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Abstract
Aim: As climate change presents a major threat to biodiversity in the next decades, it 
is critical to assess its impact on species habitat suitability to inform biodiversity con-
servation. Species distribution models (SDMs) are a widely used tool to assess climate 
change impacts on species’ geographical distributions. As the name of these mod-
els suggests, the species level is the most commonly used taxonomic unit in SDMs. 
However, recently it has been demonstrated that SDMs considering taxonomic reso-
lution below (or above) the species level can make more reliable predictions of biodi-
versity change when different populations exhibit local adaptation. Here, we tested 
this idea using the Japanese crayfish (Cambaroides japonicus), a threatened species 
encompassing two geographically structured and phylogenetically distinct genetic 
lineages.
Location: Northern Japan.
Methods: We first estimated niche differentiation between the two lineages of 
C. japonicus using n-dimensional hypervolumes and then made climate change predic-
tions of habitat suitability using SDMs constructed at two phylogenetic levels: species 
and intraspecific lineage.
Results: Our results showed only intermediate niche overlap, demonstrating measur-
able niche differences between the two lineages. The species-level SDM made fu-
ture predictions that predicted much broader and severe impacts of climate change. 
However, the lineage-level SDMs led to reduced climate change impacts overall and 
also suggested that the eastern lineage may be more resilient to climate change than 
the western one.
Main conclusions: The two lineages of C.  japonicus occupy different niche spaces. 
Compared with lineage-level models, species-level models can overestimate climate 
change impacts. These results not only have important implications for designing fu-
ture conservation strategies for this threatened species, but also highlight the need 
for incorporating genetic information into SDMs to obtain realistic predictions of bio-
diversity change.
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1  | INTRODUC TION

Amidst the current global climate emergency (Ripple et  al.,  2019), 
our planet is changing rapidly in an unpredictable manner. According 
to the latest assessment by the Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services (IPBES,  2019), 
climate change is one of the five most influential direct drivers of 
biodiversity decline, along with habitat loss, direct exploitation 
of organisms, pollution, and invasion of alien species. It has been 
demonstrated that climate change indiscriminately threatens spe-
cies in virtually all ecosystems—terrestrial (Burrows et  al.,  2011; 
Pinsky et al., 2019), subterranean (Mammola, Cardoso, et al., 2019; 
Mammola, Piano, et al., 2019), freshwater (Woodward et al., 2010) 
and marine (Burrows et al., 2011; Pinsky et al., 2019). Climate change 
can affect species by altering physiological performance, phenology, 
geographical distribution and species interactions, among others 
(review by Hughes, 2000; Walther et al., 2002). For instance, there 
is mounting evidence that species are rapidly rearranging their dis-
tributions along elevational and/or latitudinal gradients in response 
to changing climates (Burrows et al., 2011; Lenoir et al., 2020). To 
better protect and manage biological resources in an era of climate 
change, it is therefore fundamental to gain a better understanding 
of how climate change will redefine the geography of life (Román-
Palacios & Wiens, 2020).

Species distribution models (SDMs) are powerful tools in this 
regard, as they can estimate species’ habitat suitability by determin-
ing statistical relationships between species’ range data and envi-
ronmental predictors, and can also be used to forecast how suitable 
areas may vary under different climate change scenarios (Araújo 
et  al.,  2019; Booth et al., 2014; Elith & Leathwick,  2009; Guisan 
et al., 2017). To date, SDMs have often been used to investigate the 
potential impacts of climate change on target species of conserva-
tion concern (Araújo et al., 2019; Elith & Leathwick, 2009; Guisan & 
Thuiller, 2005; Zhang, Mammola, Liang, et al., 2020). For instance, 
Zhang, Mammola, Liang, et  al.  (2020) developed a SDM for the 
Critically Endangered Chinese giant salamander Andrias davidianus 
(Blanchard, 1871)—the world's largest extant amphibian—and found 
that this species might be extremely vulnerable to climate change 
and might lose more than two-thirds of its suitable habitat in the 
future.

As the term “species distribution model” suggests, the species 
level is the most commonly used taxonomic unit in SDMs (Qiao 

et al., 2017; Smith et al., 2019). One basic assumption underlying 
species-level SDMs is “niche conservatism” (Guisan et  al.,  2017; 
Peterson et al., 1999), positing that species should exhibit uniform 
responses to climate and retain similar niche characteristics over 
space and time. However, recent studies have emphasized that 
taxonomic resolution below (or above) the species level should 
be considered in SDMs for some systems (e.g. Collart, Hedenäs, 
Broennimann, Guisan, & Vanderpoorten, in press; Guisan 
et al., 2017; Pearman et al., 2010; Serra-Varela et al., 2015; Smith 
et al., 2019). Different populations of the same species inhabiting 
geographically and ecologically distinct environments may expe-
rience local adaptation and thus have niches that are divergent 
to some extent (e.g. Zhang et al., 2020). For such systems, model-
ling habitat suitability below the species level should lead to more 
accurate range estimates and climate change projections (Collart 
et al., in press; Pearman et al., 2010; Smith et al., 2019). In threat-
ened species conservation, for example, climate change responses 
of phylogeographic lineages have recently been considered for 
some taxonomic groups from terrestrial and marine systems (e.g. 
Cacciapaglia & van Woesik, 2018; Collart et al., in press; D’Amen 
et al., 2013; Lecocq et al., 2016), but such studies have rarely been 
conducted in freshwater systems (but see Zhao et al., 2020).

Here, we examined how predictions of climate change responses 
can differ when taking into account intraspecific genetic heteroge-
neity for a threatened freshwater arthropod, the Japanese crayfish 
Cambaroides japonicus (De Haan 1841) (see Species description in 
Methods for details). Most freshwater crayfish have specialized hab-
itats and limited mobility, which contribute to their vulnerability to 
climate change (Hossain et al., 2018). Cambaroides japonicus is largely 
sedentary and its intraspecific phylogeography has been resolved for 
its entire distribution. There are two distinct genetic lineages (east-
ern and western) in C. japonicus delineated by partial sequences of 
mitochondrial and nuclear DNA (Koizumi et al., 2012). On the basis 
of molecular phylogeographic analysis, Koizumi et al. (2012) inferred 
that the two genetic lineages have undergone distinct evolutionary 
histories over several million years in different geographical regions 
characterized by differential climatic factors and topography. Given 
these different histories over a substantial time-scale, it is likely 
that these lineages have experienced at least some local adaptation, 
which would lead to an expectation of differential responses to cli-
mate change. In this case, it is important to compare future range 
projections at the levels of species and lineage to assess the impacts 
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of climate change (Benito Garzón et al., 2019; Peterson et al., 2019; 
Smith et al., 2019).

In this study, we quantified realized niches (i.e. the portion of the 
fundamental niche currently used by the species; Guisan et al., 2017; 
Soberón & Nakamura, 2009), developed SDMs and made future pre-
dictions to examine how climate change might influence C. japonicus 
by constructing species-level versus genetic lineage-level models. 
We sought to address the following hypotheses: (1) there will be 
divergence in realized niches between the eastern and western lin-
eages of C. japonicus, and (2) there will be considerable differences 
between the future projections of the SDMs at the species and lin-
eage levels. Our results address the uncertainty in climate change 
predictions for species with high intraspecific variation in genetic 
diversity, as well as highlight the importance of developing SDMs 
below the species level. Moreover, our results should provide a 
useful guide for designing conservation strategies for C.  japonicus 
lineages.

2  | MATERIAL S AND METHODS

2.1 | Species description

Cambaroides japonicus is designated a threatened species (Category 
II; Vulnerable) in the Ministry of the Environment, Japan's Red List 
(Ministry of the Environment, Japan, 2020) and data-deficient but 
with a decreasing population trend in the IUCN Red List (IUCN, 2020). 
The species is the only crayfish species native to Japan, endemic to 
freshwater areas of Hokkaido and northern Honshu in northern 
Japan (Miyake, 1982). Natural populations of this species have de-
clined substantially in recent decades. Multiple stressors including 
habitat loss, water quality degradation, and predation and competi-
tive exclusion by invasive crayfish are thought to be major factors for 
the observed decline of C. japonicus (Kawai, 2003; Usio et al., 2001). 
Cambaroides japonicus is also a popular pet for ornamental aquari-
ums and is distributed through Internet auctions and aquarium shops 
(Kawai, 2003; N. Usio, personal observation). Nevertheless, there is 
no environmental law to protect this species except for the south-
ernmost population in Akita Prefecture which was designated a na-
tional monument (Miyake,  1982). In addition to current pressures, 
another important yet largely neglected threat to C. japonicus might 
be climate change, given that the distributions of other crayfish spe-
cies were predicted to be driven by temperature and other climatic 
conditions (e.g. Capinha et  al.,  2013; Gallardo & Aldridge,  2013; 
Zhang, Capinha, Usio, et al., 2020).

2.2 | Study area and species distribution data

Considering the known distribution of C.  japonicus, we selected 
northern Japan (138°E–146°E, 40°N–46°N) as our study extent and 
restricted the analysis to freshwater areas (Figure  S1). We identi-
fied freshwater areas with MERIT Hydro (Yamazaki et al., 2019), a 

global hydrography dataset at 3 arc-second resolution (~90 m at the 
equator), and then resampled this layer to the spatial resolution of 
our environmental predictors (30 arc-seconds; ~1 km at the equator).

We obtained occurrence data for C.  japonicus from published 
literature (Koizumi et  al.,  2012), data collections by the Bihoro 
Museum, Hokkaido, Japan (2001–2019), and field surveys (N. Usio 
2003, 2015, K. Tanaka 2007–2017, S. Niwa 2000–2019, and N. 
Ichijo 2003–2012). From these sources, we collected a total of 497 
presence records. Based on the phylogenetic results of Koizumi 
et  al.  (2012), which determined a clear spatial partition between 
the two lineages, we divided the study extent into two regions by 
drawing a boundary of straight lines to assign presence data to either 
the western or eastern lineage (Figure S1). Note, however, that eight 
presence records at the boundary were unable to be assigned to any 
lineage due to an absence of phylogenetic information; these were 
excluded from lineage-level SDM analyses. Overall, we assigned 
325 records to the western lineage and 164 records to the eastern 
lineage.

In accordance with standard practices for SDMs, we cleaned 
and spatially thinned the presence records using a 5  km thinning 
distance to avoid spatial sampling bias (Kramer-Schadt et al., 2013) 
(see Supporting Information for Presence data processing). After 
processing the presence data, we retained 113 records for the spe-
cies-level SDM, 47 records for the eastern lineage SDM, and 60 re-
cords for the western lineage SDM (Figure S1).

2.3 | Predictor variables

For modelling realized niches and potential distributions for 
C. japonicus, we initially considered 14 environmental predictor vari-
ables with a spatial resolution of 30 arc-seconds: eight bioclimatic 
predictors from CHELSA (Karger et  al.,  2017), three land use and 
land cover predictors (Li et al., 2016), and three topographic predic-
tors (Amatulli et al., 2018; Hengl, 2018) (see Table 1 for details). We 
chose these variables based on our expert opinion that bioclimatic 
extremes, seasonality, and means likely influence the species’ physi-
ological performance; land use and land cover can have strong rela-
tionships with its habitat preferences; and water velocity and rain 
infiltration are closely related to topography and can affect habitat 
quality. The Japanese crayfish is typically found in small streams, 
ponds or mesic areas (where groundwater emerges) in broadleaf 
forests (Kawai,  2003; Usio,  2007). Therefore, we also generated 
a broadleaf forest variable using the EarthEnv dataset (Tuanmu & 
Jetz, 2014) by summing the layers for evergreen broadleaf trees, de-
ciduous broadleaf trees and mixed/other trees (Table 1). We checked 
for collinearity among 15 predictors by calculating the pairwise 
Pearson's correlation coefficient (r) and retained one predictor when 
two or more were highly correlated (i.e. |r| >  .70) (Zhang, Capinha, 
Karger, et al., 2020; Zhang et al., 2020). Given biological importance, 
collinearity analysis results, and data availability under present-day 
and future scenarios, we selected the following eight predictors 
for modelling: maximum temperature of warmest month, minimum 
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temperature of coldest month, precipitation of wettest month, pre-
cipitation of driest month, slope, and percent cover of forest, water, 
and wetland (Figure S2).

We considered two future time periods (2050s: average of 
2041–2060; 2070s: average of 2061–2080) under two representa-
tive concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5). 
We addressed the inherent uncertainty in future climate projections 
by considering four different global circulation models (CESM1-
BGC, CMCC-CM, MIROC5, MPI-ESM-MR) (Karger et  al.,  2017) 
and obtained future projections for land use and land cover from 
Li et al. (2016). We assumed that slope would remain unchanged in 
the future.

2.4 | Niche comparisons

We used n-dimensional hypervolumes to quantify the realized niche 
space for the eastern and western lineages. In brief, we performed 
a principal component analysis on the eight selected predictors 
and used the first four principal components to describe species 
niches as they accounted for more than 75% of the total variance 
(Figure S3). We used the R package hypervolume (Blonder, 2019) to 

construct hypervolumes for the two lineages. We used the volume 
of each hypervolume as a measure of the size of the realized niche 
in multidimensional space (note that the volume of a hypervolume 
is a unitless measure). We then used the R package BAT (Cardoso 
et al., 2020) to evaluate niche overlap between the two lineages. In 
particular, we expressed differentiation between hypervolumes as 
the sum of two components: niche shifts (i.e. replacement of space 
between hypervolumes) and niche contraction/expansion (i.e. net 
difference between hypervolumes) (Carvalho & Cardoso,  2020; 
Mammola & Cardoso,  2020). Niche differentiation varies from 0 
(complete overlap between hypervolumes) to 1 (complete separa-
tion between hypervolumes).

2.5 | Species distribution modelling

We performed an extensive SDM analysis incorporating explora-
tions of model complexity, evaluations of model transferability, and 
multiple post hoc procedures to better understand model behaviour, 
in line with current best practices for SDMs (Araújo et  al.,  2019). 
We developed SDMs for C. japonicus with Maxent 3.4.1, a machine 
learning presence-background algorithm used extensively to model 
species’ ranges (Phillips et  al.,  2017). Machine learning algorithms 
like Maxent can produce overfitted models if run with default set-
tings (Radosavljevic & Anderson, 2014), and thus a tuning process 
is advocated wherein different combinations of model settings are 
evaluated (Araújo et al., 2019; Merow et al., 2013). We first tuned 
Maxent with different combinations of feature classes, which gov-
ern the complexity of the model response [linear (L), quadratic (Q) 
and/or hinge (H)] and regularization multipliers, which penalize com-
plexity (ranging from 0.5 to 4.0 at an interval of 0.5) using a version 
of the R package ENMeval under expansion (1.9.0) (https://github.
com/jamiemkass/ENMeval; Muscarella et  al.,  2014). We evaluated 
each model using spatial block cross-validation, which is recom-
mended for assessing model transferability, or how well models ex-
trapolate to new environments (Roberts et al., 2017). We used the 
“block” partition option to divide the study region into four regions 
containing an equal number of presences: three blocks were used 
for model training and the withheld block for model validation, and 
this process was repeated until all blocks were withheld. Using new 
partitioning options in ENMeval 1.9.0, we specified spatial block par-
titions with different orientations for each occurrence dataset to 
best ensure each block represented discrete and contiguous areas: 
longitudinally for the eastern lineage, latitudinally for the western 
lineage and a combination of both for the species level (Figure S7). 
We chose optimal settings from among the candidate models by ap-
plying sequential criteria on performance metrics (Kass, Anderson, 
et  al.,  2020; Radosavljevic & Anderson,  2014). We first selected 
models with the minimum average 10% omission rate, or the pro-
portion of validation occurrences with suitability predictions below 
that of the 0.1 quantile of training predictions. When multiple mod-
els had the minimum omission rate, we selected the model with the 
highest average validation AUC, or area under the receiver operating 

TA B L E  1   The 15 environmental predictor variables considered 
in this study, marked with ✓ if used in model development and × if 
not used

Description Reference
Used (✓) 
or not (×)

Annual mean temperature Karger et al. (2017) ×

Temperature seasonality Karger et al. (2017) ×

Maximum temperature of 
warmest month

Karger et al. (2017) ✓

Minimum temperature of 
coldest month

Karger et al. (2017) ✓

Annual precipitation Karger et al. (2017) ×

Precipitation of wettest month Karger et al. (2017) ✓

Precipitation of driest month Karger et al. (2017) ✓

Precipitation seasonality Karger et al. (2017) ×

Fraction of water in each grid 
cell

Li et al. (2016) ✓

Fraction of wetland in each 
grid cell

Li et al. (2016) ✓

Fraction of forest in each grid 
cell

Li et al. (2016) ✓

Fraction of broadleaf forest in 
each grid cell

Tuanmu and Jetz 
(2014)

×

Slope Amatulli 
et al. (2018)

✓

Elevation Amatulli 
et al. (2018)

×

Topographic wetness index Hengl (2018) ×

Note: Future projections for slope, elevation and topographic wetness 
index are not available.
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characteristic curve for validation data. The AUC value ranges from 
0 to 1, with higher values indicating better model discrimination—
this metric is problematic for determining the absolute performance 
ability of presence-background SDMs, though it is acceptable to use 
for relative comparisons across models with the same data (Lobo 
et al., 2008).

We additionally performed post hoc procedures on the selected 
models via tuning to assess performance with different methods, 
determine variable importance and marginal response curves, and 
visualize the extent of extrapolation across spatial blocks. We first 
assessed the predictive abilities of the selected models using the 
continuous Boyce index calculated on the full dataset, which unlike 
AUC can be used for absolute evaluations of presence-background 
SDMs (Hirzel et al., 2006). The continuous Boyce index varies from 
–1 to 1, whereby values above 0 indicate model predictions con-
sistent with distribution data, values of 0 indicate performance no 
better than random, and values below zero refer to incorrect model 
predictions (Hirzel et al., 2006). We then ran a series of null model 
simulations (n = 100) using the complexity settings of each selected 
model to determine if the empirical models predicted validation data 
better than models built with random occurrences (results for sim-
ulations with 1000 iterations, which do not change our conclusions, 
are available in Figure S9). To do so, we used a recently described 
null model approach for SDMs available in ENMeval 1.9.0 that eval-
uates null model performance against the same validation data as 
the empirical model, making the null and empirical results directly 
comparable (Bohl et al., 2019; Kass, Anderson, et al., 2020). Next, 
we examined the permutation importance calculated by Maxent 

and marginal response curves for the variables of each selected 
model. Finally, we calculated multivariate environmental similarity 
surface (MESS) values (Elith et al., 2010) using the rmaxent package 
(Baumgartner & Wilson,  2020) to determine how environmentally 
similar training data was to validation data for each spatial block. 
We plotted histograms to visualize the extent of extrapolation that 
occurred during cross-validation for each model.

We used the selected models and environmental variables to 
predict current and future habitat suitability. We made predictions 
using Maxent's cloglog transformation (bounded by 0 and 1) (Phillips 
et al., 2017) and additionally made binary range maps by threshold-
ing the continuous predictions by the 10% omission values. All anal-
yses were performed in R (R Core Team, 2020).

3  | RESULTS

3.1 | Comparison of realized niches

The volume of the four-dimensional hypervolume for the west-
ern lineage (1,971.14) was larger than that of the eastern lineage 
(1,848.67), and niche overlap between the two lineages was inter-
mediate (0.50) (Figure  1). Niche differentiation was mainly due to 
contraction/expansion (>90%), while niche shifts only contributed 
marginally (<10%). Niche differentiation between the two lineages 
was mostly observable along PC2 (mainly explained by precipitation 
of driest month, minimum temperature of coldest month, and maxi-
mum temperature of warmest month) (Figures 1 and S3).

F I G U R E  1   The four-dimensional 
hypervolumes for western and eastern 
lineages of Japanese crayfish. To 
visualize the shape and boundary of 
the hypervolumes in two dimensions, a 
random selection of 10,000 stochastic 
points for each hypervolume was 
used
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3.2 | Best-performing SDMs and 
variable importance

The three Maxent models we selected had different settings that 
resulted in different levels of complexity. The western and eastern 
lineage models were relatively simple (L1.5 with six non-zero co-
efficients and L0.5 with seven non-zero coefficients, respectively), 
while the species-level model was more complex (LQH3.0 with 12 
non-zero coefficients) (Table 2 and Figure S4). All three models had 
continuous Boyce index values well above 0 (western: 0.65, eastern: 
0.66, species: 0.92), indicating that each had predictions consistent 
with the distribution of presence data (Hirzel et al., 2006) (Table 2). 
For both 10% omission rate and validation AUC, the western lineage 
(both p < .05) and species-level (both p < .01) models performed sig-
nificantly better than null models, and effect sizes for the species-
level model were larger for both metrics (Table S1 and Figure S5). 
However, although the selected eastern lineage model performed 

the best on withheld spatial blocks compared to other candidate 
models, its cross-validation performance was not significantly bet-
ter than null models (p =  .094 for AUC and p =  .933 for omission 
rate; Table S1 and Figure S5). Thus, there is evidence that the trans-
ferability of the eastern lineage model may be poorer than that 
of the other models, resulting in higher uncertainty for its future 
projections. The environmental variables with the highest permu-
tation importance differed among models: precipitation of wettest 
month was shared by all, while precipitation of driest month was 
shared by the lineage-level models, slope was shared by the west-
ern lineage and species models, and others were particular to each 
model (eastern: minimum temperature of coldest month, species: 
forest) (Table  S2). For most environmental variables, the marginal 
response curves were either positive or relatively neutral, though 
precipitation of the wettest month was negative for all models 
(Figure S6). Regarding the MESS analysis, the eastern lineage model 
showed considerable extrapolation across spatial blocks, whereas 

TA B L E  2   Optimal complexity settings, evaluation statistics and threshold values used to create binary maps for Maxent models for 
Japanese crayfish at the lineage and species levels

SDM Featurea  RMb 
Validation 
AUC

10% omission 
rate (%) Thresholdc  CBId 

No. of non-zero 
model coefficients

Western lineage L 1.5 0.61 3.33 0.48 0.65 6

Eastern lineage L 0.5 0.66 17.23 0.33 0.66 7

Species LQH 3.0 0.65 8.74 0.46 0.92 12

aL: linear; Q: quadratic; and H: hinge. 
bRegularization multiplier. 
c10% omission suitability threshold. 
dContinuous Boyce Index. Calculated on full dataset. 

F I G U R E  2   Present-day habitat 
suitability of Japanese crayfish projected 
by lineage (a, c) and species (b, d) Maxent 
models. Continuous projections (a, b) 
were converted into binary results (c, d) 
using 10% presence thresholds. Dashed 
lines in (a) and (c) represent the boundary 
between eastern and western lineages. 
Numbers in parentheses represent region 
locations for reference: (1) coastal areas of 
south-central Hokkaido (Iburi and Hidaka 
Subprefectures), (2) east-central Hokkaido 
(Tokachi and Hidaka Subprefectures), 
(3) northern Honshu (Aomori and Akita 
Prefectures), (4) central Hokkaido (Ishikari, 
Sorachi and Iburi Subprefectures), and (5) 
eastern Hokkaido (Tokachi Subprefecture)
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extrapolation for the other models was proportionally quite smaller 
(Figures S7 and S8).

3.3 | SDM projections

Lineage and species SDMs resulted in different suitability projec-
tions for C.  japonicus under current environmental conditions, 
though all predicted a majority of the study region to be suitable 
(Figure 2). The lineage-level models predicted broader suitable areas 

than the species-level model for both the eastern (lineage: 84.1%, 
species: 78.4%) and western (lineage: 90.9%, species: 74.0%) re-
gions. According to the lineage-level model binary range maps, there 
is some overlap but distinct differences exist between areas with 
predicted absence for each region: for the west, predicted absence 
occurs in the coastal areas of south-central Hokkaido, and for the 
east in more eastern coastal and inland areas (Figure  2). For the 
species model binary map, predicted absence has a much broader 
distribution, encompassing a majority of northern Honshu, central 
Hokkaido, and eastern Hokkaido (Figure 2).

TA B L E  3   Range size change (%) of Japanese crayfish Cambaroides japonicus under future climate conditions

GCM

East lineage West lineage

RCP4.5
2050s

RCP8.5
2050s

RCP4.5
2070s

RCP8.5
2070s

RCP4.5
2050s

RCP8.5
2050s

RCP4.5
2070s

RCP8.5
2070s

CESM1-BGC 16.5 (−1.6)a 2.2 (−47.3) 16.4 (−8.4) 3.6 (−53.9) 5.5 (−10.6) −6.4 (−63.5) 0.3 (−23.2) −6.9 (−60.1)

CMCC-CM 8.1 (−28.2) 17.7 (−12.5) 5.3 (−33.4) 17.6 (−45.2) −8.0 (−29.5) 1.8 (−22.1) −6.0 (−41.4) 0.0 (−50.9)

MIROC5 7.5 (−38.4) 16.7 (−16.9) 14.2 (−33.8) 15.0 (−38.8) −2.8 (−54.1) 3.3 (−32.9) 1.3 (−56.1) 0.9 (−56.4)

MPI-ESM-MR 10.2 (1.2) 8.9 (−16.0) 14.6 (−10.2) 17.2 (−23.1) −3.1 (−9.8) −9.2 (−32.4) 2.6 (−15.5) 0.6 (−43.2)

Abbreviation: GCM, global circulation model.
bValues in parentheses represent range size change obtained from species-level Maxent model. 

F I G U R E  3   Changes in future habitat suitability of Japanese crayfish projected by lineage (a, c) and species (b, d) Maxent models. 
Continuous differences (a, b) expressed as difference between future and present-day habitat suitability. (c) and (d) indicate range size 
change based on binary results. Gain: area unsuitable at present but becomes suitable in future; stable: area suitable at present and in future; 
loss: area suitable at present but becomes unsuitable in future; and unsuitable: land area and freshwater area unsuitable at present and in 
future. Dashed lines in (a) and (c) represent boundary between eastern and western lineages. Numbers in parentheses represent region 
locations for easy reference: (1) northern Honshu (Aomori and Iwate Prefectures), (2) southern Hokkaido (Shiribeshi, Hiyama and Oshima 
Subprefectures), (3) north-central Hokkaido (Rumoi, Sorachi, Kamikawa, Ishikari and Iburi Subprefectures), (4) eastern Hokkaido (Okhotsk, 
Kushiro and Nemuro Subprefectures), and (5) east-central Hokkaido (Tokachi and Hidaka Subprefectures). We presented suitability 
projections of MPI-ESM-MR for RCP 8.5 in the 2050s as an example
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The lineage-level and species-level SDMs resulted in largely different 
projections for future conditions, with reasonable agreement between 
GCMs (Table 3 and Figure 3). Taking the MPI-ESM-MR for RCP 8.5 in the 
2050s as an example, according to the lineage-level model predictions, 
the western lineage is predicted to experience range restrictions (9.2% 
decrease overall) in north-central Hokkaido, southern Hokkaido and 
northeast Honshu, while the eastern lineage is predicted to slightly ex-
pand its range (8.9% increase overall) in two distant areas in east-central 
Hokkaido and eastern Hokkaido. According to the species-level model, 
large areas in Hokkaido and northern Honshu are predicted to become 
unsuitable (27.0% decrease overall, 16.0% decrease in east, 32.4% de-
crease in west) (Figure 3 and Table 3).

4  | DISCUSSION

In this study, we quantified realized niches for two genetic line-
ages of C.  japonicus and used SDMs calibrated at species and 
lineage levels to investigate potential impacts of climate change 
on the species’ range. We found intermediate niche overlap be-
tween the two lineages driven mainly by niche contraction/expan-
sion processes, indicating that the two lineages occupy different 
niche spaces and that the niche conservatism assumption is not 
likely for this species. Our results also showed that species- and 
lineage-level SDMs projected largely different impacts of climate 
change: the species-level model predicted widespread range re-
ductions, while the lineage-level models predicted contraction or 
little change for the western lineage but expansion for the eastern 
lineage. If there is indeed local adaptation in these two distinct 
lineages, which is probable given the known phylogenetic history 
and our niche overlap results, the lineage-level models are likely to 
make more realistic future predictions of habitat suitability than 
the species-level models, and our results show that the eastern 
lineage may be more resilient to climate change and may experi-
ence range expansion. Our findings demonstrate the importance 
of developing SDMs below the species level to obtain different 
predictions of biodiversity change that account for intraspecific 
variation, which has important implications for designing conser-
vation and management strategies.

4.1 | Intraspecific variation in SDMs

Species distribution models have been frequently used in biodiversity 
assessments with the most common application being to estimate 
habitat suitability at the species level (e.g. Araújo et al., 2019; Collart 
et al., in press; Elith & Leathwick, 2009; Guisan & Thuiller, 2005; Guisan 
et al., 2017). The species-level SDM relies on the “niche conservatism” 
assumption and does not take into account intraspecific phyloge-
netic or functional heterogeneity. Recently, however, many studies 
have demonstrated that local adaptation and intraspecific variation 
are important to account for in SDM exercises (e.g. Benito Garzón 
et al., 2019; Ikeda et al., 2017; Mammola et al., 2019; Oney et al., 2013).

Incorporating local adaptation and intraspecific variation into 
SDMs stems from the recognition that populations of species in-
habiting largely different habitats over significant time-scales will 
often show adaptations to their respective local conditions, re-
sulting in intraspecific niche variation (Collart et al., in press; Smith 
et  al.,  2019). While these local adaptations are known to result 
in clear morphological differences among populations in some or-
ganisms (e.g. DeWoody et al., 2015), crayfish are known to exhibit 
a wide range of body shape and colour differences among intra-
specific populations, at least in part due to abiotic habitat char-
acteristics (including light availability and water chemistry) and 
food resources therein (Holdich,  2012; Thacker et  al.,  1993). In 
crayfish, local adaptations to climate may be rather represented by 
intraspecific genetic differences that are only discernible via phy-
logenetic analysis, as in our study species (Koizumi et al., 2012). 
We now have ample evidence on intraspecific genetic divergence 
(Avise, 2000, 2009), as well as local adaptation (Hereford, 2009; 
Savolainen et  al.,  2013). Unsurprisingly, many researchers have 
recently stressed the benefits of taking genetic data into ac-
count when employing SDMs (e.g. Peterson et al., 2019; Razgour 
et  al.,  2019; Smith et  al.,  2019). However, incorporating genetic 
diversity into SDMs is still not routinely done for threatened or 
endangered species (but see Zhao et al., 2020 for an example of 
the Chinese giant salamander).

Our results showed that niche overlap between the eastern and 
western lineages of C.  japonicus was only intermediate, indicating 
that there are real niche differences warranting consideration of lin-
eage-level SDMs for this species. All of our models achieved high 
predictive performance on spatial blocks indicating good model 
transferability (compared to all other candidate models), but the 
species-level model predicted more range contractions due to cli-
mate change than the lineage-level models. It must be noted that 
the predictions for the eastern lineage model should be treated with 
higher uncertainty as this model did not perform better than null 
models evaluated on the same spatial blocks, likely because predict-
ing to withheld blocks required more extrapolation for this model 
than for the other models. As genetic lineage-level SDMs incorpo-
rate possible local adaptations, they can give quite different predic-
tions of climate change impacts, and our climate change projections 
were indeed less pessimistic for the lineage-level models. This 
finding is consistent with previous studies, which suggest that in-
traspecific variation may buffer species against climate change (e.g. 
Ikeda et al., 2017; Oney et al., 2013; Pearman et al., 2010; Razgour 
et al., 2019).

4.2 | Conservation implications

Our findings have important implications for designing conservation 
strategies for C.  japonicus. With the purpose of preserving genetic 
diversity for conservation efforts, the concept of the Evolutionarily 
Significant Unit, also termed “Unified Species Concept” (De 
Queiroz,  2007), was developed to define separately evolving 
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lineages below the species level as the only reasonable conservation 
unit (Ryder, 1986). Although both lineages of C. japonicus are of con-
servation importance and should be preserved carefully, in the cur-
rent state of limited conservation resources, our results indicate that 
the western lineage is likely to be more vulnerable to climate change, 
signalling that western Hokkaido and northern Honshu should be 
identified as priority conservation areas.

Given our findings and the multiple threats faced by C. japoni-
cus, we propose several management guidelines applicable to both 
lineages. First of all, despite being designated as a threatened spe-
cies, C. japonicus is still reported in Japan to be captured and traded 
as an aquarium pet; thus far, as is the case of several commercial-
ized invertebrates (Fukushima et  al.,  2020), there are no specific 
laws enforced to protect this species from harvesting or distrib-
uting. Some prefectural governments in Japan are making efforts 
to protect specific threatened species through regulations under 
the Act on Conservation of Endangered Species of Wild Fauna 
and Flora (Act No. 75 of June 5, 1992). However, such species of 
special conservation concern are usually limited to a portion of 
critically endangered or endangered species (Category I). Because 
C. japonicus is designated a vulnerable species (Category II), it does 
not receive attention for protection by the current Regulations or 
Act in Japan. We think a wider range of taxonomic groups in the 
Red List, including vulnerable and near-threatened species, should 
be protected by the Regulation or Act. Second, to keep track of 
long-term changes in population dynamics, various populations of 
this species should be subject to continuous monitoring, which can 
be done effectively with advanced passive sampling techniques 
using environmental DNA (Ikeda et al., 2016). Long-term popula-
tion data can also help validate our SDM projections, which should 
be treated as hypotheses in need of testing.

In conclusion, this study represents a first attempt to explore cli-
mate change impacts on C. japonicus, which to date have remained 
largely unexplored for this species. As multiple nuances exist, fur-
ther studies are required to test whether intraspecific variation in 
environmental requirements between the two lineages reflects dif-
ferent adaptation at the physiological levels. Future experimental 
studies and monitoring programmes would be needed to explore 
these possibilities.

ACKNOWLEDG EMENTS
We thank César Capinha (University of Lisbon, Portugal) and Geng 
Qin (South China Sea Institute of Oceanology, Chinese Academy of 
Sciences, China) for their helpful comments on an early draft of this 
manuscript. We are grateful to Dai Yamazaki (The University of Tokyo, 
Japan) for helpful suggestions on the MERIT Hydro dataset. We also 
thank the curators or collaborators of Bihoro Museum (Y. Machida,  
K. Onimaru, K. Azehara, S. Yamauchi, Y. Umatani, Y. Kida, Y. Watanabe, 
K. Ueda, T. Sonoda, T. Nishio, K. Yamamoto, Y. Uni, T. Sato, T. Haneishi, 
K. Nomoto, T. Mori and Hokkaido Regional Development Bureau),  
S. Niwa, and N. Ichijo for providing occurrence data for Cambaroides 
japonicus.

CONFLIC T OF INTE TRE S T
The authors declare there are no competing interests.

PEER RE VIE W
The peer review history for this article is available at https://publo​
ns.com/publo​n/10.1111/ddi.13225.

DATA AVAIL ABILIT Y S TATEMENT
Presence records of the Japanese crayfish Cambaroides japoni-
cus are presented in Figure  S1. Environmental predictors can be 
retrieved from online databases (see details in Table  1). R scripts 
used for Maxent tuning are publicly available in Dryad (https://doi.
org/10.5061/dryad.z612j​m6b7).

ORCID
Zhixin Zhang   https://orcid.org/0000-0002-3457-2934 
Jamie M. Kass   https://orcid.org/0000-0002-9432-895X 
Stefano Mammola   https://orcid.org/0000-0002-4471-9055 
Xuecao Li   https://orcid.org/0000-0002-6942-0746 
Masashi Yokota   https://orcid.org/0000-0002-4121-4115 
Nisikawa Usio   https://orcid.org/0000-0002-5906-184X 

R E FE R E N C E S
Amatulli, G., Domisch, S., Tuanmu, M. N., Parmentier, B., Ranipeta, 

A., Malczyk, J., & Jetz, W. (2018). A suite of global, cross-scale 
topographic variables for environmental and biodiversity mod-
eling. Scientific Data, 5, 180040. https://doi.org/10.1038/
sdata.2018.40

Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, 
C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., 
O’Hara, R. B., Zimmermann, N. E., & Rahbek, C. (2019). Standards for 
distribution models in biodiversity assessments. Science Advances, 5, 
eaat4858. https://doi.org/10.1126/sciadv.aat4858

Avise, J. C. (2000). Phylogeography: The history and formation of species. 
Harvard University Press.

Avise, J. C. (2009). Phylogeography: Retrospect and pros-
pect. Journal of Biogeography, 36, 3–15. https://doi.
org/10.1111/j.1365-2699.2008.02032.x

Baumgartner, J., & Wilson, P. (2020). rmaxent: Tools for working with 
Maxent in R. R package version 0.8.5.9000. https://github.com/
johnb​aums/rmaxent

Benito Garzón, M., Robson, T. M., & Hampe, A. (2019). ΔTrait SDMs: 
Species distribution models that account for local adaptation and 
phenotypic plasticity. New Phytologist, 222, 1757–1765. https://doi.
org/10.1111/nph.15716

Blonder, B. (with contributions from Harris DJ). (2019). hypervolume: 
High dimensional geometry and set operations using Kernel den-
sity estimation, support vector machines, and convex hulls. R pack-
age version 2.0.12. https://CRAN.R-proje​ct.org/packa​ge=hyper​
volume

Bohl, C. L., Kass, J. M., & Anderson, R. P. (2019). A new null model ap-
proach to quantify performance and significance for ecological niche 
models of species distributions. Journal of Biogeography, 46, 1101–
1111. https://doi.org/10.1111/jbi.13573

Booth, T. H., Nix, H. A., Busby, J. R., & Hutchinson, M. F. (2014). 
BIOCLIM: The first species distribution modelling package, its 
early applications and relevance to most current MAXENT stud-
ies. Diversity and Distributions, 20, 1–9. https://doi.org/10.1111/
ddi.12144

https://publons.com/publon/10.1111/ddi.13225
https://publons.com/publon/10.1111/ddi.13225
https://doi.org/10.5061/dryad.z612jm6b7
https://doi.org/10.5061/dryad.z612jm6b7
https://orcid.org/0000-0002-3457-2934
https://orcid.org/0000-0002-3457-2934
https://orcid.org/0000-0002-9432-895X
https://orcid.org/0000-0002-9432-895X
https://orcid.org/0000-0002-4471-9055
https://orcid.org/0000-0002-4471-9055
https://orcid.org/0000-0002-6942-0746
https://orcid.org/0000-0002-6942-0746
https://orcid.org/0000-0002-4121-4115
https://orcid.org/0000-0002-4121-4115
https://orcid.org/0000-0002-5906-184X
https://orcid.org/0000-0002-5906-184X
https://doi.org/10.1038/sdata.2018.40
https://doi.org/10.1038/sdata.2018.40
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1111/j.1365-2699.2008.02032.x
https://doi.org/10.1111/j.1365-2699.2008.02032.x
https://github.com/johnbaums/rmaxent
https://github.com/johnbaums/rmaxent
https://doi.org/10.1111/nph.15716
https://doi.org/10.1111/nph.15716
https://CRAN.R-project.org/package=hypervolume
https://CRAN.R-project.org/package=hypervolume
https://doi.org/10.1111/jbi.13573
https://doi.org/10.1111/ddi.12144
https://doi.org/10.1111/ddi.12144


     |  693ZHANG et al.

Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. 
S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. 
S., Holding, J., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, 
J. M., Parmesan, C., Schwing, F. B., Sydeman, W. J., & Richardson, 
A. J. (2011). The pace of shifting climate in marine and terrestrial 
ecosystems. Science, 334, 652–655. https://doi.org/10.1126/scien​
ce.1210288

Cacciapaglia, C., & van Woesik, R. (2018). Marine species distribution mod-
elling and the effects of genetic isolation under climate change. Journal 
of Biogeography, 45, 154–163. https://doi.org/10.1111/jbi.13115

Capinha, C., Larson, E. R., Tricarico, E., Olden, J. D., & Gherardi, F. (2013). 
Effects of climate change, invasive species, and disease on the dis-
tribution of native European crayfishes. Conservation Biology, 27, 
731–740. https://doi.org/10.1111/cobi.12043

Cardoso, P., Mammola, S., Rigal, F., & Carvalho, J. C. (2020). BAT: 
Biodiversity Assessment Tools. R package version 2.0.1. https://
CRAN.R-proje​ct.org/packa​ge=BAT

Carvalho, J. C., & Cardoso, P. (2020). Decomposing the causes for 
niche differentiation between species using hypervolumes. 
Frontiers in Ecology and Evolution, 8, 243. https://doi.org/10.3389/
fevo.2020.00243

Collart, F., Hedenäs, L., Broennimann, O., Guisan, A., & Vanderpoorten, 
A. (in press). Intraspecific differentiation: Implications for niche 
and distribution modelling. Journal of Biogeography. https://doi.
org/10.1111/jbi.14009.

D’Amen, M., Zimmermann, N. E., & Pearman, P. B. (2013). 
Conservation of phylogeographic lineages under climate 
change. Global Ecology and Biogeography, 22, 93–104. https://doi.
org/10.1111/j.1466-8238.2012.00774.x

De Queiroz, K. (2007). Species concepts and species delimitation. 
Systematic Biology, 56, 879–886. https://doi.org/10.1080/10635​
15070​1701083

DeWoody, J., Trewin, H., & Taylor, G. (2015). Genetic and morphological 
differentiation in Populus nigra L.: Isolation by colonization or isola-
tion by adaptation? Molecular Ecology, 24, 2641–2655. https://doi.
org/10.1111/mec.13192

Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shift-
ing species. Methods in Ecology and Evolution, 1, 330–342. https://doi.
org/10.1111/j.2041-210X.2010.00036.x

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological 
explanation and prediction across space and time. Annual Review 
of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.
org/10.1146/annur​ev.ecols​ys.110308.120159

Fukushima, C. S., Mammola, S., & Cardoso, P. (2020). Global wildlife trade 
permeates the Tree of Life. Biological Conservation, 247, 108503. 
https://doi.org/10.1016/j.biocon.2020.108503

Gallardo, B., & Aldridge, D. C. (2013). Evaluating the combined threat 
of climate change and biological invasions on endangered species. 
Biological Conservation, 160, 225–233. https://doi.org/10.1016/j.
biocon.2013.02.001

Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering 
more than simple habitat models. Ecology Letters, 8, 993–1009. 
https://doi.org/10.1111/j.1461-0248.2005.00792.x

Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability 
and distribution models: With applications in R. Cambridge University 
Press.

Hengl, T. (2018). Global DEM derivatives at 250 m, 1 km and 2 km based on 
the MERIT DEM. Zenodo, https://doi.org/10.5281/zenodo.1447210

Hereford, J. (2009). A quantitative survey of local adaptation and fit-
ness trade-offs. The American Naturalist, 173, 579–588. https://doi.
org/10.1086/597611

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). 
Evaluating the ability of habitat suitability models to predict spe-
cies presences. Ecological Modelling, 199, 142–152. https://doi.
org/10.1016/j.ecolm​odel.2006.05.017

Holdich, D. M. (2012). Biology of freshwater crayfish. Blackwell Science 
Ltd.

Hossain, M. A., Lahoz-Monfort, J. J., Burgman, M. A., Böhm, M., Kujala, 
H., & Bland, L. M. (2018). Assessing the vulnerability of freshwater 
crayfish to climate change. Diversity and Distributions, 24, 1830–
1843. https://doi.org/10.1111/ddi.12831

Hughes, L. (2000). Biological consequences of global warming: Is the 
signal already apparent? Trends in Ecology & Evolution, 15, 56–61. 
https://doi.org/10.1016/S0169​-5347(99)01764​-4

Ikeda, D. H., Max, T. L., Allan, G. J., Lau, M. K., Shuster, S. M., & Whitham, 
T. G. (2017). Genetically informed ecological niche models improve 
climate change predictions. Global Change Biology, 23, 164–176. 
https://doi.org/10.1111/gcb.13470

Ikeda, K., Doi, H., Tanaka, K., Kawai, T., & Negishi, J. N. (2016). Using 
environmental DNA to detect an endangered crayfish Cambaroides 
japonicus in streams. Conservation Genetics Resources, 8, 231–234. 
https://doi.org/10.1007/s1268​6-016-0541-z

IPBES (Intergovernmental Science-Policy Platform on Biodiversity 
and Ecosystem Services) (2019). Summary for policymakers of the 
global assessment report on biodiversity and ecosystem services of 
the Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services. IPBES.

IUCN (International Union for Conservation of Nature). (2020). The 
IUCN Red List of Threatened Species. Version 2020-2. IUCN, Gland, 
Switzerland. Retrieved from https://www.iucnr​edlist.org (accessed 
September 2020).

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, 
R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). 
Climatologies at high resolution for the earth’s land surface areas. 
Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.2017.122

Kass, J. M., Anderson, R. P., Espinosa-Lucas, A., Juárez-Jaimes, V., 
Martínez-Salas, E., Botello, F., Tavera, G., Flores-Martínez, J. J., & 
Sánchez-Cordero, V. (2020). Biotic predictors with phenological in-
formation improve range estimates for migrating monarch butter-
flies in Mexico. Ecography, 43, 341–352. https://doi.org/10.1111/
ecog.04886

Kawai, T. (2003). Hidden habitats of Japanese crayfish. In A. Asakura 
(Ed.), Carcinology–the worlds of shrimps, crabs, and related groups  
(pp. 256–275). Tokai University Press. (In Japanese).

Koizumi, I., Usio, N., Kawai, T., Azuma, N., & Masuda, R. (2012). Loss of 
genetic diversity means loss of geological information: The endan-
gered Japanese crayfish exhibits remarkable historical footprints. 
PLoS One, 7, e33986. https://doi.org/10.1371/journ​al.pone.0033986

Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, 
J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. 
M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., 
Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., … Wilting, A. (2013). 
The importance of correcting for sampling bias in MaxEnt species 
distribution models. Diversity and Distributions, 19, 1366–1379. 
https://doi.org/10.1111/ddi.12096

Lecocq, T., Rasmont, P., Harpke, A., & Schweiger, O. (2016). Improving 
international trade regulation by considering intraspecific variation 
for invasion risk assessment of commercially traded species: The 
Bombus terrestris case. Conservation Letters, 9, 281–289. https://doi.
org/10.1111/conl.12215

Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, 
J., & Grenouillet, G. (2020). Species better track climate warming in 
the oceans than on land. Nature Ecology & Evolution, 4, 1044–1059. 
https://doi.org/10.1038/s4155​9-020-1198-2

Li, X., Yu, L., Sohl, T., Clinton, N., Li, W., Zhu, Z., Liu, X., & Gong, P. (2016). 
A cellular automata downscaling based 1 km global land use data-
sets (2010–2100). Science Bulletin, 61, 1651–1661. https://doi.
org/10.1007/s1143​4-016-1148-1

Lobo, J. M., Jimenez-Valverde, A., & Real, R. (2008). AUC: A mis-
leading measure of the performance of predictive distribution 

https://doi.org/10.1126/science.1210288
https://doi.org/10.1126/science.1210288
https://doi.org/10.1111/jbi.13115
https://doi.org/10.1111/cobi.12043
https://CRAN.R-project.org/package=BAT
https://CRAN.R-project.org/package=BAT
https://doi.org/10.3389/fevo.2020.00243
https://doi.org/10.3389/fevo.2020.00243
https://doi.org/10.1111/jbi.14009
https://doi.org/10.1111/jbi.14009
https://doi.org/10.1111/j.1466-8238.2012.00774.x
https://doi.org/10.1111/j.1466-8238.2012.00774.x
https://doi.org/10.1080/10635150701701083
https://doi.org/10.1080/10635150701701083
https://doi.org/10.1111/mec.13192
https://doi.org/10.1111/mec.13192
https://doi.org/10.1111/j.2041-210X.2010.00036.x
https://doi.org/10.1111/j.2041-210X.2010.00036.x
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1016/j.biocon.2020.108503
https://doi.org/10.1016/j.biocon.2013.02.001
https://doi.org/10.1016/j.biocon.2013.02.001
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.5281/zenodo.1447210
https://doi.org/10.1086/597611
https://doi.org/10.1086/597611
https://doi.org/10.1016/j.ecolmodel.2006.05.017
https://doi.org/10.1016/j.ecolmodel.2006.05.017
https://doi.org/10.1111/ddi.12831
https://doi.org/10.1016/S0169-5347(99)01764-4
https://doi.org/10.1111/gcb.13470
https://doi.org/10.1007/s12686-016-0541-z
https://www.iucnredlist.org
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1111/ecog.04886
https://doi.org/10.1111/ecog.04886
https://doi.org/10.1371/journal.pone.0033986
https://doi.org/10.1111/ddi.12096
https://doi.org/10.1111/conl.12215
https://doi.org/10.1111/conl.12215
https://doi.org/10.1038/s41559-020-1198-2
https://doi.org/10.1007/s11434-016-1148-1
https://doi.org/10.1007/s11434-016-1148-1


694  |     ZHANG et al.

models. Global Ecology and Biogeography, 17, 145–151. https://doi.
org/10.1111/j.1466-8238.2007.00358.x

Mammola, S., & Cardoso, P. (2020). Functional diversity metrics using 
kernel density n-dimensional hypervolumes. Methods in Ecology and 
Evolution, 11, 986–995. https://doi.org/10.1111/2041-210X.13424

Mammola, S., Cardoso, P., Culver, D. C., Deharveng, L., Ferreira, R. L., 
Fišer, C., Galassi, D. M. P., Griebler, C., Halse, S., Humphreys, W. 
F., Isaia, M., Malard, F., Martinez, A., Moldovan, O. T., Niemiller, M. 
L., Pavlek, M., Reboleira, A. S. P. S., Souza-Silva, M., Teeling, E. C., 
… Zagmajster, M. (2019). Scientists’ warning on the conservation 
of subterranean ecosystems. BioScience, 69, 641–650. https://doi.
org/10.1093/biosc​i/biz064

Mammola, S., Milano, F., Vignal, M., Andrieu, J., & Isaia, M. (2019). 
Associations between habitat quality, body size and reproductive fit-
ness in the alpine endemic spider Vesubia jugorum. Global Ecology and 
Biogeography, 28, 1325–1335. https://doi.org/10.1111/geb.12935

Mammola, S., Piano, E., Cardoso, P., Vernon, P., Domínguez-Villar, D., 
Culver, D. C., Pipan, T., & Isaia, M. (2019). Climate change going deep: 
The effects of global climatic alterations on cave ecosystems. The 
Anthropocene Review, 6, 98–116. https://doi.org/10.1177/20530​
19619​851594

Merow, C., Smith, M. J., & Silander, J. A. Jr. (2013). A practical guide to 
MaxEnt for modeling species’ distributions: What it does, and why 
inputs and settings matter. Ecography, 36, 1058–1069. https://doi.
org/10.1111/j.1600-0587.2013.07872.x

Ministry of the Environment, Japan. (2020). Ministry of the Environment, 
Japan’s Red List 2020. Retrieved from http://www.env.go.jp/press/​
107905.html (accessed September 2020).

Miyake, S. (1982). Japanese Crustacean Decapods and Stomatopoda in 
color (Vol. I, 261 pp.). Hoikusha Publishing Co. Ltd. (In Japanese).

Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., 
Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for con-
ducting spatially independent evaluations and estimating optimal model 
complexity for Maxent ecological niche models. Methods in Ecology and 
Evolution, 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261

Oney, B., Reineking, B., O’Neill, G., & Kreyling, J. (2013). Intraspecific 
variation buffers projected climate change impacts on Pinus con-
torta. Ecology and Evolution, 3, 437–449. https://doi.org/10.1002/
ece3.426

Pearman, P. B., D’Amen, M., Graham, C. H., Thuiller, W., & Zimmermann, 
N. E. (2010). Within-taxon niche structure: Niche conservatism, di-
vergence and predicted effects of climate change. Ecography, 33, 
990–1003. https://doi.org/10.1111/j.1600-0587.2010.06443.x

Peterson, A. T., Soberón, J., & Sánchez-Cordero, V. (1999). Conservatism 
of ecological niches in evolutionary time. Science, 285, 1265–1267. 
https://doi.org/10.1126/scien​ce.285.5431.1265

Peterson, M. L., Doak, D. F., & Morris, W. F. (2019). Incorporating local 
adaptation into forecasts of species’ distribution and abundance 
under climate change. Global Change Biology, 25, 775–793. https://
doi.org/10.1111/gcb.14562

Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. 
(2017). Opening the black box: An open-source release of Maxent. 
Ecography, 40, 887–893. https://doi.org/10.1111/ecog.03049

Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L., & Sunday, J. M. 
(2019). Greater vulnerability to warming of marine versus terrestrial 
ectotherms. Nature, 569, 108–111. https://doi.org/10.1038/s4158​
6-019-1132-4

Qiao, H., Peterson, A. T., Ji, L., & Hu, J. (2017). Using data from related 
species to overcome spatial sampling bias and associated limitations 
in ecological niche modelling. Methods in Ecology and Evolution, 8, 
1804–1812. https://doi.org/10.1111/2041-210X.12832

R Core Team (2020). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing. https://www.R-proje​
ct.org/

Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent mod-
els of species distributions: Complexity, overfitting and evaluation. 
Journal of Biogeography, 41, 629–643. https://doi.org/10.1111/
jbi.12227

Razgour, O., Forester, B., Taggart, J. B., Bekaert, M., Juste, J., Ibáñez, 
C., Puechmaille, S. J., Novella-Fernandez, R., Alberdi, A., & Manel, 
S. (2019). Considering adaptive genetic variation in climate change 
vulnerability assessment reduces species range loss projections. 
Proceedings of the National Academy of Sciences, 116, 10418–10423. 
https://doi.org/10.1073/pnas.18206​63116

Ripple, W., Wolf, C., Newsome, T., Barnard, P., Moomaw, W., & 
Grandcolas, P. (2019). World scientists’ warning of a climate emer-
gency. BioScience, 70, 8–12. https://doi.org/10.1093/biosc​i/biz088

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, 
G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W., 
Warton, D. I., Wintle, B. A., Hartig, F., & Dormann, C. F. (2017). 
Cross-validation strategies for data with temporal, spatial, hierarchi-
cal, or phylogenetic structure. Ecography, 40, 913–929. https://doi.
org/10.1111/ecog.02881

Román-Palacios, C., & Wiens, J. J. (2020). Recent responses to cli-
mate change reveal the drivers of species extinction and survival. 
Proceedings of the National Academy of Sciences, 117, 4211–4217. 
https://doi.org/10.1073/pnas.19130​07117

Ryder, O. A. (1986). Species conservation and systematics: The dilemma 
of subspecies. Trends in Ecology & Evolution, 1, 9–10. https://doi.
org/10.1016/0169-5347(86)90059​-5

Savolainen, O., Lascoux, M., & Merilä, J. (2013). Ecological genomics of 
local adaptation. Nature Reviews Genetics, 14, 807–820. https://doi.
org/10.1038/nrg3522

Serra-Varela, M. J., Grivet, D., Vincenot, L., Broennimann, O., Gonzalo-
Jimenez, J., & Zimmermann, N. E. (2015). Does phylogeographical 
structure relate to climatic niche divergence? A test using maritime 
pine (Pinus pinaster Ait.). Global Ecology and Biogeography, 24, 1302–
1313. https://doi.org/10.1111/geb.12369

Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H., & Warren, 
D. (2019). Niche estimation above and below the species level. 
Trends in Ecology & Evolution, 34, 260–273. https://doi.org/10.1016/j.
tree.2018.10.012

Soberón, J., & Nakamura, M. (2009). Niches and distributional areas: 
Concepts, methods, and assumptions. Proceedings of the National 
Academy of Sciences, 106, 19644–19650. https://doi.org/10.1073/
pnas.09016​37106

Thacker, R. W., Hazlett, B. A., Esman, L. A., Stafford, C. P., & Keller, T. 
(1993). Color morphs of the crayfish Orconectes virilis. The American 
Midland Naturalist, 129, 182–199. https://doi.org/10.2307/2426447

Tuanmu, M. N., & Jetz, W. (2014). A global 1-km consensus land-cover 
product for biodiversity and ecosystem modelling. Global Ecology and 
Biogeography, 23, 1031–1045. https://doi.org/10.1111/geb.12182

Usio, N. (2007). Endangered crayfish in northern Japan: Distribution, 
abundance and microhabitat specificity in relation to stream and ri-
parian environment. Biological Conservation, 134, 517–526. https://
doi.org/10.1016/j.biocon.2006.09.002

Usio, N., Konishi, M., & Nakano, S. (2001). Species displacement between 
an introduced and a ‘vulnerable’ crayfish: The role of aggressive in-
teractions and shelter competition. Biological Invasions, 3, 179–185. 
https://doi.org/10.1023/A:10145​73915464

Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, 
T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O., & Bairlein, F. (2002). 
Ecological responses to recent climate change. Nature, 416, 389–395. 
https://doi.org/10.1038/416389a

Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change 
and freshwater ecosystems: Impacts across multiple levels of orga-
nization. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 365, 2093–2106. https://doi.org/10.1098/rstb.2010.0055

https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/2041-210X.13424
https://doi.org/10.1093/biosci/biz064
https://doi.org/10.1093/biosci/biz064
https://doi.org/10.1111/geb.12935
https://doi.org/10.1177/2053019619851594
https://doi.org/10.1177/2053019619851594
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1111/j.1600-0587.2013.07872.x
http://www.env.go.jp/press/107905.html
http://www.env.go.jp/press/107905.html
https://doi.org/10.1111/2041-210X.12261
https://doi.org/10.1002/ece3.426
https://doi.org/10.1002/ece3.426
https://doi.org/10.1111/j.1600-0587.2010.06443.x
https://doi.org/10.1126/science.285.5431.1265
https://doi.org/10.1111/gcb.14562
https://doi.org/10.1111/gcb.14562
https://doi.org/10.1111/ecog.03049
https://doi.org/10.1038/s41586-019-1132-4
https://doi.org/10.1038/s41586-019-1132-4
https://doi.org/10.1111/2041-210X.12832
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1111/jbi.12227
https://doi.org/10.1111/jbi.12227
https://doi.org/10.1073/pnas.1820663116
https://doi.org/10.1093/biosci/biz088
https://doi.org/10.1111/ecog.02881
https://doi.org/10.1111/ecog.02881
https://doi.org/10.1073/pnas.1913007117
https://doi.org/10.1016/0169-5347(86)90059-5
https://doi.org/10.1016/0169-5347(86)90059-5
https://doi.org/10.1038/nrg3522
https://doi.org/10.1038/nrg3522
https://doi.org/10.1111/geb.12369
https://doi.org/10.1016/j.tree.2018.10.012
https://doi.org/10.1016/j.tree.2018.10.012
https://doi.org/10.1073/pnas.0901637106
https://doi.org/10.1073/pnas.0901637106
https://doi.org/10.2307/2426447
https://doi.org/10.1111/geb.12182
https://doi.org/10.1016/j.biocon.2006.09.002
https://doi.org/10.1016/j.biocon.2006.09.002
https://doi.org/10.1023/A:1014573915464
https://doi.org/10.1038/416389a
https://doi.org/10.1098/rstb.2010.0055


     |  695ZHANG et al.

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., & Pavelsky, 
T. M. (2019). MERIT Hydro: A high-resolution global hydrography 
map based on latest topography dataset. Water Resources Research, 
55, 5053–5073. https://doi.org/10.1029/2019W​R024873

Zhang, Z., Capinha, C., Karger, D. N., Turon, X., MacIsaac, H. J., & Zhan, 
A. (2020). Impacts of climate change on geographical distributions 
of invasive ascidians. Marine Environmental Research, 159, 104993. 
https://doi.org/10.1016/j.maren​vres.2020.104993

Zhang, Z., Capinha, C., Usio, N., Weterings, R., Liu, X., Li, Y., Landeria, 
J. M., Zhou, Q., & Yokota, M. (2020). Impacts of climate change on 
the global potential distribution of two notorious invasive crayfishes. 
Freshwater Biology, 65, 353–365. https://doi.org/10.1111/fwb.13429

Zhang, Z., Mammola, S., Liang, Z., Capinha, C., Wei, Q., Wu, Y., Zhou, J., 
& Wang, C. (2020). Future climate change will severely reduce habi-
tat suitability of the Critically Endangered Chinese giant salamander. 
Freshwater Biology, 65, 971–980. https://doi.org/10.1111/fwb.13483

Zhang, Z., Mammola, S., McLay, C. L., Capinha, C., & Yokota, M. (2020). 
To invade or not to invade? Exploring the niche-based processes un-
derlying the failure of a biological invasion using the invasive Chinese 
mitten crab. Science of the Total Environment, 728, 138815. https://
doi.org/10.1016/j.scito​tenv.2020.138815

Zhang, Z., Mammola, S., Xian, W., & Zhang, H. (2020). Modelling the 
potential impacts of climate change on the distribution of ichthyo-
plankton in the Yangtze Estuary, China. Diversity and Distributions, 
26, 126–137. https://doi.org/10.1111/ddi.13002

Zhao, T., Zhang, W., Zhou, J., Zhao, C., Liu, X., Liu, Z., Shu, G., Wang, S., Li, 
C., Xie, F., Chen, Y., & Jiang, J. (2020). Niche divergence of evolution-
arily significant units with implications for repopulation programs of 
the world's largest amphibians. Science of the Total Environment, 738, 
140269. https://doi.org/10.1016/j.scito​tenv.2020.140269

BIOSKE TCH
Zhixin Zhang mainly focuses on biogeography and climate 
change, in particular exploring potential impacts of climate 
change on habitat suitability of both invasive and endangered 
species using species distribution modelling.

Author contributions: Z.Z. and N.U. conceived the idea. N.U., 
K.T., K.I. and T.S. provided species distribution data. X.L. pre-
pared land use and land cover data. Z.Z. and J.M.K. performed 
data analyses with constructive suggestions from S.M. Z.Z., S.M., 
J.M.K., and N.U. led the writing of the first draft. All authors ap-
proved the final manuscript.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Zhang Z, Kass JM, Mammola S, et al. 
Lineage-level distribution models lead to more realistic 
climate change predictions for a threatened crayfish. Divers 
Distrib. 2021;27:684–695. https://doi.org/10.1111/ddi.13225

https://doi.org/10.1029/2019WR024873
https://doi.org/10.1016/j.marenvres.2020.104993
https://doi.org/10.1111/fwb.13429
https://doi.org/10.1111/fwb.13483
https://doi.org/10.1016/j.scitotenv.2020.138815
https://doi.org/10.1016/j.scitotenv.2020.138815
https://doi.org/10.1111/ddi.13002
https://doi.org/10.1016/j.scitotenv.2020.140269
https://doi.org/10.1111/ddi.13225

