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Abstract—In designing self-organizing generative models of
robot behaviour, it is important to address the issue of generaliza-
tion for multiple patterns, while keeping latent representation in a
low dimension. We are investigating the possibility of introducing
local coordinates for samples of each pattern in shared latent
representation. Moreover, recent advances in efficient, approxi-
mate computation of Jacobians allows us to introduce specific
regularization that ensures directional robustness in introduced
local coordinates.

Index Terms—machine learning, generative model, regulariza-
tion, Jacobian

I. INTRODUCTION

Generative models allow representation of high-dimensional
behaviour patterns (sequences of action-perception pairs) in
much lower-dimensional latent representations. The choice
of a latent dimension must serve two conflicting purposes:
generalization capacity, which can be achieved by providing
more degrees of freedom, and the capacity to reconstruct
unseen samples, which is more tractable with fewer degrees of
freedom. Reconstruction of unseen samples is very important
[1]–[4]. In this paper we assume that samples belonging to
a given pattern can be described with fewer dimensions than
the model’s latent representation. In such case, it is possible to
explicitly define an embedding of hypersurfaces corresponding
to each pattern in shared latent space. This solves both afore-
mentioned problems: shared latent representation will have
enough degrees of freedom to generalize for many patterns,
while keeping the problem of reconstructing specific points for
unseen samples of a given pattern fairly tractable. A similar
question was raised in [5], where the possibility of assigning
independent linear subspaces for each pattern was addressed.

However, this approach demands learning additional param-
eters for each pattern. Maps of local coordinates corresponding
to each pattern to shared latent representation expand the
search space and add more local minima. Moreover, these
maps may introduce additional instability and may make the
search space for reconstruction of unseen samples less robust.
We solve these new problems by developing a novel regular-
ization technique. This regularization forces these mappings to
be directionally robust: changes in shared latent representation

caused by small shifts in local coordinates are invariant to
directions of these shifts. We show that this condition is
equivalent to local conformal flatness of embedded hypersur-
faces, and can be described in terms of Jacobian matrices of
these embeddings. Furthermore, we present an efficient way
of approximating computations of the required properties of
these Jacobians.

To investigate the impact of such a geometrical approach,
independent of any statistical properties of the model, we
consider only deterministic generative models.

The rest of the paper is organized as follows. In Section
2 we provide a formal description of the problem. Then, in
Section 3 we introduce the proposed approach for general
generative models with finite dimensional latent representa-
tions (e.g. parametric bias). Next, in Section 4 we describe the
architecture we use to empirically prove the conjecture, and
we supply experimental results. Finally we draw conclusions
in Section 5.

II. FORMULATION OF THE PROBLEM

Let us consider a simple deterministic generative model
family Pθ(X = x|Z = z) = δ(x−fθ(z)), where δ is the Dirac
delta function, X is the observed variable, Z is the parameter
of the model (i.e. latent variable), and θ parametrizes the whole
family of mappings fθ. We assume values that Z have finite di-
mension: z ∈ RL. Values of X describe generated sequences:
x = {(x1,x2, ...,xT )|xt ∈ RO for t = 1, 2, ..., T}. The goal
is to find values of θ and zi for each observed sample xi (for
i = 1, 2, ..., N ) which minimize the error function

L(θ, z1, z2, ..., zN ) =
1

N ∗ T

N∑
i=1

T∑
t=1

∥∥xti − f tθ(zi)
∥∥2. (1)

Notice that if we have observed samples belonging to a
diverse set of patterns, we must keep dimensions of z fairly
high.

A. Reconstruction of partially observed sequences

After learning the model and fixing θ, another interesting
problem to consider is identifying z by x given only partially.
Remember that x describes a sequence of action-perception
pairs: xt = (at,pt). It is very common [1]–[4] to ask how978-1-7281-2547-3/20/$31.00 ©2020 IEEE



we can complete a sequence by having only part of it (e.g.
perception at the first time step):

z∗ = argmin
z

∥∥p1 − p̂1(z)
∥∥2, (2)

where p̂1(z) corresponds to projection of f1θ (z) on co-
ordinates corresponding to the perceptible part of observed
samples. Then, knowing z∗ it is possible to complete the
sequence using fθ(z

∗). For simpler solution of this problem it
is desirable to have dimensions of z as low as possible. Notice
how it contrasts with the original problem.

III. METHOD

We assume that each observed sample can be identified
with a specific pattern and that the number of patterns M
is much lower than the number of samples N . According to
our next assumption, samples belonging to each pattern p can
be described by a generative model with lower dimensions Kp

of latent variables Z than the dimension needed to describe
all samples of all patterns L. The method requires manual
assignment of labels to each sample to identify which pattern
a given sample represents.

A. Local coordinates

We explicitly define for each pattern p an embedding
mp
µ : RK 7→ RL. Now instead of learning shared latent

coordinates zi for each sample, we learn local coordinates
ξi ∈ RK . Furthermore, embedding maps mp

µ are also equipped
with parameters µ to be learned.

B. Robustness analysis

Consider a small perturbation vector ε ∈ RK at point ξ in
local coordinates of a pattern. The corresponding values of
shared latent representation z shift to

z̃ = mp
µ(ξ + ε) = z(ξ) +

L∑
j=1

K∑
i=1

εi
∂zj
∂ξi

(ξ)ej + o(‖ε‖2)

= z(ξ) + J(ξ)ε+ o(‖ε‖2),

where J(ξ) (for the sake of brevity, we will write just J) is
the Jacobian matrix of embedding mp

µ:

Jj;i =
∂zj
∂ξi

.

Notice that ignoring the o(‖ε‖2) term, the absolute value of
the shift in shared latent representation depends not only on the
absolute value of ε, but also on its direction. It is possible that
perturbations in different directions will have different effects
on values of latent variables. For robust gradient descent in
local coordinate space, it is better to avoid such differences.
In other words, for uniformly sampled unit vectors v̂ ∈ SK−1
at each point of local coordinate space, we want to have
linear approximations of their projections to shared latent
representation (this is known as pushforward in differential

geometry) to have low variance in their absolute values. The
quantity

Varv̂∼SK−1

(
‖Jv̂‖2

)
(3)

is to be minimized.

C. Efficient approximate algorithm

It can be shown that minimization of (3) is equivalent to
minimization of the following value (see Appendix A for the
derivation):

L⊥ = Ev̂,ŵ∼SK−1

v̂·ŵ=0

(
v̂TJTJŵ

)2
. (4)

For uniformly sampled orthogonal pairs of unit vectors
v̂ and ŵ at every point in local coordinate space, their
projections in shared latent variable space should also be close
to orthogonal, on average. Ideally, when orthogonal directions
are transformed to orthogonal directions by mp

µ, we say that
the embedding is locally conformally flat.

Then, as in [6], we introduce a regularization term to
the loss function, based on Monte-Carlo sampling for (4).
There is no need for explicit computation of the Jacobian of
the embedding. In order to compute the quantity under the
expectation in (4), it is sufficient to compute the Jacobian
vector product, which has the same computational complexity
as forward computation of mp

µ through forward automatic
differentiation using dual numbers [7], which can be efficiently
computed in mini-batches.

First, the number of samples in Monte-Carlo approximation
of (4) is denoted as nMC . Then, the pseudocode is presented in
Algorithm 1. Lines 3-6 describe the process of sampling pairs
of unit orthogonal vectors. Random vectors are selected for
each sample in a mini-batch from standard normal distribution
and a Gram-Schmidt orthonormalization process is performed
for each pair. Lines 7-8 contain the call of the Jacobian vector
product-computing function, which can be implemented using
the aforementioned forward automatic differentiation.

Having L⊥ computed, it is added to the original loss
function with a multiplier λ for regularization. Retaining a
full computational graph it is possible to compute ∂L⊥/∂µ
for gradient descent optimization using any automatic differ-
entiation algorithm.

The full loss function is summarized in the following
equation:

L(θ, µ, ξ1, ξ2, ..., ξN ) =
1

N ∗ T

N∑
i=1

T∑
t=1

∥∥xti − f tθ ◦mpi
µ (ξi)

∥∥2
+ λ · Ev̂,ŵ∼SK−1

v̂·ŵ=0

(
v̂TJT (ξi)J(ξi)ŵ

)2
,

where pi is the pattern label for ith sample.



Algorithm 1
Input: Mini-batch of B examples xi, pattern labels pi, local
coordinates ξi and embedding parameters µ
Output: Average scalar product L⊥ of pushforwards of or-
thogonal unit vector pairs by embedding maps mpi

µ

1: L⊥ = 0
2: for l = 1, 2, . . . , nMC do
3: {v̂ji }, {ŵ

j
i } ∼ N (0, 1)

4: v̂i = v̂i/‖v̂i‖
5: ŵi = ŵi − (ŵi · v̂i)v̂i
6: ŵi = ŵi/‖ŵi‖
7: Jiv̂i = jvp(mpi

µ , ξi, v̂i)
8: Jiŵi = jvp(mpi

µ , ξi, ŵi)
9: L⊥ = L⊥ + (v̂Ti J

T
i Jiŵi)

2/(BnMC)
10: end for
11: return L⊥

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of the pro-
posed approach. Performance is measured by the quality of
reconstruction of partially observed sequences.

A. Generative model architecture

For these experiments we use a generative model based on
modified PVRNN architecture [8]. In contrast to the original
implementation, all stochastic nodes of the network were
removed. Latent variables are introduced as parametrizations
of weights of top-down connections between layer l − 1 and
l corresponding to different time scales, W l

ij :

W l
ij(z) =

L∑
k=1

M l
ijkzk +Blij ,

where M l
ijk and Blij are tensors of learnable parameters.

This architecture is depicted in Fig. 1. Moreover, initial states
are also regarded as parameters to learn. They differ for
different patterns, but are the same for samples belonging to
one pattern.

B. Experimental setup

Experiments were performed using a Torobo Arm robot
simulated in CoppeliaSim [9]. The experimental setup consists
of the robot arm, a table in front of it, and a small red block.
The arm interacts with the block, located at different positions
on the table. See Fig. 2

There are two behaviour patterns:
1) The arm approaches the block and returns to the initial

position
2) The arm approaches the block, makes a circular motion

in proximity to the block, and returns to the initial
position.

The position of the Torobo arm is defined by 9 joint angles.
Training samples comprise sequences of these joint angles
(actions) together with coordinates of the block (perceptions).

Fig. 1: Unfolded schematics of the recurrent generative model.
The model is standard PVRNN with no stochastic nodes and
multiplicative parametric bias z serving as latent variables.

Fig. 2: The experimental setup.

Time resolution of the sequences is 100 milliseconds and there
are 20 time steps in each sequence. These samples correspond
to interactions with the block at different locations on the table.
The dimension of shared latent space is 4. The dimension of
embedding is 2. Furthermore, there are also test samples to
reconstruct. Test samples are not provided during learning.
The goal is to infer latent variable values for these unseen
sequences by knowing only block coordinates at the first time
step. See Fig. 3.

C. Experimental results

The error of reconstruction of unseen samples is compared
for three cases: (i) no embedding of hypersurfaces correspond-
ing to different patterns, (ii) embedding without regularization,
and (iii) embedding with proposed regularization. In the first
case, deciding which pattern to reconstruct while knowing
only the initial position of the block is accomplished by
providing only learned initial states, while in the remaining
cases, we also use different embeddings. The learning process



Fig. 3: The block positions on the table. Black corresponds to
training samples. White corresponds to test samples.

in all cases consists of the same number of epochs. For
reconstruction of unseen samples, there is also a fixed number
of steps for all approaches. The convergence rate is roughly the
same and will not be compared. The average squared errors of
reconstruction of unseen sequences are based only on percep-
tion at the first time step together with the standard deviation
of errors for three independent runs for each considered case
(Table I).

TABLE I: Average squared error in reconstruction of unseen
samples

Pattern 1 Pattern 2
No embedding 0.0032± 0.0025 0.0015± 0.0009

Embedding, no regularization 0.0045± 0.0034 0.0037± 0.0037
Embedding, regularization 0.0004± 0.0001 0.0009± 0.0002

Notice how introduction of embedding further increases the
reconstruction error. This happens because of additional non-
linear transformations, which contribute to instability. Regu-
larization is needed to offset that. Compare local coordinates
for training samples in a case of embedding with and without
regularization at Fig. 4

D. Conclusion

Explicit distinctions between patterns in generative model
makes reconstruction of unseen samples more tractable. This
approach could be extended further by also learning a distance
function in shared latent space, which would help to identify
the pattern of an unseen sample, if it is not given explicitly.
The proposed Jacobian-based regularization helps to restrict
enlargement by new parameters of the embedding map search
space.

For future work, it will be very interesting to investigate
global geometrical properties of embeddings corresponding to
different patterns. Shifts in local coordinates of a given pattern
could be interpreted as a symmetry Lie group: performing the

(a) Without regularization (b) With regularization

Fig. 4: Learned local coordinates ξ of the training samples of
pattern 1 in two cases. (a) Without regularization it is hard to
see any pattern looking at the points. (b) With regularization,
it is clear that this placement of the points resembles the
locations of the block on the table.

same action with an object located at different positions, or
changing the point of view. Topology of these Lie groups may
reveal some features of symmetries, such as the periodic nature
of rotation of an object or the camera.
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Appendix A

If the exact solution J∗ for the problem of minimization (3)
is achieved:



Varv̂∼SK−1

(
‖J∗v̂‖2

)
= 0.

Then there is a constant C ∈ R such that for any unit vector
v̂ ∈ SK−1 we have

‖J∗v̂‖2 = v̂TJ∗TJ∗v̂ = C.

In other words,

min
v̂∈SK−1

v̂TJ∗TJ∗v̂ = max
v̂∈SK−1

v̂TJ∗TJ∗v̂ = C.

This means all eigenvalues of quadratic form J∗TJ∗ are the
same. There is only one option what it can be: J∗TJ∗ = CI.

Next, remember another defining property of matrices hav-
ing the form CI: all vectors are eigenvectors; hence, all of
them preserving direction, and all angles are also preserved.
It is necessary and sufficient to demand all vectors ŵ from
orthogonal subspace of any vector v̂ to stay orthogonal for
transformed vector J∗TJ∗v̂:

(
v̂ · ŵ = 0 =⇒ J∗TJ∗v̂ · ŵ = 0

)
⇐⇒

(
J∗TJ∗ = CI

)
.

This condition expressed in terms of minimisation of unbi-
ased estimator gives us (4):

J∗ = argmin
J∈RK⊗RL

Ev̂,ŵ∼SK−1

v̂·ŵ=0

(
v̂TJTJŵ

)2
.


