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Abstract

Theflowof an incompressible fluid can be described exactly and succinctly using theNavier-
Stokes equation. However, the nonlinearity of this equation leads to flow structures with
detail at many length scales, known as turbulence. The only exact theory in turbulence was
made in 1941 by Kolmogorov. In this thesis, we probe Kolmogorov’s predictions in the case
of multiphase systems by making direct numerical simulations of droplets, particles, and
solid phases in turbulent flows.

Firstly, we show how the coalescence of droplets can reduce drag in a turbulent chan-
nel flow. Following on from this, in the remainder of the thesis we look more closely at
the turbulent energy cascade using simulations of statistically homogeneous and isotropic
flows. We show that the balance of turbulent forces and surface tension means large and
small droplets form distinct shapes. Considering particles in turbulent flows, we see that
isotropic and anisotropic particles couple to the cascade at different length scales, and in
some cases can enhance the flow. Finally, we show that the plasticity of a fluid enhances
its turbulent behaviour.

The results presented in this thesis find cases in which Kolmogorov’s predictions do
not hold. In each case, we aim to explain why. These results can have wide-reaching im-
plications for health, industry and the environment, including heart disease, micro-plastic
dispersal, mudslides, and cloud formation.
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Introduction

Multiphase flows consist of a fluid with at least one additional phase. Examples of the
additional phase include droplets, solid particles, and polymers. When flow velocities in
a fluid are large, the fluid motion becomes chaotic, and kinetic energy is found at many
length scales in theflow. This is knownas turbulence. Duringmy thesis research, I studied
turbulent flows of multiphase fluids.

Multiphase turbulent flows are seen all around us. Understanding the energy transfer
mechanisms in multiphase turbulent flows is essential for climate forecasting, pollen dis-
persal, and designing drugs to reduce the risk of heart disease (Dong et al., 2017). Figure 1
shows spray created by a breaking wave. The creation of sea spray is a complex process
involving surfactants at the air-water interface. Salt in the spray can travel high into the
atmosphere and act as a seed for cloud formation (de Leeuw et al., 2011). Cloud formation
has the knock-on effect of increasing the scattering of sunlight back into space, and is one of
the largest causes of uncertainty in climate modelling (Brooks & Thornton, 2018). Figure 2
shows two turbulent flows laden with particles. In the case of pollen, it is beneficial to the
plant if the solid particles are carried large distances by the flow. In the case of sandstorms,
the back-reaction of the solid phase (sand) on the fluid phase (air) influences the severity
of the storm. Figure 3 shows the destruction caused by a mudslide which occurred in Oki-
nawa at the time of writing this thesis. Mud is a complex material which behaves as a solid
when shear stresses are low, but can suddenly flow like a liquid when shear stresses are
high, for example, after heavy rainfall. This solid-liquid behaviour is known as plasticity.

0.3 Physics of turbulence
The flow velocity 𝐮 of an incompressible fluid with density 𝜌 and kinematic viscosity 𝜈
obeys the Navier-Stokes equations,

𝜕𝑡𝑢𝑖 + 𝜕𝑗𝑢𝑖𝑢𝑗 = 𝜈𝜕𝑗𝑗𝑢𝑖 − 𝜕𝑖𝑝∕𝜌 + 𝑓𝑖𝑛𝑗𝑖 + 𝑓𝑚𝑝𝑖 (1)
𝜕𝑗𝑢𝑗 = 0, (2)

where indices 𝑖, 𝑗 ∈ {1, 2, 3} denote the Cartesian components of a vector, and repeated
indices are implicitly summed over. 𝜕 denotes partial differentiation with respect to the
subscripted index or variable. 𝐟 𝐢𝐧𝐣 is a force which drives the flow and 𝐟𝐦𝐩 is a force exerted
by other phases on the fluid.

Turbulence is the chaotic motion of a fluid which generally emerges at higher flow ve-
locities. Turbulence is often referred to as “the last unsolved problem of classical physics”
(Frisch, 1995), due to its chaotic and seemingly spontaneous nature, which results from the

1



Introduction 2

Figure 1: Photograph of a wave breaking on the coast of Okinawa. This is an example of
turbulent flow in the presence of a surfactant-laden interface. I can be seen on the right
attempting to surf. Photo taken by Linda Gietka.

Figure 2: Left: Pollen dispersal from the cone of a lodgepole pine. Photo credit: Robert J.
Erwin. Right: A sandstorm in Golmud, China. Photo credit: Barcroft media, 2010. Both
of these are examples of turbulent flows laden with particles.
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Figure 3: Destruction caused by a landslide in Urasoe, Okinawa, on 3rd August 2023 after
heavy rains due to typhoon Khanun. Landslides are a dangerous example of a turbulent
elastoviscoplastic fluid. Image from Hiroyuki Takatsuji, Ryukyu shinpo.

non-linearity of the advective term 𝜕𝑗𝑢𝑖𝑢𝑗 in equation 1. In popular culture, the chaotic
property is responsible for the “the butterfly effect”, whereby a butterfly flapping its wings
can influence the formation of a tornado in another part of theworldmanydays later (Lorenz,
1993). The intensity of turbulence is parametrized by the ratio of the advective and vis-
cous (𝜈𝜕𝑗𝑗𝑢𝑖) terms in equation 1. This dimensionless parameter is known as the Reynolds
number, and for a flow with characteristic velocity 𝑈 and length 𝐿, we can define it as
𝑅𝑒 = 𝑈𝐿∕𝜈.

In addition to chaos, another defining feature of turbulent flows is the propagation of
kinetic energy to a range of length scales from large to small. This was first described by
Richardson, 1922, who likened the process to fleas on the backs of larger fleas;

Big whorls have little whorls
Which feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.

Richardson described the turbulent flow in terms of a series of rotating structures called ed-
dies, noting that the large eddies are unstable and break up into smaller eddies. The process
continues until the eddies are small enough to feel the molecular effects of the fluid, when
they are dissipated as heat. This process is known as Richardson’s cascade. In 1941a, A. N.
Kolmogorov made some groundbreaking predictions about Richardson’s cascade. A. N.
Kolmogorov assumed that, at a sufficiently high Reynolds number:

1. Turbulent motions at a length-scale 𝑙 ≪ 𝑙0 are statistically isotropic, where 𝑙0 is the
length-scale at which energy is injected into the flow.

2. Time-averaged statistics of the small-scale motion 𝑙 ≪ 𝑙0 are depend on only 𝜈, 𝜖 and
𝑙, where 𝜖 is the rate of energy dissipation in the flow.
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104 Phenomenology of turbulence in the sense of Kolmogorov 1941 
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Fig. 7.2. The cascade according to the Kolmogorov 1941 theory. Notice that at 
each step the eddies are space-filling. 

have scales"' 17 , the Kolmogorov dissipation scale. The number of eddies 
per unit volume is assumed to grow with n as ,-3n to ensure that small 
eddies are as space-filling as large ones. Energy, introduced at the top at 
a rate e (per unit mass), is 'cascading' down this hierarchy of eddies at 
the same rate e and is eventually removed by dissipation at the bottom, 
still at the rate e. The picture is, of course, not intended to be taken too 
literally: eddies could be much flatter than shown and the smaller ones 
are actually imbedded in the larger ones.6 The main advantage of the 
cascade picture is that it brings out two basic assumptions of the K41 
phenomenology. 

The first assumption is scale-invariance within the inertial range. This 
would be violated if, for example, small eddies were less and less space-
filling. Such an assumption leads to corrections to the K41 theory. This 
matter will be discussed in detail in Section 8.5. l. The second assumption 
is localness 7 of interactions. This means that, in the inertial range, the 
energy flux at scales "' f involves predominantly scales of comparable 
size, say from rl!. to ,-1g. 
6 In the figure, where eddies are stacked on top of each other, their number grows only 

as r-n. 
7 In turbulence, 'local' and 'localness' usually refer to scales, not to positions as in other 

areas of physics. 

Figure 4: Left: Kolmogorov’s model of the turbulent kinetic energy cascade, made up of
eddies of decreasing size 𝑟𝑛𝑙0, where 𝑙0 is the length scale at which energy is injected into
the flow, and 0 < 𝑟 < 1. Figure from Frisch, 1995. Right: The energy spectrum 𝐸 as a func-
tion of wavenumber 𝜅. The energy scales as 𝜅−5∕3, as predicted by A. N. Kolmogorov, 1941a.
At the smallest length scales, viscous forces dominate and the energy is dissipated at a rate
𝜖. The length scales considered in three common numerical methods for turbulence are
labelled above, they are Reynolds-averaged Navier-Stokes (RANS), direct numerical simu-
lation (DNS), and large-eddy simulation (LES). Figure from Tay-Wo-Chong, 2012.
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Figure 5: The balance of energy fluxes in a single-phase flow, simulated using 5003 grid
points.

3. Time-averaged statistics of the intermediate-scale motion 𝜂 ≪ 𝑙 ≪ 𝑙0 depend only on
𝜖 and 𝑙, where 𝜂 ≡ (𝜈3∕𝜖)1∕4 is now known as the Kolmogorov length.

These assumptions are motivated by symmetries in the Navier-Stokes equation (Frisch,
1995). Kolmogorov combined these assumptions with energy conservation in the flow to
make what remains today the only exact theoretical result in turbulence;

⟨
[𝑢𝑖(𝐱 + 𝑙�̂�𝑖) − 𝑢𝑖(𝐱)]

3⟩ = −45𝜖𝑙, (3)

where �̂�𝐢 is a unit vector, angled brackets show an ensemble average, andwe sumover direc-
tions 𝑖 = 1, 2, 3. It states that the difference in fluid velocity between two points separated
by a distance 𝑙 increases with the separation and the rate of energy dissipation in the fluid.
Since Kolmogorov’s seminal work, the same assumptions have been used to show that the
𝑝th moment

⟨
[𝑢𝑖(𝐱 + 𝑙�̂�𝑖) − 𝑢𝑖(𝐱)]

𝑝⟩ of the velocity differences over a separation 𝑙 scales as
(𝜖𝑙)𝑝∕3. This result directly leads to the famous −5∕3 scaling of the energy spectrum shown
in figure 4. In fact, Kolmogorov’s assumptions of self-similarity do not exactly hold, and dis-
crepancies can be seen for 𝑝 ≠ 3. This has been attributed by Bec et al., 2022; Frisch, 1995
and others to irregularities in the way eddies break up in the turbulent cascade, violating
assumptions 2 and 3. Evidence of these irregularities can be seen from the intermittency of
the fluid dissipation 𝜖 in space and time.

We can measure the flux of energy through the turbulent cascade by making a Fourier
transform of each term in the Navier-Stokes equation (eq. 1).

𝜕𝑡�̂�𝑖(𝜿) + �̂�𝑖(𝜿) = −𝜈𝜅𝑗𝜅𝑗�̂�𝑖(𝜿) − 𝜄𝜅𝑖�̂�(𝜿)∕𝜌 + 𝑓𝑖𝑛𝑗𝑖 (𝜿) + 𝑓𝑚𝑝𝑖 (𝜿), (4)

where𝐺𝑖 = 𝜕𝑗𝑢𝑖𝑢𝑗 is the advective term, thehat ⋅̂denotes theFourier coefficient forwavenum-
ber 𝜿, and 𝜄 is the imaginary unit. Equation 4 can bemultiplied by the complex conjugate �̂�∗𝑖
of the Fourier coefficient of the fluid velocity to obtain an expression for the time evolution
of turbulent kinetic energy

𝜕𝑡�̂�(𝜿) = �̂�(𝜿) + �̂�(𝜿) + �̂�𝑖𝑛𝑗(𝜿) + �̂�𝑚𝑝(𝜿), (5)
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where �̂� = −2𝜈𝜅𝑗𝜅𝑗�̂� is due to viscous dissipation,
�̂� = − 1

2
(�̂�𝑗�̂�∗𝑗 + �̂�∗

𝑗 �̂�𝑗) is due to the non-linear convective term,
�̂�𝑖𝑛𝑗 = 1

2
(𝑓𝑖𝑛𝑗𝑗 �̂�∗𝑗 + 𝑓𝑖𝑛𝑗∗𝑗 �̂�𝑗) is due to the external forcing, and

�̂�𝑚𝑝 = 1

2
(𝑓𝑚𝑝𝑗 �̂�∗𝑗 + 𝑓𝑚𝑝∗𝑗 �̂�𝑗) is due to additional phases in the fluid.

Integrating over the sphere of radius 𝜅 centred on the origin in wavenumber space, we ob-
tain the balance of energy fluxes;

𝜖 = 𝐷(𝜅) + Π(𝜅) + 𝑃(𝜅) +ℱ𝑚𝑝(𝜅), (6)

where 𝐷(𝜅) is rate of energy removal due to viscosity up to wavenumber 𝜅,
Π(𝜅) is the rate of energy flux due to advection up to wavenumber 𝜅,
𝑃(𝜅) is rate of energy injection by the forcing up to wavenumber 𝜅, and
ℱ𝑚𝑝(𝜅) is the rate of energy flux due to additional phases at wavenumber 𝜅.

Figure 5 shows the contribution of each term for a single phase flow. To sustain the flow
we apply a force which is made up of sinusoids in space with wavenumbers 𝜅 < 4. Indeed,
energy injection 𝑃 only occurs at the small wavenumbers. The advective term Π enacts
Richardon’s cascade, taking the energy to larger wavenumbers, and the viscous term𝐷 acts
at the largest wavenumbers, removing energy from the flow.

0.4 Simulations of turbulence
Accurate simulation of turbulent flow is challenging because it involves chaotic behaviour
at a wide range of length and time scales. Over the years, different techniques with differ-
ent levels of approximation have been developed to simulate turbulent flows. For example,
ReynoldsAveragedNavier-Stokes (RANS)methods solve the evolution of the time-averaged
motion. Approximate methods such as this allow the simulation of turbulent flows in the
complex geometries of interest in various industries, such as wind turbine design (Syawitri
et al., 2021). However, such methods are poor tools for the prediction of novel turbulent
phenomena as they rely on empirical models of the flow at small time and length scales
(Wilcox, 2006). More recently, it has become possible to accurately simulate turbulent flows
in simple geometries using a more simplistic technique known as Direct Numerical Simu-
lation (DNS). DNSs solve the Navier-Stokes equations at all scales of motion.

DNSs were unfeasible until sufficient computing power became available. In 1982 Ghia
et al. calculated the flow inside a cavity at Reynolds numbers up to 10,000. In 1985 Kim
and Moin performed one of the first DNSs of a fully developed turbulent channel flow at
moderate Reynolds numbers. Today, the DNS atmoderate Reynolds numbers has become a
valuable tool for fundamental turbulence research. DNSs are made to study geometrically
simple geometries such as channel flows, pipe flows, boundary layers, and flows in ducts.
The simplest DNS geometry is the triperiodic box, which has periodic boundary conditions
in 𝑥, 𝑦 and 𝑧, it can be used as an approximate model for any of the above-mentioned flows
in a region far from solid boundaries. In addition, the triperiodic flow is well suited for
spectral analysis, as the flow can be represented as a Fourier series in all three directions.
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0.5 Simulations of multiphase fluids
In the case where the additional phase is droplets in the flow, the force exerted on the fluid
in equation 1 is the interfacial surface tension, which can bemodelled using the volumetric
formulation (Popinet, 2018)

𝑓𝑚𝑝𝑖 = 𝛾𝜅𝑛𝑖 𝛿𝑆(𝒙), (7)
where 𝛾 is the surface tension coefficient, 𝜅 is the local curvature of the interface, 𝑛𝑖 is the
unit normal to the interface, and 𝛿𝑆(𝒙) is the surface delta function, which is zero every-
where except for the surface 𝑆 at the interface between the droplets and the carrier phase.
The interface can be computed as the locus where a volume-of-fluid (VOF) field 𝜙 takes the
value of 0.5. The volume-of-fluid field is defined as the local concentration of the droplet
phase, so it has a value of 1 inside the droplets and a value of 0 in the bulk. The volume of
fluid 𝜙 is transported by advection

𝜕𝑡𝜙 + 𝜕𝑖𝑢𝑖𝐻 = 0, (8)

where theMTHINC (multi-dimensional tangent of hyperbola for interface capturing)method
(Ii et al., 2012) can be used to reconstruct the local volume of fluid value 𝜙 starting from the
cell-local indicator function 𝐻. Resolving fluid motion near the interface is complex, and
processes such as film drainage can affect the rate of coalescence (Chan et al., 2011). Cur-
rently the best method we have to test for sub-grid-scale effects is to re-run the simulation
with a higher grid resolution.

In the case of spherical particles in the flow, the additional force in equation 1 can be
modelled using an Eulerian-based immersed boundary method (IBM) (Hori et al., 2022).
The velocity𝐔 of each particle is found using the Newton-Euler equation,

𝑚𝜕𝑡𝑈𝑖 = ∫
𝑆

(
𝜌𝜈(𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖) − 𝑝𝛿𝑖𝑗

)
𝑛𝑗𝑑𝑆. (9)

and likewise for the rotation rate,

𝐼𝜕𝑡Ω𝑖 = ∫
𝑆
𝜖𝑖𝑗𝑘

𝑐
2𝑛𝑗𝜌𝜈(𝜕𝑘𝑢𝑙 + 𝜕𝑙𝑢𝑘)𝑛𝑙𝑑𝑆, (10)

where 𝑆 is the surface of the sphere, and 𝐧 is its normal. 𝑚 = �̃�𝜋𝑐3∕6 and 𝐼 = 𝑚𝑐3∕20 are
the mass and moment of inertia of the sphere with diameter 𝑐 and density �̃�. 𝛿𝑖𝑗 is the
Kronecker delta and 𝜖𝑖𝑗𝑘 is the Levi-Civita symbol. The force 𝐟𝐦𝐩 on the fluid is equal and
opposite to these forces, applied at the surface 𝑆.

In the case where the new phase introduces plastic effects to the flow, the additional
force in equation 1 is the divergence of the non-Newtonian extra stress tensor 𝑓𝑚𝑝𝑖 = 𝜕𝑘𝜏𝑘𝑖,
where the constitutive model proposed by Saramito (2007) can be used to describe its evo-
lution in time;

𝜆
∇
𝜏𝑖𝑗 +max (0,

𝜏𝑑 − 𝜏𝑦
𝜏𝑑

) 𝜏𝑖𝑗 = 𝜇
(
𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖

)
(11)

where 𝜆 is the relaxation time of the material, ∇. denotes the upper-convected time deriva-
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tive, i.e.,
∇
𝜏𝑖𝑗 = 𝜕𝑡𝜏𝑖𝑗 + 𝑢𝑘𝜕𝑘𝜏𝑖𝑗 − 𝜕𝑘𝑢𝑖𝜏𝑘𝑗 − 𝜕𝑘𝑢𝑗𝜏𝑖𝑘, (12)

and 𝜇n is the non-Newtonian dynamic viscosity, 𝜏𝑑 is the magnitude of the deviatoric part
of the stress tensor 𝜏𝑑𝑖𝑗 ≡ 𝜏𝑖𝑗 − 𝜏𝑙𝑚𝛿𝑙𝑚𝛿𝑖𝑗∕3, and the magnitude is, 𝜏𝑑 =

√
1

2
𝜏𝑑𝑖𝑗𝜏

𝑑
𝑖𝑗. Finally,

𝜏𝑦 is the yield stress, when 𝜏𝑑 ≤ 𝜏𝑦, the material behaves as a solid, and when 𝜏𝑑 > 𝜏𝑦, the
material flows like a liquid.

In each case – droplets, particles, and plastic fluids – the behaviour of the force 𝐟𝐦𝐩 is
quite different, and via the energy flux ℱ𝑚𝑝, the additional phase couples to the turbulent
cascade in non-trivial ways, violating Kolmogorov’s assumptions 2 and 3. In this thesis,
I characterise the coupling and the effect on the cascade for all of the above-mentioned
phases.

The outline of this thesis is as follows; I enclose the six articles written during my thesis
research as six chapters, each with a short introductory summary. Finally, I conclude by
reviewing what the results of the six chapters tell us aboutmultiphase flows and turbulence
in general and provide an outlook on questions that remain unanswered.



Chapter 1

The Effect of Droplet Coalescence on
Drag in Turbulent Channel Flows

Chapter 1 focuses on the channel flow geometry. The analysis compares flows contain-
ing coalescing and non-coalescing droplets, which are ideal examples of the clean and
surfactant-laden cases, respectively, as clean droplets readily coalesce, and surfactant hin-
ders coalescence. Surprisingly, coalescing droplets have a negligible effect on drag in the
channel, while non-coalescing droplets produce a substantial increase in drag which grows
with their volume fraction. This difference in drag increase is attributed to the distinct
behaviours of the droplets concerning their wall-normal location in the channel and the
resulting interfacial shear stress. The findings presented in this chapter are relevant to a
range of wall-bounded flows, such as those found in arteries, pipelines and ships.

The article is appended in section A of this thesis, it can be cited as follows:

Cannon, I., Izbassarov, D., Tammisola, O., Brandt, L., & Rosti, M. E. (2021). The effect of
droplet coalescence on drag in turbulent channel flows. Physics of Fluids, 33(8),
085112. https://doi.org/10.1063/5.0058632

In this chapter this chapter we show that coalescing droplets move to the channel cen-
tre where shear is lowest, whereas non-coalescing droplets experience a shear-gradient lift
force which pulls them toward the channel walls. Non-coalescing droplets produce inter-
facial stresses this region near the walls, reducing the budget available for viscous stresses
in the channel. And thereby, non-coalescing droplets produce a significant drag increase.

9
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Chapter 2

Morphology of Clean and
Surfactant-Laden Droplets in
Homogeneous Isotropic Turbulence

Chapter 2 investigates the effect of surfactant in more detail. We simulate surfactant-laden
droplets in homogeneous-isotropic turbulence, this timemodelling the surfactant as a third
phase which modifies the interfacial surface tension of the droplets. The homogeneous
setup allows us to study emergent length scales of the flow. We find a pivotal length scale in
the droplets’ dynamics is theKolmogorov-Hinze scale (𝑑𝐻), which separates the coalescence-
dominated and breakage-dominated regimes in the droplet size distribution. The study
reveals distinct shapes for droplets smaller and larger than 𝑑𝐻, impacting their areas and
providing valuable insights into their characteristics. Furthermore, the number of handles
and voids on each droplet is computed, highlighting the role of surface tension in the sta-
bility of handles. This chapter shows that in turbulence without a mean flow, the effects of
surfactant can simply be modelled as a reduction in surface tension.

The article can be cited as follows:

Cannon, I., Soligo, G., & Rosti, M. E. (2023). Morphology of clean and surfactant-laden
droplets in homogeneous isotropic turbulence.Under review for Journal of FluidMe-
chanics. https://doi.org/10.48550/arXiv.2307.15448

In this chapter we show that in surfactant laden flows one can define a Kolmogorov-
Hinze scale 𝑑𝐻, based on themean surface tension. Droplets smaller than 𝑑𝐻 are spheroidal
in shape, whereas droplets larger than 𝑑𝐻 are filamentous in shape, with a diameter roughly
equal to 𝑑𝐻. We find that the number of voids per unit volume is roughly constant for all
droplets studied. Similarly, the number of handles per unit length of filament ≈ 0.06∕𝑑𝐻
for all values of surface tension studied. Finally, we see that surfactants produceMarangoni
stresses which increase the flow velocity tangential to the droplet interfaces, and produce
shear flows inside the droplets.

10

https://doi.org/10.48550/arXiv.2307.15448


Morphology of Clean and Surfactant-Laden Droplets in Homogeneous Isotropic
Turbulence 11

𝑑𝐻 𝑑𝐻

Figure 2.1: Snapshots of the simulated domain in the cases (a) S05 and (b) S20 showing
the interface of the droplets; the scale bar shows the Kolmogorov-Hinze scale for each case.

2.1 Introduction
Droplet-laden turbulent flows are ubiquitous innature and industry (Dickinson, 2010; Jähne
& Haußecker, 1998; Karsa, 1999; Kralova & Sjöblom, 2009; Schramm et al., 2003). A few
examples include the capture of atmospheric CO2 at the surface of seas and oceans, which
is mediated by the entrainment of air bubbles by breaking waves (Deane & Stokes, 2002;
Merlivat & Memery, 1983; Pereira et al., 2018), or the dynamics of liquid jets and sprays
which is of fundamental interest in combustion, cooling, irrigation and firefighting appli-
cations (Canu et al., 2018; Faeth et al., 1995; Herrmann, 2011; Kooij et al., 2018; Mugele
& Evans, 1951). These flows rarely involve pure fluids: instead, they often include small
amounts of impurities that may act as surface-active agents (surfactants). Surfactants are
compounds that assemble at the fluid interface and modify the local surface tension. Even
small amounts of surfactant can drastically change the flow behaviour, making their pres-
ence crucial in many practical scenarios (Dobbs, 1989; Koshy et al., 1988; Sjoblom, 2005;
Takagi & Matsumoto, 2011).

The interface between the carrier phase and the dispersed phase, i.e. the droplets, serves
as a conduit for various physical and chemical exchanges, such as heat, vapour (Onofre
Ramos et al., 2022; Scapin et al., 2020), solutes, and aerosols (de Leeuw et al., 2011). The
rate of these exchanges is determined by the product of the interfacial flux and the inter-
facial area, emphasizing the pivotal role of interfacial characteristics. There has been con-
siderable effort to estimate these exchanges, via empirical correlations (Akita & Yoshida,
1974; Delhaye & Bricard, 1994; Kelly & Kazimi, 1982) or via population balance equations
relying on the droplet size distribution and on droplet breakage and coalescence models
(Andersson & Andersson, 2006a, 2006b; Babinsky & Sojka, 2002; W. H. R. Chan et al., n.d.;
W. Chan et al., 2021; Gaylo et al., 2023; Luo & Svendsen, 1996; Martínez-Bazán et al., 2010).
We provide an estimate for the interfacial area of each droplet and discover the presence of
two universal regimes: the interfacial area of small droplets is proportional to the square of
their characteristic size, whereas, for large droplets, it is proportional to the cube of their
characteristic size. The information on the individual interfacial area, combined with the
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droplet size distribution, provides an estimate of the total interfacial area available. The
two different regimes are directly linked to the shape of the droplets: small droplets are
spheroid-like or ellipsoid-like, whereas large droplets take long, filamentous shapes. We
find that the length scale separating these two regimes is the Kolmogorov-Hinze scale, de-
fined as the maximum size of a droplet that is not broken apart by turbulent fluctuations;
droplet breakage becomes prevalent for droplets larger than the Kolmogorov-Hinze scale.
The concept of the Kolmogorov-Hinze scale originates from the works of A. Kolmogorov
(1949) and Hinze (1955), who applied A. N. Kolmogorov’s (1941) assumptions to droplets
in turbulence. Some recent studies, however, have disputed the theoretical frameworkupon
which Hinze’s theory is based and hence the relevance of the Kolmogorov-Hinze scale: Qi
et al. (2022) showed that droplets interact with eddies of a range of length scales, rather than
solely with eddies of a size similar to the droplet, and Vela-Martín and Avila (2022) showed
that droplet breakup does, in fact, occur below the Kolmogorov-Hinze scale. Notwithstand-
ing this, our numerical simulations show that the Kolmogorov-Hinze scale can still be used
as a key parameter to describe the morphology of droplets in turbulence, and that the val-
ues obtained usingHinze’s original formulation (Hinze, 1955) are in good agreement with a
more recent formulation, which uses the work done by the interface to define a length-scale
for the droplet phase (Crialesi-Esposito, Chibbaro, et al., 2023). Furthermore, we show that
Hinze’s theory can be extended to surfactant-laden droplets, provided that a suitable value
of the surface tension is selected. In our setup, surfactant effects on the morphology of the
droplets can indeed be well approximated using an averaged value of the surface tension,
thereby maintaining the simplicity and efficacy of the Kolmogorov-Hinze framework.

Beyond an average reduction in surface tension, surfactants introduce more intricate
dynamics into the flow: a surfactant is an additional phase that is transported by the lo-
cal flow and by motion and deformation of the interface, and that reduces the value of
surface tension according to its local concentration. This can lead to an inhomogeneous
value of surface tension over the interface of the droplets, giving rise to Marangoni stresses,
i.e. stresses that act tangentially to the interface and originate from surface tension gra-
dients. Marangoni stresses have been shown to be crucial in hindering and preventing
coalescence (Dai & Leal, 2008; Soligo et al., 2019b), reducing the rising velocity of bub-
bles (Elghobashi, 2019; Takagi & Matsumoto, 2011), and in the buildup of bubble layers in
wall-bounded flows (Ahmed et al., 2020; Lu et al., 2017; Lu & Tryggvason, 2008; Takagi &
Matsumoto, 2011; Tryggvason & Lu, 2015). An increase in the drag coefficient has been re-
portedwhen adding surfactant towall-bounded bubbly flowsTakagi et al. (2009) andTakagi
et al. (2008), Verschoof et al. (2016): surfactant reduces the size of the droplets, and causes a
lower drag reduction compared to surfactant-free cases. Our study examines a statistically-
stationary, homogeneous and isotropic multiphase flow at a moderate Reynolds number
(see figure 2.1). This type of flow does not allow for the buildup of large-scale surfactant
gradients commonly found in upflow and downflow setups, where the velocity difference
between the carrier and the dispersed phase generates and maintains a surfactant gradient
along the interface of the droplets or bubbles (Lu et al., 2017; Takagi et al., 2008). For this
reason, we expect the effect of Marangoni stresses to be localized. Surfactant effects on the
droplet morphology in our setup can be summarised as an average surface tension reduc-
tion, and the effect of Marangoni stresses can be appreciated by analysing the local flow
dynamics at the interface.

To investigate the complex dynamics of clean and surfactant-laden droplets in turbu-
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lence we use direct numerical simulations. In recent years there has been a consistent
growth in the number of numerical studies on multiphase turbulence, supported as well
by the increased availability and capability of high-performance computing infrastructures.
Multiphase turbulence is characterized by awide range of scales, from the smallest,molecular-
size interfacial scale, to the smallest flow scales – the Kolmogorov length scale – and up to
the large-scale structures of the flow. The separation of scales usually spans over about
eight to ten orders of magnitude, while direct numerical simulations on leading-edge high-
performance computing systems can simulate about four orders of magnitude (Soligo et al.,
2021). The common choice is to simulate the larger scales of the multiphase flow, from the
large-scale structures down to about the Kolmogorov length-scale, and introduce models
for the smaller-scale physics (Soligo et al., 2021; Tryggvason et al., 2013; Tryggvason et al.,
2010). Several authors have devoted their attention to the development of models for the
unresolved scales to be used in direct numerical simulations and large eddy simulations. In
their original works A. Kolmogorov (1949) and Hinze (1955) identified the maximum size
of a non-breaking droplet in turbulence. Experimental measurements (Deane & Stokes,
2002; Garrett et al., 2000) later showed that the existence of two different regimes in the
droplet size distribution, separated by the Kolmogorov-Hinze scale. These works laid the
foundations for the understanding of the dynamics of the droplets and for the development
of sub-grid-scale models for the interfacial dynamics (Evrard et al., 2019; Herrmann, 2013;
Xiao et al., 2014). The power-law scaling exponents for the two regimes measured in ex-
periments have been confirmed as well by numerical simulations: −10∕3 for the breakage-
dominated regime (Crialesi-Esposito, Chibbaro, et al., 2023; Deike et al., 2016; Mukherjee
et al., 2019; Perlekar et al., 2012; Rosti, Ge, et al., 2019; Skartlien et al., 2013; Soligo et al.,
2019a) and−3∕2 for the coalescence-dominated regime (Crialesi-Esposito, Chibbaro, et al.,
2023; Rivière et al., 2021). The droplet size distribution and the population balance equa-
tion for the droplets are fundamental tools in the modelling of droplets of similar size to
the grid resolution and smaller. Perlekar et al. (2012) correlated the instantaneous Weber
number of droplets to their deformation, showing that large Weber numbers correspond to
strongly deformed droplets. They simulated emulsions at increasing volume fractions and
proved the validity of the Kolmogorov-Hinze scale at low volume fractions; they reported
deviations from the Kolmogov-Hinze theory formore concentrated emulsions, possibly due
to the effect of coalescence, which was neglected in the original works by Kolmogorov and
Hinze. Vela-Martín and Avila (2022) showed that drop-breakage is a memoryless process,
i.e. the relaxation time of the droplet is much lower than its expected lifetime. In the same
work, they debated the validity of the Kolmogorov-Hinze scale as an absolute threshold be-
tween breaking and non-breaking droplets, arguing that all droplets will eventually break
apart, provided there is enough time for breakage. It was shown also that, in the absence
of coalescence, the breakage rate depends on the Weber number alone. Gaylo et al. (2023)
investigated the fragmentation of bubbles in statistically-stationary homogeneous isotropic
turbulence and characterised several fundamental time scales of the bubbles: the relaxation
time, the expected lifetime and the time needed for the largest bubble to break down to
the Kolmogorov-Hinze scale. It is now well known that the presence of a dispersed phase
strongly modifies the dynamics of the flow at all scales: the interface extracts energy at
the large flow scales and re-injects it into the flow at much smaller scales, competing with
the classic turbulent energy cascade (Mukherjee et al., 2019; Perlekar, 2019). This effect
is reflected in a deviation from the 𝑘−5∕3 power-law scaling of the turbulent kinetic energy
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spectrum. When there is a considerable slip velocity between the droplet or bubble and the
carrier fluid, a completely different scaling of the energy spectrum, 𝑘−3, has been reported
in numerical simulations (Pandey et al., 2020; Paul et al., 2022a; Roghair et al., 2011) and
experiments (Mercado et al., 2010; Prakash et al., 2016).

As part of our analysis of dropletmorphology, wemeasure the Euler characteristic of the
droplet interfaces. Similarly to the number of droplets in a flow, the Euler characteristic of
an interface is an integer-valued topological invariant, and any change in its value requires a
splitting or merging of interfaces. Despite its physical significance, the Euler characteristic
has only recently been applied to multiphase flows: Dumouchel et al. (2022) linked the
Euler characteristic to the Gaussian curvature of the droplets, and used it to parametrize the
morphology of liquid droplets undergoing breakup. The Euler characteristic is commonly
used in characterising the sintering of metal powders (DeHoff et al., 1972; Mendoza et al.,
2006), classifying lung tissues (Boehm et al., 2008), and correcting MRI scans of the human
brain (Yotter et al., 2011). In this article, we use the Euler characteristic to count the number
of voids and handles on the droplets, demonstrating that the large droplets are made up of
extremely interconnected filaments.

The article is structured as follows. We introduce the numerical method and the com-
putational setup adopted for the simulations in section 2.2. Our findings are reported in
section 2.3, where we first focus on the morphology of the dispersed phase, and then on the
statistics of the local flow around the droplets. Finally, section 2.4 summarizes the main
results presented in the present work.

2.2 Numerical model
We solve a system of equations including themomentum (2.1) andmass (2.2) conservation,
the volume of fluid (2.3) and surfactant (2.4) transport equations to simulate the dynamics
of an ensemble of breaking, coalescing and deforming finite-size droplets in homogenous
isotropic turbulence. The two phases, the carrier fluid and the dispersed phase (i.e., the
droplets) have the same density 𝜌 and dynamic viscosity 𝜇.

𝜌𝜕𝐮𝜕𝑡 + 𝜌𝐮 ⋅∇𝐮 = −∇𝑝 + ∇ ⋅
[
𝜇
(
∇𝐮 + ∇𝐮𝑇

)]
+ ∇ ⋅ (𝜏𝑐𝑓𝜎) + 𝐟𝐬, (2.1)

∇ ⋅ 𝐮 = 0, (2.2)
𝜕𝜙
𝜕𝑡 + ∇ ⋅ (𝐮𝐻) = 0, (2.3)

𝜕𝜓
𝜕𝑡 + 𝐮 ⋅∇𝜓 = ∇ ⋅ (𝑀𝜓∇𝜇𝜓), (2.4)

where 𝐟𝐬 is the spectral forcing used to sustain turbulence. We use the one fluid approach,
whereby the fluid velocity 𝐮 and pressure 𝑝 are defined in both phases and continuous
across the interface; the volume of fluid variable 𝜙 is used to define the instantaneous po-
sition of the interface. The volume of fluid can be understood as a colour function charac-
terizing the local concentration of the dispersed phase: it is equal to 𝜙 = 0 in the carrier
phase and to 𝜙 = 1 in the droplet phase. The volume of fluid method is an interface cap-
turing method (Prosperetti & Tryggvason, 2009) where the concentration of each phase is



Morphology of Clean and Surfactant-Laden Droplets in Homogeneous Isotropic
Turbulence 15

transported using equation 2.3 and the interface is implicitly defined as the 𝜙 = 0.5 level.
The effect of the interface on the flow is accounted for in the momentum equation via the
surface tension forces: the Korteweg tensor 𝜏𝑐 = ℐ − 𝐧⊗ 𝐧 (Korteweg, 1901) accounts for
the position and shape of the interface, and the surface tension equation of state 𝑓𝜎 defines
the local value of surface tension. In the definition of the Korteweg tensor, ℐ is the identity
matrix and 𝐧 = −∇𝜙∕||∇𝜙|| is the unit-length, outward-pointing normal to the interface.
The local surfactant concentration 𝜓 ∈ [0, 1] is expressed as a fraction of the maximum
surfactant concentration, which is usually determined by steric hindrance between surfac-
tant molecules. Hence, 𝜓 is dimensionless in this formulation. To account for the effect of
surfactant on surface tension, we use a modified Langmuir equation of state (Muradoglu &
Tryggvason, 2008, 2014; Soligo et al., 2019b) 𝑓𝜎 = max[𝜎𝑚𝑖𝑛, 𝜎0(1+𝛽𝑠 log(1−𝜓))], where 𝜎0
is the reference surface tension of a clean (i.e., surfactant-free interface), 𝜎𝑚𝑖𝑛 theminimum
surface tension, and 𝛽𝑠 the elasticity number. In the original formulation by Bazhlekov et
al. (2006) and Pawar and Stebe (1996), the Langmuir equation of state provides a good fit
at low to moderate surfactant concentration values; however, it fails to account for surfac-
tant saturation dynamics at higher concentrations. Experimental measurements (reviewed
by Chang and Franses (1995)) showed that, beyond a critical concentration of surfactant,
surface tension no longer changes for increasing surfactant concentrations. Hence, to qual-
itatively account for surfactant saturation dynamics at the interface, we limit the surface
tension to be greater than 𝜎𝑚𝑖𝑛 at all points on the interface. In equation (2.1), surface ten-
sion forces act perpendicular and tangential to the interface: a capillary component (normal
to the interface) and a tangential component –Marangoni stresses – proportional to the sur-
face tension gradient. The tangential component is characteristic of surfactant-laden flows,
where surface tension changes along the interface according to the local surfactant concen-
tration.

The volumeof fluid𝜙 is transportedusing a simple advection equation (2.3). TheMTHINC
(multi-dimensional tangent of hyperbola for interface capturing) method (Ii et al., 2012) is
used to reconstruct the local volume of fluid value 𝜙 starting from the cell-local indicator
function 𝐻. To compute the surfactant chemical potential landscape, we first calculate a
signed-distance function 𝑠 and a smoothed colour function �̂�. A re-distancing equation is
solved to compute the signed-distance function over the pseudo-time 𝜏

𝜕𝑠
𝜕𝜏 = sgn(𝑠0)(1 − ||∇𝑠||), (2.5)

where sgn is the sign function and the initial guess 𝑠0 is found as 𝑠0 = (2𝜙 − 1)0.75∆ (Al-
badawi et al., 2013); this choice guarantees that the zero-level of the signed-distance func-
tion always corresponds to the interface (De Vita et al., 2019; Russo & Smereka, 2000). The
signed-distance function is updated at every time iteration as the volume of fluid is ad-
vected. Next, we compute the smoothed colour function as �̂� = tanh 𝑠

3∆
, which is bounded

in −1 ≤ �̂� ≤ 1, and where the smoothing width is set to three times the grid spacing ∆.
An advection-diffusion equation (2.4), is solved to track the surfactant concentration 𝜓

in the domain. We use a soluble surfactant: surfactant preferentially collects at the interface
between the two fluids, but at the same time, it also dissolves in limited amounts in the bulk
of the phases. The adsorption (accumulation of surfactant from the bulk to the interface),
desorption (release of surfactant from the interface to the bulk) and diffusion dynamics
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of the surfactant phase are determined by the chemical potential of the surfactant. The
chemical potential is made, in order, of three contributions: a free energy of mixing term,
an adsorption term and a bulk-penalty term (Engblom et al., 2013; Soligo et al., 2019b; Yun
et al., 2014),

𝜇𝜓 = 𝛼 ln
𝜓

1 − 𝜓 − 𝛽
(1 − �̂�2)2

2 + 𝛾
�̂�2
2 . (2.6)

The first term, the free energy of mixing term, favours a uniform surfactant distribution
throughout the entire domain and plays the part of diffusion, with the coefficient 𝛼 control-
ling themagnitude of the diffusive process. The adsorption term (second term) is a negative
contribution to the free energy of the system because the accumulation of surfactant at the
interface reduces the total energy of the surfactant configuration. The coefficient 𝛽 controls
the adsorption dynamics. The last term, the bulk-penalty term, is representative of the cost
of free surfactant, i.e., of surfactant dissolved in the bulk of the phases rather than adsorbed
at the interface, and the coefficient 𝛾 determines the energy cost of surfactant dissolved in
the bulk phases. The adsorption term is maximum in magnitude at the interface (�̂� = 0),
indicating a decrease in the energy of the system, while the bulk-penalty term is maximum
in the bulk of the phases (�̂� = ±1) indicating an increase in the energy. The logarithmic for-
mulation of the free energy ofmixing termmandates for a non-constantmobility parameter
𝑀𝜓 = 𝑚𝜓(1−𝜓) (Engblomet al., 2013), with𝑚 being a numerical coefficient controlling the
magnitude of the diffusive-like surfactant dynamics. This choice of the mobility parameter
ensures the boundedness of the surfactant concentration, 𝜓 ∈ [0, 1].

Finally, we couple the volume of fluid method for simulating the interfacial dynamics
with a phase-field-based method to track the concentration of a soluble surfactant. The
volume of fluid method guarantees exact mass conservation of each phase and allows for
a sharper interface compared to other diffuse-interface methods. We rely on a method to
simulate surfactant dynamics that has been successfully adopted in the past to simulate
flows with surfactant-laden interfaces (Engblom et al., 2013; Soligo et al., 2019a, 2019b,
2020a, 2020b; Yun et al., 2014) using a phase fieldmethod tomodel interfacial dynamics. In
particular, we employ a volume of fluid method to simulate the dynamics of the dispersed
and carrier phases, and we use a smoothed colour function, �̂�, to couple the interfacial
dynamics (based on the volume of fluid) with the surfactant dynamics (based on a phase
field method). The smoothed volume of fluid field accounts for the interfacial dynamics
while at the same time providing the diffuse-interface basis ontowhich the surfactantmodel
is built. We thus combine the aforementioned strengths of the volume of fluid method
with the advantages of a formulation of the surfactant phase that accounts for adsorption,
desorption and diffusion in a thermodynamically-consistent framework.

2.2.1 Computational method
The system of equations is discretized on a uniform Cartesian grid. The computational grid
is staggered: pressure, density, viscosity, volume of fluid and surfactant concentration are
defined at the cell centres, and the fluid velocities are stored at the cell faces. Spatial deriva-
tives are approximated using a second-order finite difference scheme, and time advance-
ment is performed via a second-order, explicit Adams-Bashforth scheme. A fractional-step
method (Kim & Moin, 1985) is adopted to advance the mass and momentum conserva-
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tion equations in time, with the resulting Poisson equation for the pressure solved via a
fast pressure solver. The volume of fluid is transported using a directional splitting method
combined with an upwind scheme (Ii et al., 2012; Rosti, De Vita, et al., 2019). The same
scheme is used for the advective term in the surfactant transport equation.

The surfactant is resolved on a refined grid to capture the steep concentration gradients
at the interface and to keep a sharp interfacial profile. The smoothing width of the colour
function �̂� should be large enough to accurately discretize the surfactant profile across the
interface, and at the same time it should be small enough to keep the surfactant profile
sharp. The use of a refined grid thus allows us to capture themodelled interfacial dynamics,
while maintaining a thin interfacial surfactant layer. The finer computational grid used for
the surfactant transport is still a staggered, uniform, Cartesian grid; linear interpolation is
used to interpolate variables from/to the standard grid (for the velocity, pressure, density,
viscosity and volume of fluid) to/from the fine grid (for the surfactant concentration). The
surfactant transport is carried on the fine grid, with the velocity and smoothed volume of
fluid fields interpolated to the fine grid. Surface tension forces are instead at first computed
on the fine grid and then applied to themomentum conservation equation. Tests have been
performedwith different grid refinement factors: the pressure jump across the interface, the
surfactant concentration value at the interface and the total surfactant concentration show
minimal changes compared to the reference case (i.e., unitary refinement factor). For the
sake of comparison among the different cases, the smoothing width was kept constant in all
cases, while in our numerical simulations the smoothingwidth is adapted to the refinement
factor, thus allowing for smaller values of the smoothing width and for a thinner surfactant
interfacial layer.

We use the in-house code Fujin to perform all the numerical simulations presented
here. The code has been used and validated in the past on a variety of different flow con-
figurations (Abdelgawad* et al., 2023; Brizzolara et al., 2021; Cannon et al., 2021; Mazzino
& Rosti, 2021; Olivieri et al., 2020; Rosti, Ge, et al., 2019; Rosti et al., 2023; Rosti & Takagi,
2021). Further validation cases are available on the group’s website, https://groups.oist.
jp/cffu/code. Specific validation tests for the surfactant model and its implementation are
reported in appendix B.2.

2.2.2 Computational setup
We perform direct numerical simulations in a cubic box of size 𝐿 with periodic boundary
conditions in all spatial directions. Homogenous isotropic turbulence is sustained using the
force 𝐟𝐬 in equation 2.1. We use the spectral forcing scheme proposed by Eswaran and Pope
(1988), whereby the flow is forced in a shell of Fouriermodes 2𝜋∕𝐿𝑎 ≤ |𝐤| ≤ 2𝜋∕𝐿𝑏, and the
force on each mode evolves randomly in time (Uhlenbeck & Ornstein, 1930) with variance
𝜌𝜎2𝐿 and relaxation time 𝑇𝐿. Hence, 𝑈𝐿 ≡ 𝜎2∕3𝐿 𝑇1∕3𝐿 (𝐿∕2𝜋)1∕3 is the characteristic velocity
scale of the forcing. We set the forcing Reynolds number 𝑅𝑒𝐿 ≡ 𝜌𝑈𝐿𝐿∕(2𝜋𝜇) = 41.6 to give
a turbulence intensity that is tractable on our numerical grid. We choose the dimensionless
relaxation time 𝑇∗𝐿 ≡ 2𝜋𝑇𝐿𝑈𝐿∕𝐿 = 2.08 to give variations at the timescale of the large eddy
turnover time. To prevent droplets from spanning the entire periodic domain, we force at
a length-scale smaller than 𝐿 (Crialesi-Esposito, Chibbaro, et al., 2023; Mukherjee et al.,
2019). Hence the minimum and maximum wavelengths of forcing are set to 𝐿𝑏 = 𝐿∕3 and

https://groups.oist.jp/cffu/code
https://groups.oist.jp/cffu/code
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case ⟨𝜙⟩ ⟨𝜓⟩ 𝑊𝑒 𝜂∕𝐿 𝜆∕𝐿 𝑅𝑒𝜆 ⟨𝜎⟩𝐼∕𝜎0 𝑊𝑒𝑒 𝑑𝐻∕𝐿 𝑑𝐻𝜎∕𝐿
SP ● 0 0 - 8.39e-04 0.0220 178 - - - -
C10 ● 0.1 0 10 8.49e-04 0.0224 180 1 9.91 0.0560 0.0565
C20 ● 0.1 0 20 8.55e-04 0.0228 184 1 20.0 0.0373 0.0392
C40 ● 0.1 0 40 8.58e-04 0.0231 188 1 39.3 0.0252 0.0290
S05 ⧫ 0.1 0.1 5 8.48e-04 0.0226 183 0.40 12.7 0.0489 0.0370
S10 ⧫ 0.1 0.1 10 8.71e-04 0.0242 199 0.40 25.8 0.0338 0.0317
S20 ⧫ 0.1 0.1 20 8.85e-04 0.0247 201 0.41 49.5 0.0232 0.0241

Table 2.1: List of simulations performed. Here ⟨⋅⟩ denotes an average over the domain
volume, and ⟨⋅⟩𝐼 denotes an average over the interface. All simulations have been carried
out at constant volume fraction ⟨𝜙⟩; an additional reference case (single phase, ⟨𝜙⟩ = 0)
is performed. We investigate four different Weber numbers (𝑊𝑒) and two different values
of the mean surfactant concentration ⟨𝜓⟩. The measured values of the Kolmogorov length-
scale 𝜂, the Taylor microscale 𝜆, Taylor Reynolds number 𝑅𝑒𝜆, average surface tension ⟨𝜎⟩𝐼,
effective Weber number𝑊𝑒𝑒, and Kolmogorov-Hinze diameters 𝑑𝐻 and 𝑑𝐻𝜎 are reported.
The largest and smallest values of each parameter are shown in bold.

𝐿𝑎 = 𝐿∕2, respectively.
The computational domain is discretized using an equispaced Cartesian grid with 𝑁 =

500 grid points in all directions; to better resolve the sharp surfactant gradients at the in-
terface and keep a sharper surfactant profile across the interface, the surfactant transport
equation is resolved on a twice-refined grid, with𝑁𝜓 = 1000 grid points in all directions. A
refinement factor of 2 for the surfactant concentration grid has been selected as it provides
a significant improvement in the sharpness of the surfactant profile at the interface while
keeping the computational cost within reasonable limits. With this refinement factor, the
computational cost increases by roughly ∼ 25% and the storage requirements by ∼ 115%.

We report in table 2.1 the chosen parameters for all cases reported in this article. We
use one single-phase reference case (⟨𝜙⟩ = 0), three cases with clean droplets (⟨𝜓⟩ = 0),
and three cases with surfactant-laden droplets (⟨𝜓⟩ = 0.1). The droplet-laden flows were
initialised using fluid velocity and pressure from the single-phase reference case once it had
reached a statistically steady state. A single spherical droplet of radius 𝑅 ≃ 0.288𝐿 (corre-
sponding to ⟨𝜙⟩ = 0.1) was initialized at the centre of the computational box. Due to the
action of the surrounding turbulent flow, the droplet deforms and breaks apart into smaller
droplets. For our surfactant-laden cases, the surfactant is initially distributed in the domain
following the equilibrium profile with 𝜓 = 0.1 in the bulk phase, computed by zeroing the
gradient of the chemical potential. We focus on a highly-soluble surfactant and set the co-
efficients of the surfactant chemical potential to 𝛼 = 0.0242𝑢′0

2, 𝛽 = 0.0121𝑢′0
2 and 𝛾 =

0.0121𝑢′0
2, and the the numerical coefficient of the mobility parameter to𝑚 = 0.0307𝐿𝑏∕𝑢′0.

For the flows with droplets, we fix the reference surface tension 𝜎0, allowing us to define
a reference Weber number 𝑊𝑒 ≡ 𝜌𝑢′0

2𝐿𝑏∕𝜎0 based on the single phase root mean square
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velocity 𝑢′0 and the minimum wavelength of the forcing 𝐿𝑏. We select a moderate-strength
surfactant with elasticity number 𝛽𝑠 = 5 and a relatively high surfactant saturation concen-
tration, yielding a low minimum surface tension, 𝜎𝑚𝑖𝑛 = 0.1𝜎0.

We performed an additional simulation on a more refined grid, 𝑁𝑓 = 1000 grid points,
with the same parameters of the surfactant-free case at 𝑊𝑒 = 10 to verify the grid inde-
pendence of the results presented in the following. A comparison of the results from the
standard grid case (𝑁 = 500) and the fine one (𝑁𝑓 = 1000) showed negligible differences.

2.3 Results
In table 2.1, we report integral quantities from all cases studied. Length scales of the tur-
bulent flow are the Kolmogorov scale 𝜂 ≡ (𝜇∕𝜌)3∕4𝜀1∕4, and the Taylor microscale 𝜆 ≡√
15𝜇∕(𝜌𝜀)𝑢′, where 𝑢′ is the root-mean-square velocity of the flow and 𝜀 is the mean dis-

sipation rate. The Taylor Reynolds number 𝑅𝑒𝜆 ≡ 𝜌𝑢′𝜆∕𝜇 is 178 in the single-phase case,
and as was previously observed by Rosti, Ge, et al. (2019) and Crialesi-Esposito et al. (2022),
𝑅𝑒𝜆 increases slightly when droplets are present. The surface tension averaged over the in-
terface ⟨𝜎⟩𝐼, is the same as the reference surface tension 𝜎0 in the cases with clean droplets.
However, it is reduced by more than half in the presence of surfactant. This motivates us to
define an effective Weber number,𝑊𝑒𝑒 ≡ 𝜌𝑢′2𝐿𝑏∕⟨𝜎⟩𝐼 to better compare the differnt cases.

The Kolmogorov-Hinze diameter 𝑑𝐻 ≡ 0.725⟨𝜎⟩3∕5𝐼 𝜌−3∕5𝜀−2∕5 is an estimate of the diam-
eter of the largest droplet which does not break up. It is made by balancing surface tension
with turbulent velocity fluctuations, using an empirical constant of 0.725 (Hinze, 1955).
We also use a more recent formulation of the Kolmogorov-Hinze diameter from Crialesi-
Esposito, Chibbaro, et al. (2023); at large scales, droplets predominantly break up, and the
interface takes energy from the flow (negative work), whereas at smaller scales, droplets
predominantly coalesce and the interface returns energy to the flow (positive work). The
length scale at which the work done by the interface is zero is defined as 𝑑𝐻𝜎. The two es-
timates of the Kolmogorov-Hinze diameter are in fairly good agreement in the cases with
and without surfactant.

Figure 2.2a shows the kinetic energy spectra of the turbulent flows. In all cases, the
most energetic modes are in the range 2 ≤ 𝑘𝐿∕(2𝜋) ≤ 3, where turbulent forcing is applied.
The single-phase case shows the 𝑘−5∕3 scaling predicted by A. N. Kolmogorov (1941b), per-
sisting for over a decade of wavenumbers. As has been previously reported by Perlekar
(2019) and Rosti, Ge, et al. (2019) and Crialesi-Esposito et al. (2022), the cases with droplets
show a slight reduction in energy at small wavenumbers, and an increase at largewavenum-
bers. We also see from figure 2.2 that the Kolmogorov-Hinze scale is well within the in-
ertial range. Hence, we can assume that self-similarity applies to the turbulent velocity
fluctuations which dictate droplet deformation and breakup, investigated in the following
subsection. Our simulations are in a statistically steady state, and so the fluid kinetic en-
ergy contained in each wavenumber is constant in time, and the energy flux through each
wavenumber 𝑘 is constant and equal to the energy injection rate 𝜖. This is expressed by
the equation ℱ(𝑘) + Π(𝑘) +𝒟(𝑘) + Σ(𝑘) = 𝜖, where the terms on the left-hand side are
the energy flux due to forcing, advection, viscous dissipation, and surface tension, respec-
tively. We calculate these terms using the method given in the supplementary information
of Abdelgawad* et al. (2023) (see also chapter 6 of Pope (2000)). Namely, we take a three-
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Figure 2.2: (𝑎) Turbulent kinetic energy spectrum 𝐸 for cases SP and C10, made dimen-
sionless using the domain size 𝐿 and the root mean square velocity 𝑢′ of each case. Vertical
dashed lines show the wavenumber of the Kolmogorov-Hinze scale 𝑘𝐻 ≡ 2𝜋∕𝑑𝐻 for all
the cases with droplets. The solid grey line above reports the Kolmogorov scaling 𝑘−5∕3.
(𝑏) Scale-by-scale energy balance for cases SP and C10. Energy flux due to forcing ℱ, vis-
cous dissipation 𝒟, advection Π, and surface tension Σ are plotted using dot-dashed, dot-
ted, dashed, and solid lines, respectively. Vertical dashed lines mark 𝑘𝐻𝜎 ≡ 2𝜋∕𝑑𝐻𝜎, the
wavenumber at which Σ is maximum for every droplet case.

dimensional Fourier transformof each term in theNavier-Stokes equation (2.1), multiply by
thefluid velocity, and integrate over the region bounded by a sphere of radius 𝑘 inwavenum-
ber space. For dissipation, we choose the region inside the sphere, and for the other terms,
we choose the region outside the sphere. This way, as 𝑘 → ∞,𝒟 = 𝜖 and ℱ = Π = Σ = 0.
Figure 2.2b shows the energy balance for the single-phase flow and a droplet-laden flow.
The single-phase case shows the canonical Richardson cascade; energy is injected by forc-
ing at the large scales and carried to smaller scales by advection, where it is dissipated by
viscosity. In the droplet-laden case, surface tension also carries energy to smaller scales.

2.3.1 Droplet statistics
The inset of figure 2.3a shows the average number of droplets𝒩 in our simulations. To iden-
tify and count each droplet, we use a stack-based, six-way flood-fill on the computational
cells characterized by𝜙 ≥ 0.5; the algorithm is a direct extension to three-dimensional space
of the two-dimensional four-way flood fill algorithm (Newman & Sproull, 1979). The num-
ber of droplets has been counted over several instantaneous snapshots and averaged in time
once the simulation has reached a statistically steady state, i.e. once the Taylor-Reynolds
number and the number of droplets fluctuate about a constant mean value. We note that
clean and surfactant-laden cases at similar values of the effective Weber number, i.e. S05
& C10, S10 & C20, S20 & C40, have approximately the same average number of droplets.
This result suggests that the effect of surfactant on the dispersed phase manifests mainly as
an average surface tension reduction, with negligible effects from Marangoni stresses. As
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Figure 2.3: (𝑎) PDF of the droplet diameters 𝑑, with the dashed and solid lines showing
scalings previously found in the coalescence and breakup regimes (Deane & Stokes, 2002),
respectively. The inset reports the total number of droplets𝒩 in each case, with error bars
showing the root mean square variation in time. The dotted line is a fit𝒩 = 434𝑊𝑒𝑒. In
(𝑏), we calculate the mean and standard deviation of the surfactant concentration 𝜓 on the
interface of each drop; we then average these values over the ensemble of drops of the same
size. The right-hand axis shows the normalized interfacial surface tension resulting from
the presence of surfactant.

previously found by Rosti, Ge, et al. (2019) in shear turbulence, we see that the number of
droplets is proportional to the Weber number, in our case with a factor𝒩 = 434𝑊𝑒𝑒.

The average number of droplets𝒩 is of the order 104. This large sample size allows us to
make accurate statistics of the droplets, even when binned by their equivalent diameter 𝑑.
We define the equivalent diameter of a droplet

𝑑 ≡ (6𝑉∕𝜋)1∕3, (2.7)

as the diameter of a sphere with volume 𝑉, where 𝑉 is the volume of said droplet. The
droplet size distribution for all cases is shown in figure 2.3(a). We observe a collapse of
all the curves when the droplet size 𝑑 is normalized by the Kolmogorov-Hinze scale in
each case. Note that the Kolmogorov-Hinze scale separates two different regimes: the
coalescence-dominated regime for𝑑∕𝑑𝐻 < 1 and the breakage-dominated regime for𝑑∕𝑑𝐻 >
1. The Kolmogorov-Hinze scale (Hinze, 1955) is defined as the largest droplet that resists
breakage due to turbulent fluctuations. The coalescence-dominated regime characterizes
droplets smaller than the Kolmogorov-Hinze scale; breakage is highly unlikely for these
droplets, which instead are in a state of constant coalescence. On the other hand, droplets
larger than the Kolmogorov-Hinze scale are prone to breaking apart. The droplet size dis-
tribution shows a clear power-law behaviour in the breakage- and coalescence-dominated
regimes. Using dimensional arguments the exponents for the two regimes have been ob-
tained: −3∕2 for the coalescence-dominated regime (Deane & Stokes, 2002) and −10∕3
for the breakage-dominated regime (Garrett et al., 2000). Deane and Stokes (2002) mea-
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sured the bubble size distribution in breaking waves and found good agreement between
the experimental measurements and the analytical scalings. Several previous computa-
tional works confirmed the same −10∕3 power-law exponent in the breakage-dominated
regime (Crialesi-Esposito, Chibbaro, et al., 2023; Deike et al., 2016; Mukherjee et al., 2019;
Rosti, Ge, et al., 2019; Skartlien et al., 2013; Soligo et al., 2019a), while fewer works have
captured the −3∕2 power-law exponent for the coalescence-dominated regime (Crialesi-
Esposito, Chibbaro, et al., 2023; Rivière et al., 2021). Our results in figure 2.3(a) show good
agreement with the −10∕3 scaling in the breakage-dominated regime. For the low 𝑊𝑒𝑒
cases, we see some deviation from the−3∕2 scaling just below the Kolmogorov-Hinze scale.
However, further into the coalescence-dominated regime, around 𝑑∕𝑑𝐻 ≈ 10−1, all cases
follow the −3∕2 scaling. Furthermore, we show that the macroscopic effect of surfactant
on the droplet size distribution is well captured by considering a lower, average surface ten-
sion value when computing the Kolmogorov-Hinze scale. A similar result was previously
obtained for surfactant-laden flows (Skartlien et al., 2013; Soligo et al., 2019a), although for
the breakage-dominated regime alone. Here, we extend the result to droplets smaller than
the Kolmogorov-Hinze scale.

Figure 2.3b shows the dependence of surfactant concentration𝜓 on the equivalent droplet
diameter 𝑑. For these values and error bars, the average surfactant concentration and its
standard deviation were computed at the interface of each droplet, and then averaged over
all the droplets of size 𝑑. This way, the error bars capture not the variation of 𝜓 between
droplets, but the average variation on each droplet, which governs Marangoni stresses. We
see that the average surfactant concentration at the interface is higher than the initial con-
centration in the bulk phase (𝜓 = 0.1), as from equation 2.6 it is energetically favourable for
the surfactant to assemble on the interface. We observe a trend in the average surface ten-
sion value at the interface for increasing values of theWeber number: as the total amount of
interfacial area increases (the total number of droplets is roughly proportional to theWeber
number), the average surfactant concentration at the interface reduces. For the surfactant
parameters considered in this study, there is little dependence of the mean surfactant con-
centration at the interface on the size of the droplets. The average surfactant concentration
for all droplet sizes is about 𝜓 ≈ 0.115, with a slightly lower value for the smallest droplets.
This results in an average reduction of the surface tension to approximately 40% of its clean
value. We note that a surface tension reduction of around one-half is typical of real-world
surfactant-laden interfaces, such as Tween 80 and NaCl in water (Qazi et al., 2020). Error
bars show themean standard deviation of surfactant concentration on a droplet with equiv-
alent diameter 𝑑. The standard deviation on the droplets has instead a mild dependence on
the characteristic size of the droplet, showing about a twofold increase between the small-
est and the largest droplets (i.e., over a∼ 100× increase in the droplet equivalent diameter).
The variation in surface tension is approximately 15% of the mean surfactant concentration
at the interface, corresponding to about 8% change in surface tension on each droplet.

Next, we look at the shape of the droplets, which provides an indication of the competi-
tion between surface tension and turbulence: a droplet in a quiescent fluid takes a spheri-
cal shape and any deviation from this shape is to be attributed to the flow. We evaluate the
shape of the droplets using two dimensionless parameters: the aspect ratio

√
𝐼1∕𝐼3 and the

sphericity 𝑑∕𝑑𝐴.
The aspect ratio is computed as the ratio between the smallest and the largest eigenval-

ues of the moment of inertia tensor, respectively 𝐼1 and 𝐼3 with 𝐼1 ≤ 𝐼2 ≤ 𝐼3. The moment
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Figure 2.4: Mean droplet deformation at each equivalent diameter 𝑑 normalised by the
Kolmogorov-Hinze scale 𝑑𝐻. We plot two measures of deformation; (𝑏) the aspect ratio of
the droplets

√
𝐼1∕𝐼3, and (𝑐) the sphericity 𝑑∕𝑑𝐴. On panel (𝑏), we shade the region 0.5 <

𝑑∕𝑑𝐻 < 2 where the aspect ratio is observed to decrease with equivalent diameter. Panel
(𝑎) above shows the values of deformation for (from left to right): a spheroid, an ellipsoid
and a bulgy droplet.
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of inertia tensor is computed as

𝐈 ≡ ∫
𝑉
𝜌(||𝐫||2ℐ − 𝐫 ⊗ 𝐫)𝑑𝑉, (2.8)

where 𝐫 is the vector from the droplet centre of mass to a point inside the droplet, and 𝑉
is the volume of the considered droplet. The aspect ratio uses a similar definition of the
bubble deformation parameter defined in Bunner and Tryggvason (2003), although in their
original work, the bubble deformation was defined as the square root of the largest over
the smallest eigenvalue and a slightly different formulation of the moment of inertia tensor
was used. Here we chose to define the aspect ratio as the inverse of the bubble deformation
found in Bunner andTryggvason (2003), such that the values of the aspect ratio are bounded
between 0 (e.g., infinitely long and thin filament or sheet) and 1 (e.g., sphere or cube).

The sphericity is defined as the ratio of the volume-equivalent diameter over the surface-
equivalent diameter; 𝑑∕𝑑𝐴. We use a different definition of sphericity from that found in the
literature (Wadell, 1935), such that it is bounded between 0 and 1. The surface-equivalent
diameter is defined as the diameter of a sphere having the same surface area𝐴 of the consid-
ered droplet: 𝑑𝐴 ≡

√
𝐴∕𝜋. Sphericity is equal to unity for a sphere (the shape with minimal

surface area for a given volume) and reduces as the droplet deforms from the spherical
shape. The area 𝐴 of each droplet is computed by counting the number of computational
cells crossed by the interface and projecting a face of the computational cell onto the local
normal 𝐧 to the interface.

We chose these two parameters as they provide very different information, as illustrated
in figure 2.4(a), where we compute the aspect ratio and sphericity for three sample droplets.
The aspect ratio is very sensitive to droplet-scale deformations, for instance stretching along
one of the axes, but is relatively unchanged by small-scale perturbations at the interface.
Conversely, the sphericity is less sensitive to large, droplet-scale deformations, but is very
effective in revealing small-scale perturbations of the interface. Qualitatively, the aspect ra-
tio provides an estimate of the shape of a boxwhich bounds the droplet, while the sphericity
measures the total area of the droplet interface considering small-scale perturbations and
droplet-scale deformations. This is reflected in figure 2.4(a): taking the spheroidal droplet
as a reference (

√
𝐼1∕𝐼3 ≈ 1 and 𝑑∕𝑑𝐴 ≈ 1), the ellipsoidal droplet shows a negligible change

in the sphericity value and a ∼ 30% reduction in the aspect ratio. The bulgy droplet, be-
ing rather compact, has a value of the aspect ratio relatively close to that of the spheroidal
droplet (about 10% difference) but a much smaller value of sphericity (∼ 30% smaller).

We report the aspect ratio
√
𝐼1∕𝐼3 in figure 2.4(b) as a function of the droplet size nor-

malized by the Kolmogorov-Hinze scale. We observe that making the droplet size dimen-
sionless using the Kolmogorov-Hinze scale yields a collapse of the aspect ratio for all cases
onto a single curve. This suggests that even in the presence of surfactants, Hinze’s (1955)
assumptions hold, and droplet deformation is a universal function of 𝑑∕𝑑𝐻. We observe
three different regimes for the aspect ratio, which can be distinguished based on the value
of 𝑑∕𝑑𝐻. The aspect ratio of small droplets, up to approximatively 𝑑 = 0.5𝑑𝐻, is roughly con-
stant and close to unity, indicating that the droplets are spherical or only slightly elongated
(i.e., compact shape). At this point, no information can yet be inferred on local, small-
scale deformations of the interface. Droplets smaller than the Kolmogorov-Hinze scale are
characterised by surface tension forces dominating over turbulent fluctuations. The sec-
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ond regime, observed for 0.5𝑑𝐻 ≲ 𝑑 ≲ 2𝑑𝐻, is characterised by a sharp reduction in the
value of the aspect ratio (down to

√
𝐼1∕𝐼3 ≈ 0.5, a similar value of an elongated ellipsoid):

droplets becomemore elongated with an overall deformation that increases with their size.
This result is coherent with the definition of the Kolmogorov-Hinze scale as the size of the
largest (on average) non-breaking droplets: at about the Kolmogorov-Hinze scale, droplets
start to deform significantly. Statistics on the sphericity will provide further information
on the small-scale deformation within this regime and will be discussed in the following
paragraph. Lastly, in larger droplets, 𝑑 > 2𝑑𝐻, there is a recovery of the droplet aspect ratio:
droplets partially recover from their deformed state, with values of the aspect ratio nearing√
𝐼1∕𝐼3 ≈ 0.7. This result indicates that droplets become less deformed overall, and some

rotational symmetry is restored. At first, thismay be a counterintuitive result, but sphericity
will help to explain this interesting behaviour.

We report the sphericity for all cases in figure 2.4(c). The droplet size is made non-
dimensional using the Kolmogorov-Hinze scale for each case. We observe that data for all
cases collapse on a single curve when scaled by the Kolmogorov-Hinze scale, further con-
firming the validity of the Kolmogorov-Hinze scale as a fundamental length scale. We ob-
serve two very distinct regimes, separated by the Kolmogorov-Hinze scale. At scales smaller
than the Kolmogorov-Hinze scale, droplets have a close-to-unity and slightly decreasing
sphericity, which sharply decreases above the Kolmogorov-Hinze scale. Note that, for the
smallest droplets, we have values of sphericity larger than one; wewould like to remark that
these values are not admissible and are due to inaccuracies in the computation of interface
normals and area when the droplets are only a few grid cells in volume. The sphericity
for droplets smaller than the Kolmogorov-Hinze scale is close to unity and decreases for
increasing droplet sizes; this information, coupled with the results from the droplet aspect
ratio, indicates that droplets much smaller than Kolmogorov-Hinze scale have a spheroidal
shape with limited elongation and almost no small-scale perturbations of the interface.
Kolmogorov-Hinze-scale-sized droplets (but still smaller than theKolmogorov-Hinze scale)
show a substantial reduction in the aspect ratio and only aminor decrease in the sphericity:
the shape of these droplets is similar to an ellipsoid, as the droplet is stretched (low aspect ra-
tio) but the sphericity is still close to unity (indicating the absence of relevant perturbations
of the interface). Conversely, droplets slightly larger than theKolmogorov-Hinze scale show
reduced aspect ratio and sphericity: these droplets are not only strongly elongated (low as-
pect ratio), but small-scale perturbations of the interfaces (small humps and dimples) start
forming (low sphericity). The trend in sphericity is kept also for droplets much larger than
the Kolmogorov-Hinze scale; these droplets show a recovery of the aspect ratio, indicating
either the formation of bulgy droplets (see figure 2.4a) or of convoluted filaments. Both
of these shapes are coherent with the two deformation parameters we investigated. i.e.,
relatively low aspect ratio and low sphericity.

To distinguish among the two possible shapes, bulgy droplets versus convoluted fila-
ments, we compute the average radius of curvature 𝑅 at the interface of each droplet, re-
ported in figure 2.5. To compute the radius of curvature 𝑅, we first compute the mean
curvature 𝜅 using the divergence of the normal 𝑛 to the interface;

𝜅 = ∇ ⋅ 𝐧. (2.9)

We average the curvature 𝜅 over the droplet interface, and define the radius of curvature
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Figure 2.5: The mean radius of curvature 𝑅 of the surfaces of droplets binned by their
diameter 𝑑. The dashed line shows 𝑅 = 𝑑∕4, the radius of curvature of a sphere with
diameter 𝑑. Inset: the same values, plotted in terms of curvature 𝜅 = 1∕𝑅. Error bars show
the standard deviation of curvature on the droplets.

as the inverse of the mean curvature, 𝑅 ≡ 1∕𝜅. Note that, in equation 2.9, we do not use
a minus sign in the definition of the curvature, as we have an outward-pointing normal 𝐧
and we choose to assign positive values of curvature to convex surfaces, i.e., the curvature is
positive if the surface curves away from the normal. Also, the normal is ill-defined for small
droplets, so we only calculate the mean curvature of droplets with a volume greater than
10 computational cells. For a surface in three dimensions, such as our interface, the mean
curvature is equal to the sum of the two principal curvatures, 𝜅 = 𝜅1+𝜅2. For a sphere, both
principal curvatures are equal to the inverse of the sphere’s radius; hence the mean curva-
ture is twice this value and the radius of curvature is𝑅 = 𝑑∕4. Figure 2.5 shows that droplets
smaller than the Kolmogorov-Hinze scale follow this scaling (gray dashed line). This result
further confirms the rather regular shape (spheroid- or ellipsoid-like) of the small droplets.
Above the Kolmogorov-Hinze scale instead, we observe a departure from 𝑑∕4: the radius of
curvature becomes constant, approximately equal to half the Kolmogorov-Hinze scale, and
independent of drop size.

To understand this behaviour, we consider a cylinder of radius 𝑑𝐻∕2. On the curved
surface of the cylinder, the two principal curvatures are 𝜅1 = 0 and 𝜅2 = 2∕𝑑𝐻. Neglecting
the two flat ends, the mean curvature of the cylinder is thus 𝜅 = 2∕𝑑𝐻, i.e. the radius of
curvature of the cylinder is equal to half the Kolmogorov-Hinze scale, and is independent
of its length. This result, combined with the information obtained from the deformation
parameters in figure 2.4, shows that, above Kolmogorov-Hinze scale droplets take the shape
of filaments with a diameter equal to the Kolmogorov-Hinze scale.

The inset of figure 2.5 shows the mean curvature 𝜅 of the droplets as a function of their
equivalent diameter 𝑑. Error bars indicate the standard deviation of the curvature, which
was calculated at the interface of each droplet and averaged over the ensemble of droplets
of similar size 𝑑. The standard deviation of the curvature of an interface is a measure of
its corrugation, and can be used to quantify Plateau–Rayleigh instabilities which lead to
droplet breakup (Kooij et al., 2018; Rayleigh, 1878; Villermaux & Bossa, 2009). From the
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Figure 2.6: Dependence of droplets’ surface area 𝐴 on their equivalent diameter 𝑑. The
dashed line shows the surface area of a sphere with diameter 𝑑, and the solid line shows
the surface area of a filament with diameter 𝑑𝐻.

inset of figure 2.5, we see that droplets of all sizes show corrugation, and the standard devi-
ation of 𝜅 is comparable to its average value. Above the Kolmogorov-Hinze scale, we report
an increased probability of negative values of themean curvature, indicative of dimples and
saddle points in the surface of the droplet, which, for example, can be due to impinging jets
or large Plateau-Rayleigh instabilities on the interface.

To test our hypotheses on the droplet shapes above and below the Kolmogorov-Hinze
scale, we consider their surface area. Figure 2.6 shows themean surface area of the droplets
at each equivalent diameter𝑑. Aswepreviously noted, the droplets smaller than theKolmogorov-
Hinze scale are almost spherical in shape, and hence we see that their surface area grows
quadratically with their characteristic size. Above the Kolmogorov-Hinze scale, the droplet
surface areas instead grow as the cube of their sizes. As a first approximation, we can think
of these droplets as long cylinders with the same diameter 𝑑𝐻 and different lengths 𝑙. Ig-
noring the two end faces, the surface area of such a cylinder is 𝐴𝑓 = 𝜋𝑑𝐻𝑙 and the volume
is 𝑉𝑓 = 𝜋𝑑2𝐻𝑙∕4. Substituting the volume for the equivalent diameter (equation 2.7) we get
an expression for the length;

𝑙 = 2𝑑3

3𝑑2𝐻
. (2.10)

Plugging this into the formula for the cylinder surface area, we obtain 𝐴𝑓 = 2𝜋𝑑3∕(3𝑑𝐻),
showing that a filament with variable length 𝑙 and constant diameter 𝑑𝐻 has an interfacial
surface area that grows as the cube of its volume-equivalent diameter 𝑑. The interfacial sur-
face area of the droplets above the Kolmogorov-Hinze scale closely follows 𝐴𝑓, as reported
in figure 2.6.

From our observations of curvature and surface area, it appears that droplets above the
Kolmogorov-Hinze scale are filamentous in shape. However, their aspect ratio shows the
filaments cannot be straight, since this would produce a monotonic reduction in

√
𝐼1∕𝐼3

with 𝑑, which we do not see in figure 2.4a. Hence a natural question is: do the filaments
form loops, or are they simply connected? Figure 2.7 shows two droplets from case S20, we see
that both droplets are made up of convoluted filaments, and in many places, the filaments
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𝑑𝐻

Figure 2.7: Visualisation of two droplets extracted from case S20. The left droplet has 56
handles and six voids. The right droplet has two handles and zero voids. The length of the
black bar is the Kolmogorov-Hinze scale.

do in fact, form loops. To answer the question quantitatively, we measure the topology of
the interface of each droplet using its Euler characteristic 𝜒, which obeys the formula

1 − 𝜒∕2 = ℎ − 𝑣, (2.11)

where ℎ is the number of handles and 𝑣 is the number of voids in the drop (see section B.1
in the appendix for a derivation of this equation). In the insets of figure 2.8a, we show
renders of example droplets with one and two handles. Analogously to the handle on a
teacup, a handle is a loop of the dispersed phase which extends through the carrier phase.
The renders in the insets of figure 2.8b show example droplets with one and two voids. A
void is a region of the carrier phase entirely enclosed by the dispersed phase. Note that
similarly to droplet breakup and coalescence, a change in the number of handles or voids
necessitates a merging or splitting of interfaces. Using a method similar to Mendoza et
al.’s characterisation of dendritic metal samples, we measure the Euler characteristic using
simplicial homology, that is, by dividing the interface into simple polygons and counting
the number of nodes 𝑛, edges 𝑒, and faces 𝑓 on the interface of each droplet. The Euler
characteristic of the interface is then given by the Poincaré formula (Massey, 1997, p.26),

𝜒 = 𝑛 − 𝑒 + 𝑓. (2.12)

Our volume of fluid field 𝜙 is defined on a cubic grid, and we can define the interface as
the boundaries between cells where 𝜙 − 0.5 changes sign. Hence, our interface is already
divided into square faces, and 𝜒 can be calculated by counting these faces and their edges
and nodes. We also count the number of voids 𝑣 on each droplet. Voids are counted by
rerunning the flood fill algorithm, looking for contiguous cells where 𝜙 < 0.5; to do so we
use a stack-based 26-way flood-fill, which is an extension to three dimensions of the two-
dimensional 8-way flood fill (Newman & Sproull, 1979). Knowing 𝜒 and 𝑣 for each drop,
we can use equation 2.11 to obtain the number of handles ℎ.
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Figure 2.8: (𝑎) Number of handles ℎ per droplet. The grey line shows the fit ℎ =
0.04(𝑑∕𝑑𝐻)3. Renders show example droplets with one and two handles (𝜒 = 0 and𝜒 = −2,
respectively). (𝑏)Number of voids 𝑣 per droplet. The grey line shows the fit 𝑣 = 500(𝑑∕𝐿)3.
We mark the x-axis to show the Kolmogorov-Hinze scale of each case. Renders show ex-
ample droplets with one and two voids (𝜒 = 4 and 𝜒 = 6, respectively). The renders are
obtained from droplets we artificially generated for the sole purpose of demonstrating han-
dles and voids.

Figure 2.8a shows how the mean number of handles per droplet depends on the droplet
size. We see that the largest droplets are very self-connected, having on the order of 102
handles. Furthermore, the number of handles in each case collapses to a single line when
the equivalent diameter is normalised by the Kolmogorov-Hinze scale 𝑑𝐻. This universality
occurs because surface tension is constantly acting to destroy the handles, so the higher
the surface tension, the shorter the lifetime of the handle. The fit ℎ = 0.04(𝑑∕𝑑𝐻)3 gives
the number of handles as a function of the droplet volume. Using our earlier result that
the large droplets are filaments with lengths given by equation 2.10, we can convert this
expression into the number of handles per unit length of the filament: ℎ∕𝑙 = 0.06∕𝑑𝐻.
Figure 2.8b shows us, on the other hand, that the number of voids is independent of surface
tension, which is reasonable as a void inside a droplet experiences no net surface tension
force. The number of voids simply scales with the volume of the droplet. Again we can
obtain a fit, 𝑣 = 500(𝑑∕𝐿)3; substituting the equivalent diameter for the droplet volume 𝑉
(equation 2.7) we find there are roughly 𝑣∕𝑉 ≈ 950∕𝐿3 voids per unit droplet volume in
all cases. We suspect the void concentration depends on the droplet coalescence rate and
turbulence intensity (𝑅𝑒𝜆), however, we leave a proper investigation of this dependence to
future works.

2.3.2 Flow statistics
We characterize the effects induced by the presence of clean and surfactant-laden interfaces
on the local flow statistics using the flow topology parameter (Perry & Chong, 1987), which
compares the local flow to three different base flows: purely rotational, pure shear and
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Figure 2.9: Flow topology parameter sampled in different regions of the domain: inside
the droplets (solid line), in the carrier phase (dashed line) and at the interface (dotted line).
The single-phase case is reported for reference (dash-dotted line). Each panel refers to an
approximate value of the effective Weber: (𝑎)𝑊𝑒𝑒 ≈ 10 – panel (cases C10 and S05), (𝑏)
𝑊𝑒𝑒 ≈ 20 – panel (cases C20 and S10) and (𝑐)𝑊𝑒𝑒 ≈ 40 – panel (cases C40 and S20).

purely extensional flow. The flow topology parameter 𝑄 is a combination of the rate-of-
deformation tensor𝐷 ≡ (∇𝐮+∇𝐮𝑇)∕2 and of the rate-of-rotation tensorΩ ≡ (∇𝐮−∇𝐮𝑇)∕2,
where∇𝐮 is the velocity gradient tensor. The quantities 𝐷2 andΩ2 are defined as 𝐷2 = 𝐷 ∶
𝐷 and Ω2 = Ω ∶ Ω, where ∶ identifies the dyadic (double-dot) product. For 𝐷2 = 0 and
Ω2 ≠ 0 we have a purely rotational flow, whereas for 𝐷2 ≠ 0 and Ω2 = 0 we have a purely
extensional flow; pure shear is a combination of these two cases, occurring for 𝐷2 = Ω2.

𝑄 = 𝐷2 −Ω2

𝐷2 +Ω2 =
⎧

⎨
⎩

−1 purely rotational,
0 pure shear,
+1 purely extensional.

(2.13)

We compare clean and surfactant-laden cases at similar effective Weber numbers in fig-
ure 2.9, together with the single-phase case for reference. The flow topology parameter
is computed in three distinct regions: inside the droplets (𝜙 > 0.5), in the carrier phase
(𝜙 < 0.5) and at the interface. This way, we can separate the contribution from the different
regions of the flow (Dodd & Jofre, 2019; Rosti, De Vita, et al., 2019; Soligo et al., 2020b), and
investigate the effect of Marangoni stresses at the interface for the surfactant-laden cases
and of flow confinement on the flowing condition inside the droplets and at the interface.

We first consider the flow topology parameter in the carrier phase. The relatively low
volume fraction of the dispersed phase reduces the overall impact of the presence of the
interface on the outer flow. The flow topology parameter for all clean and surfactant-laden
cases well collapses onto the single phase line, indicating indeed that the presence of a
deformable interface and of Marangoni stresses does not introduce any significant modifi-
cation of the outer flow at the relatively low volume fraction considered. A similar result
was reported by Rosti, De Vita, et al. (2019) for clean droplets and for volume fractions of
the dispersed phase up to 30%. In general, the flow topology shows a predominance of a
combination of pure shear and extensional flow, with a limited rotational contribution.
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Figure 2.10: Alignment between unit-length normal to the interface 𝐧 and: (𝑎) vorticity at
the interface, (𝑏) velocity at the interface. The inset in panel (𝑎) shows how the alignment
has been computed: for a generic vector 𝐚 we define the alignment as 𝐧 ⋅ 𝐚∕||𝐚||, which is
equal to the cosine of the angle 𝜃 in between the two vectors.

The flow topology computed inside the droplets highlights the effect of flow confine-
ment. Surface tension has competing effects: while on the one hand, a large value of sur-
face tension ismore effective in decoupling internal and external flow, a low value of surface
tension produces many small-size droplets that increase the flow-confinement effect. We
observe a reduction in extensional flow and an increase in pure shear for increasing values
of theWeber number, which has been attributed to the confinement effect of small droplets
(Soligo et al., 2020b). We do not report changes in the rotational component, which can be
attributed to the lack of large-scale coalescence events (Rosti, De Vita, et al., 2019). When
comparing cases at similar effective Weber numbers, we observe that the addition of sur-
factant has a similar effect to a reduction in the surface tension value: a reduction in the
extensional flow and an increase in pure shear. The difference in the flow topology between
clean and surfactant-free droplets reduces as the effective Weber number increases.

It is interesting to note that, at the interface, the addition of surfactant instead has an
opposite effect: the presence of surfactant, especially at low values of the effective Weber
number, leads to an increase of extensional flow and a decrease in rotational flow – pure
shear is unchanged. This difference results from the action of Marangoni stresses, and is
indeed more apparent at low values of the effective Weber number, i.e. at high values of
surface tension. We observe a shift towards extensional flow for increasing values of the
effective Weber number, confirming previous findings (Soligo et al., 2020b).

We now focus on flow statistics at the interface to better understand the local surface
tension effects induced by clean and surfactant-laden interfaces. We compute the align-
ment of vorticity at the interface of the droplets: to quantify the direction of vorticity, we
use the cosine of the angle 𝜃, see the sketch in figure 2.10a. This quantity is found by tak-
ing the scalar product between the interface normal 𝐧 (outward-pointing, unit-length nor-
mal) and the unit-length vorticity vector, 𝝎∕||𝝎||. The probability density function of the
vorticity-interface alignment is reported in figure 2.10a for all the cases we simulated. Sim-
ilarly to what was found by Mukherjee et al. (2019), the vorticity is mostly orthogonal to
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the interface normal. At very large values of the surface tension, i.e. 𝑊𝑒 → 0, the interface
between the droplet and the carrier phases acts similarly to a slip wall: the high surface ten-
sion makes the interface close to undeformable but imposes no condition on the tangential
component of the flow. We thus expect that at high values of surface tension the vorticity
vector is tangential to the interface, i.e. 𝐧 ⋅ 𝝎∕||𝝎|| = 0. As the interface becomes more
deformable (corresponding to a higher Weber number), this condition is relaxed and the
PDF widens. We observe that the PDF remains symmetric for all cases; this is an expected
result as positive and negative values of the alignment correspond to flow structures at the
interface rotating in the anti-clockwise and clockwise directions respectively, and the two
are equally probable. The alignment of vorticity at the interface also highlights the effect of
surfactant, and in particular of Marangoni stresses tangential to the interface: the cases at
a similar effective Weber number (namely𝑊𝑒𝑒 ≈ 10 C10 and S05;𝑊𝑒𝑒 ≈ 20 C20 and S10;
𝑊𝑒𝑒 ≈ 40 C40 and S20) show notably different distributions, suggesting that in terms of
the local fow around the droplets, the effect of surfactant cannot be approximated as only
an average surface tension reduction. We indeed notice a decoupling among the various
cases at approximately the same effective Weber number, with cases C40 (𝑊𝑒𝑒 = 39.3) and
S10 (𝑊𝑒𝑒 = 25.8) showing the very same distribution in vorticity alignment. The presence
of Marangoni stresses promotes the formation of flows tangential to the interface, whose
gradients contribute to the vorticity component normal to the interface.

The alignment of thefluid velocity at the interface further corroborates the role ofMarangoni
stresses in modifying the local flow velocity at the interface; figure 2.10b shows the prob-
ability density function of the scalar product between the unit-length velocity vector and
the normal to the interface. The surfactant-laden cases show a more peaked distribution at
𝐧 ⋅ 𝐮∕||𝐮|| ≈ 0.1, corresponding to a local fluid velocity almost tangential to the interface,
with a small outward (i.e., from the droplet phase towards the carrier phase) component.
This velocity alignment is clearer for the cases at low Weber number: the magnitude of
Marangoni stresses directly depends on the local surface tension, hence the cases at high
Weber number are characterized byweakerMarangoni stresses. Indeed, the case S20 shows
similar velocity alignment to the surfactant-free cases, being theMarangoni stresses weaker
compared to the other surfactant-laden cases. For the clean cases we observe two separate
peaks in the distribution, one at 𝐧 ⋅ 𝐮∕||𝐮|| = −1 and one at 𝐧 ⋅ 𝐮∕||𝐮|| ≈ 0.3. The for-
mer corresponds to an inward flow perpendicular to the interface, and the latter to a fluid
velocity mainly tangential to the interface, although with a larger normal component com-
pared to the surfactant-laden cases. We attribute this reduction in the probability of having
flow tangential to the interface to the absence of Marangoni stresses for the surfactant-free
cases. A similar distribution is also achieved by case S20, which is characterised by weak
Marangoni stresses (due to the low reference surface tension value), further highlighting
the role of Marangoni stresses.

So far we have only considered the angle between the flow velocity at the interface and
the interface itself; we now proceed to analyse the magnitude of the flow velocity at the
interface. The flow velocity is decomposed into two components, a normal component
𝑢𝑛 ≡ 𝐮 ⋅ 𝐧 aligned with the outward-pointing normal to the interface 𝐧, and a tangential
component 𝑢𝑡 ≡ ||𝐮−𝑢𝑛𝐧||. The sign of the normal component is important; the interface
is advected with the flow so positive 𝑢𝑛 occurs in places where the interface moves outward
in the direction of the carrier phase, and negative 𝑢𝑛 occurs in places where the interface
moves inward, in the direction of the dispersed phase. Due to volume conservation of the
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Figure 2.11: (𝑎)Normal component of the flow velocity at the interface 𝑢𝑛 and (𝑏) tangen-
tial component of the flow velocity at the interface 𝑢𝑡. Two-colour lines show the difference
between the PDF of surfactant-laden and clean pairs of cases with similar𝑊𝑒𝑒 (these data
aremagnified by a factor two for better reading). The inset in panel (𝑎) shows histograms of
the logarithm of the dissipation 𝜖 inside (dashed line) and outside (solid line) the droplets
for case C40, where𝑚𝜖 and 𝑠𝜖 are the mean and standard deviation of ln 𝜖, respectively. The
inset in panel (𝑏) shows the decomposition of the flow velocity along a direction normal (𝐧)
and tangential (𝐭) to the interface.

phases, 𝑢𝑛 has zero mean. On the other hand, the choice of the tangential direction in the
plane is arbitrary: it is taken as the remainder of the subtraction of the normal component
from the total velocity. For this reason, we have only positive values of the tangential veloc-
ity 𝑢𝑡.

In figure 2.11𝑎, the probability density functions of the normal component of the veloc-
ity 𝑢𝑛 show peaks at relatively low positive 𝑢𝑛 and are negatively skewed in all cases, i.e., ex-
tremenegative values (inwardfluid velocity) aremore probable than extremepositive values
(outward fluid velocity). To elucidate the cause of the skewed distributions, we also show
histograms of the logarithm of the dissipation 𝜖 for case C40. The tails of these histograms
can be attributed to extreme events and hence to intermittency in the flow (Kaneda &Mor-
ishita, 2012). We see that the flow outside the droplets gives slightly wider tails and hence
has higher intermittency than that inside the droplets (also seen by Crialesi-Esposito, Bof-
fetta, et al. (2023) for fluid velocity differences inside and outside droplets). Therefore, we
attribute the increased likelihood of extreme inward velocities at the interface to increased
intermittency of the flow in the bulk phase. Returning to themain panel of figure 2.11𝑎, we
note that cases with a higher𝑊𝑒𝑒 show awider distribution of 𝑢𝑛∕𝑢′. A higher effectiveWe-
ber number implies amore deformable interface with a lesser damping effect on the normal
velocity: extreme (positive and negative) events become more probable as surface tension
is reduced. The difference among surfactant-laden and clean cases at similar effective We-
ber numbers is reported with two-colour lines (rescaled by a factor of two for improved
readability). We observe that the surfactant suppresses extreme events, especially at low
values of the Weber number (high surface tension), when Marangoni stresses are greatest
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in magnitude. A similar turbulence suppression effect was seen by L. Shen et al. (2004) for
surfactants in free shear flows, and was attributed to the elasticity of the surfactant-laden
interface.

When considering the tangential component, we observe a reversal of the trend: surfac-
tant, via Marangoni stresses, increases the probability of flow tangential to the interface.
Two-colour lines show the difference between surfactant-laden and clean cases at simi-
lar 𝑊𝑒𝑒, with the data rescaled by a factor of two for ease of reading. It is clear that the
presence of surfactant increases the probability of finding tangential velocities in the range
𝑢′ ≲ 𝑢𝑡 ≲ 2𝑢′. All surfactant-laden cases have approximatively a similar value of the peak
of the distribution, which is slightly larger than that of the surfactant-free cases, indicating
that surfactant-laden cases have a higher probability of large values of the tangential veloc-
ity. Interestingly, as the Weber number increases, the peak shifts to slightly higher values,
and the likelihood of large tangential velocity increases as well, as shown by the two-colour
lines. This result suggests that while increasing the flow velocity tangential to the interface
and suppressing large normal components, Marangoni stresses also have a modulating ef-
fect on the tangential component.

2.4 Conclusions
In this study, we perform direct numerical simulations of surfactant-laden droplets in ho-
mogeneous isotropic turbulence. The interfacial dynamics are solved using an MTHINC
volume of fluid method coupled with a phase-field-based approach to simulate surfactant
dynamics. By examining droplet morphology and local flow statistics, we can shed light on
the interfacial characteristics and dynamics of these complex systems.

TheKolmogorov-Hinze length scale is a fundamental quantity inmultiphaseflows laden
with clean droplets or bubbles; our numerical results show that the Kolmogorov-Hinze
scale can be extended to surfactant-laden flows, provided that a lower value of surface ten-
sion, accounting for the presence of surfactant, is selected. We indeed observe a collapse
of most statistics when plotted as a function of 𝑑∕𝑑𝐻. We compute the droplet size distri-
bution for all clean and surfactant-laden cases and verify that: (i) the Kolmogorov-Hinze
scale effectively separates the breakage- and coalescence-dominated regimes and (ii) the
power-law scaling for these two regimes can be applied to surfactant-laden droplets. The
combined results on the deformation of the droplets, i.e. aspect ratio and sphericity, prove
that droplets smaller than the Kolmogorov-Hinze scale have a relatively compact and regu-
lar shape (spheroid- or ellipsoid-like shapes), whereas droplets larger than the Kolmogorov-
Hinze scale have coiled, filamentous shape, supporting previous observations of filamen-
tous water drops (Jackiw & Ashgriz, 2021; Villermaux & Bossa, 2009). The filamentous
droplets are found to have an average diameter which is independent of the overall droplet
size 𝑑 and is equal to the Kolmogorov-Hinze scale, further evidencing the relevance of this
length scale.

The very different shapes of large and small droplets have direct implications on the to-
tal area of the interface, which is a crucial parameter in determining the overall exchange
of species, momentum and energy among the carrier and the dispersed phase. We report
the existence of two regimes, separated by the Kolmogorov-Hinze scale: the area of droplets
smaller than the Kolmogorov-Hinze scale is proportional to the square of the characteris-
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tic size of the droplet, whereas it is proportional to the cube of the characteristic size for
droplets larger than the Kolmogorov-Hinze scale. The two different scalings can be directly
traced back to the shape of the droplets, spheroid-like below the Kolmogorov-Hinze scale
and filamentous above theKolmogorov-Hinze scale. The large and filamentous droplets are
coiled up, as indicated by their aspect ratio. Thus we investigate their self-connectedness,
using the Euler characteristic to count the number of handles and voids on each droplet.
To the best of our knowledge, this is the first time the number of handles and voids on a
droplet has been measured. We find that the number of handles depends directly on the
size of the droplet and its surface tension, as data from all cases collapse on a single curve
when normalised by the Kolmogorov-Hinze scale; we also provide a scaling for the linear
density of handles, ℎ∕𝑙 = 0.06∕𝑑𝐻. Conversely, the number of voids depends on the droplet
size alone. Our interpretation is that the restoring action of surface tension reduces the life-
time of a handle, whereas the dynamics of a void are unaffected by surface tension. Going
further, the Poincaré-Hopf theorem relates the Euler characteristic 𝜒 of an interface to the
number of topological defects in any tangent vector fields (e.g., fluid velocity, alignment of
molecules, stresses) at the interface (Maroudas-Sacks et al., 2021), (a well-known example
of this for 𝜒 = 2 is the hairy ball theorem). A future investigation may count topological
defects on the surface of droplets and relate the number to their ability to resist breakup.

Results from the morphology of the droplets highlight the validity of the Kolmogorov-
Hinze scale for both clean and surfactant-laden flows: a rescaled value of the surface ten-
sion, accounting for the average surface tension reduction induced by the surfactant, can
be effectively used to define the Kolmogorov-Hinze scale. This finding suggests that the
effect of surfactant on droplets in homogeneous isotropic turbulence can be mainly sum-
marised as a reduction in surface tension. The lack of a large-scale and time-persisting ve-
locity difference among the carrier and dispersed phase, as found in upflow and downflow
configurations (Lu et al., 2017; Takagi et al., 2008), prevents the formation of significant,
large-scale Marangoni stresses at the interface. Hence, in our simulation setup, Marangoni
stresses play aminor, local role, with negligible effects on the statistics of the droplets. Local
flow statistics better show the effect of these tangential stresses: Marangoni stresses mod-
ulate the flow at the interface by reducing the velocity component normal to the interface
and increasing the tangential component. When computing the flow topology parameter
at the interface, we find that Marangoni stresses increase the elongational component and
reduce rotational flow at the interface. This result is coherent with the action of Marangoni
stresses generating an elongational type of flowwith sources corresponding to low-surface-
tension regions and sinks to high-surface-tension regions. Inside the droplets, Marangoni
stresses reduce elongational flow and increase the pure shear contribution.

In conclusion, we find that a statistically homogeneous and isotropic flow allows for
a simplified treatment of the surfactant effects. Results from Hinze’s theory can thus be
applied to surfactant-laden flows, by considering the average surface tension reduction op-
erated by the surfactant. For both clean and surfactant-laden flows, the Kolmogorov-Hinze
scale separates two regimes characterised by very different scaling for the surface area of
the droplets: a significant increase in the surface area is observed for droplets larger than
the Kolmogorov-Hinze scale. This latter result has important implications for environmen-
tal and industrial multiphase flows, where the interface serves as a conduit for all species,
momentum and energy transfers among the phases.

The code used for calculating droplet morphology can be found at https://github.com/

https://github.com/marco-rosti/CFF-dropStats.git
https://github.com/marco-rosti/CFF-dropStats.git
https://github.com/marco-rosti/CFF-dropStats.git
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marco-rosti/CFF-dropStats.git.

https://github.com/marco-rosti/CFF-dropStats.git
https://github.com/marco-rosti/CFF-dropStats.git
https://github.com/marco-rosti/CFF-dropStats.git
https://github.com/marco-rosti/CFF-dropStats.git


Chapter 3

The Effect of Particle Anisotropy on
the Modulation of Turbulent Flows

Chapter 3 moves the focus from droplets to solid particles. Contrasting with droplets, par-
ticles have a defined size and produce a much stronger back-reaction effect on the flow. I
investigate the modulation of turbulence with Taylor-Reynolds number 𝑅𝑒𝜆 = 435 due to
the presence of finite-size dispersed particles, comparing the effects of bluff spheres and
slender fibres. Both object shapes yield similar bulk effects, characterized by large-scale
energy depletion. However, a scale-by-scale analysis reveals intrinsic differences in the en-
ergy spectrum. The study highlights differences in the turbulent energy cascade between
the two cases. Both particle shapes provide a “spectral shortcut” for the kinetic energy in
the flow, with bluff objects shrinking the extension of the classical energy cascade butmain-
taining its typical features, while slender ones induce an alternative energy flux mediated
by fluid-solid coupling. This chapter provides valuable insights into the influence of object
shape on the modification of turbulence.

Some clarifications that arose during discussion with the thesis examiners:

• The fibres are chosen to be very slender, they have a thickness of three times the Eu-
lerian grid spacing.

• For the interaction of fibres, we use the minimal collision model from Snook et al.,
2012.

• For the interaction of spheres, we use the soft-sphere collision model fromHori et al.,
2022.

• 𝜅 is the wavenumber of the flow.

• 𝜖 is the dissipation in the fluid.

The article is appended in section C of this thesis and can be cited as follows:

Olivieri, S., Cannon, I., & Rosti, M. E. (2022). The effect of particle anisotropy on the mod-
ulation of turbulent flows. Journal of Fluid Mechanics, 950, R2. https://doi.org/10.
1017/jfm.2022.832
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The conclusions we draw are as follows; spheres and fibres cause a similar reduction
in the Taylor-Reynolds number as their mass-fraction increases. Spheres cause a reduction
in the kinetic energy of the flow at only large length scales, and return energy to the flow
around the length scale of their diameter. The classical turbulent energy cascade is regained
at scales smaller than the sphere diameter. Fibres cause a reduction in turbulent kinetic
energy across a range of length scales. Fibres act as a conduit of kinetic energy from large
to small scales, disrupting the classical turbulent energy cascade.



Chapter 4

Spheres and Fibres in Turbulent Flows
at Various Reynolds Numbers

Chapter 4 extends the investigation of chapter 3 to a range of turbulence intensities 12.8 <
𝑅𝑒𝜆 < 442. This allows us to explore the dissipative anomaly, which is a long-studied phe-
nomenon of single-phase turbulence. It states that the dissipation remains finite even as
the fluid viscosity tends to zero. We find that sphere-laden and fibre-laden flows produce
the same value of anomalous dissipation as single-phase flows for 𝑅𝑒𝜆 → ∞. Our analy-
sis shows that the “spectral shortcut” uncovered in chapter 3 is present at all turbulence
intensities investigated, even for low 𝑅𝑒, when the particles’ influence extends deep into
the dissipative range. Looking at the near-particle flow, we see that spheres enhance dissi-
pation within two-dimensional sheets, while fibres enhance dissipation in structures that
exhibit dimensions between one and two. Lastly, our study uncovers the contrasting im-
pact of spheres and fibres on vortical flow structures. Specifically, spheres impede these
structures, curbing their formation, whereas fibres completely disrupt vortex stretching be-
haviour in their vicinity.

The article can be cited as follows:
Cannon, I., Olivieri, S., &Rosti,M. E. (2023). Spheres andfibres in turbulent flows at various

Reynolds numbers. Under review for Physical Review Fluids. https : / /doi . org /10 .
48550/arXiv.2310.07986

In this chapter, we see that as viscosity tends to zero, the normalized dissipation tends to
the same finite value for single-phase, sphere-laden, and fibre-laden flows. Spheres return
energy to the flow around the length scale of their diameter, whereas fibres return energy to
the flow around the length scale of their thickness. The classical turbulent energy cascade
is regained at scales smaller than the sphere diameter. Spheres enhance dissipation in two-
dimensional sheets. Fibres enhance dissipation in regions with dimensions greater than
one and less than two. Spheres produce shearing regions in the flow and fibres disrupt the
process of turbulent vortex stretching.

4.1 Introduction
Particle-laden turbulent flows abound in our environment; see, for example, volcanic ash
clouds, sandstorms, and microplastics in the oceans. In these cases, the particles are seen

39

https://doi.org/10.48550/arXiv.2310.07986
https://doi.org/10.48550/arXiv.2310.07986


Spheres and Fibres in Turbulent Flows at Various Reynolds Numbers 40

εs/16

εs/4

εs

4εs

16εs

Figure 4.1: Images of the simulated domain. Left column: flowswithfixed spheres. Middle
column: single phase flows. Right column: flows with fixed fibres. Flows on the top row
have 𝑅𝑒𝐴𝐵𝐶 = 894. Flows on the bottom row have 𝑅𝑒𝐴𝐵𝐶 = 55.9. At the boundary of each
domain we show the dissipation on a logarithmic scale, where 𝜖𝑠 is the mean dissipation of
the single-phase flow at 𝑅𝑒𝐴𝐵𝐶 = 894.
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in a range of shapes, and the intensity of the carrier turbulent flow can significantly vary. In
this context, the present study delves into the interaction between particles and turbulent
flows, focusing on two distinct particle shapes, spheres and fibres, and exploring turbulent
flows across a large range of Reynolds numbers.

The interaction of particles with turbulent flows has garnered significant research at-
tention since Richardson and Proctor (1927) used balloons to track eddies in the Earth’s
atmosphere in 1927. Light spherical particles as tracers are now a ubiquitous experimental
tool (Westerweel et al., 2013), and even fibre-shaped tracers have been employed (Brizzo-
lara et al., 2021). For heavier particles, more complex motion is seen, such as inertial clus-
tering (Monchaux, 2012) and preferential sampling (Goto & Vassilicos, 2008). Numerical
simulations in this field have been a valuable tool, as results can be readily processed to
study length-scale dependent statistics such as radial distribution functions (Ireland et al.,
2016), and histograms of Voronoï area (Monchaux, 2012). Most of such particle-laden tur-
bulent studies make the one-way coupling assumption, whereby the particles are affected
by the fluid motion, but the fluid does not feel any effect of the particles. When the total
mass fraction or volume fraction of particles in the system increases, the one-way coupling
assumption becomes invalid, andwemustmodel the back-reaction effect of the particles on
the fluid. This opens up a zoo of new phenomena, including drag reduction (L. H. Zhao et
al., 2010), cluster-induced turbulence (Capecelatro et al., 2015), and new scalings in the en-
ergy spectrum (Olivieri, Cannon, et al., 2022). A recent review by Brandt and Coletti (2022)
has pointed out a gap in the current understanding of particles in turbulence, which lies
between small heavy particles and large weakly buoyant particles. In addition, most real-
world particle-laden flows involve particles with a high degree of anisotropy, while research
in particle-laden turbulence has overwhelmingly focused on spherical particles.

This article addresses the gaps by studying a range of particle mass fractions𝑀, ranging
from single-phase (𝑀 = 0) to fixed particles (𝑀 = 1). We make simulations using a fully
coupled approach to elucidate how particles modulate turbulence. Furthermore, we vary
the turbulence intensity, allowing us to ask the question at what Reynolds numbers (𝑅𝑒)
does turbulence modulation emerge? And does the modulation effect persist as 𝑅𝑒 → ∞?
Crucially, we connect our results to real-world flows by investigating isotropically-shaped
particles (spheres) and anisotropically-shaped particles (fibres). The spheres have a single
characteristic length, given by their diameter, whereas the fibres have two: their length and
thickness. This naturally allows us to ask how do the particle’s characteristic lengths impact
the scales of the turbulent flow?

A number of works have investigated particle shape, see Voth and Soldati (2017) for a
review of the behaviour of anisotropic particles in turbulence, including oblate spheroids,
prolate spheroids and fibres. In 1932 Wadell (1932) defined the sphericity of a particle as
its surface area divided by the area of a sphere with equivalent volume; Wadell used the
sphericity to classify quartz rocks according to their shape. More recently, L. Zhao et al.
(2015)made direct numerical simulations of oblate and prolate spheroids in a channel flow,
and found that away from the channel walls, prolate spheroids tend to rotate about their
symmetry axis (spinning), whereas oblate particles rotate about an axis perpendicular to
their symmetry axis (tumbling). Ardekani et al. (2017) showed that oblate spheroids can
reduce drag in a turbulent channel by aligning their major axes parallel to the wall. Yousefi
et al. (2020) simulated spheres and oblate spheroids in a shear flow, and found that the rota-
tion of the spheroids can enhance the kinetic energy of the flow. At the other shape extreme
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from oblate spheroids, we have fibres, which are long and thin. In this article, we choose
to study rigid fibres (also known as rods) as they are a simple example of a particle with
high anisotropy. Concerning fibres, Gillissen et al. (2008) and Paschkewitz et al. (2004) and
others showed that rigid fibres align with vorticity in channel flows, dissipating the vortex
structures, and drag reductions up to 26% have been measured (Paschkewitz et al., 2004).
In this article, we wish to investigate how the shapes and length scales of particles interact
with turbulence, so we choose the triperiodic flow geometry. This geometry avoids the ef-
fects of walls and other large structures on the flow, enabling us to focus on the emergent
length scales of the flow.

A fewworks have investigated the effect of turbulence intensity on particle-laden flows.
Lucci et al. (2010) simulated spheres of various diameters 𝑐 in decaying isotropic turbu-
lence, and found that spheres reduce the fluid kinetic energy and enhance dissipationwhen
𝑐 > 𝜂, where 𝜂 is the Kolmogorov length scale. In this article, we also vary the ratio 𝑐∕𝜂,
however, unlike (Lucci et al., 2010), we do it by varying the fluid viscosity, not the parti-
cle size. This enables us to keep the particle volume, particle surface area and number of
particles constant across our cases. Oka and Goto (2022) studied sphere diameters in the
range 7.8 < 𝑐∕𝜂 < 64, in turbulent flows with 𝑅𝑒𝜆 ≈ 94 and showed that vortex shed-
ding and turbulence attenuation occur when 𝑐 ≳ 𝜆𝜌∕�̃�, where 𝜆 is the Taylor length-scale,
𝜌 and �̃� are the fluid and solid densities, respectively. J. Shen et al. (2022) investigated
the effect of solid-fluid density ratio for flows with 38 < 𝑅𝑒𝜆 < 74, and 8.8 < 𝑐∕𝜂 < 18,
showing that higher density spheres cause more turbulence attenuation. Peng et al. (2023)
parametrized the attenuation of turbulent kinetic energy by spheres with 7.1 < 𝑐∕𝜂 < 15
and 41 < 𝑅𝑒𝜆 < 63. They found that the particle mass fraction is indeed a strong indica-
tor of attenuation and that there is negligible dependence on the Taylor Reynolds number
𝑅𝑒𝜆 for this range. Compared to the above works, we choose a wider range of turbulence
intensities, such that 11.7 < 𝑐∕𝜂 < 125 and 12.8 < 𝑅𝑒𝜆 < 442, and we extend the study to
include non-spherical particles.

This article is structured as follows: In the following section, we describe the numerical
methods and the parameters used in our study. In section 4.3, we present and discuss the
results of our simulations, and section 4.4 concludes with a summary and outlook on future
research.

4.2 Methods and setup
We tackle the problemusing large direct numerical simulations on anEulerian grid of 10243
points with periodic boundaries in all three directions. To obtain the fluid velocity 𝑢𝑖 and
pressure 𝑝, we solve the incompressible Navier-Stokes equations for a Newtonian fluidwith
kinematic viscosity 𝜈 and density 𝜌,

𝜕𝑡𝑢𝑖 + 𝜕𝑗(𝑢𝑖𝑢𝑗) = 𝜈𝜕𝑗𝑗𝑢𝑖 − 𝜕𝑖𝑝∕𝜌 + 𝑓𝐴𝐵𝐶𝑖 + 𝑓𝑠𝑓𝑖 , (4.1)
𝜕𝑗𝑢𝑗 = 0, (4.2)

where indices 𝑖, 𝑗 ∈ {1, 2, 3} denote the Cartesian components of a vector, and repeated
indices are implicitly summed over. The turbulent flow is sustained by an ABC forcing
(Libin & Sivashinsky, 1990; Podvigina & Pouquet, 1994a), which is made of sinusoids with
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a wavelength 2𝜋𝐿 equal to the domain size,

𝑓𝐴𝐵𝐶1 = 𝐹 sin(𝑥3∕𝐿) + 𝐹 cos(𝑥2∕𝐿),
𝑓𝐴𝐵𝐶2 = 𝐹 sin(𝑥1∕𝐿) + 𝐹 cos(𝑥3∕𝐿),
𝑓𝐴𝐵𝐶3 = 𝐹 sin(𝑥2∕𝐿) + 𝐹 cos(𝑥1∕𝐿).

(4.3)

The amplitude 𝐹 of the forcing is used to define the forcing Reynolds number 𝑅𝑒𝐴𝐵𝐶 ≡
𝐹1∕2𝐿3∕2∕𝜈. To discern the effect of increasing turbulence intensity, we conduct a number
of simulations with various values of 𝑅𝑒𝐴𝐵𝐶, given in table 4.1.

When the single-phase flows reach a statistically steady state, we add the solid particles
at random (non-overlapping) locations in the domain. We allow the flow to reach a statis-
tically steady state again, and measure the statistics presented in section 4.3, which were
averaged in time over multiple large-eddy turnover times 𝜏𝑓 ≡ 2𝜋𝐿∕𝑢′, where 𝑢′ is the root
mean square of the fluid velocity. This procedure is repeated for every solid mass fraction
investigated, defined as𝑀 ≡ 𝑚𝑠∕(𝑚𝑠+𝑚𝑓)where𝑚𝑠 and𝑚𝑓 are the total mass of solid and
fluid. The single-phase cases have𝑀 = 0, and the cases with fixed particles have𝑀 = 1.
The solid phase is two-way coupled to the fluid using the immersed boundary method, and
the back-reaction of the particles on the fluid is enforced by 𝐟 𝐬𝐟 in equation 4.1. As can be
seen in figure 4.1, we simulate two types of particles, spheres and fibres; to isolate the effect
of particle isotropy on the flow, we choose the fibres and spheres to have the same size: the
spheres have diameter 𝑐, and the fibres have length 𝑐, where 𝑐 = 𝐿∕2 in all cases.

We use the in-house Fortran code Fujin to solve the flow numerically. Time integra-
tion is carried out using the second-order Adams-Bashforth method, and incompressibility
(equation 4.2) is enforced in a pressure correction step (Kim & Moin, 1985), which uses
the fast Fourier transform. Variables are defined on a staggered grid; velocities and forces
are defined at the cell faces, while pressure is defined at the cell centres. Second-order fi-
nite differences are used for all spatial gradients. See https://groups.oist.jp/cffu/code for
validations of the code.

4.2.1 Motion of the spheres
The sphere motion and forces are modelled using an Eulerian-based immersed boundary
method developed by Hori et al. (2022). The velocity 𝐔 and rotation rate 𝛀 of each sphere
are found by integrating the Newton-Euler equations in time

𝑚𝜕𝑡𝑈𝑖 = ∯
𝑆

(
𝜌𝜈(𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖) − 𝑝𝛿𝑖𝑗

)
𝑛𝑗𝑑𝑆 − 𝐹𝑐𝑜𝑙𝑛𝑖, (4.4)

𝐼𝜕𝑡Ω𝑖 = ∯
𝑆
𝜖𝑖𝑗𝑘

𝑐
2𝑛𝑗𝜌𝜈(𝜕𝑘𝑢𝑙 + 𝜕𝑙𝑢𝑘)𝑛𝑙𝑑𝑆, (4.5)

where 𝛿𝑖𝑗 is the Kronecker delta and 𝜖𝑖𝑗𝑘 is the Levi-Civita symbol, 𝑆 is the surface of the
sphere, and 𝐧 is its normal. 𝑚 = �̃�𝜋𝑐3∕6 and 𝐼 = 𝑚𝑐3∕20 are the mass and moment of
inertia of the sphere with diameter 𝑐 and density �̃�. A soft-sphere collision force 𝐹𝑐𝑜𝑙𝐧 is
applied in the radial direction when spheres overlap (Hori et al., 2022).

Table 4.2 shows our choice of parameters for the sphere-laden flows. In all cases, we
use 300 spheres. The characteristic time of the spheres is 𝜏𝑠 = �̃�𝑐2∕(18𝜌𝜈), from which we

https://groups.oist.jp/cffu/code
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can define the Stokes number 𝑆𝑡 ≡ 𝜏𝑠∕𝜏𝑓 of our flows. The particle Reynolds number of
the spheres is 𝑅𝑒𝑝 = 𝑐

√
⟨𝚫𝐮𝑛 ⋅ 𝚫𝐮𝑛⟩𝑛∕𝜈, where 𝚫𝐮𝑛 is the difference between the velocity

of the 𝑛th particle and the local fluid velocity, averaged in a ball of diameter 2𝑐 centred on
the sphere. The angled brackets ⟨⟩𝑛 denote an average over all spheres in the simulation.

4.2.2 Motion of the fibres
For the motion and coupling of the fibres, we also use an immersed boundary method,
but this one is Lagrangian and solves the Euler-Bernoulli equation for the position 𝐗 of
the beam with coordinate 𝑙 along its length (Alizad Banaei et al., 2020; Huang et al., 2007;
Olivieri et al., 2020)

𝜋
4 𝑑

2(�̃� − 𝜌)𝜕2𝑡𝑋𝑖 = 𝜕𝑙(𝑇𝜕𝑙𝑋𝑖) + 𝛾𝜕4𝑙 𝑋𝑖 − 𝐹𝑓𝑠𝑖 + 𝐹𝑐𝑜𝑙𝑖 , (4.6)

where 𝑇 is the tension, enforcing the inextensibility condition;

𝜕𝑡𝑋𝑖𝜕𝑡𝑋𝑖 = 1. (4.7)

The volumetric density of the fibre is �̃�, and its stiffness is 𝛾. Note that, the fluid density 𝜌
in equation 4.6 cancels the inertia of the fluid in the fictitious domain inside the fibre (Yu,
2005). To exclude deformation effects in our study, we choose a stiffness which limits the fi-
bre deformation below 1%. The collision force 𝐅𝐜𝐨𝐥 is the minimal collision model by Snook
et al. (2012). The fluid-solid coupling force 𝐅𝐟 𝐬 enacts the non-slip condition at the par-
ticle surface, and an equal and opposite force (𝐟 𝐬𝐟 in equation 4.1) acts on the fluid. The
spreading kernel onto the Eulerian grid has a width of three grid spaces, giving the fibre
diameter 𝑑 = 3∆𝑥 in units of the Eulerian grid spacing. Table 4.3 shows our choice of pa-
rameters for the fibre-laden flows, where we use 104 fibres in all cases. The characteristic
time of the fibres is calculated using a formulation which takes their aspect ratio 𝛽 ≡ 𝑐∕𝑑
into account (Shaik & Van Hout, 2023),

𝜏𝑠 =
�̃�𝑑2
18𝜌𝜈

𝛽 ln
(
𝛽 +

√
𝛽2 − 1

)

√
𝛽2 − 1

, (4.8)

fromwhichwe can define the Stokes number 𝑆𝑡 ≡ 𝜏𝑠∕𝜏𝑓 of our flows. The particle Reynolds
number of the fibres is 𝑅𝑒𝑝 = 𝑑

√
⟨𝚫𝐮𝑛 ⋅ 𝚫𝐮𝑛⟩𝑛∕𝜈, where 𝚫𝐮𝑛 is the difference between the

velocity of the midpoint of the 𝑛th fibre and the local fluid velocity, averaged in a ball of
diameter 2𝑐 centred on the fibre’s midpoint. The angled brackets ⟨⟩𝑛 denote an average over
all fibres in the simulation.

4.3 Results and discussion

4.3.1 Bulk statistics
The Taylor Reynolds number is defined as 𝑅𝑒𝜆 ≡ 𝑢′𝜆∕𝜈, where 𝑢′ is the root-mean-square
velocity averaged over space and time, 𝜆 = 𝑢′

√
15𝜈∕𝜖 is the Taylor length scale, and 𝜖 is
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marker 𝑅𝑒𝐴𝐵𝐶 𝑀 𝜂∕𝐿 𝑅𝑒𝜆 𝜖ℒ∕𝑢′3

⬟ 𝟖𝟗𝟒 0.0 4.06 × 10−3 433 0.399
■ 447 0.0 6.31 × 10−3 308 0.382
▴ 224 0.0 1.11 × 10−2 204 0.400
⧫ 112 0.0 1.95 × 10−2 116 0.473
● 𝟓𝟓.𝟗 0.0 2.99 × 10−2 101 0.428

Table 4.1: Single-phase flows. 𝑅𝑒𝐴𝐵𝐶 is the forcing Reynolds number, and 𝑀 is the solid
mass fraction. We measure the Kolmogorov length scale 𝜂 ≡ 𝜈3∕4∕𝜖1∕4, the Taylor Reynolds
number 𝑅𝑒𝜆, and the dissipation 𝜖, which has been normalised using the integral length
scaleℒ and the root mean square velocity 𝑢′ of the fluid. The largest and smallest values of
each parameter are shown in bold.

marker 𝑅𝑒𝐴𝐵𝐶 𝑀 �̃�∕𝜌 𝜂∕𝐿 𝑅𝑒𝜆 𝜖ℒ∕𝑢′3 𝑆𝑡 𝑅𝑒𝑝
⬟ 𝟖𝟗𝟒 0.1 1.29 4.09 × 10−3 431 0.397 7.4 618
⬟ 𝟖𝟗𝟒 0.3 4.99 4.18 × 10−3 397 0.395 26.9 857
⬟ 𝟖𝟗𝟒 0.6 17.4 4.09 × 10−3 346 0.507 89.1 1.12 × 103
⬟ 𝟖𝟗𝟒 0.9 105 4.18 × 10−3 280 0.625 471 1.18 × 103
⬟ 𝟖𝟗𝟒 1.0 ∞ 4.29 × 10−3 247 0.708 ∞ 𝟏.𝟏𝟗 × 𝟏𝟎𝟑
■ 447 1.0 ∞ 7.31 × 10−3 161 0.786 ∞ 559
▴ 224 0.1 1.29 1.13 × 10−2 219 0.374 1.91 142
▴ 224 0.3 4.99 1.16 × 10−2 181 0.477 6.49 198
▴ 224 0.6 17.4 1.18 × 10−2 157 0.586 20.9 243
▴ 224 0.9 105 1.19 × 10−2 123 0.751 109 266
▴ 224 1.0 ∞ 1.26 × 10−2 101 0.936 ∞ 260
⧫ 112 1.0 ∞ 2.14 × 10−2 61.5 1.19 ∞ 117
● 𝟓𝟓.𝟗 1.0 ∞ 3.60 × 10−2 34.9 1.81 ∞ 44.6

Table 4.2: Sphere-laden flows. We set the solid-fluid density ratio �̃�∕𝜌 to obtain a range
of solid mass fractions 𝑀. Bulk statistics for the particles are the Stokes number 𝑆𝑡 and
the particle Reynolds number 𝑅𝑒𝑝. The largest and smallest values of each parameter are
shown in bold.
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marker 𝑅𝑒𝐴𝐵𝐶 𝑀 �̃�∕𝜌 𝜂∕𝐿 𝑅𝑒𝜆 𝜖ℒ∕𝑢′3 𝑆𝑡 𝑅𝑒𝑝
⬟ 𝟖𝟗𝟒 0.2 47.2 4.09 × 10−3 422 0.425 1.45 34.9
⬟ 𝟖𝟗𝟒 0.3 81.8 𝟒.𝟎𝟐 × 𝟏𝟎−𝟑 442 0.432 2.6 41.2
⬟ 𝟖𝟗𝟒 0.6 279 4.17 × 10−3 340 0.713 7.52 46.4
⬟ 𝟖𝟗𝟒 0.9 1.69 × 103 4.26 × 10−3 223 1.15 36.1 47.2
⬟ 𝟖𝟗𝟒 1.0 ∞ 4.40 × 10−3 201 1.29 ∞ 46.0
■ 447 1.0 ∞ 7.44 × 10−3 115 1.78 ∞ 20.6
▴ 224 0.1 21.3 1.16 × 10−2 192 0.434 0.155 8.31
▴ 224 0.3 81.8 1.16 × 10−2 196 0.465 0.605 9.9
▴ 224 0.6 279 1.19 × 10−2 167 0.63 1.85 11.2
▴ 224 0.9 1.69 × 103 1.23 × 10−2 72.5 2.25 7.16 9.11
▴ 224 1.0 ∞ 1.29 × 10−2 54.9 3.17 ∞ 8.22
⧫ 112 1.0 ∞ 2.33 × 10−2 28.8 4.68 ∞ 3.32
● 𝟓𝟓.𝟗 1.0 ∞ 𝟒.𝟐𝟕 × 𝟏𝟎−𝟐 12.8 8.60 ∞ 1.51

Table 4.3: Fibre-laden flows. We set the solid-fluid density ratio �̃�∕𝜌 to obtain a range of
solid mass fractions𝑀. Bulk statistics for the particles are the Stokes number and particle
Reynolds number. The largest and smallest values of each parameter are shown in bold.
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Figure 4.2: (a) Effect of the solid mass fraction 𝑀 on the Taylor Reynolds number 𝑅𝑒𝜆.
Flowswith𝑅𝑒𝐴𝐵𝐶 = 224 aremarkedusing triangles, andflowswith𝑅𝑒𝐴𝐵𝐶 = 894 aremarked
using pentagons. (b) Effect of the forcing Reynolds number 𝑅𝑒𝐴𝐵𝐶 on the Taylor Reynolds
number 𝑅𝑒𝜆, for the single phase and particle-laden cases with fixed particles (𝑀 = 1). In
both plots, we show the single-phase flows in black, flows with spheres in blue, and flows
with fibres in yellow; the shaded regions give the root-mean-square of 𝑅𝑒𝜆 in time.
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Figure 4.3: The dependence of the normalised dissipation 𝜖ℒ∕𝑢′3 on the Taylor-Reynolds
number 𝑅𝑒𝜆. Flowswith spheres aremarked blue on panel (a), flowswith fibres aremarked
in orange on panel (b), and single-phase flows are marked in black on both panels. Dashed
lines show the anomalous value of dissipation 𝜖ℒ∕𝑢′3 = 0.4 measured by Donzis et al.
(2005). Solid lines show fits of equation 4.10 with 𝐴 = 0.2. The fitted values of 𝐵 are given
in the inset, where Donzis’ result (𝐵 = 92) is marked with an “X”.

the viscous dissipation rate averaged over space and time. The Taylor-Reynolds number is
an indicator of the intensity of turbulence in the flow, and in figure 4.2, we show how 𝑅𝑒𝜆
compares for all of our cases. Figure 4.2a shows that increasing the solid mass fraction𝑀
causes a reduction in𝑅𝑒𝜆 at both high and low forcing Reynolds numbers. Both spheres and
fibres produce a comparable decrease in 𝑅𝑒𝜆, but the reduction effect is more substantial for
very heavy fibres. Looking at the trend in 𝑅𝑒𝜆 with the forcing Reynolds number 𝑅𝑒𝐴𝐵𝐶 in
figure 4.2b, we see, as expected, a monotonic increase in all three cases, i.e., single phase,
sphere-laden, and fibre-laden flows.

The dissipative anomaly is a well-studied feature in single-phase turbulent flows, first
proposed by Taylor (1935). It states that, even in the limit of vanishing viscosity (𝑅𝑒𝜆 →∞),
the normalised dissipation 𝜖ℒ∕𝑢′3 remains finite. The integral length scale is given by,

ℒ = 𝜋
2𝑢′2 ∫

∞

0

𝐸
𝜅 d𝜅, (4.9)

where 𝐸 is the turbulent kinetic energy spectrum and 𝜅 is the wavenumber. Donzis et al.
(2005) parametrized the dissipative anomaly, based on the analysis of Doering and Foias
(2002), and they fit the function

𝜖ℒ
𝑢′3 = 𝐴 [1 +

√
1 + (𝐵∕𝑅𝑒𝜆)2] (4.10)

to a number of single-phase flows, obtaining 𝐴 = 0.2 and 𝐵 = 92. Figure 4.3 shows the
dependence of the normalised dissipation for our flows. We see that as 𝑅𝑒𝜆 → ∞, flows
with spheres and fibres at all mass fractions appear to converge to the same anomalous
value of dissipation 𝜖ℒ∕𝑢′3 = 0.4. Hence, we fit equation 4.10 with 𝐴 = 0.2 to each mass
fraction of spheres and fibres, obtaining a value for 𝐵 in each case, shown in the insets of
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Figure 4.4: Energy spectra of all cases. On the left, we show flows with spheres, and the
vertical grey lines show the wavenumber 𝜅𝑐 = 2𝜋∕𝑐 of the sphere diameter. On the right,
we show flowswith fibres, andwe shade the region between the wavenumber 𝜅𝑐 of the fibre
length and the wavenumber 𝜅𝑑 = 2𝜋∕𝑑 of the fibre diameter. (a) and (b) show 𝑅𝑒𝐴𝐵𝐶 = 894
and 𝑅𝑒𝐴𝐵𝐶 = 224, with the latter shifted downwards by a factor of 100 on the y-axis, for
various mass fractions. (c) and (d) show fixed (𝑀 = 1) and single phase (𝑀 = 0) cases for
various Reynolds numbers. Markers are at the wavenumber corresponding to the Taylor
length scale.

figure 4.3. The fit to our single phase flows agrees closely with Donzis et al. (2005)’s result.
However, both spheres and fibres cause an increase in the value of 𝐵 as their mass fraction
increases, with fibres producing roughly double the effect. To understand how spheres and
fibres modify the dissipation in the flow, we must look at how they transport energy from
large to small scales, into the dissipative range.

4.3.2 Scale-by-scale results
Figure 4.4 shows each flow’s turbulent kinetic energy spectrum 𝐸. Single-phase flows ex-
hibit the canonical Kolmogorov scaling 𝐸 ∼ 𝜅−5∕3 for one or two decades, depending on
the forcing Reynolds number. Adding spheres reduces 𝐸 at wavenumbers up to the sphere
diameter (𝜅 < 𝜅𝑐) and increases 𝐸 in the dissipative range. We mention, in passing, the
oscillations at the wavenumber of the sphere diameter; these are an artefact resulting from
the discontinuity in the velocity gradient at the sphere boundary (Lucci et al., 2010). The
addition of fibres causes a reduction in 𝐸 across a broad band of wavelengths (𝜅𝐿 ≲ 100)
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and a pronounced increase in the dissipative range. As was previously seen by Olivieri,
Cannon, et al. (2022), the energy scaling 𝐸 ∼ 𝜅−𝛽 becomes flatter as the mass fraction𝑀 of
fibres increases. Figure 4.4 also shows that both spheres and fibres cause the Taylor length
scale to shift to higher wavenumbers due to the increase of the energy in the dissipative
scales due to the presence of particles.

Figure 4.5 shows how each term in the Navier-Stokes equation interacts with the energy
spectrum; this is expressed by the spectral energy balance

ℱ𝑖𝑛𝑗(𝜅) + Π(𝜅) + Π𝑠𝑓(𝜅) + 𝐷(𝜅) = 𝜖, (4.11)

where ℱ𝑖𝑛𝑗,Π,Π𝑠𝑓, and 𝐷 are the rate of energy transfer by the ABC forcing, advection,
solid-fluid coupling, and dissipation, respectively. See the supplementary information of
Ref. (Abdelgawad* et al., 2023) for a derivation of this equation. For the single-phase flows,
energy is carried by the advective term Π from large to small scales, where it is dissipated
by the viscous term 𝐷. When particles are added, we see that the solid-fluid coupling term
Π𝑠𝑓 acts as a “spectral shortcut” (Finnigan, 2000; Olivieri, Cannon, et al., 2022); it bypasses
the classical turbulent cascade, removing energy from large scales and injecting it at the
length scale of the particles, through their wakes. In keeping with the spectra, the power
of the solid-fluid coupling (shown by the peak value of Π𝑠𝑓) increases with mass fraction
𝑀 of both spheres and fibres. For spheres, the coupling Π𝑠𝑓 dominates only at wavenum-
bers less than that of the sphere diameter 𝜅 < 𝜅𝑐 (i.e., large length scales). Around 𝜅𝑐, the
sphere wake returns energy to the fluid, and the classical cascade resumes for 𝜅 > 𝜅𝑐. For
fibres instead, Π𝑠𝑓 extends deep into the viscous range: in fact, markers on the Π𝑠𝑓 curves
show that spheresmostly inject energy around the length scale of their diameter , and fibres
mostly inject energy at a length scale between their thickness and length. This observation
is supported by the images of dissipation in figure 4.1; around the spheres, we see wakes
comparable in size to their diameter, while around the fibres, we see wakes comparable in
size to their thickness. We presume that the fluid-sphere coupling Π𝑠𝑓 would also extend
into the viscous range if the sphere diameter was in this range. Lastly, we consider the ef-
fect of Reynolds number on energy transfers in the flow, reducing 𝑅𝑒𝐴𝐵𝐶 limits the range
of scales at which the advective flux Π occurs for single-phase flows. However, 𝑅𝑒𝐴𝐵𝐶 has
little effect on the wavenumber range of the solid-fluid coupling term Π𝑠𝑓, suggesting that
the size of the particle wakes is governed mainly by particle geometry, with a lesser effect
from fluid properties like viscosity.

Moving from wavenumber space to physical space, we show the longitudinal structure
functions

𝑆𝑝 ≡ ⟨[𝑟𝑖𝑢𝑖(𝐱 + 𝐫) − 𝑟𝑖𝑢𝑖(𝐱)]
𝑝⟩ (4.12)

of each flow in figure 4.6, where 𝐫 is a separation vector between two points in the flow, it
has magnitude 𝑟 and direction �̂�, and angled brackets show an average over space 𝐱. For
the second moment (𝑝 = 2), the single-phase flows closely follow Kolmogorov’s scaling
in the inertial range (𝑟 ≫ 𝜂). However, when particles are added, 𝑆2 decreases relative
to the single-phase case. For spheres, the decrease occurs for 𝑟 ≳ 𝑐, while for fibres, it
occurs at even smaller separations 𝑟. Much like the 𝐸 ∼ 𝑘−𝛽 scalings seen in figure 4.4,
the decreased regions in figure 4.6 show scalings 𝑆2 ∼ 𝑟𝜁2 , which become flatter for larger
mass fractions𝑀. These energy spectrum and structure-function scalings are, in fact, just
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Figure 4.5: Scale-by-scale energy balance for all cases. Panels (a) and (b) show𝑅𝑒𝐴𝐵𝐶 = 894
cases for various mass fractions. Panels (c) and (d) show 𝑅𝑒𝐴𝐵𝐶 = 224 cases for various
mass fractions. Panels (e) and (f) show fixed (𝑀 = 1) and single-phase (𝑀 = 0) cases for
various Reynolds numbers. On the left, we show flows with spheres, and the vertical grey
lines show the wavenumber 𝜅𝑐 = 2𝜋∕𝑐 of the sphere diameter. On the right, we show flows
with fibres, and we shade the region between the wavenumber 𝜅𝑐 of the fibre length and the
wavenumber 𝜅𝑑 of the fibre diameter. For each case, we plot three terms: the Dissipation𝐷,
the energy fluxΠ due to convection, and the energy fluxΠ𝑠𝑓 due to the solid-fluid coupling.
Each curve is marked where the gradient is largest.
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Figure 4.6: Structure functions of order 𝑝 = 2 (dashed lines) and 𝑝 = 6 (solid lines). Panels
(a) and (b) show cases with 𝑅𝑒𝐴𝐵𝐶 = 894 for various mass fractions. Panels (c) and (d) show
cases with 𝑅𝑒𝐴𝐵𝐶 = 224 for various mass fractions. Panels (e) and (f) show fixed (𝑀 = 1)
and single-phase (𝑀 = 0) cases for various Reynolds numbers. Flows with spheres are on
the left, and flows with fibres are on the right. Grey lines show the scalings predicted by
Kolmogorov for the single-phase structure functions. We mark each line at 𝑟 = 𝑐.
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observations of the same phenomenon, as the exponents are related by 𝜁2 = 𝛽 − 1 for any
differentiable velocity field (Pope, 2000, p.232). In the higher moment structure function
(𝑝 = 6), the flattening of the 𝑆6 ∼ 𝑟𝜁6 scaling by the particles is yetmore apparent, indicating
that the tails of the probability distribution of 𝑟𝑖𝑢𝑖(𝐱+ 𝐫)− 𝑟𝑖𝑢𝑖(𝐱) become wider for smaller
separations 𝑟. In other words, extreme values becomemore common, and the velocity field
becomes more intermittent in space. In the case of single-phase homogeneous-isotropic
turbulence, the intermittency of the velocity field has been attributed to the non-space-
filling nature of the fluid dissipation (Frisch, 1995). Next, we explore this link in the case
of particle-laden turbulence by investigating the intermittency of dissipation 𝜖 in space.

Using themethod described by Frisch (1995, p.159), we obtain the quantity 𝜖𝑙 by averag-
ing the dissipationwithin a ball of radius 6∆𝑥 ≤ 𝑙 ≤ 10∆𝑥 and take amoment−6 ≤ 𝑞 ≤ 6 of
this quantity; if the dissipation field is multifractal, the ensemble average has a scaling be-
haviour ⟨𝜖𝑞𝑙 ⟩ ∼ 𝑙𝜏𝑞 and we can obtain the multifractal spectrum 𝐹 with an inverse Legendre
transformation,

𝜏𝑞 = min
𝛼
[𝑞(𝛼 − 1) + 3 − 𝐹], (4.13)

wheremin𝛼 states that we take the value of 𝛼 whichminimizes the expression in the square
brackets. Figure 4.7 shows the multifractal spectra for all cases. Similarly to Mukherjee et
al. (2023), we split our analysis into separate regions: solid curves result from an ensemble
average over balls not containing particles, while dashed curves result from an ensemble
average over balls containing particles, where the radius 𝑙 has been rescaled according to the
volume 𝑉𝑓 of fluid remaining in the ball, i.e., 𝑙 = (3𝑉𝑓∕4𝜋)1∕3. We see that the multifractal
spectra of the single-phase flows and the regions not containing particles have peaks at 𝛼 ≈
1, 𝐹 ≈ 3, showing there is a background of space-filling dissipation in these regions (Frisch,
1995, p.163).

The multifractal spectra of the regions containing spheres (blue dashed lines in fig-
ure 4.7) have peaks which are shifted to the left. This shift can be explained by considering
the high dissipation in the boundary layers around the spheres. As imaged in figure 4.1, the
boundary layers are confined in space to relatively thin sheets. The volume of a thin sheet
intersecting with a ball of radius 𝑙 is 𝑉 ∼ 𝑙2, hence the total dissipation in a ball intersect-
ing with a spherical particle also scales as ∼ 𝑙2. When we average over the volume of the
ball (∼ 𝑙3) and take the 𝑞th moment, we obtain ⟨𝜖𝑞𝑙 ⟩ ∼ 𝑙2𝑞𝑙−3𝑞, and this scales as 𝜏𝑞 = −𝑞.
By equation 4.13, this is the Legendre transformation of the point 𝛼 = 0, 𝐹 = 3, which is
roughly where the peaks in the multifractal spectra are located.

The multifractal spectra of the regions containing fibres (orange dashed lines in fig-
ure 4.7) have peaks which are shifted even further to the left. Again, we explain this by
considering the wakes around the particles. Suppose that the dissipation around a fibre is
confined to a thin tube. In this case, the volume of a tube intersecting with a ball of radius
𝑙 is 𝑉 ∼ 𝑙, thus in this case ⟨𝜖𝑞𝑙 ⟩ ∼ 𝑙𝑞𝑙−3𝑞, so the resulting scaling is 𝜏𝑞 = −2𝑞, which (by
equation 4.13) is the Legendre transformation of the point 𝛼 = −1, 𝐹 = 3. In fact, from
the bottom right panel of figure 4.7, we see that the ensemble average over balls contain-
ing 𝑀 = 1 fibres produces peaks in the region −0.5 < 𝛼 < 0, suggesting that the wakes
around the fibres are not exactly thin tubes, but more space-filling structures with a dimen-
sion greater than one. This is also supported by the images in figure 4.1, as the wakes are
seen to extend behind the fibres.

The middle and upper panels of figure 4.7 show that (at 𝑅𝑒𝐴𝐵𝐶 = 224 and 𝑅𝑒𝐴𝐵𝐶 = 894)
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Figure 4.7: Multifractal spectra of the dissipation in regions containing particles (dashed
lines) and regions not containing particles (solid lines). Panels (a) and (b) show cases with
𝑅𝑒𝐴𝐵𝐶 = 894 for various mass fractions. Panels (c) and (d) show cases with 𝑅𝑒𝐴𝐵𝐶 = 224
for various mass fractions. Panels (e) and (f) show fixed (𝑀 = 1) and single-phase (𝑀 = 0)
cases for various Reynolds numbers. Flows with spheres are on the left, and flows with
fibres are on the right. We mark each line where 𝐹 is maximum and at 𝐹 = 2.
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the sphere- and fibre-containing multifractal spectra tend toward the single phase multi-
fractal spectrum as𝑀 is reduced. This is expected, as the particle-fluid relative velocity is
reduced and the wakes become less prominent compared to the background space-filling
turbulence. On the other hand, the ensembles of balls not containing particles produce
multifractal spectra with low 𝛼 tails that extend beyond those of the single-phase multifrac-
tal spectra, suggesting that the wakes of spheres and fibres extend into the bulk of the fluid
and that they retain their non-space-filling nature.

4.3.3 Local flow structures
To lookmore closely at the flow structures produced by the particles, we compute the align-
ment of the unit-length eigenvectors �̂�𝟏, �̂�𝟐, �̂�𝟑 of the strain-rate tensor 𝑠𝑖𝑗 ≡ (𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖)∕2
with the vorticity 𝝎 ≡ 𝜖𝑖𝑗𝑘𝜕𝑗𝑢𝑘�̂�𝑖 (Ashurst et al., 1987; Olivieri, Mazzino, et al., 2022), where
�̂�𝟏, �̂�𝟐, �̂�𝟑 are the Cartesian unit vectors. We choose �̂�𝟏 to be the eigenvector corresponding
to the largest eigenvalue. For an incompressible fluid, the three eigenvalues of 𝑠𝑖𝑗 sum to
zero, so the largest eigenvalue is never negative. Hence, �̂�𝟏 aligns with the direction of elon-
gation in the flow. Similarly, we choose the eigenvector �̂�𝟑 to correspond with the smallest
eigenvalue, which is never positive, so �̂�𝟑 aligns with the direction of compression in the
flow. Finally, due to the symmetry of the strain-rate tensor, �̂�𝟐 is orthogonal to the other
two eigenvectors and, depending on the flow, there can be compression or elongation along
its axis. Figure 4.8 shows probability-density functions 𝑃 of the scalar product of the unit-
length vorticity �̂�with �̂�𝟏, �̂�𝟐 and �̂�𝟑 for all of the flows studied. The quantity �̂� ⋅ �̂�𝐢 is simply
the cosine of the angle between the two vectors, and we take the modulus because �̂�𝐢 and
−�̂�𝐢 are degenerate eigenvectors. In the single-phase flows, 𝑃 is maximum at |�̂� ⋅ �̂�𝟐| = 1,
that is, we see a strong alignment of vorticity with the intermediate eigenvector �̂�𝟐. This is
a well-known feature of turbulent flows that has been attributed to the axial stretching of
vortices (Ashurst et al., 1987). Also in keeping with previous observations of single-phase
turbulence, we see that the first eigenvector �̂�𝟏 shows very little correlation with �̂�, and the
last eigenvector is mostly perpendicular to the vorticity, producing a peak in 𝑃 at �̂� ⋅ �̂�𝟑 = 0.
When spheres are added, vorticity aligns even more strongly with the intermediate eigen-
vector �̂�𝟐, and becomes more perpendicular to the first and last eigenvectors �̂�𝟏 and �̂�𝟑. This
change is consistent with the existence of a shear layer at the surface of the spheres. To
demonstrate this, we draw a laminar shearing flow and label the directions of �̂�𝟏, �̂�𝟐, �̂�𝟑 and
�̂� in the inset of figure 4.8. The compression �̂�𝟑 and extension �̂�𝟏 are in the plane of the
shear flow, while the vorticity �̂� and the intermediate eigenvector �̂�𝟑 are perpendicular to
the shear plane; this gives rise to the �̂� ⋅ �̂�𝟏 = 0, |�̂� ⋅ �̂�𝟐| = 1 and �̂� ⋅ �̂�𝟑 = 0 modes in the
sphere-laden flows in figure 4.8. The larger mass fraction spheres have a greater effect, as
their motion relative to the fluid is larger. Also, the spheres’ effect is more pronounced at
lower 𝑅𝑒𝐴𝐵𝐶, which can be explained by an increased thickness in the shear layer as the
fluid velocity is increased. For fibre-laden flows peaks are also seen at �̂� ⋅ �̂�𝟏 = 0, |�̂� ⋅ �̂�𝟐| = 1
and �̂� ⋅ �̂�𝟑 = 0, but the peaks are spread over a larger range of angles, presumably due to the
high curvature of the fibre surfaces, which adds variance to the local direction of vorticity
and shear. At small Reynolds numbers (𝑅𝑒𝐴𝐵𝐶 = 55.9 and 112) the peaks are widest, and
𝑃(|�̂� ⋅ �̂�𝐢|) becomes an almost uniform distribution.

The local topology of a flow can be described entirely using the three principle invariants
of the velocity gradient tensor 𝜕𝑖𝑢𝑗 (Cheng & Cantwell, 1996). The first invariant 𝜕𝑖𝑢𝑖 is not
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Figure 4.8: Histograms of the alignment of the vorticity unit vector �̂�with the eigenvectors
�̂�𝟏, �̂�𝟐, �̂�𝟑 of the strain-rate tensor. Flows with spheres are on the left, and flows with fibres
are on the right. Panels (a) and (b) show cases with 𝑅𝑒𝐴𝐵𝐶 = 894 for various mass fractions.
Panels (c) and (d) show cases with 𝑅𝑒𝐴𝐵𝐶 = 224 for various mass fractions. Panels (e) and
(f) show fixed (𝑀 = 1) and single-phase (𝑀 = 0) cases for various Reynolds numbers. We
mark each line at |�̂� ⋅ �̂�𝐢| = 0, 1 and ⟨|�̂� ⋅ �̂�𝐢|⟩. The inset of panel (e) shows the directions of
vorticity and the eigenvectors of the strain rate in a laminar shear flow above a flat non-slip
surface, where �̂�𝟏 and �̂�𝟑 are confined to the shear plane, while �̂�𝟐 and �̂� are perpendicular
to it.
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Figure 4.9: Joint histograms of the invariants 𝑄 and 𝑅 of the fluid velocity gradient tensor.
Panels (a) and (b) show cases with 𝑅𝑒𝐴𝐵𝐶 = 894 for various particle mass fractions. Panels
(c) and (d) show cases with 𝑅𝑒𝐴𝐵𝐶 = 224 for various particle mass fractions. Panels (e)
and (f) show fixed (𝑀 = 1) and single-phase (𝑀 = 0) cases for various Reynolds numbers.
Numbered markers show the value of log𝑝 at each contour, where 𝑝 is the joint probability
density function. The grey curve show where the discriminant is zero (equation 4.16). The
grey shaded regions in the left panels are the loci of equation 4.17, where we observe an
increase 𝑝 due to the presence of spheres.
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interesting in our case because it is zero for an incompressible fluid. However, the second
invariant,

𝑄 = 1
4𝜔𝑖𝜔𝑖 −

1
2𝑠𝑖𝑗𝑠𝑖𝑗, (4.14)

expresses the balance of vorticity and strain, while the third invariant,

𝑅 = 1
4𝜔𝑖𝑠𝑖𝑗𝜔𝑗 −

1
3𝑠𝑖𝑗𝑠𝑗𝑘𝑠𝑘𝑖, (4.15)

is the balance of the production of vorticity with the production of strain (Paul et al., 2022b).
The eigenvalues Λ of 𝜕𝑖𝑢𝑗 are the roots of the polynomial equation

Λ3 + 𝑄Λ + 𝑅 = 0. (4.16)

Figure 4.9 shows the joint probability distributions 𝑝(𝑅,𝑄) for all of our flows. We also plot
a line where the discriminant of equation 4.16 is zero: 27𝑅2∕4+𝑄3 = 0. Above this line 𝜕𝑖𝑢𝑗
has one real and two complex eigenvalues and vortices dominate the flow. Below this line
all three eigenvalues are real and the flow is dominated by strain. The single-phase distri-
butions have tails in the top-left and bottom-right quadrants; these correspond to stretch-
ing vortices and regions where the flow compresses along one axis, respectively (Cheng &
Cantwell, 1996). When spheres are added, both𝑄 and𝑅 are reduced, as the non-slip bound-
ary condition at their surfaces dampens the flow structures. Incidentally, a similar 𝑄 and 𝑅
reduction has been seen with droplets (Perlekar, 2019). However, we see that the addition
of spheres causes 𝑝(𝑅,𝑄) to increase in the lower regions of the left panels in figure 4.9.
This region is well-described by

27𝑅2
4 + 𝑄3 ≲ −4𝜖

3

𝜈3 . (4.17)

This region where spheres cause the probability distribution to increase corresponds to a
strain-dominated flow. In fact, for pure strain, we have 𝑄 = −𝑠𝑖𝑗𝑠𝑖𝑗∕2 and 𝑅 = 0. Hence
we can substitute for 𝑄 and 𝑅 in equation 4.17 to estimate that the dissipation is 2𝜈𝑠𝑖𝑗𝑠𝑖𝑗 ≳
44∕3𝜖 ≈ 6𝜖 in the shear layers, i.e., the dissipation in the regions around the spheres is many
times greater than themeandissipation. Fibres also create shearing regions in the flow, seen
by the increased probability density functions in the lower parts (27𝑅2∕4 + 𝑄3 < 0) of the
right-hand panels in figure 4.9. As the fibre mass fraction is increased, the variance of 𝑅 is
reduced, showing the production of strain and vorticity is suppressed by the fibres. At high
fibre mass fractions the distributions are approximately symmetrical in 𝑅, in other words,
𝑄 and 𝑅 are uncorrelated (much like the decorrelation of vorticity and strain observed for
fibre-laden flows in figure 4.8). This suggests that the small fibre diameter produces many
small scale structures which disrupt the typical turbulent flow. For both particle types,
increasing the Reynolds number 𝑅𝑒𝐴𝐵𝐶 reduces the effect of the particles.

4.4 Conclusion
Wemade simulations of finite-size isotropically- and anisotropically-shapedparticles (spheres
and fibres with size in the inertial range of scale) in turbulence at various Reynolds num-
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bers and solid mass fractions. We used bulk flow statistics to show that particles reduce
turbulence intensity relative to the single-phase case at all Reynolds numbers, with the fi-
bres producing a more significant reduction effect than the spheres. From the trend in
dissipation with Reynolds number, we see that the particle-laden flows behave like single-
phase flows as 𝑅𝑒𝜆 → ∞, and the value of anomalous dissipation is 𝜖ℒ∕𝑢′3 ≈ 0.4 for both
single-phase and particle-laden flows. However, spheres slow the convergence rate to the
anomalous value, and fibres slow it further. Next, we analysed the flow at each scale of the
simulation. Spheres and fibres provide a “spectral shortcut” to the flow, removing energy
from the largest scales and injecting it at smaller scales. Spheres’ effect is mainly limited to
the large scales, and they provide a spectral shortcut down to the length scale of their diam-
eter. Fibres’ effect, on the other hand, occurs down to the length scale of the fibre thickness,
even at low Reynolds numbers when it is deep in the viscous range (𝑑 ≪ 𝜂). This shortcut
of energy to the dissipative scales slows the dissipation’s convergence to its anomalous value
as 𝑅𝑒𝜆 → ∞. Our scale-by-scale analysis also showed that particles cause the velocity field
to become more intermittent in space. Multifractal spectra of the near-particle dissipation
show that spheres enhance dissipation in two-dimensional sheets, and fibres enhance the
dissipation in structures with a dimension greater than one and less than two. These lower
dimensional structures are a possible source of intermittency in the flow. Zooming in closer
to the flow, we looked at the shape of flow structures using their vorticity and shear. We saw
that the particles enhance local shear, spheres suppress vortical flow structures, and fibres
produce intense vortical and shearing structures, which overcome the usual vortex stretch-
ing behaviour. As Reynolds number increases, the flow structures created by the particles
become less significant relative to the background turbulence.

To reiterate and answer our questions from section 4.1; at what Reynolds numbers does
turbulencemodulation emerge? We see turbulencemodulation at the lowest Reynolds num-
ber investigated (𝑅𝑒𝜆 = 12.8). This gives us reason to believe that particles modulate tur-
bulence in even the most weakly turbulent flows (𝑅𝑒𝜆 → 0). Secondly, does the modulation
effect persist as 𝑅𝑒 → ∞? No, all of the statistics show a tendency towards single-phase
results as 𝑅𝑒 → ∞. Finally, how do the particle’s characteristic lengths impact the scales of
the turbulent flow? Both spheres and particles take energy from the flow at scales larger
than their size. Spheres re-inject energy around the characteristic length of their diameter,
leaving the smaller scales relatively unperturbed, whereas fibres re-inject energy around
the characteristic length of their thickness. The fibre thickness is at a small scale, so local
flow structures are disrupted. None of the flow statistics shows any particular discerning
feature at the length scale of the fibres.

These results relate to various environmental particle-laden flows, such asmicroplastics
in the ocean, volcanic ash clouds, and sandstorms. We have explored the two extremes of
isotropic and anisotropic particles, but further work is needed to investigate how interme-
diate aspect ratio particles such as ellipsoids interact with turbulent flows.



Chapter 5

Anisotropic Mean Flow Enhancement
and Anomalous Transport of
Finite-Size Spherical Particles in
Turbulent Flows

Chapter 5 focuses on the influence of solid spherical particles on the largest scales of the
turbulent triperiodic flow. During our exploration of the parameter space of particle mass
fraction, Reynolds number, and particle size, we made dozens of large-scale simulations.
At one particular particle size and mass fraction, something unexpected happened; the ki-
netic energy of the flow became larger than the single-phase flow. A closer investigation
showed that the energy increase resulted from an enhancement of the time-averaged mean
flow. This chapter shows how the particlesmodulate the flow toward an anisotropic, nearly
two-dimensional, and more energetic state while preserving isotropy at smaller scales. The
inertia of the particles plays a crucial role in this phenomenon, causing them to deviate
from the cellular motion imposed by the inhomogeneous mean shear and enhancing the
mean-flow velocity components aligned with their trajectories.

The article can be cited as follows:

Chiarini, A., Cannon, I., & Rosti, M. E. (2023). Anisotropic mean flow enhancement and
anomalous transport of finite-size spherical particles in turbulent flows. Under re-
view for Physical Review Letters. https://doi.org/10.48550/arXiv.2310.08777

In this chapter, we see that particles with intermediate Stokes number and size enhance
the kinetic energy of the flow, the rotational symmetry of the mean flow is broken, and
particles have ballisticmotion in planes and diffusivemotion perpendicular to these planes.

5.1 Introduction
Particle-laden turbulent flows have attracted the attention of many scholars over the last
decades. Their significance goes beyond a fundamental interest and encompasses several
applications such as blood flow in the human body, the food industry, and pyroclastic flows
(Breard et al., 2016; De Lillo et al., 2014; Falkinhoff et al., 2020). Also, the modulation of
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themean flow and the enhancement/attenuation of turbulence due to particles are relevant
in both environmental (Sengupta et al., 2017) and industrial flows (Ferreyra et al., 2011).
However, although this is a classical problem in fluid mechanics since the seminal work by
Tsuji and Morikawa (1982), the multi-scale mechanism governing the fluid-particle inter-
action is still an open question. In particular, the ability of suspensions of solid particles to
modify and control the largest scales of a generic and complex flow is unclear.

The presence of the solid phase alters themomentumof the flow, andmay result inmod-
ulation of the carrier fluid (Balachandar & Eaton, 2010; Brandt & Coletti, 2022). When the
suspension is dilute enough, the fluid phase can be considered unaltered by the presence of
the particles. Instead, when the suspension is non-dilute, the fluid phase undergoesmacro-
scopic changes in a way that depends on several parameters, such as, for example, the size
and density of the particles, and the volume and mass fractions of the suspension (Elgob-
ashi, 2006; Gore & Crowe, 1989). Over the last years, the solid-fluid interaction in particle-
laden turbulent flows has been the subject of several studies in various flows, ranging from
homogeneous and isotropic flows (Oka & Goto, 2022) to wall-bounded flows (Costa et al.,
2016). Nevertheless, the influence of the solid phase on the largest scales of a generic and
complex flow has not yet been satisfactorily addressed, and the accurate characterisation of
the underlying physics still requires significant effort. Here, we aim to address the follow-
ing questions: How do suspensions of solid particles modulate the largest and most energetic
scales of the flow in the presence of an inhomogeneousmean shear? Is it possible to use particles
to effectively modify and control the mean flow?

In order to answer these questions, in this letter we study the modulation of the tur-
bulent Arnold-Beltrami-Childress (ABC) flow by finite-size particles, with a focus on the
largest scales. In a Cartesian reference system the laminar ABC flow is 𝐿−periodic in the
three 𝑥, 𝑦 and 𝑧 directions, with a velocity field 𝒖 = (𝑢, 𝑣, 𝑤) that depends on four real
parameters 𝑉𝑜, 𝐴, 𝐵 and 𝐶, i.e.

⎧
⎪

⎨
⎪
⎩

𝑢∕𝑉𝑜 = 𝐴 sin
( 2𝜋
𝐿
𝑧
)
+ 𝐶 cos

( 2𝜋
𝐿
𝑦
)
,

𝑣∕𝑉𝑜 = 𝐵 sin
( 2𝜋
𝐿
𝑥
)
+ 𝐴 cos

( 2𝜋
𝐿
𝑧
)
,

𝑤∕𝑉𝑜 = 𝐶 sin
( 2𝜋
𝐿
𝑦
)
+ 𝐵 cos

( 2𝜋
𝐿
𝑥
)
;

(5.1)

𝐴, 𝐵, and 𝐶 are bounded between 0 and 1 and determine the shape of the flow, while 𝑉𝑜
determines the magnitude. Here, we consider the turbulent ABC flow, which is obtained
by forcing the incompressible Navier–Stokes equations with the ABC forcing with𝐴 = 𝐵 =
𝐶 = 1 (Podvigina & Pouquet, 1994b) (see figure 5.1). This provides an ideal instance of a
complex turbulent flow with a three-dimensional (3D) mean field and an inhomogeneous
mean shear, such as flow past an object or in a curved pipe. Because of the lack of solid
boundaries in an ABC flow, the complex flow structures induced by the presence of a wall
are avoided. Thus the particle-laden turbulent ABC flow allows us to isolate the influence
of the particles on the large-scale motions, that in wall-bounded flows might be hidden
by the complex near-wall phenomenology. In this idealised framework, we show that non-
dilute suspensions of solid particles can substantiallymodify the structure of themean flow.
When tuning their size and density, indeed, particles modulate the largest scales of the flow
towards an anisotropic, almost two-dimensional (2D) and more energetic state (see figure
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Figure 5.1: Instantaneous velocity field in the 𝑥 = 𝐿∕2 plane for the (top) single-phase case
and the (bottom) particulate case with 𝐷∕𝐿 ≈ 0.02 and𝑀 = 0.6. Left: 𝑢; centre: 𝑣; right:
𝑤. The symmetric black-to-red colourmap goes from −9 ≤ 𝑢𝑖∕𝑈𝑜 ≤ 9. We denote with 𝑧
the direction orthogonal to the trajectories’ plane.
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5.1). Intriguingly, we show that this happens in the presence of a sustained 3D external
forcing, whose effect is overcome by the presence of the solid phase. This paves the way for
the use of solid particles to control complex 3D flows.

To tackle this problem, we have performed 3D direct numerical simulations of the flow
within a triperiodic box of size 𝐿, with dispersed particles of various finite sizes, that lie
within the inertial range of turbulence. The fluid and the solid dynamics are fully resolved,
and coupled with an immersed boundary method (Hori et al., 2022). The external ABC
forcing is set to achieve, in the single-phase case, a micro-scale Reynolds number of 𝑅𝑒𝜆 =
𝑢′𝜆∕𝜈 ≈ 435, where 𝑢′ is the root mean square of the velocity fluctuations and 𝜆 is the
Taylor length scale. See the Supplemental Material for more information. The particle
diameter is varied between 0.0104 ≤ 𝐷∕𝐿 ≤ 0.0796. For each particle size, the number
of particles is set to provide a volume fraction of Φ𝑉 ≈ 0.08, which is large enough for the
suspension to be non-dilute and small enough for the particle-particle interactions to be
sub-dominant. Finally, the ratio between the density of the particles and the fluid is varied
between 1.3 ≤ 𝜌𝑝∕𝜌𝑓 ≤ 105, to consider both light and heavy particles, yielding a variation
of the mass fraction between 0.1 ≤ 𝑀 ≤ 0.9.

5.2 Results
Figure 5.2 shows that themodulation of the carrier ABCflow changeswith the size and den-
sity of the particles. In the top panel, we plot the total kinetic energy of the flow ⟨𝐸(𝒙, 𝑡)⟩
for different values of 𝐷 and 𝑀, where 𝐸(𝒙, 𝑡) = |𝒖(𝒙, 𝑡)|2∕2, while ⟨⋅⟩ and ⋅ indicate av-
erage along homogeneous directions and in time, respectively. Overall, the total energy
decreases while reducing 𝐷 and increasing𝑀, in agreement with the findings of previous
authors (Oka & Goto, 2022; Olivieri, Cannon, et al., 2022; Ten Cate et al., 2004; Uhlmann
& Chouippe, 2017). However, the trend is non-monotonic, and the large increase of ⟨𝐸⟩
for 𝑀 ≳ 0.45 and 𝐷∕𝐿 ≲ 0.04 shows that the solid phase modulates the carrier flow in
a way that sharply changes with the density of the particles. Interestingly, solid suspen-
sions of particles with 0.02 ≲ 𝐷∕𝐿 ≲ 0.04 and 0.45 ≤ 𝑀 ≤ 0.6 enhance the total energy
of the carrier flow with respect to the single-phase case. In the central panels of figure
5.2, we use a temporal average to isolate the influence of the solid phase on the large and
small scales of the carrier flow. We consider the 𝐷∕𝐿 ≈ 0.02 particulate cases and, af-
ter decomposing the velocity field into its temporal mean 𝑼(𝒙) = 𝒖(𝒙, 𝑡) and fluctuations
𝒖′(𝒙, 𝑡) = 𝒖(𝒙, 𝑡)−𝑼(𝒙), we plot the variances of their three components. All quantities are
made dimensionless with 𝐿𝑜 and 𝑈𝑜, where 𝐿𝑜 = 𝐿∕2𝜋 and 𝑈𝑜 =

√
𝐹𝑜𝐿𝑜 with 𝐹𝑜 denoting

the intensity of the ABC forcing; see the Supplemental Material. Light particles (𝑀 ≤ 0.3)
modulate the flowwithout introducing a preferential direction, and attenuate the energy of
the fluid phase by modifying the mean and fluctuating fields in an isotropic way. Indeed,
here ⟨𝑈𝑈⟩ ≈ ⟨𝑉𝑉⟩ ≈ ⟨𝑊𝑊⟩ and ⟨𝑢′𝑢′⟩ ≈ ⟨𝑣′𝑣′⟩ ≈ ⟨𝑤′𝑤′⟩. Heavier particles (𝑀 ≥ 0.45),
instead, modulate differently the mean and fluctuating fields. They continue to attenuate
the energy of the fluctuations in an isotropic way, but modulate the mean field towards
an anisotropic, quasi-2D and more energetic state. In this case, ⟨𝑈𝑈⟩ ≈ ⟨𝑉𝑉⟩ ≫ ⟨𝑊𝑊⟩,
while ⟨𝑢′𝑢′⟩ ≈ ⟨𝑣′𝑣′⟩ ≈ ⟨𝑤′𝑤′⟩. (We denote with 𝑧 the direction aligned with themean-flow
component that is attenuated by the particle modulation, corresponding to the direction or-
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Figure 5.2: Modulation of the flow energy by finite-size solid particles. Top panel: total
kinetic energy of the flow as a function of the mass fraction 𝑀 and of the mass loading
𝜙𝑚 = 𝑀∕(1 − 𝑀), for different particle size. 𝐸0 is the total kinetic energy of the single-
phase flow. Circles and diamonds refer to the isotropic (I) and anisotropic (A) regimes.
In the central panels the influence of the solid phase on the mean and fluctuating field is
isolated for 𝐷∕𝐿 ≈ 0.02. Centre left: variance of the mean velocity components. Centre
right: variance of the fluctuating velocity components. Bottom panel: modulation of the
kinetic energy of the flow as a function of𝑀 and Stokes number 𝑆𝑡. Blue symbols are for
⟨𝐸⟩ < ⟨𝐸0⟩, red symbols for ⟨𝐸⟩ > ⟨𝐸0⟩. Dashed lines separate the regimes.
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thogonal to the particle trajectories’ plane.) The increase of the total flow energy observed
for 0.45 ≤ 𝑀 ≤ 0.6 is thus entirely due to the mean-flow energy enhancement.

The anisotropic state is observed in a limited portion of the space of mass fraction 𝑀
and Stokes number 𝑆𝑡, i.e. 5 ≲ 𝑆𝑡 ≲ 60 and𝑀 ≳ 0.4 (see the bottom panel of figure 5.2).
Particles with 𝑆𝑡 ≲ 5 follow the complex fluidmotion and hence do not significantlymodify
the flow. However, for 5 ≲ 𝑆𝑡 ≲ 60, inertia causes the particle trajectories to straighten,
causing the fluid motion to reorganise into a quasi-2D state. When 𝑆𝑡 further increases,
the particles become less responsive to the fluid motion, and the 2D state does not develop.
Note that the isotropic flow modulation observed for 𝑆𝑡 ≳ 60 is consistent with the limit
of infinite inertia: when 𝑆𝑡 → ∞, the particles do not move, and the quasi-2D flow does
not arise. The dependence of the flow modulation on𝑀 shows that the emergence of the
anisotropic state requires a strong enough backreaction of the particles to the fluid phase.
Also, the ability of the particles to modulate the largest scales of the carrier flow strongly
depends on the ratio 𝐷∕𝐿. In fact, the strongest flow modulation (and largest mean-flow
enhancement) is observed for the intermediate 𝐷∕𝐿 ≈ 0.02, while the effect is lower for
both smaller and larger particles. For 𝐷 ≪ 𝐿, indeed, particles have a small inertia and do
not favour the flow two-dimensionalisation. For𝐷 ≈ 𝐿, instead, the motion of the particles
is only marginally influenced by the mean shear, as it is mainly driven by fluid velocity
fluctuations with a length scale larger than their characteristic size. See the Supplemental
Material for further discussions, and for the dependence of the anisotropic flowmodulation
on the inhomogeneous mean shear.

Next, we use Poincaré sections (Poincaré, 1892) to characterise the modulation of the
mean flow 𝑼. These are a 2D coding of a 3D dynamical system, in which one represents
only the successive intersections of themean-flow streamlines with one plane of the triperi-
odic domain. Figure 5.3 shows the 𝑥 = 𝐿∕2 Poincaré section for themean flow of the turbu-
lent single-phase case, and of the 𝐷∕𝐿 ≈ 0.02 particulate cases with𝑀 = 0.3 and𝑀 = 0.6.
For each streamline many successive intersections with the 𝑥 = 𝐿∕2 plane are represented.
At first glance, the Poincaré maps show that points associated with the same streamline are
found to span a narrower range of 𝑧 as the flow anisotropy increases. This confirms that
in the anisotropic regime, particles attenuate the𝑊 velocity component and modulate the
mean field towards a quasi 2D state (see figure 5.2). The density of the points in the Poincaré
section is approximately proportional to the magnitude of the mean velocity component
aligned with the direction perpendicular to the plane (Dombre et al., 1986). In the laminar
case, indeed, the density of the points in the 𝑥 = 𝐿∕2 Poincaré plane falls to zero along the
𝑈∕𝑉𝑜 = sin(𝑧∕𝐿𝑜)+cos(𝑦∕𝐿𝑜) = 0 line (see figure 5 of the Supplemental Material). A simi-
lar pattern is observed for the turbulent single-phase case. In fact, a remarkable property of
the ABC flow is that even in the turbulent regime, the mean velocity has nearly the laminar
ABC profile, as observed by others for the Kolmogorov flow (Borue &Orszag, 1996; Musac-
chio & Boffetta, 2014). In the particulate cases, the scenario progressively changes with𝑀.
Interestingly, the solid phase modulates the mean flow in a way that it resembles a generic
ABC flow, but with different values of 𝐴, 𝐵, 𝐶 and 𝑉𝑜. In view of this, the bottom panels of
figure 5.3 report the coefficients of the generic ABC flow that best approximates the mean
flow for 𝐷∕𝐿 ≈ 0.02 and 0.1 ≤ 𝑀 ≤ 0.9. As 𝑀 (and 𝑆𝑡) increases, 𝐴 = 1 remains con-
stant, while 𝐵 ≈ 𝐶 decrease and reach a minimum for𝑀 = 0.6 (𝑆𝑡 ≈ 9.42) where the flow
anisotropy is maximum. In this case, 𝐴 ≫ 𝐵 ≈ 𝐶 and the streamlines of the mean flow are
almost straight lines that lay in the 𝑥 − 𝑦 planes, as (𝑈,𝑉,𝑊) ∼ (sin(𝑧∕𝐿𝑜), cos(𝑧∕𝐿𝑜), 0).
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Figure 5.3: Mean flow field for𝐷∕𝐿 ≈ 0.02. Top: Poincaré section for the mean flow of the
single-phase case (right) and of the particulate cases with 𝑀 = 0.3 (centre) and 𝑀 = 0.6
(right). Twenty streamlines are considered, each identified by a different colour. Bottom:
variation with 𝑀 and 𝑆𝑡 of 𝐴, 𝐵, 𝐶 and 𝑉𝑜 used in equation 5.1 to approximate the mean
flow. Without losing generality we set that the maximum between 𝐴, 𝐵 and 𝐶 is equal to 1.
The black lines in the Poincaré sections are for 𝑈 = 𝐴 sin(𝑧) + 𝐶 cos(𝑦) = 0 with 𝐴 and 𝐶
as in the bottom left panel.
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Thus, particles with 0.45 ≤ 𝑀 ≤ 0.9 and 5.13 ≲ 𝑆𝑡 ≲ 25.45 attenuate the 𝑊 velocity
component, and the mean flow approaches an anisotropic and 2D state, almost losing its
dependence on 𝑥 and 𝑦; see the black lines in figure 5.3. 𝑉𝑜 sharply increases for𝑀 ≥ 0.45
(𝑆𝑡 ≳ 5.13), in agreement with the enhancement of the mean-flow energy shown in figure
5.2. This anisotropic and almost 2D state resembles the bifurcated 𝒜2 state of the single-
phase laminar ABC flow found by Podvigina and Pouquet (Podvigina & Pouquet, 1994b),
spontaneously emerging at lower Reynolds numbers. Thus, it appears that the presence of
the particles with 5 ≲ 𝑆𝑡 ≲ 60 and 𝑀 > 0.3, and their tendency to follow straight trajec-
tories, changes the stability of the system, enabling thus the occurrence of an anisotropic
𝒜2-like state also at these larger 𝑅𝑒.

To further investigate the fluid-solid interaction, figures 5.4 and 5.5 characterise the par-
ticles’ dynamics for 𝐷∕𝐿 ≈ 0.02. In the isotropic regime (𝑀 ≤ 0.3 and 𝑆𝑡 ≲ 2.68), particles
are able to follow the intricate ABC cellular forcing, and exhibit complex trajectories as
expected by the chaotic Lagrangian structure of the ABC flow (Dombre et al., 1986). In
this case, the particles do not select a preferential direction, and explore the entire com-
putational domain. Indeed, the probability density functions (pdfs) of the three velocity
components almost collapse, exhibiting a symmetric unimodal distribution. On the con-
trary, in the anisotropic regime (0.45 ≤ 𝑀 ≤ 0.9 and 5.13 ≲ 𝑆𝑡 ≲ 25.44), the particles move
along almost straight trajectories with 𝑢𝑝 ≈ 𝑣𝑝 ≫ 𝑤𝑝. The direction of the trajectories of
the particles in the 𝑥− 𝑦 plane changes with 𝑧, in agreement with the fact that𝐴 ≫ 𝐵 ≈ 𝐶,
and𝑈 ∼ sin(𝑧∕𝐿𝑜) and 𝑉 ∼ cos(𝑧∕𝐿𝑜). As a result, the in-plane components of the particle
velocity exhibit a symmetric bimodal distribution, and themodes±�̃�𝑝 and±𝑣𝑝 change with
the density of the particles (see bottom panel of figure 5.4).

Figure 5.5 shows themean squared displacement of the particles,𝑅(𝑡)2 =
⟨
|𝒙𝑝(𝑡) − 𝒙𝑝(0)|2

⟩
𝑝
;

here, ⟨⋅⟩𝑝 indicates average over particles. The particle motion is diffusive (ballistic) when
𝑅2(𝑡) ∼ 𝑡𝛼 with 𝛼 = 1 (2). As expected, in the isotropic regime, particles show ballis-
tic motion for short times, while at large times, their motion becomes uncorrelated under
the action of the random velocity fluctuations, and they exhibit a diffusive process; see the
𝑀 = 0.3 case in the left panel. In the anisotropic regime, instead, particles exhibit anoma-
lous transport with 1 < 𝛼 < 2 at large times; see the 𝑀 = 0.6 case in the right panel.
The scaling of the anomalous transport slightly changes with the density of the particles
in the 1.6 ⪅ 𝛼 ⪅ 1.75 range, increasing as the particles’ motion becomes more coher-
ent and their trajectories more straight. Note that considering the 𝑧 direction alone, i.e.
𝑅𝑧(𝑡)2 =

⟨
|𝑧𝑝(𝑡) − 𝑧𝑝(0)|2

⟩
𝑝
, the diffusive transport with 𝛼 ≈ 1 is recovered also for heavy

particles.

5.3 Conclusion
To conclude, we have shown that in the presence of a 3D and inhomogeneous mean shear,
solid particles can substantiallymodify the structure of the largest scales of the flow. By tun-
ing the size and the density of the particles, non-dilute suspensions canmodulate the largest
scales of the flow towards an anisotropic, almost 2D andmore energetic state, while preserv-
ing isotropy at smaller scales. The ability of solid particles tomodify the large-scale flowmay
pave the way for their use in flow-control purposes. For example, the cooling and cleaning
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Figure 5.4: Particle dynamics for 𝐷∕𝐿 ≈ 0.02. Top panels: two representative trajectories
for (left) 𝑀 = 0.3 and (right) 𝑀 = 0.6; the red/blue circle indicate the beginning/end of
the trajectories. Central panels: probability density functions for (left)𝑀 = 0.3 and (right)
𝑀 = 0.6. Bottom panel: dependence of the modes �̃�𝑖 of the probability density functions
on𝑀 and 𝑆𝑡.
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Figure 5.5: Particle mean squared displacement 𝑅2(𝑡) for 𝐷∕𝐿 ≈ 0.02. Left: 𝑀 = 0.3.
Right: 𝑀 = 0.6. The thin dashed line represents 𝑡2, while the thin dash-dotted line 𝑡.

effects of oil in an engine are undermined by recirculating regions in theflow (Concli&Mas-
trone, 2023; Gamble et al., 2003), we showed that adding particles can potentially eliminate
such recirculating regions, improving engine efficiency and lifetime. Also, our results show
that there is a specific regime in which the ballistic motion of the particles is favoured over
diffusive motion, with relevance for drug delivery and pollen dispersal (Hamaoui-Laguel
et al., 2015; Ito et al., 2023).



Chapter 6

Scaling and intermittency in turbulent
flows of elastoviscoplastic fluids

Chapter 6 combines my experience in analysing solid and liquid dispersed phases. We in-
vestigate elastoviscoplastic fluids at very high Reynolds numbers, as encountered in land-
slides and lava flows. The focus lies on the effect of plasticity on turbulence, revealing that
increased fluid plasticity leads to a reduction in the range of active scales in the energy spec-
trum. A new scaling of the energy emerges between the inertial and dissipative scales when
plastic effects dominate, accompanied by enhanced intermittency of the non-Newtonian
dissipation in space.

The article is appended in section E of this thesis and can be cited as follows:

Abdelgawad*, M. S., Cannon*, I., & Rosti, M. E. (2023). Scaling and intermittency in turbu-
lent flows of elastoviscoplastic fluids. Nature Physics, 1–5. https://doi.org/10.1038/
s41567-023-02018-2

In this chapter we show that as fluid plasticity increases, the solid volume fraction and
Reynolds number increase. For high plasticities, the canonical Kolmorgorov scaling is re-
placed by an 𝐸 ∼ 𝜅−2.3 wavenumber dependence of the energy spectrum. Non-Newtonian
stresses dissipate energy in the fluid, and the likelihood of large non-Newtonian dissipation
events increases as the fluid plasticity increases.
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Conclusion

Overall, this thesis presents a comprehensive exploration of the interaction between dis-
persed phases and turbulent flows, elucidating the underlying mechanisms and providing
valuable insights into the behaviour of turbulence itself. The findings relate to a wide range
of natural and industrial processes, including blood flow, ocean waves, pollen dispersal,
sandstorms and landslides.

I studied droplets, particles, and plasticity in turbulent fluids. All of the flows are de-
scribed by theNavier-Stokes equation (equation 1 from the introduction) with an additional
force which depends on the added phase. In all cases, a new length scale appears in the flow
when the additional phase interacts with turbulence in the fluid. The existence of this new
length scale violates Kolmogorov’s assumptions of self-similarity in the flow. Indeed, in the
case of elastoviscoplastic (EVP) fluids and dispersed fibres, Kolmogorov’s result that the ki-
netic energy spectrum scales as 𝐸 ∼ 𝜅−5∕3 no longer holds. We see in figure 6.1 that EVP
fluids produce a steeper scaling of the energy spectrum, and dispersed fibres produce a scal-
ing that is less steep. However, in some cases, such as with spherical particles and droplets,
the 𝐸 ∼ 𝜅−5∕3 scaling is still seen. This tells us about the strength of the interaction between
the fluid and the dispersed phase.

More quantitatively, coupling of the additional phase to the turbulent cascade is de-
scribed by themulti-phase energy fluxℱ𝑚𝑝, and how it competes with the advective energy
fluxΠ, defined in section 0.3. For spherical particlesℱ𝑚𝑝 is present only at the large length
scales in the flow, whereas for fibres, it completely replaces the advective energy flux at all
scales, returning energy to the fluid only at the smallest scales. For EVP fluids,ℱ𝑚𝑝 is only
seen at small scales, it provides the additional roles of dissipating energy as heat, and in-
ducing the new energy scaling 𝐸 ∼ 𝜅−2.3. In the case of droplets,ℱ𝑚𝑝 is present at all scales,
and the length scale at which ℱ𝑚𝑝 is maximum can be used to define the coalescence and
breakup regimes. These differences are imprinted on the energy spectra in figure 6.1.

All of the phases that we added modify the intermittency in the flow. In the case of
droplets, the flow inside the dispersed phase becomes more quiescent. On addition of
spheres and fibres, we see an increased intermittency, with concentrated regions of dis-
sipation in wakes that match the particle shapes. In the case of EVP fluids, the increased
intermittency of the flow is attributed to the presence of a non-Newtonian dissipation field.

A single-phase turbulent flow can be simply parametrized by a dimensionless param-
eter called the Reynolds number. On addition of the dispersed phases, we introduce new
dimensionless parameters into the flow, such as droplet volume fraction andWeber number
in the case of droplets, particle mass fraction and particle size in the case of particles, and
Bingham number in the case of EVP fluids. Exploring the new parameter space leads to a
rich and unpredictable range of behaviours, such as elongated droplets, turbulence reduc-
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Figure 6.1: Each of the additional phases simulated duringmy thesis research, frombottom
to top: droplets, spheres, fibres, and elastoviscoplastic fluids. The right-hand panels show
the turbulent kinetic energy spectrum in each case, with a grey line depicting Kolmogorov’s
𝐸 ∼ 𝜅−5∕3 scaling. See the publications for a description of the insets and additional mark-
ings on the plots.
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tion, mean-flow enhancement, anomalous particle diffusion, and increased intermittency
of the flow.

For better or worse, I have more questions than when I began my thesis research. Some
of my questions are as follows.

1. How do surfactants affect the rate of droplet coalescence and breakup in the presence
of a mean flow, such as a channel or a Kolmogorov flow?

2. What is the size distribution of droplets in non-classical turbulence where the energy
spectrum does not scale as 𝐸 ∼ 𝜅−5∕3?

3. Can we model droplet motion in a way that inherently conserves both the droplet
mass and the energy stored in the interface?

4. Does the Euler characteristic of a droplet interface correlate with the number of de-
fects in the velocity field at the interface?

5. How do ellipsoidal particles interact with the turbulent cascade?

6. Can particles cause an inverse cascade of kinetic energy to larger scales in the flow?

7. Does dissipation in a viscoelastic fluid remain finite, even as the elastic timescale
tends to zero?

A few of these questions I am already trying to answer using simulations. Some of the
questions, especially number 3, I don’t know how to address, and I am hoping the answer
is out there somewhere. Finally, I am glad to have spent the past four years studying this
beautiful subject.
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ABSTRACT

We study the effect of droplet coalescence on turbulent wall-bounded flows by means of direct numerical simulations. In particular, the
volume-of-fluid and front-tracking methods are used to simulate turbulent channel flows containing coalescing and non-coalescing droplets,
respectively. We find that coalescing droplets have a negligible effect on the drag, whereas the non-coalescing ones steadily increase drag as
the volume fraction of the dispersed phase increases: indeed, at 10% volume fraction, the non-coalescing droplets show a 30% increase in
drag, whereas the coalescing droplets show less than 4% increase. We explain this by looking at the wall-normal location of droplets in the
channel and show that non-coalescing droplets enter the viscous sublayer, generating an interfacial shear stress, which reduces the budget for
viscous stress in the channel. On the other hand, coalescing droplets migrate toward the bulk of the channel forming large aggregates, which
hardly affect the viscous shear stress while damping the Reynolds shear stress. We prove this by relating the mean viscous shear stress inte-
grated in the wall-normal direction to the centerline velocity.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0058632

I. INTRODUCTION

Two-fluid turbulent flows are found in many cases in industry
and nature (Balachandar and Eaton, 2010), such as human arteries,
industrial pipelines, and the injection of bubbles to enable drag reduc-
tion in ships (Ceccio, 2010). In all of these cases, surfactants are known
to have dramatic effects on the flow, often by preventing coalescence
(Takagi and Matsumoto, 2011). However, due to the multi-scale
nature of the problems, the mechanisms by which coalescence affects
drag are not fully known and understood yet. Thus, the objective of
this work is to explain how coalescence affects drag in wall-bounded
flows.

Many experimental studies of surfactants in multiphase flow
have been made. Frumkin and Levich (1947) were the first to describe
the mechanism by which the rising speed of bubbles in water is
reduced by surfactants (see Levich, 1962 for English version).
Descamps et al. (2008) measured the wall shear stress in pipe flows of
air bubbles in water and found that larger bubbles produced less drag.
Duineveld (1997) studied pairs of bubbles rising in a vertical channel;

he showed that coalescence is prevented when the surfactant concen-
tration is above a critical value. As well as preventing coalescence, sur-
factants produce other effects on bubbles, such as clustering (Takagi
et al., 2008), reduction in rising velocity (Frumkin and Levich, 1947;
Levich, 1962), and reduction in shear-induced lift forces (Takagi and
Matsumoto, 2011). Since all these effects can happen at the same time,
the effect of different coalescence rates is difficult to highlight; on the
other hand, simulations allow us to eliminate these effects and solely
focus on the impact of coalescence.

The majority of numerical multiphase flow studies have been
made using interface-tracking methods, such as the front-tracking
(FT) method (Unverdi and Tryggvason, 1992). Front-tracking simula-
tions of homogeneous-isotropic flows (Druzhinin and Elghobashi,
1998) are well suited for investigating the effect of droplet size on the
turbulent length scales, such as bubble arrays (Esmaeeli and
Tryggvason, 1998, 1999) or channel flows (Lu et al., 2006; Dabiri et al.,
2013; Tryggvason and Lu, 2015; Tryggvason et al., 2016; Lu et al.,
2017; Ahmed et al., 2020). An advantage of shear flow and
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channel-flow simulations is the ability to measure the effective viscos-
ity and flow rate, which can then be compared with experiments. In
the case of interface-tracking simulations of channel flows, Lu et al.
(2006) simulated laminar bubbly upflows and downflows, Dabiri et al.
(2013) showed that more deformable bubbles produced lower drag, Lu
et al. (2017) modeled bubbles with insoluble surfactant, and
Ahmed et al. (2020) with soluble surfactant showed their main
effects. However, none of the interface-tracking studies cited here
includes a model for the breakup or coalescence of droplets, with
only a few recent works tackling these phenomena (Lu and
Tryggvason, 2018, 2019).

Interface-capturing methods, such as the volume-of-fluid (VOF)
method (Noh and Woodward, 1976), naturally allow coalescence and
breakup of droplets (Elghobashi, 2019). Interface-capturing simula-
tions of homogenous isotropic turbulence (Dodd and Ferrante, 2016;
Perlekar et al., 2012; Komrakova et al., 2015; Bolotnov, 2013) and
shear flows (De Vita et al., 2019; Rosti et al., 2019) have shed some
light on the effect of coalescence on turbulence. Notably, Dodd and
Ferrante (2016) and Maxey (2017) showed that coalescence is a source
of turbulent kinetic energy, while breakup is a sink. Scarbolo et al.
(2015) investigated the effect of Weber number on breakup and coa-
lescence, Soligo et al. (2019) modeled surfactant laden drops in turbu-
lent channel flows, while Bolotnov et al. (2011) used the level-set
method to simulate bubbly channel flows. Roccon et al. (2017) investi-
gated the coalescence and breakup of large droplets in the channel
flow using the phase field method. Interface capturing methods are
known to over-predict coalescence rates, because numerical coales-
cence occurs whenever the film thickness is less than the numerical
grid spacing. In contrast, in real fluids film rupture occurs at molecular
length-scales, which are in the tens of nanometers, orders of magni-
tude smaller than the Kolmogorov length (Tryggvason et al., 2013;
Soligo et al., 2019). A number of methods have been used to reduce
the coalescence rate of interface capturing methods, such as adaptive
grid refinement (Innocenti et al., 2021), film drainage models
(Thomas et al., 2010), coupling to molecular dynamics simulations
(Chen et al., 2004), and artificial forces (De Vita et al., 2019).

In this paper, we use the front-tracking method to make simula-
tions of droplets, which cannot break up or coalesce, and we use the
volume-of-fluid method to make simulations of droplets that easily
break up and coalesce. As we are interested in the effects of coales-
cence, we do not use any methods to reduce the volume-of-fluid coa-
lescence rate. The two methods give idealized models of a mixture
saturated with surfactants (FT), and completely clean mixture
(VOF). Aside from coalescence and breakup, the physical proper-
ties (surface tension, viscosity, density, etc.) of the fluids in the two
methods are identical. To the authors’ knowledge, this is the first
direct comparison of coalescing and non-coalescing droplets in a
turbulent channel flow.

The manuscript is organized as follows. First, in Sec. II, we
describe the mathematical model governing the problem at hand and
the numerical techniques used to numerically solve them. In particu-
lar, we describe our chosen interface-tracking and interface-capturing
methods in more detail. Section III reports the values of the parame-
ters explored in our simulations. In Sec. IV, we present statistics of the
flow to elucidate how coalescence is affecting drag in the channel.
Finally, Sec. V gives conclusions and places them in the context of the
current literature.

II. GOVERNING EQUATIONS AND FLOW GEOMETRY

We consider turbulent channel flows, such as those shown in
Fig. 1. The numerical domain has size Lx � Ly � Lz ¼ 6L� 2L� 3L,
where L is the half-height of the channel. The flow is laden with an
ensemble of N droplets, initially spherical with radius R ¼ L=8 and
randomly arranged. We impose periodic boundary conditions in the
streamwise (x) and spanwise (z) directions, while the non-slip and
non-penetration boundary conditions are enforced at the two walls
y¼ 0 and y ¼ 2L. An imposed pressure gradient G, uniform through-
out the domain and constant in time, sustains the flow in the x direc-
tion. Balancing the forces on the fluid in the x direction, we obtain an
expression for the shear stress s at the wall, sw � hsjy¼0ixz ¼ GL,
showing that sw remains constant in time. Note that, here and in the
rest of the manuscript, we use angled brackets to represent an average
over the subscripted directions.

The Cartesian components of the fluid velocity field ðu1; u2; u3Þ
� ðu; v;wÞ are found by solving the incompressible multiphase
Navier–Stokes equations at each location x,

ðquiÞ;t þ ðquiujÞ;j ¼ ðlui;j þ luj;iÞ;j � p;i þGdi1 þ cjni dSðxÞ; (1)

ui;i ¼ 0; (2)

where i; j 2 f1; 2; 3g. Throughout this article, we use Einstein nota-
tion (Einstein, 1916) where repeated indices are summed over, and the
subscript comma denotes partial differentiation, i.e., F;i � @F

@xi
. The

scalar p is the pressure field used to enforce the incompressibility
constraint stated in Eq. (2). The density q and dynamic viscosity l are
the local weighted averages among the two phases, i.e., q ¼ /qd
þð1� /Þqc and l ¼ /ld þ ð1� /Þlc, where subscripts d and c

denote properties of the dispersed and continuum phases, respectively.
In the above, / represents the volume fraction of the dispersed phase
in each computational cell of the domain, with / ¼ 1 in the dispersed

FIG. 1. A snapshot of the simulation domain for a 10% suspension of droplets sim-
ulated with (a) the front-tracking method (run FT10a in Table I), and with (b) the vol-
ume-of-fluid method (run VOF10a). The orange and blue surfaces show the
interface between fluid phases. The droplets in (b) can breakup and coalesce, giv-
ing rise to a range of sizes, whereas those in (a) cannot, thus remaining
monodisperse.
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phase and / ¼ 0 in the continuum phase. The Kronecker delta dij is
used to ensure that the pressure gradient is imposed in the x direction.
The last term on the right hand side of Eq. (1) is the volumetric formu-
lation of the surface tension (Popinet, 2018); it is the product of the
surface tension coefficient c, the interface local curvature j, and the
unit normal to the interface ni. Note that we used dSðxÞ in Eq. (1) to
represent the surface delta function, which is zero everywhere except
for the surface S at the interface between the two phases. dSðxÞ has
dimensions of inverse length.

A. Discretization of the Navier–Stokes equations

For simulations of coalescing and non-coalescing droplets, we
use near-identical numerical methods to solve the momentum and
continuity equations [Eqs. (1) and (2)]. This ensures that any differ-
ence in our results is due to the droplets, not the integration scheme.

Equations (1) and (2) are numerically solved using a finite differ-
ence method on a fixed Eulerian grid with a staggered arrangement,
i.e., fluid velocities are located on the cell faces and all other variables
(pressure, density, viscosity, volume-of-fluid, etc.) are located at the
cell centers. All the spatial derivatives appearing in the equations are
discretized with second-order central differences, except for the con-
vective terms in the FT simulations where the QUICK scheme
(Leonard, 1979) is used instead. In the single-phase (SP) and VOF
simulations, time integration is performed with the Adams–Bashforth
method. In the FT simulations, time integration is performed with a
predictor–corrector method, in which the first-order solution (Euler
method) serves as a predictor, which is then corrected by the trapezoi-
dal rule (Tryggvason et al., 2001; Farooqi et al., 2019). Both schemes
are second order in time. Finally, in regard to the pressure solver, the
fractional step technique (Kim and Moin, 1985) presented by Dong
and Shen (2012) and Dodd and Ferrante (2014) is adopted, allowing
for the direct solution of a constant-coefficient Poisson equation using
an FFT-based solver, even in the presence of density differences
among the carrier and dispersed phases.

B. Volume-of-fluid method

We use the volume-of-fluid (VOF) method to simulate droplets
undergoing topological changes, i.e., coalescence and breakup. This is
an Eulerian–Eulerian technique in which the fluid phases are tracked
using the local volume fraction scalar field /. Since Noh and
Woodward (1976), a number of variants of the VOF method have
been developed (Youngs, 1982, 1984; Puckett et al., 1997; Rider and
Kothe, 1998; Xiao et al., 2005; Yokoi, 2007). Here, we use the multi-
dimensional tangent of hyperbola for the interface capturing
(MTHINC) method, developed by Ii et al. (2012). In this method, we
use a smooth hyperbolic tangent function to approximate the interface

H X;Y ;Zð Þ ¼ 1
2
þ 1
2
tanhðb P X;Y ;Zð Þ þ dð ÞÞ; (3)

where b is a parameter controlling the sharpness of the interface and d
is a normalization parameter to enforce

Ð Ð Ð
H dX dY dZ ¼ / in

each cell. P is a three-dimensional function in the cell, with the same
normal and curvature as the interface. Normals are evaluated using
the Youngs approach (Youngs, 1982), while the surface tension force
appearing in momentum Eq. (1) is computed using the continuum
surface force (CSF) approach (Brackbill et al., 1992). See Rosti et al.

(2019) for a detailed description of the volume-of-fluid code employed
in this work, and in several other works (Rosti et al., 2019; De Vita
et al., 2019). See Ii et al. (2012) and De Vita et al. (2020) for validations
against numerical benchmarks and experiments.

C. Front-tracking method

We use the front-tracking (FT) method to simulate droplets that
can deform, but cannot break up or coalesce. This is an
Eulerian–Lagrangian scheme in which the interface between the
phases is tracked by a “front,” composed of triangular elements. The
method was introduced by Unverdi and Tryggvason (1992), with
many refinements over the past 30 years (Tryggvason et al., 2001;
Tryggvason et al., 2011), including techniques to correct for errors in
volume conservation of the phases (Takeuchi and Tryggvason, 2020).
The surface tension force acting on the Lth element is a volume inte-
gral of the surface tension force from Eq. (1),

FL ¼
ð ð ð

V
cjn dALðxÞ dV ¼

ð ð
AL

cjn dA

¼
ð ð

AL

cðn�rÞ � n dA ¼
þ
sL

ct � n ds; (4)

where AL and sL are the area and perimeter of the Lth element and t is
the tangent to the perimeter. The force is then interpolated onto the
Eulerian grid by means of a conservative weighting function and used
to update the fluid velocity, which, in turn, is used to update the posi-
tion of the interface. As the interface evolves, the unstructured grid
can greatly deform, resulting in a non-uniform grid. Thus, periodical
restructuring of the Lagrangian grid is performed to maintain a nearly
uniform size, comparable to the Eulerian grid size. See Muradoglu and
Tryggvason (2014) for a detailed description and validation of the
front-tracking code employed in this work, which used in several other
works (Izbassarov and Muradoglu, 2015; Lu et al., 2017; Ahmed et al.,
2020). Extensive tests of the front tracking method are shown in
Tryggvason et al. (2001).

III. SETUP

Due to the different nature of the numerical schemes used to
describe the presence of the interface, the numerical domain is discre-
tized on two different sets of grids, both verified to provide grid-
independent results. The non-coalescing-droplet simulations use a
uniform grid in the homogenous directions and a non-uniform grid in
the wall-normal direction, with minimum spacing DYFT ¼ 3L� 10�3

at the channel wall. The minimum spacing in wall units is
DYþFT � usDYFT=� ¼ 0:5, where us and � are defined later in this sec-
tion. Overall, the grid size for the non-coalescing droplet simulations
(FT) is Nx � Ny � Nz ¼ 576� 240� 288, which is comparable to
that used in Dabiri and Tryggvason (2015), and gives around 24
Eulerian grid points per droplet diameter. Due to periodic restructur-
ing, we also have around 24 Lagrangian grid points per droplet diame-
ter. The single-phase and coalescing-droplet simulations (VOF) use a
cubic uniform grid with spacing DYþVOF ¼ 0:8, and total size
Nx � Ny � Nz ¼ 1296� 432� 648. This grid has 108 points per ini-
tial droplet diameter. We use more grid points in the VOF simulations
in order to accurately resolve breakup and coalescence events through-
out the domain.
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The values of the non-dimensional parameters used in the simu-
lations are shown in Table I. We consider a total volume fraction of
the dispersed phase in the range 0% � U � 10%, with the continuum
phase being denser and more viscous than the droplet phase, as the
density ratio is fixed equal to qc=qd ¼ 50 and the dynamic viscosity to
lc=ld ¼ 50 for all runs. Thus, the kinematic viscosity � � l=q has
the ratio �c=�d ¼ 1 for all runs. The problem approaches the density
and viscosity ratios of air in water (qwater=qair � 830; lwater=lair
� 55) while still being numerically tractable. The friction Reynolds
number Res � usL=� is set to 180 for all runs, where us �

ffiffiffiffiffiffiffiffiffiffiffiffi
sw=qc

p
is

the friction velocity. We define the capillary number as Ca0 � lcu0=c
(where u0 is the bulk velocity of the single-phase channel flow) for
which two values are considered, Ca0 ¼ 0:05 and 0.10. Based on these
capillary numbers, the friction Weber number Wes � qcu

2
sL=c

assumes that values are smaller or larger than unity. Finally, N is the
number of droplets at the start of the simulation, which are initially
identical spheres in a random arrangement.

The three rightmost columns in Table I report three output sta-
tistics: the bulk Reynolds number, Reb � ubL=�, where ub � huixyzt is
the bulk velocity; the bulk Weber number, Web � qcu

2
bL=c; and the

centerline velocity in plus units uþcen � hujy¼Lixzt=us. In Sec. IV, we
present these and other statistics of the channel flows and discuss their
implications.

IV. RESULTS

We consider turbulent channel flows, in which droplets can coa-
lesce, and compare the results with a configuration where coalescence
is not allowed. The flow is driven by a constant pressure drop; thus, an
increase in the flow rate or bulk velocity indicates drag reduction,
while its reduction is evidence for drag increase. We start by consider-
ing the profile of the streamwise velocity uþ in the channel, reported
in Fig. 2. The single-phase run SP0 shows the typical velocity profile of
a turbulent channel flow, with regions of high shear at the walls and a
flattened profile in the channel center. The runs with coalescing drop-
lets (VOF) mostly collapse onto the single-phase profile, showing only

a slight reduction in uþ toward the center, whereas the runs with non-
coalescing droplets (FT) show a significant reduction in uþ, which
becomes more pronounced as U increases. Also, in the coalescing
droplets runs, variation of the capillary number produces little change
in uþ, while in the non-coalescing runs, the change in uþ with Ca0 is
much more substantial.

This is quantified in the inset of Fig. 2, which shows the bulk
velocity in wall units uþb � huixyzt=us on the left axis, and the skin-
friction coefficient Cf � 2sw=qcu

2
b on the right axis. We see that, rela-

tive to the single-phase run, the coalescing droplets produce a

TABLE I. Details of each turbulent channel flow simulation performed in the present study. The first column gives a unique name to each run for ease of reference, and the sec-
ond describes the colors and markers that are used in the following figures. Input variables are shown in the subsequent columns in the middle, and output statistics are shown
in the three rightmost columns.

Run Marker Method Coalescence U (%) Ca0 Wes N Reb uþcen Web

SP0 N/A N/A 0 N/A N/A 0 2836 18.38 N/A
FT3a FT No 2.5 0.10 1.14 110 2813 18.24 279.0

FT3b FT No 2.5 0.05 0.57 110 2661 17.19 124.8
FT5a FT No 5 0.10 1.14 220 2827 18.50 281.8

FT5b FT No 5 0.05 0.57 220 2602 16.93 119.4
FT10a FT No 10 0.10 1.14 440 2815 18.46 279.4
FT10b FT No 10 0.05 0.57 440 2524 16.54 112.3
VOF3a VOF Yes 2.5 0.10 1.14 110 2803 18.21 277.1

VOF3b VOF Yes 2.5 0.05 0.57 110 2818 18.15 140.0
VOF5a VOF Yes 5 0.10 1.14 220 2764 18.26 269.4

VOF5b VOF Yes 5 0.05 0.57 220 2778 18.07 136.1
VOF10a VOF Yes 10 0.10 1.14 440 2689 18.31 254.9
VOF10b VOF Yes 10 0.05 0.57 440 2685 17.78 127.1

FIG. 2. Main: streamwise velocity profile in wall units uþ, against distance y from
the channel wall. The single-phase run (SP0) is shown as a black line. The profiles
are symmetric about the centerline (y¼ L), so we have plotted runs with non-
coalescing (FT), and coalescing (VOF) droplets on the left and right, respectively.
Each Ca0 ¼ 0:1 run is plotted using the marker listed in Table I, while the regions
between uþ for Ca0 ¼ 0:1 and Ca0 ¼ 0:05 are shaded in color. Inset: dependence
of bulk velocity uþb on the total volume fraction of droplets U. The skin-friction coef-
ficient Cf is shown on the right axis. Runs with coalescing droplets (VOF) are
shown in blue, while runs with non-coalescing droplets (FT) are shown in orange.
Both plots show that drag increases with U and reduces with Ca0 for all non-
coalescing droplet runs, while very limited changes are observable for the coalesc-
ing droplet runs.
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maximum increase in 4% in Cf, whereas the non-coalescing droplets
produce a maximum increase in 30%. In the case of non-coalescing
droplets, the drag is highly dependent on Ca0. The high Ca0 (i.e., more
deformable droplets) runs show little change in Cf, whereas the low
Ca0 (i.e., less deformable droplets) runs show a 30% increase in Cf.
Notably similar drag increases have been measured for rigid particles
in channel flows by Picano et al. (2015) and Rosti and Brandt (2020).
Clearly, the coalescence of droplets in the channel has a profound
effect on the flow. Throughout this section, we present additional sta-
tistics of the flows in order to shed light on the mechanisms of this
effect.

Figure 3 shows the velocity profile again, this time on a semi-log
scale in wall units uþ � u=us, and yþ � y=d� , where d� � �=us is
the viscous length scale (Pope, 2000). Away from the wall and the
channel center d� � y� L, i.e., the length scales affecting the flow
are separated, and the single phase flow profile is approximately paral-
lel to a line with constant slope (the dashed line). This is a manifesta-
tion of the log-law for turbulent channel flows (von K�arm�an, 1930),
which can be derived by assuming that the quantity yþ duþ

dyþ has no
dependence on yþ or y/L (complete similarity). The flow profiles with
coalescing droplets in Fig. 3 are in excellent agreement with the log-
law, suggesting that coalescing droplets do not break the scale separa-
tion. However, the flow profiles with non-coalescing droplets are not
in such good agreement, because these droplets have constant size R,
and y � R, so scale separation is prevented; hence, yþ duþ

dyþ shows a
dependence on y/R.

To further quantify the effect of coalescence on the flow, we fit a
log-law function to each flow profile in the region 30 < yþ < 100.
Our log law function has the form

uþ ¼ ln yþ

0:41
þ 5:89þ Duþ; (5)

where 5.89 is the uþ intercept for run SP0 and Duþ is the shift relative
to SP0. The inset of Fig. 3 shows how the vertical shift Duþ in the log-

law region of the channel is affected by the volume fraction U and
capillary number Ca0 for the different cases. Again, we see relatively
small shifts for simulations with coalescing droplets, and large shifts
for simulations with non-coalescing droplets. In particular, Duþ grows
in magnitude with U, especially for the case with Ca0 ¼ 0:05. This
reinforces our observations of the bulk streamwise velocity shown in
the inset of Fig. 2 that the less-deformable, non-coalescing droplets
produce a significant drag increase.

To understand what generates the differences observed for con-
figurations of coalescing and non-coalescing droplets, we focus our
attention on the total surface area of the droplets. The total interface
area is responsible for the overall surface tension stress and impacts
how droplets disperse across the channel. Figure 4 shows how the total
interface area at steady state hSixyzt depends on the total volume frac-
tion U of the dispersed phase. The figure shows that the non-
coalescing droplets of the FT runs exhibit only 1% increase in area,
due to deformation from their initial spherical shape. On the other
hand, the coalescing droplets of the VOF runs show more than 80%
reduction in interface area, as droplets coalesce and grow in size. In
particular, when the volume fraction is large, droplets have a higher
likelihood of colliding, and hence more coalescence, leading to a
smaller value of hSixyzt=S0.

For the coalescing droplets, the interface area hSixyzt=S0 shows no
dependence on capillary number, differently from what was observed
by Lu and Tryggvason (2018) and Rosti et al. (2019), who found that
that as Ca0 decreases, surface tension increases, the droplets become
more stable to perturbations, hence larger, thus leading to a smaller
interface area hSixyzt=S0. However, in this case, Ca0 � 1, and the coa-
lescing droplets are limited in size by the channel height, not surface
tension. Figure 1(b) supports this hypothesis, as the coalescing droplets
are comparable in size to the channel height.

The inset of Fig. 4 reports the time history of the interface area:
the cases with non-coalescing droplets (FT) rapidly converge to a sta-
tistically steady-state, whereas for the coalescing droplets, convergence
is reached long after, at about tþ � 8000. Interestingly, we observe

FIG. 3. Main: velocity profiles in wall units uþ and yþ. Each run is plotted using the
marker listed in Table I. For ease of comparison, we have moved the U ¼ 5% and
U ¼ 10% volume fraction profiles upward by uþ ¼ 5 and uþ ¼ 10, respectively.
In the region 30 < yþ < 100 shaded in gray, we fit a log-law equation
uþ ¼ ln yþ

0:41 þ 5:89þ Duþ (gray dashed line). Inset: the vertical shift Duþ for each
run. Runs with coalescing droplets (VOF) are shown in blue, while runs with non-
coalescing droplets (FT) are shown in orange. Runs with coalescing droplets show
only small shifts, whereas the runs with non-coalescing, less deformable droplets
show significant drag increase.

FIG. 4. Main: dependence of the total interface area of the droplets hSixyzt on the
total volume fraction U. We have normalized each area by the total initial surface
area S0 of the droplets. The VOF runs (blue) show a major reduction in surface
area due to coalescence, whereas the FT runs (orange) show a slight increase,
due to droplet deformation. Inset: time history of the total interface area. Each run
is plotted according to the colors and markers listed in Table I. Note how the
coalescing droplets (VOF) reach statistical equilibrium after tþ � 8000, while the
non-coalescing droplets (FT) very rapidly converge because of the absence of
topological changes.
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that the coalescing droplet runs with larger capillary number (VOFa)
converge to steady-state more rapidly than the smaller capillary num-
ber runs (VOFb), i.e., the larger Ca0 runs show a higher rate of coales-
cence, although the steady-state areas are roughly the same. This is in
contrast with simulations of droplet coalescence in simple shear flow
in laminar condition by Shardt et al. (2013), which show droplet coa-
lescence occurring only below a critical Ca0. However, as we shall dis-
cuss in the next paragraph, the Ca0 ¼ 0:1 droplets are more tightly
confined in the channel center than the Ca0 ¼ 0:05 droplets, thus
leading to a higher rate of coalescence.

Figure 5 shows how the volume fraction of the dispersed phase /
depends on the distance y from the channel walls. The coalescing
droplet profiles (VOF) clearly show a single peak at the channel center,
y¼ L: this peak arises as the droplets are driven toward the region of
lowest shear (y¼ L) by a “deformation-induced lift force” (Raffiee
et al., 2017; Hadikhani et al., 2018; Alghalibi et al., 2019). Confinement
in the channel center leads to coalescence and the formation of large
droplets, as seen in Fig. 1(b).

The FT droplets cannot coalesce, and the droplet–droplet interac-
tion produces a volume effect, which forces them to spread across the
channel: this manifests as an almost flat volume fraction in the region
0:5L < y < L in Fig. 5. Also, we see that the volume fraction tends to
zero for y < R ¼ L=8, as surface tension preserves the droplet radius
R, and prevents the droplets from fully conforming with the flat chan-
nel walls. For all but one of the non-coalescing droplet runs plotted in
Fig. 5, h/ixzt has a local maximum near the wall, in the region
0:15L < y < 0:3L. This phenomenon is due to the “shear-gradient lift
force,” which is known to act on particles in curved velocity profiles
(Ho and Leal, 1974; Martel and Toner, 2014; Hadikhani et al., 2018;
Alghalibi et al., 2019). Due to the curvature of the velocity profiles
shown in Fig. 2, the droplets experience different flow velocities on
each side, resulting in a lift force toward the wall. From Fig. 5, we also
notice that the more deformable droplets (FT3a, FT5a, and FT10a)
produce a maximum, which is further from the wall: this is mainly
due to (i) an increase in the deformation-induced lift force, and to (ii)
a greater elongation of the droplets in the shear direction, producing a
wider wall layer.

We are now ready to investigate how droplets affect the turbulent
flow, and we start by analyzing the second-order statistics of the flow,
which tell us how momentum is transferred across different parts of
the channel. Figure 6 shows four of the six unique components of the
Reynolds stress tensor in wall units hu0iu0ji

þ � hu0iu0jixzt=u2s , with the
single-phase (SP0) Reynolds stresses shown in black as reference. The
coalescing droplets simulations (VOF) show little change in stresses
relative to single-phase flow. Going from single phase to the non-
coalescing droplets, however, we see a reduction in the streamwise
velocity fluctuations hu02iþ, and an increase in the wall-normal hv02iþ
and spanwise hw02iþ velocity fluctuations. This shows that the isotropy
of the turbulent flow has increased due to the presence of non-
coalescing droplets. A similar effect has been observed for particle-
laden turbulent channel flows, see, e.g., Picano et al. (2015), in which
particles redistribute energy to a “more isotropic state,” inducing an
overall drag increase growing with the volume fraction of the dispersed
phase. We infer that non-coalescing droplets have a back-reaction on
the flow comparable to that of rigid particles, producing an increase in
isotropy, which correlates with an increase in drag. On the other hand,
coalescing droplets produce a weaker back reaction on the flow, which
shows little change in isotropy or drag.

When compared to the other components of the Reynolds
stresses, the shear stress hu0v0iþ shows only a small change due to the
presence of droplets. However, as we shall see next, this shear stress
opposes the pressure gradient in the channel, producing a profound
impact on the drag. The full shear stress balance for the multiphase
problem under investigation can be obtained as follows. We start by
taking average of the streamwise (i¼ 1) component of Eq. (1),

hðqu1Þ;t þ ðqu1ujÞ;jÞixzt ¼ hðq�u1;j þ q�uj;1Þ;jixzt � hp;1ixzt
þ hGd11ixzt þ hcjn1 dSðxÞixzt : (6)

In fully developed turbulent channel flows, most of these terms aver-
age to zero, and the equation simplifies to

hqu0v0ixzt;y ¼ �hqu;yixzt;y þ Gþ hcjn1 dSðxÞixzt ; (7)

where we have moved from the index notation ðu1; u2; u3Þ to (u, v, w)
for the sake of clarity. Hereafter, for brevity we omit the subscripts xzt

FIG. 5. Dependence of the mean volume fraction of droplets h/ixzt on the distance
y from the channel wall. Each run is plotted using the color and marker listed in
Table I. The profiles are symmetric about the centerline (y¼ L), so we have plotted
runs with non-coalescing (FT), and coalescing (VOF) droplets on the left and right,
respectively. Note that for the runs with coalescing droplets, h/ixzt peaks in the
channel center, whereas for the non-coalescing droplet runs, h/ixzt shows a peak
near the wall.

FIG. 6. Variation of Reynolds stresses with the distance yþ from the channel walls.
Stresses for run SP0 are shown by solid black lines. For runs with droplets, the dif-
ference between the Ca0 ¼ 0:1 and Ca0 ¼ 0:05 stress is shaded in color. The
Reynolds stress components exhibit higher isotropy in the non-coalescing droplet
runs (FT) than in the coalescing runs (VOF).
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on angled brackets. Integrating from the wall y¼ 0, to y ¼ n, we
obtain

�Gn ¼ hlu;yi � hqu0v0i
� �y¼n

y¼0þ
ðn

0
hcjn1 dSðxÞidy: (8)

The non-penetration boundary conditions at the walls enforce v0 ¼ 0
and with n1 ¼ 0 at the wall, the lower limit of the right hand side is
hlu;yijy¼0 ¼ sw ¼ GL by the definition of the wall shear stress. We
relabel y ¼ n and obtain

GðL� yÞ ¼ hlu;yi � hqu0v0i þ
ðy
0
hcjn1 dSðxÞidy: (9)

By dividing the equation by sw, we obtain the following dimensionless
expression for the shear stress budget in the channel,

1� y=L ¼ sþ� þ sþRe þ sþr ; (10)

where

sþ� � hlu;yi=sw; (11)

sþRe � �hqu0v0i=sw; and (12)

sþr �
ðy

0

hcjn1dSðxÞidy=sw (13)

are the viscous, Reynolds, and interfacial shear stresses, respectively.
Here, we calculate the viscous stress and Reynolds stress using
Eqs. (11) and (12), while the interfacial stress is calculated as the
remaining part of the total budget in Eq. (10). (Assuming that the
volume fraction / is uncorrelated with the flow, we can separate
the averages of the material properties and the flow velocity. To test
our assumption, we measured the correlations �hqu;yi � �hqihui; y
and hqu0v0i � hqihu0v0i for each of the FT runs and found that the
error in shear stress was always less than 3.5% of sw.)

Figure 7(a) shows the balance of shear stresses from the channel
wall (y¼ 0) to the center (y¼ L). In agreement with previous works
(Pope, 2000), the single-phase run (SP0) produces a viscous stress sþ� ,
which is the highest near the wall where the shear rate is maximum,
and a Reynolds stress sþRe dominates for y > 0:1L, where turbulent
fluctuations abound.

The coalescing droplet runs (VOF) in Fig. 7(a) have an interfacial
stress sþr , which peaks around y ¼ 0:5L. This stress occurs due to the
droplet interfaces, which resist the deforming effects of turbulent fluc-
tuations, at the detriment of the Reynolds stress. Note that sþr is larger
for the smaller capillary number case (VOF10b compared to
VOF10a), because the surface tension coefficient c is larger, so surface
tension forces are larger.

The non-coalescing droplet runs (FT) in Fig. 7(a), on the other
hand, have very little interfacial stress sþr above y> 0.5: instead, the
peak of sþr occurs at roughly the same wall-normal location y as the
peak in the volume fraction h/ixzt seen in Fig. 5. In both Figs. 5 and 7,
the peak moves away from the wall when capillary number increases.
A similar trend is also observed for the location of the maximum tur-
bulent kinetic energy production (not shown here). The correlation of
y locations for these three statistics suggests that the “wall layering”
and “shear-gradient lift forces” discussed above, which produce a peak
in h/ixzt near the channel wall, are also responsible for sþr generation

and kinetic energy generation. The enhanced sþr close to the wall is
compensated in the budget by a reduction in sþ� for the cases of non-
coalescing droplets.

The averaged stresses are shown for all runs in Fig. 7(b). The
mean stresses are calculated by integrating sþ� ; sþRe, and sþr in the wall-
normal direction y from 0 to L, for example,

hsþ� iy �
1
L

ðL
0
sþ� dy: (14)

The averaged form of Eq. (10) is 0:5 ¼ hsþ� iy þ hsþReiy þ hsþr iy , show-
ing the averaged stresses are also in balance with the wall stress budget.
We observe that for coalescing droplets, the dispersed fluid produces
an interfacial stress hsþ� iy , which is entirely compensated by a reduc-
tion in Reynolds stress hsþReiy , with very little change in the viscous
stress hsþ� iy . However, in the case of non-coalescing droplets the
increase in interfacial stress hsþr iy is compensated by a reduction in
both the Reynolds stress hsþReiy , and the viscous stress hsþ� iy .

For the single-phase case, the dynamic viscosity l is constant
throughout the channel, so the mean viscous stress is proportional to
the centerline velocity,

hsþ� iy ¼
1
L

ðL
0

l
sw

dhuixzt
dy

dy ¼ l
Lsw

huixzt
� �y¼L

y¼0¼
l
Lsw

ucen; (15)

FIG. 7. (a) The balance of shear stresses as a function of the distance y from the
channel wall. The dashed line is the total stress budget. Stresses for run SP0 are
shown by solid black lines. The differences between VOF10a and VOF10b stresses
are shown in shades of blue, whereas the differences between FT10a and FT10b
stresses are shown in shades of orange. We see that sþr peaks near the wall for
the runs with non-coalescing droplets (FT), but is spread across the channel for the
coalescing runs (VOF). The different stress distributions across the channel ulti-
mately lead to different values of drag for coalescing and non-coalescing droplets.
(b) Mean shear stresses for all runs. The stacked bars are hsþ� iy ; hsþReiy , and
hsþr iy from bottom to top.
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and hence, the variation of hsþ� iy can be used to quantify drag in the
channel, with a larger/smaller hsþ� iy corresponding to drag reduction/
increase. For the multiphase problem, dynamic viscosity is different
for the carrier phase and dispersed phases, and we should integrate
dhluixzt=dy to the centerline, so the relationship between centerline
velocity and hsþ� iy is not exactly linear. However, due to the low vol-
ume fraction and low changes in viscosity, we found that considering
the variation of the material properties (q, l) and variation of the fluid
velocity as independent produces only small changes in the averaged
statistics. Hence, we can still relate the viscous stress to the centerline
velocity and, thus, to the drag changes in the multiphase simulations.
Indeed, the three runs with the smallest bulk velocity uþb in the inset of
Fig. 2 are FT10b, FT5b, and FT3b, and the three runs with the smallest
mean viscous stress hsþ� iy are also FT10b, FT5b, and FT3b [Fig. 7(b)].
Based on the above discussion, we can now relate the increased drag
for non-coalescing droplets to the wall normal location of the droplets:
the non-coalescing droplets in runs FT10b, FT5b, and FT3b encroach
into the viscous wall region and oppose the shearing flow, reducing
the viscous shear stress and thereby increasing drag.

V. CONCLUSIONS

We perform direct numerical simulations of coalescing and non-
coalescing droplets in turbulent channel flows to single out the effect
of coalescence. Coalescing droplets are simulated using the volume-of-
fluid method, and non-coalescing droplets with the front-tracking
method. We find that the droplets that are non-coalescing and less
deformable produce an increase in drag, whereas the other droplets do
not. We explained this by looking at the wall-normal location of drop-
lets in the channel: the coalescing droplets experience a deformation-
induced lift force, which drives them away from the shearing flow near
the wall, out of the viscous sublayer; this is possible due to the coales-
cence, which allows droplets to accumulate at the centerline. On the
other hand, the non-coalescing droplets do not; indeed, non-
coalescing droplets roughly behave as particles, uniformly distributing
across the channel, forming a wall layer, and increasing the isotropy of
the flow. In this case, droplets remain in the viscous sublayer, generat-
ing an interfacial shear stress, which reduces the budget for viscous
shear stress in the channel. From Eq. (15), we relate a reduction in the
viscous shear stress to a reduction in the centerline velocity and ulti-
mately to an increase in drag.

Our results agree well with the experiments carried out by
Descamps et al. (2008), who found that larger bubbles produce less
drag; in our study, large droplets are obtained through coalescence
and, indeed, produce less drag. Our proposed mechanism for drag
increase is also similar to that proposed by Dabiri et al. (2013), who
showed that less deformable bubbles enter the viscous sublayer, lead-
ing to an increase in viscous dissipation and an increase in drag. We
offer two main developments. First, we extend the study to coalescing
droplets. Second, we believe that viscous shear stress is a better predic-
tor of drag than viscous dissipation, as the proportionality between the
mean viscous shear stress and centerline velocity [Eq. (15)] is exact for
single-phase channel flows and only slightly affected by the change in
material properties. Although we made simulations at a density ratio
of qc=qd ¼ 50, which is greater than that of oil in water (qwater=qoil
� 1:5), but less than that of air in water (qwater=qair � 830), compari-
son with the experimental literature suggests that our current qualita-
tive conclusions still hold for these flows.

Our findings can help to better understand and control multi-
phase flows in a variety of applications, such as arteries, pipelines, or
ships. Through numerical experiments, we have been able to fully
characterize the effect of coalescence alone, without the interference of
other mechanisms, which often arise in experiments with surfactants.
How these results are affected by surfactant concentrations will be the
topic of future research.
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Appendix B

Chapter 2 appendix

B.1 Euler characteristic of a droplet interface
Here we use concepts from algebraic topology to derive equation 2.11, which relates the
Euler characteristic of a droplet interface to the number of voids and handles it contains.
The Euler characteristic and genus are well-defined for a single surface; however, as seen
in the image in figure 2.8b, our droplets can have many distinct surfaces. For a general
droplet with a number of voids 𝑣, it has an outer surface with Euler characteristic 𝜒0, and
the voids create 𝑣 distinct inner surfaces with Euler characteristics 𝜒1, 𝜒2,…𝜒𝑣. We define
the Euler characteristic of the droplet’s interface as the sum of the Euler characteristics of
all the surfaces,

𝜒 =
𝑣∑

𝑖=0
𝜒𝑖. (B.1)

Both the inner and outer surfaces of the droplet can have handles. For any distinct ori-
entable surface, the number of handles ℎ𝑖 is its genus, and the genus is related to the Euler
characteristic by 𝜒𝑖 = 2 − 2ℎ𝑖 (Massey, 1997, p.30). Hence equation B.1 can be written and
rearranged to

𝜒 =
𝑣∑

𝑖=0
(2 − 2ℎ𝑖) = 2(1 + 𝑣) −

𝑣∑

𝑖=0
2ℎ𝑖 (B.2)

The number of handles on the drop is the sum of the handles on all the droplet’s surfaces,
i.e., ℎ =

∑𝑣
𝑖=0 ℎ𝑖, so we can write,

𝜒 = 2 + 2𝑣 − 2ℎ. (B.3)

This can be easily rearranged to obtain equation 2.11.

B.2 Validation of the surfactant model
We report in this appendix the validation tests of the proposed numerical method. Two
benchmark tests are presented and compared against existing theories, experiments and
simulations.
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Figure B.1: (𝑎) Adsorption of surfactant onto an interface at 𝑥 = 𝐿∕2. The right-hand
axis shows the smoothed colour function �̂� (in red), which has a smoothing width 3∆. The
left-hand axis shows the surfactant concentration (in blue) at four time-instants during the
simulation. The bulk surfactant concentration is𝜓𝑏 = 0.05 and the energy cost of surfactant
in the bulk is 𝛾 = 11.1𝛼. (𝑏) The equilibrium interfacial surfactant concentration 𝜓0 for a
range of 𝜓𝑏 and 𝛾. Lines show Langmuir isotherms, given by equation B.4, and markers
show the results of our simulations. The value of 𝛾 is represented by shading from light
blue to dark blue.

We verify at first the adsorption dynamics of the surfactant at the interface: we start from
a uniform surfactant concentration, equal to the surfactant concentration in the bulk 𝜓𝑏,
and let the surfactant adsorb onto the interface (located at 𝑥 = 𝐿∕2, in figure B.1𝑎). Initially,
the system is out of equilibrium and surfactant diffuses towards the interface to restore
the equilibrium; at equilibrium, the chemical potential is equal everywhere. We can thus
equate the chemical potential in the bulk (�̂� = ±1, surfactant concentration 𝜓𝑏) and at the
interface (�̂� = 0, surfactant concentration 𝜓0) to obtain the so-called Langmuir isotherms
(Engblom et al., 2013). For given values of the parameters of the chemical potential, 𝛼, 𝛽
and 𝛾, the Langmuir isotherm relates the surfactant concentration at the interface𝜓0 to that
in the bulk 𝜓𝑏, in equilibrium conditions

𝜓0 =
𝜓𝑏

𝜓𝑏 + (1 − 𝜓𝑏)𝑒
− 𝛽+𝛾

2𝛼

. (B.4)

Figure B.1𝑎 shows the setup we use to test our code against the Langmuir isotherm bench-
mark: a flat interface is located at 𝑥 = 𝐿∕2, and surfactant is initially uniformly distributed
with a concentration equal to 𝜓𝑏. The flow is initially at rest and, due to the absence of
any forcing, stays at rest throughout the entire simulation; similarly, the interface does not
move from its initial position. At the boundaries 𝑥 = 0 and 𝑥 = 𝐿, we impose a far-field
value of surfactant, 𝜓 = 𝜓𝑏, thus allowing surfactant to enter the system. In the 𝑦 and
𝑧 directions, we impose periodic boundary conditions. This benchmark is, in principle,
a one-dimensional test (𝑥 direction). However, we perform three-dimensional numeri-
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Figure B.2: Deformation of droplets in shear flows. (𝑎) The simulated 2D domain (par-
tially shown here) with velocity boundary conditions 𝑢 = 𝑈 at 𝑦 = 2ℎ, 𝑢 = −𝑈 at 𝑦 = 0,
and periodic boundary conditions at 𝑥 = 0 and 𝑥 = 6ℎ. We show the location of the droplet
interface for a clean and surfactant-laden case. (𝑏)Dependence of the steady-state deforma-
tion parameter 𝐷 on the effective capillary number 𝐶𝑎𝑒. Our simulation results are shown
with solid markers, and values from the literature are shown with empty markers. Clean
droplets are marked in red, and surfactant-laden droplets aremarked in blue. The solid line
is the analytical relation from (Taylor, 1934) with the confinement correction proposed by
Shapira and Haber (1990).

cal simulations in order to use the very same solver described in section 2.2; all variables
are uniform in the 𝑦 and 𝑧 directions. We resolve the flow and volume of fluid equations
on a 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 100 × 4 × 4 computational grid, and use a more refined grid for
the surfactant transport equations, 500 × 4 × 4. The smoothing width of the interface is
3∆. We use 𝛽∕𝛼 = 0.741 and explore a range of values for the energy cost in the bulk
𝛾∕𝛼 = {0.0741, 0.741, 3.70, 7.41, 11.1, 14.8}. Figure B.1𝑏 shows the simulated interfacial sur-
factant concentrations 𝜓0 once they had reached equilibrium, for various values of 𝜓𝑏. The
values obtained from our numerical simulations fall on top of the corresponding Langmuir
isotherms, proving that the implemented numerical method is able to correctly capture the
surfactant dynamics.

The second benchmark is aimed at verifying the surfactant transport on a moving in-
terface and the computation of surface tension forces by measuring the deformation of a
droplet in shear flow. Taylor (1934) quantified the deformation of a droplet in a shear flow
using the deformation parameter

𝐷 ≡ 𝐿 − 𝐵
𝐿 + 𝐵, (B.5)

where 𝐿 and 𝐵 are the largest and smallest principal diameters of the droplet, respectively.
Figure B.2a shows the simulation setup that we use to reproduce Taylor’s experiment. The
effective capillary number 𝐶𝑎𝑒 ≡ 𝑎𝑈𝜇∕ℎ⟨𝜎⟩ describes the ratio of viscous forces to surface
tension forces in the system, where ℎ is the domain half-height, 𝑎 = 0.4ℎ is the initial ra-
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dius of the droplet, ±𝑈 is the fluid velocity of the top and bottom walls respectively, 𝜇 is
the dynamic viscosity, which is the same for the bulk and droplet phases, and ⟨𝜎⟩ is the (av-
erage) surface tension at the droplet interface. As was previously demonstrated by Soligo
et al. (2020a), there are negligible differences between the two-dimensional (2D) and three-
dimensional (3D) cases in the limit of small Reynolds and Capillary numbers, as those con-
sidered here. Hence, to reduce the computational cost of the benchmark simulations, we
chose to perform two-dimensional numerical simulations. We select a computational grid
with 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 600 × 200 × 4 points for the flow and volume of fluid variables, and
we use a twice more refined grid to discretize the surfactant transport equation. As we use
the same three-dimensional solver introduced in section 2.2, we have to use 4 grid points
in the 𝑧 direction; however all variables are uniform in the 𝑧 direction.

We run a number of simulationswith various values of𝐶𝑎𝑒 and three values of the initial
surfactant concentration in the bulk phase 𝜓𝑏 ∈ {0, 0.01, 0.02}, where 𝜓𝑏 = 0 is the clean
droplet case. In all cases, the Reynolds number of the flow 𝑅𝑒 ≡ 𝜌𝑈ℎ∕𝜇 is 𝑅𝑒 = 0.1.
The droplets are initially circular and deform in the shearing flow. Figure B.2𝑏 shows our
measured values of the deformation parameter 𝐷 once they had reached a steady state.
We compare our results (solid markers) with 2D droplets simulated using the boundary
integral method (Rallison, 1981), experiments of 3D droplets (Guido & Simeone, 1998), 3D
droplets simulated using the volume-of-fluidmethod (Li et al., 2000), 3D droplets simulated
using the boundary integral method with insoluble surfactants (Bazhlekov et al., 2006), 3D
droplets simulated using dissipative particle dynamics (Pan et al., 2014), and surfactant-
laden droplets simulated using a phase-field method (Soligo et al., 2020a). Our results are
in good agreement with all of the above and also closely follow the analytical result from
Taylor (1934), with the confinement correction proposed by Shapira and Haber (1990), i.e.,
for droplets and carrier fluid having the same viscosity, the Taylor deformation parameter
is equal to

𝐷 = 35
32𝐶𝑎𝑒 [1 + 𝐶𝑆𝐻

3.5
2 ( 𝑎2ℎ)

3

] , (B.6)

where 𝐶𝑆𝐻 = 5.6996 is a numerical coefficient accounting for the confinement due to the
top and bottom boundaries (Shapira & Haber, 1990).

In this appendix, we have shown that the proposed numerical method can accurately
simulate the transport of surfactant over moving and deforming interfaces, and the action
of surfactant on surface tension.
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We investigate the modulation of turbulence caused by the presence of finite-size dispersed
particles. Bluff (isotropic) spheres versus slender (anisotropic) fibres are considered to
understand the influence of the shape of the objects on altering the carrier flow. While
at a fixed mass fraction – but different Stokes number – both objects provide a similar
bulk effect characterized by a large-scale energy depletion, a scale-by-scale analysis of the
energy transfer reveals that the alteration of the whole spectrum is intrinsically different.
For bluff objects, the classical energy cascade shrinks in its extension but is unaltered in
the energy content and its typical features, while for slender ones we find an alternative
energy flux which is essentially mediated by the fluid–solid coupling.

Key words: suspensions, particle/fluid flow, turbulence simulation

1. Introduction

Particle-laden turbulent flows are multiphase systems where a carrier fluid interacts with
a dispersed phase made up by a number of solid objects, e.g. spheres or fibres. Such flows
concern an important class of problems with numerous applications related to both natural
and industrial processes (De Lillo et al. 2014; Breard et al. 2016; Sengupta, Carrara &
Stocker 2017; Falkinhoff et al. 2020; Rosti et al. 2020). In the analysis and modelling of
such problems, a crucial distinction can be made regarding the mutual coupling between
the carrier flow and the dispersed objects. When the suspension is dilute enough, it can be
safely assumed that the fluid flow is not substantially altered by the presence of the objects
(Balachandar & Eaton 2010; Maxey 2017; Brandt & Coletti 2021).

† Email address for correspondence: marco.rosti@oist.jp

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited. 950 R2-1
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S. Olivieri, I. Cannon and M.E. Rosti

However, we often deal with non-dilute conditions where the mutual coupling between
the two phases is relevant and gives rise to a macroscopic alteration of the turbulent
carrier flow. The resulting turbulence modulation effects have been the subject of previous
studies over different classes of multiphase turbulent flows, i.e. considering isotropic
(Lucci, Ferrante & Elghobashi 2010; Gualtieri et al. 2013; Uhlmann & Chouippe 2017;
Capecelatro, Desjardins & Fox 2018; Ardekani, Rosti & Brandt 2019; Yousefi, Ardekani
& Brandt 2020) or anisotropic (Andersson, Zhao & Barri 2012; Olivieri et al. 2020b,a;
Olivieri, Mazzino & Rosti 2021, 2022; Wang et al. 2022) solid particles, as well as droplets
or bubbles (Dodd & Ferrante 2016; Freund & Ferrante 2019; Rosti et al. 2019; Cannon
et al. 2021), typically focusing on the alteration of both the bulk flow properties as well as
the scale-by-scale energy distribution. In particular, Lucci et al. (2010) and Yousefi et al.
(2020) showed that Taylor-length-scale-sized spheres reduce turbulent kinetic energy at
the large scales and enhance its energy content at the small scales.

Nevertheless, the accurate characterization of the underlying physics in these
complex systems still requires significant efforts from the theoretical, computational and
experimental viewpoints, with relevant questions still not fully addressed, such as the
following. (i) What are the mechanisms controlling the scale-by-scale energy distribution
in the presence of immersed objects with finite size (i.e. larger than the dissipative length
scale)? (ii) How do the geometrical properties of the dispersed particles (i.e. their size
and isotropy) affect the back-reaction on the carrier flow and the consequent turbulence
modulation?

In this work, we comprehensively investigate the multiscale nature of the turbulence
modulation due to finite-size rigid particles, focusing on the role of geometrical properties
and comparing, in particular, the back-reaction caused by isotropic bluff objects (i.e.
spheres) versus anisotropic slender ones (i.e. fibres). Exploiting massive direct numerical
simulations (DNS), it is observed, at first, that the macroscopic effect in the turbulence
modulation essentially consists of a large-scale energy depletion for both configurations.
However, we show that this bulk effect arises from qualitatively different mechanisms
depending on the geometrical features of the dispersed objects, which becomes evident
from a scale-by-scale energy-transfer balance. For isotropic objects (spheres), the
back-reaction effectively acts at a well-defined length scale (i.e. the sphere diameter) and
over a limited range of smaller scales, without appreciably modifying the inertial range
that is obtained in the single phase (i.e. without particles) configuration. For anisotropic
objects (fibres), instead, the fluid–solid coupling is responsible for a global modification
of the energy distribution over all the scales of motion, which is characterized by the
emergence of an alternative energy flux along with a relative enhancement of small-scale
fluctuations.

The rest of the paper is structured as follows: § 2 describes the modelling and
computational methodology, § 3 shows the results, and § 4 contains the conclusions.

2. Methods

To investigate the problem, we devote our attention to particles of finite size (i.e. diameter
or length) that lies well within the inertial subrange of the turbulent flow. A visual example
of two representative configurations is given in figure 1. Specifically, we have performed
DNS where the fluid and solid dynamics are mutually coupled using the immersed
boundary method (Hori, Rosti & Takagi 2022; Olivieri et al. 2022). An incompressible,
homogeneous and isotropic turbulent (HIT) flow is generated within a tri-periodic cubic
domain of size L = 2π using Arnold–Beltrami–Childress (ABC) cellular-flow forcing
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Effect of particle anisotropy on modulation of turbulence

(a) (b)

Figure 1. Two-dimensional views of the vorticity magnitude of homogeneous isotropic turbulence in the
presence of dispersed, finite-size (a) spheres and (b) fibres, from two representative cases of the present DNS
study.
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Figure 2. Energy spectra of the modulated turbulent flow for (a) spheres and (b) fibres, for different mass
fractions M (increasing with the colour brightness from dark to light), along with the reference single-phase
configuration (i.e. M = 0, black curve) and the expected Kolmogorov scaling in the inertial subrange (grey
dashed line). The insets report the microscale Reynolds number Reλ as a function of the mass fraction; error
bars show the standard deviation in Reλ from the time-averaged value. As an additional check on the accuracy
of the computations, diamonds show results calculated using an Eulerian grid with halved resolution (5123

cells), which produces little change in Reλ and the inertial range of the spectra.

(Podvigina & Pouquet 1994), achieving in the single-phase case a microscale Reynolds
number Reλ = u′λ/ν ≈ 435, where u′ is the root mean square of the turbulent fluctuations,
λ is the Taylor microscale and ν is the kinematic viscosity. Such a high-Reynolds-number
configuration is computationally explored for the first time in the framework of multiphase
flows in order to achieve proper scale separation. As shown in figure 2, the energy spectrum
in the single-phase configuration (black curve) shows the classical Kolmogorov scaling
∼κ−5/3 (dashed line) at low-to-intermediate wavenumbers over more than one decade.

Once the single-phase case has reached the fully developed regime, N rigid spheres
(characterized by diameter D and volumetric density ρs) or fibres (characterized by length
c and linear density difference �ρ̃s) are added to the carrier flow at randomly initialized
positions and orientations. The multiphase cases were therefore evolved until reaching a
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statistically stationary state. An overview of the main configurations considered in our
study is shown in table 1.

The dynamics of the bluff, spherical objects is governed by the well-known
Newton–Euler equations (Hori et al. 2022), whereas the slender, anisotropic ones are
modelled in the general framework of the Euler–Bernoulli equation for inextensible
filaments, choosing a sufficiently large bending stiffness such that the deformation is
always negligible (i.e. within 1 %) (Cavaiola, Olivieri & Mazzino 2020; Brizzolara et al.
2021). Hence, the mass fraction M of the suspension is defined as the ratio between the
mass of the dispersed solid phase and the total mass (i.e. the sum of the fluid and solid
masses contained in the domain). Note that for the chosen parameters and when matching
M, bluff and slender particles have remarkably different Stokes numbers, here computed
using expressions for small particles, i.e. of length below the dissipative scale, for the
sake of a comparative estimate (Lucci, Ferrante & Elghobashi 2011; Bounoua, Bouchet
& Verhille 2018). Moreover, we indicate M = 1 as the configurations where the dispersed
objects are constrained to a fixed random position; such a setting serves as the limiting
case where the dispersed phase has infinitely large inertia, as well as a representation of
flows in porous media. Finally, we note that sphere and fibre cases with the same mass
fractions have different volume fractions but approximately the same total wetted area.

To solve the governing equations numerically, we employ the in-house solver
Fujin (https://groups.oist.jp/cffu/code). The code is based on the (second-order)
central finite-difference method for the spatial discretization and the (second-order)
Adams–Bashforth scheme for the temporal discretization. The incompressible Navier–
Stokes equations are solved using the fractional step method on a staggered grid. The
Poisson equation enforcing the incompressibility constraint is solved using a fast and
efficient approach based on the fast Fourier transform (FFT). The solver is parallelized
using the MPI protocol and the 2decomp library for domain decomposition (http://www.
2decomp.org). In this work, the fluid domain is discretized onto a uniform Eulerian grid
using 10243 cells, ensuring that, for the chosen set of domain size and fluid properties,
the ratio between the Kolmogorov dissipative length scale and the grid spacing is η/�x =
O(1). The carrier- and dispersed-phase dynamics are coupled by the no-slip condition
Ẋ = U = u(X , t), where X is the position of a generic material point on the solid surface
and u = u(x, t) is the fluid velocity field. In the present work, we employ two types of
immersed boundary (IB) method where the mutual interaction between the two phases is
achieved by means of a singular force distribution. Specifically, for bluff spherical particles
we use the Eulerian IB method recently proposed by Hori et al. (2022), whereas for slender
fibres we use the method originally proposed by Huang, Shin & Sung (2007) and recently
employed for fibre-laden turbulence by Olivieri et al. (2020a,b, 2021, 2022). Overall, the
code has been extensively validated and tested in a variety of problems; see e.g. Rosti &
Brandt (2020), Rosti et al. (2020, 2021) and Olivieri et al. (2022).

3. Results

3.1. Main features of turbulence modulation
The presence of the dispersed phase clearly causes a complex modification of the key
features of the carrier flow, as may be observed in the energy spectra for suspensions
of spheres (figure 2a) or fibres (figure 2b) at different mass fractions M. At first glance,
and focusing on the smallest wavenumbers (i.e. largest scales), one can note a similar
phenomenology between the two kinds of particles, with an overall tendency to decrease
the turbulent kinetic energy while increasing M. Indeed, for both bluff and slender
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0 0.2 0.4 0.6 0.8 1.0

M

1.0

1.5

β

β = 5/3

Figure 3. Dependence of the exponent β in the energy spectrum scaling E ∼ κ−β on particle mass fraction M.
Flows with spheres are marked in blue, flows with fibres in orange, and the single-phase flow in black. The blue
and orange shaded regions show the approximate error in β, estimated by moving the time averaging window.
The Kolmogorov scaling is marked by a grey dotted line.

particles, the energy-containing scales are depleted by the hydrodynamic drag exerted
by the particles. A direct indication on how the bulk properties of the flow are altered
is provided in the insets of figure 2, showing a very similar variation between spheres
and fibres in terms of Reλ with the mass fraction, notwithstanding the different Stokes
numbers of the suspended objects, in agreement with previous findings (Hwang & Eaton
2006; Olivieri et al. 2021, 2022).

However, from figure 2 some peculiar differences between the two kinds of suspensions
can also be noticed when extending the observation to the full range of active scales.
For bluff particles, the alteration of the energy spectrum with M remains almost entirely
limited to the low-wavenumber region (i.e. κ � 5), with only a minimal increase at the
largest wavenumbers (i.e. κ � 300) associated with the high-shear regions in the boundary
layers around the spheres. Instead, for fibres, the modulation extends up to the highest
wavenumber (i.e. κmax = 512). At sufficiently large M, a departure from the Kolmogorov
scaling indeed appears throughout the full inertial subrange. We anticipate that here the
energy transfer is mainly due to the fluid–solid coupling, and not to the convective term as
in the single-phase or bluff particle cases, leading to a different form of energy flux.

A quantitative evaluation of the resulting power law E(κ) ∼ κ−β in the inertial subrange
of both single-phase and multiphase flows is given in figure 3, showing the scaling
exponent β as a function of the mass fraction for both spheres and fibres. The single-phase
flow (M = 0) and the flows with spheres can be seen to follow the Kolmogorov scaling
(β = 5/3), whereas the flows with fibres show a significant reduction in β as M increases.
An heuristic explanation for the latter trend is that fibres act as a barrier to the flow between
any two points with separation greater than the fibre diameter d, which influences the
scaling of the second-order velocity structure function 〈(δu)2〉 ∼ rγ for two points at a
distance r > d, with γ = β − 1. In the single-phase case γ = 2/3, whereas the presence
of fibres tends to decorrelate the flow, thus reducing the value of γ or, equivalently, β.

3.2. Scale-by-scale energy transfer
A clear distinction in the mechanism of energy distribution between the two geometrical
configurations can be highlighted. To gain a more detailed insight, we look at the
scale-by-scale energy transfer balance

P(κ) + Π(κ) + Πfs(κ) + D(κ) = ε, (3.1)
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Figure 4. Scale-by-scale energy transfer balance for two representative configurations at M = 0.9 of
(a) spheres and (b) fibres, showing the contributions of fluid–solid coupling Πfs (solid line), nonlinear
convection Π (dashed line) and viscous dissipation D (dash-dotted line), each normalized with the average
dissipation rate ε. Furthermore, the total energy flux, Πfs + Π , is also reported (dotted line).

where P is the turbulence production associated with the external forcing (acting only at
the largest scale κ = 1), Π and Πfs are the energy fluxes associated with the nonlinear
convective term and the fluid–solid coupling term, respectively, and D is the viscous
dissipation (Olivieri et al. 2021, 2022).

In figure 4, we show the energy fluxes and dissipation in two representative cases with
strong back-reaction (M = 0.9) for (a) bluff objects and (b) slender particles. Focusing on
the two different energy fluxes (i.e. Π and Πfs), we note at first that the sum of these two
contributions (thin dotted line) appears in both cases as a horizontal plateau for relatively
low wavenumbers, as expected from (3.1) and similar to the single-phase case. However,
qualitatively different scenarios can be identified for bluff versus slender objects when
analysing the two distinct contributions separately. On the other hand, it can be noticed
that in both cases, and similarly to the classical, single-phase case, for sufficiently large
wavenumbers the energy fluxes tend to zero, and the viscous dissipation D recovers the
totality of the balance.

For bluff objects (figure 4a), we first have a dominance of the fluid–solid coupling
contribution Πfs within a limited low-wavenumber range, and only subsequently of the
convective term Π for larger κ . Indeed, two distinct plateau-like regions are found over
two distinct subranges of scales, suggesting that, for increasing κ , the energy is first
transferred from the largest scales (where energy is injected) to smaller ones mainly
by the action of the particles, only after which the nonlinear term prevails and the
balance substantially recovers the classical energy cascade predicted by Kolmogorov
theory.

For slender objects (figure 4b), the scenario looks radically different, with Πfs acting
over a much wider range of scales and being responsible for transferring most of the
energy across all scales, with the nonlinear term being weakened overall. It should
also be noted that such alternative energy flux is overall prolonged with respect to
the single-phase case, consistent with the observed alteration in the energy spectrum
(figure 2b). Note that we refer to an energy flux also for fibre-laden turbulence, because
not only is Πfs constant across a wide range of scales, but also the overall drag
coefficient Cd = ε/(u′3κin) here κin = 1 is the wavenumber at which the energy is injected
(Alexakis & Biferale 2018), remains finite and comparable with the single-phase case
(see table 1).
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Figure 5. Fluid–solid coupling contribution to the energy-spectrum balance for (a) spheres and (b) fibres for
various mass fractions M (varying with colour brightness). Circles are plotted for the cases with (a) smaller
diameter D or (b) shorter length c, while different line styles are used to denote the variation of the number of
objects N. For ease of comparison, the y-axis is normalized by the maximum value of the reported quantity.
The inset in (a) shows the same data as a function of the wavenumber κ normalized with the sphere diameter
D. Images show wakes that are similar in size to the (a) sphere diameter and (b) fibre diameter.

3.3. Characteristic length scale of the fluid–solid coupling
The reason for the observed difference between bluff and slender objects can be
ascribed indeed to specific geometrical features. For bluff, isotropic particles the most
representative scale is uniquely identified as the particle diameter D. For slender fibres, the
back-reaction could be expected instead to act across multiple length scales, approximately
ranging from the fibre length c to the cross-sectional diameter d. In fact, the latter is
found to have the dominant role (as later shown in figure 5). This qualitative difference
has a remarkable consequence on the properties of the modulated turbulent flow at
sufficiently small scales: on the one hand, spherical particles affect the flow essentially
only at a scale that is well within the inertial range, without modifying the extension and
energy amplitude of the latter; on the other hand, slender fibres are directly acting on
wavenumbers that are also beyond the original energy cascade.

To isolate the characteristic length scale up to which the energy is transferred by the
back-reaction for the two kinds of dispersed objects, we show in figure 5 the fluid–solid
coupling contribution in the energy-spectrum balance, i.e. Ffs, such that

∫ ∞
κ

Ffs = Πfs. To
this aim, along with the variation of the mass fraction, we also consider the influence of
the sphere diameter D or fibre length c in the limiting case of fixed objects (or infinite
inertia). For bluff (isotropic) objects (figure 5a), it can be clearly observed that the peak
of Ffs scales with the diameter D, as also shown from the inset, where the wavenumber is
normalized using such quantity. For slender (anisotropic) objects (figure 5b), we observe
instead that the fibre length c does not appreciably change the position of the peak of Ffs;
rather, it appears to be controlled by the fibre diameter d. Differently from spheres, here
the fluid–solid contribution shows a wider distribution, therefore suggesting a quantitative
role of the fibre length as well, as previously suggested. For both objects, the mass fraction
appears to control not the wavenumber associated with the maximum forcing but only the
strength of the back-reaction. Remarkably, the same holds also when varying the number
of objects N.

3.4. Phenomenological interpretation
A simple and effective interpretation of our results can be proposed by considering the
characteristic Reynolds number experienced by the particles, i.e. Re� = u′�/ν, in order
to argue the main hydrodynamic effect caused by the solid objects and discern peculiar
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Figure 6. Multifractal distribution of the kinetic energy dissipation rate in the single-phase flow (black),
flow with spheres of mass fraction M = 1 (blue), flow with fibres of mass fraction M = 1 (orange), and the
single-phase experimental measure from Sreenivasan & Meneveau (1988) (black crosses).

differences between bluff and slender objects. For the sake of simplicity, we consider the
root mean square of the fluid velocity fluctuations u′ (accounting for its variation due to the
effective back-reaction) and the sphere diameter D or the fibre diameter d as the reference
length scale �. For the spherical particles such a choice is natural, whilst for fibres it comes
from that previously observed for the energy-transfer balance (figure 5b).

When computing the characteristic Reynolds number, we typically find that for spheres
ReD ∼ O(103), whereas for fibres Red ∼ O(101). These estimates suggest that bluff and
slender objects experience qualitatively different hydrodynamic regimes, one dominated
by inertial and the other by viscous forces, respectively. In particular, spheres are subject to
a large-Reynolds-number flow, inducing a turbulent wake on scales comparable with and
smaller than D, while fibres generate flow structures typical of laminar vortex shedding
on scales comparable with d, but without any further proliferation of scales due to the
dominant viscous dissipation. Note that here we refer to the range of scales smaller than
the characteristic length scale associated with the individual particles. For spheres, the
energy of the generated wakes is therefore converted into smaller structures by means of
the well-known energy cascading process (controlled by the nonlinear term Π ); for fibres,
a similar phenomenology is not possible since the smaller-scale generated flow structures
are essentially within the dissipative region.

3.5. On the intermittency of the modulated turbulence
Strong spatial and/or temporal fluctuations in the energy flux are the source of
intermittency in turbulent flows. Owing to the different nature of the flux in the two
configurations, it is natural to wonder how intermittency is altered. A comprehensive
approach to study this is to compute the multifractal spectrum of the energy dissipation
rate (Sreenivasan & Meneveau 1988), which we report in figure 6. For spheres, we find
that F(α) is substantially similar to the single-phase case with only minor differences. On
the other hand, for fibres, we have a remarkable qualitative difference in the spectrum.
This further supports the idea of a standard energy cascade in particle-laden flows with
finite-size spherical particles, whilst it is not the case for finite-size fibres.

4. Conclusions

By means of unprecedented high-Reynolds-number multiphase DNS, we have investigated
particle-laden turbulent flows considering solid objects of finite size, i.e. well within the
inertial range of scales, with the goal of understanding how the geometrical features of the
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immersed objects impact on the basic mechanisms of turbulence modulation. Specifically,
we have focused on two representative classes of suspensions, i.e. bluff (isotropic) spheres
versus slender (anisotropic) fibres, as a benchmark for highlighting the effect of particle
anisotropy.

As a common feature, we found that the presence of the dispersed phase induces a
similar decrease of the turbulent kinetic energy and microscale Reynolds number for
increasing mass fractions. At the same time, we unravelled the intrinsic differences in the
resulting scale-by-scale energy distribution. For both kinds of dispersed objects, we have
shown that the representative length scale at which the fluid–solid coupling is dominant
is associated with the (sphere or fibre) diameter. For finite-size spherical objects, however,
the back-reaction due to the dispersed phase is always confined to relatively large scales,
with a negligible alteration of the higher-wavenumber inertial and viscous subrange.
Finite-size fibres, on the other hand, transfer energy up to the smallest scales, with a
consequent modification of the full energy spectrum and the emergence of a modified
energy cascade. Note that, while confirming the same phenomenology, these results
substantially enrich those recently reported at lower Reynolds number (Olivieri et al.
2022), in particular, concerning the evaluation of the scaling exponent in the modulated
intermediate range of the energy spectrum. Also, the high-Reynolds-number configuration
and the consequent scale separation clarified the different nature of the dominant energy
flux in fibre-laden flows.

A simple phenomenological description for this complex problem is that the immersed
objects subtract energy from the flow by means of hydrodynamic drag and then re-inject
it by their wakes. For spheres, this happens fully within the inertial subrange and therefore
results in a turbulent wake that still contributes to the classical energy cascade. For fibres,
the transfer involves significantly smaller scales where viscosity eventually dominates,
providing to the latter additional energy with little contribution of the nonlinear terms due
to the low local Reynolds number.

In conclusion, we underline that these results are unique for finite-size objects and
remarkably different from what was previously observed for small particles (i.e. those
whose size is smaller than the Kolmogorov dissipative length scale). Our findings
have primary relevance for advancing the fundamental understanding of particle-laden
turbulence and its numerous related applications (e.g. slurry flows, combustion,
papermaking and other industrial processes).
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Appendix D

Chapter 5 appendix

D.1 Governing equations
This section provides information on the physical model considered in the present study.
Wefirst introduce the governing equations for thefluidflow, and thenweprovide an overview
of how the solid phase is modelled.

D.1.1 The carrier flow
We consider the turbulent 1:1:1 ABCflow, i.e., a Newtonian fluid that obeys thewell-known
incompressible Navier-Stokes equations

⎧

⎨
⎩

𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅ 𝛁)𝒖 = − 1

𝜌𝑓
𝛁𝑝 + 𝜈𝛁2𝒖 + 𝒇 + 𝒇←𝑝,

𝛁 ⋅ 𝒖 = 0,
(D.1)

where 𝒖 = 𝒖 (𝒙, 𝑡) and 𝑝 = 𝑝 (𝒙, 𝑡) are the velocity and pressure fields, 𝜌𝑓 and 𝜈 are the
fluid volumetric density and kinematic viscosity, and 𝒇←𝑝 is a singular force distribution
used to mimic the presence of the dispersed solid objects by indirectly imposing the no-slip
condition at the fluid-solid interface. The Navier–Stokes equations are forced with the ABC
forcing Podvigina and Pouquet (1994b), i.e.,

𝒇 = 𝐹𝑜
⎛
⎜
⎝

𝐴 sin (2𝜋𝑧∕𝐿) + 𝐶 cos (2𝜋𝑦∕𝐿)
𝐵 sin (2𝜋𝑥∕𝐿) + 𝐴 cos (2𝜋𝑧∕𝐿)
𝐶 sin (2𝜋𝑦∕𝐿) + 𝐵 cos (2𝜋𝑥∕𝐿)

⎞
⎟
⎠

(D.2)

where 𝐴 = 𝐵 = 𝐶 = 1, 𝐿 is the forcing wavelength, and 𝐹𝑜 is a constant that determines
its intensity. The forcing is set to achieve a Reynolds number of 𝑅𝑒 = 𝑈𝑜𝐿𝑜∕𝜈 ≈ 894, where
𝐿𝑜 and 𝑈𝑜 are the reference length and velocity scales, defined as 𝐿𝑜 = 𝐿∕2𝜋 and 𝑈𝑜 =√
𝐹𝑜𝐿𝑜. In the single-phase configuration, this leads to a micro-scale Reynolds number of

𝑅𝑒𝜆 = 𝑢′𝜆∕𝜈 ≈ 435, where 𝑢′ is the root-mean-square of the velocity fluctuations, and 𝜆 is
the Taylor length scale.

Figure D.1 depicts the resulting energy spectrum (left) and energy-transfer balance for
the single-phase configuration (right). The energy-transfer balance derives after manipula-
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Figure D.1: Left: Energy spectrum for the single-phase configuration. The dashed line
denotes the −5∕3 power law predicted by the Kolmogorov theory. Right: energy-transfer
balance for the single-phase configuration. The terms in the energy budget are normalised
with the dissipation rate 𝜖.

tion of the Navier–Stokes equations (Pope, 2000) and reads:

𝑃(𝜅) + Π(𝜅) + 𝐷(𝜅) = 𝜖, (D.3)

where

𝑃(𝜅) = ∫
∞

𝜅

1
2
(
�̂� ⋅ �̂�∗ + �̂� ⋅ �̂�∗) d�̃�, (D.4a)

Π(𝜅) = ∫
∞

𝜅
−12

(
�̂� ⋅ �̂�∗ + �̂� ⋅ �̂�∗) d�̃�, (D.4b)

𝐷(𝜅) = ∫
𝜅

0

(
−2𝜈�̃�2�̂�

)
d�̃�. (D.4c)

Here ⋅̂ denotes the Fourier transform, the ∗ superscript denotes complex conjugate, �̂� is the
Fourier transform of the non linear term 𝒖 ⋅ 𝛁𝒖, and 𝜖 is the dissipation. As clearly visible
by means of the energy spectrum (left) and of the plateau of the non-linear flux Π (right),
the Reynolds number considered in this work leads to a proper scale separation, with an
inertial range that extends to almost two decades of wavenumbers.

D.1.2 The solid phase
We consider suspensions of solid spherical particles. The velocity at an arbitrary point 𝒙
inside the particle, 𝒖𝑝 (𝒙(𝑡), 𝑡), can be described using the translational velocity, 𝒗𝑝, and the
rotational velocity, 𝝎𝑝, of its centre of mass 𝒙𝑝, as

𝒖𝑝 = 𝒗𝑝 + 𝝎𝑝 × 𝒓, (D.5)

where 𝒓 = 𝒙− 𝒙𝑝 is the vector going from 𝒙𝑝 to 𝒙. The time evolution of the spherical par-
ticles is, therefore, based on the classical Newton-Euler equations for rigid body dynamics
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that read
⎧

⎨
⎩

𝑚𝑝
d𝒗𝑝
d𝑡

= 𝒇←𝑓 + 𝒇↔𝑝,
𝐼𝑝

d𝝎𝑝
d𝑡

= 𝑳←𝑓
𝑝 ,

(D.6)

where𝑚𝑝 = 𝜋𝜌𝑝𝐷3∕6 and 𝐼𝑝 = 𝑚𝑝𝐷2∕10 are the mass and inertial moment of the particle,
with 𝜌𝑝 being the particle density and 𝐷 the particle diameter. Here 𝒇↔𝑝 is the force due
to the interaction between particles, and 𝒇←𝑓

𝑝 and 𝑳←𝑓
𝑝 are the force and momentum due to

the fluid-solid interaction, defined as

𝒇←𝑓
𝑝 = ∮

𝜕𝑉𝑝

𝝈 ⋅ 𝒏d𝐴, (D.7a)

𝑳←𝑓
𝑝 = ∮

𝜕𝑉𝑝

𝒓 × (𝝈 ⋅ 𝒏) d𝐴. (D.7b)

Here, 𝝈 = −𝑝𝕀 + 2𝜇𝔻 is the Cauchy stress tensor, where 𝕀 is the identity tensor, 𝜇 the
kinematic fluid viscosity, and𝔻 the strain rate tensor, and 𝒏 is the unit vector normal to the
surface of the particle.

D.2 Numerical method
The above-discussed governing equations are numerically integrated using the in-house
solver Fujin (https://groups.oist.jp/cffu/code), which is based on an incremental
pressure-correction scheme. It considers the Navier–Stokes equations written in primitive
variables in a staggered grid, and uses second-order finite differences in all the directions.
The Adams-Bashforth time scheme is used for advancing the momentum equation in time.
The Poisson equation for the pressure enforcing the incompressibility constraint is solved
using a fast and efficient approach based on the Fast Fourier Transform. The solver is par-
allelised and is based on a Cartesian block decomposition of the domain in the 𝑥 and 𝑦
directions, and uses the Message Passing Interface (MPI) library for maximum portabil-
ity. The governing equations for the particles are dealt with using the immersed boundary
method introduced by Hori et al. (2022). The fluid-solid coupling is achieved in an Eule-
rian framework (Kajishima et al., 2001), and accounts for the inertia of the fictitious fluid
inside the solid phase, to properly reproduce their behaviour in both the neutrally-buoyant
case and in the presence of density difference between the fluid and solid phase. The soft
sphere collision model first proposed by Tsuji et al. (1993) is used to prevent the interpene-
tration between particles. A fixed-radius near neighbours algorithm (see Monti et al., 2021,
and references therein) is used for the particle interaction to avoid an otherwise prohibitive
increase of the computational cost when the number of particles increases. The compu-
tational domain consists of a box of size 𝐿, and is discretised using 𝑁 = 1024 equispaced
points in the three directions, to ensure that for all cases, all the scales down to the smallest
dissipative ones are solved, leading to 𝜂∕∆𝑥 = 𝑂(1), where∆𝑥 denotes the grid spacing and
𝜂 is the Kolmogorov scale; see the single-phase scale-by-scale budget in the right panel of
figure D.1. At the initial time, the particles are distributed randomly within the domain.
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Figure D.2: Energy spectrum for 𝐷∕𝐿 = 0.0104 (𝐷∕𝜂 = 16) and 𝑀 = 0.3. The blue line
is for the actual simulation with the 𝑁 = 1024 grid. The red circles are for the simulation
with the coarser 𝑁 = 512 grid.

D.2.1 Grid independency
To demonstrate that the grid resolution is adequate for all particle sizes, an additional sim-
ulation has been carried out for the smallest particle size considered 𝐷∕𝐿 = 0.0104 (or
𝐷∕𝜂 = 16) and𝑀 = 0.3 (see table D.1). The number of grid points has been halved, leading
to 𝑁 = 512 equispaced points in the three directions. This means that the number of grid
cells across each particle decreases from 16with the standard grid, to 8 for the coarser grid.
Figure D.2 shows that the energy spectra obtained with the two grids agree pretty well at all
scales, confirming the adequacy of the considered grid resolution. All the presented results
are obtained with the𝑁 = 1024 grid, to properly solve all the scales of the flow down to the
Kolmogorov scale (in this case, 𝜂∕𝛿𝑥 = 𝑂(1)).

D.3 List of investigated cases
Here we provide a list of the configurations that have been considered in the present work.
The particle diameter is varied between 0.0207 ≤ 𝐷∕𝐿 ≤ 0.0796, or 16 ≤ 𝐷∕𝜂 ≤ 123 (here 𝜂
refers to the single-phase Kolmogorov length-scale). The volume fraction is kept constant
to a value of Φ𝑉 = 𝑉𝑝∕(𝑉𝑝 + 𝑉𝑓) = 0.0792, where 𝑉𝑝 is the total volume of particles, as in
Olivieri, Cannon, et al. (2022), being large enough for a non-dilute suspension and small
enough for the particle-particle collision to be subdominant. The number of particles 𝑁𝑝,
thus, is increased as the particle diameter is decreased. The particle density 𝜌𝑝 is varied
between 1.3 ≤ 𝜌𝑝∕𝜌𝑓 ≤ 105 to consider both light and heavy particles, corresponding to a
variation of the mass fraction𝑀 = 𝜌𝑝𝑉𝑝∕(𝜌𝑝𝑉𝑝 + 𝜌𝑓𝑉𝑓) between 0.1 ≤ 𝑀 ≤ 0.9 and to a
variation of the Stokes number 𝑆𝑡 between 0.2 ≲ 𝑆𝑡 ≲ 720; the Stokes number is defined as
𝑆𝑡 = 𝜏𝑝∕𝜏𝑓 where 𝜏𝑝 = (𝜌𝑝∕𝜌𝑓)𝐷2∕(18𝜈) is the relaxation time of the particle velocity and

𝜏𝑓 = ℒ∕
√
2⟨𝐸⟩∕3 is the turnover time of the largest eddies (ℒ = 𝜋∕(4⟨𝐸⟩∕3) ∫ ∞

0 𝑆(𝐸)∕𝜅d𝜅
is the fluid integral scale). Details of the numerical simulations are provided in table D.1,
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together with the corresponding micro-scale Reynolds number 𝑅𝑒𝜆 and the Stokes number.
All simulations have been advanced for approximately 18𝐿𝑜∕𝑈𝑜 time units, after reach-

ing a statistically steady state. For 𝐷∕𝐿 = 0.0207, or 𝐷∕𝜂 = 32, the simulations have been
advanced for a longer period, i.e. between 30𝐿𝑜∕𝑈𝑜 and 60𝐿𝑜∕𝑈𝑜, to ensure convergence of
the large-scale statistics (e.g. the temporal mean flow) shown in the discussion.

D.4 The direction of the particles’ trajectories changes
with the initial condition

In this section, we show that the plane where the trajectories of the particles lay in the
anisotropic state depends on the initial distribution of the particles, and that it is not dictated
by the numerical code. As an example, we consider the𝐷∕𝐿 = 0.0207 particulate caseswith
𝑀 = 0.6 and𝑀 = 0.75. Here we denote with (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) the Cartesian reference system used
in the simulation and with (𝑥, 𝑦, 𝑧) the Cartesian reference system used for presenting the
results; similarly, (𝑈𝑠, 𝑉𝑠,𝑊𝑠) and (𝑈,𝑉,𝑊) are the temporal mean velocity components
in the two sets of coordinates. Figure D.3 plots the three components of the mean velocity
(𝑈𝑠, 𝑉𝑠,𝑊𝑠) in the 𝑥𝑠 = 𝐿∕2 plane for𝑀 = 0.6 (top) and𝑀 = 0.75 (bottom). For𝑀 = 0.6,
particles are found to move along straight trajectories in the 𝑥𝑠 − 𝑦𝑠 plane, attenuating thus
the𝑊𝑠 component of the mean flow. In contrast, for𝑀 = 0.75, particles are found to move
along straight trajectories in the 𝑥𝑠 − 𝑧𝑠 plane, attenuating the 𝑉𝑠 velocity components.

However, for the sake of clarity and uniformity of the results, when presenting the re-
sults in the main text, we adopt a Cartesian reference system (𝑥, 𝑦, 𝑧) with the 𝑧 direction
being orthogonal to the particle trajectories for all cases. In the above 𝑀 = 0.75 case, for
example, 𝑧𝑠 → 𝑥, 𝑥𝑠 → 𝑦 and 𝑦𝑠 → 𝑧 (𝑊𝑠 → 𝑈, 𝑈𝑠 → 𝑉 and 𝑉𝑠 →𝑊).

D.5 ABC parameters that approximate the mean flow
In this section, we show how we evaluate the parameters of the generic ABC flow that ap-
proximates the mean flow,𝑼, of the turbulent single-phase and particulate configurations.
The generic 2𝜋𝐿0-periodic ABC flow can be written as:

𝒖𝐴𝐵𝐶 = 𝑉𝑜
⎛
⎜
⎝

𝐴 sin(𝑧∕𝐿𝑜) + 𝐶 cos(𝑦∕𝐿𝑜)
𝐵 sin(𝑥∕𝐿𝑜) + 𝐴 cos(𝑧∕𝐿𝑜)
𝐶 sin(𝑦∕𝐿𝑜) + 𝐵 cos(𝑥∕𝐿𝑜)

⎞
⎟
⎠
, (D.8)

where 𝐴, 𝐵 and 𝐶 are bounded between 0 and 1 and determine the shape of the flow, and
𝑉𝑜 is a constant that determines the flowmagnitude. As discussed above, in the particulate
cases, we chose the Cartesian reference system such that the 𝑧 direction is aligned with the
velocity component that is mostly attenuated by the particle motion (corresponding to the
direction orthogonal to the particle trajectories for 𝐷∕𝐿 ≤ 0.0414 and𝑀 ≥ 0.45). Without
losing generality, thus, we set 𝐴 = 1 for all cases and hypothesise that the solid phase
modifies the values of 𝐵, 𝐶 and 𝑉𝑜. The 𝐴, 𝐵, 𝐶 and 𝑉𝑜 parameters to use in equation D.8
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Table D.1: Details of the numerical simulations carried out for the present parametric
study. 𝐷 is the particle diameter, 𝜂 the Kolmogorov scale, 𝑁𝑝 the number of particles, 𝜌𝑝
and 𝜌𝑓 the volumetric density of the fluid and the density of the particles,𝑀 the mass frac-

tion, 𝑅𝑒𝜆 is the Reynolds number based on 𝑢′ =
√
2⟨𝐸⟩∕3 and on the Taylor length scale 𝜆,

𝑆𝑡 is the Stokes number (see text).

𝐷∕𝐿 𝐷∕𝜂 𝑁𝑝 𝜌𝑝∕𝜌𝑓 𝑀 𝑅𝑒𝜆 𝑆𝑡
− − − − − 435.01 −

0.0796 123 300 1.3 0.1 434.05 10.39
0.0796 123 300 4.98 0.3 397.47 41.34
0.0796 123 300 17.44 0.6 347.48 133.43
0.0796 123 300 104.69 0.9 278.36 712.69

0.0414 64 2129 1.3 0.1 428.05 4.98
0.0414 64 2129 4.98 0.3 400.94 9.99
0.0414 64 2129 9.518 0.45 579.15 21.49
0.0414 64 2129 17.44 0.6 425.15 32.19
0.0414 64 2129 104.69 0.9 225.59 144.65

0.0207 32 17036 1.3 0.1 435.36 0.74
0.0207 32 17036 4.98 0.3 363.32 2.69
0.0207 32 17036 9.518 0.45 564.05 5.13
0.0207 32 17036 12.858 0.525 635.29 7.04
0.0207 32 17036 17.44 0.6 691.96 9.42
0.0207 32 17036 34.9 0.75 382.00 12.53
0.0207 32 17036 104.69 0.9 186.02 25.44

0.0104 16 136293 1.3 0.1 441.61 0.20
0.0104 16 136293 4.98 0.3 379.86 0.62
0.0104 16 136293 17.44 0.6 277.74 1.50
0.0104 16 136293 104.69 0.9 365.34 8.15
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Figure D.3: Mean flow velocity components for the 𝐷∕𝐿 = 0.0207 particulate case with
𝑀 = 0.6 (top) and 𝑀 = 0.75 (bottom) in the 𝑥𝑠 = 𝜋𝐿𝑜 plane, in the Cartesian reference
system (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) of the simulation. From left to right the panels are for 𝑈𝑠, 𝑉𝑠 and𝑊𝑠, i.e.
the components of the mean velocity aligned with three axes. The black-to-red colour map
goes from −9 ≤ 𝑈𝑖∕𝑈𝑜 ≤ 9.
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Figure D.4: Circles: variances of the mean velocity components for the single-phase case
and for the 𝐷∕𝐿 = 0.0207 particulate cases with 0.1 ≤ 𝑀 ≤ 0.9. Diamonds: variances of
the components of the generic ABC flow that approximate the single-phase case and the
𝐷∕𝐿 = 0.0207 particulate cases.

to approximate𝑼 are therefore obtained by solving the following system of equations:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑉𝑜𝐴 = 1

𝐿3
∫ 𝐿
0 ∫

𝐿
0 ∫

𝐿
0 (𝑈 sin(𝑧∕𝐿𝑜) + 𝑉 cos(𝑧∕𝐿𝑜)) d𝑧d𝑦d𝑥

𝑉𝑜𝐵 = 1

𝐿3
∫ 𝐿
0 ∫

𝐿
0 ∫

𝐿
0 (𝑉 sin(𝑥∕𝐿𝑜) +𝑊 cos(𝑥∕𝐿𝑜)) d𝑧d𝑦d𝑥

𝑉𝑜𝐶 = 1

𝐿3
∫ 𝐿
0 ∫

𝐿
0 ∫

𝐿
0 (𝑊 sin(𝑦∕𝐿𝑜) +𝑈 cos(𝑦∕𝐿𝑜)) d𝑧d𝑦d𝑥

𝐴 = 1

. (D.9)

Note, indeed, that when replacing (𝑈,𝑉,𝑊) with the components of 𝒖𝐴𝐵𝐶, the first three
equations are identically satisfied.

As an example, figure D.4 plots the variances of the components of the temporal mean
velocity 𝑼 for the 𝐷∕𝐿 = 0.0207 particulate cases with 0.1 ≤ 𝑀 ≤ 0.9 and shows that they
are in pretty good agreement with the variances of the generic ABC flow obtained with the
above-discussed procedure.

D.6 ABC laminar flow and Poincaré map
Figure D.5 shows the structure of the laminar ABC flow with𝐴 = 𝐵 = 𝐶 = 1 in the 𝑥∕𝐿𝑜 =
𝜋 plane. The left panel is for 𝑢𝐴𝐵𝐶. The right panel, instead, shows the 𝑥∕𝐿𝑜 = 𝜋 Poincaré
section, which describes the Lagrangian structure of the flow. It is a two-dimensional cod-
ing of the three-dimensional ABC flow, in which we represent only successive intersections
of the flow streamlines with the 𝑥∕𝐿𝑜 = 𝜋 plane (Dombre et al., 1986; Poincaré, 1892). The
density of the points in the Poincaré map is proportional to the magnitude of the velocity
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Figure D.5: Laminar ABC flow 𝒖𝐴𝐵𝐶 with 𝐴 = 𝐵 = 𝐶 = 1 in the 𝑥∕𝐿𝑜 = 𝜋 plane. Left:
𝑢𝐴𝐵𝐶; the symmetric black-to-red comourmap goes from −2 ≤ 𝑢𝐴𝐵𝐶 ≤ 2. Right: Poincaré
map; each point of the same colour corresponds to a successive intersectionwith the 𝑥∕𝐿𝑜 =
𝜋 plane of the same streamline. The black line is for 𝑢𝐴𝐵𝐶 = 0.

component perpendicular to the plane. Here, indeed, the density of the points is null along
the sin(𝑧∕𝐿𝑜) + cos(𝑦∕𝐿𝑜) = 0 line, where 𝑢𝐴𝐵𝐶 = 0.

D.7 flowmodulation as a function of𝑚𝑝 and 𝜙𝑚
To provide a more exhaustive picture of the parameters at play, in this section, we show
the dependence of the flow modulation on the mass loading and on the mass of the single
particle.

FigureD.6 shows theflowmodulation as a function of themass loading𝜙𝑚 = 𝜌𝑝𝑉𝑝∕(𝜌𝑓𝑉𝑓)
and of the single-particle mass 𝑚𝑝 = 𝜌𝑝∕𝜌𝑓𝜋∕6 (𝐷∕𝐿𝑜)

3. The mass loading is similar to
the mass fraction, but is not bounded between 0 and 1; the two quantities are related by
𝜙𝑚 = 𝑀∕(1 − 𝑀). The dependence of ⟨𝐸⟩∕⟨𝐸𝑜⟩ on 𝜙𝑚 closely resemble the dependence
on 𝑀, with the maximum energy enhancement observed for 𝜙𝑚 ≈ 1.2. Regarding 𝑚𝑝,
instead, the right panel of figure D.6 shows that the energy enhancement and flow two-
dimensionalisation occurs for a specific range of𝑚𝑝, i.e. 10−2 ≤ 𝑚𝑝 ≤ 10−1. This resembles
the dependence of the results on the Stokes number 𝑆𝑡.
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Figure D.6: Total kinetic energy of the flow as a function of the mass loading (left) and of
the dimensionless particle mass𝑚𝑝 = 𝜌𝑝∕𝜌𝑓𝜋∕6 (𝐷∕𝐿𝑜)

3 (right).
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D.8 On the physical mechanism
In this section, we shed light on the physical mechanism responsible for the flow two-
dimensionalisation. Figure D.7 shows the time evolution of the anisotropy of the solid and
fluid phases for 𝐷∕𝐿 = 0.02 and𝑀 = 0.75. The flow approaches the isotropic regime be-
fore deviating towards themore energetic and anisotropic regime. The top panel details the
instantaneous anisotropy of the fluid (symbols) and solid (lines) phases. The time signal
shows that the anisotropy arises first in the fluid phase and then in the solid phase: the
root mean squares of the three velocity components start differing at 𝑡 ≈ 10𝑈𝑜∕𝐿𝑜 for the
fluid phase, and at 𝑡 ≈ 15𝑈𝑜∕𝐿𝑜 for the particles. This suggests that the transition from the
isotropic state to the anisotropic one is driven by the fluid phase, and not directly by the par-
ticle motion. Based on this observation, we speculate that the flow two-dimensionalisation
is the result of a bifurcation of the largest scales of the flow, triggered by the perturbations
generated by the particleswhen they are not able to follow the cellularABCpattern and tend
to followmore straight trajectories. For small and large 𝑆𝑡, the flow remains in the isotropic
regime, as the perturbation field induced by the solid phase does not have the proper spatial
structure to induce this bifurcation. It is worth stressing that, when studying the sequence
of bifurcations of the low-𝑅𝑒 single-phase ABC flow, Podvigina and Pouquet (1994b) found
in the chaotic regime a similar anisotropic state— referred to as𝒜2—with 𝐵 = 𝐶 ≈ 0.36𝐴,
which spontaneously emerges for intermediate 𝑅𝑒. It is thus possible that the presence of
particles and their tendency to follow straight trajectories changes the stability of the system
in the 5 ≤ 𝑆𝑡 ≤ 60 and𝑀 > 0.3 portion of the𝑀 − 𝑆𝑡 space of parameters, enabling thus
the occurrence of an anisotropic 𝒜2-like state (which indeed favours straight streamlines)
also at these larger 𝑅𝑒.

The role of the inhomogeneous mean shear on the flow two-dimensionalisation has
been investigated by considering a different volume forcing to sustain turbulence, that does
not generate a coherent motion at the largest scales. In particular, we have carried out
additional simulations of the flow in the 2𝜋 triperiodic box using the forcing introduced by
Eswaran and Pope (1988) to sustain turbulence. For these additional simulations, the case
with 𝐷∕𝐿 = 0.0207 (𝐷∕𝜂 = 32) is considered and the Reynolds number is slightly smaller:
in the single-phase reference case, it is set to 𝑅𝑒𝜆 ≈ 330. Figure D.8 compares the flow
modulation as a function of the mass fraction for the two forcings. The blue circles refer
to the results obtained with the ABC forcing, and the yellow squares refer to the random
forcing. The two curves collapse pretty well for𝑀 ≤ 0.3; here particles modulate all scales
in an isotropic way in both cases. For larger𝑀 the two curves deviate: in the absence of the
inhomogeneousmean shear, the flow energymonotonically decreaseswith𝑀 in agreement
with the increase of the inertia of the system, and the energy enhancement associated with
the flow two-dimensionalisation is not observed.
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Figure D.7: Top: Evolution in time of the energy and of the particle and fluid velocity
variances for 𝐷∕𝐿 = 0.02 and 𝑀 = 0.75. Bottom: instantaneous fluid velocity snapshots;
the left panel is for the isotropic regime at 𝑡 ≈ 10𝑈𝑜∕𝐿𝑜, while the right panel is for the
anisotropic regime at 𝑡 ≈ 40𝑈𝑜∕𝐿𝑜.
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Figure D.8: Dependence of the flow modulation by particles on the external forcing. The
blue circles are for the Arnold-Beltrami-Childress forcing. The yellow squares are for the
Eswaran and Pope (1988)’s forcing
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Scaling and intermittency in turbulent flows 
of elastoviscoplastic fluids

Mohamed S. Abdelgawad    1,2, Ianto Cannon    1,2 & Marco E. Rosti    1 

Non-Newtonian fluids have a viscosity that varies with applied stress. 
Elastoviscoplastic fluids, the elastic, viscous and plastic properties of 
which are interconnected in a non-trivial way, belong to this category. 
We have performed numerical simulations to investigate turbulence in 
elastoviscoplastic fluids at very high Reynolds-number values, as found in 
landslides and lava flows, focusing on the effect of plasticity. We find that 
the range of active scales in the energy spectrum reduces when increasing 
the fluid plasticity; when plastic effects dominate, a new scaling range 
emerges between the inertial range and the dissipative scales. An extended 
self-similarity analysis of the structure functions reveals that intermittency 
is present and grows with the fluid plasticity. The enhanced intermittency 
is caused by the non-Newtonian dissipation rate, which also exhibits an 
intermittent behaviour. These findings have relevance to catastrophic 
events in natural flows, such as landslides and lava flows, where the 
enhanced intermittency results in stronger extreme events, which are thus 
more destructive and difficult to predict.

Many fluids in nature and industry exhibit a nonlinear relation-
ship between shear stress and shear rate, which is referred to as 
non-Newtonian behaviour. Several non-Newtonian features can exist, 
and they are often present simultaneously. In this Article we focus 
on the so-called elastoviscoplastic (EVP) fluids, which are fluids with 
elastic, viscous and plastic properties. EVP materials combine solid-like 
behaviour and fluid-like response depending on the value of the applied 
stress: they behave like a solid when the applied stress is below a critical 
value known as the ‘yield stress’, and flow like a liquid otherwise1. The 
elastic nature of these materials is present in their solid as well as liquid 
states2. Such fluids are common in everyday life (examples include 
toothpaste, jam, cosmetics and mud), and turbulent flows of EVP fluids 
are found in many industrial processes, including sewage treatment, 
crude oil transportation, concrete pumping and mud drilling3–5, as well 
as in nature as landslides and lava flows6,7.

A great deal of work has been done in the past to properly charac-
terize the viscoelastic behaviour of a fluid in both laminar and turbu-
lent flows8–13, while the effect of plasticity has been studied mainly in 
low-Reynolds-number laminar conditions1,14,15. Little is known about 
the plastic behaviour of an EVP fluid in turbulence. Rosti et al.16 studied 

a turbulent channel flow of an EVP fluid, finding that the shape of the 
mean velocity profile controls the regions where the fluid is unyielded, 
forming plugs around the channel centreline that grow in size as the 
yield stress increases, similar to what is observed in a laminar condi-
tion. However, the presence of the plug region has an opposite effect 
on drag for laminar and turbulent flow configurations, resulting in drag 
reduction in the turbulent case and drag increase in the laminar one; 
the turbulent drag behaviour is due to the tendency of the turbulent 
flow to relaminarize, overall leading to a strongly nonlinear relation 
between yield stress and drag coefficient. Simulation results were 
then employed by Le Clainche et al.17, using high-order dynamic mode 
decomposition, to study the near-wall dynamics, comparing them 
to those in Newtonian and viscoelastic fluids. Their work revealed 
that both elasticity and plasticity have similar effects on the near-wall 
coherent structures, where the flow is characterized by long streaks 
disturbed for short periods by localized perturbations. A recent experi-
mental study by Mitishita et al.18 on a turbulent duct flow of Carbopol 
solution de facto verified the numerical results obtained by Rosti 
et al.16 on the effect of plasticity on the mean flow profile and Reynolds 
stresses. Additionally, they observed an increase in the energy content 
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ReΛ ≡ ρu′Λ/μt, WiΛ ≡ λμt/ρΛ2
0, α = μn/μt a n d  BiΛ ≡ τyΛ0/μtu′0 ,  

where ρ is the fluid density, μt ≡ μf + μn is the total dynamic viscosity 
with μf being the fluid viscosity and μn the non-Newtonian one, λ is the 
relaxation time, τy is the yield stress, and subscript 0 denotes quantities 
from the BiΛ = 0 case. The Reynolds number describes the ratio of iner-
tial to viscous forces, and we limit our analysis to high-Reynolds-number 
flows, achieving a Taylor microscale Reynolds number ReΛ ≈ 435 for the 
Newtonian flow, at which statistics of the flow have been found to be 
universal and exhibiting a proper scale separation, with an extensive 
inertial range of scales extended to almost two decades of wavenumbers. 
The Reynolds number explored here is the highest in DNS of HIT of 
non-Newtonian fluids. The Weissenberg number describes the ratio of 
elastic to viscous forces, and here we limit the analysis to WiΛ ≪ 1 (that 
is, WiΛ ≈ 10−3), to ensure that elastic effects are subdominant and all the 
observed changes are due to plasticity. We also fix a value of α = 0.1 to 
represent a dilute concentration of polymers, in accordance with previ-
ous works on the subject16,20. Thus, the key control parameter we vary 
is BiΛ, which describes the ratio of the yield stress to the viscous stress, 
and thus correlates with the prevalence of unyielded regions.

Figure 2 depicts the turbulent kinetic energy spectra of the cases 
analysed. The BiΛ = 0 case is similar to the Newtonian case shown in 
Supplementary Fig. 1, confirming that the effect of elasticity is sub-
dominant and can be ignored. A clear E ~ κ−5/3 range is visible for more 
than one decade, showing that ReΛ is high enough to achieve scale sepa-
ration, with the spectra exhibiting an inertial range of scales followed by 
a dissipative range. As BiΛ increases, the inertial range is limited to the 
large scales (small wavenumbers κ), with the energy increasing at large 
scales and decreasing at small scales. A clear deviation from Kolmogo-
rov scaling becomes noticeable for BiΛ > 1, resulting in the emergence of 
a new apparent scaling of E ~ κ−2.3 that is shown more clearly by plotting 
compensated energy spectra (as shown in Supplementary Fig. 3). The 
difference in scaling between the experimental work (−7/2)18 and the 
current study (−2.3) is mainly due to the higher values of Reynolds and 
Bingham numbers considered here. The abrupt change in the spectra 
with BiΛ is consistent with the bulk flow properties (ReΛ and the volume 
fraction of the unyielded regions Φ) shown in the inset of Fig. 2: for the 
cases where BiΛ < 1, ReΛ remains relatively unaltered, with Φ always close 
to zero, whereas when BiΛ further increases, the microscale Reynolds 
number ReΛ and the volume Φ of the unyielded regions rapidly increase 
with a similar trend.

at large scales and a decrease at small scales, when compared with a 
Newtonian fluid. Mitishita et al. reported a −7/2 scaling in the energy 
spectra at high wavenumbers during Carbopol flows compared to 
−5/3 scaling in the case of water flows. The newly observed scaling was 
attributed either to the decrease in the inertial effect in the presence of 
Carbopol solutions, which shrinks the inertial range of scales because 
the Reynolds numbers are much lower than in water flows, or to the 
elastic effects that become important at large wavenumbers where 
the fluid experiences high frequencies. Moreover, the shear-thinning 
effects that Carbopol solutions exhibit affected the anisotropy and 
the overall flow behaviour. The elastic and shear-thinning effects are 
rheological features of Carbopol solutions and cannot be eliminated 
experimentally.

Homogeneous and isotropic turbulent flows have long been a 
focus of turbulence research for their simple theoretical analysis and 
the generality of their results. To this end, as has been extensively done 
in the past for viscoelastic flows, here we study tri-periodic homoge-
neous flow, where the celebrated K41 theory by Kolmogorov19 can be 
directly applied to a classical Newtonian fluid. In this Article we study 
a homogeneous isotropic turbulent (HIT) flow of an EVP fluid at high 
Reynolds number, as shown in Fig. 1. We aim to answer the follow-
ing fundamental question: how does the Kolmogorov theory change 
when the fluid is EVP? We will mainly focus on its plastic behaviour and 
investigate how the yield stress affects the multiscale energy distribu-
tion and balance, and how the turbulent energy cascade is altered 
by the fluid’s plasticity. Our results show profound modifications of 
the classical picture predicted by the K41 theory for Newtonian flu-
ids, with the emergence of a new scaling range, the dominance of the 
non-Newtonian flux and dissipation at small and intermediate scales, 
and enhanced intermittency of the flow.

Results
To investigate the problem at hand, we performed massive 
three-dimensional direct numerical simulations (DNS) of HIT where 
we solve the flow equations fully coupled with the constitutive equation 
of the EVP fluid, within a tri-periodic domain of size L, using 1,024  
grid points per side, as described in more detail in the Methods. The 
flow is controlled by four main parameters: the Reynolds number  
ReΛ, the Weissenberg number WiΛ, the viscosity ratio α and the  
Bingham number BiΛ, all based on the root-mean-square velocity fluc-
tuations u′ and Taylor’s microscale Λ. We use the definitions 

BiΛ = 0.025 BiΛ = 0.25

BiΛ = 2.5 BiΛ = 25

Fig. 1 | Instantaneous colourmaps of the turbulent fluid dissipation ϵf in 
homogeneous isotropic turbulence of an EVP fluid at different Bingham 
numbers. Yielded regions are shown with a black–red–yellow colourscale, and 
unyielded regions with black–grey–white.
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Fig. 2 | Turbulent kinetic energy spectra of EVP flows with various Bingham 
numbers. Different BIngham numbers are plotted in colours from dark to light; 
BiΛ = 0, 0.0025, 0.025, 0.25, 2.5, 12.5 and 25 are plotted in black, purple, dark 
blue, light blue, dark green, light green and orange, respectively. The expected 
Kolmogorov scaling for a Newtonian fluid is shown by a grey dashed line, and the 
grey dash-dotted line represents an apparent new non-Newtonian scaling E ~ κ−2.3 
that emerges at large BiΛ. Inset: variation of the mean values of the microscale 
Reynolds number ReΛ (right axis, plotted as squares) and the volume fraction of 
the unyielded regions Φ (left axis, plotted as diamonds) as a function of BiΛ. Error 
bars report the s.d. of ReΛ in time, measured using 103 samples. Plastic effects 
start to appear for BiΛ ≳ 1, suggesting that Λ is the relevant length scale of  
the problem.
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To fully characterize the change in the energy spectra, we study 
the turbulent kinetic energy balance, which in wavenumber space can 
be expressed as

ℱinj(κ) +Π(κ) + 𝒟𝒟(κ) + 𝒩𝒩(κ) = ⟨ϵf⟩ + ⟨ϵn⟩ = ⟨ϵt⟩, (1)

where ℱinj is the turbulence production introduced by the external 
forcing (injected at the largest scale, κL ≡ 2π/L), and Π , 𝒟𝒟 and 𝒩𝒩  are 
the nonlinear energy flux, the fluid dissipation and the non-Newtonian 
contribution, respectively. In addition to the classical bulk fluid dis-
sipation rate ϵf, here we have a non-Newtonian dissipation ϵn, which is 
the rate of removal of turbulent kinetic energy from the flow due to 
the non-Newtonian extra stress tensor (Supplementary Sections I and 
II provide a derivation of this equation). Figure 3 shows the turbulent 
kinetic energy balance for a few representative values of BiΛ. When 
comparing with Supplementary Fig. 1b, the BiΛ = 0 case closely follows 
the classical Newtonian turbulent flow, where energy is carried by Π 
from the large to small scales before being dissipated by the fluid vis-
cosity 𝒟𝒟. The contribution of the nonlinear convective term Π, which 
appears as an almost horizontal plateau at relatively large scales, pro-
gressively decreases with BiΛ and shrinks towards larger scales, consist-
ent with the reduction of the extension of the inertial range observed 
in Fig. 2. The reduced energy flux with BiΛ is also accompanied by a 
decrease of the fluid dissipation 𝒟𝒟, which is instead compensated by 
the increase of non-Newtonian contribution 𝒩𝒩. At small scales (large 
κ), the relative importance of the non-Newtonian contribution increases 
with BiΛ, becoming comparable to the fluid dissipation for BiΛ ≈ 2.5 and 
eventually becoming the dominant term for BiΛ ≳ 12.5, corresponding 
to the emergence of the new scaling in the energy spectrum shown in 
Fig. 2; indeed, the non-Newtonian contribution can be interpreted as 
a combination of a pure energy flux (giving rise to the new scaling 
region) and a pure dissipative term, as recently suggested by Rosti and 
others21. Regarding the direction of energy flux, Supplementary Fig. 4 
shows that we have a direct cascade of energy from large to small scales 
for all BiΛ (refs. 22,23).

We extend the analysis done in the spectral domain by computing 
the longitudinal structure functions defined as Sp(r) = 〈(Δu(r))p〉, where 
p is the order of the structure function and Δu(r) = u(x + r) − u(x) is the 
difference in the fluid velocity across a length scale r, projected in  
the direction of r. According to K41, Sp(r) ∼ (⟨ϵt⟩r)

p/3; however, when 
the structure functions are displayed as a function of r, as shown in  
Fig. 4a, they deviate from the K41 prediction as p increases. This phe-
nomenon is thought to be due to the intermittency of the flow, that is, 
extreme events that are localized in space and time, and thereby break 
Kolmogorov’s hypothesis of self-similarity in the inertial range24. 

Intermittency results in the scaling exponent of r being a nonlinear 
concave function of p (instead of p/3)25. For the EVP fluid, two scaling 
regions appear at large BiΛ, with scaling consistent with those from the 
energy spectra, and with intermittency present in both scaling regions. 
The role of intermittency in the scaling exponents can be better appre-
ciated when the structure functions are displayed in their extended 
self-similarity form, obtained by plotting one structure function 
against another26. In Fig. 4b, S4 and S6 are plotted against S2 for all Bing-
ham numbers considered. We note a clear power-law scaling, which 
deviates from Kolmogorov’s prediction, even for the BiΛ = 0 case (shown 
in black). The departure from Kolmogorov’s prediction progressively 
grows as the plasticity of the fluid increases, suggesting that the flow 
becomes more intermittent due to its plasticity. This becomes more 
obvious when we plot Sn compensated by the intermittency correction 
at BiΛ = 0 against S2 (Supplementary Fig. 5). Also, intermittency appears 
to act equally in the two scaling regions present at large BiΛ.

Intermittency originates from the multifractal nature of the turbu-
lent dissipation rate24. For Newtonian fluids, this can be quantified by 
the multifractal spectrum of the energy dissipation rate, ϵf (refs. 24,27), 
which we report in the inset of Fig. 4b. This graph demonstrates that 
F(α) is nearly identical for all BiΛ cases except for minor variations at 
small and large values of α. This implies that the fluid dissipation rate is 
not the cause of the enhanced intermittency observed in the extended 
self-similarity analysis.

In the present flow, the turbulent kinetic energy is dissipated 
by two different terms, ϵf and ϵn, as seen in Fig. 1. We thus investigate 
their respective behaviour by looking at their probability distribution 
functions (PDFs; Fig. 5). We name the non-Newtonian contribution ϵn a 
‘dissipation’ because, on average, it removes energy from the flow, giv-
ing rise to the positive-skewed distributions in Fig. 5b; however, unlike 
the fluid dissipation, it can take positive or negative values at particular 
locations in space and time. Figure 5a shows that the distribution of 
ϵf narrows as BiΛ increases28; on the other hand, from Fig. 5b, we see 
that that the distribution of ϵn substantially broadens as BiΛ increases. 
Because the non-Newtonian dissipation becomes dominant for the 
largest BiΛ (as shown in Fig. 3), we can thus infer that the extreme values 
of ϵn are indeed the source of the enhanced intermittency observed 
from the structure function analysis in Fig. 4.

Discussion
By means of unprecedented high-Reynolds-number DNS of an EVP 
fluid, we have shown that plastic effects substantially alter the classi-
cal turbulence predicted by Kolmogorov theory for Newtonian fluids.

We have proved that the non-Newtonian contribution to the 
energy balance becomes dominant at intermediate and small scales 
for large Bingham numbers, inducing the emergence of a new inter-
mediate scaling range in the energy spectra between the Kolmogorov 
inertial and dissipative ranges, where the energy spectrum decays with 
a −2.3 exponent. Interestingly, this exponent has been recently found 
for the turbulence of viscoelastic fluids at large Reynolds and Weissen-
berg numbers21,29, suggesting a possible similarity among plastic and 
elastic effects on the turbulent cascade. This similarity in the scaling 
behaviour of the two cases could be attributed to a similar interaction 
mechanism in the Navier–Stokes equation between the convective 
and extra stress terms. It is also worth noting that in the context of  
viscoelastic flows at high Weissenberg number, an exponent less than or 
equal to −3 has been widely reported in the past8; however, this is only 
found at relatively lower Reynolds number than investigated here or 
explored in recent experimental and numerical work21,29. The present 
work reports the −2.3 scaling in turbulent flows of highly plastic EVP 
fluids, and further studies on the size and distribution of the unyielded 
regions could shed more light on the origin of the newly found scaling.

We have also shown that the flow in the presence of plastic effects 
is more intermittent than in a Newtonian fluid, due to the combina-
tion of the classical intermittency originating from the multifractal 
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Fig. 3 | Scale-by-scale energy balance for different BiΛ. Plotted are the energy 
flux of the nonlinear convective term Π (dashed lines), solvent dissipation 𝒟𝒟 
(dotted lines) and the non-Newtonian contribution 𝒩𝒩 (solid lines) for BiΛ = 0 
(black), BiΛ = 2.5 (dark green), BiΛ = 12.5 (light green) and BiΛ = 25 (orange). Each 
term is normalized by the total dissipation rate 〈ϵt〉. 𝒩𝒩 grows at intermediate and 
small scales when BiΛ is increased, eventually becoming the dominant 
contribution.
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nature of the turbulent dissipation rate, which remains substantially 
unaltered, and a new plastic contribution that instead grows with the  
Bingham number. A direct consequence of this result is that intermittency  
corrections for an EVP fluid are non-universal and dependent on the 
flow configuration, differently from viscoelastic flows. These results 
are relevant for several catastrophic natural flows with high plasticity, 
such as lava flows and landslides30. Our findings explain why such flows 
are usually found to be intermittent and frequently aggressive, result-
ing in more damage. The non-universality of the flow intermittency in 
EVP fluids reflects also in an increased difficulty in their modelling.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-023-02018-2.
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Methods
Governing equations
The flow under investigation is governed by a system of a scalar, a vec-
tor and a tensorial equation—the incompressibility constraint, the 
conservation of momentum, and the constitutive equation for the 
non-Newtonian extra stress tensor, respectively. The incompressibility 
constraint and the momentum conservation equations can be written as

∇ ⋅ u = 0, (2)

ρ (∂u∂t
+ u ⋅ ∇u) = ∇p + μf∇2u + finj + fevp, (3)

where u is the fluid velocity, p is the pressure, ρ is the density and μf is the 
fluid dynamic viscosity. The term finj represents the external force used 
to sustain turbulence; here we consider the Arnold–Beltrami–Childress 
(ABC) flow with forcing

finj = iμf(A sin z/L + C cos y/L) + jμf(B sin y/L + A cos z/L)

+kμf(C sin y/L + B cos x/L),
(4)

where i, j and k are the Cartesian unit vectors, A, B and C are real param-
eters, and the flow has periodicity L in x, y and z. In our simulations, we 
choose A = B = C and use an appropriate value of μf to give a microscale 
Reynolds number ReΛ ≈ 435 for the Newtonian flow. The last term in 
equation (3) is defined as fevp ≡ ∇ ⋅ τ, where τ is the non-Newtonian extra 
stress tensor of the EVP fluid. We adopt the constitutive model pro-
posed by Saramito31 to express the evolution of the extra stress tensor, 
which can be written as

λ
∇
τ+max (0,

τd − τy
τd

) τ = μn (∇u + (∇u)T) (5)

where (∇⋅) denotes the upper convected derivative, that is, 
∇
τ = ∂τ

∂t
+ u ⋅ ∇τ − τ ⋅ ∇u − (∇u)T ⋅ τ . μn is the non-Newtonian dynamic 

viscosity, τd is the magnitude of the deviatoric part of the stress tensor 
τd ≡ τ − tr(τ)I/3 , and I is the identity tensor, that is, τd = √

1
2
(τd ∶ τd) . 

Before yielding, that is, τd ≤ τy, the model predicts only recoverable 
Kelvin–Voigt viscoelastic deformation; after yielding, that is, τd > τy, it 
predicts Oldroyd-B viscoelastic behaviour. This transition occurs in a 
continuous manner. There are other EVP models that take into account 
shear-thinning32 or thixotropic behaviour33; however, we chose the one 
described above for its simplicity and the least number of involved 
parameters. Also, this model proved able to capture the main flow 
characteristics in a turbulent channel flow16,18.

Numerical method
We use the in-house flow solver Fujin (https://groups.oist.jp/cffu/code) 
to solve the governing equations numerically on a staggered uniform 
Cartesian grid. Velocities are located on the cell faces, and pressure, 
stresses and the other material properties are located at the cell centres. 
The second-order central finite-difference scheme is used for spatial 
discretization except for the advection term that comes from the upper 
convective derivative in equation (5), where the fifth-order WENO 
(weighted essentially non-oscillatory) scheme is adopted34. The 
second-order Adams–Bashforth scheme coupled with a fractional step 
method35 is used for the time advancement of all terms except for the 
non-Newtonian extra stress tensor, which is advanced with the  
Crank–Nicolson scheme. To enforce a divergence-free velocity field, 
a fast Poisson solver based on the fast Fourier transform is used for the 
pressure. The domain decomposition library 2decomp (http://
www.2decomp.org) and the MPI protocol are used to parallelize the 
solver. The evolution equation of the extra EVP stress is formulated 
and solved using the log-conformation method36 to ensure the 
positive-definiteness of the conformation tensor. The fluid domain is 
a periodic cubic box of length L discretized using 1,024 grid points per 
side, resulting in a large grid resolution sufficient to represent the fluid 

properties at all the scales of interest with η/Δx = 𝒪𝒪(1), where η is the 
Kolmogorov length-scale, and Δx is the grid spacing.
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SUPPLEMENTARY INFORMATION

Scaling and intermittency in turbulent flows of elastoviscoplastic fluids

Mohamed S. Abdelgawad, Ianto Cannon, and Marco E. Rosti

I. SCALE-BY-SCALE ENERGY BALANCE

This section gives a derivation of equation (1) from the main article. Firstly, we perform the Fourier transform of
the Navier-Stokes equations to obtain an expression for the turbulent kinetic energy spectrum Ê(κ, t) ≡ 1

2ρ〈û∗ · û〉,
where (̂.) denotes the Fourier transform into the spectral space, κ denotes the wave vector with a magnitude κ, and
the superscript ∗ denotes the complex conjugate;

κ · û = 0, (S1)

ρ
dû

dt
+ Ĝ = −ικp̂ − µfκ

2û + f̂ inj + f̂ evp, (S2)

where Ĝ is the Fourier coefficient of the non-linear convective term appearing in Eq. (3) of the main article, and ι is
the imaginary unit. Similar equations can be obtained for the complex conjugate û∗. When Eq. (S2) is multiplied
by û∗, the pressure term −ικ · û∗p̂ vanishes due to the incompressibility constraint (Eq. (S1)), and the viscous
term −µfκ

2û · û∗ can be expressed in terms of the kinetic energy; −2µfκ
2Ê. The same holds when multiplying the

momentum equation of û∗ by û. By summing the two equations for û and û∗ and dividing by 2, we have an expression
for the time evolution of turbulent kinetic energy Ê(κ, t)

dÊ(κ)

dt
= T̂ (κ) + V̂ (κ) + F̂inj(κ) + F̂evp(κ), (S3)

where the terms on the right-hand side represent the following contributions: T̂ = − 1
2 (Ĝ · û∗ + Ĝ

∗ · û) is due to
the non-linear convective term, V̂ = −2µfκ

2Ê is due to the fluid dissipation term, F̂inj = 1
2 (f̂ inj · û∗ + f̂

∗
inj · û)

is due to the external forcing, and F̂evp = 1
2 (f̂evp · û∗ + f̂∗

evp · û) is due to the non-Newtonian stress. The one-
dimensional energy spectrum E(κ, t) can be obtained by isotropically averaging Eq. (S3) over the sphere of radius κ

(i.e., E(κ, t) =
∫∫

S(κ)
Ê(κ, t)dS(κ), where S(κ) is the sphere defined by κ · κ = κ2),

dE(κ)

dt
= T (κ) + V (κ) + Finj(κ) + Fevp(κ). (S4)

where dE
dt becomes zero for a statistically stationary flow. Integrating Eq. (S4) from κ to infinity, we obtain the

energy-transfer balance

0 = Π + D′ + Finj + N ′, (S5)

where Π(κ) ≡
∫ ∞

κ
T (κ) dκ, D′(κ) ≡

∫ ∞
κ

V (κ) dκ, Finj(κ) ≡
∫ ∞

κ
Finj(κ) dκ, and N ′(κ) ≡

∫ ∞
κ

Fevp(κ) dκ represent the
contributions to the spectral power balance from the non-linear convective, fluid dissipation, turbulence forcing, and
non-Newtonian terms, respectively. The fluid dissipation term can be expressed as D(κ) = −

∫ κ

0
V (κ) dκ = D′(κ)+〈ǫf〉,

where 〈ǫf〉 = −
∫ ∞
0

V (κ) dκ is the rate of energy dissipated by the fluid viscosity. Similarly, the non-Newtonian
contribution can be written as N (κ) = −

∫ κ

0
Fevp(κ) dκ = N ′(κ) + 〈ǫn〉, where 〈ǫn〉 = −

∫ ∞
0

Fevp(κ) dκ is the non-
Newtonian dissipation. Substituting these in Eq. (S5), we obtain the energy balance equation (Eq. (1)) used in the
main article.
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Figure E.1: On final page: render of droplets in a turbulent flow. See chapter 2 for details
of the setup.
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