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Markerless tracking of an entire honey bee colony
Katarzyna Bozek 1,3✉, Laetitia Hebert 1, Yoann Portugal1 & Greg J. Stephens 1,2

From cells in tissue, to bird flocks, to human crowds, living systems display a stunning variety

of collective behaviors. Yet quantifying such phenomena first requires tracking a significant

fraction of the group members in natural conditions, a substantial and ongoing challenge. We

present a comprehensive, computational method for tracking an entire colony of the honey

bee Apis mellifera using high-resolution video on a natural honeycomb background. We adapt

a convolutional neural network (CNN) segmentation architecture to automatically identify

bee and brood cell positions, body orientations and within-cell states. We achieve high

accuracy (~10% body width error in position, ~10° error in orientation, and true positive rate >

90%) and demonstrate months-long monitoring of sociometric colony fluctuations. These

fluctuations include ~24 h cycles in the counted detections, negative correlation between bee

and brood, and nightly enhancement of bees inside comb cells. We combine detected

positions with visual features of organism-centered images to track individuals over time and

through challenging occluding events, recovering ~79% of bee trajectories from five obser-

vation hives over 5 min timespans. The trajectories reveal important individual behaviors,

including waggle dances and crawling inside comb cells. Our results provide opportunities for

the quantitative study of collective bee behavior and for advancing tracking techniques of

crowded systems.
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Among the rich phenomenology of organismal behavior,
honey bees and other eusocial animals are distinguished
by their remarkable, self-organizing, collective dynamics

on the scale of an entire society. Functioning as a “super
organism”1, a honey bee colony can contain thousands of indi-
viduals whose intricate behavior results from a shared genetic
background and sophisticated social signals conveyed through
multiple communication channels2. The effect of these dynamics
is to cooperatively divide and organize the effort necessary to
maintain a well-functioning collective in response to external and
internal environmental change, thus enabling the colony to grow
and reproduce. A longstanding fascination with such behavior
has driven substantial previous work (see e.g., ref. 3), which
includes examinations of collective behavior4,5 also in combina-
tion with high-throughput sampling technologies such as gene
expression sequencing6–8. However, a full quantitative under-
standing of the colony behavior requires measuring the collective
dynamics at single-organism resolution as well as the spatio-
temporal patterns of colony resources such as food and brood.
Both of these challenges are now accessible through advances in
machine vision.

A honey bee colony contains a high density of visually similar
members, rapidly moving and occluding on the uneven and
changing honeycomb surface, and whose numbers change in time.
These factors present substantial difficulties for automated image
analysis9–11 for which a common solution is to apply physical tags
to some12 or all13–17 of the colony members. Barcoded tags allow
for the distinct marking of a sufficiently large number of indivi-
duals to track a naturally sized colony and have been exploited to
unravel important aspects of bee communication12,18 and infor-
mation spread14,19. This information together with recognition of
individual bee behaviors bring insights into the quantitative
understanding of a bee colony. While a wealth of information can
be extracted with the use of tags, the burden of manually tagging
hundreds or thousands of small insects, without harm or inhibi-
tion to their motion, does carry some limitations. For example,
marking newly hatched bees requires either opening the hive or
introducing marked newborns without letting any hatch inside,
both of which disrupt the colony13,18. Moreover, the recognition
of markers is hampered by visual occlusions of parts of the tag and
image blur. In the dense environment of a hive, even when con-
fined to a 2D surface, partial occlusions are common. In parti-
cular, behaviors such as crawling inside of a honeycomb cell, or
walking upside down on the glass of the observation hive, can
obscure the marker, thus limiting behavioral repertoires captured
with a marker-based approach. The difficulty and workload of
manual tagging also hinders the analysis of multiple colonies for
extended timespans, as is routinely accomplished in behavioral
studies of other organisms.

Recent breakthroughs in image analysis using CNNs, including
fast and accurate single and multiple object detection20–22, posture
quantification23–26 and image and video appearance represen-
tation27–29, offer new inspiration and opportunities for extracting
information directly from video data in dense-animal contexts.
However, most existing solutions and benchmark datasets for
multi-object tracking as well as for posture and activity recognition,
are dedicated to human behavior and crowds30–34. In biological
image data CNNs have been broadly exploited for cell or particle
segmentation35–38. Versatile, supervised CNN-based tools have also
been proposed for animal posture quantification25,26,39–41 and have
been successfully applied to the study of insect behavior42–44. While
facilitating important tasks in bioimage interpretation, these solu-
tions are limited to behavior of few individuals and do not resolve
challenges within the task of dense object detection and tracking in
a bee colony45,46.

Importantly, previous work has shown that seemingly identical
organisms do carry distinct visual features, also termed ‘pixel
personality’, which can be quantified and leveraged for markerless
tracking47–51. The rise of deep learning has enabled new ways of
extracting such visual signatures from images. However, using
CNNs for the quantification of pixel identities requires a set of
instances of each object that can serve as a training set. For
example, in tracking up to 100 fish such a set could be con-
structed if a segment in a video existed where no fish collisions
were observed during 3000 video frames50. In the much denser
environment of ~1000 individuals inside of a beehive, such
collision-free segments are rare or nonexistent. A previously
proposed solution49 extracted pixel identities of bees based on a
smaller number of instances, re-learning these identities after
each trajectory matching step via a classification CNN
architecture52. Starting with a set of short trajectories the classi-
fication network is trained to assign a different label to bees
belonging to the separate trajectories. After a set of training
iterations, the detections in the following video frame are labeled
by the network. Detections, which are assigned a label with high
confidence are added to the respective trajectory. The network is
then retrained on the expanded train set. Unfortunately, this
solution offered only limited accuracy and came with a high
computational cost, limiting its practical use.

Here we expand the use of CNNs to capture, at single-
organism resolution, the colony-wide composition and behavior
of the honey bee Apis mellifera. Our approach applies to images
and video recordings of unmarked colonies and enables broad
quantitative study without the burden of manual marking. We
demonstrate our solution through the analysis of five long-term
timelapse recordings, up to four months in duration (segmenta-
tion and sociometry), as well as of five short-term videos recorded
at high frame rate for 5 min (tracking and motion behavior). The
data were collected at multiple locations on the campus of OIST
Graduate University (Okinawa, Japan) with varying imaging
arrangements. We infer the position, orientation and within-cell
state of each bee together with the location of brood cells
(Fig. 1a). Using these detection results we devised a neural net-
work and an efficient training method for quantifying visual
features capturing similarity among bee instances (Fig. 1b). We
use this similarity to stitch bee detections into trajectories across
difficult occlusion and touching events. Our solution resolves
confounding trajectories locally in time and space, though the
reidentification of a bee after leaving the hive is not yet possible.
We demonstrate our approach with long-term sociometric
monitoring (detection) and with colony-wide exploration of
individual behaviors (tracking). Along with this manuscript and
associated code, our contribution includes the labeled image data
of thousands of trajectories of bees in dense configurations, a
unique resource, which offers opportunities for both machine
vision and biological research.

Results
Long-term colony sociometry. To capture the long-term socio-
metric dynamics53–56 of bee colonies, we devised a segmentation-
based method for the detection of bees and brood in dense
configurations within a 2D hive21,49. We reported the honey bee
(but not brood) detection in an earlier conference proceedings21

and we review that approach here for clarity. In brief, our solution
is based on a modified segmentation CNN architecture20, which
exploits the temporal dimension of video data to improve accu-
racy (Fig. 2a–c). During training and inference this network uses
information from the preceding video frame, allowing us to
reduce the size of the network by 94% compared to the original
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architecture while still achieving high detection accuracy. Within
one network we infer both the segmentation maps through pixel
classification as well as the orientation angle of the segmented
objects through regression. Each pixel is classified into one of the
three categories: ‘background’, ‘fully visible bee’ (denoted full-bees
throughout the text), and ‘bee inside comb cell’ (denoted cell-bees
throughout the text) if only the bee abdomen is visible. The
accuracy of the detection method was assessed on a large set of
manually labeled images21. We additionally inspected the per-
formance of our detection method in three frames from record-
ings L5 and S5, after fine-tuning of the network by retraining it
on a set of up to five frames from recordings L1–L4 and S1–S4. In
frames from the beginning, middle, and end parts of recordings
L5 and S5, recordings that were not used in the retraining, we
estimated detection true positive rate (TPR) at ~0.99, false posi-
tive rate (FPR) at ~0.03 and false negative rate (FNR) at ~0.01
(Supplementary Fig. 1, Supplementary Table 1). These results
confirm the capacity of our detection algorithm to generalize
across recordings registered in different hives and imaging setups
and also provide a strong foundation for further analysis and
tracking method development.

We devised a similar segmentation-based approach to locate
capped brood cells by exploiting background images automatically
generated for hive images over timespans of 12 h (Supplementary
Movie M1). This solution did not include the recurrent element in
the network design and relied on the original segmentation

architecture20 (Fig. 2d–f). To mark brood cells we used round-
shaped segmentation markers (Fig. 2f). Our method was trained
on three initial images from recordings L1–L4 and generalized to
the rest of these recordings as well as to the recording L5
(Supplementary Fig. 2, Supplementary Movie M2) with perfor-
mance of TPR ~ 0.99, FPR ~ 0.01, FNR < 0.01 evaluated in the
frames shown in Supplementary Fig. 2. Previous work57 has
proposed a similar approach to the detection and recognition of all
cell types (brood, honey, nectar, pollen, larva, egg), however, in a
standardized imaging setup and based on empty frames that were
removed from the hive. While our imaging arrangement and the
noise introduced by the background extraction algorithm
currently do not provide the detail needed to detect eggs or
pollen, our approach does provide access to continuous measure-
ments of the brood counts in a living colony.

We deployed both detection methods on a set of long-term
video recordings (Supplementary Table 2) and extracted
quantitative measures of demographic changes in bee colonies
over periods ranging from two weeks to four months. In all long-
term recordings (L1–L5) we found that the total number of visible
bees (full-bees and cell-bees together) as well as cell-bees undergo
repetitive fluctuations (Fig. 3a, b, Supplementary Figs. 3, 4). The
period of these fluctuations is close to 24 h based on spectral
analysis (Fig. 3a, b, Supplementary Fig. 5). Over longer times, we
observed an example of high visible bee counts occurring after a
peak in brood number (Fig. 3c). We also found a strong negative

Fig. 1 Schematic of the detection and tracking methods. a A segmentation architecture was used and adapted independently for two tasks: the detection
of bees and of brood cells in the dense environment of a bee colony. We use this architecture to infer bee and brood positions (yellow and red marks,
respectively), bee posture type—bee inside of a comb cell (yellow round symbols, denoted later as cell-bees) and fully visible bee (yellow arrows, denoted
later as full-bees)—and the orientation angle of the fully visible bees (angle of the yellow arrows). Bee and brood locations, as well as within-cell state,
allow for detailed sociometric analyses over long timespans and across multiple colonies (right). b CNN-derived embeddings of bee images are used to link
detections across video frames into trajectories. The network is trained to maximize the Euclidean distance between detections belonging to different
trajectories and minimize this distance between detections of the same bee within one trajectory, which is symbolically illustrated in the middle panel. This
visual similarity metric allows for accurate construction of trajectories of unmarked bees and analysis of dynamic aspects of bee colonies. (right) For
illustration we show ten tracked trajectories, likely corresponding to forager bees. The red trajectory belongs to a bee that entered the hive around minute 2
of the recording and performed rapid back-and-forth dancing motion for the next 2 min.
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correlation between numbers of visible bees and brood counts
measured in 12 h windows (Fig. 3d, Pearson mean R2 <−0.84,
p < 0.0001 over the first three weeks), which could be an
indication of homeostatic control of colony size58–60.

We next investigated daily changes in the number of full-bees
and cell-bees as potentially reflecting the daily foraging, brood
nursing, and other activities in each colony. We found high
numbers of cell-bees predominantly at night (Fig. 3e) which may
represent sleeping bees61. This regularity was not apparent in the
visible bee counts, where the oscillations varied, perhaps due to
external factors (Supplementary Fig. 6). We thus inspected the
weather conditions during the time of recordings and, while no
extreme events were observed (Supplementary Fig. 7), two
colonies (L3 and L4) were filmed during particularly high
temperatures exceeding 26 °C at night, which can encourage bees
to stay at the hive entrance62 where they would not be detected.
The altered daily behavior could also be ascribed to factors we do
not track in this study, such as toxins in the environment63.

While we found insufficient evidence linking the phase of the
visible bee number change to the weather conditions, we did find
that full-bee numbers shift in relationship to brood presence.
During periods when brood numbers are high, the number of
visible bees tends to be in phase with the cell-bee number with
high numbers at night. Such a pattern potentially corresponds to
the foraging activity of the bees performed uniquely during the
day3 and it is more prominent in hives with high brood numbers,
which might reflect the increased food demand of growing
colonies (Supplementary Fig. 8).

Similarly, the cell-bee number may be related to brood
presence. In three of the five long-term recordings the proportion
of cell-bees was positively correlated with the brood count (L3–L5,

Pearson R2 > 0.4, p < 0.05). We also found that the cell-bees
spatially significantly closer to the brood cells than other bees (by
7 to 14mm on average, Wilcoxon test p < 0.0001 in L1–L4) and
this distance decreases during the night and increases during the
day (Supplementary Fig. 9). No storage cells could be observed in
the vicinity of brood in these colonies.

In two of the long-term recordings—L3 and L5—the colonies
experienced a systematic decrease in the number of individuals.
In L3 we noticed a moth infestation in the wax towards the end of
the recording (Supplementary Fig. 10) which might have
weakened the colony. In recording L5 each subsequent increase
of the brood and colony size was lower than the previous
one (Fig. 3c) ultimately leading to the gradual depletion of the
colony. Despite an initial rapid increase in brood numbers,
another wave of brood of such size did not occur and the colony
never recovered its initial size. In hives L3 and L5 the proportion
of cell-bees was noticeably lower (Fig. 3f). The cell-bees in those
hives were additionally located much farther away from the brood
cells than in the healthy colonies (Supplementary Fig. 9).

While the specific reasons for the decline of these colonies are
unclear, we show quantitative measures indicative of behavioral
changes in unhealthy bee colonies. Indeed, the colony collapse
phenomenon currently threatening bee populations worldwide
have been ascribed to a range of factors64,65. However, despite
numerous studies and theoretical models66–68, no systematic,
quantitative, and data-driven assessment has yet been proposed.
Unraveling the exact reasons for and mechanism of honey bee
colony collapse would require multiple comparative observations
across a range of conditions. Our approach enables the study
of this phenomenon in a time-resolved, comprehensive, and
quantitative manner.

Fig. 2 Dense object detection. a Our manual annotation consists of the central points of each body, object class—full-bees (yellow arrows) or cell-bees
(yellow round symbol)—and the body orientation of full-bees (arrows). Segmentation maps are created with foreground pixels denoting central parts of
bee bodies. The upper segmentation map indicates class information, the bottom segmentation map indicates the orientation angle (color wheel). b We
modified the U-Net architecture20 by including a recurrent component which exploits temporal information from the preceding video frame in the
penultimate network layer. The recurrent component allowed us to reduce the number of parameters by ~94% from the original U-Net (shown in e)
without compromising accuracy. We added two loss functions to the network, one for class and one for orientation angle estimation, and their example
output is shown to the right. In panels b and e the information flows from the left (image) to the right by passing through the lower layers of the U-Net to
produce the segmentation maps on the right (segmentation map). The numbers in b and e indicate the number of filters of the convolutional layers for each
level of the U-Net. c Position, class, and orientation information is inferred from the network output. Red markers indicate inferred detections, labels are in
yellow. d Segmentation maps created for the training of brood cell detection. Similar to body detections, the foreground pixels cover only the central parts
of the cells, allowing for object counting and localization. e The original U-Net architecture is used for brood cell detection. f Inferred brood cell positions.
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Colony-wide tracking at single-organism resolution. Our high
detection accuracy provides a strong foundation for reliably fol-
lowing objects in time. Rather than focus on distinct markers of
each individual47–49, we apply a rich representation of visual
features to explicitly resolve confounding trajectories locally in

space and time. Quantitative visual features are extracted from a
CNN52 trained using a triplet loss objective function69,70—a
function which enables the expression of similarity among enti-
ties via their vector embeddings. During training, triplets of
images are fed into the network and we search for a solution

Fig. 3 Colony sociometry. a Daily fluctuations of the visible bees (full-bees+ cell-bees) in hives L1–L5, where vertical lines denote midnight. The period of
the fluctuations is approximately 24 h in all hives, which is indicated by the power spectral density (PSD, right). Dashed lines in the PSD denote two highest
values in the density plot of each hive. b Analogous to a, daily fluctuations in the numbers of cell-bees and the respective power spectral density. c Visible
bee numbers (full-bees+ cell-bees, gray and black lines) and brood numbers (orange line) in bee colony L5. Colony L5 was imaged for over 4 months and
exhibited a decline in bee numbers and ultimately colony collapse. After an initial rise in brood number, another increase of such amplitude did not occur,
and the colony steadily declined from week 10. The black line indicates the daily average number of visible bees while the exact count in each image is
shown in gray. d Bee and brood numbers are anticorrelated. Total bee number averaged over 12-h windows is plotted against the brood counts in the same
time window in the five colonies for the period of up to 3 weeks. For each time series, the mean of the series was subtracted from the plotted values. e The
nightly presence of cell-bees. We divide each 24 h of a recording into 24 1-h bins and count how often the number of cell-bees is above the daily median
number. Numbers in the legend indicate mean time of the day when the high counts are observed. Asterisk (‘*’) symbol marks hives where the observed
high counts are not uniformly distributed based on p < 0.0001 in the Rayleight test of uniformity97. High numbers of cell-bees occur predominantly in the
evening, between 21 h and 6 h. f Distribution of the proportion of cell-bees relative to the total number of visible bees in hives L1–L5. Hive L3 and L5 show
markedly lower proportion of cell-bees, which may be related to colony declines during our recording. Source data are provided as a Source Data file.
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where the Euclidian distance between vector embeddings of two
images of the same object at different time points is as small as
possible while the distance between vector embeddings of two
different objects is large (Fig. 1b). The major hurdle in training
such a network for bee tracking is the massive space of all possible
triplets containing two instances pertaining to the same trajectory
and a third instance pertaining to any other timepoint of any
other trajectory. Systematically training on a complete set of all
possible triplets in our data is not feasible in a realistic time. To
address this problem and enable network loss function con-
vergence in a reasonable time, we devised a dedicated training
scheme. Briefly, image triplets were sampled from training set
trajectories and included only bee detections neighboring in time
and space, which are precisely the sources of potential identity
swaps. Additionally, the embeddings of all triplets used during
training were simultaneously tested for correctness and the
incorrect ones—where the distance criteria between positive and
negative matches were not met—were used again in the network
training (Supplementary Fig. 11). For detailed training method
description, see the Methods section.

We trained the network on a large, incrementally constructed
set of validated bee trajectories. We used four 5-min-long
recordings (S1–S4) captured in different locations on the campus
with cameras of varying pixel resolutions (Supplementary
Table 2). While the hives were all the same spatial size, the
colonies varied in number of detected organisms, ranging from
N= 805 to N= 1316, and in their dynamics (Figs. 4a, 5a). All
videos were recorded during daytime, under good weather
conditions, and within the foraging season of Okinawa.

We first applied a “pixel personality” approach49 on recordings
S1–S4. The trajectories resulting from this approach were
manually validated, and the correct trajectories formed the’initial
dataset’. This dataset was used for training the network with the

triplet loss described above. Visual feature embeddings extracted
from this CNN incorporate similarity among individuals by
combining orientation, posture and background information
(Fig. 4b, Supplementary Movies M3–M7, Supplementary Figs. 12,
13) and hence allow the linking of bee detections across video
frames in presence of temporary object occlusions. We imple-
mented a detection matching solution exploiting both position
and visual feature embeddings, and matchings are done in a
greedy manner on a sorted list of all pairs satisfying predefined
time and space proximity criteria (see Methods).

The trajectories constructed with the use of embeddings from
the triplet loss-trained CNNs were constructed in videos S1–S4
and manually validated. Compared to a pixel identity approach49,
our solution offered an important increase in accuracy at a low
computational cost (Fig. 4c). Visual feature-based matching
resulted in a higher number of correct trajectories over the pixel
personality approach as well as over a position-only solution
(Fig. 4c, Supplementary Figs. 14, 15). Most trajectories belonging
to these recordings were part of the training set, nevertheless this
result suggests the method’s capacity to generalize to other,
trajectories not included in the train set within the same colonies.
As an estimate of computational cost, the detection and trajectory
matching for one 5-min-long recording completed in ~1 h on a 4
GPU, 36 core CPU machine.

We next used the entire set of trajectories validated as correct
in videos S1–S4 to form the ‘final dataset’. Embeddings derived
from the network trained on the expanded training set delivered
an increase in tracking performance in videos S1–S4 (Fig. 4c),
emphasizing the role of the training set size in producing more
precise and distinct embeddings. We tested a range of data
augmentation scenarios, background masking (Supplementary
Fig. 16) and we additionally used orientation angle in the
matching procedure, none of which improved tracking accuracy

Fig. 4 Leveraging visual features for enhanced detection matching across frames. a Recordings from five different beehives were used for tracking
method development and testing. The hives contained varying total numbers of detected bees and of bees in comb cells (cell-bees). The colored bars show
the mean number of detections across all frames (N= 3600), the error bars show their standard deviation. b CNN-derived vector embeddings are used to
better match bee detections across video frames. Even though bees appear identical to a human observer, the embeddings belonging to one trajectory
(red) are distant from embeddings of all other bee images neighboring in time and space, thus aiding the correct stitching of individual detections. The
embeddings encode similarity among images of detections. Originally 64-dimensional, an example projection of the embeddings in 3D is shown in the
panels on the right obtained with the use of t-SNE98. Red dots represent embeddings in 10 consecutive video frames of the bees marked by red squares in
the left panels. Embeddings of other bee detections in these images that occurred over consecutive three video frames are marked by yellow dots in the
panel on the right. c The accuracy of the tracking method obtained for test recording S5 matched the accuracy reached in recordings S1–S4 used for
network training and method design. We show the proportion of extracted trajectories relative to the average detected number of bees in hives S1–S5. The
proportion of extracted trajectories is shown for an earlier approach (‘pixel personality’, gray bars), the current method but trained only the initial dataset
(pink bars) and for the current method but trained on the final dataset (red bars). The colored bars show the proportion relative to the mean number of
detections in all frames, the error bars denote the standard deviation in proportions relative to the detection number across all frames (N= 3,600). Source
data are provided as a Source Data file.
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(Supplementary Fig. 17). We attribute this to the fact that data
augmentation importantly increases data complexity hindering
network convergence. Poorer matching accuracy on cropped
images suggest that the background, including other neighboring
bees, and body parts such as legs and wings play an important
role in correct matching. We additionally used the collected
dataset of validated trajectories to test the limits of our method to
make correct matchings if the video frame rate is reduced
(Supplementary Figs. 18, 19).

To test the capacity of our method to generalize to other
recordings, we first used the recording S5. No images of this colony
were used in the training of the detection or tracking method.
Recording S5 is additionally characterized by vibrations due to a
neighboring construction site and flickering of the lights, creating
particularly challenging tracking conditions. We found that 77% of
detected bees were correctly tracked (Fig. 4c), a result comparable
to the recordings that were part of the training set (Supplementary
Table 3). To further corroborate the generalization of tracking
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performance, we performed a cross-validation test in which each of
the recordings was taken out of the train set, then the network
training and calculation of embeddings was performed using the
other four recordings. Such cross-validations resulted in compar-
able results of 70–86% of correctly tracked bees across the
recordings (Supplementary Fig. 20). Such high accuracy provides a
strong foundation for the study of colony dynamics and we expect
improvements as more validated trajectories are incorporated in
the training set. The entire set of correct trajectories assembled
during development of this method includes 4642 trajectories from
the short-term recordings S1–S5 and is provided with this
manuscript as an important resource for further study and method
development.

Quantitative analysis of colony behavior. The large set of tra-
jectories generated through our detection and tracking approach
covers an extensive proportion of the recorded colonies (Sup-
plementary Movies M8–M12) enabling a broad, comparative
study of honey bee colony dynamics. While our emphasis here is
on the techniques of detection and tracking, we can already offer
a variety of quantitative observations.

We first compared aggregate dynamics using the distributions
of individuals’ speed, angular speed, diffusion coefficient, as well
as motion span defined as the diagonal of the minimal rectangle
fitting the trajectory and overall path distance (Fig. 5a, b,
Supplementary Figs. 21, 22). Colonies S1 and S3, despite differing
in the number of individuals (1316 and 839, respectively), are
characterized by a large proportion of motionless individuals and
individuals moving over only limited areas of the hive (8% of the
colony diagonal on average in S1). Whereas colonies S2 and
S5 showed a high proportion of fast-moving bees and bees
traversing larger portions of the surface of the hive (~24% of the
hive diagonal on average). Additionally, colonies S2 and S5
contained a higher proportion of individuals moving at high
angular speed (Fig. 5b) which could be indicative of the foragers
performing waggle dance2.

We next inspected the spatial localization of the individuals
showing the highest values in each motion attribute (speed,
angular speed, area of motion, etc.). Most prominently, bees
showing the highest angular speed tend to be located at the
bottom part of the hive in proximity of its entrance (Fig. 5c).
These bees are ~2.5 times more probable to be located within
10 cm radius from the hive entrance (p < 0.001, permutations)
and bees from hive S2 and S5 are significantly overrepresented
among the 100 fastest trajectories (p < 0.01, permutations). The
colocalization of these individuals, most noticeable in S3, is
present across all colonies, suggesting that relatively high angular
speed is a characteristic of foragers performing and following the
waggle dance at the hive entrance71.

To corroborate this hypothesis, we manually inspected trajec-
tories showing the highest mean values of single motion attributes
as well as their combinations. Among manually inspected 100

trajectories with highest angular and translational motion we found
that dancers and dancers’ followers are significantly linked to
higher motion velocities (N= 10, p ~ 0.003 and N= 27, p ~ 0.025,
respectively, Wilcoxon rank sum test corrected with permutations,
Fig. 5d). The high angular speed of these individuals is displayed
during the fast-looping dance motion of the foragers indicating to
other colony members locations of food sources (Supplementary
Movies M13–M15). In contrast, individuals with high translational
motion but low angular velocity tend to visit large portions of the
hive without performing any recognizable action (Fig. 5e), a
potential sign of patrolling behavior72. We additionally quantified
the number of times a bee in each trajectory visits a comb cell and
identified bees that clean or search through comb cells sometimes
across long distances (Fig. 5f, Supplementary Movies M16–M18).
These examples demonstrate that the collected metrics group
together similar and potentially meaningful individual bee
behaviors and could facilitate their fully automated detection in
the future.

Discussion
Recent machine vision advances in the precise posture tracking of
individual animals25,26,39 as well as of the positions of highly-
similar organisms in groups50 are enabling quantitative studies of
behavior73,74. In collective behavior specifically, the use of CNNs
for the pixel-based identification of individual organisms has
significantly advanced markerless, long-time tracking in 2D, from
more modest assemblies (~10 individuals)48 to larger groups
(~100 individuals)50. However, while network-learned identities
can resolve confounding visual occlusions and overlaps, a prin-
cipal challenge of individual-resolution group tracking, there
must also be enough isolated instances to train the identification
network. These conditions are rare or nonexistent in the dense
and cluttered setting of a honey bee colony, where visual occlu-
sions and overlaps are perpetual. Here we have described a
detection-to-dynamics solution, which expands tracking to large
and dense collective systems.

Our markerless detection and tracking techniques offer possi-
bilities for the quantitative study of honey bee colonies on the
collective scale at single-organism resolution and are com-
plementary to existing approaches10,16–18 in particular by track-
ing organisms, which are difficult or impossible to tag. Our bee
detection solution exploits temporal information for improved
accuracy. Brood detection could be improved in a similar manner
by including temporal information and the information on the
expected lifetime of capped brood. Both the brood and bee
numbers change over time (Fig. 3), a challenge for manual
marking, and (with improved lighting of the observation hive)
our detection technique can be readily extended to include cap-
ped and uncapped honey cells and cells as well as egg and larvae
that are not currently detected. The dynamics and spatial
arrangement of these variables provide quantitative data for
sociometric analysis53–56 and will be particularly interesting in

Fig. 5 Colony dynamics at single-organism resolution. a The distribution of individual mean speed computed from trajectories in hives S1–S5. Large
differences across hives include a significant proportion of immobile bees in S1 and increased number of fast-moving bees in S2 and S5. The vertical lines
(also in panel B) indicate the mean value of each distribution. b The distribution of individual mean angular speed of trajectories in hives S1–S5. Low angular
speeds are seen primarily in S1 while the largest proportion of trajectories with high angular speed is present in S2. Trajectories in the tail of these
distributions are excellent candidates for forager bees performing or following a waggle dance. c The spatial distribution of trajectories characterized by
large linear and angular motion. We show 100 trajectories from each hive which have large linear and angular speed. The heatmap illustrates counts of
these bees’ appearances in each point of the hive. The entrance is located at the bottom of each hive. Across all hives these trajectories are located near
the entrance and this localization may reflect a forager recruitment site. d Example trajectories of individuals with large linear and angular motion. Three
trajectories are plotted individually and combined in the bottom-right panel. The densely overlapping parts of these trajectories indicate the location of the
waggle dance performed by these individuals. e Example trajectories showing large linear but low angular motion. Such individuals tend to move rapidly
over large portions of the hive. f Example trajectories of bees exhibiting a large number of comb-cell visits. Source data are provided as a Source Data file.
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the context of a collapsing colony. Colony-wide, high-resolution
tracking augments larger-scale measures such as weight75 and can
be combined with additional hive sensors for a novel surveillance
system76. The automatic nature of our approach also facilitates
the imaging of multiple hives77, an important consideration due
to colony-to-colony variability.

Our trajectory construction method currently spans over
5 min, an interval chosen to enable extensive manual validation of
the results (Fig. 4). We expect that this interval can be increased
with more training data (trajectories from more colonies),
advanced validation techniques (such as using markers invisible
in the infrared), as well as with improved matching procedures.
In particular, learning motion patterns via a recurrent neural
network78 can improve matching accuracy over the heuristic
approach proposed here. Combining motion and appearance
learning, while still underexplored79, has potential to result in a
single and powerful tracking solution. Expanding the beehive to
include two sides will allow for monitoring of larger, healthier
colonies, although care will be required to track individuals when
they change sides. An important outcome of this work is to
provide first techniques together with rich trajectory data for
further improvement as machine vision methods accelerate.

A wealth of behavioral information is already accessible within
our current tracking window. While not a target of our study, we
could readily detect bees performing the waggle dance based on
their motion (Fig. 5b). Other possibilities include detection of
sleep80, trophallaxis81, fanning and scenting82, for which addi-
tional appearance cues can be used, such as the extension of the
proboscis and wings. New metrics based on detected behavior,
such as amount of nursing, sleep or foraging, or patterns in
communication signals, could become instrumental for assessing
of colony health. Additionally, the quantitation of behavior and
aggregate colony dynamics over short time scales could be used in
combination with the long-term sociometric observation of the
same colonies as well as with long trajectories of selected indi-
viduals obtained via tagging. The accuracy of CNNs in detection
of visual detail together with the large numbers of trajectories of
unmarked bees offered by our methods present vast opportunities
for behavior analysis of bees and open avenues for more quan-
titative approaches to modeling colony dynamics83–87. We also
see no obvious obstacles in generalizing our approach to other
dense insect collectives such as ants.

Across the organizational scales of living systems, from mole-
cular, through neural88, to animal groups and societies16,89,
including humans90, our ability to understand emergent collective
behavior has been significantly enhanced by modern precision
measurements and analysis across large portions of the ensem-
bles. With the advances reported here, we expect accelerated
progress in our understanding of the behavior of honey bee
colonies and other crowded systems.

Methods
Imaging setup. We situated observation hives in two distinct locations: location 1
on the rooftop of an OIST building (~4th-floor elevation), and location 2 in a
ground-level shipping container, which was also surrounded by greenery. Both
locations were equipped with infrared LEDs and a heating system, which main-
tained a constant room temperature of 31 °C. The LED system was composed of
four panels of 220 × 220mm size illuminating the hive from four different angles
(bottom-left, bottom-right, top-left, and top-right) at a distance of ~1 m and with
the wave length of 850 nm. Each panel was equipped with 14 stripes (6 LEDs/strip)
for a total of 84 LEDs and 13.4W per board. The observation hives were 47 ×
47 cm in size, fitting two honeycomb frames placed one above the other. The back
side of the comb was fixed to a wooden surface constraining the bees to only one
side of the frames. In location 1, images were obtained with a 5120 × 5120 pixel
Vieworks Industrial Camera VC-25MX-M72D0-DIN-FM, at 30 FPS. In location 2,
images were obtained with two lower resolution cameras Panasonic Lumix GH5
4 K and Blackmagic Design Production Camera 4 K at 30 FPS with a typical 4k
resolution of 3840 × 2160 or 2560 × 2560 pixel for the long timespan recordings.
Images of recordings from location 1 (S1, S2) were spatially downsampled by a

factor of two resulting in a similar pixel-per-bee resolution for the recordings from
both locations. All cameras were modified for infrared imaging by removing the
infrared filter.

Detection dataset. For the development of the detection method we generated
two recordings in location 1 (D1, D2). Two sequences of 360 images from each of
these recordings, were used for training and testing. We devised a custom labelling
interface (https://github.com/oist/DenseObjectAnnotation) for manual annotation
of bee locations and orientations which was used to label images in D1 and D2. A
subset of four frames—two from each recording with 2034 bees was additionally
labeled 10-times by independent labelers to obtain an estimate of human error in
position and orientation labeling. This error was calculated as the standard
deviation of distance of each of the 10 labels to the reference label obtained in the
main labeling task and additionally error checked and corrected by us.

The annotated dataset contained 375,698 labeled bees. Every bee was assigned
ðx; y; b; αÞ denoting the coordinates of its central point against the top-left corner
of the image, type of the label (b= 1 for full-bees and b= 2 for cell-bees), and the
body rotation angle α against the vertical pointing upwards and calculated
clockwise ðα ¼ 0 if b ¼ 2Þ. We generated pixel regions centered over the central
point of each bee (Fig. 2a). For full-bees the regions were ellipse-shaped, for cell-
bees circular, both with size of a third of the bee dimensions in the image. Such
regions cover central parts of each bee and are nonadjacent to regions covering
neighboring bees in the image. By choosing a small size of the foreground pixel
blobs we minimized the possibility of overlap of blobs marking individuals in dense
configurations.

These foreground regions were assigned values of class b in the classification
segmentation maps. Background pixels were assigned value 0. For learning of the
orientation angles, each foreground pixel, instead of class label, was assigned the
value of the bee rotation angle and the background pixels were labeled as −1. To
compensate for the class imbalance between foreground bee regions and the non-
bee background, we generated weights used for balancing the loss function at every
pixel. For every bee region a 2D Gaussian of the same shape was generated,
centered over the bee central point, and scaled by proportion in the training set of
the background pixels to the number of bee-region pixels.

For training and testing the images were organized in 60 sequences of 360
images of 512 × 512 pixel size. In this time-resolved data the first 324 images of
each sequence were used for training and the remaining 36 for testing.

Detection network and training. We used the U-Net segmentation network20 and
expanded its functionality to take advantage of regularities in the image time series.
In each pass of the network training or prediction the penultimate layer was kept as
a prior for the next pass of the network (Fig. 2b). In the following pass the next
image in the sequence was used as input and the penultimate layer was con-
catenated with the prior representation before calculating network output.

We used two loss functions in the last network layers. The first loss function, the
3-class softmax function, allowed for performing foreground-background

segmentation. The second loss function was defined as L ¼ sin α̂�α
2

� �2
where α̂ and

α are the predicted and labeled orientation angle, respectively.
In the network output, each contiguous foreground region was interpreted as a

mark for an individual bee. Foreground patches smaller than 10 and larger than
1000 pixels were discarded as potentially wrong. The centroid location was
calculated as the mid-point of all x and y coordinates of points in each region.
Region class was assigned as the class identity of the majority of pixels within given
region. We calculated the main body axis of full-bee regions as the angle of the first
principal component of the points in each region. The orientation angle was
predicted only for the full-bee class and was calculated as the principal axis angle
oriented based on the predicted angle valued of the pixels within a given
foreground region. Due to the higher prediction errors in the image margins, where
objects are not fully visible, during inference, we used windows, which overlapped
by a margin of 50 pixels. Any objects in the image margin were discarded from the
results.

The resulting segmentation maps allowed us to find individual locations in an
independent test set of D1 and D2 recordings with an error of <10% of a bee body
width, detection TPR ~ 0.96, FPR ~ 0.14 and orientation angle error of ~9.7° closely
matching error of human labelers (Supplementary Table 1).

Recordings. All image data were collected from spring to fall in favorable weather
conditions when foraging activity was observable. For each recording we typically
selected from the hives in our apiary two honeycomb frames with even surface, one
containing brood and one containing food stores. We removed comb cells and
other content on one side of each frame and left them for another day inside of the
apiary hive to allow the bees to clean the damaged surface. Next, after ensuring that
the queen is located on one of the frames, we transferred them into the observation
beehive and fixated their empty sides to the back surface of the hive. Before
recording, we allowed each colony to adjust for 2 weeks after the transfer from the
apiary to the observation hive.

We performed long-term timelapse imaging of five colonies (L1–L5) for a
timespan between 2 weeks to 4 months (Supplementary Table 2) with sampling
frequency of once per minute (colony L5) and once every 2 min (colonies L1–L4).
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We additionally imaged five colonies (S1–S5) with a sampling frequency of 30 FPS.
For the tracking analysis we used five-minutes segments, which we downsampled
to 10 FPS.

We trained the bee detection network as described in the section above on the
data and labels of D1 and D2 scaled down by a factor of 2. This rescaling was
necessary so that the body sizes of bees in pixels in D1–D2 matched their size in the
recordings L1–L5, S1–S5. We next generated predictions on several initial frames of
recordings L1–4 and S1–4.

To compensate for potential noise introduced by image rescaling and to
incorporate images of empty parts of the hives in the training set we used the
labelling interface (https://github.com/oist/DenseObjectAnnotation) to correct the
bee position and orientation angle predictions in five initial frames of each
recording. We then retrained the detection model for 10 training iterations on the
additional set of labels. In this way, with a relatively small amount of manual
labeling, we could adapt our method to the new recordings (Supplementary Fig. 1,
Supplementary Table 1).

Brood detection. We devised a similar segmentation-based method for detecting
capped brood cells in a colony. We used a background extraction method91,92

applied to a range of images spanning 12 h resulting in one for each consecutive
12 h of a timelapse recording (Supplementary Movie M1). Briefly, given a video
sequence acquired with a fixed camera, the background extraction method gen-
erates background scene by removing parts of the image based on motion detec-
tion. Through exclusion of pixels that appear to be moving, the algorithm
establishes pixel values which do not change as potentially belonging to the
background. We then adopted our bee annotation tool (https://github.com/oist/
DenseObjectAnnotation) to annotate center points of each brood cell in the gen-
erated background images. We used this tool to label three initial background
images from recordings L1–4 (Supplementary Fig. 2) resulting in 12 labeled images
with a total of 6139 brood cells. We also annotated three images of the L5 recording
containing 2397 brood cells for testing.

Based on position labels we generated segmentation labels, in which pixels
within circles of radius of 10 pixels around each position label were marked as
foreground. The U-Net segmentation network20 was trained to reproduce these
segmentation labels using Adam optimizer with base learning rate of 0.0001. We
applied a weighting scheme in which a 2D gaussian multiplied by 10 was centered
over each foreground pixel patch. Such a weighting was designed to compensate for
the class imbalance between the foreground and background pixels and allowed the
accurate detection of the centers of each segmentation label. The network was
trained for 1000 epochs with batch size= 16.

Position matching algorithm. For the short-term recordings, we devised a posi-
tion matching procedure linking object detections in consecutive video frames into
object trajectories. We used both position coordinates as well as the posture
categories full-bees and cell-bees. In the first step, all detections are considered as
trajectories of length one forming the initial set of assembled trajectories
T ¼ Ti : i ¼ 1::n

� �
. In each following step, detections in consecutive video frames

are considered as potential extensions of the trajectories T. In step i we calculate the
Euclidian distances of the last position of each of the assembled trajectory to
detections in the frame at time ti. For a given trajectory Tj with its last position at
timepoint tj only detections below a given distance cutoff cd are considered as a
match. We define the cutoff as: cd ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
ti � tj

p
if more than 5 of the last 10

positions in a trajectory are a full-bee and cd ¼ a
3 otherwise, where α is half of a bee

longest dimension, that is 40 px in our recordings. For all detections below this
cutoff an additional length factor is added to the Euclidian distance:

l ¼ A 1�
Tj

��� ���
max Ti

�� �� : i ¼ 1::n
� �� �

0
@

1
A; ð1Þ

where A ¼ 30 is a scaling factor chosen based on matching accuracy. The length
factor prioritizes adding detections to longer trajectories instead of short trajec-
tories that might arise as an effect of false positive detections.

After all pairs between detections in frame at time ti and last positions of the
assembled trajectories are found and their distances calculated, the matchings
are generated in the incremental order of distances until no more matched pairs are
found. Matched detections are added to the respective trajectories. Unmatched
detections in frame at time ti are added as potential starting points of new
trajectories. Unmatched trajectories are kept until the time between the last
detection in that trajectory and the current time exceeds a predefined gap cutoff.
We define the gap cutoff as 10 sec if more than five of the last 10 positions in a
trajectory are classified as cell-bee, 1 sec if the last detection in that trajectory is
close to the hive entrance, and 3 sec otherwise. This choice of cutoffs is based on
the observations that bees inside of the honeycomb cells can be occluded for long
timespans and that large densities and fast motion near the entrance can lead to
wrong matching if longer gaps are allowed. Assembled trajectories that exceed the
gap cutoff are considered as finished and stored for further analysis if their length is
above 1 min and discarded otherwise.

We parallelized the matching procedure by splitting the short-term recordings
into segments of 1 min. Results of matching within these segments are then

matched based on the criteria above. With this parallelization our approach can
scale to recordings of arbitrary length with lower computational cost.

Visual features learning. To improve the accuracy of the trajectory reconstruc-
tions, we devised a method to exploit the visual features of bee detection images via
a CNN architecture Inception V352. This architecture was previously shown to
perform well in the bee recognition task49, here we altered it by adding triplet loss
in the objective function69,70. The triplet function was originally designed for
learning vector embeddings capturing similarity among entities. In the tracking
context it is a function where a correct (positive) matching of detections is com-
pared to an incorrect (negative) one. During training, triplets of bee detections are
used as input including: (1) anchor image: bee detection in a frame at a timepoint t,
(2) positive match: the same bee detection in frame at a timepoint t þ Δt, (3)
negative match: a different bee in the frame at a timepoint t þ Δt. The objective
function penalizes representations that set the positive match farther apart in terms
of the Euclidian distance between the vector embedding of the images (1) and (2)
than the distance of the negative match between vector embeddings of the images
(1) and (3). To ensure separation of the positive and negative matches a margin α is
added to the loss:

L i1; i2; i3
� � ¼ max f i1

� �� f i2
� ��� ��2� f i1

� �� f i3
� ��� ��2þα; 0

	 

ð2Þ

where i1; i2; i3 are the input images (1), (2), (3), f is the embedding and the margin
α ¼ 0:5. The loss value in a training batch is defined as mean loss of all triplets over
the number of correct triplets with L ¼ 0.

We estimate the number of possible triplets in one beehive of ~1000 to amount
to 2.4 × 108, a number high enough to prohibit training the network within a
reasonable time. Therefore, we implemented two elements in the training
procedure to accelerate the learning process. First, the sampling of image triplets is
done according to the criteria of the position matching algorithm described above.
For a given anchor image only those negative matchings are generated that lie
within the time and space distance limit to the anchor image as defined by the
criteria of the matching procedure. Corresponding positive matching image is
selected from the same video frame as the negative one. Second, in each step of the
training, input triplets that show a positive value of the triplet loss are fed back into
training. All other input triples are randomly sampled according to the rules above.

We tested a range of dimensionalities of the image embeddings (from 16 to
4096) and chose 64 as the dimensionality offering the best performance in
trajectory matching, assessed as a proportion of correctly reconstructed reference
trajectories, described below. We also included several data augmentation
procedures including random 90° rotations and mirror random flip along both
axes. Augmentation procedures were randomly sampled once for an entire triplet
preserving orientation relationship among images in the original triplet. Finally, we
implemented background masking to train a model capturing visual features of the
bee only, excluding background (Supplementary Fig. 15). We evaluated the
performance of each solution in video of hive S5 which was not included in
train set.

Training comprised 5000 epochs of 128,000 batches with batch size= 32. The
value of the loss function and the number of incorrect matchings in each batch did
not significantly decrease beyond this number of epochs. The network was
implemented in TensorFlow93, trained with Adam optimizer94 using a base
learning rate of 0.0001. The network was initialized randomly and no additional
dataset was used for validation. We compared the network performance based on
tracking results.

Matching procedure with visual features. Quantitative representations of visual
features of bee detections were integrated in the trajectory matching procedure as
follows. Trajectories were assembled via analogous sequential video frame pro-
cessing applying the same time and space distance cutoffs as in the position-based
approach described above. For a given trajectory Tj composed of detections
p1::pn

� �
, detections in the following video frame below the distance cutoff cd to pn

are considered. For each detection di the visual similarity to trajectory Tj is
quantified as:

V ¼ min f ðpjÞ � f ðdiÞ
��� ���2: j ¼ n::n� 10

� �
ð3Þ

where f is vector embedding. Detections with V<cv where cv ¼ 1:75 is a cutoff for
the appearance similarity, are considered as potential extensions of Tj.

For all detections below the distance and appearance similarity cutoffs the
distance between Tj and a detection dj is defined as

D ¼ BE þ V þ l ð4Þ
where E is the Euclidian distance between last trajectory position pn and di, l is the
length factor as described above, and B ¼ 0:033 is a scaling factor chosen based on
accuracy of the assembled trajectories. In each step of the matching process,
matching of trajectories to detections is done in and increasing order of D. The
matching procedure exploiting visual features follows the same time gap logic and
parallelization as the matching based on positions only.

For additional exploration and interpretation of the visual embedding space we
implemented approaches that include orientation angle in the matching procedure.
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The difference in orientation angle of detections is quantified as da ¼ sin α̂�α
2

� �2
. In

the “Position+angle” approach da is added to the Euclidian distance between
detection positions. In the “Embedding+angle” approach, da is added to the D of
Eq. (4). In the “Rotated embedding+angle” approach, the embeddings are
calculated for images of detections rotated to orient them to 0°, thus removing the
orientation information from the embeddings, and da is added to the D of Eq. (4)
as well. In each approach we scale da by a factor of 0.25, which was selected as the
one resulting in best performance. Results of these analyses are shown in
Supplementary Fig. 17.

Training dataset. To obtain the initial set of trajectories for network training, we
applied the previously devised “pixel personality”-based method49 on recordings
S1–S4 and the results were manually validated by inspecting videos where indi-
vidual trajectories are marked. A “correct” trajectory is defined as a temporally-
contiguous set of registered positions in which the same organism was identified >
=80% of the timespan of a recording by manual inspection. Trajectories which are
shorter than the recording length which correspond to bees that have entered or
left the hive are considered correct as long as they track the bee throughout her
entire presence in the hive. The proportion of correctly tracked bees is quantified
relative to the mean number of bee detections in a recording.

Correct trajectories were next used as the ‘initial dataset‘ for training the
network quantifying visual feature embeddings described above. This procedure
was repeated for the initial and final datasets of recordings S1–S4 and once for the
recording S5. Incorrect trajectories were discarded. Due to the 80% correctness
requirement, we used for network training only video segments between minutes 1
and 4 of the full 5-min-long trajectories.

The trained network was used to infer the vector embeddings of bee detections
in videos S1–S4, which were then used to construct a new set of trajectories. These
trajectories were again manually validated and the correct ones together with the
‘initial dataset‘ formed the ‘final dataset‘ of trajectories.

The network trained on the expanded train set was used to derive quantitative
representations of bee detections in videos S1–S4 as well as video S5. Images from
video S5 were not used in the training of the detection or the representation
learning networks. Trajectories were next constructed based on the visual
representations derived via this network and the results were manually validated.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in our study are available95. The authors declare that the data supporting
the findings of this study are available within the paper and its supplementary
information files. Source data are provided with this paper.

Code availability
We provide code and code tutorials96 (https://github.com/kasiabozek/bee_tracking) and
detection labeling tool (https://github.com/oist/DenseObjectAnnotation).
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