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Acquisition of a behavioral task is influenced by many factors. The relative timing of stimuli is such a factor and is especially
relevant for tasks relying on short-term memory, like working memory paradigms, because of the constant evolution and
decay of neuronal activity evoked by stimuli. Here, we assess two aspects of stimulus timing on the acquisition of an olfactory
delayed nonmatch-to-sample (DNMS) task. We demonstrate that head-fixed male mice learn to perform the task more quickly
when the initial training uses a shorter sample-test odor delay without detectable loss of generalizability. Unexpectedly, we
observed a slower task acquisition when the odor–reward interval was shorter. The effect of early reward timing was accompa-
nied by a shortening of reaction times and more frequent sporadic licking. Analysis of this result using a drift-diffusion model
indicated that a primary consequence of early reward delivery is a lowered threshold to act, or a lower decision bound. Because
an accurate performance with a lower decision bound requires greater discriminability in the sensory representations, this may
underlie the slower learning rate with early reward arrival. Together, our results reflect the possible effects of stimulus timing
on stimulus encoding and its consequence on the acquisition of a complex task.
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Significance Statement

This study describes how head-fixed mice acquire a working memory task (olfactory delayed nonmatch-to-sample task). We
simplified and optimized the stimulus timing, allowing robust and efficient training of head-fixed mice. Unexpectedly, we
found that early reward timing leads to slower learning. Analysis of this data using a computational model (drift-diffusion
model) revealed that the reward timing affects the behavioral threshold, or how quickly animals respond to a stimulus. But,
to still be accurate with early reaction times, the sensory representation needs to become even more refined. This may explain
the slower learning rate with early reward timing.

Introduction
How animals learn is a question that has long intrigued human-
kind (Hume, 1748; Thorndike, 1898; Pavlov, 1927; Skinner,
1950). Systematic studies of behavioral changes resulting from stim-
ulus associations have enabled quantitative descriptions of relation-
ships between physical stimuli and behavior, and in some cases,
allowed identification of corresponding physiological mechanisms

(Milner et al., 1998). Insights from such animal experiments have
an impact on human interactions, too, as seen in their influence
on educational psychology (Shuell, 1986; Kay and Kibble, 2016).
Decades of neurophysiological studies have revealed that neuro-
nal activity patterns evoked by sensory stimuli are highly
dynamic, evolving over time in information content and eventu-
ally decaying to spontaneous patterns of activity (Fairhall et al.,
2001; Friedrich and Wiechert, 2014). As a result, the stimulus
timing used in behavioral training may fundamentally govern
the patterns of neural activity that are reinforced. Therefore, a
careful characterization of how stimulus timing affects the acqui-
sition of sensory-guided tasks is crucial for understanding rein-
forcement learning.

Delayed match-to-sample (DMS)/Delayed nonmatch-to-sam-
ple (DNMS) tasks are relatively complex tasks, in that the associ-
ation formed is not simply between one stimulus with a reward
(Skinner, 1950; Blough, 1959). In these paradigms, animals are
presented with two stimuli (sample and test stimuli), separated
by an interval (delay), and the task for the animals is to report if
the identities of the two stimuli match in the case of the DMS
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task, or are different, in the case of the DNMS task. These para-
digms have become essential for studying working memory in
various model organisms, ranging from pigeons and dolphins to
primates and humans (Skinner, 1950; Blough, 1959; Herman
and Gordon, 1974; Mishkin and Delacour, 1975; Hampson et al.,
1993). They have also been used to probe the perceptual similar-
ities of sensory stimuli (Zentall and Smith, 2016; Nakayama et
al., 2022) and continue to reveal insights into brain functions,
such as the roles played by the sensory and prefrontal cortices
(Liu et al., 2014; Eriksson et al., 2015; Zhang et al., 2019; Wu et
al., 2020) and the limbic system (Mishkin and Manning, 1978;
Hampson et al., 1993; Eichenbaum et al., 2007) in retaining in-
formation over time. Previous studies succeeded in training
head-fixed mice to perform olfactory DMS/DNMS tasks (Liu et
al., 2014; Han et al., 2018; Zhang et al., 2019; Wu et al., 2020;
Nakayama et al., 2022), although the training protocols described
vary considerably.

In this study, we wished to understand how two aspects of
stimulus timing affect the acquisition of an olfactory DNMS task.
First, we assess the effect of the interodor interval on the rate of
DNMS acquisition. This is a parameter unique to working mem-
ory paradigms like DNMS tasks. As this type of short-term mem-
ory decays over time (Baddeley, 2012), DNMS task acquisition is
likely more robust with a shorter sample-test interval, although
without the guarantee that the performance generalizes well to
longer intervals. In addition, we assess the effect of reward tim-
ing. It is commonly accepted that a shorter delay of reinforcement
is more effective for learning (Renner, 1964), with more discounting
to take place for longer delays (Mazur, 1987; Myerson and Green,
1995; Calvert et al., 2010). More modern reinforcement learning
models incorporate such discounting as a weakening of the eligibil-
ity trace over time (Barto et al., 1983).

We demonstrate that the DNMS task acquisition is quicker
and without detectable loss of generalizability when the initial
training uses a shorter interodor delay. Unexpectedly, we observed
a slower task acquisition with a shorter stimulus–reward interval.
In combination with a drift-diffusion model, we reveal that a pri-
mary characteristic of early reward delivery during training is a
lowering of the decision bound. This lower bound requires greater
discriminability in the sensory representations to achieve the same
behavioral accuracy, which may underlie the slower learning rate.
Together, our results reflect possible consequences of stimulus
timings on the quality of stimulus encoding and the acquisition of
complex behavioral tasks.

Materials and Methods
Animals
All animal experiments had been approved by the Okinawa Institute of
Science and Technology Graduate University Graduate Animal Care
and Use Committee (Protocol 2021–350). C57BL6J mice were used for
the DNMS training, and a mixture of C57BL6J and wild-type mice from
Ai39 breeding were used for the mixture discrimination training. The
genotypes were balanced across experimental groups. C57BL6J mice
were purchased from Japan CLEA and were acclimatized to the facility
for at least 1week before they were used for experiments. All mice used
in this study were adult male (8–11weeks old at the time of head plate
implantation). Mice were randomly distributed across cohorts, and
times of training were matched across experimental groups.

Olfactometry
A custom-made flow-dilution olfactometer was used to present odors
(Fig. 1). Briefly, custom LabVIEW codes were used to control (1) sourc-
ing output digital output modules (NI-9474, National Instruments),
which actuated direct-operated solenoid valves, used to control air flow

and gate reward delivery (water droplets); (2) analog output modules
(NI-9263, National Instruments) to generate signals for flow controllers
(C1005-4S2-2L-N2, FCON) and to communicate the output trial types
with acquisition boards; and (3) digital input/output modules (NI-9402,
National Instruments) to control LEDs and to communicate valve open-
ing timing.

A pair of normally closed solenoid valves was assigned per odorant
to odorize the air stream. These solenoid valves were attached to a mani-
fold so that a set of eight pairs connected to the common air stream
(Fig. 1). On each trial, the sample and test odors came from two separate
manifolds to avoid cross-contamination. Further, each odorant was
duplicated on two manifolds to allow presentation of a particular odor
from either manifold, avoiding an auditory association for the behavioral
task. An air stream was odorized only when a pair of three-way valves
was actuated and directed toward the animal when the solenoid valve
closest to the animal (final valve) opened. The final valve was opened for
0.6 s for each odor presentation. Odors were presented at ;1% of the
saturated vapor. Total air flow, which is a sum of odorized air and the
dilution air, was ;2 L/min, which was matched by the air that normally
flows toward the animal. The intertrial interval was ;40 s to purge the
airways to minimize cross-contamination. Ethyl butyrate (EB; catalog
#W242705), ethyl valerate (catalog #290866), and butyl acetate (catalog
#287725) were purchased from Sigma-Aldrich, and methyl tiglate (MT;
catalog #T0248), methyl valerate (catalog #S0015), methyl salicylate

Figure 1. An olfactometer design for stable odor presentations. A, A schematic of the
design. Filtered air supply is split into three paths, (i) a stream that normally flows to the
animal, (ii) a stream used for the sample odor, and (iii) a stream used for the test odor. Each
odorizing stream has a pair of three-way valves. When one path is engaged for odor presen-
tation, the air from the selected odor path passes through an odor canister before being
directed toward the final valve (red highlight). Simultaneously, the other path diverts air
directly toward the final valve (blue highlight), bypassing the odor canisters. B, Odors used
in this paradigm. C, Four sample odor (O1) test odor (O2) delays used for assessing the olfac-
tometer performance, which were randomly interleaved. D, Example photoionization detector
signals for the four permutations of sample and test odors (average of 12 trials), color coded
by the interval used as in C. E, Photoionization detector signals for the test odor overlaid for
all intervals tested. F, Test odors were passed through blank odor canisters to test the level
of cross-contamination at four delay intervals as in C. G, Photoionization detector signals dur-
ing the test stimulus periods were expressed as a fraction of the sample odor signal level.
Levels from individual trials are shown.
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(catalog #V0005), and eugenol (catalog #A0232) were purchased from
Tokyo Chemical Industry. Stock odorants were stored at room tempera-
ture in a cabinet filled with N2 and away from light.

Surgery
All recovery surgeries were conducted in an aseptic condition. For head
plate implantation, 8- to 11-week-old male C57BL6/J mice were deeply
anesthetized with isoflurane. The body temperature was kept at 36.5°C
using a heating blanket with a DC controller (FHC). To attach a custom
head plate ;1 cm in width weighing ;1 g, the skin over the parietal
bones was excised, and the soft tissue underneath was cleaned,
exposing the skull. The exposed skull was gently scarred with a den-
tal drill, cleaned, dried, and coated with cyanoacrylate (Histoacryl,
B. Braun) before placing the head plate, which was fixed in place
with dental cement (Kulzer). Mice were recovered in a warm cham-
ber, returned to their cages, and given carprofen subcutaneously
(5 mg/kg) for 3 consecutive days.

Habituation and behavioral measurements
Water restriction began 2–3weeks after surgery. Mice went through
habituation to head fixation, one session per day for;30min. No odors
were presented. This lasted at least 3 d or until the mice learned to lick
vigorously for a total water reward of at least 1 ml. The respiration pat-
tern was measured by sensing the airflow just outside the right nostril by
placing a flow sensor (AWM3100V, Honeywell). Lick responses were
measured using an infrared beam sensor (PM-F25, Panasonic) that was
a part of the water port. Nasal flow, an analog signal indicating the odors
used, lick signal, a copy of the final valve, and water valve timing were
acquired using a multifunction input/output device (USB-6363,
National Instruments).

Olfactory DNMS training
After habituation, the head-fixed mice were trained to associate a water
reward with a nonmatching combination of odors (ethyl butyrate and
methyl tiglate). Each trial started with brief flashes of a blue LED (8 rec-
tangular pulses at 8Hz, 50% duty cycle). The reward comprised two
droplets of water (10ml each) that arrived on all rewarded trials after the
onset of the final valve opening. Anticipatory licks were defined as licks
before the water delivery in response to the second odor presentation.
Correct reactions were defined as the generation of anticipatory licks in
response to nonmatching odor pairs and a lack of licking in response to
matching odor pairs. Once the overall accuracy for rewarded and unre-
warded trials was above 80% in at least one behavioral session, the
delay interval was increased. A typical training session comprised
;100 trials, lasting ;1 h. Rewarded and unrewarded trials occurred
at equal probability, where the specific permutation of the odors
used (e.g., EB-MT or MT-EB for rewarded trials) was randomly
assigned. To deliver the reward with a timing that depended on the
timing of anticipatory licks of the mouse, lick signals were analyzed
online for a brief period following the test odor presentation (0.6–3 s
after the test odor onset). The reward was delivered on rewarded trials
when the number of anticipatory licks exceeded a threshold. The
threshold for triggering an output here was equivalent to three licks.
The latest reward delivery was at 3 s. Interval between the test odor
onset and the start of the next LED signal was ;18 s. All data were
acquired at 1 kHz.

Olfactory discrimination training
The olfactory discrimination training was adapted from Koldaeva
(2019). After habituation, the head-fixed mice were trained to discrimi-
nate two binary odor mixtures of ethyl butyrate and eugenol using the
Go/No-Go paradigm. The training includes two stages, a discrimination
between 80/20 and 20/80 mixtures and a more difficult discrimination of
60/40 and 40/60 mixtures. Similar to our DNMS training, the mouse
proceeded to the second stage when the overall accuracy in the first task
reached 80%. Reward was two drops of water (10ml each), dispensed
unconditionally (every rewarded trial) at 1.2 s after the odor onset for
one group (early reward group, 6 mice) and 3.2 s for the second group
(late reward group, 6 mice).

Odor similarity measures
The similarity between a pair of monomolecular odors was determined by
calculating the correlation coefficient of population activity from extracel-
lular recording from the olfactory bulb of anesthetized mice (ketamine/
xylazine, 100 mg/kg and 20 mg/kg, respectively). To make the craniotomy,
male adult Bl6 mice (8–12weeks old) were anesthetized with isoflurane
and kept warm with a temperature-controlled blanket. The skin overlying
the frontal and nasal plates were excised, the underlying periosteum was
scraped, and a head plate secured with cyanoacrylate gel (Loctite) and
dental acrylic. One small craniotomy for the earth connector was made in
the caudal part of the right frontal plate. A 0.2-mm-diameter craniotomy
for electrophysiology was made over the left olfactory bulb. The approxi-
mate stereotaxic coordinate for the center of this craniotomy was 4.5/1
(AP/ML) relative to Bregma. Once the craniotomy was made, isoflurane
was removed, and ketamine/xylazine was injected intraperitoneally imme-
diately. Extracellular recording was obtained with a 16-channel silicon
probe (A1x16-Poly 2-5 mm-50 s-177, catalog #CM16LP) acquired at
25 kHz with a low-noise amplifier (RHD2132) and RHD controller
C3004 (Intan Technologies). Probes were advanced vertically, and units
were encountered at the tip depth of;600mm relative to the brain surface
(n = 7 locations, 3 mice). Data were high-pass filtered and units sorted off-
line using Kilosort 2.0 software (Pachitariu et al., 2016; Stringer et al.,
2019). Parameters are adapted from the recommended parameters from
Kilosort (ops.fs = 20,000; ops.fshigh = 300; ops.minfr_goodchannels = 0;
ops.Th = [10 4]; ops.lam = 10; ops.AUCsplit = 0.9; ops.minFR = 1/50;
ops.momentum = [20 400]; ops.sigmaMask = 30; ops.ThPre = 8;). The
channel map was recreated from the layout of the recording electrode
(A1x16-Poly2s, NeuroNexus). Then the automated outputs from
Kilosort were manually curated with Phy, an open-source graphical user
interface (Rossant et al., 2016). Only those clusters with a clear refractory
period, contamination percentage less than 20%, and with waveforms
distinguishable from the background were labeled as good single units
and used for further analysis.

Experimental design and statistical analyses
A full set of descriptions on the statistical tests used, along with the test
statistics and sample sizes, is available in Table 1.

Data analysis
Analysis of the behavioral data. The behavioral data were analyzed

using built-in event detection functions in the Spike2 package to obtain
valve opening times and were further analyzed in MATLAB using cus-
tom codes. The number of anticipatory licks after the test odor offset
was counted for each trial to calculate the accuracy. When the reward
timing was variable, the temporal window analyzed was until the onset
of the water valve opening. To analyze comparable temporal windows
across trial types, for unrewarded trials, an average water valve timing
from the rewarded trials was used. For fixed reward timing, a 2.6 s win-
dow from the test odor offset was used. Using a shorter window to
mimic the condition for the variable reward timing did not affect the
result. To calculate the learning curve, the accuracy was expressed as the
area under the receiver operating characteristic (auROC) in a given
block of 50 trials, using the MATLAB function perfcurve.

Dependence of DNMS performance on delay interval
To analyze how the accuracy (auROC) of DNMS task performance
depended on the interodor interval (10) in a session where the delay
interval varied from trial to trial, mean auROC values across animals
were fitted using a single-term exponential using the MATLAB fit func-
tion with the function set to exp1, which estimates the parameters a and
l for the following equation: accuracyðxÞ ¼ ae�l x:

Trials to criterion. For each animal, block-by-block auROC values were

fitted with a logistic function, pðnÞ ¼ 1
11e�ðb01b1nÞ ; where b0 is known

as the intercept, and b1/4 was used to estimate the slope at the steepest
point (Gelman and Hill, 2006). Using this fit, the number of trials
required to reach auROC value of 0.8 was interpolated for each animal.

Reaction time. Reaction time is equivalent to the response time,
which was calculated by measuring the average timing of the first three

3122 • J. Neurosci., April 26, 2023 • 43(17):3120–3130 Reuschenbach, Reinert et al. · Stimulus and Reward Timing in Task Learning



licks after the test odor on rewarded trials. It is expressed relative to the
onset of the test odor.

Stray licks. All licks between the onsets of the sample and test odors
were counted and divided by this interval.

Probability of false alarms. Lick occurrences following the test odor
presentation (0–3 s relative to the onset) on unrewarded trials were
detected and used to construct peristimulus time histograms with a bin
size of 0.02 s, which was normalized by the number of trials.

Drift-diffusion model
The reaction times were modeled using a simple drift-diffusion model
based on Ratcliff and McKoon (2008) but adapted for the Go/No-Go
paradigm as described in Ratcliff et al. (2018). The model is described by
three parameters, the Go decision bound and two instantaneous drift
rates, ms�, for match (S�) and ms1 for nonmatch (S1) trials. At time t =
0, the accumulated evidence was set to 0.5 for all data. Time steps were
discretized in 20ms (Dt). For each new time step, new momentary evi-
dence was drawn from a stationary distribution, x(Dt) = N(mi,1), a nor-
mally distributed random generator with a mean of mi, where i = [S1,
S�], and a noise parameter of 1 SD. This was accumulated over time to

yield the following sensory evidence: sðnDtÞ ¼
Xn

j¼1
xðDtÞ: The reac-

tion time was defined as the time at which this sensory evidence crossed
the decision bound. The parameters were obtained for each animal by
fitting the data from each behavioral session by minimizing the chi-
square values (Ratcliff et al., 2018).

Results
In the DNMS task, two stimuli (sample and test) are presented
with a delay in between, and the animals are required to report
when the identities of the two stimuli do not match. To implement
this task using olfactory stimuli, an olfactometer should be capable
of presenting stable olfactory stimuli with minimal cross-contami-
nation, regardless of the sample-test delay durations used. To
achieve this, we designed a novel olfactometer (Fig. 1; see above,
Materials and Methods). Stable and clean presentations of the two
odors are achieved by separating the air streams for the sample

and test odors for most parts of the odor pulse preparation while
allowing continuous air passages to avoid a pressure buildup.

Using the new olfactometer, we tested whether a simplified
olfactory DNMS training leads to efficient and robust learning
without the need for autoassociation phases (Liu et al., 2014;
Han et al., 2018; Nakayama et al., 2022), punishments (Wu et al.,
2020), and multiple training sessions per day (Han et al., 2018)
used in some implementations. Mice were subjected to olfactory
DNMS training immediately after habituation (Fig. 2A,B). The
two odors used in this paradigm were EB and MT. On each trial,
the identities of sample and test odors were randomly chosen
and presented to the animal with a 5 s delay between odors (Fig.
2C). When the sample and test odors did not match (nonmatch
trial), a reward (2 droplets of 10ml water) was delivered uncondi-
tionally, with a default delivery at 2.5 s after the test odor offset.
However, the reward was delivered earlier if the mice produced
early and vigorous anticipatory licks, with the earliest delivery at
0.5 s after the test odor offset. On average, the reward was dis-
pensed when three anticipatory licks were detected (see above,
Materials and Methods).

In the initial phase of the training, the mice generated many
sporadic licks, regardless of the sample and test odor combinations
and also during the sample-test odor delay (Fig. 2D). However,
with training, mice learned to produce anticipatory licks more
selectively in response to nonmatching sample and test odor com-
binations (Fig. 2E–G). They reached a criterion level of perform-
ance (auROC = 0.8) on average within 7056 83.6 trials, or 7.26
0.7 d (mean6 SEM; n = 6 mice). Notably, other undesirable licks,
such as licks during the sample-test delay period, decreased in the
absence of punishments (average number of licks during 5 s
delay = 7.13 6 1.60 for the first 2 d vs 0.85 6 0.39 for the last 2 d
of training; p = 0.016, paired t test; n = 6 mice). In general, the
reduction in these sporadic licks and the behavioral accuracy of
the task developed together (Fig. 2D–F; Pearson correlation coeffi-
cient = �0.785, p = 1.17 � 10�24; n = 112 blocks of 50 trials ana-
lyzed from 6 mice), suggesting that the loss of sporadic licks may

Table 1. Statistical tests and their details

Location in article Test used Sample size Test statistic Exact p value

Figure 2F Pearson correlation coefficient 112 Blocks from 6 mice r = �0.785 1.1731 � 10�24

Figure 3C (left) One-way ANOVA with post hoc multiple
comparisons (Tukey–Kramer)

Two groups (6 mice and 5 mice) F = 4.26 0.0378

Figure 3C (right) One-way ANOVA with post hoc multiple
comparisons (Tukey–Kramer)

Two groups (6 mice and 5 mice) F = 5.82 0.0157

Figure 3D Pearson correlation coefficient 61 Blocks from 5 mice r = �0.549 4.727 � 10�6

Fig. 4F (left) two-sample t test Two groups (5 mice and 6 mice) t = 2.3014 0.0469
Fig. 4F (middle) two-sample t test Two groups (5 mice and 6 mice) t = 2.0727 0.0681
Fig. 4F (right) two-sample t test Two groups (5 mice and 6 mice) t = �0.1736 0.8665
Figure 4I Pearson correlation coefficient 55 Blocks from 6 mice r = �0.483 1.833 � 10�4

Figure 5A One-way ANOVA with post hoc multiple
comparisons (Tukey–Kramer)

Three groups (6 mice, 5 mice, 6 mice) F = 4.25 0.036

Figure 5B One-way ANOVA with post hoc multiple
comparisons (Tukey–Kramer)

Three groups (6 mice, 5 mice, 6 mice) F = 4.12 0.0393

Figure 5C (left) One-way ANOVA with post hoc multiple
comparisons (Tukey–Kramer)

Two groups (5 mice and 6 mice) F = 5.38 0.0455

Figure 5C (right) One-way ANOVA with post hoc multiple
comparisons (Tukey–Kramer)

Three groups (6 mice, 5 mice, 6 mice) F = 3.75 0.0498

Figure 6F t Test with Bonferroni multiple-comparison
correction

Seven mice t Statistics (1.7 s, 5 s, 8 s, 12 s, 20 s) =
7.3560, 8.6679, 6.5347, 5.2867, 3.4159)

0.0007, 0.0003, 0.0013,
0.0032, 0.0189

Fig. 9E (top) One-way ANOVA with post hoc multiple
comparisons (Tukey-Kramer)

Three groups (6 mice, 5 mice, 6 mice) F = 6.0588 0.0127

Fig. 9E (bottom) One-way ANOVA with post hoc multiple
comparisons (Tukey–Kramer)

Three groups (6 mice, 5 mice, 6 mice) F = 5.5841 0.0165

Fig. 10F Two-sample t test Six mice in each cohort t = �2.9758 0.0139
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occur as a natural consequence of learning the concept of the task.
Overall, this learning rate is comparable to previous reports of ol-
factory DNMS paradigms (Han et al., 2018), especially when the
shaping phase of those training paradigms is considered. Further,
when the sample-test delay period was increased to 12 s, mice per-
formed significantly above chance from the first session (Fig. 2G;
mean accuracy in auROC = 0.8486 0.026; p = 3.81� 10�5; n = 6
mice; Student’s t test for mean auROC = 0.5), demonstrating
that the acquired behavior is generalizable across delay inter-
vals. Overall, the results indicate that a simplified training
leads to a robust acquisition of DNMS performance.

We next assessed whether the sample-test odor delay dura-
tion affects the initial acquisition of the task (Fig. 3). The second
cohort of mice was trained with the DNMS task with a shorter
sample-test odor delay of 1.7 s. All other aspects were held the
same as before (Fig. 3A). The mice reached the criterion level of
performance, on average, in 449.0 6 58.3 trials (mean 5 6 1 d),
which is significantly faster than with the 5 s delay (Fig. 3B,C; p =
0.039, t test; n = 6 and 5 mice for 5 s delay and 1.7 s delay, respec-
tively). Again, when the sample-test odor interval was increased

to 5 s and 12 s, the performance accuracy was significantly above
chance from the beginning (average accuracy on the first day =
0.87 6 0.01 auROC for 5 s and 0.81 6 0.02 for 12 s; p = 1.53 �
10�5 and 1.57 � 10�4; Student’s t test for auROC = 0.5; n = 5
mice). The two cohorts of mice reached the criterion levels of
performance at 5 s and 12 s delays subsequently in comparable
numbers of trials (Fig. 3C; data not shown for 12 s). As before,
the initial acquisition of the task was accompanied by a reduc-
tion in the sporadic licking during the interodor delay period
(Fig. 3D; Pearson correlation coefficient = �0.549, p = 4.73 �
10–6; n = 61 blocks from 5 mice). Together, these results dem-
onstrate that acquisition of the DNMS task is more efficient
with a shorter sample-test interval but with no advantage
when reaching a proficient performance on a longer sample-
test delay is required.

In the above training protocols, the reward was delivered ear-
lier when the mice licked earlier to motivate them to perform the
task. To determine what influence this reward timing has on the
DNMS task acquisition, the third cohort of mice was trained
with a fixed reward time while keeping other factors constant,
with the initial sample-test delay set to 1.7 s (Fig. 4A,B). The
reward (2� 10ml water) was delivered 2.5 s after the offset of the
test odor regardless of when animals generated anticipatory licks
(Fig. 4C,D). On average, the reward was delivered 1.35 6 0.13 s
later for this cohort than for the previous group (p = 6.99 �
10�7, one-way ANOVA; n = 5 and 6 mice for the conditional
and fixed reward time groups, respectively). Surprisingly, the
learning curves of the two cohorts revealed that the mice that
received the reward at a fixed time acquired the task faster than
the cohort with conditional timing (Fig. 4E,F; trials to criterion
305.8 6 30.1 trials, compared with 449.0 6 58.3 trials for the
group with conditional reward timing). However, their ability to
perform at longer sample-test odor intervals was comparable
(average accuracy for the initial sessions = 0.87 6 0.02 and

Figure 3. DNMS with a shorter interval is easier to learn. A, Two training designs are com-
pared. One cohort of mice that started the training with sample-test odor interval of 1.7 s
(green) was compared with those that started with 5 s interval (blue; same data as Fig. 2). B,
Learning curves for the two cohorts, showing behavioral accuracy in auROC for for 1.7 s delay
(filled circles), 5 s delay (hollow circles), and 12 s delay (stars). Color scheme as in A. Block size,
50 trials; n = 6 and 5 mice for initial training with 5 s and 1.7 s, respectively. C, Summary com-
parison of acquisition speeds in terms of number of trials (left) and number of days (right)
taken to reach the criterion (auROC = 0.8); *p = 0.043 (left) and 0.036 (right), one-way
ANOVA with post hoc Tukey–Kramer comparisons; n.s., p = 0.82 (left) and 0.80 (right). Mean
and SEM are indicated. D, Relationship between stray licks (licks during the sample-test odor
interval) and accuracy of DNMS performance. Pearson’s r = �0.549, p = 4.73 � 10�6.
Symbols correspond to individual mice. n.s. = not significant at the 0.05 level.

Figure 2. Go/No-Go olfactory delayed nonmatch-to-sample task with a 5 s delay. A,
Illustration of the olfactory DNMS. On a given trial, two odors (Odor 1 and Odor 2) are pre-
sented. Rewarded trials are trials where two odors are not the same (nonmatch). Reward is
20ml of water. B, Timeline of training. Behavioral training started 2 weeks after surgery for
head plate implantation. C, Schematic showing the trial structure. Flashes of an LED indicate
the trial start. Sample and test odors (O1 and O2, respectively) are presented with an interval
(5 s for the initial training, and 12 s afterward). Water reward was delivered on all rewarded
trials. Reward was delivered earlier when mice generated anticipatory licks earlier (range of
possible reward times, 0.5–2.5 s from O2 offset). D, Lick raster for an example session, sepa-
rated by nonmatch trials (left) versus match trials (right). E, Example peristimulus time histo-
gram of licks separated by four trial types from a proficient mouse. F, Relationship between
stray licks (licks during the sample-test odor interval) and accuracy of DNMS performance.
Symbols indicate individual mice. G, Learning curves for 5 s delay (hollow symbols) and 12 s
delay (stars) shown with respect to the trials from the start of training (block size, 50 trials;
left) and with respect to days (right); n = 6 mice. Mean and SEM are indicated.
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0.87 6 0.03 for 5 s and 12 s intervals, respectively; p = 0.22 and
0.19, two-way ANOVA for the effect of cohort and interval dura-
tions, respectively). Again, the amount of sporadic licking nega-
tively correlated with the behavioral accuracy (Fig. 4I). Overall,
the result indicates that the reward timing affects the task acqui-
sition, revealing an unexpected and detrimental effect with the
early reward delivery, without affecting the generalizability of
performance across intervals.

We wished to understand in detail how the three training
protocols affected the task acquisition. To do so, we fitted the be-
havioral accuracy over time with a logistic regression (Fig. 5A,B).
This regression analysis revealed that the DNMS task acquisition
with a 5 s interodor delay results in a shallower slope in the learn-
ing curve (Fig. 5A), indicating that a longer interval makes the
task harder. On the other hand, the effect of reward timing is
characterized by the lower intercept. The cohort with a late
reward arrival learned to produce anticipatory licks more selec-
tively in rewarded trials early (Fig. 5B). We wished to assess
whether the three protocols resulted in different abilities to gen-
eralize the behavioral performance to longer intervals, which is
harder as working memory tends to degrade over time (Blough,
1959; Baddeley, 2012; Liu et al., 2014). When switching to a
longer interodor delay, all cohorts of mice showed an initial
decline in the behavioral accuracy. Interestingly, the reward

timing affected how well the mice performed at longer interodor
delay intervals. The cohort of mice that was rewarded with the
fixed and late timing performed better when switched to longer
intervals (Fig. 5C).

Despite the initial difference in generalization above, all
cohorts learned to report when odors are not matching at the
12 s delay. We then asked whether the ability of trained mice to
generalize the task performance over different sample-test odor
intervals depends on how they were trained (Fig. 6A). For each
trial, the sample-test odor delay duration was randomly chosen
from four possible intervals (1.7 s, 5 s, 12 s, and 20 s; Fig. 6B).
Some interodor delay intervals used were encountered by the
animals for the first time in this session. An analysis of the be-
havioral performance indicated that the performance was indeed
poorer at longer intervals (Fig. 6C,D). However, no statistically
significant difference was present across two cohorts that under-
went different training paradigms (p = 2.55 � 10�6 and 0.24,
two-way ANOVA for the effects of interval and training history,
respectively; n = 4 mice for both cohorts). Of the three protocols
tested, the initial DNMS task acquisition was fastest with a short
interodor delay coupled with a fixed and delayed reward arrival.
To assess whether mice could generalize to different delay
periods immediately after initial acquisition of the task, we
subjected mice trained on the 1.7 s interval to one session of
olfactory DNMS with variable interodor delay (Fig. 6E).
The mice performed significantly above chance for longer
interodor delay intervals, up to 12 s delay (Fig. 6F), indicat-
ing they can immediately adapt to varying interodor delays.

We also used the trained mice from the above experiment to
assess whether the similarity of olfactory stimuli affects the ability
to generalize the task to differing stimulus difficulties. To do so,
we subjected the mice initially trained to compare ethyl butyrate
and methyl tiglate to new odor pairs (Fig. 7A). The new pairs dif-
fered in physicochemical properties (Fig. 7B–D). The mice were
first subjected to an easily distinguishable pair (butyl acetate vs
methyl salicylate), thereafter, a pair of odors that only differed by
one carbon chain length (ethyl valerate vs methyl valerate), and

Figure 4. Effect of reward timing on DNMS acquisition. A, With conditional reward timing
(green), the water reward was delivered earlier if mice licked earlier (possible reward onset
ranged from 0.5 to 2.5 s after the odor 2 offset). With fixed reward delivery time (burgundy),
water reward was delivered at 2.5 s after the odor 2 offset. B, Timeline of training for the two
cohorts, with sample-test odor interval indicated inside the parentheses. C, Examples of lick tim-
ing (vertical lines) relative to odor 2 (duration 0.6 s) and water delivery (light blue). For the con-
ditional reward time group (left), the timing of reward onset depended on lick timing. For the
fixed reward onset (right), water timing was fixed regardless of licking behavior. D, Histograms
of water onset times for the two groups, for days 1–3 of the training. E, DNMS learning curves
for the two cohorts for 1.7 s (filled circles), 5 s (hollow circles), and 12 s (stars) intervals.
Horizontal line indicates the criterion level (auROC = 0.8). F, Summary of learning speeds, meas-
ured by number of trials taken to reach criterion performance at sample-test odor interval of
1.7 s (left), 5 s (middle), and 12 s (right) for the two cohorts; p = 0.047, 0.068, 0.87 (two-sam-
ple t tests), respectively; n = 5 mice for conditional reward timing and 6 mice for fixed reward
timing. G, Relationship between stray licks (licks during the sample-test odor interval) and accu-
racy of DNMS performance. Pearson’s r = �0.483, p = 1.83 � 10�4. Symbols correspond to
individual mice. Cond., Conditional. n.s. = not significant at the 0.05 level.

Figure 5. Olfactory stimulus interval affects the slope, whereas reward timing affects the inter-
cept of learning curves. A, Slope of the logistic curve, derived from the fitted parameter, beta, for
the three protocols used. Beta/4 describes the slope at the steepest point; p = 0.036, one-way
ANOVA, followed by Tukey–Kramer post hoc comparisons (p = 0.1202, 0.0377, and 0.8662 for
1 vs 2, 2 vs 3, and 1 vs 3 comparisons). B, Intercept values for the fitted logistic curves; p =
0.0393, one-way ANOVA, followed by Tukey–Kramer post hoc comparisons (p = 0.7387, 0.1307,
and 0.0405 for 1 vs 2, 2 vs 3, and 1 vs 3 comparisons). C, Initial accuracy when switching to longer
sample-test interval, normalized by the last session performance; p = 0.0455 for equal perform-
ance at 5 s interval, one-way ANOVA; p = 0.0498 for equal performance at 12 s, one-way ANOVA
with post hoc Tukey–Kramer comparisons; n = 6 mice, 5 mice, and 6 mice for cohorts 1, 2, and
3, respectively. Cond., Conditional. n.s. = not significant at the 0.05 level.
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third, a pair where the odor identity was the same but the two
stimuli differed in concentrations (ethyl butyrate at high vs low
concentrations; 1% vs 1.5% saturated vapor). The mice showed
efficient transfer to the new odor pairs, reaching the criterion
performance more quickly than it took for the initial task acqui-
sition (Fig. 7E,F). There was a tendency for the mice to perform
more poorly for harder pairs, but this was not statistically signifi-
cant. It is possible that a sequential acquisition of odor pairs
causes generalizability to improve over time. To compare the
effect of stimulus similarity on the task generalizability without
this confound, we subjected the same mice to multiple novel
pairs within two sessions (Fig. 7B, bottom). This revealed that
the mice learned to compare new but distinct monomolecular
pairs instantaneously (Fig. 7E). It took the mice longer to cor-
rectly lick when they were presented with the same odor that dif-
fered in concentrations (Fig. 7G,H). Altogether, these results
demonstrate that stimulus similarity affects the generalizability
and speed of improvement.

Why does the late reward arrival result in faster acquisition of
the DNMS task without affecting the slope of the learning curve?
To obtain clues, we first analyzed whether there was any differ-
ence in the stray lick patterns across the three cohorts during

learning. We measured the stray licks generated during the sam-
ple-test odor delay (Fig. 8A). Among the two cohorts of mice
with conditional reward timing, there tended to be more spo-
radic licks during the sample-test odor interval during acquisi-
tion (Fig. 8B; average number of stray licks per second in the first
400 trials = 1.176 0.29, 1.586 0.21, and 0.616 0.14 for cohorts
1, 2, and 3, respectively; p = 0.018; one-way ANOVA; n = 6, 5,
and 6 mice, respectively). Second, we noticed that the reaction
times, that is, how quickly the mice generated anticipatory licks
in response to the test odor presentation, differed between
cohorts with reward timing differences. The two cohorts that
could receive reward early gradually shifted to shorter reaction
times with training, whereas the cohort with fixed and later
reward timing tended to maintain late lick onsets (Fig. 8A,C,D;
average reaction times for the last 100 reward trials = 0.656 0.07 s,
0.78 6 0.12, and 1.78 6 0.11 s for two cohorts with conditional
reward timing and the cohort with fixed reward timing, respec-
tively; p = 1.43 � 10�6, one-way ANOVA). Third, when the false

Figure 6. Interval-dependent performance and generalization. A, Once mice were trained
to perform DNMS with a 12 s interval, they went through one session where the sample-test
odor interval was randomly selected from 1.7 s, 5 s, 12 s, or 20 s on a given trial [DNMS
(var.)]. B, Example trial order, where gray intensity indicates the sample-test odor interval
duration. C, Lick raster, sorted by nonmatch (left) and match (right) trials and by the dura-
tion of sample-test odor intervals, with grayscale indicating the interval duration. White
areas indicate the time of odor presentations. D, Accuracy for each interval used, for two
cohorts, with colors corresponding to the cohorts described in A. Mean and SEM are indi-
cated; n = 4 mice for each cohort. E, After recovery from surgery, naive mice went through
habituation and training for olfactory DNMS with 1.7 s interodor interval and reward delivery
fixed at 2.6 s after odor offset. Once trained, the mice performed 1–2 sessions of DNMS with
variable interodor delays. F, Generalization to longer intervals. Accuracy of performance for
the interodor intervals is indicated, expressed auROC; ** and * indicate statistically significant
deviation using t test from auROC = 0.5 at the significance level of 0.01 and 0.05 with
Bonferroni correction, respectively; p = 0.0007, 0.0003, 0.0013, 0.0032, and 0.0189 for 1.7 s,
5 s, 8 s, 10 s, and 20 s delay intervals, respectively; n = 7 mice.

Figure 7. Stimulus similarity and the generalizability. A, B, Generalization to new odor
comparisons. A, Timeline of behavioral training. B, Odors used for the DNMS tasks, as listed
in A. Mice underwent DNMS training with dissimilar odor pair (butyl acetate vs methyl salicy-
late; C/D vs C/D), similar odor pair (ethyl valerate vs methyl valerate; E/F vs E/F), and ethyl
butyrate at two concentrations (G/H vs G/H). C, D, Assessing the similarity of olfactory bulb
activity patterns evoked in anesthetized mice by odors used in the DNMS task. C, Raster plots
for an example unit for all odors used. D, Correlation coefficients for pairs of odors used in
the DNMS tasks. Each data point corresponds to the similarity of population activity for each
recording site; n = 7 locations, 3 mice. E, Learning curves for the new odor pairs. Each data
point represents the accuracy for a block of 30 trials; n = 4 mice. F, Same data as in E but
aligned for the start of training for the three new odor pairs for easy comparison. G, Lick ras-
ter plots from an example mouse for the four new nonmatch pairs introduced in the multio-
dor DNMS stage. Color coding follows the scheme in B. H, Evolution of anticipatory licks over
time for new nonmatch odors (left) and match pairs (right); n = 4 mice. Mean and SEM are
indicated.
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alarm patterns were analyzed, we found more erroneous licks in
the cohorts with early reward (Fig. 8E). Altogether, these traits indi-
cate that the conditional reward timing makes mice generate be-
havioral outputs more readily, indicating a lowering of the internal
threshold for generating licks.

To analyze the relationship between the reward timing and
internal threshold more rigorously and to explain how a lower
behavioral threshold relates to slower learning, we analyzed our
data using a simple drift-diffusion model (Ratcliff and McKoon,
2008). This model simulates the internal representation of sen-
sory evidence as an accumulation of noisy diffusion processes
(drift rate with noise; Fig. 9A). In addition, the time at which this
sensory evidence crosses a threshold (bound) models the behav-
ioral reaction times observed. Here, we fit reaction times of the
animals and estimated two diffusion rates, corresponding to the
strengths of momentary sensory drives for matching and non-
matching odor stimuli (S� and S1, respectively), as well as a sin-
gle bound (Go bound; Ratcliff et al., 2018). The fitted model
captured the tendency for early reaction times, as well as more
frequent false alarm occurrences, for the cohort with conditional
reward timing and more accurate and later production of antici-
patory licks for the cohort with fixed reward timing (Fig. 9B).

This analysis revealed how the reward timing may affect the
acquisition of a task. First, as indicated by the readiness to gener-
ate early anticipatory licks and sporadic licks, earlier arrival of

reward tends to lower the decision bound (Fig. 9C; mean bounds =
0.656 0.02 and 0.60 6 0.02 for the two cohorts with early reward
vs 0.73 6 0.04 for the fixed, late reward group; p = 0.013, one-way
ANOVA; n = 5, 6, and 6 mice). Second, we found that the differ-
ence in the drift rates associated with the S1 and S� stimuli
became greater for the cohort with conditional reward timing as
they learned the task (Fig. 9D,E; ratio of S1 vs S� diffusion
rates = 11.8 6 2.37 and 10.28 6 2.8 for the two cohorts with
conditional reward timing vs 3.00 6 0.34 for the fixed, later
reward group; p = 0.017, one-way ANOVA; n = 6, 5, and 6 mice).
In other words, when the reward arrives early, a consequence is a
lowering of the decision threshold, which may require the sensory
representations to be more discriminable to achieve the same
accuracy. This requirement for more discriminable representation
may underlie the slower task acquisition.

The above result suggests that a late arrival of a reward allows
a more evolved, or discriminable, sensory representation avail-
able for task acquisition. We wished to test whether this is a gen-
eral phenomenon and is relevant for other forms of sensory

Figure 8. Behavioral output patterns depend on reward timing. A, Example lick raster
plots from mice that went through different training paradigms. Left, a mouse that started
with 5 s sample-test odor interval and conditional reward timing; middle, starting with a
1.7 s interval and conditional reward timing; right, starting with a 1.7 s interval and fixed
reward timing. B, Evolution of stray licking during sample-test odor interval for the three
cohorts (n = 6, 5, and 6 mice, respectively). Thick lines indicate mean; shadings indicate
mean6 SEM. C, Illustration of reaction times; timings of first three licks after odor 2 onset
are averaged and expressed relative to the onset of odor 2. D, Evolution of reaction time
with training for the three cohorts indicated with the same color scheme as in A. Thin lines
represent individual mice, thick lines represent average. E, Peristimulus time histograms for
licks generated on match (unrewarded) trials were compared between cohorts that started
with the 1.7 s delay but differed in the reward timing (n = 5 and 6 mice, respectively).
Thick lines indicate mean; shading indicates mean6 SEM.

Figure 9. Interplay between reward timing, behavioral threshold, and the discriminability
of sensory representations. A, A drift-diffusion model with one bound (blue line) to model
the Go/No-Go behavior. Drift rates, ms1 and ms�, are the strengths of momentary evidence
following the S1 (nonmatch) stimulus and S� (match) stimulus, respectively. At each time
point, a fixed amount of noise is added and accumulated over time (sensory evidence).
Reaction time is the time at which the sensory evidence crosses the bound. B, Histograms of
reaction times for an example animal over five training days. Observed licks (correct licks are
licks on S1 trials; false alarms are licks on S� trials) shown as bars. Simulated result using
fitted parameters superimposed with lines (solid lines indicate S1 simulation; dotted lines
indicate S� simulation). C, Estimated bounds for cohorts with fixed reward timing (bur-
gundy) and conditional reward timing (green). Di, Estimated drift rates for the cohort with
late, fixed reward timing. Rew., Reward. Dii, Estimated drift rates for two cohorts with condi-
tional reward timing. E, Comparison of estimated bounds (top) and the ratio of drift rates
(ms1/ms�, bottom) for the three cohorts from the last day of initial training. For decision
bounds, p = 0.011 and 0.099 across reward timing and p = 0.43 for cohorts with same
reward timing but different sample-test intervals (one-way ANOVA with post hoc Tukey–
Kramer tests). For drift rates, p = 0.0183 and 0.0639 across reward timing, and p = 0.86 for
cohorts with same reward timing (one-way ANOVA with post hoc Tukey–Kramer tests).
Mean and SEM are indicated. n.s. = not significant at the 0.05 level.
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tasks. To this end, we trained cohorts of head-fixed mice on a
Go/No-Go fine olfactory discrimination task. Here, the task was
to discriminate between binary olfactory mixtures (Fig. 10A,B).
Both odor mixtures contained ethyl butyrate and eugenol, but
the S1 and S� odors differed in the ratios of the component
odor concentrations (Koldaeva et al., 2019). One cohort of mice
received a reward that arrived 1.2 s after the onset of the S1
odor (early reward group), whereas for the second group, the
reward latency was 3.2 s (late reward group) to reproduce the dif-
ference in anticipatory lick patterns observed earlier for the con-
ditional reward timing versus late, fixed reward arrival. It should
be noted that, here, the timing of the early reward arrival was
fixed to rule out a difference in the variability in reward timing
contributing to the reward timing effect. After habituation, both
cohorts of mice were trained to discriminate the 80/20 (EB/euge-
nol) mixture versus the 20/80 mixture, followed by discrimina-
tion of a more similar pair of stimuli, namely, 60/40 versus 40/60
mixtures (Fig. 10A,B). The cohort of mice that received the
reward with a latency of 3.2 s generated anticipatory licks with a
longer latency and more selectively for S1 mixtures than the
early reward group from the outset (Fig. 10C,D). The late reward
group reached the criterion level of performance significantly
faster than the early reward group. Further, once trained on the
80/20 versus 20/80 discrimination task, the late reward group
performed better on the more difficult mixture discrimination.
Altogether, these results suggest that the reward timing effect is
likely a general phenomenon.

Discussion
Describing the quantitative relationships between physical stim-
uli and behavioral change is central to gaining insights into
learning. In this study, we demonstrate that simplified training,
without punishment, leads to a robust acquisition of the olfactory
DNMS task. Further, we identified two aspects of stimulus tim-
ing that affect the task acquisition rate. The task acquisition is
faster when the sample-test delay interval is shorter and slower
when animals could receive a reward earlier.

The effect of the delay interval on the DNMS task acquisition
may relate to the degradation or fading of the short-termmemory
over time, which is a hallmark of working memory (Baddeley,
2012). An underlying neural correlate of short-term information
retention is thought to be a stimulus-specific, persistent increase
in firing rates in individual neurons. Such activity patterns are
prevalent in the prefrontal cortex in animals engaged in delayed
response and delayed matching tasks (Fuster and Alexander,
1971; Funahashi et al., 1989; Goldman-Rakic, 1995; Miller et al.,
1996; Wu et al., 2020). These activities may be maintained
through dynamic interactions within a local network (Goldman-
Rakic, 1995; Sreenivasan and D’Esposito, 2019) and possibly
across brain regions (Zhang et al., 2019; Wu et al., 2020).
However, typically, there is a degradation—or decay in the firing
rate—during the delay period, which correlates with task per-
formance (Zhang et al., 2019). Thus, the faded representation
may slow down the task acquisition in a manner similar to pre-
senting a weaker stimulus in associative learning (Grant and
Schneider, 1948). It should be noted that although this study used
a Go/No-Go paradigm, such a weakening of sensory representa-
tions is likely to have a similar effect on other instances of delayed
(non)match-to-sample, such as the two-alternative forced-choice
paradigm.

The detrimental effect of early reward arrival on task acquisi-
tion was less expected from the outset. For example, in an

influential framework, the temporal contiguity between stimuli
and reinforcing signals is described by an eligibility trace, a
short-term memory vector that signals a magnitude of reinforce-
ment learning permitted (Klopf, 1972; Barto et al., 1983). As
this describes a signal that fades over time, a simple predic-
tion is a slower learning rate with later reward arrival.
Further, some studies suggest that waiting longer for more
prolonged evidence accumulation can incur a cost to behav-
ioral accuracy (Drugowitsch et al., 2012). However, our find-
ing indicates that there is more to it; when the reward could
be delivered earlier, our mice also developed early licking.
We interpret this effect on reaction times as lowering the de-
cision bound. A consequence of this lower bound seems that
to achieve the same accuracy the momentary strengths of the
sensory drive (the drift rates) had to become more divergent.
This may be synonymous with improving on a more difficult
task. This requirement for more divergent sensory drives
required for accurate decision-making may underlie a slower
task acquisition. An alternative interpretation of our findings
is that a variable reward timing introduces uncertainty. For
example, an arrival of a sensory stimulus with an unexpected
timing can degrade a behavioral performance (Jaramillo and

Figure 10. Reward timing effect is likely general; the acquisition of fine olfactory discrimi-
nation task is also affected. A, Schematic of the behavioral paradigm. After habituation,
head-fixed mice were trained to discriminate between EB and eugenol (Eug) mixtures that
differed in the mixed ratios. After reaching the criterion level of performance (80% correct)
on 80/20 versus 20/80 discrimination, the mice underwent training for 60/40 versus 40/60
mixture discrimination. B, Trial structure. For the early reward group, the water reward
arrived 1.2 s after the onset of odor. For the late reward group, the latency to reward was
3.2 s. C, Lick raster plots from example mice for S1 and S� odors as indicated, for early
reward group (top) and late reward group (bottom). D, Peristimulus time histogram of lick
occurrences for the last training session for each task. Rel., relative to E, Evolution of lick
onset timing for the two cohorts over training. Dotted lines indicate the reward arrival times
for the two cohorts; n = 6 mice for each cohort. Mean and SEM are indicated. F, Learning
curves for the two cohorts. Each data point corresponds to the average accuracy (auROC) for
a block of 40 trials sliding every 20 trials. Mean 6 SEM is indicated. G, Number of trials
taken to reach the criterion level of accuracy (auROC = 0.8) for the initial acquisition; p =
0.014, two-sample t test; n = 6 mice in each cohort. Mean and SEM are indicated.
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Zador, 2011). However, it should be noted that in our study
mice had control over when the reward should be delivered,
resulting in an earlier reaction time. Unexpected stimulus tim-
ing, on the other hand, is accompanied by a slower reaction
time (Jaramillo and Zador, 2011). Further, using a fine olfac-
tory discrimination task, we found that an early reward timing
has a detrimental effect on learning even when the reward
timing is fixed. We do not, however, completely rule out the
effect of uncertainty, given that the DNMS and fine discrimi-
nation tasks likely involve different circuit processing.

Although the drift-diffusion model was instrumental in nar-
rowing potential factors involved, what might the abstract, com-
putational terms correspond to physiologically? Several studies
have reported ramping neuronal activities in prefrontal and fron-
tal cortices, for example, in monkeys discriminating and report-
ing the direction of random dot motions with saccades after
delays (Shadlen and Newsome, 1996; Roitman and Shadlen,
2002; Ding and Gold, 2012). Furthermore, the slopes of such
ramping activity are known to increase with the coherence of
motion or the strength of stimuli (Shadlen and Newsome, 1996;
Roitman and Shadlen, 2002; Ding and Gold, 2012). These sug-
gest that the drift rates of the model may be interpreted in terms
of mechanisms that lead to action potential generation in rele-
vant prefrontal cortex neurons, for example, the firing rates of
neurons presynaptic to these neurons.

In the case of the olfactory delayed matching to sample, a pre-
vious study suggested that the anterolateral motor (ALM) cortex
may contain neurons that report the match/nonmatch of sample
and test odors (Wu et al., 2020). According to this model, the
persistent, stimulus-specific activity in response to the sample
odor is maintained through recurrent interactions involving
many sensory cortices, which is used to compare against the test
odor identity to compute the match in ALM. We, therefore,
speculate that the drift rate may correspond to this process.
Furthermore, with learning, the selectivity of choice-related ac-
tivity may undergo refinement, just as sensory representations in
many brain regions are known to increase in selectivity with the
acquisition of a task (Poort et al., 2015).

In summary, our results indicate two ways in which stimulus
timing affects stimulus encoding in relation to the acquisition of
a DNMS task—retention of sensory information over time and
discriminability of match-related signals required for accurate
behavioral performance. The efficient DNMS training paradigm
we describe here, in turn, may accelerate the investigations of
underlying neural mechanisms.

References
Baddeley A (2012) Working memory: theories, models, and controversies.

Annu Rev Psychol 63:1–29.
Barto AG, Sutton RS, Anderson CW (1983) Neuronlike adaptive elements

that can solve difficult learning control problems. IEEE Trans Syst, Man,
Cybern SMC-13:834–846.

Blough DS (1959) Delayed matching in the pigeon. J Exp Anal Behav 2:151–
160.

Calvert AL, Green L, Myerson J (2010) Delay discounting of qualitatively dif-
ferent reinforcers in rats. J Exp Anal Behav 93:171–184.

Ding L, Gold JI (2012) Neural correlates of perceptual decision making
before, during, and after decision commitment in monkey frontal eye
field. Cereb Cortex 22:1052–1067.

Drugowitsch J, Moreno-Bote R, Churchland AK, Shadlen MN, Pouget A
(2012) The cost of accumulating evidence in perceptual decision making.
J Neurosci 32:3612–3628.

Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal
lobe and recognition memory. Annu Rev Neurosci 30:123–152.

Eriksson J, Vogel EK, Lansner A, Bergström F, Nyberg L (2015) Neurocognitive
architecture of working memory. Neuron 88:33–46.

Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR (2001)
Efficiency and ambiguity in an adaptive neural code. Nature 412:787–
792.

Friedrich RW, Wiechert MT (2014) Neuronal circuits and computations:
pattern decorrelation in the olfactory bulb. FEBS Lett 588:2504–2513.

Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of vis-
ual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol
61:331–349.

Fuster JM, Alexander GE (1971) Neuron activity related to short-term mem-
ory. Science 173:652–654.

Gelman A, Hill J (2006) Data analysis using regression and multilevel/hier-
archical models. Cambridge, UK: Cambridge UP.

Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron
14:477–485.

Grant DA, Schneider DE (1948) Intensity of the conditioned stimulus and
strength of conditioning: The conditioned eyelid response to light. J Exp
Psychol 38:690–696.

Hampson RE, Heyser CJ, Deadwyler SA (1993) Hippocampal cell firing cor-
relates of delayed-match-to-sample performance in the rat. Behav
Neurosci 107:715–739.

Han Z, Zhang X, Zhu J, Chen Y, Li CT (2018) High-throughput automatic
training system for odor-based learned behaviors in head-fixed mice.
Front Neural Circuits 12:15.

Herman LM, Gordon JA (1974) Auditory delayed matching in the bottlenose
dolphin. J Exp Anal Behav 21:19–26.

Hume D (1748) An enquiry concerning human understanding. London: A.
Millar.

Jaramillo S, Zador AM (2011) The auditory cortex mediates the percep-
tual effects of acoustic temporal expectation. Nat Neurosci 14:246–
251.

Kay D, Kibble J (2016) Learning theories 101: application to everyday teach-
ing and scholarship. Adv Physiol Educ 40:17–25.

Klopf A (1972) Brain function and adaptive systems: a heterostatic
theory. Air Force Cambridge Research Laboratories.

Koldaeva A, Schaefer AT, Fukunaga I (2019) Rapid task-dependent tuning of
the mouse olfactory bulb. Elife 8:e43558.

Liu D, Gu X, Zhu J, Zhang X, Han Z, Yan W, Cheng Q, Hao J, Fan H, Hou
R, Chen Z, Chen Y, Li CT (2014) Medial prefrontal activity during
delay period contributes to learning of a working memory task.
Science 346:458–463.

Mazur JE (1987) An adjusting procedure for studying delayed reinforce-
ment. In: The effect of delay and of intervening events on reinforce-
ment value. (Commons ML, Mazur JE, Nevin JA, Rachlin H, eds),
pp 55–73. Hillsdale, NJ: Erlbaum.

Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual
working memory in prefrontal cortex of the macaque. J Neurosci
16:5154–5167.

Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study
of memory. Neuron 20:445–468.

Mishkin M, Delacour J (1975) An analysis of short-term visual memory in
the monkey. J Exp Psychol Anim Behav Process 1:326–334.

Mishkin M, Manning FJ (1978) Non-spatial memory after selective prefron-
tal lesions in monkeys. Brain Res 143:313–323.

Myerson J, Green L (1995) Discounting of delayed rewards: models of indi-
vidual choice. J Exp Anal Behav 64:263–276.

Nakayama H, Gerkin RC, Rinberg D (2022) A behavioral paradigm for meas-
uring perceptual distances in mice. Cell Rep Methods 2:100233.

Pachitariu M, Steinmetz N, Kadir S, Carandini M, Kenneth DH (2016)
Kilosort: realtime spike-sorting for extracellular electrophysiology with
hundreds of channels. bioRxiv 061481. https://doi.org/10.1101/061481.

Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological
activity of the cerebral cortex. Oxford, UK: Oxford UP.

Poort J, et al. (2015) Learning enhances sensory and multiple non-sensory
representations in primary visual cortex. Neuron 86:1478–1490.

Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data
for two-choice decision tasks. Neural Comput 20:873–922.

Ratcliff R, Huang-Pollock C, McKoon G (2018) Modeling individual differ-
ences in the Go/No-go task with a diffusion model. Decision (Wash D C)
5:42–62.

Reuschenbach, Reinert et al. · Stimulus and Reward Timing in Task Learning J. Neurosci., April 26, 2023 • 43(17):3120–3130 • 3129

https://www.ncbi.nlm.nih.gov/pubmed/21961947
https://www.ncbi.nlm.nih.gov/pubmed/13801643
https://www.ncbi.nlm.nih.gov/pubmed/20885809
https://www.ncbi.nlm.nih.gov/pubmed/21765183
https://www.ncbi.nlm.nih.gov/pubmed/22423085
https://www.ncbi.nlm.nih.gov/pubmed/17417939
https://www.ncbi.nlm.nih.gov/pubmed/26447571
https://www.ncbi.nlm.nih.gov/pubmed/11518957
https://www.ncbi.nlm.nih.gov/pubmed/24911205
https://www.ncbi.nlm.nih.gov/pubmed/2918358
https://www.ncbi.nlm.nih.gov/pubmed/4998337
https://www.ncbi.nlm.nih.gov/pubmed/7695894
https://www.ncbi.nlm.nih.gov/pubmed/18893184
https://www.ncbi.nlm.nih.gov/pubmed/8280383
https://www.ncbi.nlm.nih.gov/pubmed/4204143
https://www.ncbi.nlm.nih.gov/pubmed/26847253
https://www.ncbi.nlm.nih.gov/pubmed/25342800
https://www.ncbi.nlm.nih.gov/pubmed/8756444
https://www.ncbi.nlm.nih.gov/pubmed/9539121
https://www.ncbi.nlm.nih.gov/pubmed/811754
https://www.ncbi.nlm.nih.gov/pubmed/415803
https://www.ncbi.nlm.nih.gov/pubmed/16812772
https://www.ncbi.nlm.nih.gov/pubmed/35784646
https://doi.org/10.1101/061481
https://www.ncbi.nlm.nih.gov/pubmed/26051421
https://www.ncbi.nlm.nih.gov/pubmed/18085991
https://www.ncbi.nlm.nih.gov/pubmed/29404378


Renner KE (1964) Delay of reinforcement: a historical review. Psychol Bull
61:341–361.

Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intrapar-
ietal area during a combined visual discrimination reaction time task. J
Neurosci 22:9475–9489.

Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem
AB, Grosmark A, Belluscio M, Denfield GH, Ecker AS, Tolias AS,
Solomon S, Buzsaki G, Carandini M, Harris KD (2016) Spike sorting for
large, dense electrode arrays. Nat Neurosci 19:634–641.

Shadlen MN, Newsome WT (1996) Motion perception: seeing and deciding.
Proc Natl Acad Sci U S A 93:628–633.

Shuell TJ (1986) Cognitive conceptions of learning. Rev Educ Res 56:411–436.
Skinner BF (1950) Are theories of learning necessary? Psychol Rev 57:193–216.
Sreenivasan KK, D’Esposito M (2019) The what, where and how of delay ac-

tivity. Nat Rev Neurosci 20:466–481.

Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD
(2019) Spontaneous behaviors drive multidimensional, brainwide activ-
ity. Science 364:eaav7893.

Thorndike EL (1898) Animal intelligence: an experimental study of the
associative processes in animals. Psychological Reviews: Monograph
Supplements 2:i–109.

Wu Z, Litwin-Kumar A, Shamash P, Taylor A, Axel R, Shadlen MN (2020)
Context-dependent decision making in a premotor circuit. Neuron
106:316–328.e6.

Zentall TR, Smith AP (2016) Delayed matching-to-sample: a tool to assess
memory and other cognitive processes in pigeons. Behav Processes
123:26–42.

Zhang X, Yan W, Wang W, Fan H, Hou R, Chen Y, Chen Z, Ge C, Duan S,
Compte A, Li CT (2019) Active information maintenance in working
memory by a sensory cortex. Elife 8:e43191.

3130 • J. Neurosci., April 26, 2023 • 43(17):3120–3130 Reuschenbach, Reinert et al. · Stimulus and Reward Timing in Task Learning

https://www.ncbi.nlm.nih.gov/pubmed/14146339
https://www.ncbi.nlm.nih.gov/pubmed/12417672
https://www.ncbi.nlm.nih.gov/pubmed/26974951
https://www.ncbi.nlm.nih.gov/pubmed/8570606
https://www.ncbi.nlm.nih.gov/pubmed/15440996
https://www.ncbi.nlm.nih.gov/pubmed/31086326
https://www.ncbi.nlm.nih.gov/pubmed/32105611
https://www.ncbi.nlm.nih.gov/pubmed/26165174

	Effects of Stimulus Timing on the Acquisition of an Olfactory Working Memory Task in Head-Fixed Mice
	Introduction
	Materials and Methods
	Results
	Discussion


