Supporting Information

Synthesis of 4-Substituted-Pyridine-2,6-Dicarboxylic Acid Derivatives From Pyruvates and Aldehydes in One Pot

Pandurang V. Chouthaiwale, Sébastien Lapointe, and Fujie Tanaka*
Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan

1. General S1
2. Synthesis of 4-Substituted Pyridine-2,6-Dicarboxylic Acid Esters 1 S2
3. Transformation of $\mathbf{1}$ to 4-Substituted Pyridine-2,6-Dicarboxylic Acids $\mathbf{3}$ S5
4. Transformation of $\mathbf{1 g}$ to $\mathbf{4}$ and $\mathbf{5}$ S5
5. References S6
6. NMR Spectra S7

1. General

For thin layer chromatography (TLC), Merck Silica gel 60 F254 aluminum sheets were used. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker Avance 400. Proton chemical shifts are reported in ppm downfield from tetramethylsilane or from the residual solvent as internal standard in $\mathrm{CDCl}_{3}(\delta 7.26 \mathrm{ppm})$ and in $\mathrm{CD}_{3} \mathrm{OD}(\delta 3.31 \mathrm{ppm})$. Carbon chemical shifts were internally referenced to the deuterated solvent signals in $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$ and in $\mathrm{CD}_{3} \mathrm{OD}(\delta$ 49.0 ppm). High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap ESI ion trap mass spectrometer.

2. Synthesis of 4-Substituted Pyridine-2,6-Dicarboxylic Acid Esters 1

Procedure for the Synthesis of Dihydropyran Derivative 2a (Table 1, entry 7)

To a solution of 4-nitrobenzaldehyde ($75.5 \mathrm{mg}, 0.50 \mathrm{mmol}$) and ethyl pyruvate ($166.7 \mu \mathrm{~L}, 1.50$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.50 \mathrm{~mL})$, acetic acid ($28.6 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) and pyrrolidine ($16.5 \mu \mathrm{~L}, 0.20$ $\mathrm{mmol})$ were added at room temperature $\left(25{ }^{\circ} \mathrm{C}\right)$. The mixture was stirred at the same temperature for 24 h . The mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (4 mL) and extracted with EtOAc ($15 \mathrm{~mL} x \mathrm{3}$). Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc $=7: 3$) to afford $\mathbf{2 a}^{1}$ ($111.4 \mathrm{mg}, 61 \%$).

General Procedure for the Synthesis of 4-Substituted Pyridine-2,6-Dicarboxylic Acid Esters 1 from Aldehyde and Pyruvate in One Pot (Table 3)

To a solution of aldehyde (1.0 mmol) and ethyl pyravate (3.0 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$, acetic acid (1.0 mmol) and pyrrolidine $(0.4 \mathrm{mmol})$ were added at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and the mixture was stirred at the same temperature. After $30 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{OAc}(3.0 \mathrm{mmol})$ and acetic acid (1.0 mmol) was added to the mixture and the resulting mixture was stirred at the same temperature for 24 h . The mixture was poured into saturated aqueous NaHCO_{3} solution (5.0 mL) and extracted with EtOAc ($30 \mathrm{~mL} x \mathrm{3}$). Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc) to afford 1.

Compounds $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c}, \mathbf{1 i}$, and $\mathbf{1 k}$ were previously reported. ${ }^{1}$

Diethyl 4-(4-fluorophenyl) pyridine-2, 6-dicarboxylate (1d)

Flash column chromatography (hexane/EtOAc $=7: 3$); colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46(\mathrm{~s}, 2 \mathrm{H}), 7.75$ (dd, $J=$ $8.8 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) 4.52(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 1.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $164.8,164.0\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=249 \mathrm{~Hz}\right), 149.9,149.4,132.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=3 \mathrm{~Hz}\right.$,), $129.1\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=9 \mathrm{~Hz},\right), 125.3,116.5\left(\mathrm{~d}, J_{\mathrm{C}, \mathrm{F}}=22 \mathrm{~Hz}\right), 62.5,14.3$. ESI-HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~F}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$318.1136, found 318.1138.

Diethyl 4-(4-(trifluoromethyl)phenyl)pyridine-2,6-dicarboxylate (1e)

Flash column chromatography (hexane/EtOAc $=7: 3$); colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.49(\mathrm{~s}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $1.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.6$, $149.6,149.5,140.0,132.0\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=33 \mathrm{~Hz}\right.$, $) 127.6,126.3\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=\right.$ 4 Hz,), 125.6, $123.7\left(\mathrm{q}, J_{\mathrm{C}, \mathrm{F}}=271 \mathrm{~Hz}\right), 62.5,14.2$. ESI-HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~F}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 368.1104$, found 368.1090.

Diethyl 4-(4-cyanophenyl)pyridine-2,6-dicarboxylate (1f)

Flash column chromatography (hexane/EtOAc $=7: 3$); pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.49(\mathrm{~s}, 2 \mathrm{H})$, $7.87-7.83(\mathrm{~m}, 4 \mathrm{H}), 4.53(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.48(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.4,149.7,148.9$, $140.8,133.1,127.9,125.4,118.0,113.8,62.6,14.2$. ESIHRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$325.1183, found 325.1186.

Diethyl 4-(4-ethynylphenyl)pyridine-2,6-dicarboxylate (1g)
Flash column chromatography (hexane/EtOAc $=4: 1$); colorless
 solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.49(\mathrm{~s}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.7,149.9,149.4,136.6,133.0,127.1,125.3$, 124.0, 82.7, 79.4, 62.5, 14.2. ESI-HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{\dagger}\right) 324.1230$, found 324.1234 .

Diethyl 4-(naphthalen-1-yl)pyridine-2,6-dicarboxylate (1h)

Flash column chromatography (hexane/EtOAc $=4: 1$); pale yellow gum. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~s}, 2 \mathrm{H})$, 7.98-7.94 (m, 2H), 7.73 (dd, $J=8.0 \mathrm{~Hz}, 0.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60-7.46$ $(\mathrm{m}, 4 \mathrm{H}), 4.52(\mathrm{q}, J=7.2, \mathrm{~Hz}, 4 \mathrm{H}), 1.47(\mathrm{t}, J=7.2, \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.7,151.4,148.9,135.6$, 133.7, 130.4, 129.7, 128.9, 128.7, 127.3, 127.2, 126.4, 125.3, 124.5, 62.4, 14.2. ESI-HRMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 350.1387$, found 350.1388 .

Diethyl 4-(thiophen-2-yl)pyridine-2,6-dicarboxylate (1j)

Flash column chromatography (hexane $/ \mathrm{EtOAc}=7: 3$); colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.42(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J$ $=3.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=5.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.48(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.7$, 149.3, 144.0, 139.4, 128.8, 128.7, 126.8, 123.5, 62.4, 14.2. ESI-HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 306.0795$, found 306.0797.

Diethyl 4-cyclopentylpyridine-2,6-dicarboxylate (11)

Flash column chromatography (hexane/EtOAc $=4: 1$); colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.13(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.17-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.81$ (m, 2H), 1.81-1.59 (m, 4H), $1.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.0,158.6,148.5,126.7,62.2$, 45.2, 34.0, 25.5, 14.2. ESI-HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 292.1543$, found 292.1545

Diethyl 4-bicyclo[2.2.1]hept-5-en-2-yl)pyridine-2,6-dicarboxylate (1m)

Compound $\mathbf{1 m}$ was synthesized using 5 -norbornene-2carboxaldehyde (isomers mixture). Flash column chromatography (hexane/EtOAc $=4: 1$); $\mathrm{dr}=1: 0.4$; colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}$, $2 \mathrm{H} \mathrm{x} 0.4 / 1.4$), $8.02(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 2 \mathrm{H} \times 1.0 / 1.4), 6.33(\mathrm{dd}, J=$ $5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H} x 1.0 / 1.4), 6.26(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}$, $1 \mathrm{H} \times 0.4 / 1.4), 6.22(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H} \times 0.4 / 1.4)$, $5.72(\mathrm{dd}, J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{Hx} 1.0 / 1.4), 4.48(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H} \times 0.4 / 1.4), 4.46(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 4 \mathrm{H} \times 1.0 / 1.4), 3.50(\mathrm{dt}, J=9.6 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H} \times 1.0 / 1.4), 3.20-3.16(\mathrm{~m}, 1 \mathrm{H} x 1.0 / 1.4)$, 3.06-3.00 (m, 1H x 1.0/1.4 + 2H x 0.4/1.4), $2.81(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H} \times 0.4 / 1.4), 2.26$ (ddd, $J=11.6 \mathrm{~Hz}, 9.6 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H} \times 1.0 / 1.4$), $1.80-1.37$ (m, $3 \mathrm{H} \times 1.0 / 1.4+4 \mathrm{H} \times 0.4 / 1.4$), $1.45(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H} \times 0.4 / 1.4), 1.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H} \times 1.0 / 1.4) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 165.13,165.10,158.5,157.3,148.6,148.1,138.4,138.0,136.7,131.9,127.6,127.1$, $62.3,62.2,50.3,48.5,47.8,45.8,43.7,43.5,43.2,42.5,33.6,32.5,14.2$. ESI-HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$316.1543, found 316.1548 .

Diethyl 4-(dimethoxymethyl)pyridine-2,6-dicarboxylate (1n) ${ }^{1}$

During the synthesis of $\mathbf{1 n}$ ($\operatorname{Rf} 0.33$, hexane/EtOAc $=7: 3$), formation of diethyl 4-(dimethoxymethyl)-1,4-dihydropyridine-2,6-dicarboxylate ($\operatorname{Rf} 0.67$, hexane/EtOAc $=7: 3$) was observed. The dihydropyridine derivative was easily air-oxidized by usual handling under air. When the dihydropyridine derivative was isolated by flash column chromatography and concentrated, the fractions were completely converted to $\mathbf{1 n}$ after 1day.

A 5 mmol-Scale Reaction to Afford $\mathbf{1 g}$

To a solution of 4-ethynylbenzaldehyde ($650.7 \mathrm{mg}, 5.00 \mathrm{mmol}$) and ethyl pyravate (1.66 mL , 15.0 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$, acetic acid ($286 \mu \mathrm{~L}, 5.00 \mathrm{mmol}$) and pyrrolidine ($164.5 \mu \mathrm{~L}$, $2.00 \mathrm{mmol})$ were added at room temperature $\left(25^{\circ} \mathrm{C}\right)$ and the mixture was stirred at the same temperature. After $30 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{OAc}(1.16 \mathrm{~g}, 15.0 \mathrm{mmol})$ and acetic acid ($286 \mu \mathrm{~L}, 5.00 \mathrm{mmol}$) were added to the mixture and the resulting mixture was stirred at the same temperature for 24 h. The mixture was poured into saturated aqueous NaHCO_{3} solution and extracted with EtOAc ($100 \mathrm{~mL} x$ 3). Organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc $=4: 1$) to give $\mathbf{1 g}$ ($726.7 \mathrm{mg}, 45 \%$).

3. Transformation of 1 to 4-Substituted Pyridine-2,6-Dicarboxylic Acids 3

General Procedure for the Hydrolysis of 1 to Afford 3 (Scheme 3)

A mixture of compound $\mathbf{1}(0.5 \mathrm{mmol})$ and 3 M KOH solution in $\mathrm{EtOH}(6.25 \mathrm{~mL})$ was refluxed for 2 h under nitrogen. ${ }^{2}$ After being cooled to room temperature, EtOH was partly evaporated under vacuum. The mixture was diluted with water and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 2)$. The aqueous phase was adjusted to be pH 2.0-2.5 with aqueous HCl solution and concentrated under vacuum until solid was started to generate. The mixture was stored at $5^{\circ} \mathrm{C}$ for 14 h and generated solid was collected by filtration to give 3 .

4-Cyclohexylpyridine-2,6-dicarboxylic acid (3k)

Colorless solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.18$ (s, 2H),
 2.83-2.74 (m, 1H), 1.98-1.86 (m, 4H), 1.83-1.76 (m, 1H), 1.60$1.43(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 167.9,162.8,149.6,126.9,45.3,34.5,27.5,26.9$. ESI-HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 250.1074$, found 250.1075.

4-Bicyclo[2.2.1]hept-5-en-2-yl)pyridine-2,6-dicarboxylic acid (3m)

Colorless solid, $\mathrm{dr}=1: 0.4 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 8.25 ($\mathrm{s}, 2 \mathrm{H} \times 0.4 / 1.4$), 8.11 ($\mathrm{s}, 2 \mathrm{H} \times 1.0 / 1.4$), 6.36 (dd, $J=5.6$ $\mathrm{Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H} x 1.0 / 1.4), 6.31$ (dd, $J=5.6 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{Hx}$ $0.4 / 1.4$), 6.24 (dd, $J=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H} x 0.4 / 1.4$), 5.74 (dd, J $=5.6 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H} x 1.0 / 1.4), 3.62(\mathrm{dt}, J=9.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H}$ x 1.0/1.4), $3.21-3.17(\mathrm{~m}, 1 \mathrm{H} \times 1.0 / 1.4), 3.06-3.00(\mathrm{~m}, 1 \mathrm{H} \times$ $1.0 / 1.4+2 \mathrm{H} \times 0.4 / 1.4), 2.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H} \times 0.4 / 1.4), 2.32$ (ddd, $J=12.0 \mathrm{~Hz}, 9.2 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H} x 1.0 / 1.4$), $1.80-1.76$ (m, 2H x 0.4/1.4) 1.60-1.48 (m, 2H), 1.40 (ddd, $J=12.0 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H} \times 1.0 / 1.4) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta$ $167.5,167.4,161.4,160.3,148.8,148.2,139.6,138.9,137.9,132.9,128.6,128.1,51.3,49.9$, 46.6, 44.8, 44.6, 43.8, 34.7, 33.4. ESI-HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$260.0917, found 260.0924 .

4. Transformation of 1 g to 4 and 5

Tansformation of 1 g to 4

To a solution of $\mathbf{1 g}(210.2 \mathrm{mg}, 0.65 \mathrm{mmol})$ in EtOH (4.0 mL), $\mathrm{NaBH}_{4}(29.5 \mathrm{mg}, 0.78 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for $2 \mathrm{~h} .^{3}$ The mixture was neutralized with 1 N HCl , and concentrated under vacuum. The residue was partitioned between saturated aqueous NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were combined, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash column chromatography (hexane/EtOAc $=2: 3$) to give $4(110.0 \mathrm{mg}, 60 \%)$ as colorless solid. Starting material $1 \mathrm{~g}(60.0 \mathrm{mg}, 29 \%)$ was
recovered.

Ethyl 4-(4-ethynylphenyl)-6-(hydroxymethyl)pyridine-2-carboxylate (4)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}$,
 $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 1.45(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.1,161.0$, $149.4,148.2,137.5,132.9,127.0,123.6,121.7,121.3,82.9,79.1$, 64.7, 62.1, 14.3. ESI-HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 282.1125, found 282.1127 .

Transformation of 4 to 5

A mixture of $4(76.9 \mathrm{mg}, 0.27 \mathrm{mmol})$ and $\mathrm{MnO}_{2}(235.0 \mathrm{mg}, 2.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred under nitrogen at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for 15 h . The mixture was filtered through celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated and purified by flash column chromatography (hexane/EtOAc $=4: 1$) to give $5(49.0 \mathrm{mg}, 65 \%)$ as colorless solid.

Ethyl 4-(4-ethynylphenyl)-6-formylpyridine-2-carboxylate (5)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.24(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=1.8$
 $\mathrm{Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4, \mathrm{~Hz}, 2 \mathrm{H})$, $7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H})$, $1.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.7$, 164.4, 153.5, 150.1, 149.7, 136.4, 133.1, 127.1, 126.4, 124.3, 121.5, 82.7, 79.5, 62.5, 14.3. ESI-HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 280.0968$, found 280.0973 .

5. References

1. P. V. Chouthaiwale, F. Tanaka, Chem. Commun. 2014, 50, 14881-14884.
2. N. Ouali, B. Bocquet, S. Rigault, P.-Y. Morgantini, J. Weber, C. Piguet, Inorg. Chem. 2002, 41, 1436-1445.
3. A. Suga, T. Sugiyama, M. Otsuka, M. Ohno, Y. Sugiura, K. Maeda, Tetrahedron 1991, 47, 1191-1204.

(

10	9	8	7	6	5	4	3	2	1	0

