) we obtain
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⟨p(x)t1D(x)⟩ = exp(−E(x))

[
− 1

2k
e−

√
k
D
L +

1

kL

√
k

D
(1− e−

√
k
D
L)

]
(4.16)

and

〈
(1− p(x))tf1D(x)

〉
= exp(−E(x))

[
1

2k
e−

√
k
D
L − 2

kL

√
k

D
(1− e−

√
k
D
L) +

1

k

]
. (4.17)

We substitute these three components to find

⟨T0⟩ = exp(−E(x))

(
L

√
kD(1− e−

√
k
D
L)

− 1

k

)
+ ⟨t3D⟩

(√
k

D

L

1− e−
√

k
D
L
− 1

)

≈ exp(−E(x)) L√
kD

+ ⟨t3D⟩L
√
k

D
.

(4.18)

Comparing this equation with Eq. (2.25), we see that under the model of Eq. (4.1),
the 1D sliding time is scaled by a factor of exp(−E(x)), which is intuitively clear,
because both diffusion and detachment on a position with energy E(x) are scaled by a
factor exp(−E(x)).

Finally, we comment on the result. In facilitated diffusion, the mean searching time
is often estimated as

⟨T0⟩ ≈ Γ(⟨t1D⟩+ ⟨t3D⟩) (4.19)

(see for example, [Cencini and Pigolotti, 2018]), in which Γ is the number of 1D and
3D diffusion rounds. 1

⟨p(x)⟩ is by definition the average number of rounds, so all three
terms in (4.15) have the factor 1

⟨p(x)⟩ . The other insight is that, from Eq. (4.7) we know
that ⟨p(x)⟩, which is just the mean of p(x) over (−L,L) (essentially over (−∞,+∞)),
is mainly contributed by values of p(x) where |x| is small. This is the message conveyed
in [Cencini and Pigolotti, 2018]: the number of rounds is determined by how easy it
is to find the target when sliding in its proximity, rather than by the average sliding
length.

The 1−⟨p(x)⟩ factor in the t3D term appears because the search process starts with
a 1D diffusion, so ⟨t3D⟩ should be multiplied by "the number of rounds minus one",
i.e. 1

⟨p(x)⟩ − 1 rather than just 1
⟨p(x)⟩ .
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4.2.2 The framework of the calculation

The time Ttot is distributed according to a certain distribution P (Ttot), so that∫ +∞
0

TtotP (Ttot)dTtot = ⟨Ttot⟩. In the calculation of ⟨Ttot⟩ we do not need to compute
P (Ttot) explicitly: what we only use is its normalization,

∫ +∞
0

P (Ttot)dTtot = 1.
The time T0 is also a stochastic quantity with a distribution P0(T0), such that∫ +∞

0
T0P0(T0)dT0 = ⟨T0⟩. In the calculation of ⟨Ttot⟩, we only use

∫ +∞
0

P0(T0)dT0 = 1
as well.

To start our derivation, we first divide the trajectories into two types:

• In the first type, between the first binding to the central PAM and the final
recognition, there is no detachment and 3D diffusion.

• In the second type, there are one or more detachment events.

Now, we make the approximation that after Cas9 reaches the central PAM, there are
only two possibilities for its next step: it either transits into the R-mode, or it diffuse
to one of the central PAM’s two neighbours. In other words, we neglect the probability
of directly detaching from the central PAM. This is a good approximation because
keβ ≪ 2Deβ ≲ fT , and it substantially simplifies the calculation. The consequence
of this approximation is that a Cas9 at the central PAM has probability fT

fT+2Deβ
to

transit into the R-mode, and probability 2Deβ

fT+2Deβ
to diffuse away. We denote these

probabilities by p and 1− p, respectively.
The contributions from trajectories in the two types can be calculated by dividing

them further into different groups. The detailed calculation is given in appendix E. Here
we just express the result. The contribution to ⟨Ttot⟩ from the first type of trajectories
is

p⟨T0⟩
1

1− r
+
p(1− p)e−

√
k
D

fT + 2Deβ
1

(1− r)2
+
p(1− p)e−

√
k
D

√
4Dk

1

(1− r)2
+

p

fT + 2Deβ
1

1− r
,

(4.20)

in which r =
(
(1− p)e−

√
k
D

)
. The contribution from the second type is

(⟨T0⟩+ t3D + ⟨Ttot⟩)(1− e−
√

k
D )(1− p)

1

1− r

+
(1− p)

fT + 2Deβ
(1− e−

√
k
D )

1

(1− r)2
+

(1− p)2e−
√

k
D

√
4Dk

(1− e−
√

k
D )

1

(1− r)2

+
1

k

(
1− e−

√
k
D

(
1 +

√
k

4D

))
(1− p)

1

1− r
.

(4.21)

4.2.3 ⟨Ttot⟩ solved

Finally, by equating ⟨Ttot⟩ with the sum of Eqs. (4.20) and (4.21), we can solve ⟨Ttot⟩
as an unknown (note that it also appears in Eq. (4.21), see the derivation in Appendix
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E for the reason).

⟨Ttot⟩ = ⟨T0⟩+
(1− p)e−

√
k
D

fT + 2Deβ
1

(1− r)
+
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k
D

√
4Dk

1

(1− r)
+

1

fT + 2Deβ

+(⟨T0⟩+ t3D)(1− e−
√

k
D )

(1− p)

p
+

(1− p)

fT + 2Deβ
(1− e−

√
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√
k
D

√
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√
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D
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√
k

4D
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(4.22)

By substitute Eq. (4.18), and since L≫ 1, this can be considerably simplified into

⟨Ttot⟩ ≈ L

[
1 +

2Deβ

fT
(1− e−

√
k
D )

](
exp(−En)√

kD
+ t3D

√
k

D

)
(4.23)

By taking the derivative of the above equation, we can find the β correspond to
the minimum ⟨Ttot⟩. One can see from Eq. 4.23 that the result does not depend on L.
The result is

β ≈ −1

2
ln

[
2D

αfT
(1− e−

√
k
D )
(
(1− α)exp(−En)

′
+ t3Dk

)]
, (4.24)

in which α is the abundance of PAM (e.g. 1/16 for a two-bp PAM), and exp(−En)
′

is the average of exp(−En) for n that is not a PAM. In formula,

(1− α)exp(−En)
′
+ αeβ = exp(−En). (4.25)

Then we analyse the dependence of the optimal β on our model parameters as
follows. Varying one parameter on the RHS of Eq. (4.24) at a time, while keeping the
others constant, we find that:

1, The optimal β increases with increasing α. This is because the more abundant
the PAMs are, the more time will be wasted on irrelevant PAMs. A larger β can
compensate for this and hence leads to a smaller ⟨Ttot⟩.

2, The optimal β decreases with increasing k. With a higher k, the cost of missing
the target is higher: the risk of detaching and doing another 1D round is larger. A
smaller β can compensate for this and hence leads to a smaller ⟨Ttot⟩.

3, The optimal β decreases with increasing t3D. The reason is similar to when k is
increasing: the cost of missing the target is higher due to the larger t3D.

4, The optimal β decreases with increasing exp(−En)
′
. Since the 1D diffusion time

spent on non-PAM sites is proportional to exp(−En)
′
, The reason is again similar to

the last two cases: the cost of missing the target is higher with a higher exp(−En)
′
.

5, The dependence of the optimal β on D is not monotonic. This is because D
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affects both sides of the trade-off.
In summary, the two approximations used in this section are:
1, We ignored the probability that Cas9 detaches directly from n = 0. This ap-

proximation neglects some detaching events. This is the possible reason to the fact
that, when t3D is small, the precision of the result is higher, since the proportion of 3D
diffusion time in ⟨Ttot⟩ is smaller when t3D is small.

2, We used the first passage distribution of a 1D Brownian motion (rather than
that of a 1D random walk in discrete space, see appendix E).

If t3D is taken to be a stochastic quantity, the only change in the calculation is to
replace the constant t3D by ⟨t3D⟩.

4.2.4 Comparison with simulation and predictions

The analytical prediction for the two-level landscape compared with simulations is
shown in fig. 4.3. For the worst data point, the analytical result is still within two the
standard errors from the simulations.

Figure 4.3: Comparison of analytical result and simulation. Model choice and pa-
rameters are the same as in fig. 4.2.

For smaller t3D value, the prediction is even better. Fig. 4.4 shows the result for
t3D = 0.139s, which is 1/10 of that in fig. 4.3. Other parameters are the same.

For longer genome, simulations become slow. For example, for a 104 bp genome,
result for β = −2.5 and −2.3 are ⟨Ttot⟩ = 2543.1s and ⟨Ttot⟩ = 2543.4s, respectively.
10000 trajectories result in an errorbar of around 25 s, therefore 108 trajectories are
not enough to locate the position of the mininum precisely.

Fig 4.5 shows the analytical results for genome sizes 5000, 10000, 15000, 20000.
The other configurations and parameters the same as in fig 4.3. This demonstrate that
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Figure 4.4: Comparison of analytical result and simulation for t3D = 0.139. Model
choice and other parameters are the same as in fig 4.3

the prediction of Eq. (4.23) is indistinguishable from that of Eq. (4.22), and hence
Eq. (4.24) is very precise, too.

The result shows that for large genome, this trade-off is very significant. Since
bacteriophage genome ranges from 5,000 to 5,000,000 bp, a typical genome is likely to
be even larger than those considered in fig. 4.5, so the mean total search time ⟨Ttot⟩
could be very sensitive to the PAM energy.
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Figure 4.5: Analytical results of ⟨Ttot⟩, for genome sizes 5000, 10000, 15000, 20000.
Other parameters the same as in fig 4.3. The minimum position is marked. One
can only see four curves rather than eight, because the four curves by Eq. (4.23) are
indistinguishable from their four counterparts by Eq. (4.22).



Chapter 5

Specificity of Cas9 recognition of its
target

At variance with the previous two chapters, the results in this chapter are only prelim-
inary. We study the specificity of Cas9 recognition of its main target. The first section
is based on the measured equilibrium occupancy of Cas9 on targets with mismatches.
We attempt to use these occupancy data to infer nucleic acid thermodynamics param-
eters, and predict the binding free energy of other unmeasured mismatched targets. In
the second section, we propose a model to explain that the association/disassociation
rates are observed to be constant in time. This fact has been introduced in subsec-
tion 1.1.3. Both sections of this chapter are based on the experimental results from
[Boyle et al., 2017].

5.1 The specificity energetics

As explained in the introduction, [Boyle et al., 2017] creates variants of a given DNA
target sequence, where 1 or 2 bp of the 20 bp main target are mutated. They mea-
sured equilibrated occupancies of the variants after incubation. Like other experiment
focusing on off-target behaviour, dCas9 instead of Cas9 was used. From now on, we
call a target sequence with 1/2 mutated bp as "single mismatch"/"double mismatch".
In this section, we present a model that uses these results to infer nucleic acid ther-
modynamics parameters, and predict the binding free energy and occupancy of other
unmeasured mismatched targets that contains more than two mutated base pairs.

5.1.1 The model without compensation terms

In [Boyle et al., 2017], the occupancy was measured in such a way that only long-time
binding of Cas9 was recorded. Also, the target DNA sequences were so short that
every sequence can either be occupied by only one (rather than multiple) Cas9 or
empty. Therefore, we do not have to consider any binding other than binding to the
PAM next to the main target or to the target itself. We hence assume that, for a DNA
sequence in the experiment of [Boyle et al., 2017], there are 22 states. The first of them
is the empty unbound state, the second being the PAM state, and the rest 20 states

37
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corresponds to the sequential pairings of the target strand with gRNA.
The energy of the PAM state is given in chapter 3. We denote its value by ϵPAM ,

while the unbound state has energy 0. A state i among the 20 states (i from 1 to
20) has energy ϵi. For a dsDNA or a DNA-RNA heteroduplex, the Gibbs free energy
depends on nearest neighbour (NN) bp pairs [SantaLucia Jr, 1998], so we have

ϵi+1 − ϵi = −∆G

(
di+2di+1

d′i+2d
′
i+1

)
+∆G

(
d′i+1d

′
i

ri+1ri

)
. (5.1)

Here, di and d′i represent the bases at position i in the non-target and target DNA
strands, respectively. ri represents the bases at position i in the gRNA. Each of the
parentheses corrsponds to a nearest neighbour (NN) bp pair. The terms ∆G(..) are
the Gibbs free energies of forming such NN pairs. The sign convention is such that
∆G is more negative for stronger matches. Equation (5.1) expresses the free energy
difference ϵi+1 − ϵi in terms of the energy gain when "flipping" a base (d′i+1) from the
double-strand DNA side to the DNA-RNA hybrid side. In general, this energy gain can
be positive or negative if there is no mismatch in the hybrid NN pair, but is likely to
be positive if there is a mismatch. We do not assume an ad hoc compensation energy
term coming from the interaction with Cas9 at this stage. During the hybrid-forming
process, Cas9 might facilitate the unwinding. However, whether the hybrid can form
successfully mainly depends on the matching between the gRNA and the DNA. In
other words, Cas9 can only read its target by gRNA, but not directly as a TF would
do. Besides, Cas9 does not consume ATP. Based on the above two facts, we assume
that the energetics is mainly determined by the specific base pair sequences, rather
than the intervene of Cas9. The above analysis also implies that, even if there is some
facilitation by Cas9, we can assume it to be independent of the specific base pairs.
This possibility is considered in the other model reviewed in section 5.1.4.

The energy for state i is hence

ϵi = ϵPAM + ϵ1 +
i∑
2

(
−∆G

(
di+1di
d′i+1d

′
i

)
+∆G

(
d′id

′
i−1

riri−1

))
. (5.2)

The energy ϵ1 is treated as an independent parameter. The grandcanonical partition
function for a particular DNA sequence x in the occupancy experiment reads

Zx = 1 + e−(ϵPAM−µ) +
20∑
1

e−(ϵi−µ) , (5.3)

where the first term "1" corresponds to the unbound state and µ is the chemical
potential. The chemical potential µ is also treated as a independent parameter, and is
the same for all target DNA sequences, since in the experiment they are all in the same
buffer. With a different target DNA sequence (but the same gRNA), the partition
function would be different. The partition function can alternatively be written as

Zx = 1 + e−(ϵbind−µ), (5.4)

in which ϵbind = e−ϵPAM +
∑20

1 e−ϵi .
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Experiments show that a mismatch near the PAM is more relevant than a mismatch
far away. This can emerge from our model, because a mismatch at position i increases
the energy of all states after i, so that earlier mismatches have a larger influence than
later ones.

In the literature, the nucleic acid thermodynamic parameters of double strand DNA
NN pairs, as well as (mis)matched DNA-RNA NN pairs are usually measured in 1 M
NaCl condition, which is not the case in [Boyle et al., 2017]. Therefore, we can use this
model to predict all the nucleic acid thermodynamic parameters in the ionic condition
of [Boyle et al., 2017].

In this model, there are 122 parameters and 1599 data points. We shall divide these
data into a training set and a test set.

5.1.2 The likelihood function of the model by Bayesian ap-
proach

The ultimate goal is to maximize the posteriori probability of our model M: prob(M |
data, I), where I is all the background information except the experimental data at
hand. We express this probability as

prob(M | data, I) ∝ prob(data |M, I)× prob(M | I). (5.5)

The proportional factor is equal to 1/prob(data | I). We assume a uniform proba-
bility prob(M | I), so we will focus on prob(data |M, I) from now on.

If a specific target DNA sequence x hasNx copies (we will adopt the name "clusters"
as in [Boyle et al., 2017]) and the observed occupancy is Ox, then we assume that NxOx

of them are bound, and Nx(1−Ox) of them are unbound.
The occupancy predicted by the model for sequence x is Ôx = 1 − 1/Zx. In the

experiment, the bound/unbound state of a cluster should be independent of that of
other clusters. Then, the probability that we observe the data for a given sequence x
given our model is

prob(Nx, Ox | Ôx, I) ∝ ÔNxOx
x (1− Ôx)

Nx(1−Ox), (5.6)

where we omitted the combinatorial prefactors, since they only depend on Nx and
Ox, but not on our model nor its parameters. As said, the state of bound/unbound of
every cluster should be independent of other clusters. This also holds between different
sequences (i.e. different x). So we immediately arrive at

L = prob(data |M, I) ∝
∏
x

ÔNxOx
x (1− Ôx)

Nx(1−Ox). (5.7)

This is the likelihood to be maximized. In practice, we minimize minus the log
likelihood
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− lnL = −
∑
x

(
NxOx ln Ôx +Nx(1−Ox) ln(1− Ôx)

)
=

−
∑
x

Nx

(
Ox ln Ôx + (1−Ox) ln(1− Ôx)

)
.

(5.8)

In terms of our partition functions, this quantity is expressed by

− lnL = −
∑
x

Nx

(
Ox ln(1−

1

Zx

)− (1−Ox) lnZx

)
. (5.9)

5.1.3 Approximation by the central limit theorem

We now derive a approximation of Eq. (5.9) by using the central limit theorem, which
will facilitate the numerical minimization. Since Nx is usually large (around 1000 clus-
ters for single mismatches and 100 for double mismatches), the binomial distribution
in Eq. (5.6) can be approximated by a Gaussian by the central limit theorem:

prob(Nx, Ox | Ôx, I) =

(
Nx

NxOx

)
ÔNxOx

x (1− Ôx)
Nx(1−Ox) ∝ exp

(
−(NxOx −NxÔx)

2

2NxÔx(1− Ôx)

)
,

(5.10)
To show this, first notice that the standard De Moivre-Laplace Theorem takes the

form (
n

k

)
pkqn−k → 1√

2πnpq
exp−(k − np)2

2npq
. (5.11)

In our problem, Nx, Ox, Ôx and 1 − Ôx amounts to n, nk, p and q, respectively.
By comparing the LHS of Eq. (5.10) and that of (5.11), one may think that on the
RHS of Eq. (5.10) the proportionality factor is 1√

2πNxÔx(1−Ôx)
, which depends on Ôx,

so cannot be omitted. But in fact, one of the step in the standard proof of Eq. (5.11) is
exactly to replace 1√

2πn k
n
(1− k

n
)

by the final 1√
2πnpq

, by using k
n
→ p. So, we can simply

undo that step, and our hidden prefactor in the RHS of (5.10) is 1√
2πNxOx(1−Ox)

, which

depends on Ox rather than Ôx, so can be omitted and does not affect the likelihood.
All other steps are the same as the standard proof of Eq. (5.11).

Then, we express the log-likelihood in a weighted sum of square form:

− lnL =
∑
x

Nx

Ôx(1− Ôx)
(Ox − Ôx)

2. (5.12)

This amounts to a sum of squares weighted by their error bar
√

Nx

Ôx(1−Ôx)
. The ad-

vantage of using the central limit theorem and using Eq. (5.12) is that the minimization
of the sum of squares is much more efficient than most of other function forms.
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5.1.4 The model with compensation terms

We can also add compensation terms Eci, representing the energy gain due to the
interaction of DNA/gRNA with Cas9. We assume that these energies do not depend
on the bp sequences. So that Eq. (5.1) becomes

ϵi+1 − ϵi = −∆G

(
di+2di+1

d′i+2d
′
i+1

)
+∆G

(
d′i+1d

′
i

ri+1ri

)
+ Eci, (5.13)

for Eci, i can take integers from 1 to 20. We note that Ec1 and ϵ1 are not independent
variables. One can only determine Ec1 + ϵ1: in subsection 5.1.1, ϵ1 is also a parameter
that does not depend on the bp sequences, see Eq. (5.2). Hence there are 19 more free
parameters than in the model without compensation terms. Equations from (5.2) to
(5.4) in the model change accordingly.

5.1.5 Results

By randomly choosing half of the data as the training set, we optimize parameters using
Eq. (5.12). Then, the rest of the data are compared with their predicted values from
both the model with and without compensation terms using the optimal parameters.
The results are shown in fig 5.1.
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Figure 5.1: Half of the (randomly chosen) occupancy data in test set compared with
their predicted values by the model without/with compensation.

We call a random separation of the data into training set and test set as a ran-
domization. Multiple randomizations generate different optimal parameters. We then
take the average of the resulting parameters to obtain a final result. Fig 5.2 is the final
result in the model without compensation, from the average of 5 randomizations.

A few inconsistencies in the mismatched parameters emerge because, some mis-
matches appear only a few times in the data set (while matched parameters always
appear many times), so their estimation depends on the choice of the training set.
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Figure 5.2: The final result in the model without compensation from 5 randomiza-
tions. In both panels, the horizontal axis corresponds to different NN pairs but will be
too packed if specified. In the left panel, the first 10 are DNA-DNA parameters. Last
10 are DNA-RNA ones (with a minus sign). Error bars are standard deviations.

The corresponding result for the model with compensation is shown in fig 5.3.

Figure 5.3: Results for the model with compensation by 5 randomizations. In the
left panel, the first 10 are DNA-DNA parameters. Last 10 are DNA-RNA ones (with a
minus sign). Error bars are standard deviation. In the right panel, the Eci are plotted
in the order of their subindices.

In this case the mismatched parameters are more consistent than in the model
without compensation. The compensation terms themselves have large error bars, but
we note that the vertical axis is much finer than the first two panels.

A comparison of the optimized DNA-DNA NN pairs energy parameters with the
literature value is shown in fig 5.4.
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Figure 5.4: The optimized DNA-DNA NN pairs energy parameters (horizontal) com-
pared with the literature value (vertical). Black straight lines are the line y = x and
blue straight lines are linear regression results.

The sample Pearson correlation coefficients of the model without/with compensa-
tion are r = 0.374 and r = 0.23, respectively. As pointed out, these literature values
are measured in 1 M NaCl condition, but this is not the case in [Boyle et al., 2017].
This might be the cause for the inconsistency.

5.2 The implications of the constant association and
disassociation rate

As mentioned in the introduction, the association and disassociation rates measured in
[Boyle et al., 2017] are nearly constant for a long time interval (more than 1500 seconds)
for all sequences except for those with a negligible rate. Here we still consider a model
with 22 states as in last section, but we focus on the transition rates rather than energy.
Our idea is that the constancy of rates should impose some constraints on the transition
rates. We present a model with a master equation for the 22 states. We will see that
the constant rate fact implies that there is a "gap" in the eigenvalue spectrum of the
master equation. It may be possible to use a perturbation-expansion-type calculation
to extract the implications of the constant-rate fact, but this calculation is relatively
difficult and has not been done yet. We here present the model as an open problem.

5.2.1 Association

The 22 states considered here are the same as in last section, but we adopt a different
notation. Here, the unbound state has lower index 1, PAM state 2, etc. The transition
is between nearest neighbour only, therefore the master equation matrix A is tridiagonal
and 22 by 22. Since initially all DNA sequences are unbound, the initial condition is
the vector p(0) = (1, 0, ..., 0).

The Perron-Frobenius theorem dictates that, as long as all entries of A are nonzero,
the matrix has an unique eigenstate ϕ(1) corresponding to the equilibrium distribution
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with eigenvalue 0, and all other eigenstates ϕ(i), i ̸= 1 have real and negative eigenvalue
−λi. We order them from small to large magnitude. We expand our solution p(t) as

p(t) = ϕ(1) +
22∑
i=2

aie
−λitϕ(i) (5.14)

in which the ϕ(1) is normalized and all other eigenstates satisfy
∑

j ϕ
(i)
j = 0, i ̸= 1.

ai are coefficients such that p(0) = (1, 0, ..., 0) = ϕ(1) +
∑22

i=2 aiϕ
(i).

The fact that the association rate −dp1

dt
being a constant during the time window

of 0 to 2000 seconds implies a "gap" in the eigenvalue spectrum. In other words, if we
define a time scale τ1 = 20000s which is ten times the time window, some eigenvalues
λ2...λk are smaller than 1/τ1, and others λk+1...λ22 are much larger than 1/τ1. Then,
a linear expansion is justified in the time window 0 to 2000 seconds:

p(t) ≈ ϕ(1) +
k∑

j=2

aj(1− λjt)ϕ
(j) (5.15)

and the association rate −dp1

dt
during this period is (by taking derivative of the

above equation)
∑k

j=2 ajλjϕ
(j)
1 , which is a constant of time. If there is no "gap" in the

spectrum, then Eq. (5.15) will not hold, and there will not be a time window such that
−dp1

dt
is constant in time, in contradiction to the constant rate fact.

5.2.2 Disassociation

In the disassociation experiment, any detached Cas9 will be washed away at once, so the
unbound state is a absorbing state. Therefore the master equation matrix B has B11 =
B21 = 0, so the first column is a zero vector. Besides these 2 entries, B is the same as A.
Because the experiment starts with a equilibrium state but with the unbound Cas9 re-
moved, here the initial condition is the vector q(0) = 1∑

i=222ϕ
(1)
i

(
ϕ(1) − (ϕ

(1)
1 , 0, ..., 0)

)
(essentially the normalized version of ϕ(1) − (ϕ

(1)
1 , 0, ..., 0)) .

We know that B has one equilibrium distribution ψ(1) = (1, 0, ..., 0) with eigenvalue
0, and all other eigenstates ψ(i), i ̸= 1 have real and negative eigenvalue −µi, and they
are ordered from small to large magnitude. We expand our solution q(t) as

q(t) = ψ(1) +
22∑
i=2

bie
−µitψ(i) (5.16)

in which the µ(1) is normalized and all other eigenstates satisfy
∑

j µ
(i)
j = 0, i ̸= 1.

bi are coefficients such that q(0) = ψ(1) +
∑22

i=2 biψ
(i).

Following the same reasoning as in the last subsection, again we define τ2 = 20000s,
then we have some eigenvalues µ2...µk that are smaller than 1/τ2, and some µk+1...µ22

that are much larger than 1/τ2, so the linear expansion below is justified in the time
window of 0 to 2000 seconds:
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q(t) ≈ ψ(1) +
k∑

j=2

bj(1− µjt)ψ
(j). (5.17)

By taking derivative of the above equation, the disassociation rate is dq1

dt
−
∑k

j=2 bjµjψ
(j)
1 .

A possible way to proceed is as follows. For the on-target sequence, the master
equation may be estimated by a master equation corresponds to a biased random walk,
but perturbed (especially the rates related to i = 1 and i = 22). Then, mismatches can
be mapped to further perturbations of the system with some "defects" at the states
corresponding to mismatched bp.





Conclusion

To summarize, we first studied the target-searching of Cas9 by facilitated diffusion
models, in which the PAM plays a important role. The result shows that unlike other
DNA-binding proteins such as TF, Cas9 has rather short sliding length. Then we found
that the generic distribution of Cas9 on DNA imply a hopping mechanism apart from
1D diffusion along the DNA, and the physics has a deep relationship with the theory
of Anderson localization.

We also studied the efficiency of Cas9 searching, focusing on the average time
consumed to reach the main target. We found that this average time depends on
the energy of PAM, and there is a optimized PAM energy that minimizes it. This is
essentially because there is a trade-off between the time spent on irrelevant PAMs and
the possibility of missing the main target.

The link with Anderson localization that we formalized may be applied to other
proteins that perform facilitated diffusion such as TF. The binding profiles of TF along
the DNA can be measured at base pair resolution By using modern immunoprecipita-
tion techniques [Rhee and Pugh, 2011]. However, the interpretation of these binding
profiles is still under debate [MacQuarrie et al., 2011]. The sequence-dependent mod-
els of facilitated diffusion by TF [Slutsky and Mirny, 2004, Bauer et al., 2015]
[Cencini and Pigolotti, 2018] can be combined with the Anderson localization approach.
This can lead to more insight on this crucial problem in biophysics.

We then studied the average search time for Cas9 to recognize its target, and found
that this time has a minimum as the PAM energy varies. We did a successful analytical
calculation that gives the average search time as a function of the PAM energy, as well
as of other parameters in the facilitated diffusion model. We can also predict the
exact value of the optimal PAM energy that leads to the minimum of this time. These
results are in very good agreement with our simulation. As expected, there is a trade-
off between between spending time on irrelevant PAMs and possibly diffusing away,
thereby missing the target.

This mechanism may also be applied to other protein that searches its target by a
motif sequence. In practice, the real motif energy does not necessarily take the the-
oretical optimal value, due to biological or chemical constrains on the real value (for
example, the interaction of Cas9 with the PAM is though hydrogen bonds, and hy-
drogen bonds has certain energy). However, a hypothesis can be made: the real motif
energy is not likely to be very far away from the optimal value. Both the prediction of
the dependence of the average search time on motif binding energy, and this hypothe-
sis, may be tested by future experiments. In the case of Cas9, there is no experimental
result yet about its average 3D diffusion time ⟨t3D⟩ in a generic in vivo search sce-
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nario, so we cannot compare our predicted PAM energy with the optimal energy. This
comparison will be possible when measurements are made in the future.

Finally, the preliminary work in the last chapter studied the energetics and kinetics
of the Cas9 recognition of the main target. The nucleic acid thermodynamic parameters
predicted in section 5.1 may be compared with future experimental results in the same
or similar ionic condition. These preliminary work may be continued, to build a more
comprehensive model of the specificity of Cas9 than existing works. This will deepen
our understanding on its behaviour when there are mismatches in the target, which is
crucial for applications.
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Appendix A

Maximum likelihood fit

This appendix is the same as part 1 of the supplemental material of [Lu et al., 2021].
To fit the experimental data from [Globyte et al., 2019], we express the likelihood of
one specific experiment as

Lj = Nj!
∏
i

ρ
ni,j

i,j

ni,j!
(A.1)

where the index 0 ≤ j ≤ 5 indicates the number of PAM sites in each experiment.
For each experiment j, we call ni,j the number of binding events in the ith bin of the
histogram, Nj =

∑
i ni,j is the total number of binding events, and ρi,j = P (ti−1) −

P (ti) is the probability that the duration of a binding event falls into the ith bin.
This probability is obtained from numerical integration of Eq. (1) in the Main Text
for a given choice of the parameters k, D, and β, with a matrix Â determined by
the arrangement of PAM sites in the given experiment. We maximize the joint log-
likelihood

lnL =
5∑

j=0

lnLj (A.2)

with respect to the three parameters and compute their uncertainties from the cur-
vature of the log-likelihood. To facilitate a visual comparison, individual curves for
each number of PAM sites and corresponding experimental data are shown in Fig. A.1
(same as Fig. 2b in the Main Text, but with each experiment in a different panel).
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Figure A.1: Fitted detachment rate as a function of time for different number of
PAMs. Curves and data are the same as in Fig. 2b of the Main Text, but presented in
separate panels.



Appendix B

Sequence-dependent model

This appendix is the same as part 2 of the supplemental material of [Lu et al., 2021].
In the model introduced in the Main Text, the binding energy of Cas9 to any triplet
other than PAM is the same. In this Section, we introduce a model that relaxes this
assumption and study its properties. To this aim, we define as "canonical PAM" a
NGG triplet (where N stands for any base) and "non-canonical PAMs" the 15 possible
triplets where either one or both G are replaced by other bases. This definition is
motivated by the observation that the first "N" base of PAM does not to affect the
binding energy of Cas9 [Bonomo and Deem, 2018]. However, in principle, the binding
energy of Cas9 with each non-canonical PAM can depend on the other two bases, and
the assumption made in the Main Text should be considered as a simplification.

We determine the binding energies of non-canonical PAMs from experimental results
of the equilibrium occupancy of off-target dsDNA bound by dCas9 [Boyle et al., 2017],
a mutant of Cas9 that lacks the endonuclease capability. In the experiment, double
strand DNA sequences containing the 20 bps main target and all possible replacement
of the “GG” in the PAM are fixed in the flow cell. After 12 hours incubation using
10nM dCas9, the occupancy of the dsDNA sequences is measured (see Fig. 2S in
[Boyle et al., 2017]).

The measurement is performed after incubation, so that the system can be assumed
to be at equilibrium. Every target DNA sequence can either be occupied by one Cas9
or empty. The occupancy O is therefore expressed by the Fermi-Dirac distribution

Oi =
1

1 + eϵi−µ
(B.1)

where ϵi is the binding energy of a particular triplet i and µ is the chemical potential
of dCas9. In the experiment, all canonical and non-canonical PAMs are followed by
an identical 20bp target. Therefore, we expect differences in ϵi to depend on the
different non-canonical PAMs only. The authors of Ref. [Boyle et al., 2017] report the
occupancy Oi for all non-canonical PAMs relative to the canonical one. We call ϵT the
binding energy of the specific target (i.e. the canonical PAM). We assume that ϵT is
sufficiently negative so that the occupancy of the target is approximately equal to 1.
Accordingly, we interpret the relative occupancies Oi as absolute ones.

We use Eq. (B.1) to eliminate µ and express the binding energy difference between
a generic non-canonical PAM and the weakest non-canonical PAM (NTC) that we take
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as reference:
∆ϵi = ϵi − ϵNTC = ln

[
ONTC(1−Oi)

Oi(1−ONTC)

]
. (B.2)

Equation (B.2) permits to determine the binding energy difference from the experi-
mental occupancy data. Results are presented in Table B.1.

The diffusion and unbinding rates of the sequence-dependent model are defined
from these energy differences as:

Dn+1,n = Dn−1,n = D′e∆ϵn

kn = k′e∆ϵn , (B.3)

where we denoted the diffusion rate and the unbinding rate with D′ and k′, respectively,
to distinguish them from the rate D and k appearing in the model presented in the
Main Text. We run simulations of the sequence-dependent model using the binding
energy differences in Table B.1. In this case, the free parameters are D′, k′, and
the binding energy difference ∆ϵT = ϵT − ϵNTC between the canonical PAM and the
weakest non-canonical NTC. We fit these three parameters using the FRET data from
[Boyle et al., 2017], following the same procedure described in Section I and using the
specific DNA sequences that Ref. [Boyle et al., 2017] reports for each experiment. We
obtain D′ = 160s−1, k′ = 6.57s−1, and ∆ϵT = −4.47.

G A C T
G -2.61 -1.12 -1.42
A -2.59 -1.04 -0.975 -1.35
C -1.22 -1.40 -1.35 0
T -1.08 -0.953 -0.680 -1.12

Table B.1: non-canonical PAM energies ∆ϵi. Rows represent the first nucleotide and
columns for the nucleotide next to the “N”

We now compare these parameters with those for the nearest-neighbor model pre-
sented in the Main Text. In the sequence-dependent model, the average energy of
non-canonical PAM sites is ϵav = −1.26 (see Table I). We now express the average
diffusion rate between neighboring non-canonical PAM sites as

⟨Dn+1,n⟩ = D′⟨e∆ϵn⟩ = 54s−1 (B.4)

In contrast, in the model presented in the Main Text, we have ⟨Dn+1,n⟩ = D = 52s−1.
The relative difference between these two values is about 4%.

In the sequence-dependent model, we similarly have that the average unbinding
rate from a non-canonical PAM is expressed by

⟨kn⟩ = k′⟨e∆ϵn⟩ = 2.2s−1 (B.5)

whereas in the model of the Main Text we have ⟨kn⟩ = k = 1.94s−1. In this case, the
relative discrepancy is 12.5%.

Finally, in the sequence-dependent model, the energy difference between the canon-
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Figure B.1: Detachment rate g(t) for j = 0 . . . 5 PAM sites predicted by the sequence-
dependent model (lines) versus experimental measures from Ref. [Boyle et al., 2017]
(points). See Fig. 2b in the Main Text for comparison and more information. The fit
returns a value of χ2 = 280.4, compared with χ2 = 276.6 in the model presented in the
Main Text.

ical PAM and an average non-canonical PAM is equal to ϵT − ϵav = −3.21. This value
is close to the estimated value β = −3.34 of the model in the Main Text, with a relative
discrepancy of 4%.

With these fitted parameters, we find that the sliding length in the one PAM case
is equal to ℓ = 5.2 bp compared with 6.2 bp for the model in the Main Text.

We also computed the localization length and the density of states for the sequence-
dependent model in the disordered case, see Fig. B.2. For the sequence-dependent
model, the maximum localization length is slightly larger than for the model in the
Main Text (γ ≈ 15 vs γ ≈ 10, respectively). This difference should not be surprising,
since the localization length is expected to be particularly sensitive to the distribution
of the disorder. In any case, the qualitative result is confirmed, in the sense that
both sliding lengths are much shorter than what it is observed in immunoprecipitation
experiments.

We conclude from these comparisons that the physical picture resulting from the
model presented in the Main Text is consistent with the one provided by this more
detailed model.
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Figure B.2: (a) Cumulative density of states (DOS) and (b) localization length as
function of λ for the sequence-dependent model, Eq. (B.3), computed the transfer
matrix method and Eqs. (3.14) and (3.15) in the Main Text. The DNA chain length
is N = 5000.



Appendix C

Regular versus disordered assortment
of PAM Sites

This appendix is the same as part 3 of the supplemental material of [Lu et al., 2021].
Our interpretation of facilitated diffusion of Cas9 as a localization phenomenon leads
to an interesting prediction. We expect eigenvectors characterizing Cas9 dynamics on
a long DNA chain to be localized only if the PAM sites are arranged in a disordered
fashion. If, instead, the PAM sites are regularly spaced, the eigenvectors should be
extended as there is no disorder in this case. This prediction is confirmed in Fig. C.1.
The figure shows that, in the case of regularly spaced PAM sites, the eigenvectors are
characterized by peaks at each PAM site modulated by wave-like envelopes spanning
the entire system size.
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Figure C.1: Comparison of the first four eigenvectors of Cas9 sliding dynamics for
(left) periodically spaced PAMs and (right) a disordered arrangement of PAM sites. In
both cases, the length of the DNA chain is N = 1000 and the average density of PAM
sites is 1/10. In the periodic case, the eigenvalues λ2, λ3, and λ4 are associated with
two degenerate eigenvectors (shown in blue and green in the figures). We obtained
qualitatively similar results for closed boundary conditions (not shown).



Appendix D

Hopping model

This appendix is the same as part 4 of the supplemental material of [Lu et al., 2021].
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h(
n)

Figure D.1: Plot of the hopping distribution h(n) versus n for α = 1. The distribution
h(n) is normalized so that h(1) = 1 and truncated at n = 17 for computational
convenience.

The hopping distribution h(n) can be estimated from the solution of a diffusion
equation in cylindrical coordinates [Lomholt et al., 2009]. The assumption of cylindri-
cal symmetry is justified as far as we limit ourselves to hopping at distances much
shorter than the DNA persistence length, which is on the order of 150 base pairs. On
these short distances, the DNA double helix can be regarded as a straight cylinder.

We consider the probability W (n, t) of a protein to rebind at coordinate n at time

63



64 Hopping model

10−1 100 101 102 103 104 105
α

1

10

100

1000
M
ax
 γ

Figure D.2: Maximum localization length in the spectrum as a function of α. For
each value of α, the maximum localization length is computed by direct diagonalization
(as in Fig. 4d of the Main Text).

t, given that it detached at position n = 0 and t = 0. From the diffusion equation in
cylindrical coordinates, the authors of Ref. [Lomholt et al., 2009] obtains the Fourier-
Laplace transform

W̃ (q, u) =

∫ ∞

0

dt e−ut

∫ ∞

−∞
dn eiqnW (n, t). (D.1)

In particular, the Fourier-Laplace transform calculated in u = 0 yields the Fourier
transform of the integrated probability of hopping to a given distance at any time:

W̃ (q, 0) =

∫ ∞

0

dt

∫ ∞

−∞
dn eiqnW (n, t)

=

[
1 +

2πα|q|rK1(|q|r)
(K0(|q|r))

]−1

, (D.2)

where r = 3 is the DNA radius, measured in unit of the base pair distance, Kj(n) is
the modified Bessel function of the second kind, and α = 1 is the ratio between the 3D
diffusion coefficient and the non-specific binding rate. For n > 1, we compute h(n) by a
numerical inverse Fourier transform of W̃ (q, 0), truncated at a distance nmax = 17. This
maximum distance is chosen for computational convenient and is consistent with the
assumption of cylindrical symmetry, as previously discussed. The hopping distribution
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h(n) for α = 1, normalized such that h(1) = 1, is shown in Fig. D.1. The localization
length for the hopping model for α = 1 is shown in Fig. 4 of the Main Text. We found
qualitatively similar results for the sliding length for α ranging from 0.1 to 105, see
Fig. D.2.





Appendix E

Derivation of Equation (4.20) and (4.21)

E.0.1 The first type of trajectories

In the first type of trajectories, between the first binding to the central PAM and the
final recognition, there is no detachment and 3D diffusion. The trajectories in this type
can be divided further into different groups by their number of times of visiting the
PAM at x = 0, from one to infinity.

In the first group the x = 0 PAM is visited only once, so the Cas9 transits into the
recognition mode directly. A particular event in this group would be: the Cas9 reaches
the central PAM in the time interval T0 to T0 + dT0, then transits to the R-mode in
time T0 + τ to T0 + τ + dτ . The probability of the former is P0(T0)dT0, and that of
the latter is p

fT+2Deβ
e−(fT+2Deβ)τdτ . The total time spent is T0 + τ . Since these two

processes are independent from each other, the combined probability is the product
of the two probabilities. Therefore, the contribution of this particular event to ⟨Ttot⟩
is (T0 + τ)P0(T0)dT0

p
fT+2Deβ

e−(fT+2Deβ)τdτ . And the contribution of the first group in
sum to ⟨Ttot⟩ is given by the integral

∫ +∞

0

∫ +∞

0

(T0 + τ)P0(T0)dT0
p

fT + 2Deβ
e−(fT+2Deβ)τdτ = p⟨T0⟩+

p

fT + 2Deβ
. (E.1)

The second group of the first type corresponds to those trajectories that visited the
central PAM twice. A particular event in this group would be: the Cas9 reaches the
central PAM in the time interval T0 to T0 + dT0, then diffuses to one of its neighbours
within T0 + τ ′1 to T0 + τ ′1 + dτ ′1, then returns to the central PAM within T0 + τ ′1 + t to
T0+τ

′
1+t+dt, finally transits to the R-mode within T0+τ ′1+t+τ to T0+τ ′1+t+τ+dτ . The

probabilities for these four processes are P0(T0)dT0, 1−p
fT+2Deβ

e−(fT+2Deβ)τ ′1dτ ′1, g(t)dt and
p

fT+2Deβ
e−(fT+2Deβ)τdτ , respectively, in which g(t) is the first passage time distribution

from n = ±1 to n = 0 taken the possible detachment also into account. In order to
calculate the contribution from this group, we first need to solve g(t).

A standard result in continuous space random walk is that the first passage time

distribution from n0 to the origin is n0√
4πDt3

e−
n2
0

4Dt . The counterpart in discrete space
random walk (as in our model) is in terms of the modified Bessel function of the
first kind [Redner, 2002]. Therefore we make the approximation by using the result in
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continuous space RW here, to simplify our calculation. A simulations was done to check
this approximation, with analytical prediction from continuous space RW compared
with numerical results from discrete space RW. The result shows the approximation
works well. The only difference from the a net first passage time problem is that, in our
case we require that it returns to n = 0 before detaching, so g(t) is obtained by letting
n0 = 1 in the previous equation and decreasing it by a factor of e−kt (the probability
that it is still on the DNA). Therefore g(t) is not normalized to 1:

g(t) =
1√

4πDt3
e−

1
4Dt

−kt. (E.2)

Here, there is a assumption that in this 1D diffusion process from n = ±1 to the
first return at n = 0, the diffusion and detachment rates are always D and k, but I will
show in the end that this can be relaxed. We have

∫ +∞

0

g(t)dt =
1√

4πDt3
e−

1
4Dt

−ktdt = e−
√

k
D , (E.3)

and

⟨t⟩ =
∫ +∞

0

tg(t)dt =
1√
4πDt

e−
1

4Dt
−ktdt =

e−
√

k
D

√
4Dk

. (E.4)

Now we calculate the contribution of the second group to ⟨Ttot⟩:

∫ +∞

0

∫ +∞

0

∫ +∞

0

∫ +∞

0

(T0 + τ ′1 + t+ τ)P0(T0)dT0

1− p

fT + 2Deβ
e−(fT+2Deβ)τ ′1dτ ′1g(t)dt

p

fT + 2Deβ
e−(fT+2Deβ)τdτ

= p⟨T0⟩(1− p)e−
√

k
D +

p

fT + 2Deβ
(1− p)e−

√
k
D

+p
e−

√
k
D

√
4Dk

(1− p) +
p

fT + 2Deβ
(1− p)e−

√
k
D

(E.5)

The terms in the result are in the order of the corresponding processes.

In the third group, the Cas9 visits the central PAM three times before the R-mode.
Comparing with the second group, there is one more process of "staying at the central
PAM and diffuse away to n = ±1" that costs τ ′2, and one more process of returning to
n = 0 from n = ±1. The total time is (T0 + τ ′1 + t1 + τ ′2 + t2 + τ), the calculation is
similar, but with 6 integrations. The result is
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p⟨T0⟩
(
(1− p)e−

√
k
D

)2
+ 2

p

fT + 2Deβ

(
(1− p)e−

√
k
D

)2
+2p

1√
4Dk

(
(1− p)e−

√
k
D

)2
+

p

fT + 2Deβ

(
(1− p)e−

√
k
D

)2 (E.6)

The rest groups are calculated in the similar way, the number of terms in the final
results stays 4, since the added two new processes’ duration always join the middle
two terms. Now by inspection of Eq. E.1, E.5, E.6, we know that there are 4 series
in the contribution of the first type trajectories: the first and last terms in these
equations correspond to two geometric series Σrn, and the middle terms in Eq. E.5,
E.6 correspond to two series of the type Σnrn, where r =

(
(1− p)e−

√
k
D

)
. Therefore,

the contribution from the first type as a whole is

p⟨T0⟩
1

1− r
+
p(1− p)e−

√
k
D

fT + 2Deβ
1

(1− r)2
+
p(1− p)e−

√
k
D

√
4Dk

1

(1− r)2
+

p

fT + 2Deβ
1

1− r
(E.7)

E.0.2 The second type of trajectories

In this type, Cas9 detaches at least once between its first encounter with the central
PAM and its final arrival to the R-mode. The trajectories in this type can also be
divided further into different groups by their number of times of visiting the PAM at
x = 0 before detach, from just one to infinity.

A particular event in the first group would be: the Cas9 reaches the central PAM
in the time interval T0 to T0+ dT0, then diffuses to one of its neighbours within T0+ τ ′1
to T0 + τ ′1 + dτ ′1, then detaches within T0 + τ ′1 + t′ to T0 + τ ′1 + t′ + dt′ before returning
to n = 0, then makes a 3D diffusion of length t3D, and finally spends another time
T to reach the R-mode. The probabilities for these four processes are P0(T0)dT0,

1−p
fT+2Deβ

e−(fT+2Deβ)τ ′1dτ ′1, h(t′)dt′, 1 (since t3D is a constant), and P (T )dT , respectively.
Here, h(t′) is the first passage time distribution from n = ±1 to detachment but
before it returned to n = 0. In order to calculate the contribution from this group,
we first need to solve h(t′). P (T ) is exactly the same distribution as P (Ttot), this is
because once the Cas9 detaches, the whole search process starts again. The total time
is T0 + τ ′1 + t′ + t3D + T .

To calculate h(t′), first note that the detachment distribution is just ke−kt′ . But
we also require it never returned to n = 0 during this process, so the distribution has
to be decreased by a certain factor G(t′). To calculate G(t′), as in the calculation of
g(t), we use results from continuous space RW as a convenient approximation to avoid
Bessel functions. The standard result is that the probability of the walker stays to the

right of x = 0, given it started at x = n0, is G(t′;n0) = 1−
∫ t′

0
n0√
4πDt3

e−
n2
0

4Dtdt. Using it

in our case, we let n0 = 1 as before, it reduces to G(t′) = erf
(

1√
4Dt′

)
. So we have
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h(t′) = ke−kt′erf

(
1√
4Dt′

)
. (E.8)

As in the last subsection, there is a assumption that in this 1D diffusion process
from n = ±1 to detachment, the diffusion and detachment rates are always D and k,
but again I will show in the end that this can be relaxed. We then have

∫ +∞

0

h(t′)dt′ = 1− e−
√

k
D . (E.9)

Note that
∫ +∞
0

h(t′)dt′ +
∫ +∞
0

g(t)dt = 1, this is expected because essentially the
former is the probability of detaching before reaching n = 0 and the latter is the
probability of reaching n = 0 before detaching, any trajectory starts at n = ±1 must
end up with those two.

Also

⟨t′⟩ =
∫ +∞

0

t′h(t′)dt′ =
1

k

(
1− e−

√
k
D

(
1 +

√
k

4D

))
. (E.10)

The contribution of the first group is calculated by a quadruple integration as in
the last subsection. The result is

(⟨T0⟩+ t3D + ⟨Ttot⟩)(1− e−
√

k
D )(1− p)

+
(1− p)

fT + 2Deβ
(1− e−

√
k
D ) +

1

k

(
1− e−

√
k
D

(
1 +

√
k

4D

))
(1− p).

(E.11)

The ⟨Ttot⟩ is exactly what we want, and comes from the average of T (
∫ +∞
0

P (T )TdT =∫ +∞
0

TtotP (Ttot)dTtot = ⟨Ttot⟩) in the process. In the end ⟨Ttot⟩ will be solved as a un-
known, see the main text. From now on the terms are not written in order of their
happening since we can obviously combine terms with common factors.

A particular event in the second group visit n = 0 two times before detach. This
adds one copy of the time spent returning to n = 0, i.e. t as denoted in the last
subsection, and another copy of the time spent by diffusing away from n = 0, i.e. a τ ′2
besides the τ ′1 in the first group. The result is
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(⟨T0⟩+ t3D + ⟨Ttot⟩)(1− e−
√

k
D )(1− p)2e−

√
k
D
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(1− p)

fT + 2Deβ
(1− e−

√
k
D )(1− p)e−

√
k
D
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1− p√
4Dk

(1− e−
√

k
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√
k
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1

k

(
1− e−

√
k
D
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1 +

√
k

4D
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√
k
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The calculation is similar for the third group, with the result

(⟨T0⟩+ t3D + ⟨Ttot⟩)(1− e−
√

k
D )(1− p)

(
(1− p)e−

√
k
D

)2
+3

(1− p)

fT + 2Deβ
(1− e−

√
k
D )
(
(1− p)e−

√
k
D

)2
+2

1− p√
4Dk

(1− e−
√

k
D )
(
(1− p)e−

√
k
D

)2
+
1

k

(
1− e−

√
k
D

(
1 +

√
k

4D

))
(1− p)

(
(1− p)e−

√
k
D

)2
.
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Similar to the first type, it is clear that there are also 4 infinite series, the first
and last terms in Eq. E.11, E.12, E.13 correspond to two geometric series Σrn, and
the middle terms in Eq. E.12, E.13 correspond to two series of the type Σnrn, where
r =

(
(1− p)e−

√
k
D

)
. Therefore, the contribution from the second type as a whole is

(⟨T0⟩+ t3D + ⟨Ttot⟩)(1− e−
√

k
D )(1− p)

1

1− r

+
(1− p)

fT + 2Deβ
(1− e−

√
k
D )

1

(1− r)2
+

(1− p)2e−
√

k
D

√
4Dk

(1− e−
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k
D )

1

(1− r)2

+
1

k

(
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D
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k
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1
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