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Abstract
Through brain-inspired modeling studies, cognitive neurorobotics aims to resolve dynamics essential to different emer-
gent phenomena at the level of embodied agency in an object environment shared with human beings. This article is a
review of ongoing research focusing on model dynamics associated with human self-consciousness. It introduces the free
energy principle and active inference in terms of Bayesian theory and predictive coding, and then discusses how directed
inquiry employing analogous models may bring us closer to representing the sense of self in cognitive neurorobots. The
first section quickly locates cognitive neurorobotics in the broad field of computational cognitive modeling. The second
section introduces principles according to which cognition may be formalized, and reviews cognitive neurorobotics
experiments employing such formalizations. The third section interprets the results of these and other experiments in
the context of different senses of self, both ‘‘minimal’’ and ‘‘narrative’’ self. The fourth section considers model validity
and discusses what we may expect ongoing cognitive neurorobotics studies to contribute to scientific explanation of
cognitive phenomena including the senses of minimal and narrative self.
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1. Prospectus

The following article proceeds in four movements. The
first section very briefly introduces cognitive neuroro-
botics (CNR). The second section reviews a series of
humanoid CNR experiments designed to elicit specific
cognitive phenomena in emergent dynamics, and the
third section interprets this review in the context of min-
imal and narrative self. The fourth section emphasizes
the potential for CNR studies of this sort to contribute
to inquiry into embodied cognition and mind.

1.1. Introducing CNR

The main motivation of CNR is to elucidate essential
mechanisms underlying embodied cognition through
synthesis of analogous dynamics in various robotics
experiments. CNR calls on diverse interdisciplinary
knowledge including from fields of cognitive science,
psychology, ethology, neuroscience, complex systems,

artificial intelligence (AI) and deep learning, artificial
life, and many others. Primarily, CNR can be consid-
ered a marriage of two research fields. One is cognitive
robotics (e.g. Levesque & Lakemeyer, 2008) which aims
to develop human-level intelligence in robots using a
rather conventional symbolism approach, and the other
is neurorobotics which puts more emphasis on the rea-
lization of adaptive behaviors of biological systems
using neuroscience inspired models or neuromorphic
schemes.
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Initially, cognitive robotics studies proceeded with a
strong conviction that formal logical descriptions of the
world and rational computation for reasoning, plan-
ning, and inference could provide for human-level cog-
nitive competency in artificial agents including robots.
However, such early expectations were betrayed by the
results of projects such as SRI’s SHAKEY (Nilsson,
1984) which demonstrated the problems associated with
the rigors of applying formal logic to real robots. Part
of the reason for the trouble is that representation of
the world using symbols as arbitrary tokens cannot be
grounded smoothly with real-world phenomena which
are fundamentally given to experience in terms of con-
tinuous sensory-motor patterns. This is the point of
Harnad’s (1990) famous symbol grounding problem.

Already by the end of the 1980s, a paradigm shift
had been taking place in AI and robotics research with
the introduction of behavior-based robotics by Rodney
Brooks (1990, 1991). Brooks considered that even sim-
ple insect-like robots can exhibit extremely complex
and intelligent behaviors by establishing a direct cou-
pling between a robot’s reflex-type controllers and sen-
sations from the environment. His seminal paper,
‘‘Intelligence without representation’’ (Brooks, 1991)
represents this thought—no representation and thus no
grounding problem.

Neurorobotics in general is a growing field of espe-
cially fruitful inquiry employing biological system–
inspired algorithms in a range of applications, from
prosthetics with brain–machine interface technologies
(Millan et al., 2010; Moxon and Foffani, 2015) to inde-
pendently embodied robots with autonomous locomo-
tion, learning, memory, value, and action selection
systems (Doya et al., 2002; D. M. Kaplan, 2015;
Krichmar, 2018; Kuniyoshi & Sangawa, 2006). The
degree of biological precision in selection of neuronal
and kinematic models depends on the degree of realism
required to represent target phenomena. Extreme rea-
lism is represented in the Human Brain Project (HBP).
Neurorobotics is considered a ‘‘strategic pillar’’ of the
HBP through which biologically inspired algorithms
representing levels of organization from molecular
mechanism to modular function to unified cognitive
architecture can be tested in simulation and then
deployed in physically embodied robots sharing physi-
cal space with human beings (Knoll & Gewaltig, 2016).
In general, however, more specific studies replicate
focal operations in fine detail while rendering other
aspects more abstract. Recognizing the impossibility of
analyzing all levels of activity simultaneously for
instance, Krichmar and Edelman (2002) focus on how
cortical and subcortical levels interact in real time using
a relatively simple embodied robot, Darwin VII.

There has been a group of researchers who have
emphasized advantages of studying so-called ‘‘mini-
mum cognition.’’ These researchers have focused on
phenomena emerging during system-level interaction

with the environment using relatively simple neuronal
adaptive controllers (e.g. Barandiaran & Chemero,
2009; Beer, 2000; Froese & Ziemke, 2009; Iizuka & Di
Paolo, 2007; Nolfi & Floreano, 2000; Silberstein &
Chemero, 2013). Beer (2000) viewed an agent’s nervous
system, its body, and its environment as coupled dyna-
mical systems. By focusing on the unfolding trajectory
of the agent’s system state as shaped by both forces
internal to the agent and external from the environ-
ment, he attempts to extract the essential dynamic
structures accounting for minimal cognition. Since
most neurorobotics studies inherit the aforementioned
thoughts of the behavior-based robotics, current
research tends to stay close to the realization of biologi-
cally plausible adaptive behavior, focusing on sensory-
motor level processing and hesitating to explore
mechanisms associated with higher cognition in human
beings.

On the other hand, one of the main motivations of
CNR studies is to consider possible principles, algo-
rithms, and implementation designs which can bridge
the gap between higher cognition and the lower
sensory-motor processing of robots. Hybrid models
(e.g. Sun, 2002) attempt to combine these two levels,
extracting symbolized rules and associations at one
level from sensory-motor patterns of activity at another
(cf. Kotseruba & Tsotsos, 2018). However, such an
enterprise may suffer again from the symbol grounding
problem (Harnad, 1990) since these two levels do not
share the same metric space required for the dense
interactions between top-down and bottom-up pro-
cesses that are associated with subjective experience
including the sense of self.

Recently, deep learning schemes in robots show
promise in attacking this problem. It has been known
that various types of deep learning networks can
develop hierarchical information processing in collec-
tive spatio-temporal activities of the neural units
through end-to-end learning of sensory-motor patterns.
Actually, such trials have been conducted by various
research groups including the authors’ (Heinrich &
Wermter, 2018; Levine et al., 2016; Yamada et al.,
2016; Yamashita & Tani, 2008). Developmental
robotics (Asada et al., 2009; Cangelosi & Schlesinger,
2015; Metta et al., 2008) is another indispensable
approach to address this problem. In developmental
robotics, cognitive competencies of artificial agents or
robots develop gradually, supported by human tutors,
with scaffolding from level to level according to funda-
mental theories in child development (e.g. Piaget, 1953;
Vygotsky et al., 1934/1962).

Some CNR research attempts to expose connections
between the phenomenology of subjective experience
and embodied sensory-motor processing. Holland
(2007) conjectured that building human-like bodies for
robots and developing internal models for predicting
body dynamics is essential for developing ‘‘machine
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consciousness.’’ Prescott and Camilleri (2019) consider
that the sense of self can be characterized as a transient
process, analogous to Tani’s (1998) consideration that
self becomes an object of consciousness when prediction
error for the actional outcome momentarily increases
(as will be described later, in Section 3). Lanillos and
Cheng (2018) proposed that prediction error generated
by a body’s forward model should come with the sense
of what they call ‘‘enactive self’’ in the differentiation
between inbody and other sources. And, Hafner and
colleagues (Lang et al., 2018; Schillaci et al., 2016) con-
ducted a set of robotics experiments also examining the
sense of agency wherein they observed attenuation of
sensory inputs to self-generated movements (in terms of
prediction error minimization) but not to those of oth-
ers (as these were unpredictable). Keeping this research
in mind, it is becoming more crucial that the problems
of cognition and of subjective experience should be
investigated inseparably to gain a better understanding
of the minds of both humans and artifacts.

The CNR experiments reviewed in the next section
aim to uncover such structural dynamics by using an
approach analogous to the free energy minimization
principle (FEP) proposed by Friston (2005). The FEP
approach can be interpreted in terms of Marr’s three lev-
els (Marr, 1982) wherein first, the computational level
might be represented by the FEP itself, in which the goal
of computation is minimizing the free energy. Second,
the representation and algorithmic level might be repre-
sented by the schemes of predictive coding (Clark, 2015;
Friston, 2005; Rao & Ballard, 1999) and active inference
(Clark, 2015; Friston et al., 2011; Hohwy, 2013). Finally,
the implementation level might be represented by neuro-
physiology in biological brains or artificial neural net-
work programs put into a robot’s head. The next section
starts with a brief review of the FEP, predictive coding,
and active inference, and then reviews a set of CNR
experiments conducted by Tani’s group employing ana-
logous principles. Their validity as evidence for explana-
tions in cognitive science is recalled in Section 4.

2. Models and CNR experiments

First, we provide a brief introduction of the FEP
(Friston, 2005). Then, some neural network models
developed by Tani’s group similar to this principle are
introduced along with CNR experiments using those
models. These detailed descriptions of technical aspects
may help to understand how this and similar ongoing
research may contribute to inquiry into phenomena
such as self, as explored in Section 3 and as proposed
in Section 4.

2.1. The FEP

The FEP states that any self-organizing system at
dynamic equilibrium with its environment must

minimize its free energy to maintain this equilibrium
and thereby its organization in the face of otherwise dis-
integrative forces. The FEP is an application of
Bayesian theory. Bayes’ general idea was that we can
calculate the probability of something being true
(before we have evidence and rather than directly test-
ing for it), and to do so, we may use what we have
already observed to predict what we should perceive
next. By applying this principle to adaptation mechan-
isms in brains, Friston considers that all essential cogni-
tive mechanisms including perception, action
generation, and learning can be explained.

It may help to illustrate with an intuitive image of
the FEP at work. Consider a snowflake with wings,
fluttering about. As long as it stays in a certain condi-
tional zone—not too turbulent, freezing air—then it
continues fluttering about and is able to maintain its
unique structure. If it falls out of this zone, then its
integrity is lost and it dissipates. If its situation becomes
too hot, then it melts, for example. In the simplest of
terms, the FEP (along with active inference, also intro-
duced below) tells us that the snowflake will do what it
can to stay in this zone. As an application of Bayesian
theory, the FEP attempts to describe how biological
brains update beliefs (or hypotheses, what we think is
the case) in light of new information, so that organisms
can act on this new information toward what they wish
to be the case, like snowflakes countering gusts of wind
to stay in their comfort zones by anticipating from
which direction the likeliest are to come next.

Formally, the relationship between the likelihood of
an observation after we have experiential evidence, with
what we thought that the likelihood might have been
before we had such evidence, is represented in a mathe-
matical formula, Bayes’ theorem. Bayes’ theorem
updates prior probabilities (original hypotheses) with
new evidence to produce new (posterior, after the evi-
dence is gathered) probabilities that are then useful to
guide the next iteration of action, for example, the
snowflake’s next wing flap. The FEP tells us that biolo-
gical brains do this to stay alive (like the snowflake does
to maintain its unique organization), so they (in gen-
eral) perceive what they need to perceive to inform
beliefs that they need to believe to inform action that
they need to enact to maintain their integrity in the face
of dissipative change. With its brain optimized accord-
ingly, an organism aims to minimize the difference
between what it expects to happen and what it per-
ceives, especially concerning those parameters that bear
on its integrity, for example, to stay in that comfort
zone. In the end, it is this adaptive updating of hypoth-
eses in light of new information that is the focus of the
CNR experiments reviewed below, and it is the tem-
poral hierarchy characterizing biological brains ground-
ing the anticipatory nature of the experience that their
focal architectures reflect.
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In terms of these robotics experiments, Bayes’ theo-
rem is shown in formula (1). By applying this formula,
the robots are able to infer the hidden cause z of a sen-
sory observation X

p zjXð Þ= p X jzð Þp zð Þ
p Xð Þ ð1Þ

p(z|X) is the posterior distribution of hidden cause z
with given observation X, and p(X|z) is the likelihood
which relates the sensory observation X to the hidden
causes z. P(z) is the prior distribution of (probability
density of) or belief in z as the latent cause before
observation X. P(X) is the marginal likelihood which is
obtained by marginalizing p(X|z) for all z. P(X) is
obtained by considering the probabilities of X for all
possible hidden causes. There is a practical problem,
however, in that the direct computation of p(X) is often
intractable with current methods. Simply too many
possibilities must be considered in practice.

Since p(X) is necessary for the computation of the
posterior distribution p(z|X), rather than directly com-
puting over all these possibilities, the variational free
energy approach derives an approximation of p(z|X).
This scheme optimizes an auxiliary probability distribu-
tion q(z), referred to as the recognition density, in
approximation of the true posterior p(z|X) by minimiz-
ing the Kullback–Leibler (KL) divergence between the
two (formula (2))

DKL q zð Þ k p zjXð Þ½ �=
ð

q zð Þ ln q zð Þ
p zjXð Þ dz=F + ln p Xð Þ

ð2Þ

Free energy F is defined as

F =

ð
q zð Þln q zð Þ

p z,Xð Þ dz ð3Þ

Since the marginal likelihood p(X) in the second term
on the right-hand side in equation (2) is independent of
the recognition density q(z), minimization of the KL
divergence between the recognition density and the true
posterior can be achieved by minimization of the free
energy in equation (3) with respect to q(z). This makes
q(z) an adequate practical approximation of the true
posterior p(z|X).

The free energy F to be minimized can thus be
rewritten in a computationally tractable form in terms
of q(z). In this equation, u and u are model parameters
(formula (4))

F = � Equ zð Þ lnpu X jzð Þ½ �+DKL qu zð Þjjp zð Þ
� �

ð4Þ

The first term on the right side of the equation, the
accuracy term, represents the expectation of log-
likelihood with respect to the approximate posterior,

which represents reconstruction of the sensory observa-
tion with the approximate posterior by generative mod-
els. The second term, the complexity term, is
represented by KL divergence between the approximate
posterior and the prior, which serves to regularize the
model according to prior expectation.

Free energy F can be minimized with respect to qu(z)
as

qu zð Þ=arg min F ð5Þ

Here, we may put the preceding in terms of predic-
tive coding (Clark, 2015; Friston, 2005; Rao & Ballard,
1999). For a given sensory observation, the posterior
inference of the latent variable (‘‘latent’’ means hidden,
so this is what is hypothesized to be the hidden cause) is
carried out by means of minimizing the error between
the sensation expected by the generative model for the
latent variable and its observation under the constraint
of the prior distribution of that latent variable. The idea
here again is to minimize the difference between what
was predicted and what is perceived.

Free energy F integrated for the predicted future
time period is the expected free energy FE of a given
model. We aim to minimize this value with respect to
an action a by assuming a forward model that repre-
sents the likelihood of an action causing an observa-
tion, given the cause z, as shown in formulae (6) and
(7)

FE = � Equ zð Þ lnpu X að Þjzð Þ½ � ð6Þ

a= argminFE ð7Þ

Note that the expected free energy does not involve
the KL divergence between the posterior and the prior
(as in formula (4)) because KL divergence is indepen-
dent of sensation (evidence, X) and thus of action.

The preceding process represents action generation
by active inference (Clark, 2015; Friston et al., 2011;
Hohwy, 2013) whereby actions are selected such that
the expected free energy is minimized.1 (Later we intro-
duce a more recent update of active inference (R.
Kaplan & Friston, 2018) considering the epistemic
value.) More intuitively, to minimize the error between
the expected or preferred sensory outcome and the
actual one, the actual one is modified to become closer
to the preferred one by acting adequately on the envi-
ronment. Finally, perception by equation (5) and
action generation by equation (7) are carried out,
simultaneously, thereby closing the loop between action
and perception (Baltieri & Buckley, 2017). Here, it is
considered that enactive cognition is a continuing trial
for minimizing the conflictive error between the top-
down intention projected from the latent variables and
the bottom-up perception of reality through iterative
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acts changing the external environment as well as modi-
fying the intention within (Tani, 2016).

2.2. Recurrent neural network with parametric
biases

Tani and colleagues (Tani, 2003; Tani et al., 2004)
developed the recurrent neural network with para-
metric biases (RNNPB) independently from the FEP.
Since that time, the RNNPB has turned out to be one
possible neural network implementation of the FEP
(with some simplification as detailed later). Although
there have been variations in the RNNPB specific to
different applications, the following describes a typical
version.

2.2.1. Model description. In the RNNPB, the following
objective function for a time series of L time steps is
minimized (formula (8))

Obj pb1...T ,Wð Þ=
1

2

XL

t = 1

1

Nos2
Xt � Xt Wð Þ

���� 2
+

1

Npb
pb2

t

� � ð8Þ

In equation (8), Xt and Xt(W ) are the sensory obser-
vation and the prediction outputs for the sensory
observation as a function of the learning parameters W
with their dimensionality No, respectively. Sensation
may consist of exteroception such as vision vt and pro-
prioception pt in a robotics application as shown in
Figure 1(a). In equation (8), pb1...T is a latent variable
of Npb dimensions.

This objective function equation (8) becomes equal
to the free energy defined in equation (4) with assump-
tions2 that the prior of the latent variable is represented
by a unit Gaussian distribution, the posterior by a
Gaussian distribution with its mean pbt and its stan-
dard deviation of 1.0, and the sensory prediction out-
puts by a Gaussian distribution with its mean Xt and its
standard deviation s. Then, this objective function can
be minimized with respect to pb1...T , given fixed learning
parameters W by the deterministic dynamics described
in the following difference equations (formulas (9a) to
(9d))

Ci
t + 1j= g

P
j

wc
ijC

j
t +

P
h

w
pb
ih PBh

t, n + bc
i

 !
9að Þ

pbh
t, n+ 1j=a �pbh

t, n �rE pbh
t, n

� �� �
+ pbh

t, n 9bð Þ

PBh
t, nj= g pbh

t, n

� �
9cð Þ

X o
t + 1j= g

P
j

wout
oj C

j
t + bout

o

 !
9dð Þ

8>>>>>>>>>><>>>>>>>>>>:
In equation (9a), Ct represents the activation of inter-

nal units with recurrence at time step t. PBt, n represents
the outputs of the sigmoid function g() applied to the
latent variable pbt, n during the nth epoch iteration at
time step t. The latent variable pb is inferred at each
time step through N epochs of iterations of the internal
computation loop. Its value is updated in the direction
of minimizing prediction error in the output by follow-

ingrE pbh
t, n

� �
, which is the gradient of the mean square

error E of the prediction outputs for all time steps,
while also considering a unit decay effect of this value

Figure 1. A robot controlled by an RNNPB model. (a) During movement, PB values are updated by backpropagation in the
direction of minimizing error and (b) predicting the future by inferring the most likely past with black and red arrows representing
the generative and error backpropagation processes during prediction and postdiction, respectively.

Tani and White 5



as represented in the first term on the right-hand side of

equation (9b). wc,wpb,wout, bc, and bout are elements of
the learning parametersW.

The actual computation of equation (9) is carried
out for N epochs iterated in the forward computation
of L time steps, with backward error regression com-
puted for the same L time steps using a past window
storing all temporal variables from time step t2L+ 1
to the current time step t as illustrated in Figure 1(b).
In the forward computation, values of the internal
units as well as those of the prediction outputs from
time step t2L+ 1 to the next (anticipated future) time
step t+ 1 are computed using the PB values updated
for each time step. In the backward error regression,
the prediction error at each time step is backpropa-
gated through time (BPTT) (Rumelhart et al., 1985;
Werbos, 1990) from the current time step t to time step
t2L+ 1 (at the onset of the past window). The latent
variable pbt�L+ 1...t in the window is updated by using
the error gradient information obtained by BPTT at
each time step according to equation (9b).

The predicted proprioception at time step t+ 1 is
sent to the robot’s proportional–integral–derivative
(PID) controller as target joint angles for the next time
step, and the robot moves accordingly. Actuators
receive the motor commands a generated by the PID
controller, move according to these commands, and this
movement generates new visual and proprioceptive
(bottom-up) sensations and their (top-down) prediction
errors at time step t+ 1 again with the aim to minimize
these errors. The PID controller thereby instantiates the
idea of active inference, since action a is generated to
minimize the error between the actual and the predicted
joint angles (proprioception; Baltieri & Buckley, 2018).

Finally, the learning of the RNNPB can be carried
out by minimizing the objective function equation (8)
with respect to both the learning parameters W and the
latent variable pb1...T

Wn+ 1 = � brE Wnð Þ ð10Þ

W is updated at each epoch using the gradient infor-
mation computed by BPTT with the learning rate b.

2.2.2. Robotics experiment using RNNPB. To evaluate the
RNNPB in a robotics experiment, a humanoid robot
was used which consists of three subsystems: an
onboard sensory processing module with a head-
mounted video camera, an RNNPB module running
on an external computer, and an onboard motor con-
trol module. So configured, the RNNPB could predict
two types of sensory inputs, proprioception in terms of
joint angles in both arms of the robot, and visual fea-
tures representing target object position (X-Y-Z) at
each time step.

During ball manipulation experiments (Ito et al.,
2006), human tutors trained this robot to manipulate a
ball in two different sequences: repetitively pushing the
ball from left to right and right to left, and repetitively
grasping the ball at the center position, lifting it up,
and then dropping it. After the training of the network
wherein PB values adapted differently for each action
sequence, the robot was tested to generate these
sequences autonomously (without external help).
During testing, the robot switched from one to the
other intermittently, with an example presented in
Figure 2 (also see a video: https://youtu.be/
a_auIoksGN0). In this instance, the robot initially
pushed the ball from left to right repeatedly until the
ball bounced off of one hand too much, rolling to the
center position. This unexpected movement caused pre-
diction error. To minimize this error, the robot adopted
the PB value for grasping and dropping the ball, and
its behavior changed accordingly. Here, we see that the
top-down intention to act with the ball, represented by
the PB, shifted autonomously during iterative interac-
tion with the bottom-up percept of the ball position
from one behavioral reparatory to another in the
course of minimizing the error.

Importantly, the continuous sensory flow was seg-
mented during the error minimization process as the
robot optimized coordination with the target object
through autonomous shifts in PB values. Shifting PB
values served as bifurcation parameters to induce tran-
sitions, effectively steering the system from one learned
behavioral pattern to the other. This same mechanism
for the segmentation and chunking of the continuous
perceptual flow had been observed during an earlier
RNNPB experiment on human–robot interaction (Ito
& Tani, 2004) wherein a robot and a human participant
attempted to synchronously imitate one another’s pri-
mitive movement patterns using prediction based on
prior learning. With robot and human participant
movements synchronized according to one of the prior
learned patterns, if the human participant suddenly
shifts the current movement pattern to another learned
one, the synchronization breaks down thereby generat-
ing prediction error bottom-up in the RNNPB. In effort
to minimize this error, the PB value is updated, and
enactive synchrony with the present pattern achieved.
Looking at the data from these experiments, segmenta-
tion of sensory flow from one habituated pattern (with
corresponding expectations) to another can also be
observed.

Observation of these phenomena suggests a general
mechanism for the segmentation and chunking of the
continuous sensory flow. Confirming a core tenet of
predictive coding, that cognition aims to minimize pre-
diction error in the process of interacting with changing
environments, perceived error should be essential to
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mechanisms underwriting the segmentation of the con-
tinuous bottom-up sensory flow during online cogni-
tion in biological models, as well. Moreover, such
mechanisms should provide for the development of
compositionality in cognition, subject of the next sec-
tion, because this competency requires segmentation of
sensory flow into a set of reusable objects which can be
mentally manipulated for combinatory operations.

Here, it is intriguing to note that the error regression
scheme for the past window in the RNNPB could pro-
vide a possible mechanism for ‘‘postdiction’’ (Shimojo,
2014). Postdiction is a process that is recognizable dur-
ing perceptual phenomena wherein the percept of a sti-
mulus presented earlier is affected by another stimulus
presented later. Postdiction is apparent during various
backward perception phenomena, including classic
examples of backward masking (Raab, 1963) or the
cutaneous rabbit illusion (Geldard & Sherrick, 1972).
Such phenomena may be explained by the error regres-
sion mechanism assumed in the RNNPB as a model of
predictive coding.

The cutaneous rabbit illusion involves tactile stimuli
(taps, small electric shocks) presented to a human sub-
ject, typically on the forearm (due to this area’s rela-
tively poor spatial acuity as mapped to the
somatosensory cortex). In the simple case, three stimuli

are presented with equal temporal intervals between
each. The cutaneous rabbit illusion appears when these
stimuli occur with very short durations between them
(less than 300 ms) and when the first and the second
are given in the same position, but with the third given
in a distant position (which may extend past the physi-
cal body, Miyazaki et al., 2010). The subject mislocates
the second tap in the direction of the third tap, whereas
the subject will not mislocate it if the third tap is given
in the same position with the first or second ones.

In backward masking, the consciousness of a target
presented immediately before a masking stimulus (typi-
cally something driving urgent attention, such as some-
thing scary) can be suppressed, such that subjects are
unable to report having seen the first stimulus. This
phenomenon may be intuitively explained, given two
assumptions: one that the world as we experience it
usually does not change so rapidly, and two that opti-
mal implicit internal models of such a world should
operate according to the expectation that a visual sti-
mulus given a moment ago will be retained for a while.
This gives rise to the idea that there may be two path-
ways operative in backward masking, one for normal
operations over longer timespans, and one for surpris-
ing situations that respond rapidly to changes in the
environment. In case that a stimulus presenting minor

Figure 2. Dynamic generation and switching of two learned ball-handling behaviors. Top row: measured ball position. Second and
third rows: predicted ball position and robot joint angles generated by the RNNPB, respectively. Bottom row: the PB as it switches
from one movement sequence to another. Redrawn from (Ito et al., 2006).
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changes in the world is suddenly followed by a surpris-
ing stimulus presenting more important changes in the
world, an expectation error should be generated that
effectively diminishes the previous stimulus as the agent
recenters activity around the implications of the later
stimulus. Thus, in the course of minimizing the error
between what is expected and what is sensed, the expe-
rience of the stimulus presented in the past is ‘‘masked’’
by one that comes later.

The case of the cutaneous rabbit illusion can be
explained similarly. After the first and the second (series
of) taps are provided in the same position, an internal
model implicitly expects that the third should come in
the same position after the same temporal interval.
However, when the third is presented in a distant posi-
tion, an expectation error is generated. To minimize the
error, the experience of the second tap is relocated to
the midpoint between the first and the third tap posi-
tions (by means of regressing a linear model predicting
the position and timing for succeeding stimuli). In sum,
postdictive phenomena can be explained in terms of
inference and consequent rewriting of past experience
by means of the error minimization principle.3

2.3. Multiple timescale RNN for development of
compositionality

The RNNPB experiments reviewed above demonstrate
that cognitive phenomena such as segmentation of the
undifferentiated perceptual flow into reusable chunks
occur by minimizing conflicts between bottom-up per-
ception and top-down intention. This section briefly
reviews experiments intended to expose the role of such
dynamics in the composition of novel patterns in coor-
dination with novel task environments before turning
to how these fundamental dynamics may contribute to
accounts of self.

Compositionality is the ability to combine parts into
wholes, evident, for example, in the abilities to deter-
mine the meanings of sentences from the structured
relations between constituent parts (Costello & Keane,
2000; Evans, 1982) and to enact diverse goal-directed
actions by sequentially combining reusable primitives
(Arbib, 1981; Pastra & Aloimonos, 2012). Yamashita
and Tani (2008) proposed a predictive RNN model
characterized by multiple time constraints at different
levels, the multiple timescale recurrent neural network
(MTRNN) to investigate how neural networks in bio-
logical brains develop compositionality and thereby
generate novel actions. The MTRNN has been used to
investigate various aspects related to development of
compositionality including co-development of skills
between human tutors and robots (Nishimoto & Tani,
2009), goal-directed creative compositions of primitives
(Arie et al., 2009), cases analogous to schizophrenic
pathology including the delusion of control (Yamashita

& Tani, 2012), and imitative human–robot interactions
(Hwang et al., 2018). Next, we review the MTRNN in
greater detail.

2.3.1. Model description. The MTRNN has layers of
RNNs each characterized by a different timescale con-
straint (see Figure 3(a) for a typical architecture).
Neural activity in higher layers is slower with larger
timescale constraints, while lower layers are faster with
smaller timescale constraints. In the MTRNN, the fol-
lowing objective function for a time series of L time
steps is minimized as analogous to equation (9) in the
case of the RNNPB

Obj c1,Wð Þ= 1

2

XL

t = 1

1

Nos2
Xt � Xt Wð Þ
�� ��2

+
1

Nc
c2

1

� �
ð11Þ

In equation (11), No and Nc represent the dimen-
sions of the output and the internal units, respectively.
Equation (11) differs from equation (9) in that c1—
which represents the potential value of the internal
units with recurrence at the initial time step in equation
(9)—plays the role of latent variable in equation (11).

Assuming fixed learning parameters ofW, this objec-
tive function can be minimized with respect to c1 by
way of the following difference equations ((12a) to
(12d))
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In this series of equations, Ct represents activation of

the internal units with recurrence at time step t. ti is the
time constant for each internal neural unit, and is dif-
ferent at each layer (in comparison, the time constant
for all internal units in the RNNPB was assumed to be
1.0.) By assigning the higher layer with a larger value
for the time constant, the higher layer is dominated by
slower dynamics; by assigning a smaller time constant
to the lower layer, it is dominated by faster dynamics.
It is also noted that a bottleneck type connectivity con-
straint was applied to the network wherein the internal
units in the higher layer were connected only with those
in the intermediate layer which were again connected
with only those in the lower layer.

Here, we may note that the latent variables repre-
sented as the initial states of the internal units c1 deter-
mine the time development of the whole network,
including later prediction outputs, due to the sensitivity
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to initial conditions that is characteristic of the determi-
nistic RNN model. Therefore, for minimizing the
reconstruction error for all time steps, the optimal val-
ues of the initial states are inferred by using the gradi-
ent information computed by BPTT through iterations
of the internal computation loop using the past window
in a similar way with the RNNPB case.

2.3.2. Robotics experiment. A robotics experiment using
an MTRNN in a task of developmental tutoring of
compositional object manipulation is briefly reviewed.
During this experiment (Nishimoto & Tani, 2009), a
Sony QRIO (as in Figure 1) controlled by an MTRNN
was tutored on multiple task sequences each composed
of different series of primitive actions. For example,
one tutored sequence proceeded as follows. The tutor
moved both of the robot’s hands toward an object
located at an arbitrary position on a table, then using
the hands grasped it, lifted it up and down a few times,
and placed it back on the table. Another sequence
involved touching the object with the left and right
hands in turn, grasping the object, rotating it, and pla-
cing it back on the table. Sensors on the robot delivered
simplified visual features and proprioceptive informa-
tion (as in experiments described above). Tutoring pro-
ceeded gradually, that is, the robot was tutored on
some tasks, then tested, and if performance was

unsatisfactory, tutoring was repeated (the correspond-
ing video can be seen at https://youtu.be/
n9NYcG8xlYs). It is important to emphasize that
tutors directly guided the robot’s hands by feeling and
correcting the ‘‘intent’’ of the robot with their own
hands. After training, the robot was able to reliably
perform all task sequences successfully and layer-
specific neural regions were analyzed. It was found that
each layer played a different role in action composi-
tionality (see Figure 3(b)).

Yamashita and Tani (2008) speculated that the mul-
tiple timescale property imposed on network dynamics
resulted in the emergence of a functional hierarchy in
which the higher layer generated different slowly
changing neural activation patterns corresponding to a
scenario or plan for each task sequence, whereas the
lower layer developed precise skillful control for each
behavior primitive. Recalling experiments involving the
RNNPB, the slowly changing neural activity from the
higher layer served as a source of bifurcation para-
meters, steering activity in the lower layer, while the
faster lower layer learned to develop a set of behavior
primitives, for example, grasping, lifting up, or moving
the object left and right, in complementary ways. After
the development of these dynamics through learning,
the MTRNN-driven robot became able to generate dif-
ferent ways of combining behavior primitives.
Yamashita and Tani (2008) interpreted these results by

Figure 3. (a) An example of an MTRNN architecture with three layers and (b) illustration of compositionality of different action
plans in an MTRNN. Redrawn from (Tani, 2016).
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hypothesizing that the robot developed compositional-
ity in generating actions as its functional hierarchy self-
organized. To test this interpretation, they manipulated
the timescale parameters of the MTRNN to explore
the role of the multiple timescales in structuring cogni-
tive dynamics. Compositional representations (layer-
specific stable structural dynamics) could not be devel-
oped when all layers shared the same time constant.
The same results were repeatedly confirmed in other
robotics experiments conducted under more complex
conditions, for example, while using pixel-level vision
(Hwang et al., 2018).

2.4. Goal-directed planning

With this understanding of compositionality as
achieved through the segmentation of fluid experience,
predictive coding and active inference (see Section 2.1)
can be applied also to the problem of the goal-directed
planning of action sequences by robots.

Tani (1996) conducted experiments on the goal-
directed navigation of a mobile robot, Yamabico,
which was equipped with a range sensor using a single-
layer RNN. Yamabico was developed with a lower
level automatic control scheme using range sensors
which can perceive images of 24 angular directions cov-
ering the front of the body to travel smoothly in a
collision-free manner in a workspace. Basically, it
moves toward the largest open space in a forward direc-
tion by maneuvering between obstacles on its left and
right sides. When a new open space appears, a decision
is made on whether to pursue the current open space
direction or to branch to the new one. This branching
decision is made by the RNN in the higher cognitive
level as described next.

In the experiment, Yamabico explored the obstacle
workspace under collision-free maneuvering control
during daytime for the purpose of gathering sensory-
action data. When it encountered a branching point, a
branching decision was made arbitrarily (with an equal
chance for either option) by the experimenter. At this
time, the sensory inputs in terms of the range image,
the travel distance (as indicated on the odometer) from
the previous branching point to the current one, and
the action in terms of the branching decision were
recorded. Yamabico explored the environment experi-
encing around 200 successive branches until its battery
was depleted. This resulted in a sampling of a sensory-
action sequence of around 200 branching steps. During
nighttime while the battery was charging, the RNN
was trained in the form of the forward model (Kawato,
1999; Miall & Wolpert, 1996) so that it could predict
the sensory input at a next branching step Xt + 1 when
presented with current sensory input Xt and branching
action at + 1 by developing an adequate dynamic struc-
ture for the latent state transition from Zt to Zt + 1

based on the branching scheme using the sampled
sensory-action sequence.

After this training, a test of goal-directed planning
was conducted through the following procedure. First,
Yamabico traveled for several steps by randomly
branching out from an arbitrary position for the pur-
pose of inferring the latent state by way of the observed
sensory sequence.4 Several branching steps of travel
were necessary because this navigation problem
involves the sensory aliasing problem; the current sen-
sory inputs cannot uniquely identify the current latent
state. Then, after inference of the latent state in the cur-
rent branching step, Yamabico generated goal-directed
planning under the constraint of minimum travel dis-
tance to reach a branching point specified as a goal by
its expected sensory inputs.

Analogous to active inference as in equation (7), an
optimal action sequence minimizing the error between
the preferred and the predicted sensory outcomes was
identified, specifically minimizing the error between the
goal range image (image of the goal as it is ideally
achieved) and the predicted one in the distal (final) goal
step (given the current action plan) while also minimiz-
ing the predicted travel distance at each branching step.
This can be carried out by means of BPTT applied to
the trained RNN as illustrated in Figure 4. In the test
experiment, a set of possible action sequence plans was
searched (including suboptimal ones) through iterative
computation. Generated action plans were actually exe-
cuted by the robot.

Results of goal-directed plan generation are shown
in Figure 5. Figure 5(a) shows the designated starting
position and the goal position. Figure 5(b) to (d) shows
the actual trajectories generated by executing three dif-
ferent action sequence plans, with Figure 5(b) showing
the optimal trajectory that minimizes the travel dis-
tance, and Figure 5(c) and (d) showing suboptimal
plans. Especially, it is noted that the robot had never
enacted the trajectory in Figure 5(d) during the explora-
tion phase before learning. This result implies that
Yamabico became capable of mentally imaging novel
compositions of experienced parts of trajectories by
extracting the hidden structure of the environment
through consolidative learning of diverse sensory-action
trajectories sampled.

To examine the internal structure developed by the
RNN, a phase space analysis was conducted. The RNN
generates mental simulations of thousands of consecu-
tive steps of random branching sequences. Figure 5(e)
shows the phase space plot wherein each point repre-
sents an internal state (projected in two-dimensional
space) when visiting a particular branching point. It can
be seen that the points are all clustered into a set of seg-
ments. It was found that each segment corresponds to a
particular branching point, and that the points inside
each segment form a Cantor set–like assembly. These
observations inform us how the compositionality is
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represented in the internal state of the RNN. When the
robot moves from one branching point to another by
choosing a particular branching action, the internal
state transits from one segment to another. Therefore, a
graph-like state transition structure can be seen by con-
sidering those segments as nodes of a state transition
diagram.

Importantly, each node is represented not by a point,
but by an assembly of points in the continuous state
space of the RNN, because each point within a segment
can have a different history of branching in arriving
there. If two points are neighboring each other, two
branching sequences of reaching these two points may
be exactly the same for a long past history. On the other
hand, if two points are distant in the same segment, two
branching sequences reaching these points will be quite
different in the immediate past history. Since an infinite
number of different branching sequences can be com-
posed to reach a branching point, and all points corre-
sponding to those different compositions should be
embedded in a segment of finite length, Cantor set–like
assembly is organized within each segment. Cantor sets
are interesting in this context because they represent
boundary points. They are perfect sets, meaning that a
set is equal to its derivative set, which means that it is
equal to its limit points. These findings are analogous
to what Elman (1991) and Pollack (1991) showed in
investigating the capability of RNNs to learn word or
symbol sequences regulated by grammar.

Further analysis revealed that the whole assembly of
points in the phase plot represents an invariant set of a
global attractor. When mental simulation is perturbed
with external noise added to the network activity, pre-
diction goes wrong and the internal state falls out of

the invariant set.5 However, if the noise is removed, the
predictability can be recovered after several steps of
mental simulation, and the trajectory of the internal
state returns back to the invariant set. In this way, the
invariant set may represent the boundary of cognition
(Maturana & Varela, 1991) which is structurally stable
against perturbation due to the nature of an attractor.

One drawback in this study (Tani, 1996) is that the
exploration of the environment was conducted ran-
domly, independent of the process of learning about
the environment to satisfy a purpose. Human infants or
artificial agents may explore the world by seeking some
intrinsic rewards such as novelty in interacting with
their environments (Oudeyer et al., 2007; Schmidhuber,
1991; Tschantz et al., 2020). Tani and Yamamoto
(2002) extended the study in Tani (1996) to investigate
the issue of intrinsic motivation by adding a novelty
rewarding mechanism as a drive for seeking novel
experiences during exploration. The exploration and
the learning phases of this experiment were interleaved,
with each happening after the other. In the exploration
phase, action plans for branching sequences were gener-
ated and executed such that the sum of expected predic-
tion error at each branching point was maximized
(rather than minimized). And in the learning phase, the
training of the network was conducted by using two
types of sensory-action sequence data. One was the
sequence which had been experienced in the last travel
and which had been stored in the short-term memory,
and the other was the set of rehearsed sequences gener-
ated by using the same planning scheme for maximizing
the novelty (in which the sum of expected prediction
error at each branching point was maximized). By
extending the model thusly, Yamamoto and Tani
showed that compositionality—in terms of the number
of different combinations of branching—increases both
in the physically generated trajectories and in the
rehearsed sequences during the learning phase over the
course of development. Finally, a phase space analysis
of the internal state at each stage of development indi-
cated that a segment-wise invariant set similar to the
one shown in Figure 5(e) appeared, but only during the
end period of the development, when the robot had
completely learned about all possible branching conse-
quences. Such dynamics illustrate how the aforemen-
tioned boundary of cognition might emerge during
developmental processes similarly motivated by explo-
ration in biological models including human beings, as
well.

Recently, Friston and colleagues (R. Kaplan &
Friston, 2018) took a generic Bayesian perspective on
the exploration–exploitation trade-off by considering
that the expected free energy is composed of novelty,
salience, and prior preferences which together consti-
tute optimal beliefs on policies guiding action. On this
scheme, novelty and salience represent intrinsic values
where novelty is for epistemic gain, as described

Figure 4. Goal-directed planning using RNN. The future action
sequence at...T�1 is optimized for minimizing the expected travel
distance dt + 1...T at each branching step as well as the error
between the goal range image at the distal step brt and its
expected value rt . Both errors for the travel distance at each
step ed

t + 1...T and the goal range image at the distal step er
t are

backpropagated.
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previously, salience is for the gain of certainty about
the latent state, and prior preferences serve the role of
extrinsic values, such as for achievement of predefined
rewards or goals. As such, R. Kaplan and Friston
(2018) assume that actions are selected both to gain
knowledge about the world and to achieve predefined
preferences. One point of interest in this context, how-
ever, is the relatively high computational cost required
to optimize such action plans. In reality, it is not neces-
sary to always compute optimal action plans, since
action can typically be generated according to the
learned routine, or habit. On this point, Maisto et al.
(2019) proposed that an active inference agent caches
the probabilities of policies from previous trials in
memory as habits to reduce the computational costs
for re-calculating them at each new trial. Simply put, a
probability is only re-calculated when encountering a
new context, and is then kept cached as long as the
context does not change. Testing this sort of idea in
robots should be practically beneficial in, for example,
reducing real-time computational burdens of robots in
operational contexts.

3. The sense of self

Building from the preceding introduction, this section
speculates on how such cognitive robotics experiments

employing fundamental principles may contribute to
ongoing inquiry into the sense of self and related psy-
chological phenomena. Although the problem of self
has been addressed in various ways, such as Neisser’s
(1988) five different types of selves or Kohut’s (2013)
bipolar self from psychoanalysis, the current article
focuses on two distinct types of self, minimal self and
narrative self. This section begins with Gallagher’s
(2000) concept of the minimal self, and then examines
how his notions may correspond to the phenomena
observed in CNR experiments such as those introduced
in the preceding section.

3.1. The minimal self

Gallagher (2000) argues that after all the unessential
features of experience are stripped away, we still have a
feeling of a basic, immediate, or primitive ‘‘something’’
that we can call the ‘‘minimal self.’’ He further contem-
plates that this sort of non-reflective self is associated
with two different types of senses, one is a sense of own-
ership and the other is a sense of agency. According to
Gallagher (2000), the sense of ownership is the sense
that I am the one who is undergoing an experience. For
example, a sense that this is my body moving regardless
of whether the movement is caused by me or others.
The sense of agency, on the other hand, refers to

Figure 5. Trajectories generated by goal-directed planning and the phase plot. (a) Staring and goal positions, (b–d) three different
trajectories generated by Yamabico based on different action plans, and (e) the phase plot of the internal state projected in a two-
dimensional space.
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congruence between an agent’s intention or belief in an
action and its anticipated outcome, which endows the
agent with the sense that ‘‘I am the one generating this
action.’’

Both cases may be explained in terms of internal
models for predicting perceptual outcomes. For exam-
ple, Hohwy (2013) showed that the sense of body own-
ership in the rubber hand illusion (Botvinick & Cohen,
1998) can be explained by using predictive coding that
models the probabilities of the dummy hand being
mine or another’s. During the rubber hand illusion,
experience of the temporally synchronized multimodal
sensation of touching, one from a tactile stimulus and
the other from visual observation, results in a causal
inference that these two occur at the same location even
though they actually do not. This is because the tem-
poral correlation entails more dominant effects on the
inference than the spatial one does (Hohwy, 2013;
Limanowski & Blankenburg, 2013). This leads to the
illusion of the dummy hand being mine.

Concerning the sense of agency, Gallagher (2000) sug-
gests that a possible underlying mechanism may be con-
ceivable by considering neurocognitive models accounting
for some cases of schizophrenia such as discussed by
Feinberg (1978) and Frith (1992). They proposed that the
delusion of control as a characteristic of schizophrenia
may occur when a mismatch takes place between an
intended state and the anticipated state produced by the
forward model. As the forward model is informed by the
motor efference copy, they proposed that the mismatch
may be caused by either the failure of the forward model
or the fact that the efference copy cannot be sent to the
forward model because the motor controller is discon-
nected from it. Gallagher (2000) suggested that the sense
of agency, which remains implicit in a normal condition,
can be disturbed in such a case, resulting in the feeling
that ‘‘somebody is controlling me’’ which is common to
self-reports in some cases of schizophrenia.

The RNNPB robotics experiments (reviewed in
Section 2) may help to account for the emergence of
minimal self accordingly. Minimal self should develop
implicitly as an aspect of the sense of agency derived
from causality between an agent’s intention driving
action (encoded in the PB) and the affected perceptual
reality, similarly to the sentiment expressed in Hohwy
(2007, p. 5):

mineness is the feeling of already being familiar with the
movement’s sensory consequences when they actually
occur, we are so to speak already ‘‘at home’’ in the move-
ment because the incoming signals are predicted through
habituation, and therefore it is regarded as an implicit
sense of self.

Accordingly, when a robot’s prediction was accurate,
action proceeded smoothly and automatically without
distinction between synchronized embodied self and the

external objects with which it was interacting, such as a
ball or human counterpart.

Our proposal in the context of minimal self is that,
when such synchrony breaks down due to miscella-
neous unpredictable influences including noise in the
physical system or a human participant’s sudden inten-
tional change, the otherwise implicit sense of minimal
self becomes an object of consciousness. This is because
the consequent effort required to minimize the recon-
struction error in the immediate past window, by infer-
ring an optimal intention state in the PB, is
accompanied by a focal awareness of the gap between
embodied routines and the capacity for embodied rou-
tines to successfully meet environmental demands. At
this very moment of the unified structure breaking
down, the independence of each element becomes
noticeable. Consequently, this experience of self is for-
mally articulated as minimal self-consciousness (Tani,
1998; 2016, pp. 169–172).

Moreover, on this account, the sense of minimal self
should intermittently shift between an unconscious
phase (predictable phase, when intention guides action
without undue error) and a conscious phase (unpredict-
able phase, when error forces reformulation of inten-
tions guiding action going forward) as had been
observed in a vision-based robot in Tani (1998), as well
as in the humanoid robot experiments involving ball
handling described in Section 2. Why do those system
dynamics once converged into an attractor basin, such
as a predictable or routine interaction in a region, get
destabilized again, and move out to another basin of
attractor? One possibility is the inherently indeterminis-
tic nature of embodied cognitive systems due to the cir-
cular causality established in the enactment loop (Tani,
1998; 2009).

Circular causality describes the embedded and embo-
died agent’s situation. An agent acts on the world, and
a sequence of causes and effects returns back to the
original cause, possibly altering it, whereby another
sequence is produced in on ongoing interactive feed-
back loop. For example, in the case of the ball-handling
humanoid robot, when a prediction error is generated
for the ball position, the intention of the robot in terms
of the PB value is updated in the direction of minimiz-
ing the error. This intention generates the next-step pre-
diction of proprioception which, in the case of tracking
a ball, turns out to be new target joint angles. These
angles are fed into the robot motor controllers. Then,
both hands of the robot move to push the ball further,
for example.

When every process in this loop proceeds ideally, the
whole system dynamics stay always in the same attrac-
tor basin by successfully minimizing prediction error,
unless exceptionally large noise comes from the exter-
nal world. However, in reality, under resource-bounded
situations, this cannot be guaranteed. Inherent indeter-
minism will appear. The predictability of the neural
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network is limited because it is trained with only a
finite amount of sensory-motor experience. The infer-
ence of PB values cannot be guaranteed to be optimal
in a real-time situation, and physical movements of the
robot body as well as the resultant movement of the
ball should contain some margin of unpredictability
because of nonlinearity in both static and dynamic fric-
tion and contact dynamics. All these contingencies (to
a very large degree) are due to embodiment. They pro-
vide potential instability to the system dynamics.

In fact, two flows in opposing directions coexist.
One is the inflow converging to attractors or thermody-
namic equilibria by minimizing prediction error (or free
energy), and the other is the outflow destabilizing the
convergence by means of embodiment and circular
causality. In a macroscopic sense, the coexistence of
inflow and outflow in the phase space makes attractors
only marginally stable, wherein the state trajectories
tend to visit multiple pseudoattractors one by one itin-
erantly (known as chaotic itinerancy, Kaneko, 1990;
Tsuda et al., 1987). This may correspond to the
‘‘momentary self’’ contemplated by William James
(1890) who wrote that ‘‘When we take a general view
of the wonderful stream of our consciousness, what
strikes is the pace of its parts. Like a bird’s life, it seems
to be an alternation of flights and perchings’’ (p. 243).6

Such unsteady dynamics resulting from potential
indeterminism provide an inherent autonomy to the
minimal self in terms of their spontaneous shifts
between their unconscious phase (staying inside basins
of attractors or habitual regions) and conscious phase
(transition to another attractor passing through less
familiar regions). Froese and Taguchi (2019) present an
analogous argument that artificial as well as living
agents may make sense of their interactions with the
world, provided that there is some room for indeter-
minism or incompleteness in the causal closure of these
interactions. One difference, however, between Froese
and Taguchi’s (2019) and our consideration is that they
attribute the origin of indeterminacy to quantum
mechanics at the micro level, which is supposed to be
amplified through the enactment loop at the macro-
scopic level. On the contrary, we presume that the sen-
sitivity to the initial state caused by chaos, or the
structural instability observed in chaotic itineracy, may
account for the origin of indeterminacy without resort-
ing to (what currently remain) mystic propositions.

3.2. Narrative self

Gallagher (2000) considers narrative self as ‘‘a more or
less coherent self (or self-image) that is constituted with
a past and a future in the various stories that we and
others tell about ourselves’’ (p. 15). He contrasts two
distinct ways of representing such a sense of narrative
self. One is offered by Dennett Daniel (1992) who char-
acterizes self as the constant locus of experience and

center of ‘‘narrative gravity.’’ The other is a more dis-
tributed model inspired by Paul Ricoeur’s (1984) philo-
sophy of narrative self. Ricoeur considers a
hermeneutic cycle of movements from prefiguration of
phenomena in the world to their refiguration or restora-
tion back into the real world through (communicative)
action via configuration of interpreted narratives, with
configuration of narratives playing the role of media-
tion between prefiguration and refiguration, and the
three together constituting a process through which the
agent gains a better understanding of its self and its
place in the social and natural world. Especially, he
considers the human experience of aporia, when phe-
nomena in the world are experienced as incomprehensi-
bly contradictory. Ricoeur emphasizes that human
beings compose fictive as well as true narratives to
reconcile this feeling of aporia. Furthermore, he consid-
ers that one’s own self-narratives are configured in a
way that they are intermingled with those communi-
cated by others. Following Ricoeur, Gallagher (2000)
proposes that narrative self might be developed as a
mixing of stories about one’s self, including conflictive
and irresolvable ones which an individual might tell
about herself or himself or others might tell about her
or him (cf. ‘‘pernicious misunderstandings’’ in
Gallagher & Allen, 2018, pp.14–15). Thus, on
Gallagher’s account, the sense of narrative self might
be considered a center of narrative gravity that is more
distributed, representing the reconciliation of narratives
normalized in communication with others in interac-
tion with the shared object environment.

We can find some analogy with what Ricoeur and
Gallagher consider narrative, including this more dis-
tributed sense of narrative self, in the results of the
CNR experiments described previously. In effect, the
robots used in experiments by Tani and colleagues were
frequently confronted with incomprehensible and irre-
solvable situations during tutoring. For example, the
humanoid robot implemented with the MTRNN (see
Section 2.3) was tutored to generate inconsistent primi-
tive movement sequences; after grasping an object, it
was tutored to lift the object up in one instance, and in
another it was tutored to rotate the same object. The
mobile robot Yamabico was tutored to branch to the
left during one trial, and during another to branch right
at the same branching point. Each tutoring trajectory
never repeated exactly the same sensory-motor
sequence pattern as another, even though the tutors
attempted to do so, due to noise and fluctuation—
indeterminacy (cf. Froese & Taguchi, 2019; Tani,
1998)—inevitable during embodied interaction with the
physical world. In light of Gallagher and Ricoeur’s
insights into narrative self, we may say that these
robots could develop compositionality for generating
diverse actions because it was necessary to deal with
the inconsistency presented in the tutoring trajectories.
Through consolidative learning, the RNNs could self-
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organize finite-state machine-like state transition struc-
tures in their latent state space by extracting relational
structures from among the tutored set of inconsistent
sequences.

The segmentation and chunking of the continuous
sensory flow observed in robotic experiments using the
RNNPB and MTRNN are mechanized by means of
the error regression employed to minimize the error sig-
nal generated in prediction and reconstruction at the
moment of transition from one primitive to another.
The inconsistency brought to the robots especially by
human tutors in demonstration and tutoring of move-
ment patterns plays an important role here, also. If we
tutor the robots with a continuous sensory flow con-
sisting of a primitive sequence like A! B! C,
repeated without inconsistencies, this sensory flow will
be learned as a big chunk without segmentation into
primitives. But, if the robots are tutored with a set of
sensory flows consisting of inconsistent primitive
sequences like A! B! C, A! B! A, and
A! C! B, these sensory flows are learned as compo-
sitions of reusable primitives with each of them seg-
mented. We presume that the cognitive competency of
compositionality for segmenting the continuous sen-
sory flow into a set of reusable primitives and compos-
ing and decomposing a whole action sequence using
these primitives can provide a basis for development of
the narrative self.

Furthermore, some robots (or more generally agents;
R. Kaplan & Friston, 2018; Oudeyer et al., 2007;
Schmidhuber, 1991; Tani & Yamamoto, 2002) are moti-
vated to learn to predict unpredictable situations by seek-
ing novelty, with the objective of which also seeming
rather contradictory or conflictive at first glance. And, to
reconcile such conflicts, agents seem to be required to
generate creative or fictive mental images accounting for
the hidden causal structure in the world. Here, we might
note some analogy between the compositionality devel-
oped by means of a self-organizing finite-state machine-
like structure in distributed neural activation in the RNN
during such conflictive situations, and the sense of narra-
tive self which develops distributedly, with the mixing of
diverse inputs, including inconsistent ones from the out-
side as described above. The compositionality developed
in the robots enables them to mentally simulate future
actions, including counter factual or fictional ones, as
well as to rehearse what has been experienced in the past
to prepare for the uncertain future.

At this point, it is natural to consider that the devel-
opment of narrative requires linguistic competency for
telling stories. On this front, there have been some
efforts in attempting to ground linguistic expressions in
sensory-motor modalities by using RNNPB and
MTRNN architectures by some groups (Heinrich &
Wermter, 2018; Peniak et al., 2011; Sugita & Tani,
2005; Yamada et al., 2016). With a vision-based mobile

robot using the predictive coding framework, Sugita
and Tani (2005) showed that an RNNPB can learn to
bind a set of simple imperative sentences consisting of
verbs and nouns, for example, Point-Red, Push-Blue,
Hit-Green, with corresponding sensory-motor beha-
vioral patterns. An analysis on the experimental results
of learning and action generation for given imperative
sentences showed that the compositionality in combin-
ing verbs and nouns in the linguistic modality and the
one in combining actions and objects developed as a
unified structure in the RNNPB. Peniak et al. (2011)
and Heinrich and Wermter (2018) showed scaling of
such language–behavior binding using extended
MTRNN models. Also extending the MTRNN,
Yamada et al. (2016) presented a continuing human–
robot interaction experiment using both linguistic and
behavioral modalities. These experimental results
revealed that the contextual flow corresponding to suc-
cessive human–robot interactions was represented in
the higher level latent variables in the MTRNN. These
results suggest that the internal structures developed in
the latent space in these RNN models, via continuing
human–robot interaction using both linguistic and
behavioral modalities, bring us closer to realizing a nar-
rative self as articulated by Ricoeur and by Gallagher
and colleagues in an embodied cognitive neurorobot.

4. Discussion

The preceding article introduced CNR, the principles of
prediction error minimization, and backpropagation as
implemented in different RNN architectures; related
these with free energy and active inference; and reviewed
selected CNR experiments employing these principles in
greater detail. In terms of Marr’s (1982) three levels
introduced in Section 1, the error minimization principle
appears at the computational level, prediction and active
inference at the algorithm level, and RNNs embodied by
robots at the implementation level as an example. This
leaves open questions, for instance, how these implemen-
tations can be validated, and then, to what extent we
may expect them to contribute to scientific explanation
of cognitive phenomena including the senses of minimal
and narrative self as reported by human beings.

First, in the review of the CNR experiments using
the RNNPB (Ito et al., 2006; Ito & Tani, 2004), we
explained that the RNNPB learns multiple behaviors in
the course of prediction error minimization as
embedded in different attractor basins which represent
habitual regions for the robot. It was also explained
that behavior patterns of the robot shift from a learned
one, by means of the error regression accompanied by
segmentation of continuous sensory-motor flows, to
another due to either external forces or internal
fluctuation.
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Next, in the review of the CNR experiments using
the MTRNN (Nishimoto & Tani, 2009; Yamashita &
Tani, 2008), it was explained that compositionality as a
cognitive competency for composing/decomposing the
whole action from/into behavior primitives can develop
gradually in the course of iterative tutoring of the robot
by using the error minimization principle. We explained
that such compositionality can develop by means of
self-organization of functional hierarchy using the prior
constraints applied to the network, including layer-wise
timescale differences and information bottlenecks in the
connectivity between layers.

In the review of experiments on goal-directed plan-
ning in robot navigation tasks, it was explained that
robots can learn compositional structures latent in the
obstacle environment through either supervised tutor-
ing (Tani, 1996) or self-exploration (Tani &
Yamamoto, 2002). Further, it was noted that such
compositional structures develop by self-organizing
global attractors of Cantor set–like assembly in the
latent state phase space. Although its appearance seems
analogous to finite-state machines at first glance, these
two are crucially different. As for the attractors devel-
oped in the latent state phase space, they represent the
boundary of cognition (Maturana & Varela, 1991)
wherein prediction goes well as habituated within the
invariant set of the attractors, and prediction goes
wrong once the state trajectory goes out of the invar-
iant by possible permutation. However, the state trajec-
tory can come back to the invariant set as long as it is
formed as a global attractor. On the other hand, in the
case of a finite-state machine, there is no mechanism
for such auto-recovery unless some external programs
for this purpose are provided. The CNR experiments
reviewed above demonstrate that robots can generate
both fictional and factual action plans by using compo-
sitional structures developed in both goal-directed plan-
ning and novelty rewarding schemes.

Further analysis contemplated possible accounts for
subject experience including senses of minimal and narra-
tive self. First, let us revisit our account of the sense of
minimal self. When action goes smoothly and an agent
remains in habitual regions by minimizing the prediction
error, the sense of minimal self is present but only impli-
citly. However, a breakdown of such a steady phase
comes inevitably because of the inherent indeterminacy
due to the circular causality established in the enactment
loop. In such an instance, the minimal self should become
an object of conscious awareness with the effort to return
from unfamiliar regions to a routine one by minimizing
prediction error. We see the structure of the minimal self
in this autonomy of spontaneous shifts between uncon-
scious and conscious phases analogous to James’ (1890)
‘‘wonderful stream of our consciousness.’’

Next, let us revisit the sense of narrative self. We
found a good analogy in the results of the CNR experi-
ments with what Ricoeur and Gallagher’s socially

distributed sense of narrative self. Robotic experiments
using the RNNPB and MTRNN showed that composi-
tionality can be naturally developed, provided that the
robots are tutored with a set of inconsistent sensory-
motor sequences, corresponding with Ricoeur’s thought
that humans compose both fictive and true narratives in
the process of resolution of aporia. Indeed, the CNR
experiments reviewed in the current article showed that
these robots can generate both fictive and factual compo-
sitions of primitive action both in physical execution and
in mental planning and rehearsing. And, by briefly intro-
ducing the ongoing research on embodied language using
various RNN models, discussion extended to possibilities
of how such narratives initially represented in distributed
neural activation patterns can be transformed into lin-
guistic representations for sharing stories.

Although space forbids the present review, other
ongoing work ‘‘breaks’’ these and complimentary archi-
tectures (cf. Glennan, 2005), tests them against biologi-
cal models in similar abnormal conditions, and in this
way aims to inform accounts of psychiatric conditions,
for example, schizophrenia and autism understood as
self-disturbances (Idei et al., 2018; Yamashita & Tani,
2012). It is expected that such research contributes to
our understanding of otherwise difficult to resolve cog-
nitive phenomena in two directions. For one, emergent
dynamics when analogous to biological model behavior
may inform researchers working at lower levels of orga-
nization about how different operations may be related,
for example, temporally. In such an instance, prediction
error minimization inspires neural network algorithm
design (backpropagation, error regression, etc.). With
successful demonstration of functional dynamics in a
real-world context, such a synthetic architecture can be
correlated with biological models (e.g. the higher, inter-
mediate, and the lower level correspond to the prefron-
tal cortex (PFC), parietal, and S1 + V1 + M1) in
exploration of possible explanations for (normal and
abnormal) biological structural dynamics. An example
of such work includes the HBP neurorobotics group’s
effort to render a computational model of an embodied
mouse that may replace biological models in psycholo-
gical studies (Falotico et al., 2017).

On the other hand, the neurorobotics studies
reviewed in this article target invariant structures aris-
ing in what Sun et al. (2005) call the ‘‘causal nexus’’
between top-down and bottom-up processes, for exam-
ple, selves, internal world models. Informed by phe-
nomenological and neurocognitive research, these
studies aim to contribute to explanations in cognitive
science by articulating architectures which generate tar-
get emergent phenomena through their dynamic inter-
action with the world. In such an experiment, for
example, the prediction error minimization principle
shapes the cognitive architecture according to biological
and psychological constraints. This architecture is tested
in robot experiments, and emergent phenomena are
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recorded. Correspondences to phenomenology (e.g. mini-
mal self), neuroscience (e.g. mirror neurons), and psychia-
try (e.g. autism) are considered. Limitations of the model
inform ongoing inquiry, and insights drawn from these
studies are offered.

Although physical robot experiments might be
replaced by simulations in some contexts, it must be
stressed that embodied humanoid robots are important
to the success of CNR research such as that reviewed in
Section 2. Practically, the results of physical robot
experiments are more robust than simulated variants.
Because simulation experiments typically employ thou-
sands of trials that establish optimal parameters within
narrow ranges, the resulting networks often become too
rigid to perform in real-world embodied robots because
robots themselves are quite noisy (in the informational
sense) in their mechanics and physical interactions.
With this in mind, we may point to an epistemic upshot
to embodied robotics experiments over simulated var-
iants. Humanoid CNR experiments open phenomena to
investigation which remain inaccessible to simulations,
especially those which emerge through direct human
interaction as in the experiments reviewed above.
During these experiments, trajectories of every learned
movement were co-developed by a tutor and robot
through their interaction. Accordingly, we speculate
that successful results were achieved not only due to
essential structural dynamics captured by biologically
inspired cognitive architectures, but also due to the
intuitive interaction with both tutor and humanoid
robot aiming to minimize error in the embodied manip-
ulation of common objects—including each other—in a
shared space of action. Such phenomena cannot be (eas-
ily) simulated. And, given the fundamental role of inter-
action with others in the development of self (cf. Bolis
& Schilbach, 2020), the socially situated nature of
embodied humanoid CNR experiments presents special
potential for ongoing inquiry into phenomena associ-
ated with self in human beings.

5. Conclusion

Guided by the intuition that higher level cognitive phe-
nomena including different senses of self should emerge
from the effort to minimize conflicting interactions
between top-down and bottom-up information pro-
cesses, Tani and colleagues have been refining cognitive
neurodynamic models since the mid-1990s to articulate
structural dynamics native to living systems in artificial
ones. The preceding article reviewed synthetic neuroro-
botics experiments using analog devices (RNNs)
directly sharing the same analog metric space with
human beings with the expectation that such continu-
ous spatio-temporal dynamics can both avoid the
notorious symbol grounding problem (Harnad, 1990)

as well as inform our understanding of cognitive phe-
nomena such as self in human beings.
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Notes

1. It is interesting in this context to consider Bruineberg et
al. (2018) who modeled foraging agents learning most
efficient paths to prior-specified goals, ‘‘desire paths.’’
These models extended the free energy minimization prin-
ciple (FEP) and active inference to show that expectations
are shaped by changes to the environment, resulting in
reduced free energy for the agent–environment system.

2. In the interests of simplicity, we neglect here discussion of
merits of variational Bayes models such as those repre-
senting the strength of belief or an estimate of precision
in prediction. Recent developments using recurrent neural
network (RNN) models by the author’s group (Ahmadi
& Tani, 2019; Murata et al., 2015) address these issues.

3. Here, we may understand ‘‘inference’’ specifically, as
search for an optimal latent variable to minimize the
error between the expected sensation and the actual one.

4. This process can be related to the process of perception
by predictive coding shown in (5). However, in this case,
the latent variable is not inferred by minimizing prediction
error. Instead, the latent variable is updated by means of
the entrained (learned) sensory input sequence which
turns out to minimize the prediction error.

5. The network loses its ‘‘grip’’ cf. Bruineberg et al. (2014).
6. In terms of compositionality, this image also recalls

Plato’s aviary from the Theaetetus, in which a person col-
lects birds in the cage of the mind (where they may be
imagined to flit from perch to perch), representing expres-
sions of knowledge that can be taken when the knowledge
is useful, or mistaken when the knowledge is not, cf. dis-
cussion beginning 197d, Plato Cooper and Hutchinson
(1997, p. 218).
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