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Abstract

In this thesis, I present the work I did in my PhD in the field of quantum thermodynamics.
The aim of this work is to explore quantum engines that can exploit the great tunability of
cold atomic systems as the working medium. The thesis is divided into two parts. In the
first part, I study the thermodynamics of one-dimensional interacting systems to use them
for designing quantum engines. It consists of two research projects. In the first project, I
explore anomalous heat flows between two strongly correlated particles and discuss the per-
spective of using it to realize a quantum fridge. In the second project, I study a quantum heat
engine where the work extraction is assisted by changing the interaction within the working
medium. In the second part of my thesis, I focus on controlling open quantum systems for
optimizing the performance of quantum engines. The quantum Brownian motion has been
used to test the different methods. This part consists of two projects, where in the first one,
I realize a shortcut to equilibration protocol in a driven open quantum system. For that I
propose two different methods. The first one consists of mapping the dynamics of the quan-
tum Brownian motion to an effective stochastic dynamics of an isolated particle. The second
methods consists of doing the shortcut protocol by reverse engineering a time-dependent
master equation, which was derived by using the Lewis-Riesenfeld invariant. Finally in the
second project, I use optimal control methods to speed up the thermalization in isochoric
strokes. I also derive a speed limit that predicts the timescale at which the optimal con-
trol fails. All projects significantly contribute to the understanding and control of quantum
engines.
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AHF Anomalous heat flow
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CK Caldirola-Kanai

CRAB Chopped random basis
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DI Dynamical invariant
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KMS Kubo-Martin-Schwinger
QBM Quantum Brownian motion
QHE Quantum heat engine
QSL quantum speed limit
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STE Shortcut to equilibration
WM Working medium

vi



Nomenclature

ℏ Planck constant (1.054 572 66× 10−34 Js)
kB Boltzmann constant (1.380 658× 10−23 JK−1)

vii



I think I did pretty well, considering I started out with
nothing but a bunch of blank paper.

Steve Martin

viii



Contents

Declaration of Original and Sole Authorship ii

Abstract iii

Acknowledgment iv

Abbreviations vi

Nomenclature vii

Contents ix

List of Figures xi

Introduction 1

1 Background 4
1.1 One dimensional cold atomic systems . . . . . . . . . . . . . . . . . . . . 4

1.1.1 One dimensional continuous bosons models . . . . . . . . . . . . . 6
1.1.2 Some exactly solvable models . . . . . . . . . . . . . . . . . . . . 7

1.2 Basics of thermodynamics in quantum systems . . . . . . . . . . . . . . . 9
1.2.1 Thermodynamics in classical systems . . . . . . . . . . . . . . . . 9
1.2.2 Formulation of thermodynamics for quantum systems . . . . . . . 11
1.2.3 Thermodynamics of heat engines . . . . . . . . . . . . . . . . . . 14

1.3 Dynamics of open quantum systems . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Quantum Master Equation . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Dissipative dynamics of harmonic oscillators and Gaussian states . 24

2 Quantum engines with few-body cold atomic systems 29
2.1 Anomalous heat flow between two correlated atoms . . . . . . . . . . . . . 29

2.1.1 Motivation and introduction of the research project . . . . . . . . . 29
2.1.2 Model and dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.4 Proposal for an atomic fridge based on quantum correlations . . . . 32
2.1.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . 33

ix



x

2.2 Interaction-enhanced quantum heat engine . . . . . . . . . . . . . . . . . . 34
2.2.1 Motivation and introduction of the research project . . . . . . . . . 34
2.2.2 Quantum Otto heat engine with driven interaction . . . . . . . . . . 35
2.2.3 Engine performance in the adiabatic limit . . . . . . . . . . . . . . 35
2.2.4 Finite time dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . 46

3 Controlling open quantum systems for boosting engines 47
3.1 An effective closed dynamics description of the quantum Brownian motion

and shortcuts to equilibration . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1 Motivation and introduction of the research project . . . . . . . . . 47
3.1.2 Effective description of the quantum Brownian motion . . . . . . . 48
3.1.3 Dynamical invariant and shortcut to equilibration . . . . . . . . . . 52
3.1.4 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . 60

3.2 Dynamical invariant based shortcut to equilibration . . . . . . . . . . . . . 61
3.2.1 Motivation and introduction of the research project . . . . . . . . . 61
3.2.2 Dynamical invariant based time-dependent master equation . . . . . 61
3.2.3 Time-dependent master equation for the damped harmonic oscillator 62
3.2.4 Shortcut to equilibration . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . 68

3.3 Optimal control and thermalization of open quantum systems at the speed limit 69
3.3.1 Motivation and introduction of the research project . . . . . . . . . 69
3.3.2 Model and dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.3 Optimal control for finite-time thermalization . . . . . . . . . . . . 71
3.3.4 Quantum speed limit for the thermalization of an open quantum system 75
3.3.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . 79

Conclusion 81

Bibliography 83



List of Figures

1.1 (a) P-V diagram of the classical Otto cycle, the x-axis represents the volume
of the gas and the y-axis the pressure. (b) Diagram representation of the
quantum Otto cycle for the harmonic oscillator. The x-axis represents the
trap frequency and the y-axis the entropy of the particle. . . . . . . . . . . 16

2.1 Heat of the particle 1, Q1, and variation of the mutual information between
the two particles ∆I as a function of time during the thermal contact. Panel
(a) shows the case where the particles are initially uncorrelated. Panel (b)
corresponds to the case where ρ(0) = ρ1 ⊗ ρ2 + χ1 and the panel (c) shows
the case where ρ(0) = ρ1 ⊗ ρ2 + χ2. . . . . . . . . . . . . . . . . . . . . . 31

2.2 Probability of occupying the ground state for the particle 1 during the dy-
namics. The panel (a) shows the case where ρ(0) = ρ1 ⊗ ρ2 + χ1 and panel
(b) shows the case where ρ(0) = ρ1 ⊗ ρ2 + χ2 . . . . . . . . . . . . . . . . 32

2.3 Schematic of the heat engine cycle. The y-axis represents the entropy of the
WM and the x-axis represent the trap frequency and the interaction. While
ωf > ωi, the final interaction strength gf can be chosen to be lower or greater
than gi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Degeneracy of the energy levels for a system of (a) two distinguishable
particles (green dots) and two indistinguishable bosons (brown dots) and
(b) three distinguishable particles (green dots) and three indistinguishable
bosons (brown dots). (c) Work output of the Otto cycle of non-interacting
distinguishable particles (green dots) and non-interacting indistinguishable
bosons (brown dots) as a function of the number of particles. The compres-
sion ratio is κ = ωi

ωf
= 1

3
, the cold inverse temperature is βc = 10

ℏωi
and the

hot inverse temperature is βh = 1
ℏωi

. . . . . . . . . . . . . . . . . . . . . . 37
2.5 (a) Efficiency and (b) work output normalised to their respective Otto-cycle

values for an engine with a WM made of two interacting bosons as a function
of ϵ(0, g̃i) and ϵ(0, g̃f ). The black dash line shows the situation where the
interaction is fixed (gi = gf ). Note that the efficiency converges to ηO in the
limit of strong interactions due to the fermionization in the system. In both
plots the compression ratio is κ = 1

3
(ηO = 2

3
), the cold inverse temperature

is βc = 10
ℏωi

and the hot inverse temperature is βh = 1
ℏωi

. . . . . . . . . . . . 39

xi



xii

2.6 (a) Efficiency and (b) work output normalised to their respective Otto-cycle
values for an engine with a WM made of two interacting distinguishable
particles as a function of ϵ(0, g̃i) and ϵ(0, g̃f ). The gray areas correspond
to interaction regimes where the system does not work as a heat engine but
rather like a dissipator with W > 0. The black dashed line shows the case
where the interaction is fixed (gi = gf ). (c) Efficiency normalized to the
Otto efficiency and heat exchanged with the (d) hot bath and (e) cold bath
as a function of the initial interaction g̃i, with the final interaction given by
g̃f = g̃i (black line), g̃f = g̃i

3
(green line) and g̃f = 3g̃i (orange line). The

compression ratio for all plots is κ = 1
3

(ηO = 2
3
), the cold inverse tempera-

ture is βc = 10
ℏωi

and the hot inverse temperature is βh = 1
ℏωi

. . . . . . . . . 41
2.7 Efficiency at maximum work output (EMW) for the engine using two in-

teracting bosons (brown dots) and two interacting distinguishable particles
(green dots) for two different temperature regimes. Panel (a) shows the effi-
ciency calculated in the low temperature regime with βcℏωi = 10 and panel
(b) in the intermediate temperature regime with βcℏωi = 1. In both panels
the back line corresponds to the Curzon-Ahlborn bound ηCA. The inset in
panel (a) shows the corresponding extra energies ϵ(0, g̃i) (orange dots) and
ϵ(0, g̃f ) (green dots) for the case of two distinguishable particles. The val-
ues of ϵ(0, gf ) we obtained for βh/βc ≳ 0.8 become less accurate because
the work output starts to vanish in this regime. We also show the efficiency
at maximum work output of two non-interacting distinguishable particles
(green line) and two non-interacting bosons (brown line) at the low tempera-
ture regime (a). Note the EMW for two interacting bosons is extremely close
to that of the two non-interacting bosons. . . . . . . . . . . . . . . . . . . 43

2.8 Efficiency and work output normalised to their respective Otto values as a
function of ϵ3P (0, g̃i) and ϵ3P (0, g̃f ) for a WM consisting of (a)-(b) three
indistinguishable bosons and (c)-(d) three distinguishable particles. . . . . 44

2.9 Efficiency at maximum work output for three interacting bosons (brown
dots) and three distinguishable particles (green dots) in the low tempera-
ture regime βcℏωi = 10. The black line corresponds to the Curzon-Ahlborn
bound ηCA and the purple dashed line shows the two distinguishable inter-
acting particles case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 (a) Effective power output (EP), (b) irreversible work and (c) efficiency as
a function of τ . The green line corresponds to the optimal case, the red
dashed line corresponds to the scale-invariant case and the black line to the
non-interacting case. The compression ratio is κ = 1

3
, the cold inverse tem-

perature is βc = 10
ℏωi

and the hot inverse temperature is βh = 1
ℏωf

. For the
optimal case the interactions are g̃i = 1.95 and g̃f = 1.4 such that the effi-
ciency in the adiabatic limit is η ≈ 0.7, and for the scale-invariant case the
interactions are g̃i = g̃f = 1.95. . . . . . . . . . . . . . . . . . . . . . . . 46



xiii

3.1 (a) Fidelity between the final state and the target state as a function of tf .
(b) Profile of the trap frequency for the STE protocol as a function of time
for different protocol durations. The black dashed line shows the reference
ramp. (c) Coherence generated during the dynamics of the STE as a function
of time. (d) Effective temperature of the particle during the STE protocol as
a function of time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Fidelity between the instantaneous state of the Brownian particle ρS(t) and
the target state ρT as a function of time for the case of the sudden quench,
and for different interaction strengths. . . . . . . . . . . . . . . . . . . . . 74

3.3 (a) Fidelity between the final state ρS(tf ) and the target state sate ρT of the
Brownian particle as a function of the duration of the protocol tf , obtained
with bang-bang type protocols. The blue circle correspond to the single-bang
optimal protocol, the red crosses to the double-bang and the green diamonds
correspond to the triple-bang. The panel (b) shows the same results obtained
with the CRAB algorithm. The blue circles correspond to Nc = 3, the green
diamonds to Nc = 4 and the red crosses to Nc = 5. The vertical purple
dashed line shows the QSL time. . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Quantum speed limit for the thermalization of the Brownian particle particle
as a function of the bath temperature. . . . . . . . . . . . . . . . . . . . . . 79



Introduction

Thermodynamics is one of the most fundamental and powerful theories in physics. This field
has the particularity to be born and motivated by the technological progress made during the
industrial revolution. Originally the theory was developed to understand heat transfers in
machines, however its scope kept growing over time. For example, thermodynamics became
able to generalize the concept of equilibrium, to describe and understand phase transitions in
classical matter and their stability, or to describe non-equilibrium dynamics and relaxation
process [3]. It also contributed to highlight the physical nature of information [4, 5]. Origi-
nally a macroscopic theory, it has been successfully extended to microscopic systems, where
thermal fluctuations are important, to give birth to the field of stochastic thermodynamics
[6].

In the past two decades, many physicists from various expertises started to study and for-
malize thermodynamics in the framework of quantum mechanics. Quantum thermodynamics
became very recently a recognized field in the physics community whose aim is to extend
standard thermodynamics to systems where quantum effect are strongly present [7, 8].

Interestingly, similar to the beginning of classical thermodynamics, the study of quantum
engines is a central part of quantum thermodynamics [7, 9, 10]. They can be used to under-
stand the role that quantum effects play compared to classical settings, while at the same
time they have implications for the development of quantum technologies. Usually a quan-
tum engine consists of a quantum system as the working medium to which a conventional
thermodynamic cycle (Carnot, Otto etc.) is applied in order to extract work from the heat
exchanged with a cold and a hot bath, or to transfer heat between the different baths by doing
work on the working medium.

Technical progress allowed to realize the first successful engine cycle with a quantum
working medium in 2016, by using a single-ion in a Paul trap [11, 12]. However after this
accomplishment, few experimental realizations of quantum heat engines were reported [13]
showing the difficulty to have good control for realizing a quantum engine cycle.

On the other hand, the first experimental realizations of a Bose-Einstein condensate in
1995 marked the boom of the field of cold atom physics [14, 15]. With great progress
achieved in confining and laser cooling of atoms, cold atomic systems open the door to
experimental realization of quantum systems that were only theoretical models so far. A
great advantage of cold atomic systems is certainly the existence of Feschbach resonances
[16] that allows to arbitrarily change the scattering length of the particles to explore many
different types of interaction regimes [17, 18].

Combined with the confinement techniques that have been developed, experimental physi-
cists in the community reached the stage where they have almost complete control over the
spatial arrangement of atomic systems [19]. Recently the advantages of those systems have
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been used to experimentally realize quantum engines, such as single particle engines driven
by controlled collisions [20, 21, 22] but also engines with interacting quantum gases [23, 24],
showing the important role of cold atomic systems in the understanding and development of
quantum machines.

During my PhD, I studied and explored thermodynamics in cold atomic systems in order
to realize quantum engines with properties that are unique to quantum systems and figure out
how advantageous and different they can be compared to classical engines. In order to reach
this aim, I proposed different ways to improve the performance of quantum heat engines.
Possible ways to do that can be cast into two main approaches. The first one usually consists
of exploiting non-trivial properties that can emerge from a quantum working medium during
the operation of the engine while the second approach consists of controlling the working
medium during the cycle in an appropriate way to make the strokes faster and more efficient.
Therefore my work is divided into two parts. The first part focuses on few-body interacting
cold atomic systems in one-dimension and their potential applications for quantum engines.

It consists of two research projects where in the first one, I study anomalous heat trans-
ports between two particles as a potential new way to implement cooling processes based
on quantum correlations. In the second project I study a quantum heat engine realized with
interacting particles in a harmonic potential where the work extraction is assisted by the ma-
nipulation of the interaction strength in the system. I show that an appropriate change of the
interaction can enhance the performance of the engine compared to the non-interacting case.
This work has been published in a peer reviewed journal [1].

The second part of my work focuses on the development of techniques for controlling
open quantum systems in order to boost the performance of quantum heat engines by accel-
erating thermal strokes. This part is divided into two projects, where in the first one I realize
a shortcut to equilibration protocol for driven open quantum systems. For this I work on
two different approaches where in the first one, I propose to map the dynamics of a driven
open quantum system to that of an isolated system where the effect of the environment is
contained in a stochastic force.

The mapping is realized by using the Heisenberg equations of motion. Once the mapping
is achieved, the control scheme is found by using techniques from shortcuts to adiabaticity
[25] with a focus on the dynamical invariant method also known as the Lewis-Riesenfeld
invariant [26]. The proposed method is applied to the quantum Brownian motion described
by the Caldeira-Legget model [27, 28].

In the second approach, I propose to design shortcuts to equilibration in a driven open
quantum system by deriving a time-dependent master equation based on the dynamical in-
variant. The proposed method is applied to the damped harmonic oscillator [29]. This work
has been recently posted on arXiv and is now under review [2].

Finally in the last project, I used well known techniques from optimal control theory
to speed-up the thermalization of an open quantum system by manipulating the interaction
strength with the bath. I focus again on the quantum Brownian motion and use the advanta-
geous properties of Gaussian states to solve exactly the dynamics of the particle [30]. This
allows me to explore any interaction strength for a given set of bath parameters (number of
particle in the bath, spectral density function...).

This thesis is structured as follows: in Chapter 1, I present the basic background and
knowledge necessary for following the rest of the contents. In Section 1.1, I introduce the
basics of cold atoms physics. In Section 1.2, I introduce the basics of classical and quan-
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tum thermodynamics, how quantum engines are described and some of their fundamental
properties. In Section 1.3, I discuss the basic theory of open quantum systems, where I first
show the derivation of the master equation, and then examine Gaussian states and how one
can exactly solve for the dynamics of open quantum systems made of harmonic oscillators.
In Chapter 2, I present the results of the first part of my PhD where Section 2.1 is about the
anomalous heat exchanges between two cold atoms and Section 2.2 concerns the quantum
heat engine enhanced by the presence of interaction. Finally Chapter 3 focuses on the sec-
ond part of my PhD where Section 3.1 describes the mapping of a driven quantum Brownian
motion to the dynamics of an isolated quantum system for designing shortcuts to equili-
bration. Section 3.2 focuses on the same shortcut to equilibration realized this time with a
time-dependent master equation based on the dynamical invariant, and Section 3.3 describes
how I use optimal control theory to speed up the thermalization of the quantum Brownian
motion.



Chapter 1

Background

1.1 One dimensional cold atomic systems
Indistinguishable particles

In quantum mechanics, it is not possible to label and distinguish identical particles due to the
non-local nature of the wavefuntion. Indeed when the wavefunctions of the particles spread
out and overlap, an exchange of particles cannot be detected. They are identical and nothing
sets them apart.

Let us consider a system of two indistinguishable particles with the single particle wave-
functions ψ1(x1) and ψ2(x2). The state of the system is described by the wavefunction
Ψ(x1, x2) and the corresponding density has to be symmetric i.e |Ψ(x1, x2)|2 = |Ψ(x2, x1)|2.
For that the wavefunction of the system has to be written as

Ψ(x1, x2) = P (x1, x2)ψ1(x1)ψ2(x2) + P (x2, x1)ψ1(x2)ψ2(x1), (1.1)

where P (x1, x2) is the permutation operator in coordinate representation. If the wavefunc-
tion is symmetric under permutation i.e P (x1, x2) = P (x2, x1), the particles are bosons.
They obey Bose-Einstein statistics [31]

ni =
1

exp
(

ϵi−µ
kBT

)
− 1

, (1.2)

where ni is the expected number of particles with energy ϵi and µ is the chemical potential.
With the Bose-Einstein distribution one can predict a phase transition where a macroscopic
number of non interacting bosons can occupy the ground state which is Bose-Einstein con-
densation. Experimental realization of Bose-Einstein condensates at finite temperature is
well known since 1995 [14, 15] and these systems offer a highly tunable and clean plat-
form to investigate interesting physics like superfluidity [32, 33], wave-particle duality [34],
condensed matter behaviour [35] and much more.

If the wavefunction is antisymmetric under permutation i.e P (x1, x2) = −P (x2, x1), the
particles are fermions. As a consequence of the antisymmetry of the wavefunction, the two-
particle wavefunction vanishes when the two particles are in the same state. This is known
as the Pauli exclusion principle. Fermions obey the Fermi-Dirac statistics [36]
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1.1 One dimensional cold atomic systems 5

ni =
1

exp
(

ϵi−µ
kBT

)
+ 1

. (1.3)

As a consequence of the Pauli exclusion principle one has 0 ≤ ni ≤ 1. Moreover, for
non-interacting and spin-polarized fermions at a temperature below the so-called Fermi tem-
perature, each energy level is occupied by one fermion up to the highest excited occupied
state (the so called Fermi level). This phenomenon is called the Fermi sea and can explain
the behaviour of electrons in metals [37] or the formation of white dwarfs [38]. First experi-
mental realizations of Fermi seas with ultracold atoms have been reported in 1999 [39] and
2001 [40]

Ultracold gases in one dimension

One-dimensional (1D) quantum many-body systems have rich history. Indeed, a few years
after quantum mechanics was formalized, an analytical solution of the 1D Heisenberg model
was found by Bethe by using an ansatz that now bears his name [41]. Subsequently more
models have been exactly solved, but also computational methods have been developed to
solve complicated integrable and non-integrable systems [42, 43, 44]. Initially the study
of 1D systems was motivated by them being mathematically easier to treat, since in higher
dimensions the task is more challenging. However with technological progress, it became
possible to experimentally realize 1D systems whose physical properties are well described
by these models.

Let us briefly explain how 1D systems can be experimentally realized in ultracold atom
systems. To have a 1D system one needs to restrict the degrees of freedom of the particles
in two directions. For example let us consider particles of mass m trapped in a 3D harmonic
potential,

V (x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). (1.4)

In this case, one needs to freeze the degrees of freedom in two directions, for example
along the y-axis and z-axis. One way to accomplish this is to tighten the trap along these
directions such that ωx ≪ ωy, ωz. The energy level spacing in the transverses directions then
become sufficiently high so that the particles will not be able to occupy excited states. The
atoms will remain in the ground state in these directions as long as kBT ≪ ℏωy−µ, ℏωz−µ
with µ the chemical potential, and can only have dynamics along the x-axis. Using very
anisotropic traps therefore leads to quasi-1D systems [45, 40, 46].

The different interaction regimes in a Bose gas can be characterized by the Lieb-Liniger
parameter, defined as [47]

γ =
I

K
, (1.5)

where I is the interaction energy in the system and K quantifies the kinetic energy. In the
case of a one-dimensional and homogeneous gas, the Lieb-Liniger parameter is given by

γ =
mg1D
ℏ2n

, (1.6)
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where g1D is the 1D interaction strength, m the mass of one atom and n is the density of the
gas. When γ is small, the interaction in the system is weak while strong interaction regimes
are characterized by a large value of the Lieb-Liniger parameter γ ≫ 1. Let us also remark
that the interaction strength can also be manipulated by changing the density of the gas and
thus the chemical potential. Indeed based on the expression of the Lieb-Liniger parameter
Eq. (1.6), increasing (decreasing) the density of the gas will reduce (increase) the effect of
the interaction compared to the kinetic energy.

In the following I will focus on 1D bosonic systems. I will introduce continuous systems
and briefly explain how the interaction in such systems is described. Then I will discuss two
exactly solvable models that are relevant in my work: the two-particle problem and the 1D
gas in the infinite interaction strength limit.

1.1.1 One dimensional continuous bosons models
Let us start by considering a 3D system ofN bosons described by the wavefunction Ψ(r⃗1, ..., r⃗N).
The particles can freely move along the x-axis while their motion is confined in the trans-
verse directions (y, z). Assuming that the particles are in the ground state ψ0(y, z) in the
transverse directions, and the dynamics in these directions decouples, the wavefunction can
be written as

Φ(r⃗1, ..., r⃗N) = Ψ(x1, ..., xN)
N∏
i=0

ψ0(yi, zi). (1.7)

This approximation is valid as long as a very strong confinement is applied in the trans-
verse direction, which leads to having a large gap between the ground state and the first
excited state in the transverse direction compared to the excitation in the x-axis. It also al-
lows us to describe the system in terms of the 1D wavefunction Ψ(x1, ..., xN) only. The
Hamiltonian of a one-dimensional interacting Bose gas can be written as

H =
N∑
i=1

(
p2i
2m

+ Vext(xi)

)
+
∑
i<j

Vint(xi − xj), (1.8)

where m is the mass, pi and xi are respectively the momentum operator and the position
operator of the ith particle, Vext is the external potential and Vint is the interaction potential.
Due to the low energy of the system and the fact that the gas is dilute, two-body interactions
are dominating. Also at low energies, the pairwise interaction is mostly dominated by s-wave
scatterings and can be effectively described by a point-like interaction in three dimensions
[48, 49]

Vint(r⃗i − r⃗j) = g3Dδ
(3)
reg (r⃗i − r⃗j), (1.9)

where g3D corresponds to the interaction strength in three dimensions and δ(3)reg (r⃗) is the reg-
ularized delta function. The s-wave scattering process is characterized by only one number;
the scattering length as that can be calculated in the Born approximation [49]

as =
m

4πℏ2

∫
Vint(r⃗)dr⃗, (1.10)
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thus the interaction strength and the scattering length are related by

g3D =
4πℏ2as
m

. (1.11)

With this result in mind, the cold atom community was able to take advantage of a powerful
technique to experimentally tune the interaction strength between two particles: the Fesh-
bach resonance [16]. With the Feshbach resonance, one can modify the scattering length as
and so the interaction strength, by using Zeeman splitting with an external magnetic field
[50, 51, 52]. The scattering length is modified by the magnetic field with respect to the
formula [52]

as(B) = abg

(
1 +

∆

B −B0

)
, (1.12)

where abg is the off-resonant value of the scattering length, ∆ is the resonance width, and B0

is the resonant magnetic field at the point where the scattering length diverges.
So far we discussed an effective description of the interaction in three dimensions. How-

ever the same arguments are valid in the 1D case. The interaction can be effectively described
as Vint(xi − xj) = g1Dδ(xi − xj) and now the 1D scattering length a1D is related to the 1D
interaction strength as [53]

g1D = − 2ℏ2

ma1D
. (1.13)

The 1D scattering length is related to the three dimensional scattering length as as [53]

a1D = − a2⊥
2as

(
1− C

as
a⊥

)
, (1.14)

where C ≈ 1.4603 is a dimensionless value, and a⊥ =
√

2ℏ/mω⊥ (with ω⊥ =
√
ω2
y + ω2

z )
is the typical length of the ground state ψ0(y, z) in the transverse direction. One can see from
Eq. (1.14), that the interaction strength can also be tuned by changing the confinement in the
transverse direction ω⊥. Also it is worth mentioning that g1D > 0 (g1D < 0) corresponds to a
repulsive (attractive) interaction type. In the following, I will use g instead of g1D to denote
the 1D interaction strength, for ease of notation.

1.1.2 Some exactly solvable models
Two interacting particles in a harmonic trap

Let us consider the case of two interacting particles of equal mass in a harmonic oscillator

H =
2∑

i=1

− ℏ2

2m

∂2

∂x2i
+

1

2
mω2x2i + gδ(x1 − x2). (1.15)

The Hamiltonian has been analytically solved [48], by introducing the center of mass co-
ordinate X = x1+x2√

2
and the relative coordinate x = x1−x2√

2
, which allows one to split the

Hamiltonian (1.15) into two decoupled single particle Hamiltonians H(ω, g) = HCM +Hr
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with

HCM = − ℏ2

2m

∂2

∂X2
+

1

2
mω2X2, (1.16)

Hr = − ℏ2

2m

∂2

∂x2
+

1

2
mω2x2 +

g√
2
δ(x). (1.17)

The eigenstates are thus given by the two particle states |n, ν⟩, where |n⟩ is the eigenstate
of the center of mass, and |ν⟩ the eigenstate of the relative coordinate. Since the center
of mass is not affected by the interaction, the eigenstates of HCM are simply the standard

harmonic oscillator eigenfunctions ⟨X|n⟩ = 1√
2nn!

(
mω
πℏ

) 1
4 e−

X2

2a2Hn(
X
a
), where a =

√
ℏ

mω

and Hn are the Hermite polynomials, and the eigenenergies are given by En
CM = ℏω(n +

1
2
). For the relative coordinate, only the even states are affected by the interaction and are

given by ⟨x|2ν⟩ = N2νe
− x2

2a2U
(

1
4
− E2ν

r

2ℏω ,
1
2
, x

2

a2

)
where N2ν is a normalization factor, E2ν

r

the eigenenergy and U is the Kummer function [48]. The eigenenergies are determined by
the solutions of the transcendental equation

−g̃ = 2
Γ
(
−E2ν

r

2ℏω + 3
4

)
Γ
(
−E2ν

r

2ℏω + 1
4

) , (1.18)

where g̃ = g√
2ℏωa and Γ(x) is the gamma function. The odd eigenstates are again just

harmonic oscillator states with the eigenenergies E2ν+1
r = ℏω(2ν + 3

2
).

Tonks–Girardeau gas

Now we consider a system described by the general Hamiltonian (1.8) with the contact in-
teraction Vint(xi − xj) = gδ(xi − xj). The Tonks–Girardeau (TG) gas corresponds to the
limit of infinite and repulsive interaction regime i.e when the Lieb-Liniger parameter γ goes
to infinity [54]. In this limit, the wavefunction of the system vanishes when two particles
are at the same position, similarly to the Pauli exclusion principle for fermions. With this
observation in mind, Girardeau proved that one can map the bosonic TG gas to a state of
non-interacting fermions [55]. Thus the wavefunction is given by

Ψ(x1, ..., x2) = S(x1, ..., xN)ΨF (x1, ..., xN), (1.19)

where S(x1, ..., xN) =
∏N

i<j sign(xi − xj) ensures that the wavefunction of the TG gas
remains symmetric under permutations, and ΨF (x1, ..., xN) is the many-body wavefunction
of non-interacting fermions. The fermionic many body state can be calculated by using the
Slater determinant

ΨF (x1, ..., xN) =
1√
N !

(N−1,N)

det
(n,i)=(0,1)

ψn(xi), (1.20)

where ψn are the single particle eigenstates of the system

− ℏ2

2m

∂2ψn(x)

∂x2
+ Vext(x)ψn(x) = Enψn(x). (1.21)
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The first experimental realizations of the TG gas have been reported in 2004 with ru-
bidium atoms trapped in a two-dimensional optical lattice [56]. Also during the same year,
the TG gas has been realized in a one-dimensional lattice where the confinement has been
increased in the transverse direction [57]. This forces the particles to spread in the longi-
tudinal direction and thus reduces the density. The interaction becomes dominant (see the
expression of the Lieb-Liniger parameter (1.6)), and the particles can localize.

1.2 Basics of thermodynamics in quantum systems

1.2.1 Thermodynamics in classical systems
First law of thermodynamics

Thermodynamics is by essence an axiomatic theory describing energy exchanges between
a system and an environment. The theory is a set of four axioms, usually called the laws
of thermodynamics and allows us to define the concept of thermal equilibrium, the different
kind of energies that are exchanged and in which direction the energy exchange occurs.
Here I briefly review the basic concepts of classical thermodynamics that are necessary to
introduce my work. We start with the first law of thermodynamics. It can be summarized by
the following sentence [58],

During a transformation of a closed system, the amount of energy exchanged with the
environment is equal to energy exchanged by thermal transfer (heat) and by mechanical
transfer (work).

In other words, let us call E the total energy of a closed system (in classical thermody-
namics a closed system corresponds to a system that can exchange energy with the environ-
ment with no exchange of particles), then the infinitesimal variation of the energy is given
by

dE = δQ+ δW, (1.22)

where Q is the heat and W the work. I use the letter δ to emphasize that δQ and δW are
non-exact differentials that depend on the trajectory during the transformation. The variation
of the work can be expressed as

δW = −PdV, (1.23)

with P the pressure of the system and dV the infinitesimal variation of the volume of the
system during the transformation. The work can be seen as a "useful" energy that can allow
us, for example, to generate movement of the system, while the heat corresponds to energy
dissipated to the environment that we cannot use. The second law of thermodynamics allows
us to characterize this with the concept of entropy.

The second law of thermodynamics

The first law alone describes the energy exchanges and suggests that if a thermodynamic
transformation from a state to another one is possible, then the opposite transformation is
also possible. However from experiments we know that for any macroscopic isolated sys-
tem, there exists only one equilibrium state depending on state variables like the energy, the
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volume or the number of particles, and the system will spontaneously and irreversibly evolve
to this state. The second law of thermodynamics characterizes this equilibrium state and the
direction in which a thermodynamics transformation occurs by using the entropy function
introduced by Clausius [59].

For any system the entropy S is defined at equilibrium. The entropy is a state function,
which means it depends only on the state variables of the system (energy, volume...), and is
maximum at equilibrium. The entropy is also additive, which means that for an isolated sys-
tem divided in two subsystems, the entropy of the isolated system is equal to the sum of the
entropy of the two subsystems. The main formulation of the second law of thermodynamics
states that for an isolated system (a system that exchanges no energy and no particles with
the environment), the variation of entropy is positive

∆S ≥ 0. (1.24)

However I will focus on the Clausius formulation, since I am interested in the heat transfer
as part of my work. Let us consider an isolated system divided in two subsystems 1 and 2.
The energy (entropy) of the system is E (S), and the subsystems 1 and 2 have respectively
an energy (entropy) E1 (S1) and E2 (S2). From the conservation of energy one deduces
E2 = E − E1. By using the additive property of the entropy, one gets

S(E) = S1(E1) + S2(E − E1). (1.25)

Let us assume now that the energy of the subsystem 1 gets a infinitesimal variation of energy
in the form of heat dE1. The new entropy of the system is then S1(E1+dE1)+S2(E−E1−
dE1) and by doing a first order Taylor expansion, one gets

dS =

(
∂S1

∂E1

− ∂S2

∂E2

)
dE1. (1.26)

The second law tells us that dS ≥ 0, so we deduce that if ∂S1

∂E1
> ∂S2

∂E2
then dE1 ≥ 0 which

means the heat flows from the subsystem 2 to the subsystem 1. On the contrary if ∂S1

∂E1
< ∂S2

∂E2
,

then dE1 ≤ 0 and the heat flows from the subsystem 1 to the subsystem 2. Intuitively the
quantity ∂S

∂E
has to be a decreasing function of the temperature f(T ) and for a choice of f

one gets a definition of the temperature. To make sure that the definition of the temperature
coincides with the one from statistical mechanics, one needs to choose f as the inverse
function and so the temperature is defined as [60]

1

T
=
∂S

∂E
. (1.27)

Now that the thermodynamic identity (1.27) has been derived, we can derive the Clausius
inequality. Let us consider a system in contact with a thermal bath. A thermal bath is a
system that can receive or release heat without changing its temperature

dTB = 0 ∀ δQB, (1.28)

where TB is the temperature of the bath and QB the heat. A thermal bath is an ideal system
but it can be approximated with a system that is very big compared to the studied system
so that the variations of temperature due to the variations of energy can be neglected. The
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system and the bath are isolated. From the thermodynamic identity (1.27) and the definition
of the thermal bath, one can write

dSB =
δQB

TB
, (1.29)

where SB is the entropy of the bath. Let us call Q the heat of the system, from the conserva-
tion of energy one gets δQ = −δQB and so the entropy of the thermal bath becomes

dSB = −δQ
TB

=⇒ ∆SB = − Q

TB
. (1.30)

Using the second law and the additive property of the entropy, one gets ∆S + ∆SB ≥ 0
where S is the entropy of the system. Combined with Eq. (1.30), one deduces the Clausius
inequality [59]

∆S ≥ Q

TB
. (1.31)

The Clausius inequality can be extended to the case of N thermal baths [60]

∆S ≥
N∑
i=1

Qi

Ti
, (1.32)

where Qi is the heat exchanged between the system and the ith thermal bath at temperature
Ti. This is one of the formulations of the second law of the thermodynamics and it gives
the "natural" direction of a heat transfer between the system and the environment. In other
words the Clausius formulation says that

no process is possible whose sole result is the transfer of heat from a body of lower
temperature to a body of higher temperature.

We will also see in the last part of this section that the Clausius inequality (and so the
second law) leads to a fundamental bound on the efficiency of heat engines.

1.2.2 Formulation of thermodynamics for quantum systems
Quantum thermodynamics is an active and recently established field of research [61, 58,
8]. Indeed thermodynamics has been a very successful theory for classical systems and
extending it to quantum systems became a natural continuation. One of the most interesting
questions in the field is to understand how the laws of thermodynamics need to be modified
when we consider quantum systems. Such a question is very important from a fundamental
point of view but also has direct implications on the operating regime of quantum engines
[62, 63, 64]. Therefore one needs to define the concepts of work, heat and entropy in the
quantum framework. There were many works on this direction considering different ideas
and approaches [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76].

Here I will use the main results of [77] where the expressions of the different thermody-
namic quantities, that are relevant for my work, have been derived. First let us consider a
quantum system interacting with a thermal environment. Let us call H(λ) the Hamiltonian
where λ is a control parameter that drives the system from one state to another one, and let
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us assume the process is quasistatic. As we will see in more details in the next section of this
chapter, the dynamics of the system is described by a Liouville type equation [29, 78],

dρ

dt
= Lλ(ρ). (1.33)

Here ρ is the density matrix of the system and Lλ is an operator that describes the dynamics
of the system due to the Hamiltonian H and the interaction with the thermal environment.

Thermodynamics for a Gibbs state

In the case where the coupling between a system and its surrounding environment is weak,
equation (1.33) has a unique stationary solution which corresponds to an equilibrium state.
It is given by the Gibbs state [29, 78]

ρeq =
exp (−βH)

Z
, (1.34)

where β = 1
kBT

is the inverse temperature, kB is the Boltzmann constant andZ = Tr (exp (−βH))
is the partition function, with Tr the trace operator. In this case the thermodynamic entropy
is given by the von Neumann entropy

S = −Tr (ρeq ln (ρeq)) = β(E − F ). (1.35)

Here E = Tr (ρeqH) is the internal energy of the system, and F = − 1
β
ln(Z) is the free

energy. Therefore the infinitesimal variation of entropy can be expressed as

dS = β Tr (dρeqH) . (1.36)

Based on Eq. (1.30) one can identify the variation of heat as δQ = dS
β

, and the work can be
identified as the variation of energy due to the change of the Hamiltonian. The first law can
then be written as

dE = δQ+ δW ≡ Tr (dρeqH) + Tr (ρeqdH) . (1.37)

As one can notice, the formulation is basically the same as the classical case and the reason
is because we assume that the equilibrium state is of Gibbs form due to the weak coupling
between the system and the environment. However quantum systems can be correlated with
their environment, and furthermore their interaction energy cannot be neglected [79, 80, 81].

First law in the presence of quantum correlations

In the presence of quantum correlations one needs to take account of the energetic cost
of keeping correlations between the system and the environment [80, 82]. To do that an
information-theoretic approach is needed [83, 5]. Let us assume the system is in a non-Gibbs
equilibrium state ρ∗, for which the von Neumann entropy can be written as,
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S = −Tr (ρ∗ ln (ρ∗)) + (Tr (ρ∗ ln (ρeq))− Tr (ρ∗ ln (ρeq)))

= β[E −
(
F + β−1S(ρ∗||ρeq)

)
]

= β(E − FI),

(1.38)

whereE = Tr (ρ∗H) is the internal energy of the system, S(ρ∗||ρeq) = Tr (ρ∗ (ln(ρ∗)− ln(ρeq)))
is the relative entropy and FI = F + β−1S(ρ∗||ρeq) is the information free energy [84]. So
for a quasistatic process, the infinitesimal variation of entropy can be written as

dS = β (Tr (dρ∗H) + (Tr[ ρ∗dH ]−dFI)) = β(δQtot − δQc). (1.39)

In this equation the variation of total heat is identified as δQtot ≡ Tr (dρ∗H) and the energetic
cost to keep coherence and quantum correlations as δQc = dFI − Tr (ρ∗dH). Therefore one
defines the excess heat δQex ≡ δQtot − δQc which is associated with the entropy production
and the first law becomes

dE = δWex + δQex (1.40)

with δWex ≡ δW + δQc the excess work.

Second law in the presence of quantum correlations and spontaneous reversed heat flow

As we saw, the first law has to be modified because maintaining the correlations implies
an extra energy cost. This result can be related to the Landauer principle and the physical
nature of information [85]. Indeed correlation is a synonym of information, so the more a
system is correlated to an environment the more we can know about it. Based on Eq.(1.40),
to learn about the system, an additional amount of work is needed. In addition we can see
correlations as a potential work reservoir and use it to drive the system to some state, like
in an engine. A consequence is that the Clausius formulation of the second law presented
before is no longer valid.

The consequences of correlations on the second law have been explored extensively [83,
86, 87, 88, 89, 90, 91]. Let us consider two systems A and B in thermal contact and ρAB

being the corresponding density matrix. We assume that initially A (B) has a temperature
TA (TB) which means that the reduced density matrix of A (B) is initially a Gibbs state, i.e

ρA(B)(t = 0) = TrB(A) (ρAB(t = 0)) =
exp
(
−βA(B)HA(B)

)
ZA(B)

, (1.41)

where Hi and Zi are respectively the Hamiltonian and the partition function of the system i
(i = A,B). Therefore in presence of correlations the initial state of the system AB can be
written as

ρAB(0) = ρA ⊗ ρB + χAB, (1.42)

where χAB represents the initial correlations. We also assume the system AB is isolated and
it evolves during a time τ with a Hamiltonian HAB. The relative entropy between the initial
state and the final state of one of the subsystems is
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S(ρi(τ)||ρi(0)) = −S(ρi(τ)) + βiTr (ρi(τ)Hi) + ln (Zi). (1.43)

By noticing that S(ρi(0)||ρi(0)) = 0 and using the previous expression, one can derive

S(ρi(τ)||ρi(0)) = S(ρi(τ)||ρi(0))− S(ρi(0)||ρi(0)) = −∆Si + β∆Ei, (1.44)

where ∆Si = S(ρi(τ)) − S(ρi(0)) and ∆Ei = Tri ((ρi(τ)− ρi(0))Hi) are respectively
the variation of entropy and internal energy of the ith subsystem. By writing the previous
expression for both subsystems, then summing and rearranging the terms one gets,

βA∆EA + βB∆EB = ∆SA +∆SB + S(ρA(τ)||ρA(0)) + S(ρB(τ)||ρB(0)). (1.45)

Let us introduce now the mutual information between A and B

IAB = S(ρA) + S(ρB)− S(ρAB). (1.46)

Since the systemAB is isolated, the von Neumann entropy is preserved and thus the variation
of mutual information is ∆IAB(τ) = ∆SA + ∆SB. Moreover by using the conservation of
energy for an isolated system and the first law, one can deduce ∆EA = QA = −∆EB =
−QB. Finally Eq. (1.45) becomes

QB(βB − βA) = ∆IAB(τ) + S(ρA(τ)||ρA(0)) + S(ρB(τ)||ρB(0)). (1.47)

Since the relative entropy is a positive function, one gets the generalized Clausius inequality
[83]

QB(βB − βA) ≥ ∆IAB(τ). (1.48)

If the correlations between A and B are initially weak then the mutual information is close
to 0 and since IAB is a positive function (∆IAB(τ) ≥ 0) one recovers the usual Clausius
inequality. However if the systems are initially correlated, then IAB > 0 and one can
imagine a dynamics where the correlations are decreasing such that ∆IAB(τ) < 0 and
|∆IAB(τ)| > S(ρA(τ)||ρA(0)) + S(ρB(τ)||ρB(0)). In this case, based on Eq. (1.48), a
heat flow from the low temperature system to the high temperature is possible. Recently the
study of this counter-intuitive phenomenon has become of interest and in Ref. [92], Micadei
et al . experimentally realized a reversed heat flow between two quantum-correlated spins.

1.2.3 Thermodynamics of heat engines
General properties

A heat engine is a physical system that converts heat into work in order to generate a mechan-
ical motion. The physical system is usually called the working medium or the working fluid
since for classical engines, it consists of a gas that is most of the time described as an ideal
one. Their functioning is modeled with cycles corresponding to strokes that describe the
different steps of the work extraction i.e compression/expansion of the working medium and
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heat transfers with external baths. At the end of the cycle, the working medium goes back to
its initial state and operates repeatedly. Even thought cycles are usually ideal representations
of a real engine functioning, they provide a good understanding of it.

An engine can only work if there is at least two thermal baths at different temperatures
that are coupled with the working medium. This is a direct consequence of the 1st and 2nd
law of thermodynamics. Indeed let us assume that we have a heat engine coupled to only
one thermal bath. After a cycle the working medium goes back to the initial state. Since the
internal energy is a state variable, the first law tells us

∆E = W +Q = 0. (1.49)

At the end of the cycle, we want to extract work out of the engine. By convention, the
variation of energy is negative when it is lost due to the work done, which means that the
engine produces extractable work when W < 0. From the first law, we deduce then that the
heat exchange between the working fluid and the bath has to be positive. However this result
violates the 2nd law. Indeed the total change of entropy after a cycle is given by the change
of entropy of the bath ∆SB = −Q/TB and has to be positive. It is therefore impossible to
extract work with only a single bath. This result is also another formulation of the 2nd law
formulated by Kelvin [93]. A heat engine needs to be coupled to at least two baths: a hot bath
at the temperature Th from which it receives energy Qh , and a cold bath at the temperature
Tc in which energy is dissipated from the working medium Qc in order to extract work.

The performance of an engine can be characterized with the work output W and the
efficiency η that tells the amount of useful energy output we get compared to the amount of
energy we used. In the case of heat engines, the efficiency is defined as

η = −W

Qh

. (1.50)

The efficiency is a positive number between 0 and 1. In fact, the efficiency is fundamentally
bound due to the 2nd law. Indeed let us consider a cycle performed on a heat engine coupled
to two baths. Again from the 1st law, we get

W +Qc +Qh = 0 =⇒ W = −(Qc +Qh). (1.51)

The efficiency can thus be rewritten as

η = 1 +
Qc

Qh

. (1.52)

The Clausius inequality Eq. (1.32) applied during the cycle gives an inequality between the
ratio of heats and the ration of temperatures

Qc

Tc
+
Qh

Th
≤ 0 =⇒ Qc

Qh

≤ −Tc
Th
. (1.53)

As a consequence, the efficiency of a heat engine is universally bound as

η ≤ 1− Tc
Th

≡ ηC , (1.54)



1.2 Basics of thermodynamics in quantum systems 16

Figure 1.1: (a) P-V diagram of the classical Otto cycle, the x-axis represents the volume of the gas
and the y-axis the pressure. (b) Diagram representation of the quantum Otto cycle for the harmonic
oscillator. The x-axis represents the trap frequency and the y-axis the entropy of the particle.

where ηC is the Carnot efficiency named after Sadi Carnot who was the first to derive this
result [94]. The Carnot efficiency can be reached by a heat engine realizing the Carnot cycle.

The Otto cycle: from the classical to quantum formulation

There are many cycles that have been proposed to model heat engines. In my work, I focuse
on the Otto cycle named after the engineer Nicolaus Otto. The cycle is made of four strokes.
I will first introduce the cycle in the classical case and then explain how the cycle can be
extended to quantum working media. In the classical case, the different strokes are the
following (see figure 1.1(a) representing the P-V diagram)

Adiabatic compression (1 → 2): the working medium undergoes an adiabatic re-
versible (isentropic) compression from a volume V1 to V2. During the stroke both
pressure and temperature change, while the entropy remains constant.

Hot isochore (2 → 3): the volume of the working medium is kept constant and the
temperature is increased by heating the working medium with the hot bath.

Adiabatic expansion (3 → 4): the working medium undergoes an isentropic expansion
from the volume V2 back to the volume V1. This is when useful work is extracted.

Cold isochore (4 → 1): in the last stroke the working medium is cooled down by being
coupled to the cold bath at constant volume. The working medium goes back to the
initial state and then another consecutive cycle can be implemented.

In order to extend to the quantum case, we need to understand how these strokes should
be realized when the working medium is a quantum system [95]. Indeed while carrying
out an adiabatic stroke in a classical setting means that no heat exchange occurs during the
process, for quantum systems it refers to the condition that the occupation populations of the
eigenstates remain constant. This difference in the definition implies a stronger constraint on
the timescale of the strokes.
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In classical heat engines, the working medium will be driven quickly to prevent the sys-
tem from relaxing and therefore exchanging heat with the environment, while for the quan-
tum case, one needs to isolate the system to prevent heat exchanges but also to drive it
quasistatically based on the adiabatic theorem. However the isochoric strokes are very sim-
ilar both in the classical and the quantum cases. During the process, heat exchanges only
occur between the working medium and the bath. The Hamiltonian thus remains fixed such
that the eigenenergies are constant and only their occupations are changed (Eq. (1.37)).

To illustrate this, let us consider one of the simplest systems: a particle in a harmonic
trap. The control parameter in this case is the trap frequency

H(ω) =
p2

2m
+

1

2
mω2x2. (1.55)

The trap frequency plays a role of the container size and accounts for compression or expan-
sion of the wavefunction of the particle like a gas in a classical heat engine. The Otto cycle
can then simply be formulated (see Fig. 1.1(b)). The adiabatic compression corresponds to
a quantum adiabatic increase of the trap frequency from ω1 to ω2. During the hot isochore,
the particle is heated by a hot bath and the trap frequency is fixed at the value ω2. During the
adiabatic expansion, the trap frequency goes back to the value ω1. Finally during the cold
isochore, the particle cools back down to the initial state.

The efficiency of the quantum Otto cycle with one particle can be simply calculated.
Indeed since the work strokes are realized adiabatically and during the thermal stroke the
Hamiltonian is fixed, we can just calculate the energy of the particle at the beginning/end of
the different strokes (corners in the figure) in order to get the work and the heat exchanges.
The heat exchange during the hot isochore Qh is thus given by

Qh = E3 − E2 = Tr((ρ3 − ρ2)H(ω2)) =
∑
n

(phn − pcn)En(ω2), (1.56)

where phn (pcn) are the occupations of the energy levels at the end (beginning) of the stroke
and En(ω) = ℏω(n + 1/2). At the end of the stroke, the particle is at equilibrium with the
hot bath phn = Z−1h e−βhℏω2(n+1/2). Also before the hot isochore, the particle was adibatically
driven from the initial state where it was at equilibrium with the cold bath. We deduce then
pcn = Z−1c e−βcℏω1(n+1/2). Thus the heat is given by

Qh =
ℏω2

2

(
coth

(
βhℏω2

2

)
− coth

(
βcℏω1

2

))
. (1.57)

With the same reasoning, we can easily deduce the heat exchange during the cold isochore

Qc =
ℏω1

2

(
coth

(
βcℏω1

2

)
− coth

(
βhℏω2

2

))
, (1.58)

and we deduce the efficiency of the quantum Otto cycle

ηO = 1− ω1

ω2

. (1.59)
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The Otto efficiency can be rewritten as ηO = 1−κwhere κ = ω1/ω2 is the compression ratio,
which is given by the ratio of the trap frequencies for the harmonic oscillator case. Since we
know the efficiency is bound by the Carnot one, we deduce ω1

ω2
≥ Tc

Th
. If this inequality is

violated then the system can not operate as a heat engine.

Efficiency at maximum power/work

In practice the power output of an engine modeled by an ideal cycle like the Otto cycle or
the Carnot one goes to zero. This is because the different strokes in the cycle require long
times to be realized (in principle an infinite amount of time). To evaluate the performance of
heat engines at finite time, the efficiency at maximum power (EMP) becomes a more relevant
quantity than the ideal efficiency.

The EMP was introduced first by Curzon and Ahlborn who evaluated the efficiency of a
Carnot engine operating at finite time. They showed that the efficiency of the engine while
maximizing the power of it is given by [96, 97]

ηCA = 1−
√
Tc
Th
. (1.60)

This efficiency is commonly called the Curzon-Ahlborn (CA) bound and actually this quan-
tity is more fundamental and universal than it looks [98]. Indeed, let us go back to the
quantum Otto cycle of a particle in a harmonic potential. The work output is

W = −Qc −Qh =
ℏ
2
(ω2 − ω1)

(
coth

(
βcℏω1

2

)
− coth

(
βhℏω2

2

))
. (1.61)

In the high temperature limit βcℏω1 ≪ 1 and βhℏω2 ≪ 1, the work output can be approxi-
mated by

W ≈ (ω2 − ω1)

(
1

βcω1

− 1

βhω2

)
= (1− κ)

(
1

κβc
− 1

βh

)
. (1.62)

The work is maximum when κ =
√
βh/βc =

√
Tc/Th and so the efficiency at maximum

work output (EMW) of the Otto cycle is given by the CA bound. The EMP became a
paradigmatic quantity to study in order to characterize heat engines at finite time and has
been extensively studied in classical thermodynamics [98, 99, 100, 101]. In the linear re-
sponse regime, it is bound by ηCA [98], however cases where the EMP goes beyond the CA
bound have been reported and also the universal behavior of it up to quadratic order for any
cycle [99, 102, 103, 104].

The EMP has also been widely studied in the quantum case where universal features have
been observed and cases where, beyond the linear response regime, the EMP goes above the
CA bound [105, 106, 107, 108]. Other works have shown that the EMP can go beyond the
CA bound due to purely quantum effects like entanglement between the working medium
and the baths [109] or coherence [110, 111]. Also a quantum Otto cycle operating at finite
time can go above the bound [112, 113, 114].
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Quantum control for boosting quantum heat engines performance

As already mentioned, realistic engines operate at finite time and this is required to get non-
zero power output. However, while reducing the duration of the strokes increases the power,
it will inevitably lead to the decrease of the efficiency from the ideal one. Indeed, during the
compression and expansion strokes, non-adiabatic excitations due to coherence between the
energy levels will be created. This will cost additional work that causes a reduction of the
net work that can be extracted. This is why coherence is also sometimes called "quantum
friction" [115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125].

A way to reduce the work lost from non-adiabatic driving during the compression and
expansion strokes is to use shortcut to adiabaticity (STA) techniques. Shortcuts to adia-
baticity refers to strategies that allow to mimic adiabatic dynamics in finite times. Many
different approaches in the last two decades have been developed to realize such protocols,
making STA techniques a powerful framework for controlling isolated quantum systems
[25]. They have been successfully applied to quantum heat engines with many different sys-
tems and proved to be an efficient method to boost the power while reducing the friction
[126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139].

Protocols to realize fast thermalization strokes have only recently been explored. One
of the main reason the thermal strokes case has been less fruitful than the adiabatic strokes
case is because the challenge of accelerating the thermalization of an open quantum system
comes with the challenge of describing its dynamics in a practical way for control. However
in the last few years some groups were able to come up with interesting approaches to solve
the problem such as optimal control [140, 141, 142, 143], linear response theory [144],
techniques inspired by STA [145, 146] and reverse engineering [147, 148, 149]. Some of
these approaches have been successfully applied to design an optimized quantum Carnot
engine [150] or an optimized quantum Otto engine [151, 139], showing that a potential
quantum advantage can be achieved. Indeed in [150] the acceleration of the isothermal
strokes in the quantum Carnot cycle are guaranteed by the creation of coherence, while in
[151] an anti-Zeno like effect was used to accelerate the isochoric strokes in the quantum
Otto cycle, by periodically switching on and off the coupling between the system and the
bath.

1.3 Dynamics of open quantum systems

1.3.1 Quantum Master Equation
To study a realistic quantum system, we need to take account of the interaction with the
environment that can significantly influence the system’s behaviour [152]. This is all the
more true in the context of thermodynamics. Indeed thermodynamics originally aimed to
understand the behavior of heat that is by definition an energy resulting from interacting
with an external environment. Thus open quantum systems are the core model for studying
quantum thermodynamics and in particular quantum heat engines [153].

A naive and straightforward way to study open quantum systems is to consider the sys-
tem of interest and the environment as an isolated big system and solve for the dynamics.
However in most cases one does not have access to the environment, it is too complicated to
describe it, or it is simply irrelevant to get detailed information on it.
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To overcome these difficulties, the framework of master equations has been developed
[29]. The theory is now well established and has been used in different fields such as quan-
tum optics [154] or condensed matter [155, 156, 157], but still a lot of questions and technical
challenges remain like non-Markovian effects [158, 159] or the time-dependency of the sys-
tem Hamiltonian [160, 161]. In this part I will briefly present and discuss how one can derive
the master equation and the approximations needed to use this description.

The von Neumann equation

Let us consider a quantum system S and the environment B respectively described by the
Hilbert spacesHS andHB, and the dynamics is given by an HamiltonianH . The total system
S + B is then described by a state |ΨSB⟩ in the Hilbert space HS ⊗HB. If the total system
is in a mixed state, it is more convenient to characterize it with the density matrix

ρSB = |ΨSB⟩ ⟨ΨSB| . (1.63)

The state ΨSB can be expressed in the basis of the Hilbert space HS⊗HB, where the vectors
evolve according to the Schrödinger equation. As a consequence, the state of the total system
at a time t is given by

ρSB(t) = U(t)ρSB(0)U
†(t), (1.64)

where U(t) is the time evolution operator given by

U(t) = T← exp

(
− i

ℏ

∫ t

0

H(s)ds

)
, (1.65)

with T← the time-ordering operator. By differentiating the previous equation, one gets the
von Neumann equation,

d

dt
ρSB(t) = − i

ℏ
[H(t), ρSB(t)], (1.66)

where [., .] is the commutator between two operators. Sometimes the von Neumann equation
is rewritten as,

d

dt
ρ(t) = L(t)ρ(t), (1.67)

where L(t) = − i
ℏ [Ĥ(t), .] is called a Liouville superoperator.

System-environment model

Now we assume the Hamiltonian of the total system can be written as

H = HS +HB +HI , (1.68)

where HS is the Hamiltonian describing the system of interest, HB describes the environ-
ment and HI describes the interaction between the system and the environment. We usually
assume that the interaction part can be written as a sum of products of operators acting re-
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spectively on the system and the environment

HI = g
∑
n

An ⊗Bn, (1.69)

where An acts on the system, Bn acts on the environment and g is a real number character-
izing the strength of the interaction. To derive the master equation, we start from the von
Neumann equation (1.67) that can describe the total system. We write the dynamics in the
interaction picture

dρ̃SB(t)

dt
= − i

ℏ

[
H̃I(t), ρ̃SB(t)

]
, (1.70)

where the tilde denotes the operator written in the interaction picture
X̃(t) = U †S(t)U

†
B(t)XUS(t)UB(t). The interaction picture is a convenient representation

to deal with the influence of interaction on the dynamics of a given quantum system. The
previous equation can be formally solved

ρ̃SB(t) = ρSB(0)−
i

ℏ

∫ t

0

[
H̃I(s), ρ̃SB(s)

]
ds. (1.71)

Substituting the solution back to the von Neumann equation and taking the partial trace over
the environment gives

dρ̃S
dt

= − i

ℏ
TrB

([
H̃I(t), ρSB(0)

])
− 1

ℏ2
TrB

([
H̃I(t),

∫ t

0

[
H̃I(s), ρ̃SB(s)

]
ds

])
, (1.72)

where ρS(t) = TrE(ρSB(t)) is the density matrix of the system obtained by tracing out the
environment. The first term in the right hand side is usually equal to zero or can be put
equal to zero by shifting the environment operator Bn without changing the dynamics of the
system [29]. After a change of variable τ = t− s we get

dρ̃S
dt

= − 1

ℏ2
TrB

([
H̃I(t),

∫ t

0

[
H̃I(t− τ), ρ̃SB(t− τ)

]
dτ

])
. (1.73)

The Born approximation

Now in order to have a solvable and manipulable master equation, we need to use approxi-
mations. The first approximation we use is the Born approximation. For a sufficiently large
environment we can assume that its state remains unaffected and that the interaction between
the system and the environment is sufficiently small to neglect correlations, so that the total
state can be written as ρSB(t) ≈ ρS(t) ⊗ ρB. This allows to trace out the degrees of the
freedom of the environment in the integral and to expand the commutators without difficulty.
After few lines of algebra and assuming the operators An and Bn are hermitian we obtain
the equation

dρ̃S(t)

dt
= −g

2

ℏ2
∑
k,l

∫ t

0

(
Bkl(τ)

[
Ãk(t), Ãl(t− τ)ρ̃S(t− τ)

]
+ h.c

)
dτ, (1.74)
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where Bkl(τ) = TrB

(
B̃k(τ)BlρB

)
is the two-point correlation function of the bath.

Markov approximation and Redfield equation

The master equation we have remains difficult to solve because it is non-local in time and
thus we need to know all past states of the system to obtain the state at a given time. To
deal with this issue, we use the Markov approximation: we assume that the bath two-point
correlation function decays rapidly (exponentially or algebraically) with a characteristic time
τB. Thus this characteristic time has to be small compared to the other characteristic times
involved in the dynamics. The other times are the time at which we track the state of the
system t and the relaxation time τR. The relaxation time characterizes the time at which the
transient effects of the interaction on the dynamics are over and is given by the interaction
strength τR ∼ g−1. Thus the Markov approximation can be written as

g−1 ≫ τB, t≫ τB. (1.75)

Since the integral is strongly dominated by the bath two-point correlation function, the
Markov approximation allows us to replace ρ̃S(t− τ) by ρ̃S(t) and we can extend the upper
limit of the integral to infinity

dρ̃S(t)

dt
= −g

2

ℏ2
∑
k,l

∫ ∞
0

(
Bkl(τ)

[
Ãk(t), Ãl(t− τ)ρ̃S(t)

]
+ h.c

)
dτ. (1.76)

This equation is known as the Redfield equation and has been extensively studied to
describe relaxation phenomena in quantum systems [162, 163, 29]. While this equation can
be solved, its dynamics can lead to states that do not preserve the positivity of the density
matrix and which are therefore non-physical [164, 165].

Secular approximation and Lindblad master equation

The non-preserve of the positivity in the Redfield equation (1.76) can be mitigated by writing
the master equation in the Lindblad form [166, 167, 168]. To do that we write the operators
Ãk(t) in the frequency domain by expanding the Hamiltonian of the system in its basis
HS =

∑
n εn |ϵn⟩ ⟨ϵn|

Ãk(t) = U †S(t)AkUS(t) =
∑
ω

Ak(ω)e
−iωt, (1.77)

where
Ak(ω) =

∑
εm−εn=ℏω

⟨εn|Ak |εm⟩ |εn⟩ ⟨ϵm| . (1.78)

By using the fact that the operators are hermitian, we can rewrite the Redfield equation in
the frequency domain as

dρ̃S(t)

dt
= −g

2

ℏ2
∑
k,l

∑
ω,ω′

(
Γkl(ω)e

i(ω′−ω)t
[
A†k(ω

′), Al(ω)ρ̃S(t)
]
+ h.c

)
, (1.79)
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where Γkl(ω) =
∫∞
0
Bkl(τ)e

iωτdτ . Now we proceed to the last approximation: the secular
approximation. We neglect the non-secular terms i.e the terms in the sum for which ω ̸=
ω′. We can use this approximation by assuming that those non-secular terms oscillate fast
enough so that their contributions average to zero. In this case rapid oscillations means
t≫ minω ̸=ω′ |ω − ω′|. Since we have the Markov approximation, the secular approximation
is consistent as long as minω ̸=ω′ |ω − ω′| > τ−1B .

We also introduce the Fourier transform of the correlation function, sometimes called the
decay/dephasing rates

γkl(ω) =

∫ ∞
−∞

Bkl(τ)e
iωτdτ. (1.80)

By using the well known identity
∫∞
0
eiωτdτ = πδ(ω) + iP (1/ω) where P denotes the

Cauchy principal value, we can write

Γkl(ω) =
1

2
γkl(ω) + iSkl(ω), (1.81)

where

Skl(ω) =
1

2π

∫ ∞
−∞

γkl(ω
′)P

(
1

ω − ω′

)
dω′. (1.82)

After using the secular approximation, rearranging the terms in the sum and going back to
the Schrödinger picture, we get the Lindblad master equation

dρS
dt

= − i

ℏ
[HS +HLS] +

g2

ℏ2
∑
ω

∑
kl

γkl(ω)

(
Al(ω)ρS(t)Ak −

1

2

{
A†kAl(ω), ρS(t)

})
,

(1.83)
where {., .} is the anticommutator and HLS is the so called Lamb shift

HLS =
g2

ℏ
∑
ω

∑
kl

Skl(ω)A
†
k(ω)Al(ω). (1.84)

The Lindblad master equation ensures the positivity of the state as long as the matrix of
elements γkl(ω) is positive [29]. We can see that the master equation is explicitely split
into two parts. The first part corresponds to the unitary dynamics with a renormalization
given by the Lamb shift, resulting from the coupling with the environment. The second part
corresponds to the dissipative dynamics that involves transitions between the eigenstates of
the system, characterized by the rates γkl(ω). Let us also remark that all the information we
need to describe the influence of the environment on the system are contained in γkl(ω) and
thus the two-point correlation function.

Kubo-Martin-Schwinger condition and the emergence of the Gibbs state

I finish this section with some remarks on the stationary behavior of the Lindblad master
equation (1.83). One of the implicit assumptions we used to derive the master equation
is that the environment is in a stationary state of its Hamiltonian and thus the two-point
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correlation function satisfies the following invariant property

TrB

(
B̃k(t+ τ)B̃l(t)

)
= TrB

(
B̃k(τ)B̃l(0)

)
. (1.85)

If on top of that, the state of the environment is a Gibbs state ρB = e−βHB/ZB with β
the inverse temperature, the point-correlation function satisfies the Kubo-Martin-Schwinger
(KMS) condition [29]

TrB

(
B̃k(τ)B̃l(0)

)
= TrB

(
B̃l(0)B̃k(τ + iℏβ)

)
. (1.86)

We can rewrite it as
Bkl(τ) = Blk(−τ − iℏβ). (1.87)

After we use the Fourier transform we get the the KMS condition in the frequency domain

γ(−ω)kl = eβℏωγlk(ω). (1.88)

This relation is very similar to the detailed balance in classical stochastic processes. In-
deed one can show that if the KMS condition (1.88) is satisfied, then the Gibbs state ρG =
e−βHS/ZS is a stationary state of the Lindblad equation (1.83) and thus the system equili-
brates. However the KMS condition only ensures that the Gibbs state is stationary but not
unique. To be the unique stationary state we need also to introduce the concept of ergodicity
(see Ref. [169] for more details).

1.3.2 Dissipative dynamics of harmonic oscillators and Gaussian states
Harmonic oscillator and Gaussian states

The master equation is a great operational framework to study open quantum systems and
explore quantum thermodynamics. But as we saw, its derivation requires approximations
that restrict the regime at which we can study a given system and dynamics. Also even if we
can formulate the assumption in terms of inequalities between different characteristic times,
they can be still vague for a given system and they can lack physical motivations.

However some models can be exactly solved due to their convenient and elegant mathe-
matical properties, and allow to explore effects that can be hard to describe with the master
equation such as non-Markovianity, strong coupling with the environment, small size of the
environment or driving. Among those models, there are the dissipative harmonic oscillator
models. In these cases the system consists of a harmonic oscillator coupled to an environ-
ment of N oscillators

HS =
p2

2m
+

1

2
mω2

Sx
2,

HB =
N∑

n=1

p2n
2m

+
1

2
mω2

nx
2
n.

(1.89)

A convenient way to describe the total system is to introduce the vector of operators, also
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called the symplectic vector [170]

X = (x, x1, . . . , xN , p, p1, . . . , pN)
⊺ . (1.90)

The commutation relation between the canonical observables can be rewritten as

[Xi, Xj] = iℏσij, (1.91)

where σ is the symplectic matrix

σ =

[
0 IN+1

−IN+1 0

]
. (1.92)

So far we have described the state with the density matrix ρ. However other operators can be
used to describe the state of a quantum system. Instead of considering unitary operators act-
ing on a density matrix, we can represent the dynamics of a quantum system on a symplectic
vector space. In that case the quantum state can be represented by a function defined in a
phase space. One of those possible functions is the characteristic function defined as [170]

χρ(ξ) = Tr (ρW (ξ)) , (1.93)

where ξ ∈ R2(N+1) and W (ξ) is the Weyl operator

W (ξ) = eiξ
⊺σX . (1.94)

The density matrix is related to the characteristic function through the Fourier-Weyl trans-
form

ρ =
1

(2π)2(N+1)

∫
χρ(−ξ)W (ξ)d2(N+1)ξ. (1.95)

A convenient property of the harmonic oscillator is that its state is usually Gaussian
[171, 170]. A Gaussian state can be simply defined with a Gaussian characteristic function

χρ(ξ) = χρ(0)e
− 1

4
ξ⊺Cξ+D⊺ξ, (1.96)

where D ∈ R2(N+1) is the displacement vector given by the expectation value of the canoni-
cal observables Di = Tr(ρXi) and C is the covariance matrix defined as

Cij = Tr (ρ{Xi, Xj})− 2Tr (ρXi) Tr (ρXj) . (1.97)

We see that a Gaussian state of a many-body system can be fully characterized by a
(2N + 2) ∗ (2N + 2) matrix and a vector in R2∗(N+1). Most of the times the displacement
vector will be zero and we just need to calculate the covariance matrix i.e. 2(N+1)2+N+1
real numbers.

An other great property of Gaussian states is that they remain Gaussian under unitary
operators given by a quadratic Hamiltonian [170]. This implies that as long as we consider a
dynamics described by a quadratic Hamiltonian, which is the case for dissipative harmonic
oscillators, we can solve the full system exactly by only time-evolving the covariance matrix.
This is a great advantage in terms of computational cost, since we do not need to span the
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density matrix of the total system in the Hilbert space that grows exponentially with the
number of particles.

Besides having convenient mathematical properties, dissipative harmonic oscillators can
be used to describe a variety of physical phenomena. In my work, I focus on two specific
models. The first one is the damped harmonic oscillator (DHO). The interaction with the
environment is described in the rotating wave approximation [29]

HI =
N∑

n=1

gn
(
ab†n + a†bn

)
, (1.98)

where gn is a constant coupling strength between the particle of interest and the n-th oscillator
of the environment, a (a†) and bn (b†n) are respectively the annihilation (creation) operators
of the particle and the n-th oscillator of the bath. This model can describe atomic and opto-
mechanical systems, which are also used to explore quantum heat engines [11, 172, 136].
The second model I work with is the quantum Brownian motion (QBM) described by the
so called Caldeira-Leggett model (CL) [27, 28]. In this model, the interaction between the
particle and the environment is harmonic

HI = −x
N∑

n=1

κnxn. (1.99)

Also a counter term is usually added in the total Hamiltonian to cancel out the divergent
renormalization of the energy of the particle resulting from the interaction with the environ-
ment

Hc = x2
N∑

n=1

κ2n
2mnω2

n

. (1.100)

The CL model is paradigmatic in open quantum systems theory and has been extensively
studied to explore dissipation and decoherence in quantum systems [29, 152, 173]. Moreover
recently the model attracted additional attention in the field of cold atoms, where it has
been used as an interesting framework to describe Bose polaron systems (impurities in a
Bosonic gas) [174, 175]. Those systems show to be promising platforms to explore quantum
thermodynamics phenomena like heat transport between mesoscopic quantum gases [176]
or thermometry [177, 178].

Exact dynamics of Gaussian states

Finally I present briefly how we can exactly track the dynamics of dissipative harmonic
oscillators by time-evolving the covariance matrix of the system of interest. The method is
based on Ref. [30]. I will consider the example of the quantum Brownian motion with a
constant trap frequency but the method can be applied in the presence of driving. The QBM
is described, as mentioned earlier, by the CL model

H = HS +HB +HI +Hc, (1.101)
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To obtain the time-evolution of the covariance matrix and describe the dynamics of the sys-
tem, we derive the Heisenberg equations of motion for the Brownian motion and the bath
oscillators.

ẋ(t) =
i

ℏ
[H, x(t)] =

p(t)

m
, (1.102)

ṗ(t) =
i

ℏ
[H, p(t)] = −mω2

Sx(t) +
N∑

n=1

κnxn(t)− x(t)
N∑

n=1

κ2n
mnω2

n

, (1.103)

ẋn(t) =
i

ℏ
[H, xn(t)] =

pn(t)

mn

, (1.104)

ṗn(t) =
i

ℏ
[H, pn(t)] = −mnω

2
nxn(t) + κnx(t). (1.105)

The equations can be written in matrix form by introducing the symplectic vector

dX(t)

dt
=MX(t), (1.106)

where the matrix M can be defined by blocks

M =

[
0N+1 µ
γ 0N+1

]
, (1.107)

where 0N+1 is the null matrix of size (N + 1)2, µ = diag( 1
m
, 1
m1
, . . . , 1

mN
), and the matrix γ

reads

γ =


−mω2

s −
∑N

n=1
κ2
n

mnω2
n

κ1 κ2 . . . κN
κ1 −m1ω

2
1

κ2 −m2ω
2
2

... . . .
κN −mNω

2
N

 . (1.108)

The equation (1.106) can be formally solved X(t) = U(t)X(0) with the time-evolution
exponential matrix U(t) = eMt. It is then straightforward to show that the evolution of the
elements of the covariance matrix are given by

Cij(t) =
2N+2∑
k,l=1

Uik(t)Ujl(t)Ckl(0). (1.109)

In particular one can fully determine the dynamics of the Brownian particle with its corre-
sponding covariances C11(t), C1N+2(t) and CN+2N+2(t). Their expression can be written as
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a scalar product

C11(t) =
〈
Ũ1(t), C(0)Ũ1(t)

〉
, (1.110)

C1N+2(t) = CN+21(t) =
〈
Ũ1(t), C(0)ŨN+2(t)

〉
, (1.111)

CN+2N+2(t) =
〈
ŨN+2(t), C(0)ŨN+2(t)

〉
, (1.112)

where ⟨., .⟩ denotes the scalar product, Ũ1(t) = (U11(t), U12(t), . . . , U12N+2(t))
⊺ and ŨN+2(t) =

(UN+21(t), UN+22(t), . . . , UN+22N+2(t))
⊺.



Chapter 2

Quantum engines with few-body cold
atomic systems

2.1 Anomalous heat flow between two correlated atoms

2.1.1 Motivation and introduction of the research project
As it has been previously mentioned in subsection 1.2.2, the presence of correlations between
two systems at different temperatures can lead to a spontaneous reversal of the heat flow.
This mechanism has been theoretically explored with physical systems such as a double
two-level system coupled to a bath [179], trapped ions [180] and very recently in a quantum
dot coupled to two heat reservoirs [181].

However so far cold atomic systems have not been considered for the study of this in-
triguing phenomenon, even though they are a promising platform for potential experimental
realizations. Also its numerical investigation by the means of exact diagonalization is within
reach for a reasonable number of particles [182]. In this research project, I investigate the
anomalous heat flow (AHF) in the minimal model of two interacting atoms at different tem-
peratures in a harmonic potential.

The AHF occurs by coupling the two atoms with the contact interaction. I characterize
the dynamics by considering different interaction strengths and specific types of correlation.
I also mention that the AHF can be adapted to design an atomic quantum fridge with corre-
lation as the resource instead of using two thermal baths. This could pave the way for the
exploration of purely quantum cooling devices working with only unitary processes.

2.1.2 Model and dynamics
I consider two particles of equal mass that are initially in a one-dimensional harmonic po-
tential. The corresponding Hamiltonian is

H =
2∑

n=1

Hn =
2∑

n=1

− ℏ2

2m

∂2

∂x2n
+

1

2
mω2x2n. (2.1)

The state of the two particles is described with the density matrix that I denote as ρ.
Initially both particles are at different temperatures and correlations between them exist. As

29
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we already saw above, the initial state can be written as

ρ(0) = ρ1(0)⊗ ρ2(0) + χ, (2.2)

where the reduced density matrix of one particle is obtained by tracing out the other one

ρi(0) = Trj ̸=i (ρ(0)) =
exp(−βiHi)

Zi

, (2.3)

with βi the inverse temperature and Zi the partition function, and the correlations have a null
trace Tr(χ) = 0. The particles are put into thermal contact by doing a sudden quench of the
Hamiltonian with an interaction term HI , described by the contact interaction

HI = gδ(x1 − x2). (2.4)

The Clausius inequality with the presence of correlations (Eq. (1.48)) was derived by
assuming that the interaction preserves the energy of the total system. However the contact
interaction does not satisfy this property and therefore the extra energy added by the quench
needs to be taken account. This modifies the Clausius inequality as

Q2(β2 − β1) ≥ ∆I + β1Tr ((ρ(t)− ρ(0))HI) , (2.5)

where the heat exchange for a single particle is defined as

Qi(t) = Tr ((ρi(t)− ρi(0))Hi) , (2.6)

and ∆I is the change of mutual information between the two particles during the dynamics.
The contribution from the interaction (second term on the right hand side of the inequality
(2.5)) gives a positive contribution and thus it can reduce the effect of the AHF. Therefore,
one needs to be careful with the amount of energy added by HI and so with the interaction
strength g.

To calculate the quantities of interest, I time-evolve the density matrix of the two-particles
ρ(t) whose dynamics is formally given by

ρ(t) = exp

(
− i

ℏ
(H +HI) t

)
ρ(0) exp

(
i

ℏ
(H +HI) t

)
. (2.7)

The knowledge of the density matrix at any time can thus be obtained by simply calculating
the overlaps between the eigenstates of the quench Hamiltonian H +HI and the vectors of
the basis used for writing the initial state of the two particles ρ(0) (in this case, it corresponds
to the eigenbasis of the non-interacting Hamiltonian H).

For the initial correlations, I consider two different types. Those correlations are not
necessarily possible to be experimentally prepared, however they allow to easily check that
the initial state is physical. Indeed, the correlations cannot be arbitrarily chosen but they
need to ensure that the density matrix of the two particles is definite positive and describes a
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Figure 2.1: Heat of the particle 1, Q1, and variation of the mutual information between the two
particles ∆I as a function of time during the thermal contact. Panel (a) shows the case where the
particles are initially uncorrelated. Panel (b) corresponds to the case where ρ(0) = ρ1 ⊗ ρ2 + χ1 and
the panel (c) shows the case where ρ(0) = ρ1 ⊗ ρ2 + χ2.

physical state. The first type of correlations is defined as

χ1 =
∞∑
n=1

αn |0, n⟩ ⟨n, 0|+ α∗n |n, 0⟩ ⟨0, n| , (2.8)

where |n,m⟩ is a two body state made of the product of single particle states. In this configu-
ration, the ground state of one particle is correlated to the excited states of the other particles.
To check the positivity of the density matrix, I calculate the determinant of the density matrix
and find a condition on αn. For this type of correlation, a sufficient condition for the density
matrix to be positive is

|αn|2 ≤ ρn,0ρ0,n, (2.9)

where ρn,m = ⟨n,m| ρ1(0)⊗ ρ2(0) |n,m⟩. The second type of correlations that I consider is
written as

χ2 =
∞∑
n=0

αn |n, n+ 1⟩ ⟨n+ 1, n|+ α∗n |n+ 1, n⟩ ⟨n, n+ 1| . (2.10)

In this case, an eigenstate |n⟩ of one particle is correlated to the next eigenstate |n+ 1⟩ of
the other particle. This can be seen as an extension of the Bell state to an infinite discrete
spectrum. A sufficient condition for the density matrix to be positive is

|αn|2 ≤ ρn+1,nρn,n+1. (2.11)

From those conditions, we can see that the amount of correlations between the particles
are limited by their temperatures. The higher the temperatures of the particles are, the less
they can be correlated.

2.1.3 Results
For the simulation of the dynamics, I choose the temperatures of the two particles to be
β1ℏω = 1 and β2ℏω = 0.5 and thus the particle 1 is colder than the particle 2. For the initial
correlations, I set αn = i0.9ρn,0ρ0,n for χ1 and αn = i0.9ρn,n+1ρn+1,n for χ2. The figure
2.1 shows the evolution of the heat of the particle 1, Q1, and the variation of the mutual
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Figure 2.2: Probability of occupying the ground state for the particle 1 during the dynamics. The
panel (a) shows the case where ρ(0) = ρ1 ⊗ ρ2 + χ1 and panel (b) shows the case where ρ(0) =
ρ1 ⊗ ρ2 + χ2

information between the two particles as a function of time. For comparison, I also show the
case where the two particles are initially uncorrelated (panel (a) in Fig. 2.1).

For the case where the particles are initially uncorrelated, we see that the heat is positive
meaning the particle is receiving energy as expected in a conventional heat transport where
the flow goes from the higher temperature system to the lowest temperature system. Also we
see from the variation of the mutual information that the particles become correlated during
the thermal contact.

However for the both cases where the two particles are initially correlated, the heat flow
is spontaneously reversed. At the same time, the variation of mutual information is negative
showing that both particles are decorrelated due to the thermal contact and this causes the
AHF. The dynamics is characterized by an oscillatory behavior. We can see that after some
time the heat Q1 as well as ∆I reach a minimum and then increase.

This behavior is characteristic of the harmonic trap. Due to the equidistant distribution of
the eigenenergies of the harmonic oscillator, the dynamical phase of the state of the particles
will be pseudo-periodic in the presence of the interaction. The pseudo-period is related to
the interaction strength used for the quench. The stronger the interaction is, the faster the
oscillations occur. As a consequence, an observable of the system will evolve periodically
and never reach a stationary limit. This effect is washed out if one increases the number of
particles because the presence of the interaction breaks the integrability for larger systems
[183].

Here the interaction strength I use is g = 0.1ℏωa (with a =
√

ℏ
mω

). This corresponds
to a small interaction strength and this explains why the oscillations have a large timescale
compared to the typical timescale of the system ω−1. We can also see that the dynamics is
faster for the correlation χ2. This is because the initial state is less correlated and therefore
the decorrelation process happens faster. We can also notice that the amount of heat is lower
in absolute value for the correlation χ2 showing that the more correlation we have initially,
the more AHF we get.

2.1.4 Proposal for an atomic fridge based on quantum correlations
Interestingly, the AHF can be related to the operation of the fridge (or a heat pump). Indeed
in a conventional fridge, a working medium will absorb heat from the cold bath and restore
it to the hot bath. In the presented configuration we have a very similar process where heat
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is extracted from the cold particle and is restored to the hot particle. The difference is the
working medium is replaced by the presence of correlations. Therefore the AHF can lead to
the realization of purely quantum refrigerator (or heat pump) cycle at the atomic scale, based
on correlations.

The figure 2.2 shows the probability for the particle 1 to occupy the ground state ⟨0| ρ1(t) |0⟩
as a function of time during the dynamics, for both types of correlations. We can see that in
both cases it increases showing that the particle cools down due to the AHF and approaches
the ground state. This suggests that a controlled engineering of the interaction strength and
the correlations could lead to a quantum fridge that cools a system its ground state.

The cycle can be formulated as follows: we have two particles initially uncorrelated
at different temperatures. Then we prepare them in a correlated state given by the density
matrix (2.2). In the above presented results, I assume that the particles are already in such a
state, and the correlations that I consider are chosen arbitrarily and do not originate from a
physical process. However the preparation of the correlated state could be possible with the
contact interaction. Indeed, we saw that the contact interaction can create correlations for
the case of the conventional heat flow (Fig. 2.1(a)). Therefore an appropriate manipulation
of the interaction strength could prepare the desired state.

In particular we could increase the interaction through a Feshbach resonance to the hard-
core limit g

ℏωa ≫ 1 to have two hardcore particles at different temperatures which can give a
highly entangled state due to the presence of large spatial correlations in this regime. How-
ever one needs to be careful to prevent heat exchanges during the process and for that, one
needs to drive the interaction very fast. This is actually very similar to the adiabatic stroke in
the classical sense. Once the state is prepared, we put them in thermal contact with a small
interaction strength until they are completely decorrelated, then the interaction is turned off
and that ends the quantum fridge cycle.

2.1.5 Conclusion and perspectives
In this project, I have studied the AHF in cold atomic systems by considering two particles
in a harmonic trap and interacting via the contact interaction. I have shown that the AHF
can be predicted in this type of configuration and therefore that cold atomic systems have
a great potential to explore this non-intuitive phenomenon. I characterized the dynamics in
the case where the two particles are put in thermal contact by quenching the interaction.
However I plan to do further investigations in the future by considering more interaction
strength regimes and time-dependent protocols such as linear ramps and periodic drivings
for a complete analysis.

I have also mentioned that the AHF can be adapted to design a quantum fridge cycle
based on correlations. The cycle involves no working medium and heat is absorbed from
the cold particle and restored to the hot particle by using correlations as a resource. The
proposed cycle can be realized with an appropriate manipulation of the interaction strength,
allowing the preparation of the correlated state and the heat exchange to occur between the
two particles.

In the future I plan to study the proposed atomic fridge. I will first consider the ideal
cycle, where I assume the system is prepared to the desired state at the end of each stroke,
and study its performance. In particular I will study how the performance of the fridge is
degraded when the temperatures of the two particles increase. Another interesting question
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is actually the choice of the appropriate quantity to evaluate the performance of the fridge.
In classical fridges, this is evaluated with the coefficient of performance given by the ratio
between the heat extracted from the cold bath and the work input. One can use a similar
coefficient in the quantum fridge where the work input is the energy used to prepare the
correlated state. However an alternate definition could be considered by using the mutual
information as the input instead.

I will then study the fridge cycle for finite times. A shortcut to adiabaticity has been
derived to prepare two initially non-interacting particles in the Tonks–Girardeau limit by
using a variational approach [184]. This could be used to realize the cycle for finite times
without reducing significantly the performance of the fridge.

Finally, I plan to extend the work to a larger number of particles to see how the AHF
scales with larger systems. A first step will be to consider two particles correlated with
two other particles. Also more complicated configurations can be studied by considering
imbalanced systems like three cold particles correlated to one hot particle or inversely, one
cold particle correlated to three hot particles. Also internal correlations within particles of
the same temperature could play a role in the AHF [179], and therefore it could be interesting
to also consider this case.

2.2 Interaction-enhanced quantum heat engine

2.2.1 Motivation and introduction of the research project
The study of quantum heat engines (QHEs) has in the past mostly addressed single particle
systems [12, 185, 186, 187, 188, 189, 11, 136, 10, 190, 191, 192], however more recently
QHEs that use interacting systems have attracted more attention [193, 194, 195, 196]. In
particular, it is interesting to understand the effect of the interaction on the performance, and
to identify parameter regimes in which cooperative effects due to these interactions allow
to outperform single particle QHEs [197, 198, 199, 200, 201, 202]. However, care must be
taken as interactions have also been shown to reduce engine performance [203], and the dy-
namical control of these systems can be more complex leading to the creation of irreversible
excitations [197, 204, 137, 135, 138, 205, 184, 206].

In this work I show that a suitable tuning of the interactions can be used to improve
the performance of QHEs when compared to systems with non-interacting working media.
For this, I consider interacting bosons confined in a harmonic trapping potential and realize
the adiabatic compression and expansion strokes of the Otto cycle through increasing and
decreasing the trap frequency. However, the interaction is also driven between two distinct
values during these strokes and I find that optimal interaction strengths exist that increase the
work output and the efficiency when compared to a non-interacting engine.

I also show that the effect of the interaction strongly depends on if one considers dis-
tinguishable or indistinguishable particles, and I calculate the efficiency at maximum work
output (EMW) showing that the interaction significantly improves this quantity in the low
temperature regime. Finally I study the performance of the engine at finite-time and show
that it can provide a great boost in the performance compared to the non-interacting case.
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2.2.2 Quantum Otto heat engine with driven interaction
I consider a QHE cycle where the working medium (WM) is an interacting quantum gas
confined to one dimension and trapped in a harmonic potential. The Hamiltonian is given by

H(ω, g) =
N∑

n=1

− ℏ2

2m

∂2

∂x2n
+

1

2
mω2x2n + g

∑
n<p

δ(xn − xp), (2.12)

where m is the mass of the particles and ω is the trap frequency. As mentioned in Sec. 1.1.2,
this Hamiltonian can be analytically solved for N = 2 [48], however for N ≥ 3 numerical
methods are required to find the eigenstates [207, 182]. The engine cycle I explore is similar
to a standard quantum Otto cycle except that the adiabatic strokes occur by changing two
parameters: the trap frequency ω and the interaction strength g. A schematic is shown in
Fig. 2.3 and the individual strokes are given by

Adiabatic compression (1 → 2): the WM is initially trapped in a harmonic potential
with frequency ωi and at equilibrium with inverse cold temperature βc. The interaction
strength is given by gi. From there a compression stroke is carried out that performs
work on the system by increasing the trap frequency to ωf and changing the interaction
strength to gf . The work is given by Wc = ⟨H(ωf , gf )⟩2 − ⟨H(ωi, gi)⟩1.

Hot isochore (2 → 3): the next stroke increases the temperature of the WM by cou-
pling it to an external hot bath at the inverse temperature βh with the control parame-
ters gf and ωf fixed. In equilibrium the heat exchanged during this stroke is given by
Qh = ⟨H(ωf , gf )⟩3 − ⟨H(ωf , gf )⟩2.

Adiabatic expansion (3 → 4): the system is then decoupled from the hot bath and work
is extracted from the WM by adiabatically driving the trap frequency and interaction
strength back to ωi and gi. The work is given by We = ⟨H(ωi, gi)⟩4 − ⟨H(ωf , gf )⟩3.

Cold isochore (4 → 1): in the last stroke the WM is cooled down by exchanging heat
with a cold bath at the inverse temperature βc. It returns to the initial state and the heat
exchanged during this stroke is given by Qc = ⟨H(ωi, gi)⟩1 − ⟨H(ωi, gi)⟩4.

By convention, I choose the variation of energy to be negative when the WM loses energy,
which means that the engine produces extractable work when W = Wc +We < 0. Like in a
conventional quantum heat engine, the trap frequency at the end of the compression is larger
than the initial frequency, ωf > ωi, however gf can be larger or smaller than gi.

2.2.3 Engine performance in the adiabatic limit
Non-interacting limit and influence of the statistics on the performance

Before examining the effects of the interactions in the working medium, let us first consider
the non-interacting limit (gi = gf = 0) in order to outline the influence of the quantum
statistical properties on the engine performance. Below I consider distinguishable particles
and indistinguishable bosons, where their respective statistics leads to a difference in the
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Figure 2.3: Schematic of the heat engine cycle. The y-axis represents the entropy of the WM and the
x-axis represent the trap frequency and the interaction. While ωf > ωi, the final interaction strength
gf can be chosen to be lower or greater than gi.

degeneracy of the energy levels given by

d(En) =
∑
n1

...
∑
nN

δEn,ℏω(
∑N

j=1 nj+
1
2)
, (2.13)

where δa,b is the Kronecker symbol. I illustrate this in Fig. 2.4(a)-(b) for two and three
particles systems. Unsurprisingly the number of states for a given energy is higher for dis-
tinguishable particles. In fact, the difference between these two distributions increases expo-
nentially with the number of particles. The probability for N indistinguishable bosons to be
at the same energy is therefore higher than for N distinguishable particles and this increases
with the number of particles. In particular, indistinguishable bosons will most likely stay in
the ground state and the probability for a boson to transition to an excited state will be small
for low temperatures.

As a consequence, the performance of an engine realized with non-interacting bosons
will be limited in terms of work output in the temperature regimes of our interest (which cor-
responds, as we will see later, to the temperature regime where interactions lead to interesting
behaviors). The respective work output of the Otto-cycle of non-interacting bosons and dis-
tinguishable particles as a function of the number of particles is shown in Fig. 2.4(c). As
expected, the work output for distinguishable particles increases linearly and from physical
arguments one can expect the work output for bosons to be sub-linear.

However in Fig. 2.4(c), one can see that the behaviour is more than sub-linear and it, in
fact, reaches a plateau for N ≥ 3. This means that the mean occupations of the energies
for bosons at the hot and cold temperatures become so similar that adding particles only
contributes negligibly to the work output. Given this drastically different behavior in the
non-interacting limit, I study both distinguishable particles and indistinguishable bosons in
the presence of interactions in the following.
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Figure 2.4: Degeneracy of the energy levels for a system of (a) two distinguishable particles (green
dots) and two indistinguishable bosons (brown dots) and (b) three distinguishable particles (green
dots) and three indistinguishable bosons (brown dots). (c) Work output of the Otto cycle of non-
interacting distinguishable particles (green dots) and non-interacting indistinguishable bosons (brown
dots) as a function of the number of particles. The compression ratio is κ = ωi

ωf
= 1

3 , the cold inverse
temperature is βc =

10
ℏωi

and the hot inverse temperature is βh = 1
ℏωi

.

Two particles working medium

I take account of the interaction by first considering the two particle case (N = 2). The
Hamiltonian is solved by using the analytical solution discussed in Sec.1.1.2. I introduce the
center of mass coordinate X = x1+x2√

2
and the relative coordinate x = x1−x2√

2
, which allows

to split the Hamiltonian (2.12) into two decoupled single particle Hamiltonians H(ω, g) =
HCM(ω) +Hr(ω, g) with

HCM(ω) = − ℏ2

2m

∂2

∂X2
+

1

2
mω2X2, (2.14)

Hr(ω, g) = − ℏ2

2m

∂2

∂x2
+

1

2
mω2x2 +

g√
2
δ(x). (2.15)

The eigenenergy of the center of mass is given by En
CM = ℏω(n+ 1

2
). For the relative coor-

dinate, only the even states are affected by the interaction and the corresponding eigenenergy
E2ν

r is obtained by solving the transcendental equation (1.18). The odd eigenstates are again
just harmonic oscillator states with the eigenenergies E2ν+1

r = ℏω(2ν + 3
2
). To understand

how the interaction affects the efficiency, I rewrite the eigenenergies of the relative coordi-
nate as

Eν
r = ℏω(ν + 1/2 + ϵ(ν, g̃)), (2.16)

where ϵ(ν, g̃) is an extra energy term due to the interaction, which depends on the quantum

number ν and the rescaled interaction g̃ = g√
2ℏωa (with a =

√
ℏ

mω
). Since the interaction

only affects the even states, we have ϵ(2ν + 1, g̃) = 0 ∀ ν. In the limit of repulsive infinite
interactions, fermionization occurs [55] and the even eigenenergies asymptotically approach
the next higher lying odd eigenenergies, which leads to ϵ(2ν,+∞) = 1 ∀ ν. It is also
worth noting that the contact interaction has the strongest effect on the ground state energy
ϵ(0, g̃) ≥ ϵ(2ν, g̃) ∀ (ν, g̃).
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Two indistinguishable bosons

Here I focus on the case of two indistinguishable bosons, where only the states that preserve
even parity can be occupied in the relative coordinate. To calculate the efficiency of the
engine, I first express the heat exchanged during the hot and cold isochores as

Qh =
∑
n,ν

Ef
n,2ν

(
pfn,2ν − pin,2ν

)
, (2.17)

Qc =
∑
n,ν

Ei
n,2ν

(
pin,2ν − pfn,2ν

)
, (2.18)

where Es
n,2ν = ⟨n, 2ν|H(ωs, gs) |n, 2ν⟩ = ℏωs(n+2ν+1+ ϵ(2ν, g̃s)) (with s ∈ {i, f}) and

the occupation populations are given by pin,2ν = ⟨n, 2ν| exp(−βcH(ωi,gi))
Z(ωi,gi,βc)

|n, 2ν⟩ and pfn,2ν =

⟨n, 2ν| exp(−βhH(ωf ,gf ))
Z(ωf ,gf ,βh)

|n, 2ν⟩ (where Z(ω, g, β) = Tr [exp (−βH(ω, g))] is the partition
function). From this, the efficiency can be expressed as

η = 1 +
Qc

Qh

= 1−

∑
n,ν λn,2νE

f
n,2ν

(
pfn,2ν − pin,2ν

)
∑

n,ν E
f
n,2ν

(
pfn,2ν − pin,2ν

) , (2.19)

where I have introduced λn,2ν as the ratio between the eigenenergies before and after the
compression [203]

λn,2ν =
Ei

n,2ν

Ef
n,2ν

= κ
n+ 2ν + 1 + ϵ(2ν, g̃i)

n+ 2ν + 1 + ϵ(2ν, g̃f )
, (2.20)

with κ = ωi

ωf
being the compression ratio. From Eq. (2.19) one can see that the efficiency

is influenced by the interaction through the ratio λn,2ν , and the change of population oc-
cupation pfn,2ν − pin,2ν . Let us recall that the eigenstates of the harmonic oscillator for
two different frequencies ωi and ωf are related by the scaling transformation ⟨x|n(ωf )⟩ =

κ−
1
4

〈
xκ−

1
2

∣∣∣n(ωi)
〉

. Also the contact interaction described by a delta function obeys the
scaling law gδ(λx) = g

λ
δ(x). As a consequence, if one chooses the final interaction to be

gf = giκ
− 1

2 (and so g̃f = g̃i), then the system will remain scale-invariant, and all eigenener-
gies change by the same ratio given by κ, i. e.

Ei
n,2ν = κEf

n,2ν ∀(n, ν). (2.21)

In this case the efficiency is given by the Otto efficiency ηO = 1−κ. This is illustrated in
Fig. 2.5(a), where the ratio between η and ηO is plotted as a function of ϵ(0, g̃i) and ϵ(0, g̃f )
and the diagonal corresponds to the case where the WM is scale-invariant. To obtain an effi-
ciency that differs from ηO, one therefore needs to consider systems where the eigenenergies
do not change uniformly during the adiabatic strokes [208]. To do that, I tune the initial and
final interactions such that gf ̸= giκ

− 1
2 , which allows one to distinguish two possible cases.

The first case is when the interaction weakens during the compression stroke (g̃i > g̃f ),
which leads to ϵ(2ν, g̃f ) < ϵ(2ν, g̃i) and λn,2ν > κ (the region above the diagonal in
Fig. 2.5(a)). One then needs to be careful with the sign of the change of the occupation



2.2 Interaction-enhanced quantum heat engine 39

Figure 2.5: (a) Efficiency and (b) work output normalised to their respective Otto-cycle values for an
engine with a WM made of two interacting bosons as a function of ϵ(0, g̃i) and ϵ(0, g̃f ). The black dash
line shows the situation where the interaction is fixed (gi = gf ). Note that the efficiency converges
to ηO in the limit of strong interactions due to the fermionization in the system. In both plots the
compression ratio is κ = 1

3 (ηO = 2
3 ), the cold inverse temperature is βc = 10

ℏωi
and the hot inverse

temperature is βh = 1
ℏωi

.

population pfn,2ν − pin,2ν . For the excited states, the sign will be positive since at higher tem-
peratures, the occupation population in the excited states increases. However the change of
population for the ground state will be negative since it decreases for higher temperatures.
Thus, depending on which terms have the largest contribution, the efficiency can be higher
or lower than ηO.

When the interactions affect the ground state more than the excited states, the change of
the occupation population of the ground state is thus more important and we get η > ηO
(red area above the diagonal in Fig. 2.5(a)). However, when the interactions are such that
the extra energy ϵ(2ν, g̃) affects significantly the excited states, the change of the occupation
population for the excited states can be large enough that η < ηO (blue area above the
diagonal in Fig. 2.5(a)). The situation where the interaction is fixed gi = gf is also indicated
(black dashed line in Fig. 2.5(a)), which is similar to the situation studied in [203]. In their
case the WM is an interacting gas trapped in a box and the efficiency only decreases in
the presence of the interaction. For the harmonic oscillator, however, we observe that the
interaction can enhance or hinder the performance of the engine.

The second case is when the interaction strength increases during the compression stroke
(g̃f > g̃i). This implies that ϵ(2ν, g̃f ) > ϵ(2ν, g̃i) and λn,2ν < κ. By doing the same analysis
as above, the opposite conclusion to the first case can be reached: if the interactions affect
the ground state more we get η < ηO (blue area below the diagonal in Fig. 2.5(a)), and
if the interactions affect the excited states sufficiently we find η > ηO (red area below the
diagonal in Fig. 2.5(a)). The area near the anti-diagonal is highlighted in Fig. 2.5(a), where
the efficiency is equal to ηO. This area is not exactly the anti-diagonal and corresponds to a
crossover between the regime where η > ηO and η < ηO in which the contribution from the
ground state and the excited states are such that they compensate each other and one recovers
the Otto efficiency.

The maximum efficiency shown in Fig. 2.5(a) is η ≈ 1.003η0 and achieved for g̃i = 1.6
and g̃f = 50 (ϵ(0, g̃i) ≈ 0.52 and ϵ(0, g̃f ) ≈ 0.98). One can see from the work output shown
in panel (b) that the engine outperforms the Otto cycle of two non-interacting bosons when
the final interaction takes intermediate values, and the initial interaction does not seem to
influence the work output significantly. This plot also shows that the work output always
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exceeds WO and becomes equal to it when the initial and final interaction are zero or go
to infinity (the four corners in Fig. 2.5(b)). In the infinite interaction regime this is due
to the system behaving like two non-interacting fermions. The maximum work output is
W ≈ 1.039WO for g̃i = g̃f = 1.6.

Two distinguishable particles

While driving the interaction during the cycle can clearly modify the performance of the
engine, the changes observed above for a working medium made from two identical bosons
are not very significant and the performance of the engine stays relatively close to its non-
interacting counterpart. Next I therefore consider the situation where the working medium
consists of two distinguishable particles, for which two major differences come into play:
first, as shown above, the degeneracy of the states is different in the non-interacting limit,
and, second, for such a system the odd states of the energy spectrum of the relative coordinate
need to be taken into account.

The efficiency and work output for this engine are shown as a function of the interaction
energies in Figs. 2.6(a)-(b). Like for indistinguishable particles, the diagonal represents
the scale-invariant cycle and therefore retains the Otto efficiency. The Otto efficiency is
exceeded for ϵ(0, g̃i) > ϵ(0, g̃f ). Indeed, we note that interactions can noticeably improve
the performance of the distinguishable cycle (note the difference in the colour scale) with
the maximum efficiency η ≈ 1.124ηO ≈ 0.75 for g̃i = 3 and g̃f = 0.8 (ϵ(0, g̃i) ≈ 0.69
and ϵ(0, g̃f ) ≈ 0.34), and maximum work W ≈ 1.43WO for g̃i = 1.95 and g̃f = 1.4
(ϵ(0, g̃i) ≈ 0.58 and ϵ(0, g̃f ) ≈ 0.48). In contrast to indistinguishable bosons the efficiency is
always reduced when the final interaction is larger than the initial one, g̃f > g̃i. Furthermore,
the work output can be significantly lower than for a cycle with non-interacting particles, and
we note that the WM can act as a dissipator (W > 0) for combinations of strong and weak
interactions, (g̃i ≈ 0, g̃f → ∞) and (g̃i → ∞, g̃f ≈ 0), indicated by the grey regions
in Figs.2.6(a)-(b). I have also calculated the efficiency for higher temperatures and have
observed the same general behavior, however, the variations of the efficiency and the work
output become less pronounced.

To illustrate and better understand the behaviour of the QHE with distinguishable parti-
cles, I also calculate the efficiency as a function of the initial interaction g̃i while tuning the
final interaction such that g̃f = αg̃i, with α fixed. Fig. 2.6(c) shows the efficiency for three
different values of α (α = 1, 3 and 1

3
) and one can clearly see that the changes in the effi-

ciency are more significant and also very different from the setting using indistinguishable
particles. The efficiency can be enhanced when g̃f < g̃i, while it is significantly reduced
when g̃f > g̃i.

To understand this, I consider the amount of heat exchanged with the hot and cold baths
as shown in Fig. 2.6(d,e). In Fig. 2.6(d) we see that the presence of the interaction increases
the amount of heat received by the hot bath in all three cases, for weak and intermediate
values of g̃i. However it decreases for large g̃i and reaches a limit that is approximately
half of the non-interacting working medium. In this limit the even eigenstates in the relative
coordinate approach the next higher-lying odd eigenstates and thus the spectrum becomes
doubly degenerated for distinguishable particles which implies less heat is required for the
WM to thermalize.

We observe similar behavior for Qc in the large g̃i limit (Fig. 2.6(e)), however for weak
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Figure 2.6: (a) Efficiency and (b) work output normalised to their respective Otto-cycle values for
an engine with a WM made of two interacting distinguishable particles as a function of ϵ(0, g̃i) and
ϵ(0, g̃f ). The gray areas correspond to interaction regimes where the system does not work as a heat
engine but rather like a dissipator with W > 0. The black dashed line shows the case where the
interaction is fixed (gi = gf ). (c) Efficiency normalized to the Otto efficiency and heat exchanged with
the (d) hot bath and (e) cold bath as a function of the initial interaction g̃i, with the final interaction
given by g̃f = g̃i (black line), g̃f = g̃i

3 (green line) and g̃f = 3g̃i (orange line). The compression
ratio for all plots is κ = 1

3 (ηO = 2
3 ), the cold inverse temperature is βc = 10

ℏωi
and the hot inverse

temperature is βh = 1
ℏωi

.

and intermediate values of g̃i the amount of heat dissipated in the cold bath is significantly
larger when g̃f = 3g̃i, which is the reason for the decreasing efficiency. For the same initial
interaction g̃i the best strategy to reduce energy loss in the cold bath is therefore to choose
a weaker final interaction g̃f . This allows the statistics at the inverse temperature βh to be
closer to the initial statistics of the WM and thus the change of the occupation population
pin,ν − pfn,ν becomes smaller in magnitude such that less heat is released during the cold
isochore. The changes in the performance of the QHE are more extreme when the baths are
at low temperatures because the WM is more affected by finite interactions.

I also look at the efficiency at maximum work output (EMW). It was calculated by max-
imizing the work output over κ, g̃i and g̃f for two fixed cold bath temperatures βcℏωi = 1
and βcℏωi = 10 (see Fig. 2.7). I also compare the EMW of both engines, with distinguish-
able and indistinguishable interacting working media, with their non-interacting counterparts
in the low temperature regime βcℏωi = 10 in Fig. 2.7(a). One can see that for the non-
interacting engines, this quantity is far below the CA bound, which is due to the fact that at
low temperature the WM dissipates a large amount of energy into the cold bath in order to
close the cycle. At the same time the efficiency for non-interacting bosons is the lowest as
its statistics makes low energy states more favorable than in the distinguishable case. The
EMW of the interacting bosons is extremely close to that of non-interacting bosons, which is
not surprising since the influence of the interaction on the engine performance is very small
(as seen in Fig. 2.5).

However for the two distinguishable particles, it is vastly improved by the presence of
the interaction and even coincides with the CA bound for βh/βc ≳ 0.5. One can see that
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the gap between the efficiency of bosons and distinguishable particles decreases when the
temperature of the hot bath is large, βh/βc → 0, as their statistics become identical and
are given by the classical Maxwell-Boltzmann distribution. Also the energy scales of the
hot bath dwarf that of the cold bath and therefore the influence of the initial interaction g̃i
becomes negligible.

This is highlighted in the inset of Fig. 2.7(a) where the corresponding extra energy ϵ(0, g̃i)
and ϵ(0, g̃f ) for the case of two distinguishable particles is shown. As expected from the
previous analysis, the final interaction g̃f has to be smaller than g̃i in order to improve the
performance of the engine. The optimal final interaction g̃f decreases when the temperature
of the hot bath increases and becomes zero for βh/βc ≲ 0.08. As already mentioned, the
work output in the high temperature limit is mostly dictated by the energy of the WM at the
inverse temperature βh. Therefore the influence of the interaction becomes negligible since
the particles behave like non-interacting classical particles with an energy approximately
given by β−1h .

Moreover, from the preceding analysis, we know that the work output is significantly
improved for non-zero and finite interaction strengths (Fig. 2.6(b)) and we can thus conclude
that the interactions start to influence the performance of the engine for βh/βc ≳ 0.08. We
can also observe this in the efficiencies of the different cycles which start to deviate from
each other at around this temperature (see Fig. 2.7(a)).

When βh/βc → 1 both g̃i and g̃f tend to the same limit in which the cycle is scale
invariant. Let us note that slight irregularities can be seen for the behavior of ϵ(0, gf ) in the
inset of Fig. 2.7(a) when βh/βc ≳ 0.8. This is due to numerical issues, as the optimization
algorithm has difficulties in finding the maximum work output when the temperatures of both
baths are close, and therefore the work output starts to vanish. Regardless, in this regime the
efficiencies of each cycle converge to the Curzon-Ahlborn bound as expected. Finally, I
show that for a larger temperature of the cold bath βcℏωi = 1, the EMW for both working
media are exactly equal to ηCA (see Fig. 2.7(b)). In this temperature regime, the effect of
the short-range interaction becomes negligible and the particles behave like a non-interacting
ideal and classical gas.

Three particles working medium

In order to show how the influence of the interaction on the engine performance scales
with the number of particles, I extend the analysis to a three particle system. In that case
the Hamiltonian can no longer be analytically solved and a numerical method such as exact
diagonalization is required to calculate the quantities of interest. To compare with the two
particle engines, I consider equivalent temperatures and compression ratios, and also define
the interaction energy ϵ3P (n, g̃) in a similar way. With n being the quantum index that
characterizes the n-th three particle eigenstate, the ground state interaction energy term is
given by

ϵ3P (0, g̃) =
⟨0|H(ω, g) |0⟩

ℏω
− 3

2
. (2.22)

This excess energy is such that ϵ3P (0, 0) = 0 and ϵ3P (0,+∞) = 3 and again allows us to
quantify the interaction strength in the system. In Fig. 2.8 the efficiency and work out-
put for both indistinguishable and distinguishable particles is shown. We note that the
optimal interactions needed for maximizing the performance do not significantly change
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Figure 2.7: Efficiency at maximum work output (EMW) for the engine using two interacting bosons
(brown dots) and two interacting distinguishable particles (green dots) for two different temperature
regimes. Panel (a) shows the efficiency calculated in the low temperature regime with βcℏωi = 10
and panel (b) in the intermediate temperature regime with βcℏωi = 1. In both panels the back line
corresponds to the Curzon-Ahlborn bound ηCA. The inset in panel (a) shows the corresponding extra
energies ϵ(0, g̃i) (orange dots) and ϵ(0, g̃f ) (green dots) for the case of two distinguishable particles.
The values of ϵ(0, gf ) we obtained for βh/βc ≳ 0.8 become less accurate because the work output
starts to vanish in this regime. We also show the efficiency at maximum work output of two non-
interacting distinguishable particles (green line) and two non-interacting bosons (brown line) at the
low temperature regime (a). Note the EMW for two interacting bosons is extremely close to that of
the two non-interacting bosons.

compared to the two particle case, however, the degree of enhancement is marginally in-
creased, with a gain of 0.1% for the maximum efficiency (η ≈ 1.004ηO ≈ 0.668 for
ϵ3P (0, g̃i) ≈ 1.64 and ϵ3P (0, g̃f ) ≈ 2.96) and 1.1% for the work output (W ≈ 1.05WO

for ϵ3P (0, g̃i) = ϵ3P (0, g̃f ) ≈ 1.64).
However, the engine using a WM of distinguishable particles shows a more significant

enhancement of the performance as the number of states that are not affected by the in-
teraction is much larger than in the two particle case (see Fig. 2.4(a)-(b)) allowing for a
more efficient work extraction process. The resulting maximum efficiency and work output,
η ≈ 1.21ηO ≈ 0.807 for ϵ3P (0, g̃i) ≈ 2.48 and ϵ3P (0, g̃f = 0.8) ≈ 1.49 and W ≈ 1.59WO

for ϵ3P (0, g̃i) ≈ 1.73 and ϵ3P (0, g̃f ) ≈ 1.49, allowing for gains of 8.6% and 16% respectively
over the distinguishable two particle engine. This highlights the important role the density
of states plays in the performance.

Finally, the EMW is shown in in Fig. 2.9, together with the case of two distinguishable
particles. While the EMWs for the engines with indistinguishable particles are very similar,
one can note a slight enhancement of the efficiency for the WM made from indistinguishable
particles in the intermediate temperature regime.

2.2.4 Finite time dynamics
So far the performance of the engine has been studied in the adiabatic limit which results, as
discussed in Sec. 1.2.3, in a vanishing power output due to the long time-scale of the strokes.
Also decreasing the duration of the strokes will decrease the efficiency due irreversibility and
inner friction [115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125]. In order to understand
the trade-off between the power and the efficiency of the engine, I next study the compression
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Figure 2.8: Efficiency and work output normalised to their respective Otto values as a function of
ϵ3P (0, g̃i) and ϵ3P (0, g̃f ) for a WM consisting of (a)-(b) three indistinguishable bosons and (c)-(d) three
distinguishable particles.

and expansion strokes at finite-time for an engine made from two distinguishable particles.
For this I consider three cases. First, the interaction is changed between two values that

are known to give a boost to the efficiency and work output in the adiabatic limit (the optimal
case), and second the interaction is driven in such a way that the WM remains scale-invariant,
for which the efficiency in the adiabatic limit is given by ηO. As a third case, I consider two
non-interacting particles in order to benchmark my results.

As the focus is on the non-adiabatic excitation during the compression and expansion
strokes, I do not consider the dynamics of the isochoric strokes. The duration τ of the
compression and expansion stokes are taken to be same and for the optimal case the ramps
for the time-dependent protocols for the trap and interaction strengths are given by

f(t) = f(0) + 10∆f

(
t

τ

)3

− 15∆f

(
t

τ

)4

+ 6∆f

(
t

τ

)5

, (2.23)

where ∆f = f(τ) − f(0) for f = {g, ω}. In the case of scale-invariant dynamics the

interaction strength is connected to the trap frequency through g(t) = g(0)
√

ω(t)
ω(0)

and we
choose ω(t) to be given by Eq. (2.23). To quantify the performance of the engine at finite-
time, I calculate the efficiency η and also a quantity that I call the effective power (EP) of the
engine defined as

P (τ) = −W (τ)

2τ
. (2.24)

While, the latter does not strictly correspond to the power of the engine since I only consider
the total duration of the compression and expansion strokes 2τ , I always assume that the
WM fully thermalizes during the isochoric stokes for a short fixed time. The EP then tells us
how the power of the engine is affected by non-adiabatic excitations created during the work
strokes, and if the duration of the isochoric stokes is short enough, it corresponds to the first
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Figure 2.9: Efficiency at maximum work output for three interacting bosons (brown dots) and three
distinguishable particles (green dots) in the low temperature regime βcℏωi = 10. The black line corre-
sponds to the Curzon-Ahlborn bound ηCA and the purple dashed line shows the two distinguishable
interacting particles case.

approximation of the engine power. Finally I also quantify the irreversibility of the cycle by
calculating the irreversible work

Wirr(τ) = W (τ)−Wad, (2.25)

where Wad is the work output of the engine in the adiabatic limit. The irreversible work
allows to quantify the excess energy generated by non-adiabatic excitations in the WM that
leads to an additional cost in the work extraction process. The irreversibility generated during
the process can also be related to the relative entropy between the state of the WM and the
adiabatic state [209, 210]

Wirr(τ) = β−1S(ρ(τ)||ρad), (2.26)

where β denotes the inverse temperature of the initial state of the WM.
The EP, the irreversible work and the efficiency as functions of τ are shown in Fig. 2.10.

Compared to the non-interacting case, using an interacting system in a cycle of finite duration
provides a significant boost to the power in both the optimal case and the scale-invariant case.
Moreover, one can see that the EP in the optimal case is larger than in the scale-invariant case
for longer stroke durations, which is due to the work output being larger in the adiabatic limit.
However for fast strokes the EP for the scale-invariant case becomes larger and the maximum
value is reached at a shorter time than in the optimal case.

While this is a small effect, it is consistent with the greater amount of irreversible work
being generated in the optimal case (see Fig. 2.10(b)). This can also be seen from the fact
that even if the efficiency in the adiabatic limit in the optimal case is greater, it decreases
faster for shorter times than in the scale-invariant case (see Fig. 2.10(c)). Finally, one can
note that the irreversible work generated by driving the interaction in the scale-invariant case
is not very significant and therefore the efficiency in this case stays relatively close to the
efficiency of the non-interacting case, even for short times.
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Figure 2.10: (a) Effective power output (EP), (b) irreversible work and (c) efficiency as a function of
τ . The green line corresponds to the optimal case, the red dashed line corresponds to the scale-
invariant case and the black line to the non-interacting case. The compression ratio is κ = 1

3 , the cold
inverse temperature is βc = 10

ℏωi
and the hot inverse temperature is βh = 1

ℏωf
. For the optimal case

the interactions are g̃i = 1.95 and g̃f = 1.4 such that the efficiency in the adiabatic limit is η ≈ 0.7,
and for the scale-invariant case the interactions are g̃i = g̃f = 1.95.

2.2.5 Conclusion and perspectives
I have proposed and studied a quantum Otto engine where the interaction is driven with the
trapping parameter of the system (here the trap frequency). I have shown that the presence of
interactions can modify the performance of the engine compared to the non-interacting case.
This change can be explained by two reasons: the first is that the interaction does not have
the same effect on all eigenstates and therefore the eigenenergies do not change uniformly
during the adiabatic strokes. This is in contrast to models where the energy shift due to the
interactions is the same for all states, such as the Calogero-Sutherland model, and which do
not diverge from the Otto efficiency in the adiabatic limit [196, 193]. The second reason
is that the interaction affects the energy distribution which allows, for example, to lose less
energy during the cold isochore.

The interaction has however only a very small effect in the case of indistinguishable
bosons, while it can significantly modify the engine performance for distinguishable particles
due to the presence of odd eigenstates that are not affected by the interaction. While the
tiny influence of the interaction in the indistinguishable case would be extremely difficult to
experimentally observe, the significant improvement obtained in the distinguishable case can
be expected to be experimentally measurable. Furthermore, the interactions mostly matter
at low temperatures, and increasing the number of particles does not seem to modify the
influence of the interaction on the engine performance. In fact, the latter continues to enhance
the work output and the efficiency in the case of distinguishable particles.

I have also shown that using an interacting system in a finite time cycle is advantageous
in terms of power. The irreversibility generated by driving the interaction stays marginal
and the advantageous properties of the interaction in the adibatic limit remain at finite-time.
Therefore this research project shows the potential for developing QHEs that possess multi-
ple control parameters which can be changed during the work strokes.

A number of interesting questions immediately emerge from this work. While I have
only considered repulsive interactions, attractive interactions could potentially also lead to
even higher efficiencies. Considering long range interactions within the working medium
[211] could lead to engines that show different behaviour at higher temperatures. Finding a
shortcut to adiabaticity to optimize the performance of the engine at finite-time could also be
an interesting follow up to this project in the future.



Chapter 3

Controlling open quantum systems for
boosting engines

3.1 An effective closed dynamics description of the quan-
tum Brownian motion and shortcuts to equilibration

3.1.1 Motivation and introduction of the research project
As it has been mentioned in Sec. 1.2.3, getting control over the dynamics of open quantum
systems is extremely relevant to accelerate the thermal strokes during a cycle and therefore,
to improve both efficiency and power of quantum heat engines. Even beyond the scope of
quantum thermodynamics and quantum engines, understanding and controlling open quan-
tum systems is a major challenge for the exploration of quantum phenomena in the presence
of dissipative effects, the deterministic preparation of quantum states, and the development
of quantum devices [212, 213, 214, 215].

While recently some interesting works have been reported in that direction, the acceler-
ation of the adiabatic strokes has been very fruitful thanks to the large toolbox provided by
shortcuts to adiabaticity (STA) [25]. Such a powerful framework could be also effective in
the case of thermal strokes if one can find a way to apply it to open quantum systems.

A shortcut to equilibration (STE) for an open quantum system has been realized by using
the counter-diabatic driving, a well known method for STAs, in Ref. [146]. The counter-
diabatic driving consists of adding an auxiliary time-dependent Hamiltonian H1(t) to the
reference Hamiltonian of the system H0(t). The method assumes that the eigenstates of the
Hamiltonian H0(t) can be controlled with the auxiliary Hamiltonian. The dynamics is given
by H0(t) + H1(t) and H1(t) is defined such that the system remains in the instantaneous
eigenstates of H0(t) (see Ref. [216] for more details).

In Ref. [146] the same principle is used, the difference is that the auxiliary Hamiltonian
is designed such that the system remains in the instantaneous Gibbs state of the reference
Hamiltonian i.e ρ(t) = exp (−βH0(t)) /Z(t). By doing so, they obtained an effective time-
dependent Lindblad master equation where the dissipative part of the dynamics is related to
the reference Hamiltonian H0(t).

The proposed method allows to realize STE protocols by reverse-engineering the master
equation they obtained, however it has two strong limitations. The first limitation is that the
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method lacks physical motivations. Indeed they do not actually consider an open quantum
system model and thus a physical bath in their approach. The dissipative part of the dynamics
is a pure mathematical construction since it is derived only from the reference Hamiltonian
H0(t). The second limitation is that the shortcut is obtained by finding a specific time-
dependent profile of the decay rates in their master equation, which can be extremely difficult
to experimentally realize.

In this section, I propose to also use STA techniques to design STE protocols in driven
open quantum systems. For that, I consider a driven open quantum system model and pro-
pose a mapping of its dynamics to the dynamics of an effective isolated system. The model to
which I apply the approach is the Caldeira-Leggett (CL) model that describes the dynamics
of the quantum Brownian motion (QBM). This model has the advantage to have been exten-
sively studied with various mathematical techniques to solve its dynamics [29, 152, 217].

The mapping is inspired from the classical Brownian motion: it is obtained by deriv-
ing the Langevin equation of the quantum Brownian particle and from it, I construct a La-
grangian for the effective isolated particle. The information about the effect of the environ-
ment on the system are contained in a stochastic force acting on the particle, and also in the
position and momentum operators of the effective particle with a rescaling factor.

The Hamiltonian that I obtain is very similar to the Caldirola-Kanai model, which is a toy
model to describe dissipative dynamics of the quantum harmonic oscillator [218]. Once the
mapping is obtained I can design a STE protocol by using STA techniques that are specif-
ically defined for closed systems. The technique that I use is the dynamical invariant (DI).
Also known as the Lewis-Riesenfeld invariant, it was originally introduced by the latter to
solve the time-dependent dynamics of closed quantum systems [26], and has also been used
to do STAs for the harmonic oscillator [219, 220].

I derive the DI for the effective Hamiltonian and propose to use reverse-engineering to
design the shortcut protocol. Unfortunately, I will show that the reverse-engineering leads
to non consistent boundary conditions for the profile of the trap frequency, and therefore
the method does not work. However the mathematical derivations and the idea in itself are
worth to mention and also strongly motivate the exploration of STA techniques in quantum
stochastic dynamics for the future, and the work presented in the later section.

3.1.2 Effective description of the quantum Brownian motion
Time-dependent Caldeira-Legget model and Langevin equation

I consider the CL model where the Brownian particle is in a trap with time-dependent fre-
quency

H(t) = HS(t) +HB +HI +Hc, (3.1)

where HS(t) is the Hamiltonian of the particle

HS(t) =
p2

2m
+

1

2
mω2(t)x2, (3.2)



3.1 An effective closed dynamics description of the quantum Brownian motion and
shortcuts to equilibration 49

HB is the Hamiltoninan of the bath

HB =
∑
n

p2n
2mn

+
1

2
mnω

2
nx

2
n, (3.3)

and HI describes the interaction between the particle and the bath

HI = −x
∑
n

κnxn. (3.4)

Here κn is the constant coupling strength between the particle and the n-th oscillator. Finally
the last term is the counter term

Hc = x2
∑
n

κ2n
2mnω2

n

. (3.5)

In order to do the mapping, I derive first the quantum Langevin equation. The derivation
of the quantum Langevin equation for the CL model is well known, but I briefly describe it
here for completeness. The Langevin equation is obtained from the Heisenberg equations of
motion written for the Brownian particle and the oscillators of the bath

ẋ(t) =
i

ℏ
[H(t), x(t)] =

p(t)

m
, (3.6)

ṗ(t) =
i

ℏ
[H(t), p(t)] = −mω2(t)x(t) +

∑
n

κnxn − x(t)
∑
n

κ2n
mnω2

n

, (3.7)

ẋn(t) =
i

ℏ
[H(t), xn(t)] =

pn(t)

mn

, (3.8)

ṗn(t) =
i

ℏ
[H(t), pn(t)] = −mnω

2
nxn(t) + κnx(t). (3.9)

Combining the two last equations, we get a differential equation for the position of the oscil-
lator

ẍn(t) + ω2
nxn(t)−

κn
mn

x(t) = 0, (3.10)

that can be formally solved

xn(t) =

√
ℏ

2mnωn

(
e−iωntbn + eiωntb†n

)
+

κn
mnωn

∫ t

0

x(s) sin (ωn (t− s)) ds, (3.11)

where bn (b†n) is the annihilation (creation) operator of the n-th oscillator. We can then also
combine the equation of motion of the Brownian particle and use the formal solution of the
position of the bath oscillators to get the following differential equation

ẍ(t) +

(
ω2(t) +

∑
n

κ2n
mmnω2

n

)
x(t)−

∑
n

κ2n
mmnωn

∫ t

0

x(s) sin (ωn (t− s)) ds =
F (t)

m
,

(3.12)
where the operator F (t) =

∑
n κn

√
ℏ

2mnωn

(
e−iωntbn + eiωntb†n

)
corresponds to the force
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acting on the Brownian particle. The third term in the previous equation corresponds to the
dissipation resulting from the interaction between the bath and the Brownian particle. To go
further we need to introduce the spectral density function

J(ω) =
∑
n

κ2n
2mnωn

δ(ω − ωn), (3.13)

and the damping kernel

Γ(t− s) =
2

m

∫ ∞
0

J(ω)

ω
cos(ω(t− s))dω, (3.14)

that satisfies

d

dt
Γ(t− s) = −

∑
n

κ2n
mmnωn

sin(ωn(t− s)) = − 2

m

∫ ∞
0

J(ω) sin(ω(t− s))dω. (3.15)

We also have

Γ(0) =
2

m

∫ ∞
0

J(ω)

ω
dω =

∑
n

κ2n
mmnω2

n

. (3.16)

With the damping kernel we can rewrite the dissipative term in Eq. (3.12) as

−
∑
n

κ2n
mmnωn

∫ t

0

x(s) sin(ωn(t− s))ds =

∫ t

0

x(s)
d

dt
Γ(t− s)ds

=
d

dt

∫ t

0

x(s)Γ(t− s)ds− Γ(0)x(t).

(3.17)

Note that the term −Γ(0)x(t) cancels with the contribution from the counter-term in Eq. (3.12)(∑
n

κ2
n

mmnω2
n
x(t)

)
, which leads end to the following general quantum Langevin equation

ẍ(t) + ω2(t)x(t) +
d

dt

∫ t

0

Γ(t− s)x(s)ds =
F (t)

m
, (3.18)

Now I will assume that the environment is Markovian and so the spectral density function
can be represented by the following Ohmic distribution

J(ω) =
mγ

2π
ω, (3.19)

where γ is the damping rate. In that case the damping kernel is given by Γ(t) = γδ(t) and
the Langevin equation becomes local in time

ẍ(t) + γẋ(t) + ω2(t)x(t) =
F (t)

m
. (3.20)



3.1 An effective closed dynamics description of the quantum Brownian motion and
shortcuts to equilibration 51

Mapping and effective isolated dynamics

Now that we have the equation of motion of the Brownian particle (3.20), I can proceed
to the mapping. For that I got inspired by the the work reported in Ref. [221]. In this
work, a mapping between the dissipative dynamics of an unitary Fermi gas described by the
Caldirola-Kanai model and the effective dynamics of a dissipationless Fermi gas was derived.
The idea consists of starting from the semi-classical equation of motion (in our case the
Langevin equation (3.20)) and deriving a Lagrangian L(ẋ(t), x(t), t) such that writing down
the Euler-Lagrange equation for an isolated system gives us exactly the Langevin equation
(3.20). This can be easily found and the corresponding Lagrangian is given by

L(ẋ(t), x(t), t) = eγt
(
1

2
mẋ2(t)− 1

2
mω2(t)x2(t) + F (t)x(t)

)
, (3.21)

We can then calculate the corresponding conjugate momentum

p =
∂L

∂ẋ
= meγtẋ, (3.22)

and thus we can get the corresponding Hamiltonian by calculating the Legendre transform
of the Lagrangian. In the end I obtain

H̃(t) = e−γt
p2

2m
+

1

2
mω2(t)eγtx2 − F (t)eγtx. (3.23)

Some important remarks need to be made about the derivation of the Hamiltonian (3.23).
I calculate the effective Lagrangian (3.21) and the corresponding Hamiltonian by assuming
the force F (t) is a scalar function, which is of course not true since it contains the ladder
operators of the bath oscillators. However this is an acceptable assumption. Indeed, the
force is in general a complicated term due to the very large number of oscillators. This is
why in classical Brownian motion theory the interaction between the Brownian particle and
the environment is usually described with a stochastic force.

Therefore I will proceed to a stochastic treatment of the force F (t) and its statistical
properties will depend on the initial state of the environment given by a Gibbs state ρB =
exp

(
− HB

kBT

)
ZB

with ZB = TrB

(
exp

(
− HB

kBT

))
the partition function (T is the temperature of the

bath). Since we proceed to a stochastic treatment of the interaction between the Brownian
particle and the environment, we can consider a scalar function for the force as long as it
preserves the statistical properties of the bath operator.

The statistical properties we need are usually the expectation value and the two-point
correlation function of the force. The expectation value is simply

⟨F (t)⟩T =
1

m
TrB (ρBF (t)) = 0. (3.24)

From now I will use the bracket ⟨.⟩T to denote the average calculated with respect to
the scalar stochastic force. The two-point correlation function of the stochastic force then
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satisfies

⟨F (t)F (t′)⟩T =
1

2
TrB (ρB{F (t), F (t′)})

=
ℏ
m2

∫ ∞
0

J(ω) coth

(
ℏω

2kBT

)
cos(ω(t− t′))dω.

(3.25)

The statistical properties of the force are therefore characterized by classical numbers
and so we can always assume that the force can be mapped to a scalar quantity that re-
produces exactly the same properties (average, two-point correlations but also higher order
correlations).

Actually this approach is strongly connected to the quantum state diffusion model [222].
Instead of describing an open quantum system with a master equation, one uses a quan-
tum stochastic equation of motion for the wavefunction |ψ⟩. The master equation can be
recovered by averaging over all possible trajectories for |ψ⟩ with respect to the stochastic
contribution.

In the high temperature limit kBT ≫ ℏω, the stochastic force corresponds to Gaussian
noise

⟨F (t)F (t′)⟩T ≈ γkBT

m
δ(t− t′). (3.26)

Another point to mention is that the Hamiltonian (3.23) that I obtained is very similar
to the Caldirola-Kanai (CK) model [218]. The difference is that in the CK Hamiltonian,
the stochastic force does not appear and only the position and momentum of the particle are
rescaled with the exponential factor to model a damping effect. A couple of studies have been
done on the CK model by adding a linear force to the particle [223, 224, 225] however the
force is always deterministic, and is not related to the influence of an external environment.

So far no work has been reported where a direct connection between the CK model
and the Brownian particle described with an open quantum system model like Eq. (3.1) is
established. However a work realized in 1998 by Cavalcanti [226] is connected to the result
that I present here. In his case he proposed to define the wave function of a Brownian particle
by considering the CK Hamiltonian where the equation of motion of the particle is given by
the classical Langevin equation. His work basically corresponds to the high temperature
limit of the presented result.

3.1.3 Dynamical invariant and shortcut to equilibration
Dynamical invariant and shortcut to adiabaticity

Now that I have derived the mapping and thus obtained a closed system representation of the
QBM with the Hamiltonian (3.23), I can proceed to the STE. For that I will use the dynamical
invariant (DI) that I will now briefly explain and show how it can be used for STAs. Let us
consider the closed dynamics of a quantum system given by the time-dependent Schrödinger
equation

iℏ
∂

∂t
|Ψ(t)⟩ = H(t) |Ψ(t)⟩ . (3.27)
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A DI is an hermitian operator I(t) that is a constant of the dynamics and thus satisfies

dI(t)

dt
=
∂I(t)

∂t
+

1

iℏ
[I(t), H(t)] = 0. (3.28)

An interesting property of the DI is that its eigenstates ϕn(t) satisfy the time-dependent
Schrödinger equation (3.27) [26]. As a consequence, one can show that the general solution
of Eq. (3.27) can be expressed as

Ψ(t) =
∑
n

⟨ϕn(0)|Ψ(0)⟩ eiαn(t)ϕn(t), (3.29)

where the dynamical phase αn(t) is given by

αn(t) =
1

ℏ

∫ t

0

⟨ϕn(t
′)| iℏ ∂

∂t′
−H(t′) |ϕn(t

′)⟩ dt′. (3.30)

Calculating a DI can be complicated in general. However in the case of the harmonic oscil-
lator, this is straightforward. Let us consider the following time-dependent Hamiltonian

H(t) =
p2

2m
+

1

2
mω2(t)x2. (3.31)

The most common way to obtain a DI is to consider an operator I(t) that has a similar
structure to the corresponding Hamiltonian. Since the Hamiltonian of the time-dependent
harmonic oscillator is quadratic in position and momentum, one can consider a quadratic
ansatz

I(t) =
1

2

(
α(t)x2 + β(t)p2 + δ(t){x, p}

)
. (3.32)

To get the time-dependent coefficients, we use the condition given by Eq. (3.28). After few
calculations, one can show that the invariant can be reduced to

I(t) =
1

2

(
mω2

0

b2(t)
x2 +

1

m

(
b(t)p−mḃ(t)x

)2)
, (3.33)

where ω0 = ω(0) and the scaling function b(t) satisfies the Ermakov equation [26, 219]

b̈(t) + ω2(t)b(t) =
ω2
0

b3(t)
. (3.34)

One can notice that the invariant has the structure of a harmonic oscillator with a constant
frequency ω0, a position x/b(t) and momentum b(t)p−mḃ(t)x. Thus the eigenstates can be
obtained by using the standard ladder operators. In coordinate representation, they are given
by

ϕn(x, t) =
1√

2nn!b(t)
exp

{(
i
m

2ℏ

(
ḃ(t)

b(t)
+

iω0

b2(t)

)
x2

)}
Hn

(√
mω0

ℏ
x

b(t)

)
, (3.35)
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where Hn(x) are the Hermite polynomials. The dynamical phases take the form

αn(t) = −ω0

(
n+

1

2

)∫ t

0

1

b2(τ)
dτ. (3.36)

For a given protocol ω(t), one can get the solution to the dynamics by determining the
DI. The DI is uniquely determined by the scaling function b(t) that can be calculated with the
Ermakov equation (3.34). From that one can then easily get the eigenstates of the invariant,
the phases and so the solution.

From the invariant, one can also do reverse engineering for STA [219, 220]. In this
situation, we want to change the harmonic frequency from the initial value ω0 to a final value
ωf at a given time t = tf , such that the particle is in the ground state initially and at t = tf .
Since the solution of the dynamics is given by the invariant, we just need to correctly design
it to find the shape of ω(t). In other words, we just need to correctly design the scaling
function b(t).

This is actually straightforward. Indeed the solution of the dynamics is given by the
eigenstates of the DI, so we just need to ensure that the eigenstates of the Hamiltonian and
the DI coincide at t = 0 and and t = tf to make sure that the particle is in the ground state
at t = 0 and t = tf

[H(0), I(0)] = [H(tf ), I(tf )] = 0. (3.37)

The commutation relations are satisfied if we impose the following boundary conditions to
the scaling function

b(0) = 1, ḃ(0) = 0, b̈(0) = 0, b(tf ) =

√
ω0

ωf

, ḃ(tf ) = 0, b̈(tf ) = 0. (3.38)

Note that the conditions on the second derivative are not obtained from the commutation
relations but from the Ermakov equation (3.34). Since it does not really matters what happens
during the dynamics, we can choose any ansatz for b(t) as long as the boundary conditions
are satisfied. We have 6 boundary conditions, so we can for example consider a fifth order
polynomial function

b(t) = 6(bf − 1)

(
t

tf

)5

− 15(bf − 1)

(
t

tf

)4

+ 10(bf − 1)

(
t

tf

)3

+ 1, (3.39)

where bf =
√

ω0

ωf
. Finally, the profile of the trap frequency ω(t) can be obtained from the

Ermakov equation.

Dynamical invariant of the quantum Brownian motion

Next I explain how I calculate the DI for the effective Hamiltonian 3.23. A way to obtain it
could be to use the same method as discussed above for the harmonic oscillator. However I
use a different approach based on the method developed in Refs. [227, 225]. The method has
the advantage to be more straightforward and elegant. To build the DI, we first derive linear
invariants. For that we write down the Heisenberg equations of motion for the Hamiltonian
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(3.23)

ẋ(t) = e−γt
p(t)

m
,

ṗ(t) = −mω2(t)eγtx(t) + F (t)eγt.
(3.40)

Now we multiply each equation respectively by two complex functions α(t), β(t) and carry
out the sum

α(t)ẋ(t) + β(t)ṗ(t) = α(t)e−γt
p

m
− β(t)mω2(t)eγtx+ β(t)F (t)eγt. (3.41)

The previous equation implies the relation

d

dt
(αx+ βp−F) =

(
αe−γt

m
+ β̇

)
p+

(
α̇− βmω2eγt

)
x, (3.42)

where F =
∫ t

0
β(s)F (s)eγsds. So if the right hand side of the equation is always equal to

zero, this implies

αe−γt

m
+ β̇ = 0,

α̇− βmω2eγt = 0,
(3.43)

and the operator
I1(t) = α(t)x+ β(t)p−F(t) (3.44)

is a linear invariant of the dynamics. The conditions given by (3.43) imply that the linear
invariant can be rewritten as

I1(t) = −mβ̇(t)eγtx+ β(t)p−F(t), (3.45)

and the function β(t) (which as we will see, corresponds to the scaling function similarly to
b(t) in the case of the harmonic oscillator) satisfies the following differential equation

β̈(t) + γβ̇(t) + ω2(t)β(t) = 0. (3.46)

This is the equation describing a classical harmonic oscillator in the presence of damping.
Now if we write β(t) as β(t) = ρ(t)eiϕ(t), from the previous equation we can easily show
that

ρ2(t)ϕ̇(t)eγt = c, (3.47)

where c is an arbitrary integration constant, which can be chosen to be equal to the initial
frequency c = ω(0) = ω0. We can also show that the modulus of the scaling function
satisfies the following Ermakov equation

ρ̈(t) + γρ̇(t) + ω2(t)ρ(t) =
e−2γtω2

0

ρ(t)3
. (3.48)
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Let us remark that in the absence of damping (γ = 0) we recover the Ermakov equation for
the harmonic oscillator (Eq. (3.34)). The linear invariant has interesting algebraic properties.
If we calculate the commutator between I1 and its hermitian conjugate I†1 , we get

[I1(t), I
†
1(t)] = iℏmeγt

(
β(t)β̇∗(t)− β∗(t)β̇(t)

)
= 2ℏmω0. (3.49)

This commutator gives a real and positive number that I denote Ω = 2ℏmω0. We can then
define the following operators a = I1√

Ω
and a† = I†1√

Ω
that satisfy the commutation relation

[a, a†] = 1. (3.50)

With this, we basically build ladder operators and we can also define the corresponding
number operator n̂ = a†a (satisfying the commutation relations [n̂, a] = −a and [n̂, a†] =
a†). Now we can finally build the DI. Indeed any product of I1 and I†1 will be an invariant of
the dynamics. We consider then the half of the anti-commutator between I1 and I†1 for our
DI. It can be expressed with the number operator as

I(t) =
1

2
{I1(t), I†1(t)} = Ω

(
n̂+

1

2

)
. (3.51)

In the end, the DI for the QBM is simply a harmonic oscillator. Its expression in terms of the
position and momentum of the effective Hamiltonian is

I(t) =m2e2γt|β̇(t)|2x2 + |β(t)|2p2 −meγtRe
(
β∗(t)β̇(t)

)
{x, p}+ 2meγtRe

(
β̇(t)F∗(t)

)
x

− 2Re (β(t)F∗(t)) p+ 1

2
|F(t)|2.

(3.52)

The eigenstates can be simply obtained. As in the harmonic oscillator problem, we get the
ground state by using the property of the ladder operator a |0⟩ = 0. After few lines of
calculation, the ground state in coordinate representation is given by

ψ0(x, t) =

(
Ω

2πℏ2|β(t)|2

) 1
4

exp

 e−γt

2ℏm

Im

(
F2(t)

β(t)β̇(t)

)
−

Im
(
F(t)
β(t)

)2
Im
(

β̇(t)
β(t)

)



× exp

(
imβ̇(t)eγt

2ℏβ(t)

(
x+

F(t)e−γt

mβ̇(t)

)2
)
,

(3.53)

and the excited states are found by induction as

ψn(x, t) =
1√
2nn!

(
i

√
β∗(t)

β(t)

)n

Hn

(√
Ω

2ℏ2|β(t)|2

(
x+

F(t)e−γt

mβ̇∗(t)

))
ψ0(x, t). (3.54)
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Reverse-engineering and shortcut to equilibration

Now that the DI is derived, I can proceed to the shortcut. The protocol that I want to acceler-
ate is the following: the particle is initially at equilibrium with the thermal bath with an initial
frequency ω(0) = ω0 and thus the state is given by the Gibbs state ϱS(0) = Z−10 e−HS(0)/kBT .
I want to find a protocol such that at the end of it, the particle is in a new equilibrium state
with the bath at the final frequency ω(tf ) = ωf i.e ϱS(tf ) = Z−1f e−HS(tf )/kBT , where tf is the
duration of the protocol. Unlike the STA protocol, the dynamics here is not unitary and we
do not want to keep the occupation populations of the density matrix constant. The method
discussed above to do a STA for the harmonic oscillator can thus not be exactly used in the
same way here.

The time-evolution operator of the closed dynamics generated by the Hamiltonian (3.23)
can be expressed with the eigenstates of the DI [26]

U(t) =
∑
n

eiαn(t) |ψn(t)⟩ ⟨ψn(0)| , (3.55)

where the dynamical phase αn(t) is calculated with Eq. (3.30). Then the evolution of the
density matrix of the effective Brownian particle can be obtained

ϱS(t) = U(t)ϱS(0)U
†(t) =

∑
n,p,q

pne
i(αp(t)−αq(t)) ⟨ψp(0)|ϕn(0)⟩ ⟨ϕn(0)|ψq(0)⟩ |ψp(t)⟩ ⟨ψq(t)| ,

(3.56)
where ϕn(0) is the eigenstate of the particle Hamiltonian HS at t = 0, and pn =

e
−

ℏω0(n+1
2)

kBT

Z0
is the corresponding Boltzmann weight. However we need to be careful, as

the dynamics is not deterministic but stochastic due to the force F (t). But here, I did the
calculation as if solving a deterministic time-dependent Schrödinger equation. The way to
interpret these results is the following: the evolution of the density matrix has been obtained
for a single realization of the dynamics. Thus I need to average over all possible realizations
with respect to the stochastic force in order to get the observed state of the effective particle

ϱS(t) =
〈
U(t)ρS(0)U

†(t)
〉
T
. (3.57)

As for the STA, the protocol is found by ensuring that the state of the particle corresponds
to the desired states at t = 0 and t = tf . We thus only need to find boundary conditions on
the modulus of the scaling function ρ(t) at t = 0 and tf , and we can consider any ansatz
for ρ(t) as long as the boundary conditions are satisfied. The profile of the trap frequency is
then found by using the damped Ermakov equation (3.48). For t = 0 we need to ensure that
we start from the Gibbs state of the initial Hamiltonian. We thus need the invariant and the
Hamiltonian to commute i.e [HS(0), I(0)] = [H̃(0), I(0)] = 0 like for the STA. Combined
with the damped Ermakov equation, we get exactly the same boundary conditions as for the
STA

ρ(0) = 1, ρ̇(0) = 0, ρ̈(0) = 0. (3.58)

This condition on the commutation relation also allows us to simplify the expression of the
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state of the particle
ϱS(t) =

∑
n

pn ⟨|ψn(t)⟩ ⟨ψn(t)|⟩T . (3.59)

For t = tf it becomes more complicated. The most straightforward way to proceed would be
to put the state at t = tf equal to the target state. However calculating explicitly the state with
Eq. (3.59) is challenging. Instead, I use the DI to calculate the variance of the position and
momentum operators. Since the state of the particle remains Gaussian during the dynamics,
we can fully characterize its state with those quantities. They can be calculated by expressing
the momentum and position operators with the ladder operators of the DI

x =
iℏ√
Ω

(
β∗(t)a− β(t)a†

)
+

2ℏ
Ω

Im (F∗β(t)) ,

p =
iℏmeγt√

Ω

(
β̇∗(t)a− β̇(t)a†

)
+

2ℏmeγt

Ω
Im
(
F∗β̇(t)

)
.

(3.60)

I can then calculate the expectation value of x2 and p2 with respect to the eigenstates of the
invariant

⟨ψn(t)|x2 |ψn(t)⟩ =
2ℏ2

Ω
|β(t)|2

(
n+

1

2

)
+

4ℏ2

Ω2
Im (F∗β(t))2 ,

⟨ψn(t)| p2 |ψn(t)⟩ =
2ℏ2m2e2γt

Ω
|β̇(t)|2

(
n+

1

2

)
+

4ℏ2m2e2γt

Ω2
Im
(
F∗β̇(t)

)2
.

(3.61)

By putting the variances equal to the desired values, we can obtain boundary conditions for
the modulus of the scaling function ρ(t) at t = tf . It is worth remembering that I work
with the Hamiltonian from the mapping H̃(t) (Eq. (3.23)) where p2 and x2 are rescaled
respectively with the factors e−γt and eγt due to the damping. We also need to average over
all the possible trajectories with respect to the stochastic force to get the actual variances of
the particle. In the end I get the following conditions〈∑

n

pn ⟨ψn(tf )| eγtfx2 |ψn(tf )⟩

〉
T

=
ℏ|β(tf )|2eγtf

2mω0

coth

(
ℏω0

2kBT

)
+

eγtf

m2ω2
0

〈
Im (F∗(tf )β(tf ))2

〉
T

=
ℏ

2mωf

coth

(
ℏωf

2kBT

)
,〈∑

n

pn ⟨ψn(tf )| e−γtfp2 |ψn(tf )⟩

〉
T

=
ℏm|β̇(tf )|2eγtf

2ω0

coth

(
ℏω0

2kBT

)
+
eγtf

ω2
0

〈
Im
(
F∗(tf )β̇(tf )

)2〉
T

=
ℏmωf

2
coth

(
ℏωf

2kBT

)
(3.62)

The last terms of the two previous equations correspond to the variances of the target state.
Note that the condition on x2 and p2 give respectively a condition for the scaling function
and its first derivative at t = tf . A condition on the second derivative can be obtained from
the damped Ermakov equation.
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Now we need to take care of the terms that contain the stochastic force. If we replace
the Ohmic spectral density function J(ω) by its expression (Eq. (3.19)) in Eq. (3.25), the
two-point correlation of the force is given by

⟨F (t)F (t′)⟩T =
ℏγ
2πm

∫ ∞
0

ω coth

(
ℏω

2kBT

)
cos (ω(t− t′)) dω. (3.63)

One can notice that for a finite temperature, the integral in the above expression diverges.
This is because I assumed that the particle is coupled to a thermal bath of infinite modes
with a diverging cut-off. A way to fix this issue is to consider a finite cut-off Ωc in the upper
bound of the integral. However this will still give a large contribution to the energy of the
particle, that scales as ln(Ωc/γ), coming from the interaction between the particle and the
vacuum fluctuations with the highest modes of the bath [29].

This singular behavior is due to the assumption that the particle and the bath are initially
not correlated. The only way to rigorously prevent this nonphysical behavior, is to restrict
the study to the high temperature limit. The two-points correlation function is then given by
Eq. (3.26) and the correlation function for F(t) =

∫ t

0
β(s)F (s)eγs is given by

⟨F(t)F(t′)⟩T =
γkBT

m

∫ min(t,t′)

0

β2(s)e2γsds,

⟨F(t)F∗(t′)⟩T =
γkBT

m

∫ min(t,t′)

0

|β(s)|2e2γsds.
(3.64)

In the high temperature limit, the boundary conditions then become

⟨x2(tf )⟩T =
|β(tf )|2eγtfkBT

mω2
0

+
eγtfkBTγ

4m3ω2
0

(
|β(tf )|2

∫ tf

0

|β(s)|2e2γsds

− Re

(
β2(tf )

∫ tf

0

(β2(s))∗e2γsds

))
=
kBT

mω2
f

,

⟨p2(tf )⟩T =
mkBT |β̇(tf )|2eγtf

ω2
0

+
eγtfkBTγ

4mω2
0

(
|β̇(tf )|2

∫ tf

0

|β(s)|2e2γsds

− Re

(
β̇2(tf )

∫ tf

0

(β2(s))∗e2γsds

))
= mkBT.

(3.65)

From those boundary conditions, we actually recover the equipartition theorem

1

2
mω2

f

〈
x2(tf )

〉
T
=

⟨p2(tf )⟩T
2m

=
kBT

2
. (3.66)

By using the equipartition theorem and the boundary conditions Eq.(3.65), we can deduce
that they are both satisfied if ω2

fβ(tf )
2 = β̇(tf )

2. From that I deduce that ρ̇(tf ) = 0 and ω2
f =

−ϕ̇(tf ). However the last equality cannot be satisfied since ϕ̇(tf ) = ω0e
−γtf/ρ(tf )

2 > 0 (see
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Eq. (3.47)). Another condition can be considered to ensure that the boundary conditions and
the equipartition theorem are satisfied which is ω2

f |β(tf )|2 = |β̇(tf )|2 with the additional
condition

Im (β(tf )) = 0 =⇒ ϕ(tf ) = 2kπ, k ∈ N∗ (3.67)

or

Im

(∫ tf

0

β(s)2e2γsds

)
= 0 =⇒

∫ tf

0

ρ(s)2 sin(2ϕ(s))e2γsds = 0 (3.68)

I have so far only explored the first boundary condition given by Eq. (3.67) with k =
1. For that, I consider a 5th order polynomial as an ansatz for the modulus of the scaling
function ρ(t) =

∑5
n=0 ant

n, like for the STA of the harmonic oscillator. The coefficients
a0, a1 and a2 can be simply found by using the boundary conditions at t = 0 while the
coefficients a3, a4 and a5 need to be calculated with numerical methods from the boundary
conditions at t = tf .

Unfortunately, I was not able to find solutions for those coefficients, even by changing
the damping coefficient γ and the duration of the protocol tf . This strongly suggests that no
solution and thus no protocol can be found by this way. However I still need to explore the
other boundary condition given by Eq. (3.68).

3.1.4 Conclusion and perspectives
In this research project, I have tried to use the powerful toolbox provided by STA techniques
and apply it in the case of STE protocols in open quantum systems. I have considered the
specific case of the QBM. To do that, I proposed to describe the dynamics of the Brownian
particle by mapping the total Hamiltonian of the model to an effective Hamiltonian of a single
particle in Harmonic trap with the presence of a stochastic force representing the effect of
the interaction with the bath. The position and momentum of the effective Hamiltonian are
also rescaled due to the presence of the damping.

The mathematical derivation of the effective Hamiltonian is consistent with the quantum
Langevin equation describing the dynamics of the Brownian particle. Actually the proposed
description is very similar to the quantum state diffusion approach where the dynamics is also
described with a stochastic dynamics of the wavefunction. Once the mapping is established,
I constructed a DI of the effective Hamiltonian. This can be done straightforwardly since the
Hamiltonian is a quadratic operator. While the Hamiltonian is stochastic, the construction of
the DI seems to be still possible at the level of a single trajectory.

The shortcut was then formulated by reverse-engineering the dynamics with the DI. By
using the prior knowledge on the initial and final state of the particle during the protocol,
I was able to chose boundary conditions for the scaling function β(t) that uniquely define
the DI. From that, I could infer the profile of the trap frequency. Unfortunately the boundary
conditions that I obtained at the end of the protocol can not be satisfied. I still need to explore
one more possibility for the boundary condition (Eq. (3.68)). If it still does not work, then
it means that there is a mistake in the interpretation and construction of the DI. It is likely
that the use of the DI for quantum stochastic dynamics is not as straightforward as in the
deterministic case, and there is a subtle point that is missing for now.

Nevertheless, this project still strongly suggests that the dynamics of driven open quan-
tum system and STE protocols could be solved by using STA techniques combined with
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a quantum stochastic dynamics approach. More generally an interesting direction to take
in the future, would be to figure out how STA techniques like the DI but also others (e.g
the counter-diabatic driving [216]) can be extended to quantum stochastic dynamics. This
could contribute to the improvement of techniques for controlling open quantum systems for
various kind of applications.

3.2 Dynamical invariant based shortcut to equilibration

3.2.1 Motivation and introduction of the research project
This section presents a different method to realize the same STE protocol discussed in the
previous section. The shortcut is realized by overcoming the mathematical challenges of
deriving a time-dependent quantum master. Indeed, their derivation can be a very difficult
task for an underlying general time-dependent Hamiltonian.

For example a shortcut to equilibration (STE) in Refs. [147, 149] was realized by deriv-
ing a non-adiabatic time-dependent master equation in the inertial limit [160, 228], which
assumes small variations of the adiabatic parameter of the system. While this allows to
obtain the Lindblad operators explicitly, the resulting driving protocol can be restricted.

In this work, I propose a STE protocol by using this time the DI to derive a time-
dependent master equation. The master equation can be derived in a very comprehensive
way, and it has the advantage to not restrict the driving protocol timescale like the inertial
limit. Also the DI gives a clear picture of the influence of the driving protocol on the dissi-
pative effects [161]. Once I obtain the time-dependent master equation, I find the shortcut
between the equilibrium state of the initial and final Hamiltonian by reverse engineering it.

To show the power of this approach, I apply this technique to the damped harmonic
oscillator (DHO). I also compare the shortcut to simpler, non-optimized protocols, showing
that the approach can achieve enhanced performance on shorter timescales. I also discuss
physical insights into the strategy adopted by the method.

3.2.2 Dynamical invariant based time-dependent master equation
First I briefly present how one can derive the master equation for a driven open quantum
system by using the DI. Let us start from the general Hamiltonian of a driven open quantum
system

H(t) = HS(t) +HB +HI , (3.69)

The interaction term is written as HI =
∑

k Ak ⊗ Bk, where Ak act on the system and Bk

act on the bath. In order to derive a tractable master equation, I use the Born and Markov
approximations. After tracing out the bath, we can then obtain a Redfield master equation in
the interaction picture of the form (see Sec. 1.3 for more details)

dρ̃S(t)

dt
= − 1

ℏ2
∑
k,l

∫ ∞
0

Bkl(τ)
[
Ãk(t), Ãl(t− τ)ρ̃S(t)

]
−Blk(−τ)

[
Ãk(t), ρ̃S(t)Ãl(t− τ)

]
dτ,

(3.70)
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where Bkl(τ) = TrB

(
B̃k(τ)BlρB

)
is the two-point correlation function of the bath and the

tilde indicates operators in the interaction picture. In the presence of a time-dependent sys-
tem Hamiltonian, the evaluation of Ãk(t) can be challenging since there is no general proce-
dure that allows to calculate the time evolution operator of the systemUS(t) = T← exp

(
− i

ℏ

∫ t

0
HS(τ)dτ

)
(where T← is the time-ordering operator).

However, this problem can be solved by using the DI. We already saw in the previous
section that the time-evolution operator of the system can be obtained from the eigenstates
of the DI (Eq. (3.55)). We can therefore use them to calculate the operators acting on the
system in the interaction picture as [161]

Ãk(t) =
∑
n,m

ei(αn(t)−αm(t)) ⟨ψm(t)|Ak |ψn(t)⟩Fmn, (3.71)

with Fmn = |ψm(0)⟩ ⟨ψn(0)|. The operators can therefore be written as products of time-
dependent scalar functions that contain the information on the driving protocol, and time-
independent operators Fmn. Those operators are jump operators constructed with the DI
eigenstate suggesting that the dissipative part of the open dynamics will involve transitions
of the system between those states.

3.2.3 Time-dependent master equation for the damped harmonic oscil-
lator

From now I focus on the time-dependent damped harmonic oscillator and I will show below
the derivation of the master equation. The particle is coupled to a thermal bath of harmonic
oscillators with an interaction term given by Eq. (1.98). Let us start from the Redfield equa-
tion given by Eq. (3.70) applied to the damped harmonic oscillator

dρ̃S(t)

dt
=− 1

ℏ2

∫ ∞
0

B12(τ)
[
ã†(t), ã(t− τ)ρ̃S(t)

]
−B21(−τ)

[
ã†(t), ρ̃S(t)ã(t− τ)

]
+B21(τ)

[
ã(t), ã†(t− τ)ρ̃S(t)

]
−B12(−τ)

[
ã(t), ρ̃S(t)ã

†(t− τ)
]
dτ,

(3.72)

with the bath two-point correlation functions given by

B12(τ) =
∑
n

g2n TrB(b̃n(τ)b
†
nρB) =

∑
n

e−iωnτg2n(1 + n(ωn))

=

∫ ∞
0

e−iωτJ(ω)(1 + n(ω))dω,

B21(τ) =
∑
n

g2n TrB(b̃
†
n(τ)bnρB) =

∑
n

eiωnτg2nn(ωn)

=

∫ ∞
0

eiωτJ(ω)n(ω)dω,

(3.73)

where I have introduced the spectral density function of the bath J(ω)
∑

n g
2
nδ(ω − ωn)

and the Planck distribution n(ω) = (e
ℏω

kBT −1)−1. Now I need to evaluate the ladder operators
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of the particle in the interaction picture. Since they are conjugate, we can just focus on the
annihilation operator, which we can write with the position and momentum operators in the
interaction picture as

ã(t) =

√
mω0

2ℏ

(
x̃(t) + i

p̃(t)

mω0

)
. (3.74)

I now use the invariant of the harmonic oscillator (Eq. (3.33)) to evaluate the operator in
the interaction picture. Since the invariant is a harmonic oscillator with a position x/b(t) and
momentum Π = b(t)p−mḃ(t)x, one can express the position and momentum of the particle
in terms of the instantaneous ladder operators of the invariant that are denoted by aIt and a†It

x = b(t)

√
ℏ

2mω0

(aIt + a†It),

p =
Π

b(t)
+mḃ(t)

x

b(t)
=

√
ℏmω0

2

(
C(t)aIt + C∗(t)a†It

)
,

(3.75)

with the complex function

C(t) =
ḃ(t)

ω0

− i

b(t)
. (3.76)

One can deduce that the annihilation operator of the harmonic oscillator in the Schrödinger
picture is related to the ladder operators of the invariant through the following Bogoliubov
transformation

a =
1

2

(
D1(t)aIt +D∗2(t)a

†
It

)
, (3.77)

where

D1,2(t) = b(t)± 1

b(t)
± i

ḃ(t)

ω0

. (3.78)

I now need to calculate the ladder operators of the invariant in the interaction picture.
This is easily done by using the time-evolution operator written with the eigenstates of the
invariant (Eq. (3.55)) and using the expression of the dynamical phase for the harmonic
oscillator αn(t) = −ω0(n+ 1/2)

∫ t

0
1/b(τ)2dτ

ãIt(t) =
∑
n,m

ei(αm(t)−αn(t)) |ϕn(0)⟩ ⟨ϕn(t)| aIt |ϕm(t)⟩ ⟨ϕm(0)|

=
∑
n,m

ei(αm(t)−αn(t))
√
mδn,m−1 |ϕn(0)⟩ ⟨ϕm(0)|

= e−iφ(t)
∑
n

√
n+ 1 |ϕn(0)⟩ ⟨ϕn+1(0)| = e−iφ(t)aI0 ,

(3.79)

where the phase φ is given by

φ(t) =

∫ t

0

ω0

b(τ)2
dτ =

∫ t

0

ω̃(τ)dτ. (3.80)

Next I will use aI (a†I) instead of aI0 (a†I0) to denote the ladder operators of the invariant
at t = 0. Through this, I can obtain an explicit expression of the annihilation operator of the
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particle in the interaction picture

ã(t) =
1

2

(
D1(t)e

−iφ(t)aI +D∗2(t)e
iφ(t)a†I

)
. (3.81)

I can then insert Eq. (3.81) in the Redfield equation (3.72), but only explicitly write it
down for the first commutator in the right-hand side of Eq.(3.72) since the same treatment
can be straightforwardly done for the other terms. After expanding the commutator, one
obtains

[ã†(t), ã(t− τ)ρ̃S(t)] =
1

4

(
e−i(φ(t)−φ(t−τ))D2(t)D

∗
2(t− τ)[aI , a

†
I ρ̃S(t)]

+e−i(φ(t)+φ(t−τ))D2(t)D1(t− τ)[aI , aI ρ̃S(t)]

+ei(φ(t)+φ(t−τ))D∗1(t)D
∗
2(t− τ)[a†I , a

†
I ρ̃S(t)]

+ei(φ(t)−φ(t−τ))D∗1(t)D1(t− τ)[a†I , aI ρ̃S(t)]
)
.

(3.82)

The integral in the Redfield equation is dominated by the bath two-point correlation func-
tion that rapidly decays with a characteristic time τB. The decay time is given by the cut-off
of the bath τB ∼ Λ−1. Based on the Markov approximation, the decay time must be much
smaller than the typical timescale of the system given by ω(t)−1 i.e. τB ≪ ω(t)−1. One can
thus use the first order approximation of the phase in the integral φ(t − τ) ≈ φ(t) − ω̃(t)τ .
I also make the zero-th order approximation Di(t − τ) ≈ Di(t) meaning that the variations
of the scaling function b(t) and its derivative are negligible in the time window [0, τB]. For-
mally, it implies τB ≪

∣∣∣Di(t)

Ḋi(t)

∣∣∣. This approximation can be reformulated as τB ≪ τD where a

driving timescale τD = mini,t

∣∣∣Di(t)

Ḋi(t)

∣∣∣ is introduced [160]. I would like to emphasize that this
approximation is not necessary to derive the master equation, however it allows to simplify
the reverse-engineering for the shortcut.

The last approximation I will use is the secular approximation. The non-secular terms
are neglected, in order to derive a master equation in Lindblad form and ensure that the state
of the system remains physical. This means that the non-secular contributions contain fast
oscillating terms that average to zero. This implies φ(t) + φ(t − τ) ≫ φ(t) − φ(t − τ).
By using a first order expansion and the Markov approximation, I obtain φ(t) ≫ ω̃(t)τB i.e∫ t

0
ω̃(τ)dτ ≫ ω̃(t)τB.
Taking account of the different approximations in Eq. (3.82), I obtain

∫ ∞
0

B12(τ)
[
ã†(t), ã(t− τ)ρ̃S(t)

]
dτ ≈ |D2(t)|2

4

∫ ∞
0

B12(τ)e
−iω̃(t)τdτ [aI , a

†
I ρ̃S(t)]

+
|D1(t)|2

4

∫ ∞
0

B12(τ)e
iω̃(t)τdτ [a†I , aI ρ̃S(t)].

(3.83)

As mentioned in Sec. 1.3, the integrals can be calculated by using the well known result∫∞
0
eiωτdτ = πδ(ω) + iP (1/ω) where P denotes the principal value. After combining the
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different terms and a few lines of algebra, I obtain the time-dependent master equation for
the damped harmonic oscillator in the interaction picture

dρ̃S(t)

dt
= − i

ℏ

[
H̃LS(t), ρ̃S(t)

]
+

|D(t)|2

2ℏ2
γ+(ω̃(t))

(
aI ρ̃S(t)a

†
I −

1

2
{a†IaI , ρ̃S(t)}

)
+

|D(t)|2

2ℏ2
γ(ω̃(t))

(
a†I ρ̃S(t)aI −

1

2
{aIa†I , ρ̃S(t)}

)
,

(3.84)

where H̃LS(t) is a time-dependent Lamb shift in the interaction picture

H̃LS(t) =
ℏ
4

(
|D1(t)|2P

∫ ∞
0

J(ω)

ω̃(t)− ω
dω − |D2(t)|2P

∫ ∞
0

J(ω)

ω̃(t) + ω
dω

)
, (3.85)

and D(t) = D1(t). The time-dependent decay rates characterizing the emission and ab-

sorption are given by γ+ (ω̃(t)) = πJ(ω̃(t)) (1 + n(ω̃(t))) and γ (ω̃(t)) = γ+(ω̃(t))e
− ℏω̃(t)

kBT .
One can notice that the dissipative part of the dynamics occurs at a time-dependent Bohr
frequency given by ω̃(t) = ω0/b(t)

2 which gives a new physical interpretation of the scal-
ing function b(t) in the context of open quantum systems theory. Also the Lindblad op-
erators in the interaction picture are the ladder operators of the invariant at t = 0, how-
ever if one considers a driving protocol with a continuous start from the initial Hamiltonian
[HS(0), I(0)] = 0, one can recover the creation and annihilation operators of the particle,
aI = a (a†I = a†).

3.2.4 Shortcut to equilibration
Formulation of the shortcut protocol and reverse engineering

The STE protocols is the same as in the previous section. The particle is driven from an
equilibrium state with an initial frequency ω(0) = ω0 toward a new equilibrium state at the
frequency ω(tf ) = ωf . Here I focus on the compression stroke ωf > ω0 but the expansion
can also be done in the same way.

The state of the particle will be Gaussian during the dynamics and thus can be fully
determined by the expectation values ⟨a†a⟩(t) = Tr

(
a†aρS(t)

)
and ⟨a2⟩(t) = Tr(a2ρS(t))

characterizing the excitation and the squeezing of the particle. The equations describing their
evolution during the driving protocol are obtained in the interaction picture from the master
equation (3.84) as

d⟨ã†ã⟩
dt

=
π

2ℏ2
|D(t)|2J(ω̃(t))

(
n(ω̃(t))− ⟨ã†ã⟩

)
, (3.86)

d⟨ã2⟩
dt

= − π

2ℏ2
|D(t)|2J(ω̃(t))⟨ã2⟩. (3.87)

Since the particle is initially in a Gibbs state with ⟨ã2⟩(0) = 0, it follows from Eq. (3.87) that
⟨ã2⟩ = 0 at any time during the dynamics. Thus, the protocol is described by the differential
equation (3.86) alone. Furthermore, the initial and target states are equilibrium states which
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implies ⟨ã†ã⟩(0) = (e
ℏω0
kBT − 1)−1, ⟨ã†ã⟩(tf ) = (e

ℏωf
kBT − 1)−1 and d⟨ã†ã⟩(0)

dt
=

d⟨ã†ã⟩(tf )
dt

= 0.

In addition to these boundary conditions, I impose d2⟨ã†ã⟩(0)
dt2

=
d2⟨ã†ã⟩(tf )

dt2
= 0 to ensure a

smooth evolution of the system between the initial state and the target state.
The protocol can now be found by reverse-engineering Eq. (3.86) to obtain the scaling

function b(t), which in turn allows one to obtain the trap frequency from the Ermakov equa-
tion (3.34). The boundary conditions on ⟨ã†ã⟩ combined with Eq. (3.86) imply b(0) = 1,
b(tf ) =

√
ω0/ωf and ḃ(0) = ḃ(tf ) = 0. We also obtain additional boundary conditions from

the Ermakov equation b̈(0) = b̈(tf ) = 0.
Those boundary conditions are the same as the STA case. I can thus consider a 6-th order

polynomial ansatz for the scaling function b(t) =
∑6

n=0 an(t/tf )
n, in which the first 6 coef-

ficients allow to satisfy the above boundary conditions. The 6-th order term can then ensure
that the scaling function connects the initial state and the target state through Eq. (3.86). The
coefficient a6 is simply found by maximizing the fidelity between the target state and the
state of the particle at the end of the protocol.

Properties of the shortcut

To quantify the performance of the shortcut, I calculate the fidelity between the target state
ρT and the state of the particle at the end of the protocol

F (ρS(tf ), ρT ) = Tr

(√√
ρTρS(tf )

√
ρT

)2

. (3.88)

Since the total Hamiltonian (3.69) is quadratic for the DHO, the states of the particle and the
bath remain Gaussian. I can thus numerically track the dynamics without approximation by
time-evolving the covariance matrix of the particle as discussed in Sec. 1.3.2. This allows
to see when the validity of the master equation actually breaks down for a given set of bath
parameters (number of particles, spectral density function) and when the shortcut therefore
does not work anymore.

To demonstrate the benefit of the shortcut, I compare it to two simple protocols: the
sudden quench ωq(t > 0) = ωf and a reference ramp described by a polynomial function
ωr(t) = ω0+10∆ω(t/tf )

3−15∆ω(t/tf )
4+6∆ω(t/tf )

5 with ∆ω = ωf −ω0. For the DHO,
the quench protocol is characterized by an asymptotic exponential convergence of the fidelity
to one as F ≈ 1 − e−tf/τq where τq is a characteristic time related to the decay rates [147].
The physical parameters I choose are the following: the final compression is ωf = 3ω0, the
bath temperature T = ℏω0/kB and for for the spectral density function, I consider an Ohmic
distribution with an abrupt cut-off J(ω) = γωΘ(Λ − ω) with γ = ℏ2/500 and Λ = 100ω0.
The number of particles in the bath is N = 600.

The fidelity as a function of tf is shown in Fig. 3.1(a). The STE outperforms the sudden
quench and the reference ramp that also shows an asymptotic exponential behavior but with
a longer characteristic time than the sudden quench. However, one can see that for short
durations, the fidelity for the STE protocol collapses because at shorter times the descrip-
tion provided by the master equation indeed deviates from the exact dynamics. The fidelity
reaches approximately the value 0.999 around tf ≈ 16/ω0 and then keeps increasing to one.

In order to obtain physical insights on the STE protocol the profile of the trap frequency
ω(t) is shown in Fig. 3.1(b) for different protocol durations tf and compared to the reference
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ramp (black dashed line). We see that the profiles are quite different: while for the reference
ramp the frequency increases monotonically toward ωf , in the STE protocol the particle is
driven to large trap frequency values at intermediate times before decreasing to reach the final
frequency at t = tf . Notably, for faster protocols the particle is driven to higher frequency
values. Inversely, for larger tf , the amplitude of the trap frequency decreases and we observe
that the STE protocol actually gets closer to the reference ramp when tf approaches the
adiabatic limit.

Such a trap frequency profile necessarily implies non-equilibrium features in the dynam-
ics. To quantify them, I calculate the coherence in the system during the STE, which has
been suggested to play a key role in the control of open quantum systems [150]. We define
it as the change of entropy between the diagonal part of the state and the full density matrix
in the instantaneous eigenenergy basis [229]

C(t) = S (ρdiag(t))− S(ρS(t)), (3.89)

where S(ρ) = −Tr(ρ log(ρ)) is the von Neumann entropy. The coherence is shown in
Fig. 3.1(c). One can see that its profile reflects the results I have shown before: coherence is
generated in the system when the trap frequency is changing. It vanishes when the maximum
value is reached, and increases again when the trap frequency decreases toward the final
value. There is no coherence remaining in the system at the end of the protocol and the
amount generated during the dynamics increases for faster protocols.

This also allows to explain why the quench protocol works better than the reference ramp.
Indeed, coherence causes transitions of the particle between its eigenstates and can be used
as a catalysis that helps to accelerate the thermalization of an open quantum system. A right
manipulation of coherence allows to reach the new equilibrium state and this is what the STE
shows. Even though this is not the optimal protocol and it does not reach the target state, the
sudden quench will thus always work better than a smooth ramp that generates much less
non-adiabatic excitations. This is in contrast with STA [25].

Finally I characterized the dynamics of the STE by calculating the effective temperature
of the system. During the dynamics, the state of the particle can be written in the interaction
picture as ρ̃S(t) = Z(t)−1

∑
n e
−ϵ(t)n |ϕn(0)⟩ ⟨ϕn(0)| with

⟨ã†ã⟩(t) = (eϵ(t) − 1)−1, (3.90)

and the effective partition function is given by Z(t) = (1 − e−ϵ(t))−1. Thus, back to the
Schrödinger picture the Hamiltonian is always diagonal in the instantaneous eigenbasis of
the DI ρS(t) = Z(t)−1

∑
n e
−ϵ(t)n |ϕn(t)⟩ ⟨ϕn(t)|, which shows that similarly to the closed

dynamics, the eigenstates of the DI give us the states that the system will explore for a given
protocol. We then simply define the effective temperature of the system as

Teff(t) =
ℏω(t)
kBϵ(t)

. (3.91)

The effective temperature of the particle during the STE is shown in Fig. 3.1(d). It deviates
significantly from the bath temperature before returning to it at the end of the protocol.
More interestingly, the particle is driven to states that are effectively hotter, and the faster
the shortcut is, the hotter the state of the particle is. While the shortcut is designed for an
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Figure 3.1: (a) Fidelity between the final state and the target state as a function of tf . (b) Profile of
the trap frequency for the STE protocol as a function of time for different protocol durations. The black
dashed line shows the reference ramp. (c) Coherence generated during the dynamics of the STE as
a function of time. (d) Effective temperature of the particle during the STE protocol as a function of
time.

isothermal compression, which corresponds to a cooling process, the strategy adopted by the
STE actually consists of warming up the particle in order to cool it down faster.

This is reminiscent of the Mpemba effect [230], an empirical phenomenon where a hot
liquid can freeze faster than a cold liquid. Recently, the Mpemba effect has been discussed
and predicted for a quantum dot coupled to two reservoirs [231]. Here, we observe a similar
feature to the thermal Mpemba effect in the context of driven open quantum systems.

3.2.5 Conclusion and perspectives
In this part of the work, some remarkable results have been obtained that pave the way for
improving the control of driven open quantum system and the performance of quantum heat
engines in the future. The dynamical invariant has proven to be a powerful framework for
describing and accelerating the equilibration for a well known model, without additional
restrictions on the timescale of the dynamics beside the Born-Markov approximation.

This work also brings new physical interpretations of the dynamical invariant. Indeed the
scaling function b(t), that fully characterizes the invariant, sets both the driving protocol and
the decay rates. This allows to derive protocols that modify simultaneously both the unitary
part and the dissipative part of the dynamics. Also the eigenstates of the invariant can give
access to the states that the particle goes through like in the closed dynamics case.

I was able to show that the STE protocol is characterized by a manipulation of the co-
herence that drives the particle to hotter states in the case of the isothermal compression.
This observation resonates with the thermal Mpemba effect and a rigorous formulation of
this phenomenon in the context of driven open quantum systems would be an interesting
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direction to take in the future.
However while the progress made are significant, they are still questions that are needed

to be addressed. They concerns the irreversibility during the shortcut protocol and the en-
ergy cost of realizing such process at finite time. Indeed as the dynamics is non-unitary it will
lead to an entropy production [232]. Moreover when the duration of the shortcut protocol
decreases, it will cause an increase of the entropy production and being able to quantify it
in the future is necessary to rigorously define the performance of a quantum engine assisted
by the STE. In particular we saw that the STE is characterized by a large generation of co-
herence, that is actually genuinely associated to an additional entropy production [233]. The
energy cost of the STE also needs to be investigated in the future to evaluate the resources
needed to realize such a task [234, 235, 128, 147].

Therefore it would be also very interesting in the future to design shortcuts by minimizing
the dissipated work and address the question whether the geometric bound [236, 237, 238]
can be reached. While I only considered the isothermal stroke in this work, one can consider
different strokes, or start from non-equilibrium states. It would be also possible to design
shortcuts for applications other than thermodynamics. For example, the method could be
used to design fast and robust protocols for quantum gates [214, 239]. Also recently, a
similar approach has been used to rapidly generate entangled states in a double two-level
system [240].

Finally, an important extension would be to go beyond the single particle problem and
optimize the equilibration of interacting many-body states. While not an easy task, two
possible directions are within reach: two particles with short-range interactions [48] and
the hardcore Tonks–Girardeau limit [55]. Beside having well-known analytical results, both
systems have showed enhanced performances compared to non-interacting quantum engines
[193, 197, 1], paving the way for fully-optimized many-body quantum heat engines.

3.3 Optimal control and thermalization of open quantum
systems at the speed limit

3.3.1 Motivation and introduction of the research project
While the project presented in the two previous section concerns the control of driven open
quantum system for accelerating isothermal strokes, in this project I am interested in the
acceleration of the isochoric thermal stroke, that is relevant for optimizing engines described
by e.g. the Otto cycle or the Stirling cycle. In that case, the Hamiltonian of the system of
interest is constant and the thermalization process is accelerated by finding an appropriate
manipulation of the interaction strength between the system and the bath.

Actually only one work so far has been reported in that direction, done by Das and
Mukherjee [151]. They considered an Otto cycle with a two-level system as the working
medium (WM) and the ioschoric strokes were accelerated by periodically switching on and
off the coupling between the WM and the bath. This results in a non-Markovian anti-Zeno
effect that reduces the thermalization time. The work is remarkable since they showed that
a boost of the engine performance can be achieved with a pure quantum effect. However the
proposed protocol is not optimized and finding one that could achieve faster thermalization
strokes is definitely within reach.
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In this research project, I propose to use well known approaches from optimal control
theory [241] to optimize the isochoric stroke. In particular, I use bang-bang type protocols
that are a very efficient technique for controlling quantum systems to realize e.g. STA proto-
cols [242, 243], or to prepare a quantum many-body system in a critical ground state [244]
and also to design coherent control in order to enhance quantum information processing
tasks [245, 246, 247]. I also use the so called chopped random basis (CRAB) algorithm that
has been originally developed for optimizing time-dependent density matrix renormalization
group simulations [248]. However in the past decade, the algorithm was shown to be a very
efficient and powerful technique to use for general quantum optimization tasks [249, 250].

To demonstrate the efficiency of those methods to accelerate the thermalization of an
open quantum system, I apply it to the case of a quantum Brownian motion (QBM) whose dy-
namics can be described without any approximation (see Sec. 1.3.2). Thus non-Markovianity,
strong coupling regimes and finite size effects of the bath can be explored.

I also propose a quantum speed limit (QSL) to predict the time below which the opti-
mization fails to converge. The QSL is a fundamental concept that has been developed to
characterize the minimum time at which a quantum state can reach a specific target state for
a given Hamiltonian, by deriving a bound on the time that is related to the energy of the
system [251]. The QSL has been extended to the case of open quantum systems with many
different bounds [252, 253, 254, 255]. However most of the works that have been reported
fail to actually fulfill the original role of QSL and (maybe worse than that), they can be hard
to physically interpret. I will present the derivation of the QSL that I consider and compare
it to the results from the optimization for the QBM case.

3.3.2 Model and dynamics
I consider the QBM described by the Caldeira-Leggett model (CL) with a time-dependent
coupling between the particle and the bath. The Hamiltonian of the total system is then given
by

H(t) = HS +HB +HI(t) +Hc(t), (3.92)

where the Hamiltonian of the system in a fixed harmonic trap is

HS =
p2

2m
+

1

2
mω2

Sx
2, (3.93)

As in the previous projects, the bath consists of a large number of non-interacting harmonic
oscillators described by the Hamiltonian

HB =
N∑

n=0

(
p2n
2mn

+
1

2
mnω

2
n

)
, (3.94)

The interaction between the Brownian particle and the bath is

HI(t) = −g(t)x
N∑

n=0

κnxn, (3.95)
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where I assume that coupling strength can be manipulated with a scalar function g(t). Finally
the counter term is given by

Hc(t) = g(t)2x2
N∑

n=0

κ2n
2mnω2

n

. (3.96)

Let us note that the counter-term has to scale as g(t)2 to cancel out the divergent renormal-
ization of the Brownian particle. To describe the dynamics of the system, I time evolve the
covariance matrix of the particle by using the Heisenberg equation of motion as discussed in
Sec. 1.3.2.

3.3.3 Optimal control for finite-time thermalization
Formulation of the problem

The problem is the following: initially the particle is isolated and uncoupled to any envi-
ronment, denoted by ρS(0). The aim is to couple the particle to a bath with an appropriate
manipulation of the interaction strength g(t) such that after a given duration of the protocol
tf , the particle is at equilibrium with the bath i.e ρS(tf ) = ρT where ρT = Z−1e−HS/kBT is
the target Gibbs state with T being the temperature of the bath. Optimal control problems
are formulated by minimizing or maximizing a given cost function. Since I want the particle
to reach a specific state at a given fixed time tf , the cost function I consider is simply the
fidelity between the final state of the particle and the target state

F (ρS(tf ), ρT ) = Tr

(√√
ρS(tf )ρT

√
ρS(tf )

)2

. (3.97)

We can again take advantage of the fact that for Gaussian states, the fidelity can be simply
calculated with the knowledge of covariance matrix only [256, 257]

F (ρS(tf ), ρT ) =
2

√
Λ + Φ−

√
Φ
. (3.98)

where

Λ =
det (CS(tf ) + CT )

ℏ2
,

Φ =

(
detCS(tf )

ℏ2
− 1

)(
detCT

ℏ2
− 1

)
,

(3.99)



3.3 Optimal control and thermalization of open quantum systems at the speed limit 72

with CS(tf ) the covariance matrix of the the Brownian particle at the end of the protocol and
CT is the covariance matrix of the target state given by

CT =


ℏ

mωS

(
1 + 2

exp
(

ℏωS
kBT

)
−1

)
0

0 ℏmωS

(
1 + 2

exp
(

ℏωS
kBT

)
−1

)
 , (3.100)

The success of speeding up the thermalization will then be ensured by minimizing the infi-
delity between the final state and the target state

min
g(t)

1− F (ρS(tf ), ρT ). (3.101)

At first glance, the optimization problem seems challenging. Indeed, the solution is in
the set of real functions which is in principle infinitely large and thus could have any type of
shape. To find the protocol for such a problem, gradient based methods are commonly used
[258]. However, calculating numerically the gradient of a functional can be computationally
expensive. This is particularly true when one does not have an analytical expression for the
gradient (which is the case here). To solve this issue I decided to use bang-bang type proto-
cols and the CRAB algorithm that have the advantage to simplify the problem by considering
a specific ansatz for the coupling strength g(t) and thus reduce the dimension of the solutions
space.

Bang–bang type protocols

The bang-bang protocol is defined as

gBB(t) =

{
g1 if 0 ≤ t ≤ ts
g2 if ts < t < tf .

(3.102)

The coupling strength is basically turned on and kept constant at the value g1 then at t = ts
it suddenly switches to the value g2, and at t = tf the Brownian particle is uncoupled from
the bath. In that case, the protocol is found by minimizing the infidelity over the coupling
strengths g1, g2 but also over the time at which the coupling strength changes ts i.e. only
three real parameters, showing the computational advantage of this method. The bang-bang
protocol can be generalized to a multi-bang protocol

gMB(t) =

Nb∑
n=1

gnχ[tn,tn+1](t), (3.103)

where χI(t) is the characteristic function of the interval I i.e XI(t) = 1 if t ∈ I and 0
otherwise. The multi-bang protocol allows to explore more complex dynamics than the
double-bang and thus potentially obtains a better convergence to the minimum. The opti-
mization is done over (g1, g2, ..., gNb

, t2, ..., tNb
) (here t1 = 0 and tNb+1 = tf ) i.e. 2Nb − 1

real parameters.
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Chopped random basis algorithm

The CRAB algorithm consists of using a time-dependent protocol that is written as a mod-
ulation of a linear or polynomial function that connects the initial and final values that one
specifically chooses. The function is modulated by using trigonometric functions. The ansatz
is thus given by

gCRAB(t) = g0(t)

(
1 +

Nc∑
n=1

an cos (2πfnt) + bn sin (2πfnt)

)
, (3.104)

where g0(t) is a polynomial function that I choose to be given by

g0(t) = 16

(
t

tf

)2

− 32

(
t

tf

)3

+ 16

(
t

tf

)4

. (3.105)

The polynomial function is such that g0(0) = g0(tf ) = 0 and the maximum is reached at the
middle of the protocol g0(

tf
2
) = 1. I choose this ansatz such that the interaction is smoothly

turned on at the beginning of the protocol and smoothly turned off at the end of it. The
frequencies are randomly sampled around the harmonics

fn =
n

tf
(1 + ξn), (3.106)

where ξn = U
(
−1

2
, 1
2

)
is a random and uniformly distributed function. The use of random

frequencies allows to break the orthogonality of the harmonic basis and it has been shown
that it can enhance the performance of the algorithm [249]. The optimization is done over
the amplitudes (an, bn)1≤n≤Nc i.e 2Nc real parameters where Nc is a cut-off on the number
of modes that are initially set. The CRAB algorithm thus woks as follows: I initialize the
frequencies (fn)1≤n≤Nc , then I optimize the cost function given by the infidelity Eq. (3.101)
over (an, bn)1≤n≤Nc . Once the optimization is finished I choose a new set of random fre-
quencies and repeat the procedure. After this is done for several times, I choose the set of
frequencies and amplitudes that gives the best result.

Results and comparison between the two methods

For my simulations, I consider the following physical parameters for the bath: I assume that
the frequencies of the modes of the bath are linearly distributed ωn = n

N
(ωN − ω0)+ω0, with

ω0 =
ω
N

and ωN = 2ωs. For the spectral density function J(ω) =
∑N

n=0
κ2
n

2mnωn
δ (ω − ωn), I

consider an Ohmic distribution with an abrupt cutoff

lim
N→∞

J(ω) =
mω

π
Θ(|ω| − ωN) , (3.107)

where Θ(ω) is the Heaviside function. This implies that the constant coupling strength

of each mode has to be defined as κn = mnωn

√
2ωN

πN
. For the size of the bath, I choose

N = 350. Those parameters allow to run the dynamics and do the optimization in a reason-
able amount of time but more importantly, it allows to study the thermalization of an open
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Figure 3.2: Fidelity between the instantaneous state of the Brownian particle ρS(t) and the target
state ρT as a function of time for the case of the sudden quench, and for different interaction strengths.

quantum system in a more realistic set-up. Indeed an ideal Markovian bath is in principle
impossible to experimentally create in a quantum platform. Usually the bath will contain a
mesoscopic number of particles and the cut-off is not necessarily very large compared the
frequency of the particle of interest. For simplicity, I assume that the particle is initially at
the ground state ρS(0) = |ψ0⟩ ⟨ψ0| and for the bath temperature, I choose T = ℏωS/kB.

To benchmark my results, I have also considered the simple case where the Brown-
ian particle is coupled with a constant coupling strength g(t) = g, which basically cor-
responds to the sudden quench and can be seen as a non optimized single-bang protocol.
Figure 3.2 shows the fidelity between the instantaneous state of the particle and the target i.e.
F (ρS(t), ρT ) as a function of times during the dynamics. I have looked at the dynamics for
different interaction strengths between the particle and the bath, which allows to show the
different possible behaviors that can occur.

For g = 0.1 (green line in Fig. 3.2), the fidelity slowly increases to one showing that the
particle is relaxing to equilibrium. For g = 0.5 (blue line in Fig. 3.2) the particle also relaxes
toward equilibrium but at a significantly faster speed. Indeed for both of those interaction
strengths, the dynamics is within the scope of the Born-Markov approximation and thus the
particle goes to a stationary state given by the Gibbs state. In this case, the relaxation time is
given by the interaction strength and this is why the particle equilibrates faster for stronger
interactions.

However for g = 1 the behavior starts to differ from the previous cases. The interaction
strength is sufficiently high that the bath is also affected by the interaction. Correlations are
created and information back-flow starts to occur. The Born-Markov approximation starts to
break down and this is why we see that the particle goes away from the equilibrium state even
though it gets very close at tωS = 4.22 and then oscillates nearby. At g = 3 the interaction
strength becomes large enough to significantly influence the bath. Strong non-Markovian
effects occur leading to a more complex dynamics of the system where the particle goes far
away from the Gibbs state.

Figure 3.3 shows the fidelity between the final state of the particle ρ(tf ) and the target
state as a function of the duration of the protocol tf , obtained from both optimal control
schemes. The convergence criteria that I choose for both cases is 1−F (ρS(tf ), ρT ) ≤ 10−6.
The panel Fig. 3.3(a) shows the results for the bang-bang method where I consider the single-
bang (blue circles), the double-bang (red crosses) and the triple-bang (green diamonds). One
can see that for the three cases, the optimal control allows to reach the target state at finite



3.3 Optimal control and thermalization of open quantum systems at the speed limit 75

Figure 3.3: (a) Fidelity between the final state ρS(tf ) and the target state sate ρT of the Brownian
particle as a function of the duration of the protocol tf , obtained with bang-bang type protocols. The
blue circle correspond to the single-bang optimal protocol, the red crosses to the double-bang and
the green diamonds correspond to the triple-bang. The panel (b) shows the same results obtained
with the CRAB algorithm. The blue circles correspond to Nc = 3, the green diamonds to Nc = 4 and
the red crosses to Nc = 5. The vertical purple dashed line shows the QSL time.

time and for a timescale significantly better than the relaxation time shown in Fig. 3.2.
However we can also see that for all the three cases, the optimal control fails to converge

below a certain time. Another interesting feature is that for an increasing number of bangs,
this time decreases, but eventually at some point, the optimization can not converge anymore.
For the triple-bang, the fidelity fails to converge to one for tfωS ≲ 0.55

The panel Fig. 3.3(b) shows the results obtained for the CRAB algorithm where they
are plotted in a smaller timescale than the bang-bang method. One can see that the CRAB
works better than the bang-bang protocol. This is expected since the ansatz for the CRAB
allows to explore more diverse profiles for the interaction strength g(t). However we observe
the same feature i.e. the algorithm fails to converge below a certain time, and this time is
lower than in the bang-bang case. We can also observe an improvement from Nc = 3 (blue
circles in Fig. 3.3(b)) to Nc = 4 (green diamonds). Nonetheless, both results for Nc = 4
and Nc = 5 show a very similar performance, suggesting that keeping increasing the cut-off
does not improve anymore the optimization. For Nc = 5 the optimization fails to converge
for tfωS ≲ 0.17.

We have seen that both optimal control schemes allow to significantly speed up the ther-
malization of the particle. However both have also the common point that they fail below
a certain time. Moreover we see that the fidelity drops drastically. Those results seem to
suggest that a fundamental limit on the duration of the protocol exists, that optimal control
can not pass beyond. The existence of a quantum speed limit for the thermalization could
explain and predict all these observations.

3.3.4 Quantum speed limit for the thermalization of an open quantum
system

The concept of quantum speed limit (QSL) as we know it now, was established first by
Mandelstam and Tamm [259]. They showed that during the closed dynamics of a quantum
system, the time at which the system evolves toward an orthogonal state is bound by the QSL
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time
τMT
QSL =

ℏπ
2∆H

, (3.108)

where ∆H is the variance calculated with respect to the initial state of the system. Later, an
alternative expression was derived by Margolus and Levitin [260] based on the expectation
value instead of the variance

τML
QSL =

ℏπ
2⟨H⟩

. (3.109)

They also later showed that the unified bound

τQSL = max

(
ℏπ

2∆H
,

ℏπ
2⟨H⟩

)
, (3.110)

is actually tight to predict the orthogonalisation time of a given closed quantum system [261].
The bound has been extended to the case where the final state and the initial state are not
orthogonal and separated by an arbitrary angle [262]. It has also been generalized to a large
class of metrics by using an information geometric approach [263]. Moreover the QSL is
strongly connected to optimal control and sets a fundamental limit for the time at which a
quantum system can evolve toward a specific state even if the protocol is optimized.

Indeed, in a remarkable work by Caneva et. al. [264], they showed that optimal con-
trol applied to the Landau-Zener model fails to work below a time that is predicted by the
Mandelstam-Tamm bound. With this result in mind, the existence of a QSL time that also
puts a fundamental limit on the time at which the Brownian particle can thermalize is very
likely, and this could predict and explain the results that I obtained.

The QSL time has been extended to the case of open quantum system dynamics. Even
though various bounds have been derived [252, 253, 254, 255], they unfortunately can not
be used in the context of optimal control for open quantum systems and more generally, it is
hard to get a physical interpretation for them.

The main reason is due to the mathematical procedure to derive them. Usually one first
considers a metric to distinguish the initial quantum state to a time-evolved state (for ex-
ample the fidelity). Then a bound is derived on the time-derivative of the metric by using
inequalities like the Cauchy-Schwartz inequality and the properties of the equation that gov-
erns the dynamics (usually a master equation). After integrating the obtained inequality, one
can isolate the time and get a bound for it.

However the QSL time will involve time-averaged quantities and thus the QSL time
will explicitly depend on the time of the dynamics. In that case it seems very difficult to
understand the physical meaning of such a bound and to connect it the original idea of QSL.
This is even more true if one considers driving and optimal control protocols. Indeed how
can a bound that depends on the actual time protocol tell us when the optimal control protocol
will fail?

Derivation of a quantum speed limit time for the thermalization

For the reasons mentioned above, I propose to derive an alternative QSL time as a character-
istic time that only depends on the intrinsic properties of the considered open quantum sys-
tem and predicts a fundamental limit that optimal control can not go beyond as in Ref. [264].
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The bound that I derived is inspired by a work done recently by Il’in and Lychkovskiy [265],
where they derived a bound for an isolated quantum system that is initially prepared in the
Gibbs state.

To derive the bound, I consider the state of the particle plus the bath as an isolated system
denoted by the density matrix ρ. Considering the total system can be an interesting approach
to use techniques similar to ones in the closed dynamics case. Initially, the total state is given
by the product state ρ(0) = ρS(0)⊗ ρB with the Hamiltonian HS +HB = H0 and I assume
that it gets perturbed by an interaction term HI . The dynamics is then dictated by the von
Neumann equation

iℏ
dρ(t)

dt
= [H0 +HI , ρ(t)] . (3.111)

Let me remark that I assume the interaction term to be time-independent. This allows to
simplify the derivation and to ensure that the bound will only depend on intrinsic properties
of the system. Moreover, the same approach has been considered for the Mandelstam-Tamm
bound that has been derived originally for a quench, and this same bound has been used by
Caneva et. al. [264]. Now I need to choose a metric that measures the distance between two
quantum states. As in Ref. [265], I use the quantum Hellinger distance defined as [266]

D(ρ1, ρ2) = 1− Tr(
√
ρ1
√
ρ2). (3.112)

The quantum Hellinger distance can be related to the fidelity through the following inequality
with the Bures angle [267]

L(ρ1, ρ2) ≤ arcsin
(√

2D(ρ1, ρ2)
)
, (3.113)

where
L(ρ1, ρ2) = arccos

(√
F (ρ1, ρ2)

)
(3.114)

Now that I have chosen a metric that characterizes the distance between the initial state
of the system ρ(0) and the instantaneous state during the dynamics ρ(t), I can define an
instantaneous speed which is simply given by the time derivative of the quantum Hellinger
distance dD(ρ(0),ρ(t))

dt
. An expression of the speed can be obtained by using the fact that the

square root of the total density matrix
√
ρ also satisfies the von Neumann equation

iℏ
d
√
ρ(t)

dt
=
[
H0 +HI ,

√
ρ(t)

]
. (3.115)

By assuming that [H0, ρ(0)] = 0, one can show that the instantaneous speed is given by

dD

dt
=
i

ℏ
Tr
([√

ρ(0), HI

]√
ρ(t)

)
. (3.116)

Now I can upper bound the speed by using the Cauchy-Schwartz inequality for the trace

∣∣∣∣dDdt
∣∣∣∣ ≤ 1

ℏ

√
Tr

([√
ρ(0), HI

]2)√
Tr(ρ(t)) =

√
Tr

([√
ρ(0), HI

]2)
ℏ

. (3.117)
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The quantum Hellinger distance between the initial state and the instantaneous state can then
be upper bound by integrating the above inequality

|D(ρ(0), ρ(t))| ≤
∫ t

0

∣∣∣∣dDdτ dτ
∣∣∣∣ ≤ t

√
Tr

([√
ρ(0), HI

]2)
ℏ

. (3.118)

Next I assume the instantaneous state is given by a product of the target state of the Brownian
particle and the bath ρ(t) = ρT ⊗ ρB. This gives the following bound on the time evolution

t ≥ ℏ|D(ρ(0), ρT )|√
Tr

([√
ρS(0)⊗

√
ρB, HI

]2) . (3.119)

The bound is based on the quantum Hellinger distance, but one can go back to the fidelity
through the Bures angle by using the inequality (3.113) and get

t ≥ ℏ sin2 (L (ρS(0), ρT ))

2

√
Tr

([√
ρS(0)⊗

√
ρB, HI

]2) = τQSL. (3.120)

The bound obtained using the Bures angle is more consistent with the fact that I use the
fidelity as a cost function to find the optimal protocol. By using the well known relation
sin(arccos(x)) =

√
1− x2, the QSL time can be rewritten as

τQSL =
ℏ (1− F (ρS(0), ρT ))

2

√
Tr

([√
ρS(0)⊗

√
ρB, HI

]2) . (3.121)

Applied to my case with ρ(0) = |ψ0⟩ ⟨ψ0|, ρT = Z−1e
− HS

kBT and HI = −x
∑n=N

n=0 κnxn, I
obtain the following QSL time for the thermalization of the quantum Brownian motion

τQSL =

√
mωSe

− ℏωS
kBT

2

√∑N
n=0

κ2
n

2mnωn
coth

(
ℏωn

2kBT

) =

√
mωSe

− ℏωS
kBT

2

√∫ ωN

0
J(ω) coth

(
ℏω

2kBT

)
dω

. (3.122)

The obtained QSL time seems to satisfy the main desired criteria i.e an explicit dependency
on the intrinsic properties of the system. In particular, the influence of the bath can be written
in terms of the spectral density function. Let us remark that for an Ohmic spectral density
function, the integral in the denominator tends to infinity when the cut-off ωN goes to infinity
and thus the bound tends to zero. It implies that for an ideal Markovian bath, there is no limit
on how fast the particle can thermalize.

The result is in accordance with relaxation processes and the result I show for the quench
case (Fig. 3.2). Indeed a particle in contact with a Markovian bath will always relax to
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Figure 3.4: Quantum speed limit for the thermalization of the Brownian particle particle as a function
of the bath temperature.

equilibrium and the stronger the interaction is, the faster the process is. In conclusion, if the
particle is in a contact with an ideal Markovian bath, then one can always keep increasing
the interaction strength to accelerate the thermalization.

Besides the spectral density function, the bound is also strongly influenced by the temper-
ature. Figure 3.4 shows the bound as a function of the bath temperature. We see that the QSL
time increases with increasing temperature which can be explained by the fact that when the
temperatures increases, the initial state and the target state become distant. However we can
see that the QSL time starts to decrease after some temperature and reach a plateau. This
suggests that when the temperature increases, the average speed of the evolution of the par-
ticle increases due to an increase of the energy of the bath, and at some point, it increases
faster than the distance between the initial state and the target state.

With the parameters that I consider for the optimal control, the numerical application of
the bound gives τQSLωS ≈ 0.1547 while the optimal control by using the CRAB algorithm
fails below tfωS ≈ 0.17 (see the vertical purple dashed line in Fig. 3.3), showing that the
proposed bound seems to be promising for predicting timescales of physical processes in
open quantum systems.

3.3.5 Conclusion and perspectives
In this research project, I have shown that tools from optimal control theory can be success-
fully used to accelerate the thermalization of an open quantum system by considering the
QBM. I have used bang-bang protocols and the CRAB algorithm that have the advantage to
simplify the optimization scheme, and as in previous works on quantum control, they both
proved to work very well. Indeed, even though thermalization is in principle a very slow pro-
cess, both methods allow to reach the equilibrium state in a finite time and over timescales
that are much shorter than the relaxation time for a simple quench. The CRAB algorithm
gives better results as it allows to explore more complicated profile of the interaction strength
during the protocol.

We have also seen that in both cases, the optimal control scheme fails to converge below
a certain time even if the number of parameters is increased. This strongly suggests that the
optimal control can not work at an arbitrary time because of the existence of a QSL as in
Ref. [264]. I thus derived a QSL time that could explain and predict this observation. The
QSL was derived by considering the time-evolution of the square root of the density matrix
of the Brownian particle plus the bath. This also allows to get rid of the time dependency of
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the state and obtain a bound that only depends on the intrinsic properties of the system.
The QSL bound strongly depends on the properties of the bath through the spectral den-

sity function and the temperature. The bound that I have obtained is in agreement with the
results from the optimal control. This suggests that it could be eventually used in other
applications that involve open quantum system dynamics.

However, even though major results have been obtained, the project remains unfinished
before considering an eventual publication of it in the future. To complete this project, I also
want to do the optimization for different values of the cut-off of the bath ωN and for different
numbers particles N . I want to see how this affects the optimization performance and if
the QSL time can still match the results. In particular I want to see how non-Markovianity
affects the speed of evolution during the optimal control [268].

For that, I plan to only focus on the CRAB algorithm since it works better than the
ban-bang approach, and I also want to take Nc = 6 to see if the optimization gets even
closer to the bound. I also plan to consider different initial states. In particular I want see if
non-equilibrium states and more generally the presence of non-diagonal terms in the density
matrix can influence the performance of the optimization. And again I want to see if this can
also be predicted with the QSL time.

After that, several other interesting directions can be considered from this work. The
most straightforward one is to apply the approach to realize an optimized quantum Otto cy-
cle, where the adiabatic stokes could be optimized with STA techniques. Another interesting
direction to consider, would be to do the optimization by also minimizing the energetic cost
of the control protocol. The QSL could be also applied to scale the power output of quan-
tum heat engines [126, 269]. But it could also potentially be used for different applications
like in quantum gates e.g. to give a fundamental limit on the speed of quantum information
processing task by taking account of the environment [213, 215].



Conclusion

In this thesis, I have explored the quantum properties of quantum heat engines by consider-
ing the great versatility of cold atomic systems as an experimental platform. To do that, I
first exploited the physical properties of interacting few-body systems, and proposed origi-
nal ways to design heat engines for cooling and work extraction processes. Then I proposed
techniques for realizing fast thermalization protocols in open quantum systems to boost the
performance of quantum heat engines. The models that I considered describe physical sys-
tems that are realistic to be studied in cold atoms laboratories. Therefore all the results that
I have shown emphasize the determinant role of cold atomic systems in the exploration and
development of quantum engines.

The first part of my work explored processes and phenomena with no classical coun-
terparts. Indeed the study of the anomalous heat flow in Section 2.1 can be only observed
and measured with quantum correlations while classical correlations only lead to effects too
small to be measurable. The quantum heat engine enhanced by the interaction in Section 2.2
can only be realized by considering atomic systems that interact at the quantum level.

In the second part of my work, I explored new approaches but also well known estab-
lished techniques to control open quantum systems. The use of STA techniques combined
with a stochastic description of open quantum systems in Section 3.1 has not been studied
so far for designing STE protocols. The use of the dynamical invariant to derive a time-
dependent quantum master equation is a very recent approach, and I am the first to propose
to use it for STEs in open quantum systems. Finally bang-bang protocols and the CRAB
algorithm are well known methods for optimal control theory, and I exploited their effective-
ness in the specific case of quantum isochoric strokes in Section 3.3. The last two projects
showed to be efficient to realize fast equilibration protocols and improve the performance
of quantum heat engines, while for the first project, further investigations are needed in the
future.

I also showed with my work that while quantum heat engines exploit quantum properties
with no classical equivalences, this does not necessarily means that one can obtain an advan-
tage in terms of performance. We saw in Section 2.1 that quantum correlations can allow us
to realize cooling process and in Section 3.2 that coherence allows us to speed-up the ther-
malization of an open quantum system. However we also saw in Section 2.2 that quantum
statistics can actually limit the performance of quantum heat engines and distinguishable
particles are a better choice for an interacting working medium. Moreover the same coher-
ence that improves thermalization strokes also decreases the performance of a quantum heat
engine when the adiabatic strokes are realized at finite time.

My work resulted in one publication in a peer reviewed journal [1] and another preprint
manuscript that is now under review [2]. Moreover, I emphasized in the thesis various inter-
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esting directions that can be taken in the future in the continuity of this work. For example a
generalization of the project presented in Section 2.2 to larger systems with the Lieb-Liniger
model is now investigated by another PhD student in my research group.

In the future experimental implementations of my work are also definitely within reach.
Indeed experimental cold atomic quantum heat engines involving a change of the trapping
potential and the scattering length have been recently reported [23, 24] and therefore the
quantum heat engine that I proposed could also be implemented with a large number of par-
ticles. Also a single particle cold atomic engine with controlled collisions with the bath has
been experimentally realized [21] and could be a great platform to implement the control
protocols that I developed in the second part of my PhD. Finally while the shortcut tech-
nique that I propose and the optimal control schemes that I apply can definitely improve the
performance of quantum engines, they can also have applications beyond quantum thermo-
dynamics as they target the general problem of preparing quantum states in the presence of
an environment.
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