Supporting Information

Synthesis of 4-Substituted-Pyridine-2,6-Dicarboxylic Acid Derivatives From Pyruvates and Aldehydes in One Pot

Pandurang V. Chouthaiwale, Sébastien Lapointe, and Fujie Tanaka*

Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan

1.	General	S 1
2.	Synthesis of 4-Substituted Pyridine-2,6-Dicarboxylic Acid Esters 1	S2
3.	Transformation of 1 to 4-Substituted Pyridine-2,6-Dicarboxylic Acids 3	S5
4.	Transformation of 1g to 4 and 5	S5
5.	References	S6
6.	NMR Spectra	S7

1. General

For thin layer chromatography (TLC), Merck Silica gel 60 F254 aluminum sheets were used. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). ¹H NMR and ¹³C NMR were recorded on a Bruker Avance 400. Proton chemical shifts are reported in ppm downfield from tetramethylsilane or from the residual solvent as internal standard in CDCl₃ (δ 7.26 ppm) and in CD₃OD (δ 3.31 ppm). Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl₃ (δ 77.0 ppm) and in CD₃OD (δ 49.0 ppm). High-resolution mass spectra were recorded on a Thermo Scientific LTQ Orbitrap ESI ion trap mass spectrometer.

2. Synthesis of 4-Substituted Pyridine-2,6-Dicarboxylic Acid Esters 1

Procedure for the Synthesis of Dihydropyran Derivative 2a (Table 1, entry 7)

To a solution of 4-nitrobenzaldehyde (75.5 mg, 0.50 mmol) and ethyl pyruvate (166.7 μ L, 1.50 mmol) in CH₃CN (0.50 mL), acetic acid (28.6 μ L, 0.50 mmol) and pyrrolidine (16.5 μ L, 0.20 mmol) were added at room temperature (25 °C). The mixture was stirred at the same temperature for 24 h. The mixture was poured into saturated NH₄Cl solution (4 mL) and extracted with EtOAc (15 mL x 3). Organic layers were combined, dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc = 7:3) to afford **2a**¹ (111.4 mg, 61%).

General Procedure for the Synthesis of 4-Substituted Pyridine-2,6-Dicarboxylic Acid Esters 1 from Aldehyde and Pyruvate in One Pot (Table 3)

To a solution of aldehyde (1.0 mmol) and ethyl pyravate (3.0 mmol) in CH₃CN (1.0 mL), acetic acid (1.0 mmol) and pyrrolidine (0.4 mmol) were added at room temperature (25 °C) and the mixture was stirred at the same temperature. After 30 h, NH₄OAc (3.0 mmol) and acetic acid (1.0 mmol) was added to the mixture and the resulting mixture was stirred at the same temperature for 24 h. The mixture was poured into saturated aqueous NaHCO₃ solution (5.0 mL) and extracted with EtOAc (30 mL x 3). Organic layers were combined, dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc) to afford 1.

Compounds 1a, 1b, 1c, 1i, and 1k were previously reported.¹

Diethyl 4-(4-fluorophenyl) pyridine-2, 6-dicarboxylate (1d)

Flash column chromatography (hexane/EtOAc = 7:3); colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 8.46 (s, 2H), 7.75 (dd, *J* = 8.8 Hz, 5.2 Hz, 2H), 7.23 (t, *J* = 8.8 Hz, 2H) 4.52 (q, *J* = 7.2 Hz, 4H), 1.48 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.8, 164.0 (d, *J*_{C,F} = 249 Hz), 149.9, 149.4, 132.5 (d, *J*_{C,F} = 3 Hz,), 129.1 (d, *J*_{C,F} = 9 Hz,), 125.3, 116.5 (d, *J*_{C,F} = 22 Hz), 62.5, 14.3. ESI-HRMS: calcd for C₁₇H₁₇NO₄F ([M+H]⁺) 318.1136, found 318.1138.

Diethyl 4-(4-(trifluoromethyl)phenyl)pyridine-2,6-dicarboxylate (1e)

Flash column chromatography (hexane/EtOAc = 7:3); colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 8.49 (s, 2H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.79 (d, *J* = 8.2 Hz, 2H), 4.52 (q, *J* = 7.2 Hz, 4H), 1.46 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.6, 149.6, 149.5, 140.0, 132.0 (q, *J*_{C,F} = 33 Hz,) 127.6, 126.3 (q, *J*_{C,F} = 4 Hz,), 125.6, 123.7 (q, *J*_{C,F} = 271 Hz), 62.5, 14.2. ESI-HRMS: calcd for C₁₈H₁₇NO₄F₃ ([M+H]⁺) 368.1104, found 368.1090.

Diethyl 4-(4-cyanophenyl)pyridine-2,6-dicarboxylate (1f)

Flash column chromatography (hexane/EtOAc = 7:3); pale yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.49 (s, 2H), 7.87-7.83 (m, 4H), 4.53 (q, *J* = 7.2 Hz, 4H), 1.48 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.4, 149.7, 148.9, 140.8, 133.1, 127.9, 125.4, 118.0, 113.8, 62.6, 14.2. ESI-HRMS: calcd for C₁₈H₁₇N₂O₄ ([M+H]⁺) 325.1183, found 325.1186.

Diethyl 4-(4-ethynylphenyl)pyridine-2,6-dicarboxylate (1g)

Flash column chromatography (hexane/EtOAc = 4:1); colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 8.49 (s, 2H), 7.73 (d, *J* = 8.6 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 2H), 4.52 (q, *J* = 7.2 Hz, 4H), 3.22 (s, 1H), 1.48 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 149.9, 149.4, 136.6, 133.0, 127.1, 125.3, 124.0, 82.7, 79.4, 62.5, 14.2. ESI-HRMS: calcd for C₁₉H₁₈NO₄ ([M+H]⁺) 324.1230, found 324.1234.

Diethyl 4-(naphthalen-1-yl)pyridine-2,6-dicarboxylate (1h)

Flash column chromatography (hexane/EtOAc = 4:1); pale yellow gum. ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 2H), 7.98-7.94 (m, 2H), 7.73 (dd, *J* = 8.0 Hz, 0.4 Hz, 1H), 7.60-7.46 (m, 4H), 4.52 (q, *J* = 7.2, Hz, 4H), 1.47 (t, *J* = 7.2, Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 151.4, 148.9, 135.6, 133.7, 130.4, 129.7, 128.9, 128.7, 127.3, 127.2, 126.4, 125.3, 124.5, 62.4, 14.2. ESI-HRMS: calcd for C₂₁H₂₀NO₄ ([M+H]⁺) 350.1387, found 350.1388.

Diethyl 4-(thiophen-2-yl)pyridine-2,6-dicarboxylate (1j)

Flash column chromatography (hexane/EtOAc = 7:3); colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 2H), 7.68 (dd, *J* = 3.6 Hz, 1.2 Hz, 1H), 7.50 (dd, *J* = 5.0 Hz, 1.2 Hz, 1H), 7.18 (dd, *J* = 5.0 Hz, 3.6 Hz, 1H), 4.51 (q, *J* = 7.2 Hz, 4H), 1.48 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 149.3, 144.0, 139.4, 128.8, 128.7, 126.8, 123.5, 62.4, 14.2. ESI-HRMS: calcd for C₁₅H₁₆NO₄S ([M+H]⁺) 306.0795, found 306.0797.

Diethyl 4-cyclopentylpyridine-2,6-dicarboxylate (11)

Flash column chromatography (hexane/EtOAc = 4:1); colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 2H), 4.47 (q, *J* = 7.2 Hz, 4H), 3.17-3.08 (m, 1H), 2.19-2.12 (m, 2H), 1.92-1.81 (m, 2H), 1.81-1.59 (m, 4H), 1.45 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 165.0, 158.6, 148.5, 126.7, 62.2, 45.2, 34.0, 25.5, 14.2. ESI-HRMS: calcd for C₁₆H₂₂NO₄ ([M+H]⁺) 292.1543, found 292.1545

Diethyl 4-bicyclo[2.2.1]hept-5-en-2-yl)pyridine-2,6-dicarboxylate (1m)

Compound **1m** was synthesized using 5-norbornene-2carboxaldehyde (isomers mixture). Flash column chromatography (hexane/EtOAc = 4:1); dr = 1: 0.4; colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 8.16 (d, J = 0.8 Hz, 2H x 0.4/1.4), 8.02 (d, J = 0.4 Hz, 2H x 1.0/1.4), 6.33 (dd, J = 5.6 Hz, 3.2 Hz, 1H x 1.0/1.4), 6.26 (dd, J = 5.6 Hz, 3.2 Hz, 1H x 0.4/1.4), 6.22 (dd, J = 5.6 Hz, 2.8 Hz, 1H x 0.4/1.4),

5.72 (dd, J = 5.6 Hz, 2.8 Hz, 1H x 1.0/1.4), 4.48 (q, J = 7.2 Hz, 4H x 0.4/1.4), 4.46 (q, J = 7.2 Hz, 4H x 1.0/1.4), 3.50 (dt, J = 9.6 Hz, 4.0 Hz, 1H x 1.0/1.4), 3.20-3.16 (m, 1H x 1.0/1.4), 3.06-3.00 (m, 1H x 1.0/1.4 + 2H x 0.4/1.4), 2.81 (dd, J = 8.4 Hz, 5.2 Hz, 1H x 0.4/1.4), 2.26 (ddd, J = 11.6 Hz, 9.6 Hz, 4.0 Hz, 1H x 1.0/1.4), 1.80-1.37 (m, 3H x 1.0/1.4 + 4H x 0.4/1.4), 1.45 (t, J = 7.2 Hz, 6H x 0.4/1.4), 1.44 (t, J = 7.2 Hz, 6H x 1.0/1.4). ¹³C NMR (100 MHz, CDCl₃): δ 165.13, 165.10, 158.5, 157.3, 148.6, 148.1, 138.4, 138.0, 136.7, 131.9, 127.6, 127.1, 62.3, 62.2, 50.3, 48.5, 47.8, 45.8, 43.7, 43.5, 43.2, 42.5, 33.6, 32.5, 14.2. ESI-HRMS: calcd for C₁₈H₂₂NO₄ ([M+H]⁺) 316.1543, found 316.1548.

Diethyl 4-(dimethoxymethyl)pyridine-2,6-dicarboxylate (1n)¹

During the synthesis of 1n (Rf 0.33, hexane/EtOAc = 7:3), formation of diethyl 4-(dimethoxymethyl)-1,4-dihydropyridine-2,6-dicarboxylate (Rf 0.67, hexane/EtOAc = 7:3) was observed. The dihydropyridine derivative was easily air-oxidized by usual handling under air. When the dihydropyridine derivative was isolated by flash column chromatography and concentrated, the fractions were completely converted to 1n after 1day.

A 5 mmol-Scale Reaction to Afford 1g

To a solution of 4-ethynylbenzaldehyde (650.7 mg, 5.00 mmol) and ethyl pyravate (1.66 mL, 15.0 mmol) in CH₃CN (5.0 mL), acetic acid (286 μ L, 5.00 mmol) and pyrrolidine (164.5 μ L, 2.00 mmol) were added at room temperature (25 °C) and the mixture was stirred at the same temperature. After 30 h, NH₄OAc (1.16 g, 15.0 mmol) and acetic acid (286 μ L, 5.00 mmol) were added to the mixture and the resulting mixture was stirred at the same temperature for 24 h. The mixture was poured into saturated aqueous NaHCO₃ solution and extracted with EtOAc (100 mL x 3). Organic layers were combined, dried over Na₂SO₄, filtered, concentrated, and purified by flash column chromatography (hexane/EtOAc = 4:1) to give **1g** (726.7 mg, 45%).

3. Transformation of 1 to 4-Substituted Pyridine-2,6-Dicarboxylic Acids 3

General Procedure for the Hydrolysis of 1 to Afford 3 (Scheme 3)

A mixture of compound 1 (0.5 mmol) and 3 M KOH solution in EtOH (6.25 mL) was refluxed for 2 h under nitrogen.² After being cooled to room temperature, EtOH was partly evaporated under vacuum. The mixture was diluted with water and washed with CH_2Cl_2 (10 mL x 2). The aqueous phase was adjusted to be pH 2.0-2.5 with aqueous HCl solution and concentrated under vacuum until solid was started to generate. The mixture was stored at 5 °C for 14 h and generated solid was collected by filtration to give **3**.

4-Cyclohexylpyridine-2,6-dicarboxylic acid (3k)

Colorless solid. ¹H NMR (400 MHz, CD₃OD): δ 8.18 (s, 2H), 2.83-2.74 (m, 1H), 1.98-1.86 (m, 4H), 1.83-1.76 (m, 1H), 1.60-1.43 (m, 4H), 1.41-1.28 (m, 1H). ¹³C NMR (100 MHz, CD₃OD): δ 167.9, 162.8, 149.6, 126.9, 45.3, 34.5, 27.5, 26.9. ESI-HRMS: calcd for C₁₃H₁₆NO₄ ([M+H]⁺) 250.1074, found 250.1075.

4-Bicyclo[2.2.1]hept-5-en-2-yl)pyridine-2,6-dicarboxylic acid (3m)

Colorless solid, dr = 1: 0.4. ¹H NMR (400 MHz, CD₃OD) δ 8.25 (s, 2H x 0.4/1.4), 8.11 (s, 2H x 1.0/1.4), 6.36 (dd, J = 5.6 Hz, 3.2 Hz, 1H x 1.0/1.4), 6.31 (dd, J = 5.6 Hz, 3.2 Hz, 1H x 0.4/1.4), 6.24 (dd, J = 5.6 Hz, 2.8 Hz, 1H x 0.4/1.4), 5.74 (dd, J = 5.6 Hz, 2.8 Hz, 1H x 0.4/1.4), 5.74 (dd, J = 5.6 Hz, 2.8 Hz, 1H x 1.0/1.4), 3.62 (dt, J = 9.2 Hz, 4.0 Hz, 1H x 1.0/1.4), 3.21-3.17 (m, 1H x 1.0/1.4), 3.06-3.00 (m, 1H x 1.0/1.4 + 2H x 0.4/1.4), 2.89 (t, J = 7.0 Hz, 1H x 0.4/1.4), 2.32

(ddd, J = 12.0 Hz, 9.2 Hz, 4.0 Hz, 1H x 1.0/1.4), 1.80-1.76 (m, 2H x 0.4/1.4) 1.60-1.48 (m, 2H), 1.40 (ddd, J = 12.0 Hz, 4.4 Hz, 2.0 Hz, 1H x 1.0/1.4). ¹³C NMR (100 MHz, CD₃OD): δ 167.5, 167.4, 161.4, 160.3, 148.8, 148.2, 139.6, 138.9, 137.9, 132.9, 128.6, 128.1, 51.3, 49.9, 46.6, 44.8, 44.6, 43.8, 34.7, 33.4. ESI-HRMS: calcd for C₁₄H₁₄NO₄ ([M+H]⁺) 260.0917, found 260.0924.

4. Transformation of 1g to 4 and 5

Tansformation of 1g to 4

To a solution of **1g** (210.2 mg, 0.65 mmol) in EtOH (4.0 mL), NaBH₄ (29.5 mg, 0.78 mmol) was added at 0 °C and the mixture was stirred at the same temperature for 2 h.³ The mixture was neutralized with 1 N HCl, and concentrated under vacuum. The residue was partitioned between saturated aqueous NaHCO₃ and CH₂Cl₂. The aqueous layer was further extracted with CH₂Cl₂. Organic layers were combined, washed with water and brine, dried over Na₂SO₄, concentrated, and purified by flash column chromatography (hexane/EtOAc = 2:3) to give **4** (110.0 mg, 60%) as colorless solid. Starting material **1g** (60.0 mg, 29%) was

recovered.

Ethyl 4-(4-ethynylphenyl)-6-(hydroxymethyl)pyridine-2-carboxylate (4)

¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, *J* = 1.6 Hz, 1H), 7.72 (d, *J* = 1.6 Hz, 1H), 7.66 (d, *J* = 8.6 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 2H), 4.92 (s, 2H), 4.49 (q, *J* = 7.2 Hz, 2H), 3.20 (s, 1H), 1.45 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 165.1, 161.0, 149.4, 148.2, 137.5, 132.9, 127.0, 123.6, 121.7, 121.3, 82.9, 79.1, 64.7, 62.1, 14.3. ESI-HRMS: calcd for C₁₇H₁₆NO₃ ([M+H]⁺) 282.1125, found 282.1127.

Transformation of 4 to 5

A mixture of 4 (76.9 mg, 0.27 mmol) and MnO_2 (235.0 mg, 2.70 mmol) in CH_2Cl_2 (1.0 mL) was stirred under nitrogen at room temperature (25 °C) for 15 h. The mixture was filtered through celite and washed with CH_2Cl_2 . The filtrate was concentrated and purified by flash column chromatography (hexane/EtOAc = 4:1) to give 5 (49.0 mg, 65%) as colorless solid.

Ethyl 4-(4-ethynylphenyl)-6-formylpyridine-2-carboxylate (5)

¹H NMR (400 MHz, CDCl₃): δ 10.24 (s, 1H), 8.54 (d, J = 1.8 Hz, 1H), 8.33 (d, J = 1.8 Hz, 1H), 7.72 (d, J = 8.4, Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 4.56 (q, J = 7.2 Hz, 2H), 3.22 (s, 1H), 1.49 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 192.7, 164.4, 153.5, 150.1, 149.7, 136.4, 133.1, 127.1, 126.4, 124.3, 121.5, 82.7, 79.5, 62.5, 14.3. ESI-HRMS: calcd for C₁₇H₁₄NO₃ ([M+H]⁺) 280.0968, found 280.0973.

5. References

- 1. P. V. Chouthaiwale, F. Tanaka, Chem. Commun. 2014, 50, 14881-14884.
- N. Ouali, B. Bocquet, S. Rigault, P.-Y. Morgantini, J. Weber, C. Piguet, *Inorg. Chem.* 2002, 41, 1436-1445.
- 3. A. Suga, T. Sugiyama, M. Otsuka, M. Ohno, Y. Sugiura, K. Maeda, *Tetrahedron* 1991, 47, 1191-1204.

180	160	1	40	120	100	80	60	40	20	ppm	
 			· · ·			· · · · ·		·		PC	1.40
 								* · · · · · · · · · · · · · · · · · · ·		LB	1.00 Hz
										SSB	0
										Sr WDW	IUU.6IZ/690 MHZ EM
	1			1						SI	32768
										F2 - Pro	cessing parameters
										LTWITS	0.20122000 M
							1			PLWIZ PT.W1 2	0.28125000 W 0.28125000 W
										PLW2	8.00000000 W
										PCPD2	80.00 usec
										CPDPRG [2	waltz16
										NUC2	400.1316005 MHZ 1H
										======= CEC2	CHANNEL f2 =======
			iu.							PLW1	70.00000000 W
			0 14	0						P1	10.00 USAC
			II ' `							SFU1 NUC1	13C
		EIU.		\sim	_L					======= (IDO1	CHANNEL f1 =======
		EtO			=+						-
				7						TDO	1
			\downarrow							D11	0.03000000 sec
			Ť							TE D1	300.0 K
			<u>ــــــــــــــــــــــــــــــــــــ</u>	7						DE	6.50 usec
										DW	20.800 usec
				5						RG	195.88
						1				PIDRES ZO	U.300790 HZ 1 3631488 gec
			Ę							SWH	24038.461 Hz
										DS	4
										NS	1500
										SOLVENT	CDC13
										PULPROG TD	zgpg3U 65526
										PROBHD	5 mm PABBO BB/
										INSTRUM	spect
	Ϋ́́	١ŕ	N Y Y	Y		¥				Time	12.27
	$\langle \rangle$	$\langle \rangle$		/ \/						Date Date	20160804
	 	14				222	9		1,	E2 - Acco	igition Darameters
	0.4.0 10.4.0	. 6 1 0 .		го. Го.			4.			PROCNO	1
	26 78 77	8 0 9 0	0 1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 C 7 0		Ω <u>Η</u> Ω			Ω.	EXPNO	20
										NAME	Aug04-2016
										Current 1	lata Parameterg

											Curren NAME EXPNO	t Data Parameters FT-SL19-13C400crystalCDCl3
		164.47	149.75 148.91 140.83	133.12 127.95 125.45	118.01 		77.32 77.00 76.68	62.60			F2 - Ad Date Time PROBHD PROBHD PULPRO TD SOLVEN'	1 20151214 23.06 M spect 5 mm PABBO BB/ 3 z9pg30 65536 T CDC13
					C	N					NS DS SWH FIDRES AQ RG DW DE TE D1 D1 D11 TD0	1024 4 24038.461 Hz 0.366798 Hz 1.3631488 sec 195.88 20.800 usec 6.50 usec 300.8 K 2.0000000 sec 0.0300000 sec 1
				EtO	N O 1f		DEt				SF01 P1 P1W1 SF02 NUC2 CPDPRG PCPD2 P1W2 P1W12 P1W13	== CHANNEL f1 ====== 100.6228293 MHz 13C 10.00 usec 70.0000000 W == CHANNEL f2 ====== 400.1316005 MHz 1H [2 waltz16 80.00 usec 8.0000000 W 0.28125000 W 0.28125000 W
						international statements			streemie Williams Surgers and passes		F2 - P: SI SF WDW SSB LB GB FC	rocessing parameters 32768 100.6127686 MHz EM 0 1.00 Hz 0 1.40
200	180	160	140) 1:	20	100	80	60	40	20	ppm	

200

200

