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Abstract

Analogies are fundamental for human reasoning. In condensed matter, analogies with
high-energy phenomenology have led to new insights, as exemplified by the Anderson-
Higgs mechanism, which led to the electroweak unification. Other extreme-scale phe-
nomena beyond the realm of experiment or observation can nevertheless be embodied
by condensed matter analogues, at least in part. These analogues, such as the Hawking
radiation emitted from the horizons of classical flowing fluids, can provide new avenues
for empirically-driven inquiry.

In this Thesis, I identify connections between two of nature’s fundamental force car-
rying Bosons and the Goldstone modes found in ordered phases of quantum magnets
and cold atoms. Specifically, I show how the long-wavelength spin waves in a collinear
antiferromagnet—known to be massless, spin-1 excitations—correspond to photons.
Building on this framework, I then establish that the long-wavelength excitations of a
ferroquadrupolar, quantum spin-nematic are massless, spin-2 excitations, which corre-
spond to gravitons, i.e. quantized gravitational waves, in flat spacetime. Since quan-
tum spin nematics can be realized in spinor condensates, I argue that these results
offer an avenue for realizing a one-to-one analogue of gravitational waves in experi-
ment. This connection is further illustrated through simulation of a ferroquadrupolar
spin-nematic phase, as realized in the spin-1 Bilinear-Biquadratic model on a triangular
lattice. Working in a U(3) representation which captures both dipolar and quadrupolar
degrees of freedom, I simulate both the thermodynamic and dynamical properties of
this model. Within Classical Monte Carlo simulation, I find results consistent with a
topological phase transition into the spin nematic phase, mediated by the unbinding
of vortices. Using Molecular Dynamics simulations, I then elaborate on the dynamical
properties of these vortices, and demonstrate how the annihilation of pairs of vortices
could be used to generate analogue gravitational waves in spin nematics, suggesting
a route to realization in spinor condensates. I qualitatively extend the analogue to
the profile of waves emitted by vortex pairs in the spin nematic, as compared to the
characteristic profile measured by LIGO originating from binary mergers of massive
objects.
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Chapter 1

Introduction

“Analogy is the core of cognition.” - Douglas Hofstatder
Life as we know it exists because of light. 3.4 billion years ago, the first organisms

capable of extracting energy from light evolved. Their use of ambient light—a deep sea
precursor of photosynthesis—marked the first of many biological innovations involving
light. The abundant presence of geothermal and astrophysical light sources was fun-
damental to this, but so too was the curious fact that the fine structure constant is in
the right range of values for chemistry as we know it to exist. Human civilization too
has shared a long history in making use of light in even the most primitive forms of
technology, from fire all the way to our modern communication infrastructure.

It was not until much more recently when, in 2016, a wave of excitement passed
through the physics community with the confirmed detection of another of nature’s
cosmic messengers. In that year, the LIGO collaboration announced confirmation of
the first observation of gravitational waves, originating from a distant binary black
hole merger [9]. Many decades of pioneering efforts were required to overcome the
observational difficulties involved, which arise from another curious fact of nature,
namely, that gravitational excitations are much weaker than electromagnetic ones.
The successful confirmation of their existence, and the scale of hierarchies separating
us from natural sources, motivate the search for gravitational waves, or at least their
analogues, in a lab.

In this Thesis, I chart a path to a novel experimentally viable analogue of gravi-
tational waves, which—to the best of our knowledge—is the first of its kind to be in
one-to-one correspondence with the gravity of (3+1)D flat spacetime. The approach
presented in this Thesis allows us to start off by making clean identifications of rele-
vant physics which we can then identify appropriate condensed matter realizations for.
Starting from the low-energy effective continuum field theory, we will discover clean
realizations of the excitations of electromagnetism and gravity in magnetic systems,
and support these results with numerical simulation.

In this Chapter, I start by setting the tool of analogy in physics on the historical
stage, and in more recent context of the dialogue between high and low-energy physics,
in order to exemplify how it can serve in the context of magnetism. I then successively
provide a broad overview of magnetic order, photons in electromagnetism, and gravi-
tational waves in linearized gravity, laying the basic conceptual framework that later
Chapters will rest upon.

1
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1.1 The role of analogy in physics and this Thesis
The study of physics, indeed of nature, was described in 1976 by Sir Charles Frank as
the discipline

“[...] not just concerning the Nature of Things, but concerning the Inter-
connectedness of all the Natures of Things” [12].

Indeed, science proceeds by the construction of insightful models to explain experi-
ments and observations, often drawing upon analogies with known phenomena. Every
model of nature is an approximation, but within their operating limits and their con-
temporary scientific context, analogies can be extremely powerful and predictive. The
mathematical similarities which existed between electrodynamics and hydrodynam-
ics were of great insight to J.C. Maxwell, who coined the phrase “method of physical
analogy” to refer to this process of reasoning. Indeed, countless formal or observed sim-
ilarities have long played a critical role in the development of human understanding,
across all domains of physics.

For example, during a time when little was known about the heavenly bodies beyond
their trajectories across the sky, Galileo famously reasoned about them by analogy.
Following development of his own telescope in 1609, he first observed changing patterns
of bright and dark spots on the lunar surface. By analogy with the Earth’s surface, he
was able to infer that these patterns moving across the Moon’s surface were shadows
cast by mountains and valley walls, the position and size of which depended on the
relative orientation of the Moon and Sun. He was later able to further infer, again in
analogy to the Earth, that the bodies he observed orbiting Jupiter were also moons.

More recently, the wide range of striking parallels between high-energy phenomenol-
ogy and properties of condensed matter systems have led to many fruitful insights and
key advances in the development of the Standard Model and beyond. The Anderson-
Higgs mechanism, as first put forward by Anderson [13] within the context of super-
conductivity, set the stage for the later development of a fully covariant generalization
of the mechanism by which Nambu-Goldstone modes acquire mass [14–16], and pro-
vided the framework necessary for the unification of electrodynamics and the weak
force. It was later suggested that the symmetry breaking phase transition undergone
by liquid Helium when cooled to the superfluid phase mimics the symmetry breaking
phase transition undergone by the early universe [17], showcasing the potential for low
energy experiments to inform physics relevant to the high-energy domain.

Presently, there is a major question which confronts modern high-energy physics,
namely, how to reconcile the Standard Model with Gravitation, as described by General
Relativity. One difficulty is that observing a regime in nature where strong gravitational
phenomena and quantum effects are simultaneously important is beyond our current
technological grasp. This motivates the search for analogue platforms in which field
theories can be tested in regimes which combine gravitational and quantum effects.

Several promising candidate platforms have been the subject of the last 40 years of
investigation, and analogies with experimental realization have gained much traction
within the classical and quantum fluids communities and beyond [18]. Prominent
early work was carried out in the context of superfluid 3He, establishing that its rich
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phenomenological structure can be thought of as analogous to a condensed matter
universe with its own version of gravity [17, 19, 20].

In parallel, while studying the problem of black hole evaporation, Unruh used an
analogue with classical fluid flow into a “dumb hole” to estimate the contribution to
thermal emission from the horizon in the high-frequency regime, providing evidence in
support of black hole evaporation via Hawking radiation and suggesting use of a sonic
analogues as accessible testbeds [21, 22]. This stimulated a wide variety of experimental
work to probe this scalar form of Hawking radiation in classical fluids [23, 24], in cold
atoms [25], in quantum Hall systems [26], in optics [27, 28] and with further proposals
in semimetals [29, 30].

Independently, it was pointed out by Kleinert [31] that the topological structure of
defects in crystals can be used to define curvature and torsion as necessary to describe
curved spacetimes, establishing a key analogy between the tensor structure of elasticity
theory and gravity. This idea was further developed in the search for a quantum theory
for spacetime which at the fundamental level is a Planck scale quantum crystal [32–
36]. The duality between elasticity theory and aspects of fracton physics [37] is also
connected to emergent gravitational properties in models with fractonic excitations
[38].

Further experimental work aiming to reproduce curved spacetimes has been recently
underway, in which dynamical excitations play some role akin to an effective spacetime
geometry [39, 40]. The phononic density waves investigated in this context then play
the role of scalar gravitational waves [41, 42]. However, modified theories of gravity
aside, the gravitational waves in (3+1)D gravity are tensorial in nature, consistent in
the linearized limit with the excitations of a spin-2 field theory [43, 44].

In the context of magnetic insulators, gravitational analogues are relatively unex-
plored. There are however many established analogues with electromagnetism, arising
as early as the 1970’s with the identification of the 2D XY model with reduced dimen-
sional electrostatics [45]. These insights were informed following greater understanding
of how vortices can drive phase transitions topologically, otherwise forbidden in low
dimensional systems [46, 47], a mechanism referred to as the Berezinskii-Kosterlitz-
Thouless transition. More recently a fully dynamical effective (2+1)D theory of elec-
tromagnetism has also been made explicit [48].

The development of a magnetic analogue of the proton disorder in water ice [49,
50] within pyrochlore oxides [51] led to the term spin ice [52]. It was prominently
established in quantum spin ice that features of (3+1)D electromagnetism emerge, such
as magnetic monopoles [53, 54], photons [55, 56], and an effective fine structure constant
[57]. A strong case has been made for the existence of emergent electrodynamics in
candidate materials such as Yb2Ti2O7 [58], Pr2Hf2O7 [59], and Ce2Zr2O7 [60, 61],
Ce2Hf2O7 [62] and Ce2Sn2O7 [63]. Moiré engineering has also been proposed as an
independent route to generate emergent electromagnetism [64], outside of the spin ice
context.

The key point is that in each of these analogue realizations, the effective fine struc-
ture constant (when it exists) is different than that of the Universe, and opens a door
to regimes which are otherwise beyond our experimental reach in this Universe. In
this Thesis I begin the search for gravitational wave analogues of measurable impact
in magnetic insulating phases called spin nematics.
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(𝑎) 𝑏 Ferromagnet

(𝑐) Antiferromagnet

(𝑑) Ferrimagnet

Figure 1.1: (a) The unassuming lodestone, capable of aligning itself to the Earth’s magnetic field
and attracting objects made e.g. of steel and iron. This rare magnetized form of the mineral magnetite
has been induced into a permanent magnet by naturally occurring fields in excess of 0.1T, suspected
to occur by lighting strike [1, 2]. (b) Sketch of a ferromagnetic spin configuration. (b) Sketch of
an antiferromagnetic spin configuration. (d) Sketch of a ferrimagnetic spin configuration. For the
antiferromagnet and ferrimagnet, the different sublattices are coloured distinctly in blue and red
respectively. Fig. 1.1(a) reproduced from [3], Public Domain.

Starting first from electromagnetism analogues to develop a recipe for identifying
the relevant physics in gravity, I proceed in this Thesis to the development of a ten-
sor analogue of gravitational waves, in direct and one-to-one correspondence with the
gravitational waves in the flat (3+1)D Universe. In this Chapter, I next proceed to in-
troduce some key points about magnetic insulators, and present the effective magnetic
models which we will be concerned with in this Thesis.

1.2 Microscopic origins of models of magnetism

The earliest documented observations of macroscopic magnetism date back to the 6th

century B.C in Ancient Greece and the 4th century B.C in China, following the dis-
covery of lodestone [65], a rare permanently magnetized form of the mineral magnetite
which awed the ancient world, see Fig. 1.1. On the microscopic scale, the relevant ingre-
dient leading to this property is called a magnetic dipole moment. The term magnetic
dipole moment references the oriented dipole field produced by e.g. a current loop.
Such fields are produced by charged particles with non-trivial angular momentum J
in proportion to

m = gµBJ , (1.1)
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where g is a factor that depends on the species of particle and µB is the Bohr magneton,
defined as

µB = eℏ
2me

. (1.2)

The intrinsic angular momentum—conventionally denoted S—of an elementary
particle is a relativistic property and receives the name spin. Spin is quantized in
half-integer units of ℏ, a fact discussed further in Appendix C. Since all elementary
particles possess an intrinsic spin, but not all elementary particles are charged, not
all spins possess a magnetic moment. However, electrons and protons in nuclei will
generate magnetic moments. For further reading, see e.g. [66]. Ultimately, macroscopic
magnetism arises from the collective interactions of microscopic magnetic moments in
materials.

Naively, one may attribute the origin of macroscopic magnetic phenomena to the in-
teraction of atomic or electronic magnetic moments within a material via long-ranged
magnetic dipole-dipole interaction. However, a back-of-the-envelope estimate of the
energy scale of the intrinsic dipole-dipole interaction is on the order E ∼ 10−5eV ,
equivalent to a temperature scale of T = E

kB
∼ 0.1K. Given that typical Curie temper-

atures for transition metal and rare earth compounds are on the order TC ∼ 102 −103K
[67], this indicates that the dipole-dipole interaction is in fact several orders of magni-
tude too weak to account for observed magnetic ordering in these materials. In general,
magnetism in solids cannot be accounted for if we only consider the classical magnetic
dipole interactions. Instead, the primary contributions arise from the strong interac-
tions between electrons (in particular unpaired electrons), and interactions between
nuclear spins can also play a role [66].

The full quantum-mechanical many-body problem with a complete description of
the interactions between particles is an intractable problem for large particle numbers,
making a complete description of a magnetic material by brute force enumeration
unreasonable. However, use of reasonable approximations to construct effective models,
such as the observation that magnets exist in the solid state, allow us to construct a
wealth of both tractable and predictive problems, many of which are introduced in e.g.
[68]. This field of study is far from exhausted, as complete understanding of even long
known magnetic materials such as magnetite is still the subject of investigation, e.g.
[69, 70], in addition to the host of novel materials and phenomena that are still being
uncovered, some characterizable by novel symmetry breaking properties, such as the
recently discovered altermagnetism e.g. [71].

In metals, the electrons near the top of the conduction band are only weakly bound
to the ion. In this case, interactions between the delocalized electrons have a very weak
effect on collective properties of the material. On the other hand, transition metal and
rare earth elements supply electrons mostly localized in d and f orbitals around their
parent ion, and interactions effects between neighbouring electrons in the crystal are
relevant.

One major simplification we can make is to narrow attention to the low-energy
subspace, as many questions regarding the material properties can be answered with
knowledge of the ground state and low-lying excitations. In this case, the simplest
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effective models are those which capture the energy splitting arising from ground state
degeneracies lifted by interactions. To briefly see this, let’s consider the effect of inter-
actions on two neighbouring electrons, leaning on more extensive treatments in [67, 72].

In the absence of interaction, the wavefunction of a single electron can be decom-
posed into

Ψ(x, σ) = ψ(x)χ(σ) , (1.3)

where ψ(x) describes the spatial dependence of the orbital and χ(σ) describes the
electron spin state.

For two electrons, the composite spin states can be described by the basis

|s = 1,m = 1⟩ = |↑↑⟩ , (1.4a)

|s = 1,m = 0⟩ = 1√
2

(|↑↓⟩ + |↓↑⟩) , (1.4b)

|s = 1,m = −1⟩ = |↓↓⟩ , (1.4c)

|s = 0,m = 0⟩ = 1√
2

(|↑↓⟩ − |↓↑⟩) , (1.4d)

where the two spin-1
2 moments can possess a total spin moment of either s = 1

or s = 0, depending respectively on the symmetric or antisymmetric alignment of
the spin moments. The symmetric spin-1 states define a triplet of states, while the
antisymmetric spin-0 state is called the singlet state. In the absence of any interactions,
the singlet and triplet energy levels are degenerate. However, the introduction of a
Coulomb interaction between electrons splits the energy levels between the singlet and
triplet states according to the exchange character of the full wavefunction, assuming
the orbital character is not allowed to change.

Given that the electron is a fermion, the total wavefunction must have antisym-
metric character under exchange with another electron. In this way, if the orbital
wavefunction is symmetric, then the spin wavefunction must be antisymmetric and
viceversa.

In ferromagnetic materials, the electrons populate orthogonal orbitals in the ground
state. In this case, the antisymmetric orbital wavefunction is favoured, such that the
singlet energy is increased by Coulomb repulsion, by an amount we shall parametrize
by J , while the triplet energy is lowered by J . The origin of this behaviour is the
same as that governing Hund’s rule for atomic spin distribution, namely, that electrons
populate orbitals in such a way as to maximize their total spin.

In the more common antiferromagnetic materials, the electrons populate overlap-
ping orbitals such that the orbital part of the wavefunction is expected to be symmet-
ric, and therefore the antisymmetric spin wavefunction is favoured, leading to a singlet
ground state and triplet excited state, also separated by an energy difference on the
order 2J .

We see that we can expect two types of magnetic behaviours already from joint
consideration of the Coulomb interaction and Pauli exclusion. It is instructive here
to introduce the spin algebra before presenting the effective exchange model which
captures this process.
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1.2.1 Spin algebra and the Heisenberg Hamiltonian
Before returning to the two-body exchange described in the last section, let us explicitly
define the spin operators

S = (Sx, Sy, Sz) , (1.5)

with dimensions of angular momentum, measured in units of ℏ, and which satisfy the
canonical commutation relations

[Sα, Sβ] = iℏϵαβγSγ . (1.6)

where ℏ is the Plank constant

ℏ ≈ 1.05 · 10−34J

s
. (1.7)

As done here, I will implicitly use the Einstein summation convention over repeated
indices throughout this Thesis. In addition, I will work throughout this Chapter in
natural units, where ℏ = 1, since the appropriate factors of ℏ can be conveniently
restored by dimensional analysis where required.

By conventionally choosing an eigenbasis of Sz for description of spin problems, the
spin algebra also permits the definition of ladder operators

S+ = Sx + iSy , (1.8a)
S− = Sx − iSy , (1.8b)

which act on elements of the eigenbasis to raise and lower the spin angular momentum
by factors of ℏ respectively. With the Sz component singled out, we cannot inde-
pendently determine the remaining components due to the commutation structure.
However, another good quantum number can be defined in terms of the eigenvalues of
the operator

S · S = (Sz)2 + 1
2(S+S− + S−S+) . (1.9)

Therefore, taken collectively, this all leads to the curious property that

⟨S2⟩ = s(s+ 1) , (1.10)

contrary to what would be expected for a classical vector, for which instead

S2 = s2 . (1.11)

Classical vectors are nevertheless useful to good approximation in the context of nu-
merical simulation and can faithfully reproduce much of the key relevant physics, as
elaborated on in Chapter 5.

Each of the Sα operators are related to the elements of the appropriate represen-
tation of SU(2), with the dimension of representation fixed by the intrinsic angular
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momentum quantum number s. The electron has intrinsic angular momentum charac-
terized by the quantum number

s = ±1
2 , (1.12)

and the appropriate spin operators are in correspondence with the Pauli operators

Sα = 1
2σ

α . (1.13)

Now we return to the two-body problem described in the previous section. We
can define an operator P12 which exchanges the spin component of the wavefunction
between sites 1 and 2

P12 = 2S1 · S2 + 1
2 (1.14)

= 2
(
Sz1S

z
2 + 1

2(S+
1 S

−
2 + S−

1 S
+
2 )
)

+ 1
2 , (1.15)

normalized such that the triplet and singlet states are respectively the +1 and −1
eigenvalue states of this operator. The difference between the expectation values of
the exchange operator P12 is then proportional to the energy splitting in both the
ferromagnetic and antiferromagnetic cases. Remarkably, such two-body short range
interactions turn out to be enormously effective to leading order [67, 72], and therefore
effective models for the interaction terms can be derived from the two body Coulomb
problem with due consideration of Pauli exclusion, as first pointed out by Dirac [73].
To capture the relevant effect in a many-body system, it is therefore enough to focus
on an effective model of locally pairwise exchange interactions, namely, the Heisenberg
model [74]

H = J
∑
⟨ij⟩
Si · Sj , (1.16)

which to leading order describes the exchange interaction between spin-1
2 degrees of

freedom.
As a closing remark, it is worth noting that the first example of magnetite is in fact

neither a ferromagnet nor an antiferromagnet. It is in fact a combination of both, with
alternating antialigned and aligned magnetic moments in one to three ratio such that
macroscopically the magnetization is finite. This is an example of ferrimagnetism—see
Fig. 1.1(d)—a common property of several magnetic oxides besides magnetite known
collectively as ferrites. These materials have more complicated ordering that is still the
subject of investigation e.g. [69, 70], and will not be further discussed in this Thesis.

While the microscopic underpinnings described here are therefore oversimplified rel-
ative to the ferrites, the Heisenberg model nevertheless captures the essence of macro-
scopic ferromagnetic and antiferromagnetic behaviour. In Chaper 3, we will be con-
cerned primarily with the antiferromagnetic phase of the Heisenberg model, which we
will see supports an analogue of photons.

Next, we will review a closely related spin model for spin-1 magnets, which we will
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see in Chapter 4 supports an analogue of gravitational waves.

1.2.2 A model for spin-1 magnets
Having explored some of the possibilities that exist for spin-1

2 magnets, next let us
consider what fundamental differences arise in the case of larger spin, since we will be
concerned with the physics of spin-1 magnets in Chapters 4 and 5 of this Thesis, in
relation to an analogue of gravitational waves. The relevant details reviewed here are
documented in e.g. [10, 72].

In the case of spin-1 magnets, there are five s = 2 states, three s = 1 states, and
one s = 0 state, see Appendix D. It would be reasonable to assume that there may be
more relevant physics to describe the ground state than captured by the Heisenberg
Hamiltonian [Eq. (1.16)]. In fact, generically for s > 1

2 , the action of the operator

(S+
1 S

−
2 + S−

1 S
+
2 ) |α, β⟩ ≠ C |β, α⟩ , (1.17)

with appropriate normalization C, indicates that the exchange operator P12 defined
in the s = 1

2 case will no longer exchange spins. With the introduction of pairwise
Coulomb interaction and examination of the higher order contributions, the energy
splitting between the three groupings can no longer be described by the bilinear Heisen-
berg term alone. This means the previous permutation operator P12 is no longer enough
to describe the interaction between spin-1 moments.

By introduction of a second projection operator

Ps=0 = 1
3[(S1 · S2)2 − 1] , (1.18)

which only acts on the singlet subspace to adjust its relative energy level, one arrives
at the Bilinear, Biquadratic exchange model [72]

HBBQ = J1
∑
⟨ij⟩
Si · Sj + J2

∑
⟨ij⟩

(
Si · Sj

)2
. (1.19)

The biquadratic term is in fact trivial for s = 1
2 . It can be shown [72] that generally

there are only relevant exchange interactions for spin S which take the form of
(
Si·Sj

)p
,

up to powers p ≤ S.
Further details on alternative microscopic origins of the biquadratic term specific

to materials described by the Hubbard model can be found in e.g. [75–77].
The important distinction with the spin-1

2 case is the following: for spin-1
2 there

are no non-trivial tensor operators composed from angular momentum that could hide
further symmetries of the Hilbert space. In the spin-1 case however, there are sub-
spaces of the Hilbert space which cannot be rotated between with angular momentum
generators alone [78, 79]. Instead, the state space is spanned by the generators of a
larger algebra, such as SU(3) [5, 10, 80, 81] or U(3) [11, 82]. We will return to this fact
in Chapter 4.
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1.2.3 Landau paradigm of phase transitions, symmetry break-
ing and order parameters

The previously discussed models possess distinct states with macroscopic behaviours,
such as ferromagnetism, that arise from a particular ordering of the microscopic mag-
netic moments. Each state with specific macroscopic properties is called a phase of the
model, or material, that it describes. The importance of microscopic components in re-
alizing such behaviour was argued for by Maxwell in 1875 [83], who argued that phases,
and in particular phase transitions, were evidence of the atomic and molecular basis of
matter. Later, Landau introduced the perspective that to understand any symmetry
breaking phase transition we only require knowledge of the symmetries involved [84].
Depending on the external conditions that determine the thermodynamic environment
of the material, the same microscopic constituents will result in different phases, and
changes to those conditions can drive transitions between phases. This dependence is
something we encounter regularly through water, a substance whose solid, liquid and
gaseous phases exist naturally within the temperature and pressure ranges available
naturally on Earth. In the context of magnetism [66], at temperatures above a thresh-
old called the Curie temperature, the magnetic moments fluctuate wildly due to the
thermal energy in the system, and this destroys any energy-minimizing correlations
that would result in ordering. However, at temperatures below the Curie temperature,
the thermal fluctuations are more tame, and correlated domains can persist leading
the system to enter an ordered phase.

Quantitatively, we can see how such behaviour arises by considering the free energy
[85]

F = E − TS . (1.20)

In equilibrium, a system minimizes its free energy. At temperatures above a charac-
teristic threshold of the system (e.g. the Curie temperature), the entropic term TS
dominates. Minimization of the free energy is achieved by maximizing the entropy. As
a result, the degrees of freedom of the system will arrange themselves on average in the
most disorderly fashion possible. In the context of magnetism, the high temperature
phase is known as paramagnetic and has no long-range correlations. At temperatures
below the critical threshold, the free energy is instead minimized by decreasing the in-
ternal energy of the system. This contribution is described by the model Hamiltonian.

The internal conditions that determine the strength and sign of different interactions
also play a fundamental role in determining the ordering behaviour that emerges. The
cartoon image of magnetic moments m as axial vectors which align (ferromagnetic
ordering for J < 0) and antialign (antiferromagnetic ordering for J > 0) define the
semiclassical ground states of the Heisenberg Hamiltonian on an unfrustrated lattice.
In each of these two distinct phases, we can write down a macroscopic quantity which
will be non-zero in the corresponding low-temperature phase, and vanishes in the high-
temperature phase. For the ferromagnetic phase with all on-site magnetic moments
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mi aligned, the magnetization defined by

m = 1
N

N∑
i

mi (1.21)

is non-zero. The same quantity is zero in the antiferromagnetic phase, so we can define
instead the staggered magnetization

ms = 1
N

N∑
i

(−1)imi , (1.22)

which is non-zero in the antiferromagnetic phase, and vanishing in the ferromagnetic
phase.

Such quantities receive the name order parameter, and as was first formulated by
Landau [84], arise in systems whose low-energy phase spontaneously breaks at least
one symmetry present in the free energy (or in Lagrangian formalism, the action) of
the system. The order parameter in the paradigm defined by Landau is therefore a
quantity which encodes information about how the system has spontaneously broken a
discrete or continuous symmetry. As we will see in the next Chapter, if the symmetry
broken is continuous, then there will exist linearly dispersing excitations that introduce
deviations away from the ordered ground state, the nature of which is predicted by
broken symmetries and the order parameter.

The other key insight put forward by Landau [84] regarding such symmetry breaking
phase transitions is that in their vicinity we can effectively describe the free energy as
a sum over symmetry allowed powers of the order parameter, without needing to know
any microscopic details of the system. Therefore, detailed description of the entire
partition function is not required to approximate the critical behaviour around the
phase transition, and the associated insensitivity to microscopic details is behind the
existence of Universality classes into which we can lump systems based on their critical
behaviour.

Let’s consider an example. In the case of the Heisenberg model 1.16, the free energy
can be expressed in terms of the magnetization [86]

fHeis = 1
N
FHeis = α(T )|m|2 + γ(T )|m|4 + O(|m|6) , (1.23)

where odd terms are not invariant under the symmetry of the Hamiltonian under ro-
tations, and thus do not feature. We assume that the leading temperature dependence
can be described by the coefficient α of the lowest order term, such that

α(T ) = a(T − Tc) , (1.24)
γ(T ) = c . (1.25)

The equilibrium condition minimizing the free energy then gives

∂f

∂m
= 0 , (1.26)
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(a) Phase diagram for BBQ model. (b) FQ ground state.

Figure 1.2: (a) The low temperature phase diagram for the Bilinear, Biquadratic model [Eq. (1.19)]
on the triangular lattice, obtained via mean-field analysis [4–6]. Notice the appearance of quadrupolar
orderings, dominant in the limits where the biquadratic term is dominant. (b) Ground state of
the triangular lattice Bilinear-Biquadratic model, exhibiting on-site quadrupolar order [Eq. (4.23)].
Fig. 1.2(a) reproduced from [5, 6] with permission, and Fig. 1.2(b) from [7] with permission.

=⇒ |m| = ±
√
a(Tc − T )

c
, T ≤ Tc , (1.27)

and by definition

|m| = 0 , T ≥ Tc . (1.28)

The expression for m is a smooth function of temperature, albeit with a discontinuous
slope at Tc. This is the defining characteristic of a second-order phase transition.

In general, Landau’s paradigm for expressing the behaviour of the free energy
around the critical temperature makes explicit non-analyticities induced in the free
energy and its derivatives by the change of phase, and allows classification of the order
of phase transitions based on the order of derivative in which discontinuities arise. For
further reading, see e.g. [85].

Whereas on simple lattices the Heisenberg model [Eq. (1.16)] leads to either ferro-
magnetic or antiferromagnetic order, the Bilinear-Biquadratic model [Eq. (1.19)] offers
new possibilities, see e.g. Fig. 1.2. Of particular interest for this Thesis is the ferro-
quadrupolar ordered phase. This is a type of spin nematic which, as will be presented
in Chapter 4, in fact bears mathematical similarity in the low-energy limit to linearized
gravity.

On-site quadrupolar order with a biquadratic term in the Hamiltonian was first
discussed by Blume and Hseieh [87], independent of lattice geometry. Chen and Levy
studied the appearance of quadrupolar order in systems with spin greater than 1,
motivated by pnictide materials where the effective spin is larger than 3

2 [88]. Andreev
and Grischuk later provided a more detailed discussion of quadrupolar order, including
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the possibility of formation of effective spin-1 moments across bonds in spin-1
2 magnets

[89–91]. In the time since, our understanding of where to expect spin nematic phases
has improved in both magnetic insulators [4, 90–98], with triangular lattice candidate
materials NiGa2S4 [99, 100] and FeGa2S4 [101], and spinor condensates [102–109].

The ferroquadrupolar phase is characterized by the absence of magnetic dipole
ordering

⟨S⟩ = 0 , (1.29)

but still possesses a non-trivial quadrupole ordering in which there is a favoured plane,
e.g.

⟨(Sx)2⟩ = ⟨(Sy)2⟩ ≠ ⟨(Sz)2⟩ . (1.30)

This leads to a natural choice for order parameter in terms of the symmetric, traceless,
tensor

Qαβ = 1
2
(
SαSβ + SβSα

)
− 1

3δ
αβSγSγ . (1.31)

This spin nematic order will play a key role in this Thesis, and we will return to it in
connection to analogue gravitational waves in Chapter 4. Note that by construction

Tr(Q) = 0 , (1.32)

and therefore, the non-trivial scalar invariants one can construct in this case take the
form

Tr(Qn) ̸= 0 , n ≥ 2 . (1.33)

Symmetry arguments can then be applied in this case to predict the relevant form of
the free energy

FFQ = a(T − Tc) Tr
(
Q2
)

+ bTr
(
Q3
)

+ cTr
(
Q4
)
, (1.34)

where note that odd terms are in this case allowed since they remain invariant under
rotations, and the presence of the third-order term leads to the paramagnetic-nematic
transition being first order [110, 111].

The insight of Landau that symmetry alone plays the driving role in determining
the behaviour of phase transitions laid the groundwork for further critical insights into
the nature of the dynamics in symmetry broken phases, such as the description of
Goldstone modes, which we will return to in Chapter 2.

1.2.4 Topological phase transitions: The XY model
Condensed matter systems are host to a wide variety of interesting phases of matter,
especially at low temperatures. As a system is cooled, it is not uncommon for the
low-energy phase to have reduced symmetry relative to the high-energy phase, as we
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have just seen to be described by the Landau paradigm. However, as we will see in
Chapter 2, such phase transitions in which the order is characterized by continuous
symmetry breaking cannot take place in reduced dimensional systems. This does not
exclude the possibility of phase transitions which do not exhibit genuine spontaneous
symmetry breaking and instead are characterized by the emergence of a different kind
of collective structure, namely topological structures or defects. This alternative type
of transition was first proposed by Berezinskii [46] and later by Kosterlitz and Thouless
[47], and receives the name BKT-transition.

The canonical example of a model exhibiting this kind of phase transition is the 2D
XY model

H = J
∑
⟨ij⟩
Si · Sj = JS2 ∑

<ij>

cos(θi − θj) , (1.35)

defined for (classical) O(2) spins

S = S

(
cos θ
sin θ

)
, (1.36)

motivated as the paradigmatic effective model describing the universality class of two-
dimensional superconductors [112–114], observed also in liquid crystals [110] and Bose-
Einstein Condensates (BECs) [115].

At high temperatures, the model possesses exponentially decaying spin correlations,
with correlation length described by

ξBKT ∼ e
b√

T −Tc , (1.37)

with critical temperature Tc. However, below the critical temperature, the correlations
instead decay algebraically, behaviour mediated by the presence at low energies of
bound vortex pairs. At high-energies, the vortex pairs unbind and proliferate freely.
We will see examples of similar behaviour in spin nematics in Chapter 5.

1.2.5 Detecting and simulating magnetic order
After having discussed magnetic orders and phase transitions, it is now worth a few
remarks about the relevant measurable quantities that signal magnetic order in exper-
iment.

As previously discussed, the distinguishing feature of the ferromagnet is a finite
macroscopic magnetization

⟨S⟩ ≠ 0 , (1.38)

and this therefore serves as an appropriate order parameter. This could already be
detected long ago in lodestone due to the interaction with e.g. the Earth’s magnetic
field. Precise measurements of magnetization can be carried out at the level of entire
samples using magnetic resonance techniques [116]. Magnetization can nowadays be
probed even down to molecular resolution, e.g. [117].
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(a) Cubic lattice, slice in [001] plane. (b) Pyrochlore lattice, slice in [kkl] plane.

Figure 1.3: Correlations obtained from simulation at low temperatures in O(3) antiferromagnets
on the cubic and pyrochlore lattices. (a) Equal-time structure factor for an O(3) antiferromagnet
on a cubic lattice, showing a slice in the [001] plane. Clearly visible Bragg peaks at (π, π, π) signal
antiferromagnetic order. (b) Equivalent results for an O(3) antiferromagnet on the pyrochlore lattice,
showing pinch points associated with algebraic spin correlations.

However, for the antiferromagnet,

⟨S⟩ = 0 . (1.39)

Therefore, we need to be more creative about how we measure its presence by taking
a closer look at the structure of correlations. Specifically in the antiferromagnetic
case, there is a crystalline structure within which neigbouring spins are antialigned.
This pattern is detectable in the structure of the spatial two-spin correlation function,
whose Fourier transform can be measured typically in solid state via neutron scattering
leading to the momentum space distribution, see e.g. [118],

S(q) = 1
N

N∑
i,j

⟨S(ri)S(rj)⟩e−q·(ri−rj) . (1.40)

In the broader condensed matter context, such two-point functions receive the name
static or equal-time structure factor, see Fig. 1.3.

In addition, since these measurements do not destroy the sample under examination,
it is also possible to study correlations over time, as this reveals information about the
dynamics and excitations in the material. The relevant quantity we evaluate in theory
and experiment is the dynamical structure factor

S(q, ω) = 1
N

∫
dteiω(t−t0)

N∑
i,j

⟨S(ri, t)S(rj, t0)⟩e−q·(ri−rj) . (1.41)

From the dynamical measurements, we can extract information about the dispersion
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(a) La2CuO4. (b) Square lattice AFM, from simulation.

Figure 1.4: Magnetic excitations of two-dimensional antiferromagnets in experiment and simula-
tion, showing linearly-dispersing excitations approaching the ordering vector. (a) Inelastic neutron
scattering measurements for the square lattice antiferromagnet La2CuO4. (b) S(q, ω) obtained by
Molecular Dynamics simulation, discussed in Chapter 5, for the square lattice Heisenberg antiferro-
magnet. Fig. 1.4(a) reproduced from [8] with permission.

of excitations in a variety of materials and models, see Fig. 1.4a]. The nature of the
low-energy dispersion of excitations will play a recurring role in this Thesis for both
the identification of analogues of photons and gravitational waves, and we will return
to the measurement of the relevant dynamical structure factors in Chapter 5.

1.2.6 Magnetism in cold atoms
While our historical contact with magnetism came by means of crystalline materials,
there are novel possibilities to use quantum fluids with a manifold of internal spin
states to exhibit magnetic phenomena. Superfluids, such as 3He, are a natural example
of candidate quantum fluids that meet this criteria [119, 120]. Most recently, there is
renewed excitement focused on the study of the so-called “spinor condensates”, cold
atom condensates typically of effective spin-1 or spin-2 atoms, such as 23Na or 87Rb,
whose effective spin arises depending on the hyperfine manifold populated [121].

Two developments have extended the reach of ultracold gases enormously in the last
few decades [122]. Firstly, the use of Feshbach resonances provided the ability to tune
interaction strengths beyond the weakly interacting regime [123, 124]. Secondly, the
ability to trap atoms in optical lattices now allows access to a wide variety of periodic
geometries and low dimensional physics [125]. The micrometer sized lattice constants
in such systems additionally allow single-site resolution and addressing [126, 127].

These advances have paved the way for further exploration of many-body physics in
the ultracold regime, leading to a rapid explosion of new accessible physics, including
e.g. SU(N) models as accessible versions of strongly-interacting gauge theories [128], a
subject which has engaged the attention of many theoretical works e.g. [129, 130].

As mentioned in the Introduction, scalar analogues of gravitational waves and cur-
vature have already been realized in the cold atom context [39–42, 131]. A natural next
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step would be to extend the exploration to systems with internal degrees of freedom.
This Thesis proposes that nematic phases realized in spinor condensates could provide
a full tensor analogue, see Chapters 4-6.

In summary, we have seen how magnetism can arise in natural materials, what
phases can manifest, and what interactions must be realizable in artificial platforms for
quantum simulation of magnetic models. In the remainder of this Chapter, we briefly
turn attention to the phenomena this Thesis will show analogues for in magnetism,
namely, electromagnetism and photons and linearized gravity and gravitational waves.

1.3 A brief review of light
In Chapter 3, I will explicitly introduce analogues of photons in the context of magnetic
systems, making use of parallels in their respective field theories. Here I remind the
interested reader of the historical development of ideas leading to the currently standard
notion of a photon.

The independent notions of light, electrostatics and Coloumb’s law, and magnetic
phenomenology were known to exist since at least the 18th century. However, it was
not until the beginning of the 19th century that the interconnectedness of these three
phenomena started becoming clearer, finally crystallizing with the comprehensive pre-
sentations of electrodynamics that were spearheaded by J.C. Maxwell from the 1850’s
onwards [132, 133].

The main shift in perspective came with the introduction of the concept of fields.
In this view electric charges generate radial electric field lines E, and electric charges
in constant motion generate solenoidal magnetic field lines B, both of which decay in
strength with distance but nevertheless in principle reach out to infinity. Importantly,
changes in charge distribution or charge acceleration are not communicated instanta-
neously to points arbitrarily far away but instead must be propagated as disturbances
of the field lines.

The equations describing the dynamics of these fields were presented then by
Maxwell, and were later grouped by Heaviside [134] into the set of four vector equations
now known as Maxwell’s equations, which in differential form can be written as follows

∇ ·B = 0 , (1.42a)

∇ ·E = ρe
ϵ0
, (1.42b)

∇ ×E + ∂tB = 0 , (1.42c)

∇ ×B − 1
c2∂tE = µ0J , (1.42d)

where c is the speed at which field disturbances propagate. These electromagnetic
oscillations were later confirmed by Hertz to be responsible for light [135].

Notice that the right-hand-sides of all equations Eq. (1.42) are vanishing in vacuum.
Taking the time derivative of equations Eq. (1.42c-1.42d) and substituting Eq. (1.42a-
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(a) Linearly polarized E↑ and B↑. (b) Linearly polarized E→ and B→.

(c) Circularly polarized E⟲ and B⟲. (d) Circularly polarized E⟳ B⟳.

Figure 1.5: Different polarizations of light. (a) Dipole oscillations resulting from a shifting centre
of mass along the z-direction result in linearly polarized excitations of the electromagnetic field. (b)
Dipole oscillations resulting from a shifting centre of mass along the y-direction result in linearly
polarized excitations of the electromagnetic field. (c) A rotating dipole in the yz-plane result in
circularly polarized excitations of the electromagnetic field. (d) A rotating dipole in the yz-plane
result in circularly polarized excitations of the electromagnetic field.

1.42b) leads to the wave equations

1
c2∂

2
tE = ∇2E , (1.43a)

1
c2∂

2
tB = ∇2B , (1.43b)

which possess self-propagating massless wave solutions in terms of the coupled oscillat-
ing electric and magnetic fields, which can propagate far from any sources, see Fig. 1.5.

The generation of such oscillating solutions is generally tied to the motion of charges
(real or virtual), allowing one to motivate description of the angular momentum char-
acter of electromagnetic radiation in terms of the multipole expansion of the source,
whose terms capture progressively higher order angular features [136]. The zeroth order
moment is the monopole moment, which respects spherical symmetry. Due to charge
conservation, the monopole moment

Q =
∫
dxd ρe , (1.44)

is conserved, and therefore has trivial time derivative and generates a field only elec-
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trostatically. The monopole moment cannot change in time and therefore cannot lead
to electromagnetic waves. However, the dipole moment

d =
∫
dxdρer , (1.45)

is generically non-trivial, and dominates the expansion. Therefore, electromagnetic
waves are produced by either rotating or oscillating dipoles and will transform under
rotation as vectors, namely, they have spin s = 1.

Oscillating dipoles lead to the linearly polarized radiation modes, which can be
decomposed into the basis E(x)

↑ and E(x)
→ , shown in Fig. 1.5,

E(x)
→ = |E|

 0
cos(kx− ωt)

0

 , B(x)
→ = |B|

 0
0

cos(kx− ωt)

 , (1.46a)

E
(x)
↑ = |E|

 0
0

cos(kx− ωt)

 , B
(x)
↑ = |B|

 0
− cos(kx− ωt)

0

 , (1.46b)

A rotating dipole is described by a superposition of oscillating motion in the plane
perpendicular to radiation. The resulting circularly polarized radiation can be decom-
posed into a linear superposition of the the two linear polarizations

E
(x)
⟳ = 1√

2
(E(x)

→ + iE
(x)
↑ ) , B

(x)
⟳ = 1√

2
(B(x)

→ + iB
(x)
↑ ) , (1.47a)

E
(x)
⟲ = 1√

2
(E(x)

→ − iE
(x)
↑ ) , B

(x)
⟲ = 1√

2
(B(x)

→ − iB
(x)
↑ ) . (1.47b)

This dynamical framework then clearly supported the idea that forces do not act
spontaneously at a distance, and rather in the electromagnetic case propagate through
the corresponding fields. It was initially assumed that there was a background medium
which represented the field at rest called the aether. However, after the Michelson-
Morley experiment ruled out the possibility of a fixed universal frame of reference
for such an aether [137], it became clear that there is no privileged inertial reference
frame. This context led Einstein to postulate that electromagnetic fields propagate at a
constant speed, namely the speed of light c, and that the laws of physics must remain
invariant for every inertial observer, leading to Special Relativity [138]. These two
realizations impose the constraint that fundamental fields in spacetime must transform
reversibly under elements of the Poincaré group, and that the actions associated to any
such field must be invariant under Poincaré transformation.

To make the relativistic symmetries of electromagnetism manifest, it is usual to
work in terms of the vector potential

Aµ =(At,A) , (1.48a)
Aµ =(−At,A) , (1.48b)

which is a gauge field possessing redundant degrees of freedom, defined in terms of the
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electric and magnetic fields

Ei = − 1
c2∂tAi − ∂iAt , (1.49a)

Bi = ϵijk∂jAk . (1.49b)

The wave equation describing propagating modes of electromagnetism can then be
written as follows

1
c2∂

2
tA

µ = ∂2
iA

µ , (1.50)

still consistent with electromagnetic waves—or photons—as massless spin-1 bosons. In
Chapter 2, I will review the description of photons in terms of the gauge field Aµ.

1.4 On the quadrupolar nature of gravitational waves
In this section, I briefly recount the key principles leading to the geometrization of
gravity and how it predicts spin-2 (quadrupolar) gravitational waves.

A curious feature of the natural world that was noted already in the works of Galileo,
Kepler and Newton is the proportionality of gravitational mass and inertial mass. This
empirically established observation arose from the fact—known in Ancient Greece and
to Aristotle—that two unequal weights accelerate under the action of gravity with
the same acceleration. This idea is what Einstein later termed the Weak Equivalence
Principle, with the refined statement that there is no way for any isolated observer to
determine if any perceived acceleration is due to the presence of a gravitating body or
acceleration of the observer.

This key fact led Einstein to conclude non-trivially that gravity must be a geometric
theory in which, as stated by John Wheeler

“space acts on matter and tells it where to move, while matter acts on space
and tells it how to curve” [139],

collected in the Einstein equations

Gµν = 8πG
c4 Tµν , (1.51)

where the tensor Gµν describes the curvature of spacetime, and the stress-energy tensor
Tµν describes the distribution of mass-energy density.

The free space Einstein equations permit self-propagating wave solutions, in a sim-
ilar way to electromagnetism. We will revisit this in Chapter 2. However, from con-
sideration of the leading terms in the multipole expansion, we find that these waves
are necessarily rank-2 tensors which transform under rotation with angular momentum
s = 2. The monopole moment

M =
∫
ddxρm (1.52)



1.4 On the quadrupolar nature of gravitational waves 21

𝑎 𝑡 = 0 𝑏 𝑡 =
1

4
𝜏 𝑐 𝑡 =

1

2
𝜏 𝑑 𝑡 =

3

4
𝜏

Figure 1.6: Quadrupolar oscillations of a source correspond to deviations from spherical symme-
try. The corresponding wave induces spatial deformation shown on the yellow ring due to a linearly
polarized gravitational wave as seen by the observer in the figure.

is conserved due to energy-momentum conservation. The dipole moment

d =
∫
ddxρmr (1.53)

is also necessarily conserved due to conservation of momentum. Therefore, is it only
the quadrupole moment

Qij =
∫
ddxρm(xixj − 2

3δ
ijr2) , (1.54)

which can contribute to leading order to gravitational waves, under the unmodified
theory of general relativity.

As in the case of electromagnetic waves, we can decompose the independent modes
of gravitational waves into linear polarizations generated by an oscillating quadrupole
moment, which for a wave propagating in the z−direction take the form

h+
µν = eik

µxµ


0 0 0 0
0 h+ 0 0
0 0 −h+ 0
0 0 0 0

 , (1.55a)

h×
µν = eik

µxµ


0 0 0 0
0 0 h× 0
0 h× 0 0
0 0 0 0

 . (1.55b)
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An example of the deformation induced by such a linearly polarized wave is shown in
Fig. 1.6.

Rotating quadrupole moments generate waves of non-trivial helicity. There are two
independent modes of helicity γ = ±s = ±2 describing gravitational waves, which
without loss of generality can be described classically for a wave propagating along the
z-direction as

h⟲µν = eik
µxµ


0 0 0 0
0 h+ ih× 0
0 ih× −h+ 0
0 0 0 0

 , (1.56a)

h⟳µν = eik
µxµ


0 0 0 0
0 h+ −ih× 0
0 −ih× h+ 0
0 0 0 0

 , (1.56b)

where in terms of the linear polarizations, we define

h⟲µν = h+
µν + ih×

µν , (1.57a)
h⟳µν = h+

µν − ih×
µν . (1.57b)

In Fig. 1.6, the effect of such a wave on distances separating events in spacetime
is visualized. These forms make explicit that a gravitational wave is characterized
by the presence of non-trivial spatial components of the metric only. That is, the
temporal components of the metric are not affected by the passage of the wave. These
modes correspond to strain modes that are transverse to the direction of propagation.
However, in our day to day experience we do not encounter such deformations due to
the relative weakness of gravity and, consequently, of its excitations.

The amount of power radiated into a gravitational wave is related to the source
properties in the following power law[139]

PGW = 2
45
G

c4M
2l4ω6 . (1.58)

Given that the factor

G

c4 ≈ 8 ∗ 10−45 s2

kg m
, (1.59)

what realistic output could we ever hope to achieve in a laboratory setting? Even if
we consider a steel beam of length l = 20m, rotating at ω = 28rad/s, then the power
output is around 10−30J/s. This is ridiculously small to hope to ever generate gravi-
tational waves ourselves for any useful purpose in ordinary laboratories. By contrast,
the amount of power radiated by astrophysical sources during e.g. the collapse of a
supernovae into a neutron star is expected to generate a burst lasting around 0.1s with
power output the order of 1060J/s [139].

In summary, gravitational waves themselves are fundamentally distinct from light,
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Figure 1.7: Data from the first LIGO observation of the gravitational wave event GW150914, a
binary black-hole merger, depicting the characteristic chirp of the event. The signal from the event
1.4 ± 0.6 billion light-years away is only perceptible above the background for the short period of time
during which the merger produces a large burst of gravitational wave output. Figure reproduced from
[9], available under the terms of the Creative Commons Attribution 3.0 License.



1.5 Thesis outline 24

not only due to the hierarchy of scales separating their relevant observational ranges,
but as spin-2 excitations which mediate an attractive force. Unlike their photonic coun-
terparts, gravitational radiation strong enough to be detectable is not experimentally
reproducible, therefore the laboratory use of spin-2 (quadrupolar) waves has not been
explored. It is therefore of interest to access an analogue counterpart in the lab.

1.5 Thesis outline
In this Chapter, we have learned about analogues which realize parts of electromag-
netism or gravity, magnetism and magnetic order, and electromagnetic radiation and
gravitational waves. Building on ideas introduced in this Chapter, in this I Thesis
establish a novel connection between gravitational waves and spin nematic excita-
tions. In particular, I will develop the connection between the Goldstone modes of
a ferroquadrupolar spin nematic and gravitational waves as described by linearized
gravity first by analytic considerations. The critical result is that the action for a fer-
roquadrupolar spin nematic has the same form as that of linearized gravity, and this
allows the construction of a dictionary relating the excitations of the spin nematic to
gravitational waves.

I will then expand upon this finding with numerical simulations, showcasing that
spin nematics exhibit topological point defects which experience attractive interactions,
leading to in-spiral and eventually annihilation. I simulate that the pattern of wave
emission for such an annihilation event generates a characteristic chirp of its own, see
Fig. 1.8, resembling the wave emission of binary mergers of astrophysical objects which
trigger gravitational waves significant enough to be detected on Earth.

To provide the detailed fundamental background required, Chapter 2 discusses
spontaneous symmetry breaking, and how it leads to Goldstone modes in the mag-
netic phases of interest in this thesis. Chapter 2 will also work in detail through the
relevant background on the field theory for electromagnetism and linearized gravity in
vacuum.

The purpose of Chapter 3 is to lay out what analogues have already been discussed
in the context of magnetism, starting with the XY ferromagnet and spin ice, and to
explicitly motivate a connection between photons and the Heisenberg antiferromagnet
by way of providing a recipe that can be generalized to an analogue of gravitational
waves for a spin nematic.

In Chapter 4, I will present a quantum spin nematic analogue to linearized gravity,
in which self-propagating dynamical modes are naturally supported, and furthermore in
the low-energy limit correspond to massless, spin-2 bosons in one-to-one correspondence
with gravitational waves in vacuum.

Chapter 5 focuses on numerical simulation of the discussed analogues, and show-
cases how analogue gravitational waves can be generated in 2D realizations of the
ferroquadrupolar spin nematic phase of the microscopic Bilinear-Biquadratic model by
the annihilation of Z2 vortices. Building on this, I outline an experimental protocol
that would allow such waves to be observed in spinor condensates.

In Chapter 6, I provide an outlook on this work and suggested directions for further
inquiry.
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(a) Spectrogram from simulated gravitational wave emission.

(b) Chirp signal corresponding to vortex annihilation.

Figure 1.8: Spectrogram showcasing the time-frequency decomposition of the waves emitted by
defect pairs in a spin nematic. Full description of this result in Chapter 5.



Chapter 2

Massless Bosons: Magnetic
Goldstone modes, Photons and
Gravitons

“The most incomprehensible thing about the world is that it is comprehen-
sible.” - Albert Einstein, as quoted by P.A. Schilpp (1949).

Vacuum states, whether they be a condensed matter ground state or the ground
state of the Universe, can possess two categories of excitation, one of which are ex-
citations that cost a finite amount of energy to generate and are therefore referred
to as gapped or massive excitations, e.g. massive elementary particles, or topological
excitations of the kind present in the XY model.

A second kind of excitation are those which have a vanishing dispersion at long
wavelength, such that at infinitely long wavelength the perturbation of the ground
state in fact has no energy cost. These are called massless or gapless excitations. In
this Thesis, we will be concerned primarily with massless excitations of vacuum and
they are therefore the subject of this Chapter.

The existence of gapped excitations in a given system does not preclude the exis-
tence of gapless excitations, and vice versa1. There is no unique way to determine if a
system is necessarily gapped or gapless, though one can conclude that gapless Bosonic
modes should exist in the context of systems with spontaneously broken continuous
symmetries. This is a consequence of Goldstone’s theorem.

This Chapter provides technical background material for the remainder of the The-
sis. I begin by introducing Goldstone’s theorem, and how spontaneously broken contin-
uous symmetries lead to massless excitations termed Goldstone Bosons. I also review
the counting procedures for these Goldstone modes, essential material for the develop-
ment of analogues of photons and gravitational waves.

I then revisit the massless, spin-1 Boson of electromagnetism, the photon, providing
a more technical overview of electromagnetism, in order to equip the reader with enough
background to understand magnetic analogues that will be presented in Chapter 3.

1In Chapter 4, we will revisit the idea of topological excitations in a spin nematic, which provide
an example of this.

26
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I finally review the construction of the linearized limit of gravity with its associated
massless spin-2 Bosonic modes i.e. gravitational waves, for which I will present a
magnetic analogue in Chapter 4.

2.1 Goldstone’s theorem and spontaneous symme-
try breaking

It was famously established by Emmy Noether that for every continuous symmetry of
an action, there exists a corresponding conserved charge [140]. That said, the individ-
ual states of a system are not required to respect all the symmetries of the action. This
is typical of the difference between high-temperature, high-symmetry phases and low-
temperature, reduced-symmetry phases, characteristic of all phase transitions that fall
within the Landau paradigm [84]. In the context of magnetism, we have already seen an
example of this. For the Heisenberg model [Eq. (1.16)], an active global rotation of the
spin basis does not change the inner product between neighbouring spin dipole opera-
tors, and therefore leaves the Hamiltonian—and equivalently the action—unchanged.
However for a particular ferromagnetic ground state, the spins are all aligned along a
particular direction e.g. ⟨Sz⟩ ̸= 0, and therefore the same active transformation that
leaves the Hamiltonian invariant will now transform the ground state to another equiv-
alent ground state. The selection of one of many possible ground states is an example
of what is meant by a spontaneously broken symmetry.

Now let us generically suppose the action is a functional of a given quantum field
ϕ, where the symmetry group of the action is G and corresponding conserved charge is
Q. Given that the charge Q is the generator of transformations of the given symmetry
group G, we can define a unitary operator U(Q) that induces a symmetry transfor-
mation. Consider then the fluctuations of the field, which result from an infinitesimal
symmetry transformation

δ(Q)ϕ = −i[ϕ, U(Q)] . (2.1)

In a state of the system preserving the full symmetry group, the vacuum expectation
value of the fluctuations of the field should vanish, and correspondingly so should the
associated commutator

⟨i[U(Q), ϕ]⟩ = 0 . (2.2)

Now suppose some subset of symmetries are broken by the ground state of the
system. Then, the ground state of the system is symmetric under some H ∈ G, where
dim(G/H) = m. In this case, the vacuum expectation value of fluctuations are non-
vanishing

⟨i[U(Q), ϕ]⟩ ≠ 0 , (2.3)

and can be used to define an order parameter. As was originally observed by Nambu
and Goldstone [141–143] from studying gauge theory in the context of superconductiv-
ity, the non-vanishing fluctuations are gapless modes corresponding to long wavelength
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excitations in the manifold of the broken symmetry generators, since these correspond
to directions in which the free energy landscape around the ordered state is flat. There
has been much subsequent work to generalize the original theorem of Goldstone [144] to
a wider class of systems in both high-energy physics and condensed matter, including
applicability to systems which do not exhibit Lorentz invariant actions [145]—such as
the Heisenberg ferromagnet—or with higher form symmetries [146]—such as photons
in electromagnetism, as comprehensively reviewed in [147].

The correspondence of the number of gapless modes to broken symmetry generators
is not always one-to-one [148], and depends on the form of the dispersion relation

ω = c|k|p . (2.4)

The power p in the dispersion relation depends in turn on whether or not the action
of the system is Lorentz invariant [145]. For systems with odd power p, the number
of Goldstone modes nodd is in correspondence with the number of broken symmetry
generators, called type-I. However, for systems whose dispersion relation is of even
power p, there is an internal coupling of degrees of freedom leading to a reduced
number of Goldstone modes neven, called type-II. With these definitions in place, the
total number of Goldstone modes is related to the number of broken symmetries by
the relation [148, 149]

nodd + 2neven = m . (2.5)

In summary, the dimension of the flat free energy manifold only corresponds to the
number of independent zero energy modes if the system is relativistically invariant.
Otherwise, the zero energy modes couple pairwise.

A simple classical example exhibits how modes can couple to reduce the number of
Goldstone modes corresponding to the broken symmetry generators [150]. Consider a
pendulum of length l suspended from the ceiling, hanging such that it is oriented along
the z-direction. The direction of gravity can be thought to break the O(3) symmetry
of the pendulum, confining it to dangle along z rather than any other direction on
the sphere. There are two independent modes of the pendulum: it is free to oscillate
independently along x or y directions with arbitrarily low-energy. Each of the two
modes will carry a non-trivial angular momentum

Lx = l x̂× px , (2.6a)
Ly = l ŷ × py . (2.6b)

Now suppose that the pendulum is not simply hanging from the ceiling, but it is
also rotating; that is, it carries an intrinsic angular momentum Lz ̸= 0.

In this case, the angular momentum Poisson Bracket places constraints on the
independence of components of angular momentum

{La, Lb} = ϵabcLc , (2.7)

such that if Lz is now fixed, Lx and Ly can no longer be independent modes and are
instead coupled into one precessing mode. The sign of Lz fixes the orientation of the
precession, and breaks the discrete time-reversal symmetry: for a given orientation of
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Lz, the precession looks different when viewed forwards or backwards in time. With
broken time-reversal symmetry, the action describing this system will not be Lorentz
invariant.

Let’s consider next the quantum mechanical version of this example. Instead of a
pendulum, consider a spin moment with intrinsic angular momentum S. In the absence
of any interactions, the spin moment is free to point anywhere on a sphere. However,
if constrained to point, for example, along the z-direction, then the O(3) symmetry is
broken, with resulting expectation value

⟨0|Sz |0⟩ ≠ 0 . (2.8)

This breaks the two rotational symmetries with unitary transformations

Rx(θ1) = eiθ1Sx , Ry(θ2) = eiθ2Sy , (2.9)

such that

⟨0| [R1, Sz] |0⟩ ≠ 0 , (2.10)
⟨0| [R2, Sz] |0⟩ ≠ 0 , (2.11)

and we therefore expect two Goldstone modes. However, the angular momentum com-
mutation relations

[Sa, Sb] = iϵabcSc , (2.12)

will not allow for two independent Goldstone modes, given that the expectation value
of Sz is fixed. This would seem to suggest that all magnetic systems are doomed to
behave in a way that violates Lorentz invariance; however this example only captures
the exceptional case of the Heisenberg ferromagnet, in which the finite macroscopic
magnetizationm ̸= 0 explicitly breaks time-reversal symmetry, and therefore is subject
to the counting for type-II modes. In this case

ω ∝ |k|2 =⇒ neven = 1 . (2.13)

On the other hand, intuitively we can see that time-reversal symmetry is restored for
the Heisenberg antiferromagnet by considering the full unit cell in which

mA +mB = 0 , (2.14)

such that

ω ∝ |k| =⇒ nodd = 2 . (2.15)

In Chapter 3, we will see in more detail why this is the case, and how this allows the
system to be effectively described by the Lorentz invariant non-linear sigma model with
two independent Goldstone modes.
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2.1.1 Coleman and Hohenberg-Mermin-Wagner theorems
Relevant to Chapter 5 of this Thesis, there are conditions under which spontaneous
symmetry breaking is not allowed. This is true in particular in systems of dimension
less than three, as was already suggested in the 1930’s by Bloch [151], Peierls [152]
and Landau [84], and this importantly motivates the existence of topological phase
transitions in a variety of low-dimensional models [46, 47].

Indeed, the tendency to order plays out differently in low dimensional systems, as
introduced by Hohenberg [153], Mermin and Wagner [154] and Coleman [155] indepen-
dently.

Hohenberg first proposed [153] a rigorous demonstration of the absence of long-
range order in two-dimensional systems. However, the precedence of this article is often
omitted or unknown, due to the prior appearance in print of the Letter by Mermin and
Wagner [156]. The range of interactions is important for these results. In the context
of quantum spin models, with short-range interactions that obey

1
2N

∑
⟨ij⟩

Jij|ri − rj| < ∞ , (2.16)

the statement holds that there can be no true long-range order at finite temperatures
in dimensions d ≤ 2. Coleman later showed that in the case of (1+1)D field theories
the vacuum expectation value of the fluctuation δϕ of a scalar field ϕ must be vanishing
to avoid singularities [155]. This implies that in (1+1)D all symmetries must remain
manifest. However, importantly for this Thesis, the inability of the long wavelength
Goldstone modes to stabilize an ordered phase does not exclude the existence of other
types of excitation which can induce and stabilize a broken symmetry phase. We can
reconcile the latter possibility in low dimensional systems which exhibit topologically
mediated transitions, as was first proposed by Berezinskii [46] and later Kosterlitz and
Thouless [47] in the context of the 2D XY model.

2.2 (3+1)D electromagnetism in vacuum
In this Section, I provide technical background on electromagnetism in vacuum and
its massless, spin-1 bosons (photons), which is needed to understand the analogues of
electromagnetism reviewed and presented in Chapter 3. The treatment which follows
adopts conventional notations established in e.g. [157, 158]. Electromagnetism is a
gauge theory of a spin-1 field, described by a 4−vector Aµ with a U(1) symmetry, and
which is compatible with both special relativity and can be canonically quantized.

Maxwell’s equations in vacuum can be cast in terms of the field Aµ

1
2∂µ (∂µAν − ∂νAµ) = 0 , (2.17)

where from here on I use the notation for the components of an arbitrary four-vector
aµ = (a0, a1, a2, a3), instead of aµ = (cat, ax, ay, az). I also use the convention

Aµ = (A0,A) , (2.18a)
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Aµ = ηµνA
ν = (−A0,A) , (2.18b)

with ηµν = diag(−1, 1, 1, 1).
Suppose that a solution to Eq. (2.17) admits a Fourier decomposition

Aν(xµ) =
∑
kµ

Ãν(kµ)eikµxµ

, (2.19)

such that (
∂µ∂µδ

ν
µ − ∂µ∂ν

)
Aµ = 0 , (2.20a)

=⇒
(
kµkµδ

ν
µ − kµk

ν
)
Ãµ = 0 , (2.20b)

(2.20c)

where we can define the sparse matrix Kµν

Kµν =
(
kµkµδ

ν
µ − kµk

ν
)
. (2.21)

This matrix has the property that det(K) = 0 for any kµ, kν . This is clear since for
non-trivial Ãµ, K must be singular. Furthermore, K has one eigenvector with zero
eigenvalue

KµνÃ
µ = λÃµ , λ = 0 , (2.22a)

=⇒ Ãµ = kµ , (2.22b)

from which

KÃµ = Kkµ = 0 , (2.23a)
=⇒ K

(
Ãµ − iϵkµ

)
= 0 , (2.23b)

=⇒ Ã′µ = Ãµ − iϵkµ , (2.23c)
=⇒ A′µ = Aµ + ∂µϵ . (2.23d)

where A′µ is therefore also a valid solution of Maxwell’s equations. We can therefore
see the gauge symmetry explicitly appear.

Armed with this, we can work backwards to identify the explicit form of the electro-
magnetism Lagrangian. Compatibility with special relativity assumes that the equa-
tions of motion must be Lorentz covariant, and therefore the Lagrangian must have
Lorentz covariant form with terms like

L = c1∂µAν∂
µAν + c2∂µAν∂

νAµ + c3∂µ∂
µ(AνAν) . (2.24)

Invariance of the Lagrangian under the u(1) symmetry

Aµ′ = Aµ + ∂µϵ , (2.25)

implies that c1 = −c2 and c3 = 0. The Lagrangian can then be factorized leading to
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the following action describing electromagnetism in flat vacuum, which is quadratic in
the vector field Aµ

SEM = −1
2

∫
dx4ηαν (∂µAα∂µAν − ∂µA

α∂νAµ) , (2.26)

equivalent to

SEM = −1
4

∫
dx4(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) ,

≡ 1
4

∫
dx4FµνF

µν . (2.27)

The action Eq. (2.27) and corresponding equations of motion Eq. (2.17) are invari-
ant under the gauge transformation Eq. (2.25). We will next see how gauge transfor-
mation can be used to make explicit the transverse nature of the propagating modes
allowed by Maxwell’s equations.

2.2.1 Lorentz covariance of the gauge field Aµ implies the ex-
istence of transverse and gauge modes

In this Section we will learn that the Lorentz covariance of the gauge field Aµ leads to a
distinction between the physically dynamical components of the gauge field which are
necessarily transverse to the propagation, and the non-dynamical components which
can be gauged away. The transverse nature of the dynamical components will be a key
property to keep in mind when visiting magnetic analogues in Chapter 3.

It turns out that the nature of the gauge freedom Eq. (2.25) will already determine
the minimal set of non-trivial components, reducing the number of components of Aµ
that are dynamically non-trivial.

Under the right conditions on Aµ, namely

∂µA
µ = 0 , (2.28)

Eq. (2.17) contains the wave equation

∂µ∂µA
ν = 0 , (2.29)

which we will review here to be consistent with the minimal expression of non-trivial
components. Without loss of generality, consider specifically kµ = (k0, 0, 0, k3)

Ã′0 =Ã0 − k0ϵ , (2.30a)
Ã′1 =Ã1 , (2.30b)
Ã′2 =Ã2 , (2.30c)
Ã′3 =Ã3 − k3ϵ . (2.30d)

It is clear that at least one component of Ã′µ, and A′µ can be eliminated by appro-
priate choice of the scalar field ϵ, while the transverse degrees of freedom will remain
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unchanged by gauge transformation.
For propagating modes which are massless, these must obey the null condition

kµkµ = 0 , (2.31)

which in turn implies that if we choose

∂µA
µ →∂µA

µ + ∂µ∂
µϵ = 0 , (2.32a)

=⇒ ∂µA
µ = − ∂µ∂

µϵ , (2.32b)
=⇒ kµÃ

µ =kµkµϵ , (2.32c)
=⇒ kµÃ

µ =0 , (2.32d)

then Ãµ is orthogonal to the four-momentum, independent of the selection of ϵ.
For the specific case of propagation along the z−axis, it must hold that k0 = −k3.

Lightlike propagation in combination with the condition kµÃ
µ = 0 (known as the

Lorenz gauge condition) in turn implies

A0 = A3 . (2.33)

The scalar degree of freedom ϵ can then be used to set

A0 = A3 = 0 . (2.34)

In addition, under this condition, it is straightforward to see that Maxwell’s equations
Eq. (2.17) do indeed reduce to the wave equation Eq. (2.29). This makes explicit
the transverse nature of the excitations of electromagnetism in vacuum (photons). In
Chapter 3, we will connect this notion of transverse excitations to the Heisenberg an-
tiferromagnet, which also has two massless dynamically non-trivial degrees of freedom
that are expressed transverse to the order parameter.

To understand why the non-transverse degrees of freedom are in fact unphysical, I
next review how the distinction between the transverse and gauge modes follows from
relativistic transformations of the gauge field, as first indicated by Kim and Wigner
[159–161]. Consider Lorentz transformations Λ = {R,B}, where R is the set of O(3)
rotations generated by Ji and B is the set of boosts generated by Ki, for i = x, y, z

Jx =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , Kx =


0 −i 0 0

−i 0 0 0
0 0 0 0
0 0 0 0

 , (2.35a)

Jy =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , Ky =


0 0 −i 0
0 0 0 0

−i 0 0 0
0 0 0 0

 , (2.35b)
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Jz =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , Kz =


0 0 0 −i
0 0 0 0
0 0 0 0

−i 0 0 0

 , (2.35c)

which satisfy the following commutation relations

[Ji, Jj] = iϵijkJk , (2.36a)
[Ki, Kj] = −iϵijkJk , (2.36b)
[Ji, Kj] = −iϵijkKk . (2.36c)

When elements of the Lorentz group act on a massless particle, they either alter the
4-momentum or leave it intact. For the case considered in the previous section, where
kµ = (−k3, 0, 0, k3), we see that

Rzkµ = kµ , (2.37a)
Rikµ ̸= kµ, i = 1, 2 , (2.37b)
Bikµ ̸= kµ, i = 1, 2, 3 , (2.37c)

where the generator that leaves the 4-momentum intact must effect a transformation
instead on the internal degrees of freedom of the field.

It is well known that there are two further generators that leave the 4-momentum
intact [159–161]

N1 = Kx − Jy =


0 −i 0 0

−i 0 0 −i
0 0 0 0
0 i 0 0

 , (2.38a)

N2 = Ky + Jx =


0 0 −i 0
0 0 0 0

−i 0 0 i
0 0 i 0

 . (2.38b)

Together, these generators which affect the internal degrees of freedom are called the
Little Group. The available internal degrees of freedom are spanned by action of the
group elements

G(u, v, θ) = e−i(uN1+vN2+θRz) , (2.39)

such that the field Aµ transforms as

G(u, v, θ)Aµ =


A0

A1 cos(θ) − A2 sin(θ)
A2 cos(θ) + A1 sin(θ)

A3

+


A1u+ A2v

0
0

A1u+ A2v
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+


1
2(A3 − A0)(u2 + v2)

(A0 − A3)u
(A0 − A3)v

1
2(A0 − A3)(u2 + v2)

 . (2.40)

The first term corresponds to physical rotations of the transverse degrees of freedom,
and the remaining two terms affect the gauge. Note that the series expansion for
G(u, v) = e−i(uN1+vN2) is trivial beyond order O(N3

i ), such that in contrast to G(θ),
G(u, v) is not a compact function of u or v. These elements act on the gauge redun-
dant degrees of freedom, leading to effective linear rescaling of components A0 and A3.
The components of the field Aµ can therefore be thought of as living on a 4D cylin-
der of infinite extent in the A0 and A3 directions, and fixed radius in the transverse
plane. The transverse components correspond to the photon degrees of freedom, which
in Chapter 3, I will show to be in explicit correspondence with the magnons of the
Heisenberg antiferromagnet.

In summary, the action of the Lorentz group on the electromagnetic vector field
corresponds to transverse rotations, acting on the photon degrees of freedom, and
gauge transformations which mix in the longitudinal and temporal degrees of freedom.

2.2.2 Poynting vector, energy conservation and visualization
of the spin-1 field

We have seen how it is always possible to choose Lorenz gauge such that all components
of Aµ satisfy the wave equation Eq. (2.29). To show this is consistent with energy-
momentum conservation, let’s examine the stress-energy tensor components for EM in
terms of the gauge invariant tensor F µν

T µν = 1
4π

(
F µαF µ

α − 1
4η

µνFαβFαβ

)
, (2.41)

which has scalar component corresponding to the relativistic energy density

T 00 = 1
4π

[ (
∂0Aα − ∂αA0

) (
∂0Aα − ∂αA

0
)

+1
4η

00 (∂αAβ − ∂βAα)
(
∂αAβ − ∂βAα

) ]
,

(2.42)

vector components corresponding to the flux of energy density through a surface or-
thogonal to the vector

T 0j = 1
4π

(
F 0αF j

α

)
(2.43)

= 1
4π

(
∂0Aα − ∂αA0

) (
∂jAα − ∂αA

j
)
, (2.44)
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and tensor components

T ij = 1
4π

(
F iαF j

α − 1
4δ

ijFαβFαβ

)
, (2.45)

which obey the conservation law

∂µT
µν = 0 . (2.46)

This implies that the scalar and vector components are unchanging in time. Using
the definition of electric and magnetic fields, we can reduce these components to the
following expressions

T 00 = 1
4π

(
ϵ0E

αEα + 1
µ0
BαBα

)
, (2.47a)

T 0j = 1
4πEmBnϵ

mnj , (2.47b)

T ij = 1
4π

(
ϵ0E

iEj + 1
µ0
BiBj − δijT 00

)
. (2.47c)

The components T 0j define the Poynting vector. The condition for energy con-
servation on the fields E and B therefore follows from the definition of the Poynting
vector, in terms of the spatial (and not Lorentz invariant) fields E and B

|S| = |E ×B| = const , (2.48)

where

E = −∂tA , (2.49a)
B = ∇ ×A . (2.49b)

By definition as the flux of momentum density, the Poynting vector is parallel to the
direction of travel of the wave

S · k = 0 . (2.50)

Next, let’s define explicitly the circular polarizations of respective helicity γ = ±1

A⟲,A⟳ , (2.51)

which define a pair under time reversal symmetry.
Taking the case of k = kẑ, we find that consistency with energy momentum con-

servation leads to the explicit components

A⟳ = |A|

cos(kz − ωt)
sin(kz − ωt)

0

 , A⟲ = |A|

 cos(kz − ωt)
− sin(kz − ωt)

0

 , (2.52)



2.2 (3+1)D electromagnetism in vacuum 37

with fields

E⟳ = |A|ω

− sin(kz − ωt)
cos(kz − ωt)

0

 , E⟲ = |A|ω

sin(kz − ωt)
cos(kz − ωt)

0

 , (2.53a)

B⟳ = |A|k

cos(kz − ωt)
sin(kz − ωt)

0

 , B⟲ = |A|k

− cos(kz − ωt)
sin(kz − ωt)

0

 , (2.53b)

where

|A| = |E|
ω

= |B|
k

, (2.54)

=⇒ |E| = c|B| , (2.55)

with

ω = ck . (2.56)

In conclusion, conservation of energy-momentum determines the relationship be-
tween the electric and magnetic fields. The self-propagating electromagnetic fields of
a photon are visualized in Fig. 1.5 in Chapter 1.

2.2.3 Canonical quantization of photons
The previous treatments were valid for not only a classical relativistic spin-1 field,
but are also valid for a quantized spin-1 field. We can write the second quantized
decomposition of the photon excitations as [162]

Aµ(x) = (2π) 3
2

∫ d3p√
2ω

(aµ(p)e−ipx + a†µ(p)eipx) , (2.57)

where the field operators aµ and a†µ satisfy the Bosonic commutation relations

[aµ(x), a†ν(x′)] = δ(x′ − x)δµν . (2.58)

In conclusion, photons are massless, spin-1 Bosons. In addition, as shown in previous
sections, the non-trivial components of the photon are always transverse. These facts
are critical for the identification of photon analogues in the condensed matter context,
and in Chapter 3, I will explicitly introduce a one-to-one analogue of photons in the
excitations of the Heisenberg antiferromagnet.

2.2.4 Masslessness from symmetry breaking
Massless vector field theories are known to have non-regularizable singularities unless
a gauge degree of freedom is introduced [44]. Here I briefly review an alternative
perspective on the relationship between the gauge freedom and the masslessness of the
photon.
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In Section 2.2.1, I described photons as transverse gauge bosons by assuming they
must be massless, which automatically fixes of residual gauge degree of freedom.

There is a fundamental reason to expect the masslessness of the photon beyond
the need to regularize the vector field theory, namely, that it was long suspected that
photons could be described as the Goldstone mode of a spontaneously broken symmetry
and therefore must be massless [146].

Consider again the U(1) symmetry of Eq. (2.25). If we take Lorentz gauge as before,
we find

∂µA
µ = 0 , (2.59a)

∂µA
µ = −∂µ∂µϵ , (2.59b)

=⇒ ∂µ∂
µϵ = 0 , (2.59c)

=⇒ ϵ(xν) = a+ ωνx
ν . (2.59d)

That is, if not imposing automatically the masslessness of the photon leading to the
null condition, there is a residual gauge degree of freedom.

If we now consider the differential associated to a continuous gauge transformation

δ(ϵ)Aµ ≡ ∂µA
′µ − ∂µA

µ = ∂µϵ = ωνδ
ν
µ = ωµ , (2.60)

which in turn is related to the generator of continuous residual gauge transformations

δ(ϵ)Aµ = −i[Aµ, Qν ] ̸= 0 . (2.61)

This in turn suggests we should be able to think of the photon degrees of freedom as
Goldstone modes related to a broken symmetry, in closer analogy to the Goldstone
modes of e.g. magnetic insulators.

A more formal way to describe the symmetry breaking undergone by electromag-
netism invokes higher form symmetries [147, 163]. Recent extension of Goldstone’s
theorem to higher form symmetries therefore offers a concrete perspective on the mass-
lessness of photons and its relation to broken symmetries [164], though a deeper dis-
cussion goes beyond the scope of this Thesis.

In conclusion, this suggests that it is reasonable to look for analogues of photons in
the Goldstone modes of condensed matter systems.

2.3 Linearized gravity as a spin-2 field theory
In the Thesis’ quest for analogues, including analogue gravitational waves, it is natural
to ask what is the simplest theory which describes the effects of gravitation, and in our
case, gravitational waves. The first and simplest theory of gravity was developed by
Newton, in which the Newtonian force law is related to the potential

F = −∇ϕ , (2.62)

Newtonian physics does not predict waves, since within this framework, the gravi-
tational potential generated is assumed to respond instantaneously in a global way to



2.3 Linearized gravity as a spin-2 field theory 39

local changes of density

∇2ϕ = 4πGρm . (2.63)

This would of course violate causality.
At first glance, a scalar field theory such as

L = −1
2(∂µϕ∂µϕ+ gϕT µµ ) , (2.64)

might seem to be enough. However, a problem arises if we consider that the only scalar
available to couple to the scalar field ϕ is the trace of the energy-momentum tensor
T µµ . For electromagnetic fields, T µµ EM = 0 and therefore such a theory of gravitation
could not couple to photons [165]. However, observations of gravitational lensing and
deflection of light indicates empirically that this coupling cannot be trivial.

A massless vector field, such as

L = −1
4(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) − jµAµ , (2.65)

will also not work since the sign of interactions mediated by a spin-1 vector field is
opposite to that of gravitation. Namely, for spin-1 fields, like charges repel.

The only other possibility for a long-range force carrier is a spin-2 tensor field, since
for higher orders one cannot identify a conserved field with 3 or more space-time indices
to which the force carrier can couple [44]. The question then becomes, in what limit
can one write down a spin-2 field theory which is consistent with general relativity?

2.3.1 From General Relativity to Linearized gravity
In this section and the following, I will review the linearized limit of gravity, following
conventions laid out in e.g. [139, 158, 165, 166]. General Relativity is a geometric
theory of gravity, in which the fundamental notion of geometry is contained in the
metric tensor gµν(xρ). This provides the ruler for defining the inner product between
4-vectors defined on the spacetime manifold, and is defined as a symmetric tensor. The
full Einstein action for gravity in vacuum has the form

SE = c3

16πG

∫
d4x

√
−gR . (2.66)

This action is comprised of two contributing scalar terms. The first is the Jacobian
term √

−g, defined in terms of

g = det(gµν) , (2.67)

where the metric gµν in this Universe has negative signature, such that the square root
is well-defined in this form2. The second is the Ricci scalar R, defined in terms of

2A more general way to express the Jacobian term is

J =
√

|g| (2.68)
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successive contractions of the Riemann tensor Rρσµν , which can be expressed via the
Ricci tensor Rσµ as follows

Rσν = Rλ
σλν

= gµρRρσµν , (2.69a)
R = gσνRσν

= gσνgµρRρσµν , (2.69b)

where the Riemann tensor is defined to first order in the metric tensor as follows

Rρσµν = 1
2 (∂µ∂σgρν + ∂ρ∂νgµσ − ∂ρ∂µgνσ − ∂ν∂σgρµ) . (2.70)

In the weak field limit, the metric can be written in terms of small perturbations on
the flat spacetime background ηµν , that is

gµν = ηµν + hµν , (2.71a)
gµν = ηµν − hµν , (2.71b)

where we will use the following convention for the Minkowski metric ηµν

ηµν = diag(−1, 1, 1, 1) . (2.72)

The linearized limit is valid where

|hµν | ≪ ηµν . (2.73)

In this limit, the Riemann tensor becomes

Rρσµν = 1
2 (∂µ∂σhρν + ∂ρ∂νhµσ − ∂ρ∂µhνσ − ∂ν∂σhρµ) . (2.74)

such that to order O(h2) the Ricci tensor and Ricci scalar take the forms

Rσν = 1
2(ηµρ − hµρ)Rρσµν , (2.75a)

ηµρRρσµν = 1
2
(
∂ρ∂σhρν + ∂µ∂νhµσ − ∂µ∂µhνσ − ∂ν∂σh

µ
µ

)
, (2.75b)

−hµρRρσµν = 1
2 (∂µhµρ∂σhρν + ∂ρh

µρ∂νhµσ − ∂ρh
µρ∂µhνσ − ∂νh

µρ∂σhµρ) , (2.75c)

and

R =(ηνσ − hνσ)Rσν , (2.76a)

ηνσRσν =1
2
(
∂ρ∂νhρν + ∂µ∂σhµσ − 2∂µ∂µh

which describes geometries with positive signature, the simplest example of which is Euclidean space-
time.
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+ ∂µh
µρ∂σh

σ
ρ + ∂ρh

µρ∂νh
ν
µ − ∂ρh

µρ∂µh− ∂σhµρ∂σhµρ
)
, (2.76b)

−hνσRσν =1
2
(
hνσ∂ρ∂σhρν + hνσ∂µ∂νhµσ − hνσ∂µ∂µhνσ − hνσ∂ν∂σh

µ
µ + O(h3)

)
,

(2.76c)

where the terms linear in h in the above are total derivatives and will not contribute
to the action. Therefore, the relevant terms in the Ricci scalar can be collected below

R = −
(
2∂µhσν∂µhσν − 2∂µh∂µh− 2∂µhµρ∂σhσρ + 2∂µhσν∂νh

)
. (2.77)

The Jacobian term in the Einstein action also admits a perturbative expansion
around the background Minkowski spacetime in the weak field limit.

g = det |gµν | = − det |ηµρ| det |gνρ | , (2.78)

and in the linearized limit,

det |gνρ | ≈ det |δνρ + hνρ| , (2.79)

= eln(det |δν
ρ +hν

ρ |) , (2.80)

= eTr(ln(δν
ρ +hν

ρ)) , (2.81)
≈ 1 + h+ O(h2) . (2.82)

Then the gravitational action takes the form 3

SLGR = − c3

16πG

∫
d4x

(
∂νhαβ∂νhαβ + ∂µh∂µh− 2∂µhαµ∂ρhρα − 2∂αhαν∂νh

)
, (2.84)

where

ηµν∂µ∂ν ≡ ∂µ∂
µ . (2.85)

In this limit, gravity can be explicitly expressed as a spin-2 field theory without non-
renormalizable singularities arising from self-interaction [43]. This is called the lin-
earized limit.

The free space Einstein equations resulting from the full action take the form

Gµν = 0 ,

gµν(Rµν − 1
2gµνR) = 0 ,

R = 2R =⇒ R = 0 .
3Note that including the terms to order O(h2) in the Riemann tensor itself does not change the

form of the final result for the action, though it does lead to additive contributions which reduce the
size of the overall numerical prefactor [165], such that

c3

16πG
→ c3

64πG
. (2.83)
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Consistent with Eq. (2.84), in the linearized limit the Einstein equations become

Rµν = 1
2(∂µ∂λhλν − ∂λ∂λh

µ
ν − ∂µ∂νh

λ
λ − ∂ν∂λh

λ
µ) = 0 . (2.86)

As in the case of electromagnetism, it is clear in this form that with appropriate
conditions on hλν the Einstein equations reduce to a wave equation. We will next
justify the grounds on which such conditions apply and arrive from that to the explicit
form for self-propagating gravitational wave solutions.

2.3.2 Gravity as a gauge theory
Despite the fact that the metric tensor of General Relativity, and particularly Lin-
earized Gravity, has many components, it turns out that for propagations in vacuum
only two are dynamically relevant. I review here first the counting argument leading
to this for a general non-linearized metric, further discussed in e.g. [139, 158, 166]. I
then review how in the case of Linearized Gravity, e.g. [165], these two are the trans-
verse components of the tensor wave, and the remaining degrees of freedom can be
gauged away from the symmetry of General Relativity, namely, the symmetry under
coordinate transformations.

According to special relativity, physical law is invariant under the Poincaré group,
such that the symmetry group under which all laws and physical observables remains
invariant is the set of Lorentz transformations (rotations and boosts) between the
frames of inertial observers.

General relativity has a much larger symmetry group: that of all possible coordinate
transformations. This follows from the Strong Equivalence Principle, which is the
statement that the laws of physics are the same in all arbitrary coordinate systems.
This can be interpreted as symmetry under the following transformation

xµ → f(xµ), (2.87)

The symmetry of general relativity under such arbitrary coordinate transformation
results in the following tensor transformation properties

dx′µ = dxα
∂xµ

∂xα
, (2.88a)

g′
µν = gαβ

∂xα

∂xµ
∂xβ

∂xν
. (2.88b)

Any rank-n object that transforms with the appropriate Jacobian is called a tensor in
General Relativity. Notice that the transformation is trivial for scalars. Objects that
do not transform this way are non-tensorial.

The selection of an appropriate coordinate system can be thought of as equivalent to
fixing a gauge. It follows that therefore a gauge choice can be imposed by a conditions
that do not transform under coordinate transformation, i.e. they are non-tensorial. A
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canonical example of this in General Relativity is the Christoffel connection

Γλµν =
(

1
2g

λσ(−gµν,σ + gσµ,ν + gνσ,µ)
)
, (2.89)

which is an object that is invoked to define the covariant derivative of a tensor vν on
a curved spacetime

∇µvν = ∂µvν + Γλµνvλ . (2.90)

Therefore, for a scalar

∇µϕ = ∂µϕ . (2.91)

Returning to the problem of determining the number of dynamical degrees of freedom
of the metric tensor, the simplest combination of non-tensorial object is the following

gµνΓλµν = 0 . (2.92)

This gives four constraint equations, and the choice is referred to as the harmonic
gauge. To see what this implies, consider the fully covariant d’Alembertian of a scalar
quantity

□ϕ = gµν∇µ∇νϕ = gµν
(
∂µ∂νϕ− Γλµν∂µϕ

)
. (2.93)

In harmonic gauge, the second term vanishes such that

□ϕ = gµν∂µ∂νϕ . (2.94)

Note that the arbitrary coordinate transformation x′µ → f(xµ) can be expanded to
first order in small changes. This amounts to the effective gauge transformation

x′µ = xµ + ξµ(x) , (2.95)

where ξµ(x) is assumed small. This has 4 components.
Since each coordinate component xα is a scalar quantity, then the harmonic gauge

condition can be reexpressed as the following condition on the coordinates

□xα = gµν∂µ∂νx
α = gµν∂µδ

α
ν = 0 . (2.96)

We can see there is a residual gauge freedom for the form of ξ after choosing
harmonic gauge. One choice that is consistent with harmonic gauge to fix these degrees
of freedom is

□ξα = 0 . (2.97)

This gives a further 4 constraints, such that in total there remain

10 − 4 − 4 = 2 (2.98)
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independent field modes. In Chapter 4, we will see that this matches the number of
independent Goldstone modes available to a quantum spin nematic.

Next, we would like to explicitly identify which two components of the metric tensor
correspond to dynamical self-propagating modes, for which we can focus on the weak
field limit, namely, in vacuum and with the linearized field equations [Eq. (2.86)].

Introduce the conventional notation

∂νξµ ≡ ξµ,ν . (2.99)

and plugging the linearized metric [Eq. (2.71b)] into Eq. (2.88b), and using

∂x′µ

∂xα
= δµα − ξµ,α , (2.100)

the gauge transformation in linearized gravity takes the form

h′
µν = hµν − ξµ,ν − ξν,µ . (2.101)

This incidentally defines the Lie derivative along ξµ (using the metricity property).
Therefore, one can interpret the Lie derivative as the change in functional form of the
metric (or other tensorial object) under a linearized coordinate transformation [139].

In linearized theory, harmonic gauge means

ηµνΓλµν = 0 , (2.102)

Explicitly, using ηµν,α = 0 and discarding all terms to O(h2) we find

ηµν
(

1
2g

λσ(−gµν,σ + gσµ,ν + gνσ,µ)
)

= 0 , (2.103a)

ηµν
(

1
2η

λσ(−hµν,σ + hσµ,ν + hνσ,µ)
)

= 0 , (2.103b)

1
2η

µν(−h λ
µν, + hλµ,ν + h λ

ν ,µ) = 0 , (2.103c)
1
2(−hν λ

ν, + hλν,ν + hνλ,ν) = 0 , (2.103d)

hλν,ν − 1
2h

ν λ
ν, = 0 , (2.103e)

hνλ,ν − 1
2h

ν
ν,λ = 0 , (2.103f)

∂ν(hνλ − 1
2h

α
αδ

ν
λ) = 0 , (2.103g)

We can use this to motivate the form of the metric perturbation

h̄µν = hµν − 1
2h

α
αδ

µ
ν , (2.104)

which represents the transverse, trace-reversed form of the harmonic gauge. The
origin of the name stems from the properties
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1. Trace-reversed nature of h̄λν is explicitly seen by contracting with ηµλ and con-
sidering h̄µν = hµν − 1

2hηµν such that h̄ = −h.

2. The condition ∂ν(hνλ − 1
2h

α
αδ

ν
λ) = 0 in linear theory can be Fourier transformed

to give ∂ν ↔ ikν . The condition kν ˜̄hαν = 0 implies that the field distortions
are perpendicular to the direction of the momentum four-vector, ie. they are
transverse.

After imposing, harmonic gauge, there is still a residual freedom which can be used
to impose a further four constraints. One of these constraints can be used to remove
the trace, such that hµν and h̄µν are equivalent. It is then conventional to make the
following set of choices complementary with harmonic gauge

hµµ = 0 , [traceless] (2.105a)
h0µ = 0 , [no scalar or vector components] (2.105b)

∂nhnm = 0 , [no longitudinal dynamics]. (2.105c)

This explicit form is critical for the gravitational wave analogue we will explore in
Chapter 4, based on the Goldstone modes of a spin nematic.

2.3.3 An intuitive look at gauge fixing linearized gravity
Here I present an alternative, and I hope intuitive, way to arrive at the reason for the
transverse nature of gravitational waves.

Suppose we attempt a gauge transformation that is meant to “undo” the presence
of propagating waves in hµν , by assuming plane wave form for the gauge degrees of
freedom

ξµ(x) =
∑
k

cµ(k)eikρxρ , (2.106)

where the cµ are the Fourier transformed gauge degrees of freedom. The gauge trans-
formation then alters the metric as follows

h′
µν(x) = hµν(x) + ∂µξν + ∂νξµ , (2.107)

=⇒ h′
µν(k) = hµν(k) + kµcν + kνcµ . (2.108)

We see explicitly in energy/frequency space that

h′
00 = h00 + 2k0c0 , (2.109a)
h′

0n = h0n + k0cn + knc0 , (2.109b)
h′
mn = hmn + kmcn + kncm . (2.109c)

A convenient gauge choice can then be seen to be one that minimizes all non-trivial
components for a given wave-vector kµ. Specifically from Eq. (2.109a-2.109c), we ob-
serve that whenever the gauge terms vanish, then the corresponding component of hµν
cannot be trivialized.
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Consider then the cases where the gauge terms make a non-trivial contribution to
Eq. (2.109a-2.109c) for a given kµ, considering all 16 component equations indepen-
dently. Since k0 ̸= 0 for any wave (which must carry energy), we can always choose a
frame/gauge such that h00 = 0, by fixing the coefficients c0.

Without loss of generality, let us assume that the wave propagates along a direction
ki. We can see that the components h0i and hii can be chosen to be vanishing also by
fixing ci.

Since components of kj for j ̸= i transverse to the direction of propagation vanish
these do not provide any further constraint on the form of hµν , and generically the
components hjk ̸= 0 for j, k ̸= i.

This leaves

16 − 1 − 6 − 5 = 4 (2.110)

non-trivial components using the available constraints from setting the value for the
cµ. Therefore, not all components can be made trivial and one cannot gauge away the
gravitational waves.

Of the 4 remaining non-trivial components, independence of one component is lost
due to symmetry of the metric, and independence of another is lost to require trace-
lessness of the perturbation hµν . This leaves two independent dynamical degrees of
freedom which describe gravitational waves.

We therefore arrive at the conditions Eq. (2.105). Under these conditions, the action
for linearized gravity on the Minkowski background takes the form

SLGR = − c3

16πG

∫
dx4ηµν

[
∂µhαβ∂µhαβ

]
, (2.111)

for which the equations of motion become

Rµν = −1
2□hµν = 0 , (2.112)

where since we only keep terms to O(h), the d’Alembertian is Minkowski, i.e.

□ = ηµν∇µ∇ν . (2.113)

In conclusion, we recover the conditions of the previous Section, which make explicit
that the Einstein equations reduce to the wave equation, whose solutions in term are
the transverse gravitational waves that will be explicitly described in the next Section.

2.3.4 Gravitational waves in Linearized Gravity
In this Section, I review the canonical form for gravitational waves in Linearized Grav-
ity, using conventions established in e.g. [158, 165].

The real valued solutions to Eq.(2.112) have the form

hµν(t, x) =
∑
k

ϵµν(k)eikαxα + c.c. , (2.114)



2.3 Linearized gravity as a spin-2 field theory 47

where ϵµν is the polarization tensor. To be a valid solution of the wave equation

□hµν = 0 , (2.115)

it must hold that k2 = 0, and therefore the available modes are linearly dispersing

k0 = ±|k| . (2.116)

To find the physical degrees of freedom, conventionally one chooses harmonic gauge, ie

kν ˜̄hαν = kν ˜̄hµν = 0 . (2.117)

Explicitly,
kνϵµν − 1

2k
νηµν ϵ

α
α = kνϵµν − 1

2kµϵ
α
α = 0 . (2.118)

Since we also apply the condition

□ξν = 0 , (2.119)

the degrees of freedom ξ will also be solutions of the wave equation, such that

ξν =
∑
k

cν(k)eikx . (2.120)

Then the polarization tensor will transform in harmonic gauge as

ϵ′
µν = ϵµν − ξµ,ν − ξν,µ = ϵµν − kµcν − kνcµ . (2.121)

The explicit form of the polarization tensor—and importantly its surviving components—
can now be determined. Making the choice of z as the propagation axis, we can write
in units c = 1

kν = (k, 0, 0, k) , (2.122a)
kµ = (−k, 0, 0, k) . (2.122b)

From the components of Eq.(2.118), we find

µ = 0 : k(ϵ00 + ϵ30) = −1
2k(−ϵ00 + ϵ11 + ϵ22 + ϵ33) , (2.123a)

µ = 1 : k(ϵ01 + ϵ31) = 0 , (2.123b)
µ = 2 : k(ϵ02 + ϵ32) = 0 , (2.123c)

µ = 3 : k(ϵ03 + ϵ33) = 1
2k(−ϵ00 + ϵ11 + ϵ22 + ϵ33) , (2.123d)

which sets 4 conditions on the ϵ0i and ϵ22 components of the polarization tensor

ϵ01 = −ϵ31 , (2.124a)
ϵ02 = −ϵ32 , (2.124b)
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ϵ03 = ϵ30 = −1
2(ϵ00 + ϵ33) , (2.124c)

ϵ22 = −ϵ11 . (2.124d)

In addition, the transformation property of the polarization tensor Eq.(2.118) leads to

ϵ′
00 = ϵ00 − 2kc0 (2.125a)
ϵ′

0i = ϵ0i − kci , (2.125b)
ϵ′

11 = ϵ11 + 0 + 0 , (2.125c)
ϵ′

12 = ϵ12 + 0 + 0 , (2.125d)

ϵ′
13 = ϵ13 − kc1 (2.125e)

ϵ′
22 = ϵ22 + 0 + 0 , (2.125f)

ϵ′
23 = ϵ23 + kc2 (2.125g)

ϵ′
33 = ϵ33 + kc3 (2.125h)

Choosing the c’s such that the boxed components defined in Eqs. (2.125a, 2.125e, 2.125g,
2.125h), vanish in the original, unprimed frame gives four more independent con-
straints. Note that Eq. (2.125b) describes the transformation of components which
are already gauged away at this point. However, if one works first from the transfor-
mation property of the polarization tensor prior to applying any other gauge condition,
then this set of equations is important to consider, and implies that elements that mix-
ing in temporal components can always be gauged away. Collecting the non-vanishing
results

ϵµν =


0 0 0 0
0 ϵ11 ϵ12 0
0 ϵ21 ϵ22 0
0 0 0 0

 , (2.126)

where explicitly the gauge conditions Eq. (2.105) lead to

Tr(ϵ) = ϵ22 + ϵ11 = 0 , (2.127a)
ϵ12 = ϵ21 . (2.127b)

We can define the two independent polarization modes by

ϵ+ = ϵ11 = −ϵ22 , (2.128a)
ϵx = ϵ12 = ϵ21 . (2.128b)

Specifically, without loss of generality, we can consider the case of a gravitational wave
propagating along z, for which the classical field hµν can take a linear superposition of
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the two dynamically independent forms

h+ = eik
µxµϵ+


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 , (2.129a)

h× = eik
µxµϵx


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (2.129b)

We here anticipate for the reader that the mode counting argument presented here will
be echoed by a similar set of physical restrictions on the modes of the ferroquadrupolar
ordered magnet (see Chapter 3), which in turn leads to the same number of relativis-
tically dispersing excitations in the low-energy limit.

In conclusion, we see explicitly that the symmetric polarization tensor is traceless
and has two surviving transverse degrees of freedom.

Finally, let’s generalize the degree of freedom counting argument to arbitrary di-
mension: as a symmetric tensor gµν and also ϵµν have

(d+ d2 − d

2 ) = d(d+ 1)
2 (2.130)

independent components, and d components will be determined by the choice of gauge,
followed by a further d to fix the residual gauge freedom. Then we find

d(d+ 1)
2 − d− d = d(d− 3)

2 , (2.131)

such that there are no degrees of freedom left for freely propagating modes in a (2+1)D
theory of gravitation. Therefore generically, lower dimensional theories of GR have no
physical excitations, while the (3+1)D Universe has two degrees of freedom available
for gravitational waves. This is also a critical point that we will allude to in discussion
of the connection with excitations in spin nematics in Chapter 4.

2.3.5 Quantized spin-2 excitations
The treatments above describe gravitational waves as excitations of a classical field
(the metric) in the canonical approach, [139, 158, 165, 166]. A next natural step is to
quantize the excitations of the gravitational wave, which leads to a consistent theory
in the linearized limit of gravity at least [43]. We assume from the harmonic form of
the equations of motion that we can express the field with the Fourier decomposition

hµν(x, t) =
∑

σ=+,×

∫
d3k

1√
ω(k)

[
ϵσµνa

†
σ(k)eikρxρ +

(
ϵσµν
)∗
aσ(k)e−ikρxρ

]
, (2.132)
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where ϵσµν is a tensor encoding information about polarization, and aσ(k) satisfies

[aσ(k), a†
σ′(k′)] = δσσ′δ(k − k′) . (2.133)

For a wave with linear polarization, propagating along the z−direction, ϵσµν take the
specific form

ϵ+ = 1√
2


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 , ϵ× = 1√
2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (2.134)

Next we will see that the graviton consistent with linearized gravity corresponds to a
spin-2 particle. Recall that spin is the property which defines how the state of a particle
transforms under action of the rotation subgroup SO(1, 3) of the Lorentz group, with
generators Ji defined in Eq. (2.35). For an arbitrary state ϕ, under rotation through θ

Ri[θ]ϕ = eiθJiϕ . (2.135)

For a spin-γ particle with internal state described by ϵ, the internal state picks up a
phase

Rz[θ]ϵ = ei2θϵ . (2.136)

If γ = 1, the state returns to itself for every rotation through 2π. However, if γ = 2,
the state returns to itself for every rotation through π.

To verify this transformation property of the graviton and determine its helicity,
consider

ϵ′
µν = RT

z [θ]ϵ+Rz[θ] +RT
z [θ]ϵ×Rz[θ] , (2.137)

where explicitly

Rz[θ] =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 . (2.138)

We can then define two polarizations

ϵR = ϵ+ − iϵx , (2.139a)
ϵL = ϵ+ + iϵx . (2.139b)

such that

ϵ+ = 1
2(ϵR + ϵL) , (2.140a)

ϵx = i

2(ϵR − ϵL) , (2.140b)
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the result of the transformation reveals that

ϵ′
R = e2iθϵR , (2.141a)
ϵ′
L = e−2iθϵL . (2.141b)

Rotations through π therefore return the particle to the same state, and therefore the
graviton must be a spin-2 particle.

2.4 Chapter summary
In concluding this Chapter, we have discussed Goldstone modes, with examples from
the context of symmetry breaking magnetic phases. We are now equipped to identify
analogues of photons as massless spin-1 Bosons and of gravitons as massless spin-
2 Bosons. This now sets the stage for Chapter 3, where I will review and present
magnetic analogues of light, and Chapter 4, where I will present a novel one-to-one
magnetic analogue of gravitational waves.



Chapter 3

Analogues of electromagnetism in
magnetic phases

“As simple as possible, as complex as necessary.” -paraphrased, attribution
to Albert Einstein

Quantum field theories are the most effective tool yet developed for the description
of the vacuum of the Universe, and we learned in the last Chapter how they can be
used to describe the excitations of electromagnetism and gravity.

In this Chapter we will be concerned with analogues of electromagnetism arising in
magnetism, and we will see how effective low-energy field theories of magnetic insulators
play a key role in making such identifications. I will first review the known toy example
of the XY ferromagnet, which reproduces a (2+1)D theory of electromagnetism.

A discussion of magnetic analogues of electromagnetism would not be complete
without mention of the emergent electromagnetism in spin ice. For completeness this
will also be briefly reviewed in this Chapter.

I will finally turn attention to the Heisenberg antiferromagnet, and make explicit a
connection between its spin wave excitations and photons, a fact that has been often
alluded to in the folklore of magnetism, but to the best of my knowledge, never made
explicit. In this Chapter, I make this correspondence concrete and present a dictionary
for explictly connecting the degrees of freedom.

The Heisenberg model describes the exchange interaction between spins in a mag-
netic solid. As we learned in the last Chapter, there are at least two ordered phases
of the Heisenberg model which are distinguished one from the other on the basis of
whether the order breaks time-reversal symmetry or not. The effective field theories
corresponding to these two cases are respectively not Lorentz invariant or they are.

In this Chapter, I will motivate a Lorentz covariant form of the effective Lagrangian,
first from semiclassical arguments. Then, I introduce the reader to SU(2) spin coher-
ent states, and how to use this basis to derive the quantum mechanical low-energy
field theory for the Heisenberg antiferromagnet, whose action is that of a non-linear
sigma model. From the form of this field theory and its excitations, it will become
explicit that the Goldstone modes are in one-to-one correspondence with photons in
electromagnetism.

52
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I conclude the Chapter with brief comments on where these photon analogues could
be observed in experiment.

3.1 The XY model as a toy model for electromag-
netism on a lattice

Analogies to electromagnetism have a long history in magnetism. In this Section, I will
review the reduced dimensional electromagnetism analogue that arises in the (2+1)D
XY ferromagnet [45, 48], which possesses minimally a U(1) symmetry, and is known
possess analogue charges corresponding to the topological point defects, namely, XY
vortices. I will also briefly provide a visual intuition for why vector field theories are
necessarily repulsive for like charges and attractive for charges of opposite sign.

Recall the definition established in Eq. (1.36) for classical O(2) spins, or rotors,
repeated below

S = S

(
cos θ
sin θ

)
, (3.1)

using which the XY model can be expressed

H = J
∑
⟨ij⟩
Si · Sj = Js2∑

⟨ij⟩
cos(θi − θj) . (3.2)

This model has a ferromagnetic ground state when J > 0. Due to the spin length
constraint, the state space is spanned by the U(1) generator and each spin has only
one dynamical degree of freedom θ. I next briefly describe why this dynamical degree
of freedom corresponds to a scalar Goldstone Boson.

3.1.1 Goldstone modes of the O(2) XY ferromagnet
Here I describe the number of Goldstone modes present in the XY ferromagnet. For
the ferromagnetically ordered states of the O(2) XY model, there is only one broken
rotational symmetry. This is broken by the orientation of the spins in the ground state,
for which a general order parameter is a vector of the form

S0 =
(
Sx
Sy

)
. (3.3)

Notice that the spin degrees of freedom in this case are planar rotors that do not share
the gyroscopic nature of O(3) spins. They are not axial vectors, and as such, do not
break time reversal symmetry. In this case, Goldstone’s theorem is minimally satisfied
by the existence of a single linearly dispersing Goldstone mode, which must have scalar
character since there is only one leftover degree of freedom in the ground state for each
spin. In Chapter 5, I reproduce this result in simulation, cf. Fig 5.5a.
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3.1.2 Hydrodynamic model of planar rotors: a sigma model
for the XY ferromagnet

I now review the hydrodynamic limit of the XY ferromagnet, and show how the lattice
description of the XY ferromagnet is described in the low-energy limit by a continuum
field theory which takes the form of a Gaussian action known as a sigma model.

For the purpose of this discussion, we can without loss of generality set s2 = 1. We
again consider the long wavelength limit, for which the single degree of freedom θi per
rotor is assumed to vary smoothly over small scales and can be cast into a continuous
field θ(r⃗). In this limit, the potential energy associated with a field configuration
becomes

U =
∫ d2r

a2 J cos(a∇θ(r⃗)) , (3.4a)

≈
∫
d2r

J

a
(1 − 1

2∇θ2) . (3.4b)

We can phenomenologically introduce a term capturing the energy stored in the motion
of the field degrees of freedom. Defining a notion of effective mass to be proportional
to the spin susceptibility χ, the effective classical kinetic energy contribution from the
entire field will take the form

K =
∫ d2r

a2
χθ̇2

2 , (3.5)

The Lagrangian describing the system up to constants and terms of O(3) is then

L = K − U =
∫ d2r

2
[
χθ̇2 − ρ∇θ2

]
, (3.6)

which has linearly dispersing dynamics described by the wave equation

χ ∂2
t θ = ρ ∂2

i θ. (3.7)

We next remind the reader explicitly that the low-energy action of the XY model
is equivalent to that of (2+1)D electromagnetism.

3.1.3 A mapping to (2+1)D electromagnetism, its photon and
charges

I now explain how the XY ferromagnet is connected to (2+1)D electromagnetism. To
make the connection, there are two key ingredients we need from (2+1)D electromag-
netism beforehand. First, we must describe the field theory and the freely propagating
field modes (i.e. the photon), and second, the allowed charges. Both of these charac-
teristics will be shown to have analogues in the XY ferromagnet.

First, consider that (2+1)D electromagnetism has a structural peculiarity, namely,
in two dimensions three simultaneously perpendicular vectors in the ordinary sense
cannot exist. As a consequence, the structure of electric and magnetic fields cannot
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be on the same footing while also allowing a propagating mode. This necessitates a
breaking of the symmetry between E and B fields observed in (3+1)D electromag-
netism. Before deciding on a convention that breaks this symmetry, let us introduce
the conventional gauge potential A⃗ and a dual potential h⃗1, such that the electric and
magnetic fields could be expressed in one of the following ways

E⃗ = −∂tA⃗ , or E = ∇⊥ · h⃗ , (3.8)
B = ∇⊥ · A⃗ , or B⃗ = −∂th⃗ , (3.9)

where

∇⊥ = (∂y,−∂x) , (3.10)

is a 2D equivalent of curl 2, and

∇ = (∂x, ∂y) . (3.12)

The underlying symmetry between these two formulations is apparent, but each
represents an exclusive choice. The option on the left is the conventional choice, for
which the dual potential field h is chosen to have a scalar nature such that

E⃗ = −∂tA⃗ = ∇⊥h , (3.13)
B = ∇⊥ · A⃗ = −∂th . (3.14)

In this conventional choice, the EM physics in the XY ferromagnet can be mapped
onto the dual gauge field

θ(r⃗) ⇐⇒ h(r⃗) , (3.15)

such that

∂tθ ≡ B = ∂xAy − ∂yAx , (3.16)
−∂xθ ≡ Ey = −∂tAx , (3.17)
∂yθ ≡ Ex = −∂tAy , (3.18)

1Both of these gauge fields have only one independent degree of freedom, but can be cast in vector
form for conventional convenience. Depending on which formulation we work in, it is conventional to
gauge fix the primary gauge field and treat the second gauge field as a scalar.

2I am using here the notation a⃗⊥ = (ay, −ax) for a 2D vector defined by the property

a⃗ · a⃗⊥ = 0 , (3.11)

such that

1. (⃗a⊥)⊥ = −a⃗ ,

2. a⃗⊥ · a⃗⊥ = a⃗ · a⃗ ,

3. (⃗a · b⃗)⊥ = a⃗⊥ · b⃗⊥ .
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(2+1)D EM formulation v1 v2
Vector and scalar fields E⃗, B B⃗, E

E and B fields −∂tA⃗ = E⃗,−∂thx = B ∂th⃗ = B⃗, ∂tAx = E

∇⊥ · A⃗ = B,∇⊥hx = E⃗ ∇⊥Ax = B⃗,∇⊥ · h⃗ = E,

Gauss’ Law
∮
d⃗r · E⃗ = 2πQe

∮
d⃗r · B⃗ = 2πQm

Gauge potential A⃗ Gauge fixed to scalar
e.g. Ax

Dual gauge potential Gauge fixed to scalar h⃗
e.g. hx

Maxwell’s equation ∂tB − ∂xEy + ∂yEx = 0 ∂tE − ∂xBy + ∂yBx = 0

Table 3.1: Summary of the two dual formulations of electromagnetism in (2+1)D.

for which the fields obey the 2D expression of Maxwell’s equations

∂tB − ∂xEy + ∂yEx = 0 . (3.19)

In this formulation, the electric field has vector character, and the electric field alone
will possess field monopoles, measured by the Gauss law∮

d⃗r · E⃗ = 2πQe . (3.20)

A more natural way to extract the EM physics of the XY ferromagnet is to map
the rotor degree of freedom θ directly onto the physical degree of freedom of the gauge
field A⃗. For this purpose, we work with the remaining degree of freedom A of a gauge
fixed A⃗, leading to

E⃗ = ∇⊥A = −∂th⃗ , (3.21)
B = −∂tA = ∇⊥ · A⃗ . (3.22)

Here note that it is the magnetic field that acquires vector character, and therefore
the charges of the gauge theory are magnetic monopoles, described by the Gauss law∮

d⃗r · B⃗ = 2πQm . (3.23)

The reason that either of these approaches is ultimately well-defined is due to the fact
that there is no equivalent of precessional dynamics in (2+1)D, and therefore there is
no restriction on the existence of either kind of monopole, cf. Appendix C.

In summary, there is only one independent physical degree of freedom present in
either gauge field and its dual, which maps onto the relevant degree of freedom of the
XY model. The two approaches to this mapping are summarized in Table 3.1.
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(a) Attractive charges. (b) Repulsive charges.

Figure 3.1: Spin configurations in an XY magnet, showing the connection with electric charges.
Colour bars represent the angle θ ∈ [−π, π] associated to the spins. (a) Charges with opposite winding
number generate a field configuration whose energy can be minimized by bringing the charges closer
together. (b) Charges with both positive winding number generate a field configuration whose energy
can be minimized by moving charges further apart.

Homotopy of the XY magnet: charges and Gauss’ law

The XY ferromagnet possesses topologically stable point defects, corresponding to
the homotopy group π1 of the order parameter space O(2). There are two distinct
windings that can be made around this space, leading to two infinitely degenerate
families of point charge with independent signatures of winding. In the context of
electromagnetism, the charge and the field are related via the Gauss’ law, Eq. (3.23).
The analogous relation in the XY model relates each source to a distinct pattern of
effective electric field.

The interactions between such point charges follow naturally from the Hamiltonian
we started with, such that the system at low energies will endeavour to maximize the
area of domains with parallel or nearly parallel spins.

This leads to effective attractive or repulsive interactions in the dynamics of the
point defects of a vector field, which is consistent with the fact that a vector field theory
must mediate repulsive interactions between similarly charged particles and attractive
interactions between oppositely charged particles.

In summary, in this Section we have discussed the reduced dimensional analogue
of electromagnetism which emerges in the XY model. Due to the reduced dimensional
nature of the theory, it has an unusual formulation in terms of gauge fields, as sum-
marized in Table. 3.1, with one scalar degree of freedom corresponding to the photon
mode, equivalent to the magnon mode in the XY ferromagnet. The homotopy group of
the XY order parameter space permits the existence of point defects which correspond
to sources of the vector electric field.

In the next Section, I review the next analogue to have been developed in the
magnetism context, namely that of spin ice to (3+1)D electromagnetism.
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3.2 Emergent electromagnetism in spin ice
No discussion of electromagnetism analogues in magnets would be complete without
reference to spin ice. I include here a short discussion for historical completeness and
refer the interested reader to other excellent reviews on the subject, such as [52, 167].

Spin ice phases can be effectively modeled as a classical Ising antiferromagnet.
Unlike Heisenberg magnets, whose collective behaviour is determined primarily by
spin exchange interactions, spin ice arises from long-range dipolar interactions which
induce an Ising anisotropy on spins.

On the pyrochlore lattice, spin ice exhibits a parallel with water ice through the
ground state rules which apply to the degrees of freedom on each tetrahedron. In water
ice, the pyrochlore lattice is built from oxygen atoms, which live at the centres of the
tetrahedra of the lattice, and hydrogen atoms which form bonds bridging neighbouring
oxygen atoms. There are four such bonds per oxygen, but they are not equivalent.
The position of each hydrogen atom is either close to or farther from a given oxygen
atom, such that the ground state manifold of water ice is comprised of all the states for
which there are two hydrogen atoms close and two further away. This two-in two-out
structure was first discussed by Bernal and Fowler [49] and receives the name Ice rules.
For classical pyrochlore spin ice, the Ising spins live on the vertices of the lattice, and
each tetrahedron exhibits an equivalent to the Ice rules in water ice, namely a two-in
two-out configuration of Ising spins. This behaviour is captured by the divergence free
condition on the effective field E generated by the Ising spins

∇ ·E = 0 . (3.24)

This is the classical spin ice equivalent of Gauss’ law. The experimental signature of
this in the equal-time structure factor is the appearance of pinch points, see Fig. 1.3b.

On the pyrochlore lattice, configurations satisfying the Ice rules form a highly-
degenerate ground state manifold. The inclusion of the possibility of quantum tunnel-
ing between the states within this manifold, by allowing spin flips on entire hexagonal
plaquettes, allows for description of quantum spin ice. Including these quantum fluc-
tuations, the sharp pinch points become diffuse e.g. [56, 59].

The effective Hamiltonian

Heff = (∇ ·E)2 , (3.25)

combined with the dynamical term arising from quantum tunneling between different
states obeying the ice rules, one arrives at an effective action equivalent to Maxwell’s
electromagnetism [55, 56]

S =
∫
dtdx3

(
(E)2 − 1

c2 (B)2
)
, (3.26)

where the wave speed here implicitly encapsulates parameters arising from microscopic
details of the model [56]

c =
√
UKa0ℏ−1, (3.27)
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with U and K corresponding to the constants in the potential and kinetic terms of the
model.

The quantum spin ice analogue is the most complete electromagnetism analogue
which arises in the context of magnetism, and has been the focus of many works of
fundamental interest [55, 56, 168], with particular attention drawn to the presence of
magnetic monopoles [53, 54], and an effective fine structure constant [57]. The photons
of quantum spin ice, have been inferred in Pr2Hf2O7 [59] through the broadening of
the pinch-point line shape indicative of quantum fluctuations, allowing estimation of
the photon speed in this material, which is on the order of 3.6m

s
.

Other features of emergent electrodynamics have been identified in candidate mate-
rials such as magnetic monopoles in Yb2Ti2O7 [58], and several other dipole-octupolar
quantum spin-ice candidate materials have also been verified, including Ce2Zr2O7
[60, 61], Ce2Hf2O7 [62] and Ce2Sn2O7 [63].

This makes quantum spin ice a promising platform for electrodynamics analogues
realizable in experiment. However, a strategy for generalization to higher-rank gauge
theories distinct from Maxwell’s U(1) electromagnetism and which instead parallels
gravity is yet unknown. For this reason, I next develop an explicit connection between
the excitations of the Heisenberg antiferromagnet and photons which will serve as the
template for an explicit connection between the Goldstone modes in spin nematics and
gravitational waves, see Chapter 4.

3.3 Low energy excitations of the Heisenberg model
and the collinear Néel Antiferromagnet

The purpose of this Section is to show that in the low-energy limit, excitations of
the collinear Néel antiferromagnetic ground state are in one-to-one correspondence
with the distinct photon polarizations of electromagnetism, where in both cases the
excitations are massless spin-1 Bosons. I conclude this Section having developed the
pieces needed for such a correspondence, and make explicit the connection between
photons and collinear antiferromagnons, starting from a microscopic description of
ordered magnetic phases.

3.3.1 Lorentz covariance from semiclassical treatment of the
equations of motion

In the previous Chapter, we saw briefly in the case of the Heisenberg antiferromagnet
that—contrary to the Heisenberg ferromagnet—there is no explicit time-reversal sym-
metry breaking across the unit cell, and therefore the Goldstone modes arising from
the two broken rotational symmetries remain independent. Therefore, its Lagrangian
description is expected to be Lorentz covariant.

A more explicit way to see why indeed the Lorentz covariance is preserved for
the antiferromagnet, and not for the ferromagnet, is to examine how the presence or
absence of a bipartite lattice affects the respective equations of motion.

The equations of motion for spins described by the Heisenberg Hamiltonian follow
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from the corresponding Heisenberg equations of motion [86], as first conceived of and
named by Dirac [78], namely

∂tS
γ
i = 1

iℏ
[
Sγi ,H

]
, (3.28)

which for the Heisenberg Hamiltonian [cf.Eq. (1.16)]

H = J
∑
⟨ij⟩
Si · Sj (3.29)

takes the form

∂tS
γ
i = J

ℏ
∑
δ

Sαi S
β
i+δϵ

γ
αβ . (3.30)

Let’s consider first a semiclassical description of the ferromagnetic case, specifically
assuming large s. Despite our interest here in the spin-1

2 Heisenberg model, this ap-
proximation nevertheless produces a valid result, which can be motivated by observing
that the Hilbert space of the spin-1

2 degrees of freedom is spanned by the generators
of SU(2). Since SU(2) is isomorphic to O(3), then we can semiclassically think of each
spin degree of freedom as an O(3) vector with components Sγ. Choosing a basis where
the ground state is ordered along the z-direction

S0 = Sγ , (3.31)

the fluctuations about the ordered Sz moment are captured by

ϕγi = Sγi − δγzS
z
i , (3.32)

where δγz is the Kronecker delta function. In the small fluctuation limit we assume

Sz ≈ s . (3.33)

Without loss of generality, we can consider the equation of motion on a chain where

∂tS
γ
i = J

ℏ
(
Sαi S

β
i+1 − Sβi S

α
i+1 + Sαi S

β
i−1 − Sβi S

α
i−1

)
, (3.34a)

∂tS
x
i ≈ Js

ℏ
(
2Syi − Syi+1 − Syi−1

)
, (3.34b)

∂tS
y
i ≈ −Js

ℏ
(
2Sxi − Sxi+1 − Sxi−1

)
, (3.34c)

∂tS
z
i ≈ 0 . (3.34d)

At low energies, the wavelengths of fluctuations are much longer than the lattice con-
stant, and we can treat the insulator in the continuum limit, also referred to as the
hydrodynamic limit. Under this condition, the equations of motion become

∂tS
x
i ≈ Js

a2ℏ
∇2Sy , (3.35a)
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∂tS
y
i ≈ − Js

a2ℏ
∇2Sx , (3.35b)

∂tS
z
i ≈ 0 , (3.35c)

or in terms of the non-trivial components of the fluctuations ϕγ

∂tϕ
x
i ≈ Js

ℏ
∇2ϕy , (3.36a)

∂tϕ
y
i ≈ −Js

ℏ
∇2ϕx , (3.36b)

which are clearly coupled, and admit plane wave solutions with quadratic dispersion.
The equations of motion are therefore not Lorentz covariant.

Next, let us consider the Heisenberg antiferromagnet, which will have Lorentz co-
variant equations of motion. Taking the Néel state to be the ground state, we can
define two sublattices A and B for which

Szi ≈ s for i ∈ A , (3.37a)
Szj ≈ −s for j ∈ B . (3.37b)

Then for sublattice A

∂tS
x
i ≈ Js

ℏ
(

− 2Syi − Syi+1 − Syi−1

)
, (3.38a)

∂tS
y
i ≈ Js

ℏ
(
2Sxi + Sxi+1 + Sxi−1

)
, (3.38b)

∂tS
z
i ≈ 0 , (3.38c)

while for sublattice B

∂tS
x
j ≈ Js

ℏ
(
2Syj + Syj+1 + Syj−1

)
, (3.39a)

∂tS
y
j ≈ −Js

ℏ
(

− 2Sxj − Sxj+1 − Sxj−1

)
, (3.39b)

∂tS
z
j ≈ 0 . (3.39c)

Making use of the ladder operators Eq. (1.8) to condense the dynamical expressions,
we find

∂tS
+
i ≈ iJs

ℏ
(
2S+

i + S+
i+1 + S+

i−1

)
, (3.40a)

∂tS
+
j ≈ −iJs

ℏ
(
2S+

j + S+
j+1 + S+

j−1

)
, (3.40b)

which can be recast for each sublattice by taking one more time derivative

∂2
t S

+
i ≈

(Js
ℏ
)2(

− 2S+
i + S+

i+2 + S+
i−2

)
, (3.41a)

∂2
t S

+
j ≈

(Js
ℏ
)2(

− 2S+
j + S+

j+2 + S+
j−2

)
. (3.41b)
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In the hydrodynamic limit in terms of the staggered field Sα or its fluctuations ϕα, the
equations of motion become respectively

∂2
t S

α = ∇2Sα , (3.42a)
∂2
t ϕ

α = ∇2ϕα , (3.42b)

which is exactly the Lorentz covariant wave equation.
Let us next consider an explicit wave ansatz for antiferromagnetic excitations on a

one-dimensional chain

S+
i = uei(2nka−ωt) , (3.43a)
S+
j = vei((2n+1)ka−ωt) , (3.43b)

where a is the lattice spacing. Substituting into the equations of motion Eq. (3.40)
and defining

ω0 = 4JS
ℏ

, (3.44)

leads to the following system of equations

u(ω + ω0) + v ω0 cos(ka) = 0 , (3.45a)
v(ω − ω0) + u ω0 cos(ka) = 0 , (3.45b)

from which we obtain the one-dimensional dispersion relation

ω = ω0| sin ka| . (3.46)

Notice that indeed this is linear at low energies, i.e. small k, and consistent with the
Lorentz covariance of the equations of motion, where

ω ≈ v|k| . (3.47)

Explicitly we now identify the components of the fluctuation ϕγ, for a ground state
oriented along e.g. z. Remembering the definition

S+ = Sx + iSy , (3.48)

it is therefore clear that the y-component of the fluctuation will be π/2 out of phase
with the ansatz specified for the x-component. We can then write the two possible
circularly polarized excitations as

ϕ⃗⟳ =

cos(kx− ωt)
sin(kx− ωt)

0

 , (3.49a)

ϕ⃗⟲ =

 cos(kx− ωt)
− sin(kx− ωt)

0

 , (3.49b)
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which resemble the non-trivial part of the electromagnetic gauge potential, cf. Eq. (2.52),
and hints at the correspondence we develop in this section. The vector transformation
properties of the fluctuations ϕ correspond to a spin s = 1 Boson, consistent with the
difference in angular momentum induced by creation of the S+ Boson, defined as

S+ |m⟩ =
√
s(s+ 1) −m(m+ 1) |m+ 1⟩ . (3.50)

An alternative approach arriving at the equations of motion for both the ferromag-
netic and antiferromagnetic cases above is to utilize a Holstein-Primakoff transforma-
tion of the quantum mechanical operators S+ and S− to diagonalize the Hamiltonian
[72, 169], and leads to the same results as this section. This alternative quantum me-
chanical treatment holds in the limit of small magnon numbers a†a relative to the spin
length s. This approach is fundamental to spin-wave theory, but will not be necessary
in this Thesis.

In conclusion, in the absence of any sublattice, the dipolar spin order characteristic
of the ferromagnet must break time-reversal symmetry and does not lead to Lorentz
covariant equations of motion. However, the presence of a bipartite lattice as in the
collinear antiferromagnet restores time-reversal symmetry. As we shall see in Chapter 4,
with the addition of a biquadratic term, there are non-magnetic forms of order which
do not break time-reversal symmetry, and for which a bipartite structure is therefore
not necessary to obtain Lorentz covariance in the equations of motion.

3.3.2 SU(2) S = 1
2 spin coherent states for spin path integrals

The classical intuitions for how spins behave are fundamental for developing a path
integral language applicable to spins, and is therefore an essential part of building a
quantum mechanical field theory. For the unfamiliar reader, these are further developed
in Appendix C. In order to proceed to describe quantum mechanically the low energy
behaviour of the Heisenberg antiferromagnet, it is necessary to introduce the spin
coherent state basis. Further details on this basis can be found in e.g. [169–171].
Coherent states were summarized by Glauber in 1963 [172] to mean three equivalent
things: first, that they are states of minumum Heisenberg uncertainty, and therefore
of minimum distance to an equivalent classical state; second, that coherent states are
eigenstates of the annihilation operator; and third, that they are generated from the
vacuum state of a harmonic oscillator by action of displacement operators specifically
of the Heisenberg-Weyl group. This latter fact was later extended to arbitrary Lie
groups [173, 174]. Coherent states for spin consistent with these definitions were first
formulated by Radcliffe in 1972 [175], perhaps unknown to Feynman who, despite
formulating the path integral, did not succeed in generalizing its application to the
quantum mechanics of spin [169].

Recall that we can think of spin as the internal property leftover by action of
the Wigner group. For massive particles, what is leftover is O(3) or the quantized
angular momentum representations of SU(2), where as for massless particles, this is
the Euclidean group E(2), the algebra of transformations on the flat plane which, after
fixing redundant degrees of freedom, correspond to transverse modes.

For a massive spin-1
2 particle such as an electron, the irreducible representation of
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the generators of SU(2) is the set of Pauli matrices

Sx = 1
2

(
0 1
1 0

)
, Sy = 1

2

(
0 −i
i 0

)
, Sz = 1

2

(
0 1
1 0

)
. (3.51)

Using these, the spin coherent state can be expressed in the following way

|Ω⟩ = eiSαλα |↑⟩ = e
iλ3

2 |↑⟩ + e
i
2 (λ1+iλ2) |↓⟩ . (3.52)

In this expression, one degree of freedom is used to fix the global phase of the state,
another degree of freedom specifies the relative phase between the two basis states,
and the last degree of freedom fixes the normalization, such that any arbitrary state
in the Hilbert space can be described in this way. This is the quantum mechanical
representation of the semiclassical O(3) vector we worked with previously. In this case
however, the angular momentum commutation relations must be satisfied, so a single
O(3) vector does not uniquely describe a quantum state. However, Heisenberg spins
can still be appropriately represented by the unit vectors of the spin coherent state
basis

|n(ϕ, θ, ψ)⟩ = e−iϕŜxe−iθŜye−iψŜz |↑⟩ , (3.53)

where recall that

[Sα, Sβ] = iϵαβγSγ , (3.54)

and |↑⟩ is the highest weight state of the representation that points along a direction
n⃗0 which I have taken to by convention to be the z-axis. This tells us that any arbi-
trary state can be thought of as a rotation away from the highest weight state. The
implication of this representation is that

(n⃗ · S) |n⃗⟩ = s |n⃗⟩ . (3.55)

Since the phase factor ψ around the z-axis does not provide new measurable informa-
tion, we can therefore restrict attention to a polar coordinate representation

n⃗ = |n(ϕ, θ)⟩ = (sin θ cosϕ, sin θ sinϕ, cosϕ) . (3.56)

At face value, this would allow a description of spins on a continuous manifold, the
two-sphere S2, as was the case for classical O(3) spins. However, Heisenberg spins live
in a discrete state space, one conventionally represented by the Sz eigenstates, which
satisfy

Sz |s,m⟩ = m |s,m⟩ , (3.57a)
S2 |s,m⟩ = s(s+ 1) |s,m⟩ , (3.57b)

where

−s ≤ (m = p

2) ≤ s with p ∈ Z . (3.58)
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To reconcile this fact, we observe that the spin coherent state basis must form an
overcomplete basis, with a one-to-many mapping of the form

|n⃗⟩ =
s∑

m=−s
D(s)(n⃗,m) |s,m⟩ , (3.59)

where the 3 × s-dimensional matrices D(s) satisfy the algebra[171]

D(s)(n⃗1,m)D(s)(n⃗2,m) = D(s)(n⃗0,m)eiΦ(n⃗1,n⃗2,n⃗0)Sz . (3.60)

The phase Φ of the exponential term is defined as the area of a spherical triangle
formed by the unit vectors n̂1, n̂2, n̂0. Since the spin coherent state vectors live on the
the closed manifold S2, this is not uniquely defined. In particular, each set of three
vectors defines two spherical triangles over the sphere (one interior, one exterior), such
that one can only specify the area Φ modulo the total area of the sphere 4π. Therefore
it must hold that

ei4πm = 1 , (3.61)

which provides a geometric intuition for why spins must have integer or half-integer
quantization for m.

Next, to set the stage for building an action, we will need a few properties of spin
coherent states. The first is that since these are not classical vectors, they are not
orthogonal. In particular, since there are multiple ways to map onto a spin coherent
state as seen above, they form an overcomplete basis, with the overlap between two
states given by

⟨n⃗i|n⃗j⟩ = eiΦ(n⃗i,n⃗j ,n⃗0)
(

1 + n⃗in⃗j
2

)s
. (3.62)

In addition, by considering the appropriate integration measure that normalizes the
overcomplete mapping, the resolution of identity for the spin coherent states defined
on the surface of the sphere is given by

1 =
∫
S2
dµ[n⃗] |n⃗⟩ ⟨n⃗| (3.63a)

= 2S + 1
4π

∫
dn⃗3δ(n⃗2 − 1) |n⃗⟩ ⟨n⃗| . (3.63b)

With this, we are now equipped with the prerequisite definitions and properties to
derive the low-energy field theory for the Heisenberg antiferromagnet.

3.3.3 Quantum non-linear sigma model for a Heisenberg an-
tiferromagnet

In this section I review the mapping of the quantum Heisenberg antiferromagnet onto
the O(3) non-linear sigma model, following a combination of treatments found in [5,
169, 171].

Historically this mapping was first developed by Haldane [176] in order to under-
stand the behaviour of excitations beyond the elementary magnons captured by linear
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spin wave theory, ie. topological magnons, leading ultimately to the discovery of the
Haldane gap for which he was awarded the 2016 Nobel Prize. For further historical
details, see [177–182].

For the purposes of this Chapter, this mapping provides a more direct parallel to
the relativistically covariant theory of electromagnetism. The construction starts from
the path integral formulation of the partition function. To explicitly calculate the
path integral, we need a convenient way to sum over all possible paths, for which an
appropriate representation for the quantum mechanical spins is the spin coherent basis.

The (Euclidean) action for quantum spins

At finite temperatures, the partition function for a quantum system can be evaluated
in terms of the Hamiltonian operator

Z = Tr
(
e−βH

)
, (3.64)

which takes account of the states in principle accessible to the system via thermal
fluctuations. We will not use the specific form of the Heisenberg Hamiltonian yet in
this subsection.

At zero temperature, there are no longer thermal fluctuations, and the relevant
quantity of interest is the time evolution operator and its propagator

U(t0, t) = Tr
(
ei

(t−t0)
ℏ H

)
, (3.65a)

K(nt0 , nt) = ⟨nt0| ei(t−t0)H |nt⟩ . (3.65b)

For real β, if we identify

β = τ = −it , (3.66)

then the Boltzmann weight at finite temperature can be thought of as being equivalent
to the time evolution operator in imaginary 3 time τ . Working with ℏ = 1

U(τ) = Tr
(
eitH

)
= Tr

(
e−τH

)
. (3.67)

This allows us to evaluate the partition function as a path integral. First, the finite
imaginary time is subdivided into small steps δτ such that

β = τ = Nδτ . (3.68)

Substituting this into the expression for the partition function we find

Z = Tr
(
e−βH

)
= lim

N→∞
δτ→0

Tr
[
T̂ (e−δτH)N

]
, (3.69)

where T̂ is the time ordering operator. Taking the trace over n⃗α and inserting the
3Also known as Euclidean time, imaginary time can be thought of as an abstract dimension that

shares the transformation properties of spatial dimensions.
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resolution of identity

Z = lim
N→∞
δτ→0

(
2S + 1

4π

)N∑
n⃗α

⟨n⃗α| T̂
(∫

dn⃗3δ(n⃗2 − 1) |n⃗⟩ ⟨n⃗| e−δτH
)N

|n⃗α⟩ , (3.70a)

= lim
N→∞
δτ→0

∫
dµ[n⃗t1 ]...dµ[n⃗tN ]

∑
n⃗α

⟨n⃗α|n⃗t1⟩ ⟨n⃗t1 | e−δτH |n⃗t2⟩ ...
〈
n⃗tN−1

∣∣∣ e−δτH |n⃗tN ⟩ ⟨n⃗tN | e−δτH |n⃗α⟩ ,

(3.70b)

= lim
N→∞
δτ→0

(
N∏
j=1

∫
dµ[n⃗τj

]
〈
n⃗τj

∣∣∣ e−δτH
∣∣∣n⃗τj+1

〉)
, (3.70c)

where periodic boundary conditions apply on τ . Expanding the matrix elements of the
Hamiltonian in the limit δτ → 0〈

n⃗τj

∣∣∣ e−δτH
∣∣∣n⃗τj+δτ

〉
≈
〈
n⃗τj

∣∣∣n⃗τj+1

〉
− δτ

〈
n⃗τj

∣∣∣H ∣∣∣n⃗τj+1

〉
, (3.71a)

≈ eiΦ(n⃗τj ,n⃗τj+1 ,n⃗0)
(

1 + n⃗τj
n⃗τj+1

2

)S
− δτ

〈
n⃗τj

∣∣∣H ∣∣∣n⃗τj

〉
. (3.71b)

When evaluating the product over j, we keep only the terms up to first order in δτ ,
such that

N∏
j=1

(eiΦ(n⃗τj ,n⃗τj+1 ,n⃗0)
(

1 + n⃗τj
n⃗τj+1

2

)S
− δτ

〈
n⃗τj

∣∣∣H ∣∣∣n⃗τj

〉
) , (3.72a)

≈
(

N∏
j=1

eiΦ(n⃗τj ,n⃗τj+1 ,n⃗0)
(

1 + n⃗τj
n⃗τj+1

2

)S)

− δτ
N∑
j=1

(∏
i ̸=j

eiΦ(n⃗τi ,n⃗τi+1 ,n⃗0)
(

1 + n⃗τi
n⃗τi+1

2

)S 〈
n⃗τj

∣∣∣H ∣∣∣n⃗τj

〉)
, (3.72b)

=
(

N∏
j=1

eiΦ(n⃗τj ,n⃗τj+1 ,n⃗0)
(

1 + n⃗τj
n⃗τj+1

2

)S)(
1 − δτ

N∑
j=1

〈
n⃗τj

∣∣∣H ∣∣∣n⃗τj

〉
eiΦ(n⃗τj ,n⃗τj+1 ,n⃗0)

(
1+n⃗τj n⃗τj+1

2

)S
)
,

(3.72c)

=
(

N∏
j=1

eiΦ(n⃗τj ,n⃗τj+1 ,n⃗0)
(

1 + n⃗τj
n⃗τj+1

2

)S)(
1 − δτ

N∑
j=1

〈
n⃗τj

∣∣∣H ∣∣∣n⃗τj

〉
1 + O(δτ)

)
, (3.72d)

≈
N∏
j=1

eiΦ(n⃗τj ,n⃗τj+1 ,n⃗0)e
ln

(
1+n⃗τj n⃗τj+1

2

)S

e−δτ⟨n⃗τj |H|n⃗τj ⟩ . (3.72e)

Then the partition function can be expressed

Z = lim
N→∞
δτ→0

∫
Dn⃗ e−SE [n⃗] , (3.73)
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using

Dn⃗ =
N∏
j=1

∫
dn⃗3

τj
δ(n⃗2

τj
− 1)

(
2S + 1

4π

)
, (3.74)

and with the Euclidean action

SE[n⃗] = −iS
N∑
j=1

Φ(n⃗τj
, n⃗τj+1 , n⃗0) − S

N∑
j=1

ln
(

1 + n⃗τj
n⃗τj+1

2

)
+

N∑
j=1

δτ
〈
n⃗τj

∣∣∣H ∣∣∣n⃗τj

〉
,

(3.75a)
= Skin + SH , (3.75b)

which is the object we are interested in. Note that the contribution of the logarithmic
term is effectively a constant, and will be ignored4. Let’s consider the first term, which
is of the form

Skin = iSA[n⃗] , (3.76)

where the solid angle spanned by the spherical triangle formed by n⃗τj
, n⃗τj+1 and n⃗0

given by
A[n⃗] = Φ(n⃗τj

, n⃗τj+1 , n⃗0) , (3.77)

is the Berry phase accumulated by a single spin at each step along its trajectory. In
the semiclassical approximation, it is sufficient to assume that the spin trajectories are
closed orbits on the O(3) sphere that do not exhibit any jumps. That is, the evolution
of the spin precession is smooth. This may not always be justifiable for quantum
mechanical objects, and so the path integral method should ideally be checked against
alternative procedures.

The full solid angle swept out cannot be uniquely defined. In particular for every
closed contour there are two areas that can be defined on the sphere such that

A[Σ+] + A[Σ−] = 4π . (3.78)

Therefore, modulo 4π and in the continuum limit δτ → 0

A[Σ+] =
∫ β

0
dτ
∫ 1

0
dλ n⃗τ · (∂τ n⃗τ × ∂λn⃗τ ) , (3.79)

(3.80)

where λ smoothly parametrizes the path from n⃗(τ, λ) = n⃗(τ, 0) = n⃗τ to the top of the
solid angle cap n⃗(τ, λ) = n⃗(τ, 1) = n⃗0. Per spin, the contribution to the action then
becomes

Skin = iS
∫
dτ
∫ 1

0
dλ n⃗τ · (∂τ n⃗τ × ∂λn⃗τ ) . (3.81)

Depending on the body of literature, this type of term is called a Chern-Simons term,
or also Wess-Zumino term.

On a lattice of spins, we must sum over the contributions from each spin. In the
4Notice that n⃗τj

· n⃗τj+1 = n⃗τj
· (n⃗τj

+ dn⃗τj
), where n⃗τj

⊥ dn⃗τj
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(a) Interval τj → τj+1. (b) Closed trajectory.

Figure 3.2: Illustration of the origin of the Berry phase arising in quantum magnets. (a) Sketch
of the Berry phase swept out between times τj and τj+1.. (b) An arbitrary closed trajectory in the
space of spin coherent states delineates two patches of the sphere, showing the ambiguity in defining
areas of closed loops on the sphere.

continuum limit we can write

Skin = iS
∫
dτdrd n⃗(r⃗, τ) · (δn⃗(r⃗, τ) × ∂τ n⃗(r⃗, τ)) . (3.82)

Next, to evaluate the Hamiltonian term of the action, we restrict focus to the antifer-
romagnetic Heisenberg model.

From the Heisenberg Antiferromagnet to an O(3) NLSM

The ordered phase of a non frustrated Heisenberg antiferromagnetic model is charac-
terized by a non-zero staggered magnetization of the form (up to three dimensions x,
y, z)

m⃗s = 1
N

∑
r⃗

(−1)x+y+z n⃗(r⃗) , (3.83)

and described by the Heisenberg Hamiltonian Eq. (C.9) for J < 0. The classical ground
state for this model consists of spins of alternating orientation (the Néel state). While
this picture is not strictly true for the quantum antiferromagnet, it is acceptable to
assume that the true ground state is close to the Néel state and therefore that at
least over short-range we observe the characteristic staggered Néel ordering, consistent
with the range of approximations made so far. This justifies the decomposition of the
spin field n⃗(r⃗) into a staggered order component m⃗s(r⃗) and its orthogonal component
l⃗ describing the fluctuations, which have a tendency to ferromagnetically align spins.
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Specifically this decomposition looks like

n⃗ = m⃗s + l⃗√
m⃗2 + l⃗2

, (3.84)

In the limit of small fluctuations, the normalization in the denominator is just unity.
Further, due to the spin length constraint, as in the semiclassical case, the fluctuations
must be orthogonal to the order parameter, i.e.

m⃗s · l⃗ = 0 . (3.85)

For simplicity of notation, in the hydrodynamic limit I denote m⃗s by simply m⃗. For
arbitrary lattice dimension d, the Hamiltonian term then becomes

SH =
∫
dτdxd ⟨n⃗(r⃗, τ)|H |n⃗(r⃗, τ)⟩ , (3.86a)

= −J
∫
dτdxd

∑
δ⃗

⟨n⃗(r⃗, τ)| S⃗r⃗ · S⃗r⃗+δ⃗ |n⃗(r⃗, τ)⟩ , (3.86b)

= −JS2
∫
dτdxd

∑
δ⃗

n⃗(r⃗, τ) · n⃗(r⃗ + δ⃗, τ) , (3.86c)

= −JS2

2

∫
dτdxd

∑
δ⃗

(n⃗(r⃗, τ) + n⃗(r⃗ + δ⃗, τ))2 + const , (3.86d)

= −JS2

2

∫
dτdxd

∑
δ⃗

((−1)x+ym⃗(r⃗, τ) + l⃗(r⃗, τ) + (−1)x+ym⃗(r⃗ + δ⃗, τ) + l⃗(r⃗ + δ⃗, τ))2 ,

(3.86e)

≈ −JS2

2

∫
dτdxd (∂xm⃗(r⃗, τ) + 2⃗l(r⃗, τ))2 + (∂ym⃗(r⃗, τ) + 2⃗l(r⃗, τ))2 (3.86f)

≈ −JS2

2

∫
dτdxd (∂xm⃗(r⃗, τ))2 + (∂ym⃗(r⃗, τ))2 + 8⃗l(r⃗, τ) + O(|⃗l|2) . (3.86g)

Following a similar expansion in the fluctuations to first order in l⃗ for the kinetic term,
we arrive at

Skin = iS
∫
dτdxd l⃗(r⃗, τ) · (m⃗(r⃗, τ) × ∂τm⃗(r⃗, τ)) . (3.87)

By saddle-point approximation of the action, the fluctuating field l⃗ can be shown again
to be dependent on the staggered magnetization field m⃗.

l⃗ = i

8JS m⃗(r⃗, τ) × ∂τm⃗(r⃗, τ) , (3.88)

The action then becomes

SE =
∫
dτdxd

[
1

8J (∂τm⃗)2 + JS2

2 ((∂xm⃗)2 + (∂ym⃗)2)
]
. (3.89)
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After Wick rotation back to Minkowski time, we recover the same result as Eq. (C.33a)

SAFM =
∫
dt dxd

[
χS2

2 (∂tm⃗i)2 − ρ

2(∂jm⃗i)2
]
. (3.90)

The magnetization can be expressed component-wise in terms of the fields ϕx and
ϕy that act as generators for the two rotations breaking the continuous O(3) symmetry
of the action. That is,

m⃗ = (ϕx, ϕy,
√

1 − ϕ2
x − ϕ2

y) , (3.91)

with dynamics described by

SAFM = ρ

2

∫
dτdxd

[
1
c2 (∂τ ϕ⃗)2 −

∑
i∈xd

(∂iϕ⃗)2
]
, (3.92)

where again I define the wave speed

c =
√

ρ

χss
, (3.93)

We will now compare the excitations as predicted by this low-energy theory with
electromagnetism.

3.4 Light, magnons, action! A dictionary for spin-1
excitations

In Chapter 2, we saw how the masslessness of photons in electromagnetism is con-
nected to the existence of transverse modes. Here, I explicitly identify a one-to-one
correspondence between photons and the antiferromagnons of electromagnetism. This
correspondence is at times alluded to within the magnetism community, but has not
been explicitly documented to the best of my knowledge, and I here provide the missing
details.

From Eq. (3.43) we can identify semiclassical solutions which correspond to effec-
tive electric and magnetic fields that allow us to visualize the antiferromagnons in
parallel with photons, see Fig. 3.3, cf. Fig 1.5. Without loss of generality, consider
an antiferromagnet with order oriented along the z-direction, propagating along the
z-axis.

ϕ⃗⟳ = B0

k

cos(kz − ωt)
sin(kz − ωt)

0

 = A⃗⟳ , (3.94)

with fields

−∂tϕ⃗⟳ = E0

− sin(kz − ωt)
cos(kz − ωt)

0

 = E⃗⟳ , (3.95)
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Figure 3.3: Analogue E and B fields arising in the continuum field description of the antiferromag-
netic Goldstone modes of the Heisernberg antiferromagnet. The field ϕ⃗A represents the non-trivial
transverse components of the staggered magnon field ϕµ and equivalently of the gauge field Aµ.

and

∇⃗ × ϕ⃗⟳ = B0

cos(kz − ωt)
sin(kz − ωt)

0

 = B⃗⟳ , (3.96)

using B0
c2 = E0 and c2 = ω

k
. This provides a concrete mapping between the magnetic

canting field ϕ⃗ and an effective vector gauge potential A⃗ with respective electric and
magnetic fields.

Meanwhile, the other polarization takes the form

ϕ⃗⟲ = B0

k

 cos(kz − ωt)
− sin(kz − ωt)

0

 = A⃗⟲ , (3.97)

with fields

−∂tϕ⃗⟲ = E0

sin(kz − ωt)
cos(kz − ωt)

0

 = E⃗⟲ , (3.98)

and
∇⃗ × ϕ⃗⟲ = B0

(
− cos(kz − ωt)
sin(kz − ωt)

)
= B⃗⟲ , (3.99)

again using B0
c2 = E0 and c2 = ω

k
. This completes the explicit mapping onto electric

and magnetic fields for the Heisenberg antiferromagnet, summarized in Table 3.2.
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Collinear Néel AFM (3+1)D EM

Lagrangian L = 1
2

[
χ(∂tϕ⃗)2 − ρ(∂iϕ⃗)2

]
L = 1

2

[
1
c2 (∂tA⃗)2 − (∂iA⃗)2

]
DOFs ϕ⃗⟲, ϕ⃗⟳ A⃗⟲, A⃗⟳

−∂tϕ⃗⟲,∇ × ϕ⃗⟲ E⃗⟲, B⃗⟲

−∂tϕ⃗⟳,∇ × ϕ⃗⟲ E⃗⟳, B⃗⟳

Table 3.2: Dictionary connecting AFM and EM excitations

Consider now defining a relativistic tensor for the Heisenberg antiferromagnet

Fµν = (∂µϕν − ∂νϕµ) , (3.100)

by promoting the magnon degrees of freedom ϕ to a four-vector, with the necessary
physical restrictions that

ϕ0 = 0 , (3.101a)
kµϕ

µ = 0 , (3.101b)

for

k⃗||m⃗0 =⇒ ∂iϕ
i = 0 . (3.102)

such that the antiferromagnons ϕ can be consistently defined in four-vector notation,
and will transform under the elements of the Lorentz group as four-vectors.

We can then redefine the action Eq. (3.92)

SAFM = −
∫
dτdx3 gµν g̃ρσ∂

µϕρ∂νϕσ , (3.103)

where

∂µ = (1
c
∂0, ∂1, ∂2, ∂3) , (3.104)

and gµν is a 4-dimensional metric defined as

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (3.105)

clearly equivalent to the Minkowski metric in flat spacetime, and g̃ρσ is also a 4-
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dimensional metric which can be defined as

g̃ρσ =


±1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (3.106)

where the signature of the component g̃00 does not influence any physical quantity
and can be chosen arbitrarily, since the components ϕ0 are trivial. Therefore, for
convenience, this metric also can take to be to the Minkowski metric in flat spacetime.
Fundamentally, this metric defines the inner product in the Hilbert space between the
promoted spin degrees of freedom. It is clear from this decomposition that a notion
of a curved spacetime for field degrees of freedom requires modification of the inner
product in Hilbert space. Such modifications will not be discussed in this Thesis, and
the gravitational wave analogue I establish next in Chapter 4 will be discussed only
in flat spacetime. The distinction the Hilbert space and the real space that the atoms
are embedded in is important, since the Hilbert space remains 3-dimensional even in
the lower dimensional systems. This means that we can still nevertheless establish a
parallel to (3+1)D electromagnetism in reduced dimensional magnetic systems. This
point will also hold for the gravitational wave analogy, even more importantly in that
case, since, unlike (2+1)D electromagnetism, there are no self-supporting excitations
allowed in (2+1)D gravity.

In conclusion, we can establish an analogue between the magnons—traveling par-
allel to m⃗0—in the Heisenberg antiferromagnet with the physical degrees of freedom of
the relativistic vector gauge potential in a gauge (e.g. Lorenz gauge) which minimizes
redundant components of Aµ, leaving only the transverse degrees of freedom.

3.5 Analogue photons in experiment

3.5.1 Analogue photons in magnetic insulators
In the context of magnetic insulators, several candidate materials exhibit Néel antiferro-
magnetism with linearly dispersing excitations at low-energy, including e.g. Rb2MnF4
[183], La2CuO4 [8], La2NiO4 [183]. The square lattice spin-1

2 insulators, in particular
the cuprates and niquelates, have independently attracted significant attention due to
the appearance of superconductivity at large doping [184].

The linear dispersion, see Fig. 1.4a, is the neutron scattering hallmark of the ana-
logue photon excitations described in this Chapter. Direct observation of these ana-
logue photons is readily available with measurements of the dynamical spin-spin corre-
lations S(q, ω) defined in Eq. 1.41. Such dynamical structure factors are very revealing
of properties of quantum magnets, and for example within the context of quantum spin-
ice, the analogue photons described in Section 3.2 have also been indirectly inferred
from inelastic neutron scattering measurements of candidate materials, e.g. [59, 60].
Another powerful tool is Resonant Inelastic X-ray Scattering, from which the dynamical
structure factors have also been measured for a variety of antiferromagnetic cuprates
such as La2CuO4 [185, 186], and e.g. CaCuO2 [187, 188].
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In discussing candidates for Néel antiferromagnetism, in practice, there is often more
than just the Heisenberg interaction at play. Other effects arising from Dzyaloshinskii-
Moriya interactions, ring exchange and/or longer range exchange interactions, can
complicate the direct analogue to electromagnetic photons [189–191]. Furthermore,
relativistic effects such as spin-orbit coupling can gap out the low-energy excitations
as in Ca2Ru4, where compression of the crystal induces distortion gapping out the low-
energy modes[192], in an analogue of the Anderson-Higgs mechanism. Additionally
in regimes where quantum fluctuations are large, or other exotic excitations become
important, spin-wave theory is insufficient to make full detailed predictions in several
compounds, such as at high energies for La2CuO4 [193].

3.5.2 Analogue photons in cold atoms
Néel antiferromagnets are also accessible in cold atomic gases in optical lattices, see
e.g.[194–197]. In these systems of neutral atoms, relativistic effects originating from
spin-orbit coupling do not play a role, and there is no impact on the associated analogue
photon spectrum .

An optical lattice consists of a periodic array made from interfering optical laser
beams, e.g. [125], that binds atoms in-situ at the locations of extremized intensity
of the light. This works as follows: the time-varying electric field induces a changing
dipole moment on the rarified atoms, primarily affecting the electrons, in the cold
atomic gas. Choosing laser frequencies that are far from any transition energies in
the atomic species under study, the energy of the electrons in the atoms changes in
response to the field in proportion to the field intensity

∆E =
∑

m,n∈x,y,z
αmn(ω)⟨Em(r, t)En(r, t)⟩ , (3.107)

where n and m are spatial indices, αnm(ω) is the electric polarizability tensor corre-
sponding to the frequency ω of the laser’s electric field Em. As a result, the atoms
experience an effective potential

V = ∆E. (3.108)

The use of optical frequencies allows for relatively large sizes of the emerging lattice,
which facilitates significant control at the resolution of individual lattice sites [122, 125].

In addition to the use of optical lattices, it is important to consider the species of
atom being trapped. Alkali atoms used in cold atomic gases can possess different in-
ternal spin states, allowing for simulation of spin systems and preparations of mixtures
of spin components, as required for a Néel antiferromagnet. The spin of a particle
determines if it will behave as a Boson or a Fermion. This also applies to atoms in
their interactions with one another. For neutral atoms, the number of neutrons is the
variable that determines if the atom will have an integer or half-integer total spin. An
even number of neutrons leads to integer total spin, corresponding to bosonic exchange
statistics. An odd number of neutrons leads to half-integer total spin, corresponding
in turn to fermionic exchange statistics.

For the cleanest cold atom realization of the Heisenberg Hamiltonian, we can con-
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sider a Fermi gas, such as 40K5, with two distinct species realized by two hyperfine
states denoted

σ ∈ {↑, ↓} , (3.109)

in an optical lattice. Such interacting Fermions in an optical lattice can be described
by the Hubbard Hamiltonian

H = −t
∑
⟨ij⟩

∑
σ

[
c†
iσcjσ + c†

jσciσ
]

+ U
∑
i

c†
i↑ci↑c

†
i↓ci↓ , (3.110)

where t is the hopping parameter, U captures the strength of the potential, and c†
iσ and

ciσ are fermionic creation and annihilation operators with anticommutation relations

{ciσ, c†
jσ′} = δijδσσ′ . (3.111)

In the tight-binding limit where

U ≫ t , (3.112)

the Hubbard model reduces to [67]

H = 4t2
U

∑
⟨ij⟩
Si · Sj (3.113)

equivalent to the Heisenberg Hamiltonian Eq. (1.16).
Cold atom simulations of the Néel antiferromagnet are also motivated by the search

for d-wave superconductivity in the Hubbard model [196, 197], but as the work in this
Chapter suggests, such experimental realizations also possess interest for their analogue
photonic excitations.

Integer-spin alkali atoms, such as 23Na and 87Rb, are in fact more common than
their fermionic counterparts, since it is energetically less favourable for an atom to have
both an unpaired neutron in addition to the unpaired proton in the nucleus [125, 198].
We will see in Chapter 4 that such species can realize the ferroquadrupolar nematic
phase whose excitations are in Chapter 4 shown to be in correspondence to gravitational
waves.

3.6 Chapter summary
In concluding this Chapter, we have learned that magnetic phases can exhibit Gold-
stone modes which are in one-to-one correspondence with vector field theories of elec-
tromagnetism in (2+1)D and (3+1)D. In addition, we have learned that in models

540K is an atom with total spin 9
2 , which in principle possesses a spin manifold with 9 distinct

states. However, for the present discussion, we are interested in mixtures of two distinct hyperfine
species at most. In practice, for 40K it is known that the pair of states mF = 9

2 and mF = 7
2

have populations robust against scattering into other mF states at low temperature, such that their
respectively populations are conserved [194].
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where stable point defects are supported, there is an analogue of the charges of the
vector field theory of electromagnetism. We have also seen examples of how such
analogues have been realized in experiment.

In the next Chapter, we will see how the Goldstone modes of a spin nematic are in
one-to-one correspondence with gravitational waves. We will also see that (2+1)D spin
nematics can support stable point defects that behave like charges, i.e. mass, which
gravitate.



Chapter 4

Analogue of linearized gravity in
spin nematics and spinor
condensates

“More is different.” - Philip Warren Anderson

As we have seen in Chapter 2, in their non-interacting limit, gravitational waves
are harmonic excitations of a free spin-2 field, and are therefore described by a rank-2
tensor field theory. The massless, spin-2 excitations of linearized gravity in (3+1)D can
be characterized by two independent dynamical components of a rank-2 polarization
tensor. Such massless, spin-2 excitations are not exclusive to the context of linearized
gravity, also arising as Goldstone modes in systems with nematic order.

In this Chapter we will dive into the description of quantum spin nematics and their
Goldstone modes, focusing on the realization of ferroquadrupolar order as found in the
Bilinear-Biquadratic model. This system presents tensorial Goldstone modes that I
identify to be in one-to-one correspondence with gravitational waves. To understand
this connection, I will first review spin nematics as realized in spin-1 systems in a model
independent way before introducing the Bilinear-Biquadratic model. I then introduce
the spin coherent states for spin-1 and use this to rederive the corresponding low-energy
limit, which leads to a non-linear sigma model in direct correspondence with the action
of linearized gravity.

I then present the reader with a key result of this Thesis, namely, the dictionary
which explicitly connects the excitations of a ferroquadrupolar spin nematic to gravita-
tional waves in flat spacetime. I present further intuitions that gravitational waves and
the nematic excitations are both quadrupolar excitations with the same fundamental
character. To set the stage for results I will discuss in Chapter 5, I then briefly review
the homotopy class of spin nematics based on their respective order parameter, and
discuss the attractive nature of the point defects, consistent with a spin-2 field theory.

Finally, I review the state of the art in both solid state and cold atom experiments
involving spin nematics, and discuss in particular techniques applicable to spinor con-
densates for observing quadrupolar order.

78
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4.1 Quadrupolar order and spin nematics
In this Section I will introduce the reader to nematic phases of matter, historically
discovered in the context of classical liquid crystals, and will motivate their relevance
as a candidate platform for analogue gravitational waves.

Ultimately, the goal is to identify an ordered phase which preserves time-reversal
symmetry, and has two independent Goldstone Bosons which are spin-2 excitations. We
saw previously in the case of the Heisenberg antiferromagnet that dipolar order on the
bipartite lattice restores time-reversal symmetry as far as the long wavelength physics
is concerned. The corresponding vector order parameter gives us two dynamically
independent spin-1 excitations. We will now see how nematic liquid crystals and spin
nematics are ordered phases whose order parameters are symmetric, traceless, rank-
2 tensors, which in addition preserve time-reversal symmetry. This already signals
possible comparison with the structure of gravitational waves Eq. (1.56).

The first liquid crystals, discovered by Reinitzer in 1888 [199], arose in cholesterol
benzoates extracted from carrot root, a molecule with inversion symmetry along the
long axis. Reinitzer discovered that this substance exhibited two distinct phase transi-
tions from the low temperature crystalline phase to the liquid phase. The intermediate
phase, dubbed a liquid crystal, was characterized by anisotropy of the molecular de-
grees of freedom and led to unique optical properties. Following their initial discovery,
it took a long time for the existence of such liquid crystal phases to be widely accepted
[200].

Much of the early theory of liquid crystals was developed by Oseen by 1933 [201].
In order to revive interest in the topic, this was much later expanded upon by Charles
Frank in his seminal 1958 paper [202]. These works laid out the classification for liquid
crystal phases, one of which is the nematic phase characterized by loss of orientational
symmetry without loss of translational symmetry. In the nematic phase, it is energet-
ically favourable for the long axis of the molecules to align, thus breaking rotational
symmetry through the selection of a direction characterized by the vector u, called a
director. Due to the inversion symmetry of the molecules, there is no way to distin-
guish any sense of their orientation between u and −u, therefore the order parameter
must be a symmetric product of the vector u [203]. As discussed in [110], the minimal
and conventional choice describing a uniaxial nematic phase is the symmetric, traceless
tensor of the form

Qαβ =
(
uαuβ

)
− 1

3δ
αβuγuγ . (4.1)

As alluded to in Chapter 1, ordered phases of magnetic materials can exhibit phases
characterized by an order parameter analogous to that of nematic liquid crystals, as
shown in Eq. (1.31), defined again here explicitly on the lattice in terms of the SU(2)
spin operators Sαi

⟨Qαβ
ij ⟩ = 1

N
⟨
[1
2
(
Sαi S

β
j + Sβi S

α
j

)
− 1

3δ
αβSγi S

γ
j

]
⟩ . (4.2)

In analogy with the nematic liquid crystal, such phases receive the name spin nematics.
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The most general definition of the order parameter here encompasses the possibility of
bond ordered nematics formed by triplet pairs of spin-1

2 atoms [89–91], in addition to
the case of on-site spin-1 (or higher) atoms. The latter case will occupy the attention of
this Thesis, since spin-1 nematics are expected both in candidate magnetic insulators
e.g. [99, 100] and spinor condensates e.g. [107].

Analogous to the O(3) symmetry breaking of the high-temperature liquid phase
in the transition to the nematic liquid crystal phase, spin nematics break SU(2) sym-
metry while preserving time-reversal symmetry, leading to two independent Goldstone
Bosons. In addition, and also in analogy with liquid crystals, spin nematics are char-
acterized by a well-understood homotopy class and corresponding topological defects
which will be discussed later in this Chapter.

The on-site operator Qαβ arises as the symmetric and traceless component of a
general tensor operator [11, 78, 79, 82]

Aαβ = S†αSβ . (4.3)

The A operator decomposes into three spherical tensors which transform under rotation
like objects of angular momentum l = 0, l = 1 and l = 2 respectively. The first is the
scalar

ρ = S†αSα , (4.4)

which measures the length of the spin degree of freedom. Next, the antisymmetric
components define the dipole moment

Sγ = ϵαβγS†αSβ, (4.5)

Finally there is the symmetric and traceless rank-2 tensor operator

Qαβ = 1
2
(
SαSβ + SβSα

)
− 1

3δ
αβSγSγ . (4.6)

corresponding to the quadrupole moment. The symmetric and traceless conditions

Qαβ = Qβα , (4.7a)
Tr(Q) = 0 , (4.7b)

mean that there are five independent quadrupole moments. These are conventionally
defined by [10]

Q =



1
2(Qxx −Qyy)

1√
3(2Qzz −Qxx −Qyy)

Qxy

Qyz

Qzx

 , (4.8)
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whose components satisfy the relation∑
α,β

QαβQαβ = 2Q ·Q . (4.9)

The operators Qαβ are non-trivial for all irreducible representations of SU(2) with

s ≥ 1 , (4.10)

and on-site spin-nematic phases can be thus supported in spin systems with, at least,
spin-1.

In summary, for spin-nematic phases characterized by a non-trivial expectation
value of the single-site quadrupole operators, Eq. (4.2), the following generically holds

⟨ρ⟩ = s(s+ 1) , (4.11a)
⟨Sα⟩ = 0 , (4.11b)

⟨Qαβ⟩ ≠ 0 , (4.11c)

such that SU(2) symmetry is spontaneously broken while simultaneously preserving
time-reversal symmetry. The operator ρ is non-dynamical in the spin nematic phase,
such that there are no longitudinal oscillations of the spin degree of freedom.

In the next Section, we will see how to describe the dynamical modes of such phases,
and how in the low-energy limit, these modes are purely quadrupolar, corresponding
to spin-2 Goldstone Bosons. I will review the spin coherent state formalism required
to describe a Hilbert space in which quadrupolar degrees of freedom are non-trivial.
This will be necessary to build a low-energy field theory for a quantum spin nematic.

4.2 Representation of nematic order and nematic
Goldstone modes in spin-1 magnets

After having introduced the order parameter for spin nematics, I aim in this Section
to extract the corresponding description of tensor Goldstone Bosons, as they appear in
magnetic insulators and spinor condensates. To this end, I first describe conventional
representations for spin-1 magnets [10] and their excitations. Later in this Chapter, I
will show how the nature of these excitations are in one-to-one correspondence with
the tensor modes of linearized gravity, a key result in this Thesis.

The on-site rank-2 tensor operator describing spin nematic order is only non-
trivially defined for systems with spin-1 or greater. For the purpose of this Thesis,
I will focus on the case of spin-1 magnets and spinor condensates. In this case, the
Hilbert space is spanned by the magnetic basis states

|s = 1,m = 1⟩ ≡ |1⟩ , (4.12)
|s = 1,m = 0⟩ ≡ |0⟩ , (4.13)

|s = 1,m = −1⟩ ≡
∣∣∣1̄〉 , (4.14)
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(a) Magnetic state |1⟩. (b) Nematic state |0⟩. (c) Magnetic state
∣∣1̄〉.

Figure 4.1: (a) The magnetic state with quantum number m = 1 can be represented by an O(3)
vector pointing along the positive z direction. (b) The spin probability surface of the |0⟩ state is
characterized by absence of favoured dipolar orientation, and showcases inversion symmetry reflective
of the preserved time-reversal symmetry. This state is clearly quadrupolar. (c) The magnetic state
with quantum number m = −1 can be represented by an O(3) vector pointing along the negative z
direction. See e.g. [10] or Appendix E for descriptions of how to define these surfaces.

whose probability density surfaces are shown in Fig. 4.1.
For each of the three magnetic basis states, visualized in Fig. 4.1, we find the

following operator expectation values

⟨1|Sα |1⟩ = δαz , ⟨0|Sα |0⟩ = 0 ,
〈
1̄
∣∣∣Sα ∣∣∣1̄〉 = δαz (4.15a)

⟨1| (Sα)2 |1⟩ =
〈
1̄
∣∣∣ (Sα)2

∣∣∣1̄〉 = 0 , (4.15b)
⟨0| (Sx)2 |0⟩ = ⟨0| (Sy)2 |0⟩ = 0 , (4.15c)
⟨0| (Sz)2 |0⟩ ≠ 0 . (4.15d)

This indicates that the magnetic states |1⟩ and
∣∣∣1̄〉 have dipolar character, and the

nematic state |0⟩ has a quadrupolar character. For the description of spin nematics in
which the ground state has quadrupolar character, I will adopt a more suitable basis,
following e.g. [10]. This basis is the time reversal invariant basis, see Fig. 4.2, defined
as follows in terms of the magnetic basis 1

|x⟩ = i
|1⟩ −

∣∣∣1̄〉
√

2
, |y⟩ =

|1⟩ +
∣∣∣1̄〉

√
2

, |z⟩ = −i |0⟩ , (4.17)

In time-reversal invariant basis, the representation of any state in the spin-1 Hilbert
space is described by a vector d, which takes the form

|d⟩ =
∑
α

dα |α⟩ , (4.18)

1The inverse basis mapping takes the form

|1⟩ = |x⟩ + i |y⟩ , |0⟩ = i |z⟩ ,
∣∣1̄〉 = − |x⟩ + i |y⟩ . (4.16)
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z
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(a) |x⟩.

z

x

y

(b) |y⟩.

z

x

y

(c) |z⟩.

Figure 4.2: The three time-reversal invariant states defined in Eq. 4.17, with orientations along
the respective coordinate axes. States in this basis are described by the complex vector d defined in
Eq. 4.18.

where the coefficients dα of the director d are generically complex-valued, and with

|d| = 1 , (4.19)

In the time-reversal invariant basis it is explicitly clear that quadrupolar states are
purely real (or purely imaginary), while the dipolar states necessarily mix linear super-
positions of real and imaginary components. It is therefore convenient to decompose
the director in terms of its real and imaginary components

d = u+ iv , (4.20)

where the normalization of d remains fixed, and the norms of u and v are not inde-
pendent.

Since the dipolar components are finite when u and v are simultaneously finite, the
dipolar expectation value can also be expressed by the antisymmetric composition of
the director components

⟨S⟩ = u× v , (4.21)

while the quadrupolar components take the form

⟨Qαβ⟩ = 1
2
(
d†αdβ + d†βdα

)
− 1

3δ
αβd†γdγ

=
(
uαuβ + vαvβ

)
− 1

3δ
αβ (uγuγ + vγvγ) . (4.22)

Equipped with this description, we can return to assessing the expectation value
of the quadrupole operator within a spin nematic, in order to explicitly determine the
channels available to dynamical fluctuations. Explicitly in terms of the spin-1 director
components, the expectation value of the quadrupole operator in matrix representation
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is

⟨Qαβ⟩ = 1
2

2(ux)2 + 2(vx)2 − 2
3 uxuy + vxvy uxuz + vxzvz

uxuy + vxvy 2(uy)2 + 2(vy)2 − 2
3 uyuz + vyvz

uxuz + vxvz uyuz + vyvz 2(uz)2 + 2(vz)2 − 2
3

 . (4.23)

Assuming a quadrupolar ordered ground state, with purely real director d aligned
with one of the coordinate axes, e.g. the z-axis,

d = (0, 0, uz) = (0, 0, 1) , (4.24)

then the expectation value of the order parameter in the spin nematic ground state
takes a simpler form

Q =

−1
3 0 0

0 −1
3 0

0 0 2
3

 . (4.25)

To leading order, we can semi-classically express the fluctuations away from the ground
state, cf.[11]

d̃ =
(
ϕx + iψx, ϕy + iψy, 1 − O(ϕ2) − O(ψ2)

)
, (4.26)

for real fields ϕα and ψα. The oscillations of the ϕ field correspond to real rotations, and
cost no energy at long wavelength. These are the two symmetry restoring Goldstone
modes for the spin nematic. On the other hand, the oscillations of the ψ field correspond
to imaginary transformations which deform a quadrupolar distribution into a dipolar
one, and only play a role at finite energies. Therefore in the low-energy limit, the
semi-classical fluctuations of the ground state take the form

Q̃xz =

 0 0 ϕx

0 0 0
ϕx 0 0

 , Q̃yz =

0 0 0
0 0 ϕy

0 ϕy 0

 , (4.27)

and as symmetric tensors, correspond to quadrupolar part of the general tensor Eq. (4.3).
Using the transformation described in Eq. (2.135), these tensors transform as

Rz[θ]Q̃xz = ei2θQ̃xz , (4.28)
Rz[θ]Q̃yz = ei2θQ̃yz , (4.29)

where Rz[θ] is the matrix encoding a rotation about the z-axis, defined previously in
Eq. 2.138. These excitations thus respectively correspond to two independent spin-2
Goldstone Bosons. Fluctuations of the diagonal elements would correspond to lon-
gitudinal spin oscillations, which on physical grounds are disallowed. The remaining
off-diagonal elements contribute to the oscillations only to quadratic order in the fluc-
tuation amplitude ϕα.

We can thus conclude that spin nematics harbour spin-2 Goldstone Bosons. It re-
mains to be shown how these oscillations are harmonic in nature, akin to the spin-2
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field excitations of linearized gravity, and that they are in clear one-to-one correspon-
dence with gravitational waves. In the next Section, I will introduce the reader to
spin-coherent states for spin-1, as will be later used for the development of an effective
low-energy field theory for the spin nematic.

4.3 The s = 1 spin coherent states

Recall that in Section 3.3.2 we saw how to construct coherent states for spin-1
2 . Follow-

ing treatments in e.g. [5, 10] we will now learn why this representation is insufficient
for spin greater than 1

2 , and equip ourselves with the equivalent notion of spin coherent
states for the spin-1 case. This will be used later in this Chapter in order to later
construct a low-energy field theory for a spin nematic phase.

It is reasonable to assume that the magnetic basis states are at least partly con-
nected by the generators of SU(2). The internal spin state of a massive particle arises
from the part of the Lorentz group that does not affect the four-momentum. That cor-
responds to O(3), or its isomorphism SU(2). In the case of spin-1, the SU(2) generators
are given by

Sx = 1√
2

0 1 0
1 0 1
0 1 0

 , Sy =

0 −i 0
i 0 −i
0 i 0

 , Sz =

1 0 0
0 0 0
0 0 −1

 . (4.30)

This is also a representation of Wigner’s Little group for massive particles, and these
generators internally transform spin states within their respective Hilbert space [204].
However, it turns out that these generators are insufficient to span the landscape of
all possible internal states. To see why this is so, consider the arbitrary superposition
expressed in terms of the magnetic basis of states

|Ω⟩ = α |1⟩ + β |0⟩ + γ
∣∣∣1̄〉 , (4.31)

where α, β, γ are arbitrary complex coefficients. There are in total six real degrees of
freedom associated to these coefficients, though two are not independent. This is due,
firstly, to the normalization constraint, and secondly, to the gauge freedom associated
to the global phase of the wavefunction. Therefore, to describe an arbitrary spin-1
state we must be able to transform the following number of degrees of freedom

6 − 2 = 4 . (4.32)

If we next examine the states spanned by the generators of SU(2) acting on the magnetic
basis states

eiSαλα |1⟩ = e
iλ3

2 |1⟩ + e
i
2 (λ1+iλ2) |0⟩ +

∣∣∣1̄〉 , (4.33a)

eiSαλα |0⟩ = e
i
2 (λ1−iλ2) |1⟩ + |0⟩ + e

i
2 (λ1+iλ2)

∣∣∣1̄〉 , (4.33b)

eiSαλα
∣∣∣1̄〉 = |1⟩ + e

i
2 (λ1−iλ2) |0⟩ + e

−iλ3
2
∣∣∣1̄〉 , (4.33c)
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it is clear that SU(2) transformations cannot map each basis state onto any other
arbitrary basis state. Therefore, we cannot obtain a general expression for |Ω⟩ by
SU(2) transformation. The best we could do is to reach a subsection of the Hilbert
space spanned by

|Ω⟩ = (1 + cos θ)
2 e−iϕ |1⟩ + sin θ√

2
|0⟩ + (1 + cos θ)

2 e−iϕ
∣∣∣1̄〉 . (4.34)

Pragmatically we can see why this is the case: there are only three degrees of freedom
λ associated to the SU(2) transformations, and as we have seen before in Section
3.3.2, one of these corresponds to a trivial redefinition of phase. However, to describe
an arbitrary normalized spin-1 coherent state, we need four degrees of freedom at
minimum. This means that there are generators missing from our attempt to describe
the spin-coherent states.

Recall that for the spin-1
2 case, the Hilbert space has only two independent degrees

of freedom. In that case the Hilbert space is coincidentally spanned by the Little group.
However, for spins greater than 1

2 , there are more internal degrees of freedom than can
be described by the SU(2) generators alone.

We can reconcile this in the spin-1 case by observing that there is a quadrupole
sector in the Hilbert space. We can see from Eq. (4.33b) that for a state with angular
momentum quantum number

m = 0 , (4.35)

there is no net dipole. The corresponding eigenstate of Sz cannot be rotated into a
purely dipolar state. Conversely, by considering e.g. Eq. (4.33a) we see that neither
of the dipolar states can be rotated exclusively onto the |0⟩ state. As observed in the
previous Section, it is clear that real rotations remain within the respective spaces of
dipole and quadrupole, while imaginary rotations mix the states between these two
sectors of the Hilbert space. It is further worth noting that the symmetries of the
Hilbert space are not necessarily in correspondence with the symmetries of the action.
In the spin nematic, the Goldstone modes arise from the broken SU(2) symmetry
present in the action, corresponding to the real rotations that map quadrupoles to
quadrupoles. For a time-reversal preserving state, there will be a purely real or purely
imaginary director. Thus there are two broken generators, and these correspond to the
two Goldstone modes. However, at higher energies the imaginary rotations allowed by
the symmetry generators of the Hilbert space become available.

With these properties in mind, the off-diagonal generators of SU(3) form a natural
representation for transformations between states in the Hilbert space [5, 6]. This
can be generalized to U(3) generators where required, and will be discussed briefly in
Chapter 5 [11, 82].

A complete representation of SU(3) is given by the Gell-Mann matrices

λ1 =

0 −i 0
i 0 0
0 0 0

 λ2 =

0 0 −i
0 0 0
i 0 0

 λ3 =

0 0 0
0 0 −i
0 i 0

 (4.36a)
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λ4 =

0 −1 0
1 0 0
0 0 0

 λ5 =

0 0 −1
0 0 0
1 0 0

 λ6 =

0 0 0
0 0 −1
0 1 0

 (4.36b)

λ7 =

1 0 0
0 −1 0
0 0 0

 λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 (4.36c)

where λ1, λ2, λ3 are spatial rotation generators and λ4, λ5, λ6 are the generators of com-
plex rotations and the diagonal generators λ7, λ8 do not physically alter the states. Let
us now use the SU(3) rotation generators to specify the coherent state representation
for an arbitrary spin-1 state. Recall we can decompose the director into real and
imaginary parts as follows

|d⟩ = |u⟩ + i |v⟩ ≡ |u,v⟩ . (4.37)

The general spin coherent state for spin-1 can then be expressed as

|u,v⟩ =
∑

j∈x,y,z
U |j⟩ , (4.38)

with unitary operator U defined as

U = ei
∑6

m=1 λmϕm , (4.39)

where ϕm are the respective angles through which the state |j⟩ is rotated by the cor-
responding generators of SU(3).

For these spin coherent states, the resolution of identity takes the form

1 =
∫

Ω
dµ[d] |d⟩ ⟨d| (4.40a)

= 2S + 1
2π

∫
du3dv3 δ(u2 + v2 − 1) |u,v⟩ ⟨u,v| . (4.40b)

where the area of the spheres spanned by the fields u and v is

ΩRP2 = 1
24π . (4.41)

In conclusion, we have now seen why more general SU(N) representations are needed
to capture the Hilbert space of N-level spin systems, and have seen explicitly the spin
coherent state basis for the spin-1 case. Next we will examine a microscopic spin-1
model and use the spin coherent state basis to rederive the non-linear sigma model for
a ferroquadrupolar spin nematic.
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4.4 Quantum non-linear sigma model for a spin-1
nematic

In this Section, I showcase how the low-energy physics of a ferroquadrupolar spin-
nematic exhibits a Gaussian action, which I here establish to be in correspondence
with that of linearized gravity. Until this point, all the framework developed has been
model independent. In order to provide a more concrete derivation of the analogue
to linearized gravity, and to place it on microscopic grounds, in this Section I first
review the Bilinear-Biquadratic model, and its ferroquadrupolar phase—which is a spin
nematic phase as thus far presented. I then rederive that its low-energy field theory
is a non-linear sigma model, as first shown by Ivanov and Kolezhuk [93], inspired by
treatments in [5, 170, 171, 205].

4.4.1 The minimal spin-1 model: the Bilinear Biquadratic
model

The Bilinear-Biquadratic model is the simplest exchange model which describes both
dipolar and quadrupolar degrees of freedom, as present in magnetic systems whose
atoms possess a spin-1 moment. In terms of dipolar spin operators, its Hamiltonian
takes the following form

HBBQ =
∑
⟨ij⟩

J1Si · Sj +
∑
⟨ij⟩

J2(Si · Sj)2 . (4.42)

This model is generally SU(2) symmetric [11], except at the high symmetry point
defined at

J1 = J2 , (4.43)

where the model becomes SU(3) symmetric [206, 207]. In terms of the quadrupole
operators

Qαβ
i Qαβ

j = 4(SiSj)2 + 2SiSj − 4
3s

2(s+ 1)2 , (4.44)

the quadrupole contribution in the Hamiltonian can be explicitly expressed

HBBQ =
∑
⟨ij⟩

(J1 − J2

2 )Si · Sj +
∑
⟨ij⟩

J2

4 Q
αβ
i ·Qαβ

j − J2
2
3s

2(s+ 1)2 . (4.45)

Examination of Eq. (4.45) reveals that where the bilinear exchange term in Q is
dominant, it is energetically favourable for the quadrupolar degrees of freedom to order.
Therefore, a spin nematic phase characterized by ferroquadrupolar order is dominant
in this model where negative J2 interactions are much larger than the J1 interactions
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e.g.[10]. Specifically on the triangular lattice, the ferroquadrupolar phase spans [4, 95]

J2 < 0 J1 ≪ J2 −
√

2
2 < J1 <

5π
4 . (4.46)

This expectation has been confirmed through both mean field calculations and nu-
merical studies on different lattices [4, 6, 95, 208], see e.g. Fig. 1.2a. Ferroquadrupolar
alignment is expected in the region of the phase diagram where negative J2 interactions
dominate extending until the enhanced symmetry boundary.

We next use this model to construct a field theory valid for the ferroquadrupolar
phase.

4.4.2 Effective low-energy field theory of the ferroquadrupolar
spin nematic

In this Section, using the spin-coherent states and the bilinear-biquadratic model, as
outlined in [93, 171, 205], we will arrive at a spin-2 field theory for the nematic ground
state.

As we have seen in Chapter 3, the Hamiltonian of a finite temperature quantum
system is related to the partition function through the path integral representation

Z = Tr(e−βH) = lim
N→∞
δτ→0

Tr[T̂ (e−δτH)N ] , (4.47)

where T̂ is the time ordering operator. The partition function is also in turn connected
to the Euclidean action

Z = lim
N→∞
δτ→0

∫
D[d] e−SE [d] , (4.48)

From Eq. (4.47), the partition function can be expressed using the spin-coherent
states

Z = lim
N→∞
δτ→0

(
2S + 1

4π

)N∑
dα

⟨uα,uα| T̂
(∫

dµ[d] |u,v⟩ ⟨u,v| e−δτH
)N

|uα,uα⟩ , (4.49)

= lim
N→∞
δτ→0

N∏
t=1

[∫
dµ[dt]e

−δτ
(

⟨A⟩+⟨H⟩
)]

, (4.50)

= lim
N→∞
δτ→0

∫
dµ[dt]e

−
∑N

t=1 δτ

(
⟨A⟩+⟨H⟩

)
, (4.51)

where the geometrical Berry-phase term takes the form

⟨A⟩ = 1
δτ

(⟨ut,vt|ut,vt⟩ − ⟨ut,vt|ut+1,vt+1⟩) , (4.52a)

= 1
δτ

((ut − ivt)(ut + ivt) − (ut − ivt)(ut+1 + ivt+1)) , (4.52b)
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= − 1
δτ

(ut(ut+1 − ut) + vt(vt+1 − vt) − ivt(ut+1 − ut) + iut(vt+1 − vt)) ,
(4.52c)

which after evaluating the limit δτ → 0 becomes

A ≈ − (u∂τu+ v∂τv + iu∂τv − iv∂τu) . (4.53)

The Hamiltonian term can be most clearly derived by expressing the Bilinear-
Biquadratic model in terms of the expectation value of the director [5]

⟨HBBQ⟩ =
∑
⟨ij⟩

J1|di · d̄j|2 +
∑
⟨ij⟩

(J2 − J1)|di · dj|2 + J2 . (4.54)

In the low-energy limit, we can approximate the on-site degrees of freedom by contin-
uous fields

di ≈ d(r, τ) . (4.55)

The fields at each of the nearest-neighbour sites can be described to first order in terms
of the Taylor series expansion

dj ≈ d(r +αj, τ)
≈ d(r, τ) + αmj ∂md(r, τ) + O(∂2

md) , (4.56)

where αj is the vector connecting each site to the jth-neighbour, with Cartesian com-
ponents denoted by m. Note that we can always decompose the contributions in the
Taylor expansion for any lattice geometry into the derivatives along the Cartesian
directions m with αmj representing the appropriate numerical prefactors2.

2On the triangular lattice, there are six nearest neighbour positions defined by

r +αj = r +
(

cos
(

2π

6 j

)
, sin

(
2π

6 j

)
, 0
)

, (4.57)

for j taking integer values from 1 to 6, where

r +α1 = r −α4 , (4.58a)
r +α2 = r −α5 , (4.58b)
r +α3 = r −α6 . (4.58c)

and where

|αj | = a , (4.59)

with lattice spacing a. Then, for the triangular lattice

d(r +α1, τ) ≈ d(r, τ) + a∂xd(r, τ) + O(∂2
md) , (4.60a)

d(r +α2, τ) ≈ d(r, τ) + a

2∂xd(r, τ) +
√

3a

2 ∂yd(r, τ) + O(∂2
md) , (4.60b)

d(r +α3, τ) ≈ d(r, τ) − a

2∂xd(r, τ) +
√

3a

2 ∂yd(r, τ) + O(∂2
md) . (4.60c)
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We can then express the interaction terms

did̄j ≡ d(r, τ)d̄(r +αj, τ)
≈ d(r, τ)

(
d̄(r, τ) + αmj ∂md̄(r, τ) + O(∂2

md̄)
)
, (4.61a)

didj ≡ d(r, τ)d(r +αj, τ)
≈ d(r, τ)

(
d(r, τ) + αmj ∂md(r, τ) + O(∂2

md)
)
. (4.61b)

Simplifying the notation by representing the fields d(r, τ) instead as d, leads to the
following formulation of the continuum expectation value of the Hamiltonian

⟨HBBQ⟩ ≈
∫ drd

ad

z
2∑
j=1

J1

∣∣∣dd̄ + αmj d∂md̄
∣∣∣2 + (J2 − J1)

∣∣∣dd + αmj d∂md
∣∣∣2 , (4.62)

where z is the coordination number of the lattice, specifying the number of nearest
neighbours.

Working explicitly in terms of the component fields u and v, we can explicitly choose
coordinates such that the ferroquadrupolar ground state is described by the purely real
field u, as is convention [93]. This allows the following simplifying assumptions to apply

u2 ≫ v2 , (4.63)

such that the terms

v∂mv, (∂mv)2 ≈ 0 . (4.64)

One can also make the conventional choice [5, 6]

u · v = 0 , (4.65a)
=⇒ ∂τ (u · v) = 0 , (4.65b)
=⇒ u∂τv = −v∂τu . (4.65c)

which fixes the global phase degree of freedom of the state d, and allows further sim-
plification using Eq. (4.65c). Neglecting terms O(v3), the interaction terms become
respectively

HJ1
j ≡J1

∣∣∣(u+ iv)(u− iv) + αmj (u+ iv)∂m(u− iv)
∣∣∣2 (4.66a)

=J1
(
1 + αmj (u∂mu+ 2iv∂mu) + (αmj u∂mu)2 + 2iαmj u∂muαnj v∂nu

)
, (4.66b)

and

HJ2−J1
j ≡(J2 − J1)

∣∣∣(u+ iv)(u+ iv) + αmj (u+ iv)∂m(u+ iv)
∣∣∣2 (4.67a)

=(J2 − J1)
(

1 − 4u2v2 + αmj (u∂mu+ 2iv∂mu)(u2 + 2iuv − v2)
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+ (αmj u∂mu)2 + 2iαmj u∂muαnj v∂nu
)
. (4.67b)

Substituting back into the Hamiltonian term of the action, the terms linear in αmj
cancel when summed over j, leaving the sufficiently general result

SH =
∫
dτdxd

[
2z(J1 − J2)u2v2 + J2

z
2∑
j=1

(αmj ∂mu)2
]
. (4.68)

We now return to the Berry phase term, noticing that

u2 + v2 = 1 =⇒ u∂τu+ v∂τv = 0 , ∂τ (u · v) = 0 =⇒ u∂τv = −v∂τu , (4.69a)
(4.69b)

such that,

⟨A⟩ = −2iu∂τv = 2iv∂τu . (4.70)

Then, the full Euclidean action then takes the form

SE =
∫
dτdxd

[
2z(J1 − J2)u2v2 − 2iu∂τv + J2

z
2∑
j=1

(αmj ∂mu)2
]
, (4.71)

The Euler-Lagrange equations allow us to identify that one field is constrained in terms
of the other. In this case

v = −i∂τu
2z(J1 − J2)u2 ≡ iχ⊥∂τu , (4.72)

where I have defined the susceptibility

χ⊥ = 1
2z(J1 − J2)

. (4.73)

This means we can interpret v as the fluctuating field, and ultimately the dynamics
of the dominant field will depend exclusively on the configuration of the purely real
u field. This implies that in the small fluctuation limit the surviving components
of the fluctuations will be almost exclusively quadrupolar. At higher energies, where
fluctuations deviate more greatly from the ground state, the mutual dependence of the
real and imaginary fields u and v leads to the mixing of the modes into the dipole
channel. We will see this exemplified in dynamical simulation in the next Chapter.

In addition, we can identify a stiffness associated to the order

ρ = −J2

z
2∑
j=1

(αmj )2; , (4.74)

with the minus sign introduced on physical grounds that the stiffness be a positive
quantity.
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Transforming back to real time, finally, the ferroquadrupolar action in the low-
energy limit has the form

SFQ =
∫
dtdxd

[
χ(∂tu)2 − ρ(∂mu)2

]
, (4.75)

which is again a non-linear sigma model defined in terms of the real part of a director,
u, whose excitations are the quadrupolar spin-2 field excitations given in Eq. (4.27).
To make explicit the quadrupolar nature of the action and its excitations, consider the
field

Qαβ = Qαβ
GS + Q̃αβ . (4.76)

Choosing coordinates such that ground state is oriented along the z−axis, and the
excitations are as described in Eq. (4.27), we find that the scalar contraction

∂µQ
†αβ∂µQαβ = ∂µQ̃

†αβ∂µQ̃αβ , (4.77a)
= 2∂µ(ϕx − iψx)∂µ(ϕx + iψx) + 2∂µ(ϕy − iψy)∂µ(ϕx + iψx) , (4.77b)
= 2

(
∂µ(ϕ)2 + ∂µ(ψ)2

)
, (4.77c)

reduces to the Lagrangian for the dynamical part of the director. From this, it is clear
that the action can be expressed as

SFQ = −1
2

∫
dtdrd

[
− χ⊥(∂tQαβ∂tQαβ) + ρs(∂mQαβ∂mQαβ)

]
, (4.78)

by defining

Qαβ = Q†αβ . (4.79)

This form of the action parallels the linearized gravity action 2.111, and gives rise to a
wave equation

1
v2∂t∂

tQ̃αβ − ∂n∂
nQ̃αβ = 0 , (4.80)

with wave speed 3

v =
√
ρs/χ⊥ , (4.82)

3For the triangular lattice, we can evaluate explicitly

v =

√√√√2z(J1 − J2)(−J2)
z
2∑

j=1
(αm

j )2

= 2
√

3
√

3 J2 a = 6 J2 a . (4.81)
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and relativistic dispersion

ω(k) = v|k| . (4.83)

The solutions to the equations of motion are harmonic spin-2 waves

Qαβ(x, t) =
∑
σ=1,2

∫
d3k

1√
ω(k)

[
ϵσαβa

†
σ(k)eikρxρ +

(
ϵσαβ

)∗
aσ(k)e−ikρxρ

]
. (4.84)

that in the next Section I will prove to be in one-to-one correspondence with gravita-
tional waves.

In conclusion, the ferroquadrupolar phase exhibits two tensorial Goldstone modes
which in the low-energy limit remain purely quadrupolar, and are described by a non-
linear sigma model reminiscent of the linearized gravity action.

4.5 What starts with action ends with action: a
dictionary for spin-2 excitations

We have shown explicitly that the microscopic Bilinear-Biquadratic model is equivalent
in the low-energy limit to a spin-2 field theory, whose fluctuations share the same
Gaussian form as captured by the field theory for linearized gravity. Next I will expand
concretely on how to map these respective fluctuations onto one another, and will
present a deeper interpretation of the nature of the fluctuations.

4.5.1 Mapping linearized gravity gauge constraints onto the
physical constraints of ferroquadrupolar order

We have seen that the low-energy field theory for the ferroquadrupolar phase takes
a form reminiscent of the action for linearized gravity Eq. (2.111) after applying the
gauge conditions

hµµ = 0 , [traceless] (4.85a)
h0µ = 0 , [no scalar or vector components] (4.85b)

∂nhnm = 0 , [no longitudinal dynamics] . (4.85c)

Promoting the tensor description of Q̃ to a 4×4 representation for closer comparison
to the structure of gravitational waves, we can re-express the ground state and the
fluctuating modes respectively as

Qµν = Qµν
GS + Q̃µν , (4.86)
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such that the action can be expressed

SFQ = −1
2

∫
dtddx

[
− χ⊥(∂tQ̃µν∂tQ̃µν)

+ ρs(∂nQ̃µν∂nQ̃µν)
]
.

(4.87)

Note that the background metric in linearized gravity (nor full general relativity) is not
traceless, no matter whether we consider Minkowski or Euclidean backgrounds. As in
the case of the antiferromagnet analogue, it is best not to confuse the symmetry break-
ing ground state with the spacetime background that controls the coupling between
terms in the action.

In this representation, the dynamical modes of the spin nematic are subject at
minimum to the following physical constraints which in part mimic the conditions of
Eq. (2.105).

Q̃µ
µ = 0 , [traceless], (4.88a)

Q̃0µ = 0 , [no scalar or vector components], (4.88b)

The freedom to choose the orientation of the ground state means there is not automat-
ically a parallel constraint to Eq. (2.105c).

For a system with order captured by a director pointing along the z-axis, the
polarization tensors for the corresponding excitations [5, 11] can be described to leading
order by the promoted objects

ϵ̃1
µν = 1

2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , ϵ̃2
µν = 1

2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 . (4.89)

The general condition that describes this structure of the degrees of freedom for
the ferroquadrupolar phase is

dαdβQ
αβ = 0 , (4.90)

which is explicitly analogous to Eq. (2.105c)4, assuming that the director d and the
wavevector k are parallel.

This therefore motivates the need to develop a unitary basis transformation such
that we can identify a full dictionary between the excitations of the ferroquadrupolar
phase in spin space and deformations of real space effected by a gravitational wave.

To connect these representations, we can define a transformation from real-space
4Note however that this condition does contain matrices Q̃αβ that satisfy the condition analogous

to

dαQ̃ = 0 . (4.91)
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to spin-space and back using a subset of the generators of SU(4), namely, those which
correspond to the real-valued generators of SU(3) up to a zero padded row and column

λ1 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , λxy3 =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 , (4.92a)

λ6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , λyz3 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 , (4.92b)

λ4 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , λxz3 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

 , (4.92c)

whose action on any ϵ or ϵ̃ modifies only the spatial components of the polarization
tensor, and corresponds to rotation of quadrupole moments without mixing in any spin
dipole moments.

I here define a protocol to identify the excitation tensor for arbitrarily oriented ferro-
quadrupolar order with the structure of the tensor for a gravitational wave propagating
along an arbitrary direction. This protocol can be divided into three steps.

1. The director d is mapped onto the z−axis by rotating the polarization tensor
through an angle − arccos(d · ẑ) around the orthogonal vector vd

vd = d× ẑ
|d× ẑ|

, cos θ = d̂ · ẑ . (4.93)

2. Then apply an SU(4) transformation that maps the spin-space excitations to the
form of real-space excitations.

3. The ẑ aligned excitation now represents a gravitational wave propagating along
the z−axis. To describe an arbitrary direction of propagation, the excitation
tensor is rotated through an angle arccos(k · ẑ) around the orthogonal vector vk

vk = k × ẑ
|k × ẑ|

, cosϕ = k̂ · ẑ , (4.94)

.

This transformation can also be carried out in reverse to find the appropriate descrip-
tion for arbitrarily oriented ferroquadrupolar order from the structure of the tensor for
a gravitational wave. I then combine these three steps into the general transformations
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of the form [7]

Qµν = R[vd, θ]αµR[vd, θ] β
ν

[
R[vk, ϕ]γρR[vk, ϕ] κ

σ

hγκ
[
λ1 ⊗ λ4 + λ3xy ⊗ λ6

]ρσ
αβ

] , (4.95)

hµν = R[vk, ϕ]αµR[vk, ϕ] β
ν

[
R[vd, θ]γρR[vd, θ] κ

σ

Qγκ

[
λ4 ⊗ λ1 + λ6 ⊗ λ3xy

]ρσ
αβ

] , (4.96)

where R[m, θ] is a padded SO(3) rotation matrix

R[m, θ] =0 0 0 0
0 Cos[θ] + (1 − Cos[θ])m2

1 (1 − Cos[θ])m1m2 − Sin[θ]m3 Sin[θ]m2 + (1 − Cos[θ])m1m3
0 (1 − Cos[θ])m1m2 + Sin[θ]m3 Cos[θ] + (1 − Cos[θ])m2

2 −Sin[θ]m1 + (1 − Cos[θ])m2m3
0 −Sin[θ]m2 + (1 − Cos[θ])m1m3 Sin[θ]m1 + (1 − Cos[θ])m2m3 Cos[θ] + (1 − Cos[θ])m2

3

 .

(4.97)

The action of this operator is to rotate a state oriented along the direction of a vector
m to a final state oriented along direction ẑ as described in the former protocol.

There is one additional point worth significant remark, namely, that the spin ne-
matic excitations exist in a three-dimensional Hilbert space (trivially promoted here
to three dimensions plus one null dimension for ease of representation) independent of
the physical dimension of the system. This means that such analogue waves also exist
in low-dimensional spin nematic phases. Recall however that for gravitational waves,
three dimensions of space and one of time are minimally required to support their
existence. However, the analogue in spin nematics allows us to explore analogue grav-
itational waves in systems of arbitrary dimension, a point which I will use to motivate
attractive charges for this analogue in Section 4.5.3, and an approach to experimental
observation in Chapter 5.

In conclusion, the action describing excitations about a ferroquadrupolar ground
state is in direct correspondence with that of linearized gravity. The quadrupolar
Goldstone modes are in one-to-one correspondence with gravitational waves in flat
spacetime: we can always identify a mapping that transcribes the excitations of a
ferroquadrupolar spin nematic onto those of a gravitational wave in flat spacetime and
viceversa.

4.5.2 Quadrupolar nature of excitations in linearized gravity
and spin nematics

Having so far seen the connection between the Goldstone modes of spin nematics and
gravitational waves, I now turn to a deeper investigation of the nature of the excitations
themselves, and showcase the relationship between the nature of fluctuations in the
Hilbert space to those of spacetime.

In order to visualize the effect of a gravitational wave, and show that it has an
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analogous notion in the spin nematic wave, I will first derive the form for a surface of
constant induced strain and then show the analogous quantity in a spin nematic.

Consider the following measure of distance between spacetime events

ds2 def= (x− x′)2 (4.98a)
= gµν(x− x′)µ(x− x′)ν , (4.98b)

which is invariant under transformations of the Poincaré group

xµ → x̄µ = Λµ
νx

ν + aµ , (4.99)

and general coordinate transformations Eq. (2.88a-2.88b). Now if the metric is per-
turbed by hµν separable from the background due to shorter time and length scales
involved, then this becomes

ds2 = (gµν + hµν)(x− x′)µ(x− x′)ν (4.100a)
= gµν(x− x′)µ(x− x′)ν + hµν(x− x′)µ(x− x′)ν (4.100b)

= ds2
0 + d̃s

2
, (4.100c)

where

d̃s
2 def= (x− x′)2 , (4.101a)

= hµν(x− x′)µ(x− x′)ν , (4.101b)

defines an appropriate contraction over indices to give a scalar measure of distance.
Consider then the quantity

d̃s
2

(x− x′)µ(x− x′)µ
= hµν(x− x′)µ(x− x′)ν

(x− x′)µ(x− x′)µ
. (4.102)

If we now define the strain induced by a gravitational wave on the distance separating
two spacetime events.

ϵ = d̃s

|x− x′|
, (4.103)

we see that we can identify surfaces of constant induced strain, which can be represented
by

ϵ = ±
(hµν(x− x′)µ(x− x′)ν

|(x− x′)|2
) 1

2 , (4.104)

with corresponding surfaces of constant strain squared

V (t,x) = hmn(t,x)xmxn
|x|2

, (4.105)
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Figure 4.3: Equipotential surfaces demonstrating the equivalent quadrupolar breathing behaviour
of the modes of both gravity [cf. Eq. 4.105] and the spin nematic [cf. Eq. (4.107)]. Figure reproduced
from [7] with permission.

where for comparison with the spin nematic, the time and space components of four-
vectors have been explicitly separated. This quantity is visualized in Fig. 4.3 which we
can call a surface of equal field strength, and provides a scalar representation of the
quadrupolar nature of the gravitational wave.

Next I show how we can identify a parallel quantity in the spin nematic. Consider
the expectation value

⟨Q̃αβ⟩ =

〈
dα
∣∣∣Q̃αβ

∣∣∣dβ〉
|dα|2

. (4.106)

This defines surfaces of equal probability to measure a given superposition of the
quadrupole components.

We can also examine the wavefunction amplitude, defined as an analogous equipo-
tential surface to Eq. (4.105)

V (S, (t,x)) = SmQ̃mn(t,x)Sn
|S|2

, (4.107)

which is functionally identical to the equal strain surface for the gravitational wave
visualized in Fig. 4.3, and insensitive to which basis we are in. Both of these quantities
showcase the characteristic oscillation of quadrupolar degrees of freedom, and we can
conclude that independent of any basis choice, the underlying nature of such modes is
the same.

4.5.3 Homotopy and defects of the spin nematic phase
Here I will briefly review the order parameter space of the spin nematic, and corre-
sponding topological windings present in two dimensions, with an eye to identification
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of charges which behave like mass.
The Lagrangians of the nematic phases discussed in this Chapter share SU(2) as

their full symmetry group. The nature of symmetry breaking order preserved inversion
symmetry is characterized by the infinite dihedral group, and this in turn defines the
order parameter manifold as [209, 210]

SU(2)/D∞ = RP2 (4.108)

The order parameter space of the nematic liquid crystal and ferroquadrupolar spin
nematic therefore correspond to the topological space RP2, see Fig. 4.4a.

The order parameter manifold provides us clear predictions about the defects that
can arise. The π1 defects in two dimensions—corresponding to point defects—for RP2

are Z2 defects, namely, they are their own antidefect, and so their topological charge
does not carry any signature. In fact, all such defects are topologically equivalent, since
any non-trivial loop on RP2 can be continuously deformed into any other.

Recall another key property of spin-2 field theories, namely, that they mediate
attractive interactions. As in the case of the XY analogue, the spin nematic state
provides us here with visual confirmation of this fact. Observe in Fig. 4.4c how nearby
domains of directors can reach maximal alignment if the defects are free to approach
one another and annihilate. This provides a visual confirmation of the fact that a
spin-2 field theory mediates attractive interactions between sources of the field, as in
the case of gravity.

4.6 Spin nematics in experiment
Quantum spin nematic candidates have been long investigated, in both the context
of magnetic insulators and spinor condensates. Here I briefly review progress in both
areas, with a view to identify analogue gravitational waves proposed here in experiment.

4.6.1 Spin nematics in magnetic insulators
In the context of magnetic insulators, the possible existence of quadrupolar order in
spin-1 magnets was suggested in 1969 [87]. For spin-1, well known candidate spin-
nematic materials are FeGa2S4 and NiGa2S4, which have an effective triangular lattice
structure of Fe or Ni atoms with effective spin-1. These materials have motivated
extensive investigation to explore the possibility of their spin nematic character [95, 99–
101, 211, 212]. However, quadrupolar order is directly hidden from most solid state
probes, a challenge that has motivated the ongoing search for detectable signatures
that could serve as a smoking gun signatures of nematic order, not exclusive to the
triangular lattice materials [5, 213–216].

In addition to work on spin-1 candidate materials, focus has also been shared by
spin-1

2 candidate materials. In spin-1
2 materials, the possibility of nematic order was

first discussed to arise from the collective interactions between pairs of spin-1
2 degrees

of freedom in the triplet state on bonds [89–91]. Indirect evidence suggests that such
bond spin-nematic phases can appear in materials such as the frustrated spin-chain
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(a) Goldstone modes. (b) A topologically non-trivial loop.
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(c) Spin nematic π1 defects.

Figure 4.4: The manifold RP2, the order parameter space of both the nematic liquid crystal and
the ferroquadrupolar liquid crystal, its symmetry restoring excitations, and topological defects in
order parameter space and real-space. All antipodal points on the boundary of the hemisphere are
identified. (a) For a ground state ordered along the x-direction, the two transverse Goldstone modes
are indicated by the blue arrows, denotes Qxy and Qyz respectively. (b) The π1 point defects on this
manifold correspond to topologically non-trivial loops such as shown in the blue dashed line, where the
red antipodal points are identified. Such loops are not oriented, as loops of two distinct orientations
can always be smoothly deformed into one another on this manifold, leading to the Z2 nature of the
defects. (c) Topological point defects of a spin nematic on a two dimensional lattice as observed in
the two-dimensional projection of the director field, obtained by Monte Carlo simulation.
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compound LiCuVO4 [217], Volborthite [215], and other candidate materials such as
solid 3He films [218] are also suspected to realize bond spin-nematics. It is worth
note that experimental work on these materials has been carried out in-field, and the
applied magnetic field reduces the available Goldstone modes from two to one, not
ideal for work with the analogue gravitational waves here proposed. Bond-nematic
antiferroquadrupolar order has also been discussed in theoretical works [219, 220], and
is also described at low-energies by a non-linear sigma model with linearly dispersing
Goldstone Bosons.

In conclusion, as for the spin-1 materials, definitive experimental evidence has yet
to be provided. For this reason, even though the candidate materials described here
present the correct number of low-temperature Goldstone modes at zero-field, and could
in principle realize analogue gravitational waves, the lack of methods to conclusively
detect these in solid state experiments currently prevent use of magnetic insulators for
their realization.

4.6.2 Spin nematics in spinor condensates
In contrast to the ongoing investigation within the solid state community, the exper-
imental existence of spin nematic phases have been clearly established in spinor con-
densates. Within cold atoms, the investigation of quantum spin nematics spans several
decades [102, 221, 222], with the last decade uncovering the successful detection of
spin nematic phases described by the order parameter Eq. (4.23) in condensates of
23Na [107, 223, 224]. Additionally, spin-1 alkali condensates are known to be described
in the tight binding limit by the Bilinear-Biquadratic model Eq. (1.19) [104], with 23Na
atoms presenting the appropriate scattering parameters to exhibit a ferroquadrupolar
nematic ground state.

The characterization of spin nematic order is also, at present, more directly acces-
sible in cold atoms than in magnetic insulators due to the existence of a variety of
probes that are free of the technical difficulties associated with magnetic insulators.

Firstly, in spinor condensates the characterization of the relative populations of
the condensate in each of the states |1⟩, |0⟩ and

∣∣∣1̄〉 can be directly measured, and
nematic phases populating the |0⟩ state alone can be distinguished, using for example
Stern-Gerlach measurement after releasing the gas from the trap [103, 121, 223].

Additionally, for phases in which the spin populations are mixtures of the three
levels, it has been shown that the relevant population composition can be deciphered
from statistical treatment of the phase information following spin rotation operations
applied to multiple realizations of the system [107].

In addition, it has also been shown that information from the quadrupolar channel
can be extracted from the interaction between light and the atomic gas [225]. The
optical properties of the atomic gas can be characterized in terms of the internal spin
structure of the atom

αmn = c0⟨ρ⟩δmn − ic1ϵmnl⟨Sl⟩ + c2⟨Qmn⟩ , (4.109)

where αmn is the electric polarizability tensor, with monopole, dipole and quadrupole
distributions ρ, S and Qmn, and corresponding coefficients ci. The vector and tensor
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properties contribute to the optical birefringence. In terms of passing electromagnetic
wave, which is transverse in nature, the transverse polarizability can be measured from
the phase imprinted on the electric field by passage through a slice of thickness dz [121]

Eout(x, y, z + dz) = eik[1+ 1
2α⊥]dzEin(x, y, z) . (4.110)

where k is the frequency of the light used, and α⊥ are the components of the polariz-
ability tensor defined by equation Eq. (4.109) which are orthogonal to the the direction
of the light (in this case the z-direction). Assuming a thin gas cloud, such as for a
quasi-two-dimensional system, the phase imprinted on the transverse wave takes the
form [121]

E⊥
out(x, y) ≈ e[i

k
2 (c0ρ(x,y)+ c2

2 (Qxx(x,y)+Qyy(x,y)))][
1 + ik

2

(
c2
2 (Qxx(x, y) −Qyy(x, y)) ic1Sz(x, y) + c2Qxy(x, y)

−ic1Sz(x, y) + c2Qxy(x, y) − c2
2 (Qxx(x, y) −Qyy(x, y))

)]
E⊥
in

(4.111)

such that quadrupolar information in the transverse plane is in principle extractable
from direct imaging of the sample with light.

Independently, the direct measurement of the expectation values of dipole and
quadrupole operators has also been carried out [109]. This technique consists in using
microwave pulses to selectively couple states from distinct hyperfine manifolds, specif-
ically from the F = 1 manifold to the F = 2 manifold. Since there are more states
in the larger hyperfine manifold, non-commuting observables can be encoded in a re-
coverable way, such that dipole and quadrupole components can be obtained from the
populations of each state in the two respective manifolds e.g.

Sx = n2,+2 − n2,−2 , (4.112)
Qyz = n1,+1 − n1,−1 , (4.113)

where nF,m represents the population of each species in the F manifold with magnetic
quantum number m.

All of these independent strategies for measuring nematic order and its quadrupolar
components suggests that the cold atom toolbox is well-suited for the simulation of ana-
logue gravitational waves discussed here. We will return to the prospect of simulating
analogue gravitational waves in cold atoms in Chapter 5.

4.7 Chapter summary
This Chapter has treated spin nematics and their particular realization in spin-1 mag-
nets. We have seen that spin nematics are described in the low-energy limit by a
non-linear sigma model, whose action is in direct correspondence with the action for
linearized gravity. Building on this, I have presented a novel analogue between the
Goldstone modes of ferroquadrupolar spin nematics and gravitational waves—both
of which are massless, quadrupolar waves described by symmetric, traceless tensors—
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which holds independent of the spatial dimension of the realization of the spin nematic.
This is the case since the Hilbert space of the nematic waves is automatically three
dimensional in our Universe, independent of the dimension of the system. With this in
mind, I have then hinted at the existence of attractive defects that mimic the behaviour
of gravitating bodies in two-dimensional spin nematics. I have also reviewed current
state of spin nematics in experiment, with a view to realizing the analogue presented
here in spinor condensates. I will discuss these last two points in more depth in the
next Chapter.



Chapter 5

Numerical investigation of
gravitational wave analogues

“The more one fails, the greater the chance that it works.” - Les Shadoks

The analytic results developed in Chapter 4 identify a connection between the
Goldstone modes of spin nematics and gravitational waves in linearized gravity.

In this Chapter, I expand on this connection by carrying out numerical simulation
leading to the identification of gravitating vortices in a two-dimensional ferroquadrupo-
lar spin nematic which shed analogue gravitational waves during their attractive in-
spiral towards annihilation [7].

I first provide a brief overview of the semiclassical simulation methods I have used
to produce the results in this Thesis. I first review Markov-chain Monte Carlo methods
for the generation of thermodynamic properties and other data at thermal equilibrium,
such as spin-spin correlations. I then review the Molecular dynamics scheme applied to
spin systems. These simulations in combination are then used to produce the keystone
results of this Thesis, corroborating the existence of gravitational wave analogues in
spin nematics. Building on this, I finally outline an experimental protocol for this
analogue in cold atoms.

5.1 Classical Monte Carlo methods
Monte Carlo methods refer to a huge class of numerical methods of continued relevance
within physics and beyond [226]. Named for the famed casino in Monaco, within
the context of statistical physics, these methods refer to simulation techniques from
which specific properties of a physical system can be estimated in polynomial time. In
this Section, I provide an overview of classical Markov-chain Monte Carlo simulation,
discussed further in e.g. [227, 228] and its specific application to spin models discussed
in this Thesis.

The key idea behind Monte Carlo methods is to numerically estimate observables by
averaging over a series of statistically-independent samples drawn from an appropriate
ensemble. For very large state spaces, it is not realistic to wait until the simulation
has sampled the whole space before being able to make an average measurement.
Therefore, one typically employs an appropriate sampling distribution, chosen such

105
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that the estimator corresponding to the observable converges for a large number of
samples Ns. This strategy is referred to as Importance Sampling [227].

A Markov-chain Monte Carlo algorithm is one way to achieve just this. The strategy
is to generate a sequence of states drawn from a physically appropriate probability
distribution, where each element of the sequence is obtained from the previous by
updates satisfying a condition called “detailed balance”.

This condition arises from choice of the sampling distribution which describes the
equilibrium distribution of the system. This equilibrium condition is equivalent to
conservation of the probability na to occupy state a

dna(t)
dt

= 0 , (5.1)

where ∑
a

na = 1 . (5.2)

Given that the rate of change for the probability to be occupying configuration a is
determined by all the ways to enter or leave the configuration a, we can define

dna(t)
dt

=
∑
b

nb(t)P (b → a) − na(t)P (a → b) . (5.3)

It is necessary that the Markov chain be able to sample in principle every state in
the configuration space. Therefore, we expect the transition probabilities P (a → b) of
moving from one configuration a to the next b to be always non-zero, even if very small.
An appropriately chosen distribution function, such as the Gibb’s distribution we will
see momentarily, will ensure this condition holds. This corresponds to the property
that in the large time limit the Markov chain explores the whole configuration space,
and receives the name ergodicity.

Combining Eq. (5.1) and Eq. (5.3) leads to the condition∑
b

nb(t)P (b → a) =
∑
b

na(t)P (a → b) , (5.4)

which is the Detailed Balance condition. A Markov-chain Monte Carlo algorithm thus
provides an artificial kind of dynamics that evolves the configuration of the system
towards the equilibrium manifold of configurations.

The simplest Markov-chain Monte Carlo algorithm is the Metropolis algorithm
[229], in which we define the Gibb’s distribution for an ensemble by the set of proba-
bilities

na = e
− Ea

kBT

Z
, (5.5)

Z =
∑
i

e
− Ei

kBT , (5.6)

with Z representing the partition function. Direct sampling of such distributions is
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hard in general since it requires calculating Ei for all possible configurations. Instead,
by working with the Detailed Balance condition

P (a → b)
P (b → a) = nb

na
= e

− (Eb−Ea)
kBT , (5.7)

we can define the ratio of transition probabilities without reference to the partition
function, and depending solely on the gradient of relative energy between two configu-
rations. Therefore, the probability with which we should accept a proposed move from
a to b is

Paccept = min
(

1, nb
na

)
, (5.8)

where in the case
nb
na

≥ 1 , (5.9)

the energy is reduced by accepting the move. Otherwise, the move is energetically
unfavourable, but can still occur with finite probability, as required by ergodicity. For
a system of size N , we define a set of N such moves as a Monte Carlo sweep.

In conclusion, with clever choice of update rule, we can sample from the probability
distribution without us ever having to directly evaluate the full distribution and this
is the most fundamental tool for simulating spin models. There are many additional
tricks one can apply, some specific to certain categories of models, and I will here review
the techniques I have employed in my simulations of O(N) and U(3) models. I will
first describe how we make thermodynamic measurements using Markov chain Monte
Carlo.

5.1.1 Equilibrium measurements, estimators and block aver-
aging

When simulating spin models using Markov-chain Monte Carlo, the goal is to make
reliable estimates of the thermodynamic behaviour of the system at a given temperature
T or other model specific parameters, such as applied field h or internal coupling
strength J . Extracting the dependence of observable equilibrium properties on these
variables teaches us something about the phase of the system. For simple ordered
phases, such as the ferromagnet, while we may a priori know what the low-energy
configurations look like, for many systems we do not always know in advance what the
equilibrium subspace may look like. Indeed, exploring the unknown is the strength of
simulation methods, once appropriately calibrated.

Models with simple interactions, such as the Ising model or the Heisenberg model,
exhibit well-known exactly soluble limits in which have knowledge in advance of the
observable macroscopic properties of the system. These known limits serve as bench-
marks to help iron out systematic errors.

One key observable we can measure in this way is the system energy. Other quan-
tities include macroscopic order parameters, such as the staggered magnetization. We
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can then extract the thermodynamic behaviour of such quantities by constructing quan-
tities such as the heat capacity C or the magnetic susceptibility χ

C = ∂T ⟨E⟩
T

|h = ⟨E2⟩ − ⟨E⟩2

T 2 (5.10a)

χ = ∂T ⟨M⟩
T

|h = ⟨M2⟩ − ⟨M⟩2

T
(5.10b)

where the energy E and macroscopic magnetization M are averaged over the states
sampled at a given temperature and at fixed values of other variables. The heat
capacity sensitively encodes information about how the energy stored per degree of
freedom changes as a function of temperature, and can exhibit critical scaling near
phase transitions.

With a functional algorithm free of systematic error for the simulation of a given
problem, the primary source of errors arising in Monte Carlo data is statistical in origin.
Good approximations to the actual values of the observables rely on large numbers of
measurements Ns, over which we define the estimator for the variable of interest x as
the average

x̄ = 1
Ns

∑
i

xi , (5.11)

with standard deviation defined [227]

σN =

√√√√ ¯(x2) − x̄2

N − 1 , (5.12)

that provides a measure of the statistical distribution of individual instances xi, as-
suming these are statistically uncorrelated. However, by virtue of the Markov chain
method, subsequent samples are not uncorrelated. It is therefore important to only
measure again after enough time has passed that the individual instances no longer are
correlated. To quantify this, the degree of autocorrelation for a given observable after
some time t can be estimated

λ(t) =
t∑
t′
x(t′)x(t′ + t) − x̄2 (5.13)

where this quantity typically decays exponentially,

λ(t) ∼ e− t
τ (5.14)

in which case the autocorrelation time τ can be estimated from examination of the
exponential behaviour, and measurements should be spaced accordingly. It was also
shown by Muller-Krumbhaar and Binder [230] that the standard deviation can be
corrected to account for autocorrelations with knowledge of the autocorrelation time τ .

If we are interested in estimating the error in derived quantities, we can propagate
the error measured by the standard deviation in the originally measured observable.
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(a) Heat capacity benchmark for blocking method.

(b) Energy and magnetization autocorrelation at low temperatures.

Figure 5.1: Benchmarks for the blocking procedure for error estimation of derived quantities.(a)
Heat capacity as a function of temperature in the O(3) square lattice Heisenberg model at J = 1,
calculated with and without the blocking strategy, both results overlaid. The results are in agreement
within statistical uncertainty. (b) Energy E and order parameter M autocorrelations as a function of
simulation time allow determination of an appropriate choice of NB , valid to the lowest temperatures
of interest in the system. The autocorrelation decays rapidly, such that NB on the order of 100 is
more than sufficient.
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This is straightforward to do in the case of simple dependence on the observable, such
as a linear combination. However, in e.g. the case of specific heat, error propagation to
the derivative can be cumbersome, though technically plausible via Taylor expansion.

For this reason, I employ an alternative strategy, called the Blocking method [227,
231]. This involves grouping measurements into blocks of uncorrelated measurements
which are used to make estimates of the derived observable and its uncertainty. To see
how this approach can lead to an appropriate estimate, let us consider specifically the
case of the heat capacity. The relevant estimator without blocking measurements is
given by

⟨C⟩ = 1
T 2

 1
Ns

Ns∑
i=1

E2
i − 1

N2
s

(
Ns∑
i=1

Ei

)2 . (5.15)

Next I define the equivalent estimator using the blocking procedure. Breaking down
the total measurements into a number of bins Nbins of respective bin-size NB

Ns = NB ·Nbins , (5.16)

the heat capacity estimator then takes the form

⟨C⟩B = 1
T 2

Nbins∑
j=1

 1
NB

NB∑
i=1

E2
i − 1

N2
B

NB∑
i=1

Ei

2
 . (5.17)

The first term in this estimator is equivalent to that of Eq. (5.15). However, the second
terms are distinct

1
N2
s

(
Ns∑
i=1

Ei

)2

̸=
Nbins∑
j=1

1
N2
B

NB∑
i=1

Ei

2

(5.18)

though are known to converge in the case that the measurements Ei are uncorrelated
[231], see Fig. 5.1.

In general any derived observable can be evaluated using this procedure, in com-
bination with careful assessment of the maximum autocorrelation time down to the
lowest simulated temperature, thus providing a statistical distribution of values over
which to average and evaluate the statistical deviation of the derived quantity. Having
reviewed the process of measurement in a classical Markov chain Monte Carlo simula-
tion, I will next provide some background on best practices to equilibrate the system
prior to beginning any measurements.

5.1.2 Simulated Annealing
The process of reaching equilibrium takes time, particularly if the starting configuration
of the system is far from the subspace describing equilibrium. For this reason, one
cannot simply start to measure desired observables right from the beginning of the
simulation, particularly if the starting point is somehow out of the ordinary in the
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ensemble. Instead, some time will need to be allowed for the system to thermalize1.
The high temperature state of any system is always entropy dominated. Once we

pick an initial temperature for the system which is roughly an order of magnitude above
the interaction scale of the problem, then any completely random initial configuration
is an equally valid description of the thermally equilibrated state at that temperature.
From this starting point, we can gradually turn the simulation temperature down to
the target temperature of interest. This process of simulating a hot sample which is
gradually cooled receives the name simulated annealing.

The annealing to the target temperature must always be followed by an appropriate
thermalization time. Depending on the details of the system being simulated, annealing
timescales and thermalization timescales on the order of O(105 −106) can be sufficient.
For the systems I consider in this Thesis, these timescales are sufficient.

For some systems, particularly frustrated or glassy systems, the free energy land-
scape across the configuration space may have many local minima. In such cases there
could be a danger that local updates such as the Metropolis update in combination
with the annealing as a strategy to reach equilibrium may fail. In such circumstances,
this approach should be used with care in combination with strategies such as parallel
tempering, introduced by Marinari and Parisi [232] or non-local updates e.g. [233, 234].
For the results I show in this Thesis, I will not employ parallel tempering.

5.1.3 Overrelaxation
Another strategy to improve the efficiency of the Monte Carlo sampling consists in
locally decorrelating configurations of the system through a process known as over-
relaxation [235, 236]. In this section, I briefly review how this works for the O(3)
Heisenberg model.

Consider the local environment of an O(3) spin Si, defined by

H i =
∑
j=i+δ

Sj , (5.19)

where site j represents any lattice site in the immediate neighbourhood of site i.
Now suppose we take the spin at site i and bump it randomnly to another config-

uration within the space of states with equal energies. For O(3) spins, the states with
equal energy are all those whose inner product with H i is constant, and so describes
the boundary of a cone on the sphere. The process of updating the spin i is equivalent
to performing the rotation

S′
i = R(H i, ϕ)Si , (5.20)

defined around the axis H i and by an angle ϕ. We could then choose random numbers
1To motivate this, it is helpful to think of the simulation like a real experiment. If we want to make

measurements on a physical sample that we took from the shelf at room temperature and the target
temperature is much lower, then putting the sample too quickly into the low temperature environment
will quench the system far from its equilibrium state and it will take time for the induced dynamics
to quiesce. A better strategy if we are interested in the equilibrium properties is to slowly cool the
sample, allowing it to remain in quasi-equilibrium throughout the process.
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ϕ on the interval [0, 2π] and perform these rotations in combination with every sweep of
the Monte Carlo update. However the generation of random numbers is computation-
ally expensive in the context of Monte Carlo simulation, where we are repeating large
numbers of such operations to obtain statistically valid data. It is therefore enough
instead to simply rotate every time by a constant ϕ = π.

In this case, the corresponding update takes the simple form

S′
i = −Si + 2H i · Si . (5.21)

Until this point, I have not presented the reader with any reason to suspect that
the local Metropolis update rule may not sample correctly from certain continuous
manifolds of states, such as that of O(3) spins. However, the same non-linearity present
implicitly in the length constraint on |Si|2 leads to incorrect sampling if the spin
components are directly sampled with this constraint in effect. An efficient method to
overcome this is discussed in the next Section.

5.1.4 Marsaglia method
An efficient method for sampling points randomly on a 2-sphere was presented by
Marsaglia in 1972 [237]. Starting with the generation of two random and uniformly
distributed variables x1 and x2, subject to the constraint

x2
1 + x2

2 < 1 , (5.22)

one can define a random point on the surface of the sphere with coordinates

S =
(

2x1

√
1 − x2

1 − x2
2, 2x2

√
1 − x2

1 − x2
2, 1 − 2

√
x2

1 + x2
2

)
. (5.23)

This scheme and its generalizations are of use for random sampling of constrained
variables in the context of Metropolis update algorithms, such as for general O(N)
systems and, as I will review in the next Section, for the U(3) representation of spin-1
systems.

5.1.5 U(3) representation for spin-1 in simulation
I here briefly describe how to carry out simulations using the U(3) formalism developed
in [11]. In Chapter 4, we saw that the Gell-Mann basis for SU(3) is sufficient to describe
transformations between states in the Hilbert space. However, the expression of the
commutation relations between S and Q operators in SU(3) is more cumbersome than
it needs to be. An alternative method is to use the U(3) algebra, as originally observed
by Papanicolau [82]. This formalism, explicitly developed in [11], exploits the simplicity
of the commutators in the U(3) representation to provide a linear form for the equations
of motion. While this is not necessary for the thermodynamic simulation discussed in
this Section, it becomes extremely relevant for dynamical simulation. For this reason,
I apply this formalism in both Monte Carlo and later Molecular Dynamics simulations
of the spin-1 Bilinear-Biquadratic model introduced in Chapter 1 and Chapter 4.
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The key idea is to observe that a tensor operator defined in terms of a complex
director d

Aαβ = d†
idj , (5.24)

spans U(3), c.f. Eq. (4.3). This operator has scalar, vector and tensor components

ρ = ⟨d†
αdα⟩ , (5.25)

which equivalently measures the length of the spin,

Sγ = ⟨ϵαβγd†
αdβ⟩, (5.26)

which corresponds to the dipole component, and

Qαβ = ⟨1
2(d†

αdβ + d†
βdα) − 1

3δαβd
†
γd

γ⟩, (5.27)

which has no orientation and measures quadrupole components. This set contains one
scalar operator that is not required for the description of the SU(3) Hilbert space, and
in order to ensure that it does not mix with the other operators, its magnitude is fixed
by setting the trace of the operator A to 1.

In terms of these operators, the Bilinear-Biquadratic Hamiltonian Eq. (1.19) intro-
duced in Chapter 4 then becomes

HBBQ =
∑
⟨ij⟩

(
J1Aαβ

i Aβα
j + (J2 − J1)Aαβ

i Aαβ
j + J2

)
(5.28)

where the new operators encode the antisymmetric dipole component and traceless
symmetric quadrupole components in the following way

Sα = −iϵαβγAβγ (5.29a)

Qαβ = −Aαβ − Aβα + 2
3δ

αβ Tr(A) . (5.29b)

Due to implicit constraint on the length of the director defining the U(3) spins,
a naive Metropolis update in which components of A are directly sampled will not
uniformly sample the 5-sphere2 corresponding to the state space. I employ a general-
ization of the Marsaglia method that was established in [11]. In this generalization, we
consider five random variables

θ1, θ2 ∈ [0, 1] , (5.30)
ϕ1, ϕ2, ϕ3 ∈ [0, 2π] , (5.31)

2Recall that the director has a total of six real degrees of freedom, and the length constraint fixes
one of these. Therefore in the scheme described here, the global phase degree of freedom is also be
sampled over, though in principle could be removed, restrictin instead to sampling over the 4-sphere.
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from which the corresponding random director takes the form

d = (x1 + ix2, x3 + ix4, x5 + ix6) , (5.32)

with

x1 = θ
1
4
2 θ

1
2
1 sin(ϕ1) , (5.33a)

x2 = θ
1
4
2 θ

1
2
1 cos(ϕ1) , (5.33b)

x3 = θ
1
4
2

√
1 − θ1 sin(ϕ2) , (5.33c)

x4 = θ
1
4
2

√
1 − θ1 cos(ϕ2) , (5.33d)

x5 =
√

1 − θ
1
2
2 sin(ϕ3) , (5.33e)

x6 =
√

1 − θ
1
2
2 cos(ϕ3) . (5.33f)

The statistical independence of the six resulting components xi is valid in the limit of
large numbers of samples, as showcased by the convergence of the second moments of
the components, see Fig. 5.2.

Figure 5.2: Convergence of the second moments of the derived components xm at large sampling
number, revealing firstly that the statistical errors in all components respect the central-limit theorem
and secondly that the expressions Eq. (5.33) components are not biased or correlated.

Within the U(3) formalism, in addition to the equal-time structure factor cor-
responding to dipole-dipole correlations (c.f. Eq. (1.40)), we define the equal-time
structure factors corresponding to the two-point correlations of the A and Q tensor
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operators

SQ(q) = 1
N

∑
αβ

N∑
i,j

⟨Qαβ(ri)Qαβ(rj)⟩e−q·(ri−rj) , (5.34a)

SA(q) = 1
N

∑
αβ

N∑
i,j

⟨Aαβ(ri)Aαβ(rj)⟩e−q·(ri−rj) , (5.34b)

As a necessary precursor for studying the dynamical structure factors, I use these
quantities as benchmarks for my U(3) triangular lattice simulation and obtain results
in agreement with [11], as shown in Fig. 5.3. All Fourier transformations are carried
out using the FFTW3 library [238].

In the next Section, I will describe the procedure I follow for carrying out dynamical
simulations, which can be applied to any model system whose equations of motion can
be decoupled into a system of linear differential equations.

5.2 Molecular Dynamics
The dynamics of the spin systems of interest are governed by sets of linear differen-
tial equations. In this Section, I will review the Runge-Kutta method for integration
of coupled sets of linear differential equations, and showcase its application on XY,
Heisenberg and spin-1 systems, reproducing their excitation spectrum.

5.2.1 Runge-Kutta methods
Following the treatment in [239], I will briefly review how Runge-Kutta methods can
be used to simulate the dynamics of a system whose initial state is known, provided the
equations of motion can be decomposed into a set of linear differential equations. The
application of such techniques to the study of spin systems has been long established,
e.g. [240, 241], and the name Molecular Dynamics has been used in analogy to its use
in the simulation of the positional degrees of freedom of atoms and molecules.

Assume the dynamical quantity of interest is a multivariable function y, with equa-
tion of motion

dy

dt
= f(y, t) . (5.35)

If we know the initial condition y0, then we can to high degree of accuracy approximate
the value of y at the next timestep

y1 = y0 + h
∑
i=1N

biki (5.36)

where h denotes the size of the timestep and we can specify the number of stages n
that we wish to include

k1 = f(y0, t0) , (5.37a)
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(a) S(A)(q), triangular lattice. (b) S(Q)(q), triangular lattice.

(c) S(A)(q), on irreducible wedge. (d) S(Q)(q), on irreducible wedge.

Figure 5.3: Sample benchmark plots for classical Monte Carlo simulation of the spin-1 Bilinear-
Biquadratic model Eq. 5.28 on the triangular lattice, showing agreement with results Fig. 15 in [11].
(a) Equal-time structure factor measuring correlations of the A degrees of freedom, evaluated at
T = 0.030J for the triangular lattice Bilinear-Biquadratic model, for J1 = 0 and J2 = −1. (b) Equal-
time structure factor for Q degrees of freedom, evaluated for the same parameters. The Brillouin
zone boundary is depicted in white dashed line, and the blue dashed line delineates the irreducible
wedge. (c) Corresponding slice of SA(q) along the irreducible wedge, evaluated at T = 0.030J for
the triangular lattice Bilinear-Biquadratic model, for J1 = 0 and J2 = −1. (d) Corresponding slice
of SQ(q) along the irreducible wedge, evaluated at T = 0.030J for the triangular lattice Bilinear-
Biquadratic model, for J1 = 0 and J2 = −1.
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k2 = f(y0 + ha21k1, t0 + c2h) , (5.37b)
k3 = f(y0 + h(a31k1 + a32k2), t0 + c3h) (5.37c)

... (5.37d)

kn = f(y + 0 + h
n−1∑
i=1

aniki, t0 + cnh) , (5.37e)

where choice of coefficients that obey

ci =
n−1∑
j=1

aij (5.38a)
∑
i

bi = 1 , (5.38b)

will produce best results. Note that for equations of motion in which time does not
explicitly feature, the c coefficients do not play a role.

Higher order Runge-Kutta schemes provide more accurate results at times far re-
moved from the initial condition. The fourth order Runge-Kutta method is empirically
known to exhibit an ideal balance between algorithmic complexity and accuracy of
results [239], and I employ the fourth-order method in all dynamical simulation results
I present here.

5.2.2 Dynamical structure factors from simulation
One reason to carry out dynamical simulations of magnetic systems can be to study
their real-space dynamics. Another is to reveal statistical properties about the exci-
tation structure of a model. In this Section, I will describe how I use Runge-Kutta
integration to reproduce the dynamical structure factors for the XY, Heisenberg and
U3 spin models to further benchmark my simulations, before moving on to study the
real-space dynamics of analogue gravitational waves.

The dynamics of two-point spin correlations are an important observable which can
be probed in magnetic materials using inelastic neutron scattering experiments. The
relevant observable quantity for spin dipoles is

S(q, ω) =
∑
α

1
2πN

∫ ∞

−∞
dt eiωt

∑
i,j

eiq(ri−rj)⟨Sα(ri, 0)Sα(rj, t)⟩ , (5.39)

and can be defined in terms of a discrete equivalent measured from numerical simulation

Sα(q, ω) =
∑
α

1
NNt

Nt∑
t=1

eiωt
N∑

i,j=1
eiq(ri−rj)⟨Sα(ri, 0)Sα(rj, t)⟩ , (5.40)

with the average defined as the thermal ensemble average over a statistically significant
number of independent spin configurations3, which can be generated by classical Monte
Carlo simulation.

3For the results in this Thesis, I average over O(105) configurations.
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Figure 5.4: Benchmark plots for fourth-order Runge-Kutta simulation of the U(3) equations of
motion Eq. 5.46. (a) Conserved quantities related to the spin length, such as Tr(A) shown here, are
useful diagnostics for correct implementation of the simulation. For all states simulated Tr(A) = 1,
and it remains so to machine precision for the duration of simulation. (b) Deviation of the energy
from the initial configuration for a U(3) ferroquadrupolar state as the system is time evolved with a
fourth-order Runge-Kutta method. Small errors are accrued and can be further reduced in magnitude
by decreasing the simulation stepsize h.
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For the case of spin-1 within the U(3) representation, we can additionally define
the dynamical structure factors for the quadrupole degree of freedom

SQ(q, ω) =
∑
α,β

∫ dt

2πe
iωt⟨Qαβ(q, t)Qαβ(−q, 0)⟩ ,

= 1
NNt

Nt∑
t=1

eiωt
N∑

i,j=1
eiq(ri−rj)⟨Qαβ(ri, 0)Qαβ(rj, t)⟩ . (5.41)

and the tensor operator A

SA(q, ω) = 1
NNt

Nt∑
t=1

eiωt
N∑

i,j=1
eiq(ri−rj)⟨Aαβ(ri, 0)Aαβ(rj, t)⟩ . (5.42)

In previous chapters of this Thesis we have discussed several connections between
the Goldstone modes of certain ordered phases of spin systems, such as known for the
ferromagnetic XY magnet, implicitly known for the Heisenberg antiferromagnet and
now established here for spin nematics. The common thread amongst these systems is
the linearly-dispersive character of the low-energy excitations which can be obtained
by Molecular Dynamics simulation.

I next briefly list the equations of motion for XY, O(3) and U(3) spins, which all
can be cast into linear differential equations.

For the classical XY model, the Hamiltonian dynamics give us

ṗi = −∂H

∂θi
= JS2 ∑

<ij>

sin(θi − θj) , (5.43a)

θ̇i = pi , (5.43b)

for which I use a fourth-order Runge-Kutta method to simulate dynamics. In Fig. 5.5a,
we observe the linearly dispersing Goldstone mode at low energies, which is analogous
to an electromagnetic wave in flatland.

For Heisenberg spins, we have already seen in Chapter 3 the form of the equations
of motion

∂tS⃗i =
∑
δ

S⃗i × S⃗i+δ (5.44)

for which I again use a fourth-order Runge-Kutta method to simulate dynamics. In
Fig. 5.5b, we observe the linearly dispersing Goldstone mode corresponding to trans-
verse photons at low energies.

For U(3) spins, it was established in [11] that the equations of motion reduce to a
linear differential equation

∂tA
αβ
i = −i[Aαβi , H] (5.45)

= −i
∑
δ

(
J1(Aασi Aσβi+δ − Aσβi A

ασ
i+δ) + (J2 − J1)(Aασi Aβσi+δ − Aσβi A

σα
i+δ)

)
, (5.46)

for which I also employ a fourth-order Runge-Kutta method to simulate dynamics,
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(a) O(2) FM.

(b) O(3) AFM. (c) O(3) FM.

Figure 5.5: S(q, ω) evaluated from Molecular Dynamics simulations for different models on the
square lattice, showcasing the different character of the low-energy excitations. (a) S(q, ω) on the
irreducible wedge for the square lattice XY ferromagnet at T = 0.010J , showing the linearly dispersing
Goldstone mode. (b) S(q, ω) on the irreducible wedge for the square lattice O(3) antiferromagnet at
T = 0.010, showing the linearly dispersing Goldstone modes. (c) S(q, ω) on the irreducible wedge for
the square lattice O(3) ferromagnet at T = 0.010J , showing the quadratically dispersing Goldstone
mode.
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(a) SA(q, ω).

(b) SQ(q, ω).

(c) S(q, ω).

Figure 5.6: Molecular dynamics simulations showing the excitation spectra of a ferroquadrupolar
spin nematic, on the triangular lattice Bilinear-Biquadratic model at J1 = 0 and J2 = −1, at T =
0.050. These results are in agreement with Fig. 16 in [11]. (a) SA(q, ω), (b) SQ(q, ω) and (c) S(q, ω)
on the irreducible wedge for the specified parameters.
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with stepsize

h = 2π
10 ωmax

, (5.47)

where ωmax is the largest frequency present in the spectrum, which is model dependent.
This resolution of time steps yields an acceptable accuracy for the simulation timescales
of interest, see Fig. 5.4b. Note crucially that in Fig. 5.6b we observe maximal weight
corresponding to the linearly dispersing Goldstone mode corresponding to transverse
gravitational waves at low energies. At higher energies, the weight mixes into the dipole
channel, as alluded to in Chapter 4.

Having discussed my simulation methods and respective benchmarks for both ther-
modynamic measurements and dynamics, I turn to their application to the context of
spin nematic gravitational waves and how these can be generated.

5.3 Connecting it all: nematic gravitational waves
in simulation

We have seen in this Thesis arguments for the ferroquadrupolar spin-nematic phase to
exhibit two quadrupolar Goldstone modes, which are strikingly like gravitational waves
in vacuum. In this final Section, I show numerical results confirming that such waves
exist at low-energies in the quadrupolar channel, by examining the specific case of a
two-dimensional spin nematic4 in which they can be generated by the annihilation of
two Z2 vortices. Furthermore, the dynamics of the Z2 vortices is attractive, suggestive
of further parallels with mass.

5.3.1 Possible topologically mediated transition in 2D spin
nematics

As was discussed in Chapter 2, true long-range order cannot exist in reduced dimen-
sional quantum systems at finite temperature unless mediated by another mechanism
such as topological excitations, as exemplified by the XY ferromagnet. Previous work
on the triangular lattice O(3) Bilinear-Biquadratic model in Monte Carlo simulation
shows evidence for a topological phase transition [242]. However, recent results from
tensor network calculations do not find evidence for such a topological phase transition
in 2D [243]. The question can also be raised whether in the triangular lattice U(3)
Bilinear-Biquadratic model there is a topologically mediated phase transition.

Here I provide a phenomenological argument to suggest that the ferroquadrupolar
phase in the triangular lattice Bilinear-Biquadratic model could exhibit a topologically
mediated phase transition. This analysis builds on earlier unpublished work by my
collaborator Rico Pohle [244].

The ferroquadrupolar phase of the Bilinear-Biquadratic model exhibits a peak in
the heat capacity at finite temperature, see Fig. 5.7a. As discussed in Chapter 2,

4Recall as discussed at the end of Section 4.5.1 that the dimensionality of the system is unimportant
for the validity of the analogue, which relies on the internal dimensions of the Hilbert space.
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Figure 5.7: Exploration of topological phase transition into the ferroquadrupolar phase. (a) Heat
capacity as a function of temperature in the U(3) triangular lattice Bilinear-Biquadratic model at
J1 = 0 and J2 = −1, exhibiting a peak in the heat capacity. (b) Order parameter susceptibility as
a function of temperature in the U(3) triangular lattice Bilinear-Biquadratic model at J1 = 0 and
J2 = −1, exhibiting as scaling behaviour in good agreement with the scaling analytically predicted
for the BKT transition. This is consistent with the onset of a topologically mediated phase transition
into the ferroquadrupolar phase.
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the Mermin-Wagner theorem prevents the system from undergoing a transition to a
true long-range ordered phase at finite temperature. One could hypothesize that the
heat capacity peak arises for one of two reasons: either the peak is a finite-size effect
driven by the Goldstone modes, and should migrate towards zero-temperature in the
thermodynamic limit; or the finite-size feature is indicative of vortices, signaling that
there is a temperature below which there is an underlying change in the structure of
correlations, akin to the BKT transition in the XY model, characterized by algebraic
correlations at temperatures below the critical temperature.

Specifically, the correlation length in the paramagnetic regime for the BKT transi-
tion in the 2D XY model scales as [45, 47, 245]

ξBKT ∼ e
b√

T −Tc , (5.48)

where b is a critical exponent, in this case specific to the BKT universality class, and
Tc is the critical temperature. The structure factor is expected to scale as [45, 246]

S(q) ∼ ξ2−η
BKT , (5.49)

where for the BKT transition

η = 1
4 . (5.50)

The equivalent scaling behaviours for the ferroquadrupolar nematic phase has not
been derived to the best of our knowledge, and was beyond the scope of this project to
derive independently. In the absence of an established RG calculation, we construct a
phenomenological description of the paramagnetic regime, borrowing scaling relations
applicable to other models which share some similarities and compare their scaling to
results from simulation. We consider comparison to the XY ferromagnet and the O(3)
antiferromagnet, each presented in turn below.

We first examine if a parallel to the vortex physics exhibited by the XY model
and its BKT transition can be established. For comparison with simulation we de-
fine a quantity derived from the two-point correlations, called the order parameter
susceptibility, which for the ferroquadrupolar phase takes the form

χ(Q)(q) = SQ(q)
T

, (5.51)

which contains information about the correlations in the paramagnetic regime.
For the BKT transition, the scaling behaviour for this quantity follows from Eq. (5.49)

χ
(Q)
BKT = CBKT e

7b
4

√
T −Tc . (5.52)

Fitting the order parameter susceptibility Eq. (5.51) from simulation in the paramag-
netic regime at the Γ-point to the form of the scaling relation Eq. (5.52) leads to the
following values for the exponent b and parameters

b ≈ 0.8 , (5.53a)
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Tc = 0.39 , (5.53b)
CKT ≈ 6.0 , (5.53c)

and the result of the fit is shown in Fig. 5.7b.
Next we analyze the relevance of Goldstone modes on the scaling behaviour, bor-

rowing existing treatments for an O(3) antiferromagnet. The low-energy physics cor-
responding to the ferroquadrupolar phase is described by a non-linear sigma model
Eq. (4.87), with degrees of freedom inhabiting a Hilbert space larger than just SU(2)
alone. That said, we have also seen how the low-energy physics of the Heisenberg
antiferromagnet maps onto an O(3) non-linear sigma model. Therefore, we can phe-
nomenologically motivate a comparison between scaling relations for the classical O(3)
triangular-lattice antiferromagnet (HAFT) and the triangular lattice ferroquadrupole.
The scaling behaviour of the correlation length for the former has been established
[246–248]

ξHAFT ∼
(
T

B

) 1
2
e2 B

T , (5.54)

where B is a parameter specific to the model, and with the corresponding scaling for
the order parameter susceptibility [246]

χ
(Q)
HAFT = CHAFT

(
T

B

)4
e2 B

T , (5.55)

where CHAFT is a constant. Unlike the 2D XY model, the triangular lattice antiferro-
magnet is not believed to exhibit any order at finite temperature. There is no associated
proliferation of vortices mediating a topological phase transition, and the correlation
length diverges at zero temperature.

Fitting the order parameter susceptibility Eq. (5.51) from simulation again in the
paramagnetic regime at the Γ-point to this case Eq. (5.55) leads to the following values
for the parameters

B ≈ 6.994 , (5.56a)
CHAFT ≈ 3 · 10−7 , (5.56b)

and the result of the fit is also shown in Fig. 5.7b.
The thermodynamic results for the order parameter susceptibility at the ferro-

quadrupolar ordering vector q = Γ shown in Fig. 5.7b reveal that it exhibits a scal-
ing behaviour in the paramagnetic regime remarkably close to that predicted for the
BKT transition. This is consistent with the possibility that the two-dimensional fer-
roquadrupolar phase exhibits a topologically mediated crossover. However, given the
approximations made in the current analysis, we cannot provide a definitive answer
regarding the nature of the phase transition in the U(3) Bilinear-Biquadratic model.
That said, the presence of vortices is self-evident in 2D, both in experiment [249] and
in the simulations which are presented next in this Chapter. It is these vortices in
the low temperature phase that will next occupy our attention for the purposes of this
Thesis.
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5.3.2 Attractive interactions between vortex pairs
As discussed in Chapter 4, the order parameter space supports vortex point defects.
These show up in abundance in Monte Carlo simulations when the high temperature
paramagnet is quenched quickly to the low temperature phase, freezing in the higher-
energy vortex states that would otherwise be highly improbable to find using local up-
dates alone. The configurations obtained from Monte Carlo can then be time-evolved
using the Molecular Dynamics scheme described Section 5.2. As briefly alluded to at the
end of Chapter 4, the dynamical simulations reveal patterns of attractive interaction
between vortices, much like gravitational interactions, see Fig. 5.8 and Fig. 5.9, de-
scribed in more detail below. However, it should be noted that—in contrast to massive
objects in gravity—the Z2 nature of the vortices ultimately leads to the annihilation of
the attracted defect pair, rather than their coalescence. Nevertheless, as for the case of
massive gravitating objects—such as neutron stars and black-holes—on their in-spiral
leading up to a merger event, there are analogue gravitational waves emitted by pairs
of interacting vortices in close proximity. The amplitude of these waves can be seen
even at finite temperature above the thermal fluctuations of the background.

In Fig. 5.8, we see a series of images from simulation showing the total quadrupole
operator, defined as ∑

αβ

Qαβ . (5.57)

The first image, labeled t = 0, shows a sample configuration extracted from Monte-
Carlo simulation of the Bilinear-Biquadratic model, in which periodic boundary condi-
tions were used, at a finite-temperature below the threshold temperature Tc ≈ 0.39. In
this image, there are many Z2 vortices present. The sample configuration is then time
evolved using the Molecular Dynamics simulation previously described, with periodic
boundary conditions. The next image is taken from the simulation at timestep t = 11,
by which time several pairs of vortices that were in close proximity within the original
configuration have annihilated. By timestep t = 25, several other defect pairs have
attracted and undergone annihilation events. Each annihilation event is both preceded
and followed by emission of ripples in the quadrupolar channel, which I will show in
closer detail in Fig. 5.9.

In order to study the waves emitted by such events in more detail, I initialize a
vortex pair in terms of director configurations as defined in the context of classical 2D
nematic liquid crystals [250]

d(r) =

(− sin θ(r), cos θ(r), 0) for x1 ≤ x ≤ x2 ,

(cos θ(r), sin θ(r), 0) otherwise
, (5.58a)

where
θ(r) = 1

2 tan−1
(
y − y1

x− x1

)
− 1

2 tan−1
(
y − y2

x− x2

)
. (5.59)

with vortices located at

ri = (xi, yi) s. (5.60)
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Figure 5.8: Sequence of images showing the total quadrupolar operator
∑

αβ Qαβ in real-space,
obtained by time-evolution acting on a single configuration extracted from Monte Carlo simulation.
The image is riddled with Z2 vortices, which experience attractive interactions and generate analogue
gravitational waves during the in-spiral leading up to, during and after annihilation events, see also
Fig 5.9.

This indeed describes the point defects that arise in the Monte Carlo study: vortices
whose core has zero radius. In the context of the ferroquadrupolar phase, the sign
associated to either of the above defined defects is in fact not important, since the
nature of the order parameter space connects all such defects, see Fig. 4.4. In this
way, a simulation effectively at zero temperature—therefore free of thermal noise—
can be carried out. Using this scheme, I study the evolution of wave emission from
an interacting defect pair, shown in Fig. 5.9. At the start of the simulation, two
vortices sit at a distance of 15 lattice sites on a lattice of Lx = Ly = 180 sites. They
experience an attractive interaction, which starts slowly and gradually accelerates,
and is associated with an outpouring of quadrupolar wave trains. There is significant
motion occurring beyond timestep t = 500. Until timestep t = 630, there are still two
distinguishable vortices. After that time, they are annihilated, with a fresh wave train
released associated to the annihilation event. This large amplitude front can be seen
in the subsequent images as it propagates outwards. Waves continue to be emitted
immediately following the annihilation, as is the case for gravitational merger events.

Note that there is a different source of systematic error in this simulation, arises
from the top and bottom boundaries of the system where periodic boundary conditions
provide an interface between regions of distinct director alignment. This noise reaches
the field-of-view shown in these images by timestep t ≈ 350, and can be seen faintly in
the results of Fig. 5.9 and Fig. 5.10.

5.3.3 The “chirp” of nematic gravitational waves
The results of dynamical simulation shown in Fig. 5.9 reveal that for each vortex-pair
annihilation there are emitted wavefronts in the quadrupolar channel that correspond to
analogue gravitational waves. To make further comparison of this phenomena with that
of real gravitational wave observations, I next study the frequency decomposition of the
wavefronts as a function of time. We will see that the frequency distribution changes
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Figure 5.9: Sequence of close-up images showing the total quadrupolar operator
∑

αβ Qαβ in real-
space, obtained by time-evolution of an initialized pair of defects. The emission of analogue gravita-
tional waves leading up to and after the annihilation event is shown.
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Figure 5.10: Sequence of images showing the total quadrupolar operator
∑

αβ Qαβ in real-space,
obtained by time-evolution of an initialized pair of defects. The distinct wave trains corresponding to
events identified in Fig. 5.11 are marked by arrows.
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(a) Spectrogram from simulated gravitational wave emission.

(b) Chirp signal corresponding to vortex annihilation.

Figure 5.11: (a)Spectrogram of the time-resolved signal corresponding to the total quadrupolar
operator

∑
αβ Qαβ , as “measured” by a line of “detectors” placed on the triangular lattice orthogonal

to the passing wavefront. The line of “detectors” is placed at a positions marked in blue in Fig. 5.10.
(b) A zoom-in on the chirp emitted by the vortex annihilation, characterized by the upturn in the
frequency composition of the wavefronts towards late times. Windowing artifacts are present in the
signal, due to the large size of the time window relative to the duration of the merger event.
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approaching the annihilation event, and that the annihilation event is associated with
a sudden increase in higher frequencies called a “chirp”, in analogy to the result from
the LIGO collaboration reproduced in Fig. 1.7.

Focusing on the real-space data corresponding to the total quadrupolar operator∑
αβ Qαβ, I extract a time-dependent signal corresponding to the amplitude of a wave-

front at a distance from the source, a pair of in-spiraling vortices. To better sample
the wavefronts and to improve the signal-to-noise ration, I do not extract this sig-
nal at a single point. Rather, I choose a line of points orthogonal to the wavefront
and orthogonal to the boundary noise—therefore along the y-direction in this case—to
serve as "detectors" of the quadrupolar deformation. The chosen points correspond
to those shown in blue in Fig. 5.10, with some discontinuities present along this line
of points due to the geometry of the triangular lattice. In real-space, we can observe
by eye that there are several wave trains which are emitted prior to the annihilation
event. The leading front associated to each of these is tracked in Fig. 5.10, and the
selected timesteps correspond roughly to those at which each leading front arrives at
the “detector” line.

To construct a spectrogram which displays time-frequency information for the sig-
nal extracted from the “detector”, I choose a time window of O(100) units of simulation
time. This is sufficient to resolve features in the time-frequency domain without dis-
torting their position in the time domain, as compared to the real-space data shown
in Fig. 5.10. Smaller windows do not provide sufficient resolution in the frequency
domain. Larger windows risk the overlap of features in the time-domain. The re-
sulting spectrogram is shown in Fig 5.11. The events visible at marked times in the
spectrogram are in turn also marked in real-space in Fig. 5.10, corresponding to the
aforementioned leading wavefronts. The annihilation is associated with a special burst
of wave emissions, as can be seen by eye in real-space, and which is characterized by
a rapid upsweep in frequency content known as a “chirp”. The emissions during the
approach and annihilation process are qualitatively similar to those of gravitational
merger events, and the merger itself in the spin nematic case is also characterized by
a chirp in the spectrogram, see Fig. 5.11.

In summary, the two-dimensional ferroquadrupolar spin nematic harbours vortices
that experience attractive interactions, and emit analogue gravitational waves, shown
in Chapter 4 to be in one-to-one correspondence with gravitational waves. The gravita-
tional wave profile originating from a vortex-annihilation event qualitatively resembles
a black-hole or neutron star merger event through the generation of a characteristic
chirp.

5.4 A proposal to realize nematic gravitational waves
in spinor condensates

In this Chapter, I have simulated analogue gravitational waves in spin nematics and
showcased some characteristic signatures. I now develop estimates suggesting these
waves can be seen with present day experiments.
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5.4.1 Experimental protocol
As discussed in Chapter 4, ferroquadrupolar spin nematics have been realized in spinor
condensates of 23Na, e.g. [103, 107, 223], with several techniques available for measuring
quadrupolar observables in real-space [109, 223, 225].

I now describe an experimental protocol that would lead to the production of ana-
logue gravitational waves in a spinor condensate. The key to this, as illustrated in this
Chapter, is to rely on the annihilation of Z2 vortex pairs to excite the quadrupolar
modes. Starting with a spinor condensate of 23Na atoms, a transverse optical lattice
should be applied in order to isolate quasi-2D slices of the system, as done in e.g. [115].
Another optical lattice may be applied to reproduce the triangular lattice, however this
is unnecessary as this spin-1 condensate is known to reproduce a nematic state without
a microscopic lattice [103, 107, 223].

In order to induce the formation of vortices, the system should go through a rapid
quench from a non-nematic state to the nematic state. In simulation here, I have
quenched temperature from the paramagnetic to ferroquadrupolar phase. However,
an easier strategy within a cold atomic gas is to perform a quench in the parameter
space from a neighbouring low-temperature phase. This has already been carried out
[249] by quenching from the antiferromagnetic phase to the ferroquadrupolar phase,
resulting in Z2 defect formation.

Then, as illustrated in simulation here, the vortices will attract and annihilate
pairwise, behaviour which can be measured in real-time using imaging with light [225],
and coupling to higher hyperfine manifolds to make readouts of the quadrupolar and
dipolar channels [109], as previously discussed in Chapter 4.

5.4.2 Timescales for gravitational wave analogues
There are two relevant dynamical scales that further determine the experimental ac-
cessibility of the analogue I propose. The first is the wave speed in the condensed
matter medium, and the second is the vortex lifetime. On the triangular lattice, the
microscopic speed of propagation I predict from the field theory is

v =
√

2z(−J2)(J1 − J2)(α2
1 + α2

2 + α2
3) . (5.61)

For spinor condensates, the coupling parameters J1 and J2 can be related to the scat-
tering lengths [104]. I use this to make a back-of-the-envelope estimate for the wave
speeds to be on the order O(1 − 103)µm

s
. In the solid state context, the coupling J2

could be on the order of meV, leading to a wave speed on the order O(102)m
s

.
From simulation, the timescale associated with the annihilation of Z2 vortices is of

order 102J−1
2 , and this can be taken as an order of magnitude estimate for the vortex

lifetime. Converting this figure in terms of the value of the coupling J2, the back-of-
the-envelope estimates I obtain for the relevant timescale are O(1)ns in the solid state
context and O(0.1 − 10)s.

Observation of topological defects in nematics has been carried out [249], with dy-
namical timescale on the order 1s, consistent with estimates I provide. In combination
with the rest of the experimental achievements in the observation of spin nematics in
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spinor condensates, it is highly likely that the dynamics I have studied in this Thesis
can be observed without new experimental breakthroughs.

In conclusion, cold atom experiments can today reproduce all of the elements neces-
sary to recreate and observe the gravitational wave analogues that I have investigated,
and work in magnetic insulator candidates may not be far behind.

5.5 Chapter summary
In concluding this Chapter, we have provided evidence for a topologically mediated
phase transition into the ferroquadrupolar phase of the triangular lattice Bilinear-
Biquadratic model. The corresponding defects experience attractive interactions in
analogy with gravity, and generate a wave profile analogous to that of massive in-
spiraling objects. These simulation results corroborate the analogue presented from
the field theory, and provide a clearer connection with gravitational waves and the
processes that generate them. Finally, I have outlined an experimental protocol for the
realization of these analogue gravitational waves in cold atoms.



Chapter 6

Conclusions and outlook

“There is a theory which states that if anyone ever discovers exactly what the
Universe is for and why it is here, it will instantly disappear and be replaced
by something even more bizarre and inexplicable.” - Douglas Adams

In the beginning, it was once said, there was light. But there were also gravitational
waves, we just couldn’t detect them. Observational astronomy of gravitational waves
promises to provide fresh and clean information to test the limits of General Relativity
in the strong gravity context. However, from such observations alone, we cannot expect
to derive insight into the regime of overlap between quantum mechanics and general
relativity.

In this Thesis, I have combined analytical insights from low-energy field theories
and numerical simulation to make the case for analogues of light and gravity in or-
dered phases of quantum magnets. Following a review of relevant background material
in Chapters 1-2, in Chapter 3, I have explicitly shown how the non-linear sigma model
that describes the low-energy physics of the collinear Néel antiferromagnet is equiva-
lent to a gauge fixed action for electromagnetism in vacuum, and have constructed a
dictionary mapping the excitations of the Heisenberg antiferromagnet onto the photons
of electromagnetism.

In Chapter 4, I have used a similar strategy to identify analogue gravitational waves
in a ferroquadrupolar spin nematic. The dynamics of the quadrupolar order parameter
are enshrined in the action, which shares the same form as that of linearized grav-
ity, allowing a precise connection to be established between the Goldstone modes of a
ferroquadrupolar spin nematic and gravitational waves. There a one-to-one correspon-
dence between the two modes of each theory, and I have made explicit the dictionary
for mapping to and from real-space and spin-space, illustrating both the appropriate
transformation and that the underlying excitations share the same quadrupolar nature
in their respective spaces: gravitational waves induce surfaces of constant strain that
are equivalent to the surface of equal wavefunction amplitude of a quadrupolar wave
in Hilbert space.

In Chapter 5, I have illustrated in simulation that the spin-2 massless excitations
of the spin nematic mediate attractive interactions between Z

2 vortices, which have
only one signature of charge. This resembles the nature of gravity and gravitational
mass. However, while gravitationally in-spiraling objects merge with total cumulative
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total mass, this is not the case for the ferroquadrupolar Z2 vortices, which annihilate.
Nevertheless, the in-spiraling ferroquadrupolar vortices emit analogue gravitational
waves, whose frequency profile undergoes a sudden chirp during the part of the process
associated with vortex annihilation. How much of this process can be described in
analogy with the strong gravity limit remains an open question, and one worth future
attention in the search for a curved spacetime analogue. I finally outline a experimental
strategy for realizing these gravitational waves and the vortex annihilation process in
spinor condensates.

As discussed in Chapter 1, cold atom simulators of scalar gravitational waves and
curved spacetimes have been already developed [39, 41]. The tensor wave analogue I
have developed here provides a new and more complete analogue for the structure of
gravitational waves. Having distilled both sides of the correspondence to the simplest
ingredients needed, this analogue offers a clean, and experimentally accessible avenue
to access the physics of linearized gravity in a laboratory context, once one can realize a
quantum spin nematic. As reviewed in Chapters 4-5, there is a long history of studying
spin nematic candidates in both magnetic insulators and spinor condensates, and spin
nematic states along with quadrupolar observables are detectable in real-space with
techniques applicable to systems of cold atoms.

Linearized gravity, like electromagnetism, is a relativistic gauge theory. These man-
ifest unitarity, locality and Lorentz invariance. That said, with a given gauge choice,
some of these properties are brought to the foreground while others are suppressed, and
this is what allows for the explicit connections explored in this Thesis. However, the
recipe for condensed matter analogues presented in this Thesis does not lead to gauge
theories. Each analogue exhibits unitarity and locality, though is not Lorentz invariant
in the sense that different choice of inertial reference frame change the expression of
the fields in Hilbert space.

To go beyond this, the case of emergent QED in the context of spin ice [55, 56]
may provide inspiration. The emergent gauge theories that can emerge in the context
of magnetism are suggestive that a higher-rank gauge theory analogous—at least in
part—gravity could be found. While investigation of higher rank gauge theories has
been the subject of ongoing research [168], and some features such as attraction between
exotic particles [38] have been identified, no complete gravity analogue has yet been
identified. This interesting line of inquiry merits further development.

A second ingredient missing in the work presented here is curvature. In magnetic
models, aspects of geometry have long been identified [251, 252], and recently similar
notions of geometry are also identified in graphene [253, 254]. A parallel notion of
geometry is needed to bring to bear an analogue with general relativity.

Within the context of more traditional condensed matter questions, this Thesis
work also raises interesting avenues to be further explored.

The thermodynamic properties seen in simulation are here predictive of a topolog-
ically mediated phase transition or crossover. A full characterization this behaviour
using a model specific analysis remains open. One open end here is the field theoret-
ical derivation of the nematic stiffness and its scaling in association with the vortex
mediated transition.

In fact, future work focusing on such characterization need not be confined to
the ferroquadrupolar nematic phase studied here. The antiferroquadrupolar nematic
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phase, for example, is characterized by an SU(2) symmetry breaking order, similar to
the ferroquadrupole. However, the introduction of the sublattice structure changes in
turn which symmetry group is broken, and the corresponding homotopy class predicts
quaternion point defects, which do not annihilate, but instead merge [209, 255].

In both the ferroquadrupolar and antiferroquadrupolar cases, the nature of the
vortex merger processes merits closer study with analogy to gravitational behaviour
beyond the linearized limit. It is unclear to what order the analogy holds as one
introduces stronger gravitational fields.

If nothing else, in now coming to the end, then let us conclude from this Thesis that
you don’t have to look to the extremes of the Universe to find something extraordinary.
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Appendix A

Comparing the strength of
electromagnetism to gravity

If you stop to think about it, it’s quite an extraordinary fact that a small chunk of
lodestone can hold up a steel nail off the floor against gravity that the entire Earth is
otherwise conspiring to draw back down to the ground. That there is such a large differ-
ence of scales between the strengths of electromagnetic and gravitational interactions
is an empirical fact with no known fundamental justification.

That said, to develop a more concrete sense of the discrepancy than the example
above can convey, it is more precise to compare the order of magnitude difference be-
tween the electromagnetic interactions—as described by Coulomb’s law—and gravita-
tional interactions—as described classically by Newton’s law—between two equivalent
charge and mass distributions at the same distance.

Consider two electrons, of mass me = 9.11 · 10−31kg and charge q = 1.60 · 10−19C
respectively, separated by a distance of r = 1m. The Coulomb force experienced
between the electrons will repel them will a force

Fe = q1q2

4πϵ0r2 ≈ 10−19 · 10−19

109 N ≈ 10−29N (A.1)

while they experience a gravitational attraction on the order

FG = Gm1m2

r2 ≈ 10−11 · 10−31 · 10−31 ≈ 10−73N (A.2)

from which we see that for electrons the electrostatic interaction is on the order of 1046

times greater than the gravitational attraction.
There are attempts to derive the fundamental constants on consistency grounds

from theories of quantum gravity, which represent an open area of inquiry. The inter-
ested reader is directed to e.g. [256], since a deeper discussion is well beyond the scope
of this Thesis.
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Appendix B

Gravitational-wave-induced
deformation on an object of known
shape

To visualize the deformation induced by the gravitational wave on the spacetime (and
subsequently on objects of known shape and size), we must retain directional informa-
tion in addition to the strain amplitude. Consider a parametric surface given by r(xµ),
which describes an object of given shape. From the definition of the scalar invariant

x2 def= gµνx
µ
0x

ν
0 (B.1)

xµxµ = ηµνx
µ
0x

ν
0 + hµνx

µ
0x

ν
0 (B.2)

we can obtain an expression for xµ, considering that for hµν ≪ 1, xµ ≈ xµ0

xµ = x0µ + hµνx
ν
0 (B.3)

From this, we can identify the resulting strain to each of the components

∆xµ
|x|

= hµνx
ν

|x|
. (B.4)

Substituting into the given function r(xµ) provides a parametric description of the
object’s deformation. For example, Fig. 1.6 shows the induced deformation on a circle
resulting from the passage of a gravitational wave.
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Appendix C

Semiclassical intuitions: from
classical spins to Dirac strings

I here define a classical spin field, and see how this leads to the concept of a Dirac string.
Throughout this section, I review arguments laid out in [66, 257] and the appendix of
[258].

On the basis of their mechanical properties, classical spins are like gyroscopes, with
angular momentum S⃗(r⃗) = Sm⃗(r⃗). To understand their motion, we can examine the
equations of motion for a classical gyroscopic object

dS⃗

dt
= τ⃗ = r⃗ × F⃗ , (C.1a)

= −r⃗ × ∂U

∂r⃗
, (C.1b)

where r⃗ must be carefully defined. There is no physical length associated with the
spin. However, we can identify r⃗ = Sm⃗, where |m⃗|2 = 1. Then the equations of motion
become

Sdm⃗

dt
+ m⃗× ∂U

∂m⃗
= 0 , (C.2a)

m⃗×
(
Sdm⃗

dt
+ m⃗× ∂U

∂m⃗

)
= 0 , (C.2b)

(
m⃗ · ∂U

∂m⃗

)
m⃗− |m⃗|2 ∂U

∂m⃗
− S ⃗∂tm⃗× m⃗ = 0 , (C.2c)

∂U

∂m⃗
= −S∂tm⃗× m⃗ = 0 . (C.2d)

This tells us that the restoring force generates a precessional movement of the spin
vector. The form of this force is also analogous to a Lorentz-like force law qv⃗ × B⃗, if
we identify v⃗ = ∂tm⃗ and qB⃗ = Sm⃗. We can then define a fictitious vector gauge field
A⃗, which satisfies

q∇⃗m × A⃗ = Sm⃗ , (C.3a)
A⃗ → A⃗+ ∇⃗mf(m⃗(r⃗, t)) , (C.3b)
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The term in the Lagrangian corresponding to a Lorentz-like force takes the form qv⃗ · A⃗.
Terms of this form have geometric properties, and can also contain a kinetic term of
the form (∂tm⃗)2 as we shall see for the antiferromagnet. So for d−dimensional systems
in which the spin degrees of freedom can be described by a single spatially varying
field m⃗(r⃗, t) related to the order parameter (no sublattice order, ex. ferromagnet) the
action is of the form

S =
∫
dtdrdA⃗ · ∂tm⃗− U(m⃗) , (C.4)

where U(m⃗) = ρ
2∂im⃗∂im⃗.

Let us examine more closely the physical implications of this analogy. The space of
allowed m⃗ is the 2-sphere with radially outpointing vectors. Therefore, we can describe
the physical degrees of freedom m⃗ by

m⃗ = 1
r
e⃗r , (C.5)

once we restrict attention to the sector where |m⃗|2 = 1, and now I use polar coordinates
(r, θ, ϕ) to denote the coordinates of the space of m⃗. In this abstract space, this is the
field of a monopole. Let’s examine more closely what happens to the vector field A⃗
itself. It will have a general form

A⃗ = Are⃗r + Aθe⃗θ + Aϕe⃗ϕ , (C.6)

For simplicity in identifying a valid form for A⃗, we can set Ar = Aθ = 0. Then Aϕ can
be found by

Sm⃗ = q∇⃗m × A⃗ = q

r2 sin θ

∣∣∣∣∣∣∣
e⃗r e⃗θ e⃗ϕ
∂r ∂θ ∂ϕ
Ar rAθ r sin θAϕ

∣∣∣∣∣∣∣ , (C.7a)

Sm⃗ = q

r2 sin θ∂θ(r sin θAϕ)e⃗r (C.7b)

Sr sin θ = q∂θ(r sin θAϕ) (C.7c)

Sr
∫
dθ sin θ = qr sin θAϕ (C.7d)

qAϕ = S

(
cos θ + C

sin θ

)
(C.7e)

On physical grounds that will become clear, C ± 1, and q = 1. Additionally, the field
becomes unphysical at θ = π. To shed light on both of these properties, consider the
flux of the gauge field through a solid angle defined on the 2-sphere by the angle θ
away from z. Choosing C = −1

Φ =
∮
dm⃗A⃗ =

∮
r sin θdϕAϕ , (C.8a)

= 2πS(cos θ − 1) (C.8b)

The sign convention I use for the flux is such that a negative flux points downwards
through the solid angle of the 2-sphere. Therefore, near the North pole Φ = −πSθ2 is
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Figure C.1: Sketch of the gauge field A, with Dirac string at South pole

the flux entering the sphere. See Fig. C.1
Consider the flux at the South pole of the 2-sphere (θ = π). There is a finite flux

4πS exiting the sphere through this point, exactly canceling the total flux entering
through the remaining surface of the sphere. This artifact is called the Dirac string,
see Fig. C.1.

For the description of spin waves, where the spin degrees of freedom remain within
a finite solid angle about the ordering vector, placing the Dirac string in the opposite
hemisphere allows for a problem free description. A choice of C = 1 places the Dirac
string at the North pole (θ = 0) instead.

The physical implication of the Dirac string is that nature does not allow monopoles
to arise from such gyroscopic/magnetic forces. Additionally, notice that if the Berry
phase Φ is a multiple of 2π, then the presence of the Dirac string is effectively invisible
since no relative phase shift is accumulated that could lead to a measurable phase
difference. This is satisfied for S = b

2 for b ∈ N , which is consistent with physical spins
coming in integer and half-integer values.
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C.1 Building a semiclassical low-energy field the-
ory: the hydrodynamic limit of the Heisenberg
model

In this section, we continue to make use of insight derived from treatment of spin
degrees of freedom semiclassically, and review an effective low-energy field theory for
the Heisenberg antiferromagnet, as has been shown previously in e.g. [259]. In the
following Sections, I will review the fully quantum mechanical treatment, first derived
by [179].

The Heisenberg Hamiltonian [Eq. (1.16)] penalizes spin configurations that deviate
from the ordered state, with energetic contributions arising from the scalar product
between neighbouring spins, which we will continue to think of as O(3) vectors. Devi-
ations from order that have high spatial frequency are energetically heavily penalized,
and therefore unexpected in the low-energy limit. It is therefore reasonable to assume
that all equilibrium dynamical processes taking place in the lattice are long wavelength
in nature, far exceeding the scale of the lattice spacing a, and we can approximate the
lattice by a continuum. This long wavelength limit is also referred to as the hydro-
dynamic limit, in analogy with the continuum approximations made in the context of
fluid mechanics.

To facilitate the transition to the continuum notation, I denote position on the
lattice by the set of d-dimensional vectors r⃗, with neighbouring sites separated by δ⃗,
such that the Hamiltonian looks like

H =
∑
r⃗,δ⃗

JS(r⃗) · S(r⃗ + δ⃗) , (C.9)

In the long wavelength limit, we can effectively describe the behaviour of spins on
the lattice by use of a continuous order parameter field

S(r⃗) = sm⃗(r⃗) , (C.10)

where m⃗ is a unit vector field valued on the O(3) sphere. Using this hydrodynamic
description, the lattice points r⃗ are spaced infinitesimally closely such that

∂im⃗∂im⃗ ≈ (m⃗(r⃗) − m⃗(r⃗ + δ⃗))2 , (C.11a)
= 2m⃗(r⃗) · m⃗(r⃗ + δ⃗) + m⃗(r⃗)2 + m⃗(r⃗ + δ⃗)2 , (C.11b)

where defining

ρa ∼ Js2 . (C.12)

leads to an effective low-energy description of the Heisenberg model

H = ρa2

2

∫
dr

d∑
i=1

∂im⃗∂im⃗+ const. , (C.13)
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(a) Torque model for spins that do not cant, as defined by
the condition m1 = −m2.

(b) Model allowing for canting between sublattices.

Figure C.2: (a) If the mode of excitation is assumed to locally move spins from both lattices away
from the ground state rigidly as shown here, then the resulting restoring force that counteracts the
fluctuation l⃗ leads to torques τ1 and τ2 whose actions oppose each other and the spins cannot move.
This means such fluctuating modes are in fact dynamically disallowed. (b) The allowed modes of the
antiferromagnet result from the two sublattices canting towards one another away from the aligned
state.

where Roman indices here denote the d spatial dimensions, and the sum is hereafter
omitted in accordance with the Einstein summation convention. The constant ρ is the
spin stiffness, a material constant that captures the resistance to spin deformations,
in turn proportional to the strength of interaction between each magnetic site on the
lattice. Since the terms m⃗(r⃗)2 are spatially and dynamically constant, these represent
a physically irrelevant shift in the absolute value of the energy. Hence Eq. C.13 is the
continuum equivalent of Eq. C.9.

Let us consider what happens if we attempt to describe the 2-sublattice classical
antiferromagnet with a single staggered field

m⃗ = m⃗1 = −m⃗2 . (C.14)

For a collinear ground state, locally perturbed away from the easy axis in a uniform,
staggered way, there will be a restoring force seeking to realign the perturbed spins (see
Fig.C.2a). Each pair of spins will experience a torque as a result of the restoring force,
but if the spins are restricted by the condition Eq. C.14, then they cannot precess since
their torques both have the same orientation. In this deadlocked situation, nothing
happens, that is, the system is not dynamical.

If we instead relax the condition Eq. C.14, then we can instead envision perturba-
tions described by a uniform, but not staggered field l⃗. A local configuration of a pair
of spins might look like FigC.2b, in which we see that spins on each sublattice deviate
away from the ground state towards one another, a behaviour known as canting.
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We can then define the fluctuating canting field as

l⃗ = m⃗1 + m⃗2 . (C.15)

The staggered magnetization field is defined in terms of the continuum fields on the
two sublattices

m⃗ = 1
2(m⃗1 − m⃗2) , (C.16)

where the 2-sublattice fields can be reexpressed

m⃗1 = l⃗

2 + m⃗ , m⃗2 = l⃗

2 − m⃗ . (C.17)

Notice that

|m⃗|2 = |m⃗1|2 = |m⃗2|2 = 1 =⇒ m⃗ ⊥ l⃗ . (C.18a)

From this starting point, we can motivate the appropriate Lagrangian density. It
will have geometric terms, of form motivated in the previous Section e.g. [257], and
potential terms.

Let us consider first which terms contribute to the potential energy. There will
be a term mediated by the spin stiffness of the spin field m⃗. In addition, since there
is a fluctuation field l⃗, there must be a term which penalizes the fluctuations. This
simplest such term that respects the symmetry of the Hamiltonian is O(|⃗l|2). Fur-
thermore, in more highly magnetizable materials (with larger susceptibility χ) these
canting fluctuations occur at lower energy cost, therefore we can write

LU(m⃗, l⃗) = l2

2χ + ρ

2∂im⃗∂im⃗ , (C.19)

There will also be geometric terms for each sublattice associated with a gauge field
A[m⃗], each of the gyroscopic form shown in the previous Section

Lg = A⃗1[m⃗1]∂tm⃗1 + A⃗2[m⃗2]∂tm⃗2 , (C.20)

We will see that these two geometric terms in combination will give rise to a kinetic
term (∂tm⃗)2, where for a system with a single sublattice, such as the ferromagnet,
there would remain a term first order in the time derivative. Massaging the terms
using Eq. C.17 and expanding to first order in l⃗ leads to

Lg = A⃗1

[
l⃗

2 + m⃗

]
∂t

(
l⃗

2 + m⃗

)
+ A⃗2

[
l⃗

2 − m⃗

]
∂t

(
l⃗

2 − m⃗

)
, (C.21a)

=
(
A⃗(m⃗) + ∂Aj

∂mi

li
2

)(
∂tli
2 + ∂tm⃗

)
+
(
A⃗(m⃗) − ∂Aj

∂mi

li
2

)(
∂tli
2 − ∂tm⃗

)
, (C.21b)

= Ai∂tli + ∂Aj
∂mi

li∂tmj . (C.21c)
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Notice that in the limit of vanishing canting l⃗, the geometric terms also vanish. The
absence of geometric terms in the absence of canting removes the time derivative terms
from the Lagrangian, and so also demonstrates that a Néel state without canting as
described by Eq. (C.14) is not dynamical.

This expression can be more elegantly expressed after a little bit of work

Lg = −∂tAili + ∂Aj
∂mi

li∂tmj , (C.22)

= − ∂Ai
∂mj

∂mj

∂t
li + ∂Aj

∂mi

li∂tmj , (C.23)

=
( ∂Ai
∂mj

− ∂Aj
∂mi

)
∂tmilj , (C.24)

= ϵijk ∂tmi lj(∇⃗m × A⃗)k (C.25)
= sϵijk limj∂tmk , (C.26)
= s l⃗ · (m⃗× ∂tm⃗) . (C.27)

Two things become obvious in this form: first we did not need to choose a gauge for
the geometric field A⃗ since the final result is gauge invariant. Secondly, if we consider
the full Lagrangian density

L = s l⃗ · (m⃗× ∂tm⃗) − l⃗2

2χ − ρ

2∂im⃗∂im⃗ , (C.28)

we observe that ∂t⃗l does not feature, the implication being that l⃗ does not have in-
dependent dynamical character from m⃗, and therefore we can look for a dependent
expression for l⃗(m⃗, ∂tm⃗). To do this, we extremize the action by saddle-point approx-
imation, or equivalently consider the Euler-Lagrange equations for the canting field

δS
δl⃗

= 0 = ∂L
∂l⃗

− ∂t
∂L

∂
˙⃗
l

= ∂L
∂l⃗

, (C.29a)

0 = sm⃗× ∂tm⃗− l⃗

χ
, (C.29b)

l⃗ = χS
(
m⃗× ∂tm⃗

)
. (C.29c)

Substituting the Lagrangian density into the action, we find

S =
∫
dt drd

[χs2

2 |m⃗× ∂tm⃗|2 − ρ

2∂im⃗∂im⃗
]
, (C.30)
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and where since m⃗ is unit normalized, then1

|m⃗× ∂tm⃗|2 = |∂tm⃗|2 . (C.32)

Finally we obtain

S =
∫
dt drd

[ 1
c2 |∂tm⃗|2 − ∂im⃗∂im⃗

]
, (C.33a)

where the material properties define a wave speed

c2 = ρ

χs2 . (C.34)

To describe the behaviour of the canting field, we can focus attention on the vector
components orthogonal to m⃗. Without loss of generality, we can choose the ground
state to be described by the constant vector

m⃗0 = (1, 0, 0) , (C.35)

such that the fluctuations are captured by the field

l⃗ = (lx, ly, 0) . (C.36)

From the Euler-Lagrange equations for the

χS2

ρ
∂2
t l⃗ −

∑
i

∂2
i l⃗ = 0 , (C.37)

with wave solutions
l⃗ = ϵ⃗e±i(k⃗r⃗−ωt) . (C.38)

In this form, if we restrict k⃗ ∥ m⃗0 it is apparent that each component of the vector
describes a propagating transverse, fluctuation. Also note that in this form, the fluc-
tuations are not yet precessional, and describe a basis of oscillations in the y and z
planes. We can straightforwardly transform this into a circularly polarized basis by
taking

ϵ⟲ = ϵx + iϵy , ϵ⟲ = ϵx − iϵy . (C.39)

These wave solutions for the long wavelength behaviour of the antiferromagnet
propagate according to the relativistic dispersion

ω = v|⃗k| . (C.40)

In conclusion, the semiclassical hydrodynamic treatment leads to an action Eq. C.33a
which predicts linearly dispersing excitations of a continuum field. Next, I will review

1Recall that

(⃗a × b⃗) · (c⃗ × d⃗) = (⃗a · c⃗)(⃗b · d⃗) − (⃗b · c⃗)(⃗a · d⃗) (C.31)
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a fully quantum mechanical treatment and show we recover this result.



Appendix D

Singlet, triplet and quintuplet for
s = 1

Using the fundamental principles of spin angular momentum laid out in e.g. [78], I here
reproduce the two-particle basis of spin states for the well known s = 1

2 case and—for
the unfamiliar reader—I subsequently derive the corresponding result for the s = 1
case.

Let us start by identifying the transformation properties of the total spin operator
S2 = (S1+S2)2 on a generic two spin state described in terms of the angular momentum
quantum numbers—obtained by z−projection—|α, β⟩

(S1 + S2)2 |α, β⟩ =(S2
1 + S2

2 + 2S1S2) |α, β⟩ (D.1a)
=
(
S2

1 + S2
2 + 2Sz1Sz2

)
|α, β⟩ +

(
S+

1 S
−
2 + S−

1 S
+
2

)
|α, β⟩ (D.1b)

= (s1(s1 + 1) + s2(s2 + 1) + 2s1s2) |α, β⟩

+ ℏ2
√
s1(s1 + 1) − α(α + 1)

√
s2(s2 + 1) − β(β − 1) |α + 1, β − 1⟩

+ ℏ2
√
s1(s1 + 1) − α(α− 1)

√
s2(s2 + 1) − β(β + 1) |α− 1, β + 1⟩

(D.1c)

Notice how the final two terms will behave differently in terms of whether the individual
spins are integer or half-integer valued.

Consider first s1 = s2 = 1
2 , with the following two cases.

Case 1 : choosing α = β

(S1 + S2)2 |α, β⟩ =ℏ2(3
4 + 3

4 + 21
4) (D.2a)

=2ℏ2 |α, β⟩ ≡ ℏ2s(s+ 1) |α, β⟩ (D.2b)
=⇒ s =1 . (D.2c)

Case 2 : choosing α ̸= β

(S1 + S2)2 |α, β⟩ =ℏ2(3
4 + 3

4 + 21
4) + ℏ2(3

4 + 1
4) |β, α⟩ (D.3a)

=ℏ2 (|α, β⟩ + |β, α⟩) (D.3b)

167



168

Applying this result to the superpositions

S2 (|α, β⟩ + |β, α⟩) =2ℏ2 (|α, β⟩ + |β, α⟩) (D.4a)
=⇒ s =1 , (D.4b)

S2 (|α, β⟩ − |β, α⟩) =ℏ2 (|α, β⟩ + |β, α⟩ − |α, β⟩ + |β, α⟩) = 0 (D.4c)
=⇒ s =0 , (D.4d)

Using α, β ∈ ↑, ↓ allows us to then explicitly construct the eigenbasis Eq. (1.4) of
the S2 operator in terms of the triplet and singlet with respective eigenvalues s = 1
and s = 0.

Next I repeat a similar procedure for s = 1, case by case, bearing in mind now that
the magnetic basis includes a ladder of three states α, β ∈ 1, 0,−1.

Case 1 : choosing α = β ̸= 0

(S1 + S2)2 |α, β⟩ = ℏ2(2 + 2 + 2) |α, β⟩ (D.5a)
= 6ℏ2 |α, β⟩ (D.5b)

=⇒ s =2 . (D.5c)

Case 2 : choosing α = β = 0

(S1 + S2)2 |0, 0⟩ = ℏ2(2 + 2 + 0) |0, 0⟩ + 2ℏ2 (|1,−1⟩ + |−1, 1⟩) (D.6a)
= ℏ2 (4 |0, 0⟩ + 2 |1,−1⟩ + 2 |−1, 1⟩) (D.6b)

Case 3 : choosing α = −β ̸= 0

(S1 + S2)2 |α, β⟩ = ℏ2(2 + 2 − 2) |α, β⟩ + ℏ2 |0, 0⟩ (D.7a)
= 2ℏ2 (|α, β⟩ + |0, 0⟩) (D.7b)

Combining Cases 2 and 3, we can identify respectively the symmetric and antisym-
metric combinations

(S1 + S2)2 (|1,−1⟩ + 2 |0, 0⟩ + |−1, 1⟩) = 6ℏ2 (|1,−1⟩ + 2 |0, 0⟩ + |−1, 1⟩) (D.8a)
=⇒ s =2 , (D.8b)

(S1 + S2)2 (|1,−1⟩ − |−1, 1⟩) = 2ℏ2 (|1,−1⟩ − |−1, 1⟩) (D.8c)
=⇒ s =1 (D.8d)

(S1 + S2)2 (|1,−1⟩ − |0, 0⟩ + |−1, 1⟩) =0 (D.8e)
=⇒ s =0 . (D.8f)

Case 4 : choosing α = ±1, β = 0

(S1 + S2)2 |α, 0⟩ = ℏ2(2 + 2 + 0) |α, 0⟩ + ℏ2s(s+ 1) |0, α⟩ (D.9a)
= 2ℏ2 (2 |α, 0⟩ + |0, α⟩) (D.9b)
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From which we can compose the symmetric and antisymmetric eigenvectors

(S1 + S2)2 (|α, 0⟩ + |0, α⟩) = 6ℏ2 (|α, 0⟩ + |0, α⟩) (D.10a)
=⇒ s =2 , (D.10b)

(S1 + S2)2 (|α, 0⟩ − |0, α⟩) = 2ℏ2 (|α, 0⟩ + |0, α⟩) (D.10c)
=⇒ s =1 . (D.10d)

again with α = ±1.
Collecting these results, we can write the nine states of the two particle eigenbasis

of the S2 operator in terms of the s = 2 quintuplet

|s = 2,m = 2⟩ = |1, 1⟩ (D.11a)

|s = 2,m = 1⟩ = 1√
2

(|1, 0⟩ + |0, 1⟩) (D.11b)

|s = 2,m = 0⟩ = 1√
6

(|1,−1⟩ + 2 |0, 0⟩ + |−1, 1⟩) (D.11c)

|s = 2,m = −1⟩ = 1√
2

(|−1, 0⟩ + |0,−1⟩) (D.11d)

|s = 2,m = −2⟩ = |−1,−1⟩ , (D.11e)

the triplet

|s = 1,m = 1⟩ = 1√
2

(|1, 0⟩ − |0, 1⟩) (D.12a)

|s = 1,m = 0⟩ = 1√
2

(|1,−1⟩ − |−1, 1⟩) (D.12b)

|s = 1,m = −1⟩ = 1√
2

(|−1, 0⟩ − |0,−1⟩) , (D.12c)

and the singlet

|s = 0,m = 0⟩ = 1√
6

(|1,−1⟩ − |0, 0⟩ + |−1, 1⟩) . (D.13)



Appendix E

Spin probability density

The representation of a general state can then be visualized in terms of the probability
density surface, whose parametric form can be obtained by considering a given state

|d⟩ = dx(
i(|1⟩ −

∣∣∣1̄〉)
√

2
) + dy(

(|1⟩ +
∣∣∣1̄〉)

√
2

) − idz |0⟩ , (E.1)

and evaluating the contours of constant probability density for the overlap of the general
state

P =| ⟨d|Ω⟩ |2 (E.2a)

=|dx
[(1 + cos θ)√

2
e−i(ϕ− π

2 ) ⟨1|1⟩ − (1 − cos θ)√
2

ei(ϕ− π
2 )
〈
1̄
∣∣∣1̄〉 ] (E.2b)

+ dy
[(1 + cos θ)√

2
e−iϕ ⟨1|1⟩ − (1 − cos θ)√

2
eiϕ

〈
1̄
∣∣∣1̄〉 ]+ dz(−i)

sin θ√
2

⟨0|0⟩ |2 . (E.2c)

The contours corresponding to the constant probability density of the magnetic basis
states are shown in Fig. 4.1.
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Appendix F

Enter the A-matrix

The wave-like character of the quadrupolar excitations can be identified in the struc-
ture of the equations of motion, which can be more compactly expressed in the U(3)
formalism derived in [11]. This formalism exploits the simplicity of the U(3) represen-
tation to provide an alternative numerically integrable for the equations of motion of
the BBQ model. This is carried out in terms of the A operators

Aαβi = d∗αdβ (F.1)

or explicitly as a projector on the time reversal invariant basis

Aαβi = |α⟩i ⟨β|i (F.2)

such that the Hamiltonian then becomes

HBBQ =
∑
⟨ij⟩

(
J1A

αβ
i Aβαj + (J2 − J1)Aαβi Aαβj

)
(F.3)

The A matrices encode the antisymmetric dipole component and traceless symmetric
quadrupole components in the following way

Sα = −iϵαβγAβγ (F.4)

Qαβ = −Aαβ − Aβα + 2
3δ

αβ Tr
(
Â
)

(F.5)

F.1 U(3) representation of the FQ phase and its
excitations

A state with ferroquadrupolar order corresponds to a state where all sites are oriented
along a specified d-vector.

In terms of A-matrices, this corresponds to a state with corresponding non-trivial
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components. For director order along the z axis, this can be specified by

Â0 =

0 0 0
0 0 0
0 0 1

 (F.6)

where the U(3) generators specified by the corresponding A-matrices can be applied to
rotate the state in its state space RP2. However, not all such actions are non trivial.
In particular, only the actions of the generators

A13 = |x⟩ ⟨z| (F.7a)
A23 = |y⟩ ⟨z| , (F.7b)
A31 = |z⟩ ⟨x| , (F.7c)
A32 = |z⟩ ⟨y| , (F.7d)
A33 = |z⟩ ⟨z| , (F.7e)

are closed within the Hilbert space, with this last element acting as the identity.
A representation for the state rotations can be expressed then in terms of the

generators in the following way

Rαβ(ϕ) = e−iϕAαβ (F.8)

which can be asymptotically expressed in the limit of infinitesimal rotations as

Rαβ(ϕ) ∼ 1 + iϕAαβ (F.9)

and the rotated state is described by

Â0 → R̂Â0R̂
† (F.10)

An example of such a transformation is here provided for further insight. Consider
R13(ϕ), which from the generator

Â13(ϕ) =

0 0 1
0 0 0
0 0 0

 (F.11)

can be expressed as

R̂13(ϕ) =

1 0 sin(ϕ)
0 1 0
0 0 cos(ϕ)

 (F.12)

this carries out a trace preserving rotation between the |z⟩ and |x⟩ state, resulting in
the following state

Â′
0 =

 sin2(ϕ) 0 sin(ϕ) cos(ϕ)
0 0 0

sin(ϕ) cos(ϕ) 0 cos2(ϕ)

 (F.13)
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The A-matrix description here makes explicit the spin-2 nature of the quadrupole
fluctuations about a given state. By virtue of the transformation property, performing
a rotation though ϕ results in the off-diagonal symmetric components of the state being
rotated through a phase 2ϕ. Specifically, we see in this case that the action

A13 |z⟩ = cos(ϕ) |z⟩ + sin(ϕ) |x⟩ (F.14)

results in the off-diagonal elements |x⟩ ⟨z| and |z⟩ ⟨x| being mixed with amplitude
1
2 sin(2ϕ) that is periodic in increments of ϕ = π. Rotations parametrized by real fields
ϕ (as exemplified above) map states

|α⟩ =
∑
i

ai |i⟩ → |β⟩
∑
i

bi |i⟩ , (F.15)

which keeps the site degrees of freedom in the quadrupole channel. However, rotations
parametrized by complex fields can result in magnetic states

∣∣∣1̄〉 or |1⟩ which are dipolar
in nature.

We therefore write together all possible ground state fluctuations in terms of the
A-matrix formalism from the full set of non-trivial generators, which makes explicit
that a complete description requires that the fields ϕ be complex. In the limit of small
fluctuations this gives

ϕ̂ =

 |ϕ1,3|2 ϕ1,3ϕ2,3 iϕ1,3

ϕ∗1,3ϕ∗2,3 |ϕ2,3|2 iϕ∗2,3

−iϕ∗1,3 −iϕ2,3 −|ϕ1,3|2 − |ϕ2,3|2

 (F.16)

Observe that four degrees of freedom remain. Two of these will encode the dipolar
degrees of freedom, and the remaining two the quadrupolar degrees of freedom.

The low energy quadrupolar degrees of freedom can be isolated from the corre-
sponding definition and recast in the following form

Q̂ =


2
3 − 2|ϕ1,3|2 −ϕ1,3ϕ2,3 − ϕ∗1,3ϕ∗2,3 −2i Imϕ1,3

−ϕ1,3ϕ2,3 − ϕ∗1,3ϕ∗2,3 2
3 − 2|ϕ2,3|2 2i Imϕ2,3

−2i Imϕ1,3 2i Imϕ2,3 −4
3 + 2|ϕ1,3|2 + 2|ϕ2,3|2

 (F.17)

which to first order in the fields reduces to

Q̂ =

 0 0 −2i Imϕ1,3

0 0 2i Imϕ2,3

−2i Imϕ1,3 2i Imϕ2,3 0

 (F.18)

expressed in terms of the two exclusively quadrupolar fluctuations. These are the
degrees of freedom that we will look to map onto the polarizations of gravitational
waves. The requirement that the fields be real is consistent with the finding of the
next section.
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F.2 Equations of motion
One may ask in this context if it is possible to express the wave equations corresponding
to the dipolar and quadrupolar degrees of freedom in terms of the convenient A-matrix
representation.

The Heisenberg equation of motion takes the following form

∂tA
αβ
i = −i[Aαβi , H] (F.19)

= −i
∑
δ

(
J1(Aασi Aσβi+δ − Aσβi A

ασ
i+δ) + (J2 − J1)(Aασi Aβσi+δ − Aσβi A

σα
i+δ)

)
(F.20)

We restrict attention to the ferroquadrupolar ordered state, for which it can be
assumed J1 = 0, J2 = −1.

In the small fluctuation limit, assuming order along z, Azz ∼ 1. Therefore, we
assume from preservation of the trace that Axx ∼ 0, Ayy ∼ 0. Furthermore, for con-
sistency we expect ∂tAxx = ∂tA

yy = ∂tA
zz = 0. The condition necessary for this is

verified below

∂tA
zz
i = i

∑
δ

(
Azxi A

zx
i+δ − Axzi A

xz
i+δ + Azyi A

zy
i+δ − Ayzi A

yz
i+δ + Azzi A

zz
i+δ − Azzi A

zz
i+δ

)
(F.21)

= i
∑
δ

(
Azxi A

zx
i+δ − Axzi A

xz
i+δ + Azyi A

zy
i+δ − Ayzi A

yz
i+δ

)
(F.22)

∼ i
∑
δ

(
− i(ϕ∗1,3

i ϕ∗1,3
i+δ − ϕ1,3

i ϕ1,3
i+δ) − i(ϕ∗2,3

i ϕ∗2,3
i+δ − ϕ2,3

i ϕ2,3
i+δ)

)
(F.23)

which vanishes if we can assume that the components of the fluctuation are symmetric
Aαβ = Aβα, implying that the fluctuations are purely real, that is ϕ1,3 = ϕ∗1,3 and
ϕ2,3 = ϕ∗2,3.

Furthermore, if we employ the assumption of real, symmetric fluctuations and ignore
terms O(A3), then we find equations of motion for the off diagonal fluctuations of the
form

∂2
tA

xz
i = ∇2Axzi , (F.24)

which are wave equations.



Appendix G

Discrete Fourier transform methods

For any periodic function f(x), there exists a Fourier series decomposition f̃(k) in
terms of its frequency components.

For a periodic function fx defined on a discrete space with N elements, one can
write a similar decomposition, namely the discrete Fourier transform f̃k. Despite the
nomenclature, it is more accurate to think of the discrete Fourier transform (FT) as a
Fourier series decomposition as it is ill defined for aperiodic functions.

Specifically, the discrete representation takes the form

f̃k =
N−1∑
j=0

fje
−i2πjk/N for j, k ∈ N, (G.1)

with inverse transformation

fj = 1
N

N−1∑
k=0

f̃ke
−i2πjk/N . (G.2)

In the language of linear algebra, we can rewrite this as


f̃0
f̃1
...
f̃N

 =



1 1 1 . . . 1
1 ei2π/N ei4π/N . . . e−i2π/N

1 ei4π/N ei8π/N . . . e−i4π/N

... ...
1 e−i2π/N e−i4π/N . . . ei2π/N




f0
f1
...
fN

 (G.3)

Notice that FN is a symmetric and unitary matrix, that is F jk
N = F kj

N , and 1
N
F †
NFN =

1N

More compactly, for anN dimensional input vector f , its transform f̃ can be written
f̃k = F kj

N fj. It is clear that there are N2 operations involved in evaluating this matrix
product and thus evaluating the discrete Fourier transform in this way is an O(N2)
algorithm.

The next natural question is, can we do better than O(N2)? As we shall see, the
answer is yes if we use what is called the fast Fourier transform (FFT).
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Figure G.1: Colour map of the matrix elements of F256

The premise behind the FFT is that the elements of the matrix product FNf can be
decomposed into matrices with blocks of size N

2 , provided N is even. As an elementary
example, consider the case of N = 4. The discrete Fourier transform looks like

f̃0
f̃1
f̃2
f̃3

 =


1 1 1 1
1 eiπ/2 eiπ e−iπ/2

1 eiπ ei2π e−iπ

1 e−iπ/2 e−iπ eiπ/2



f0
f1
f2
f3

 (G.4)

By permuting the elements of FNf to group the elements of f with even and odd
indices, we can observe

f̃ = F4f =


1 1 1 1
1 eiπ eiπ/2 e−iπ/2

1 ei2π eiπ e−iπ

1 e−iπ e−iπ/2 eiπ/2



f0
f2
f1
f3

 (G.5)

=


1 0 1 0
0 1 0 eiπ/2

1 0 −1 0
0 1 0 −eiπ/2




1 1 0 0
1 eiπ 0 0
0 0 1 1
0 0 1 eiπ




1 0 0 0
0 0 1 0
0 1 0 1
0 0 0 0



f0
f1
f2
f3

 (G.6)

where the decomposition on the right hand side has the following block structure

f̃ =
(
12 D2
12 −D2

)(
F2 0
0 F2

)
P4f (G.7)

This decomposition makes use of the property ei2π/
N
2 = ei4π/N , which allows for

elements of the smaller block FN
2

to be used to reconstruct the elements of FN . Gen-
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eralizing to arbitrary even N , the transformation decomposes in the following way

f̃ =
(
1N

2
DN

2
1N

2
−DN

2

)(
FN

2
0

0 FN
2

)
PNf (G.8)

where the diagonal matrix DN
2

is defined in terms of the fundamental element ei2π/N
of the FN matrix

DN
2

:=



1 0 0 . . . 0
0 ei2π/N 0 . . . 0
0 0 ei4π/N . . . 0
... . . .
0 0 0 . . . eiπ

 , (G.9)

the blocks FN
2

are defined in terms of the element ei4π/N

FN
2

=



1 1 1 . . . 1
1 ei4π/N ei8π/N . . . ei4(N−1)π/N

1 ei8π/N ei16π/N . . . ei8(N−1)π/N

... ...
1 e−i4π/N e−i8π/N . . . ei4π/N

 (G.10)

and PN is the permutation matrix that maps f into
(
feven
fodd

)
,

PN



f0
f1
f2
...
fN

 =



f0
f2
...
f1
f3
...


(G.11)

Notice that aside from cleanly reexpressing the Fourier transform operation in a
block structure of sparse matrices, a single matrix decomposition of this kind doesn’t
by itself grant any real speed up. The power of the FFT comes from applying this
decomposition iteratively, and thus is most efficient in cases where N = 2M for M ∈ N.

To understand how such a procedure can be implemented iteratively, consider the
next decomposition in the sequence for the example of N = 4. The matrix F4 was
decomposed into

F4 =


1 0 1 0
0 1 0 eiπ/2

1 0 −1 0
0 1 0 −eiπ/2




1 1 0 0
1 eiπ 0 0
0 0 1 1
0 0 1 eiπ

 =
(
12 D2
12 −D2

)(
F2 0
0 F2

)
(G.12)

where the second matrix now contains the F2 matrices. Applying the same decompo-
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sition to each F2 matrix within this second matrix, and using the fact that D1 = 1,
F1 = 1 we see

(
F2 0
0 F2

)
=


11 D1 0 0
11 −D1 0 0
0 0 11 D1
0 0 11 −D1



F1 0 0 0
0 F1 0 0
0 0 F1 0
0 0 0 F1

 (G.13)


1 1 0 0
1 eiπ 0 0
0 0 1 1
0 0 1 eiπ

 =


1 1 0 0
1 eiπ 0 0
0 0 1 1
0 0 1 eiπ




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (G.14)

In this case, further iteration does not simplify the results any further. However, for
larger N , this procedure is the key behind the speed up associated to the fast Fourier
transform. To see this, consider the number of operations involved in Eq.G.8.

f̃ =


1N

2
DN

2
1N

2︸︷︷︸
O( N

2 )

−DN
2



FN

2
0

0 FN
2︸︷︷︸

O( N
2 )2

PNf (G.15)

=
(
1N

2
DN

2
1N

2
−DN

2

)
︸ ︷︷ ︸

O(N)


1N

4
DN

4
0 0

1N
4

−DN
4

0 0
0 0 1N

4
DN

4
0 0 1N

4
−DN

4


︸ ︷︷ ︸

O(N)



FN
4

0 0 0
0 FN

4
0 0

0 0 FN
4

0
0 0 0 FN

4︸︷︷︸
O( N

4 )2


PNf (G.16)

The matrix composed of FN subblocks is the only place where the number of non-
trivial elements (and thus operations) is of order O(N)2. However, through iterative
application of the matrix decomposition, this matrix can be reduced to the identity 1N
matrix as we shown in the N = 4 example.

By requiring that N = 2M , the matrix FN can be decomposed into M matrices
with O(N) scaling.

This means in total, the number of operations carried out is O(M)O(N) = O(N log2 N).


